
Robust and flexible power-proportional storage

Hrishikesh Amur†, James Cipar⋆, Varun Gupta⋆

Gregory R. Ganger⋆, Michael A. Kozuch‡, Karsten Schwan†

⋆Carnegie Mellon University, †Georgia Tech, ‡Intel Labs Pittsburgh

CMU-PDL-10-106

February 2010

Parallel Data Laboratory

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Abstract

Power-proportional cluster-based storage is an important component of an overall cloud computing infrastructure. With it, substan-

tial subsets of nodes in the storage cluster can be turned off to save power during periods of low utilization. Rabbit is a distributed

file system that arranges its data-layout to provide ideal power-proportionality down to very low minimum number of powered-up

nodes (enough to store a primary replica of available datasets). Rabbit addresses the node failure rates of large-scale clusters with

data layouts that minimize the number of nodes that must be powered-up if a primary fails. Rabbit also allows different datasets to

use different subsets of nodes as a building block for interference avoidance when the infrastructure is shared by multiple tenants.

Experiments with a Rabbit prototype demonstrate its power-proportionality, and simulation experiments demonstrate its properties

at scale.

Acknowledgements: We thank the members and companies of the PDL Consortium (including APC, Data Domain, EMC, Facebook, Google,

Hewlett-Packard Labs, Hitachi, IBM, Intel, LSI, Microsoft, NEC Laboratories, NetApp, Oracle, Seagate, Sun, Symantec, VMWare, and Yahoo!

Labs) for their interest, insights, feedback, and support. This research was sponsored in part by NSF grants #CNS-0326453, by Intel Labs Pittsburgh,

by DoE award DE-FC02-06ER25767, and by CyLab under ARO grant DAAD19-02-1-0389. Intel enabled the experiments with funding and

generous hardware donations. We would also like to thank Intel corporation for providing funding and equipment, and IBM research for their

generous support.



1 Introduction

Energy concerns have moved front-and-center for data centers. Much research and development is focused

on reducing energy consumption, both by increasing efficiency and by using lower power modes (including

“off”) for underutilized resources. For the latter, an ideal is power proportionality—the energy consumed

should be proportional to the work completed. As cloud computing is used to aggregate many workloads on

shared data center infrastructures, power proportionality is desired over a wide range of non-idle workload

levels (i.e., system utilizations), down to a single operating tenant.

Our focus is on large-scale cluster-based storage (e.g., Google FS [9] or HDFS [1]) and data-intensive

computing frameworks that are increasingly built on and co-mingled with such storage. Traditionally, such

storage randomly places replicas of each block on a number (e.g., three) of the nodes comprising the storage

system. This approach provides robust load balancing, fault tolerance, and scalability properties. But, it pre-

vents powering-down of subsets of nodes—the primary tool for power proportional cluster-based storage—

without disrupting data availability. Nearly all nodes must be kept powered-up.

This paper describes a power-proportional distributed file system (PDFS), called Rabbit, that provides

cluster-based storage with new data layouts that provide key properties. First, Rabbit provides a wide range

of power-performance settings, from a low minimum power to a high maximum performance, while main-

taining the efficiency of a non-PDFS design and fine gradation of settings. Second, for each setting, it

provides ideal power-proportionality, meaning that the performance-to-power ratio at all performance levels

is equivalent to that at the maximum performance level (i.e., all nodes powered-up). Third, it maintains

near-ideal power proportionality in the face of node failures. In addition to its power-related properties, it

provides a mechanism for mitigating contention among multiple workloads using distinct datasets.

Rabbit uses the equal-work data-layout policy, which stores replicas of the data on non-overlapping

subsets of nodes. One replica of the data, termed the primary replica, is stored on p number of nodes in the

cluster, where p is arbitrarily small (but big enough to contain the replica). This allows the equal-work policy

to have a low minimum power setting that only requires the p nodes to be kept on to guarantee availability of

all data. The remaining replicas are stored on additional and increasingly-large subsets of nodes, resulting

in even split of a workload across whatever subset of nodes is powered-on. Thus, performance can be scaled

up in an ideally power-proportional manner, at the fine granularity of the throughput of one node at a time,

to a maximum of roughly er−1 p nodes, where r is the number of replicas stored for that data. Scaling up

performance is fast because it requires no data movement. Experiments show that Rabbit can provide ideal

power-proportionality and full data availability across a range of settings going as low as 5% of the nodes.

In very large-scale cluster-based storage, faults are viewed as a common occurrence rather than an

uncommon one [8, 19]. Rabbit’s equal-work data-layout policy carefully arranges secondary replicas of

blocks to minimize disruption of power-proportionality when nodes fail. In particular, at the minimum-

power setting, only the p nodes storing the primary replica are powered-up, and a failure of one of those

p nodes requires turning on a number of secondaries to provide availability for the corresponding data.

Rabbit’s data-layout policy enables one to keep that number small and also addresses scalability of re-

replication of the data that was stored on failed nodes. For example, by trading a small amount of flexibility

regarding the granularity of power settings, one can keep the number below 10% of p.

Rabbit’s mechanisms for providing power-proportionality can also be used for controlled sharing of

I/O resources between applications. This is particularly useful in support of cloud computing, where there

may be multiple, concurrent tenants that rely on the underlying DFS for storage of independent datasets.

For example, the DFS might be shared by various services in addition to a framework for execution of

MapReduce [8], Hadoop [1], BigTable [6], or Pig [2] jobs. While such frameworks offer capabilities to

schedule resources between their jobs, neither they nor the typical DFS provides mechanisms to allocate

specific proportions of the DFS’s I/O bandwidth among services and such frameworks (or even among jobs

in a framework). A modified instance of Rabbit’s equal-work data layout provides a building block for fair

1



sharing or priority-based policies to be defined for access to different datasets. The capability to enforce

fair-sharing of I/O resources between different datasets comes at the cost of a small loss of ideal power-

proportionality, but experiments show that this cost is below 10% in the average case.

The three primary contributions of this paper are:

• The introduction and evaluation of the equal-work data-layout policy, and its realization in a PDFS

called Rabbit, capable of providing ideal power-proportionality for storage at arbitrarily low minimum-

power settings.

• The introduction and evaluation of modified equal-work data-layout policies that enable recovery

from disk/server failures in a power-proportional manner.

• The introduction and evaluation of modified equal-work data-layout policies that enable different

applications to use non-overlapping subsets of nodes concurrently to avoid interference.

The remainder of this paper is organized as follows. Section 2 motivates our work in more detail.

Section 3 describes the design and implementation of Rabbit and its data-layout policies. Section 4 evaluates

their power-proportionality and other properties. Section 5 discusses additional related work.

2 Need new data layouts

The cluster-based storage systems commonly used in support of cloud and data-intensive computing en-

vironments, such as the Google File System(GFS) [9] or the Hadoop Distributed Filesystem [1], use data

layouts that are not amenable to powering down nodes. The Hadoop Distributed File System(HDFS), for

example, uses a replication and data-layout policy wherein the first replica is placed on the writer node (if

it contributes to DFS storage), the second on a random node on the same rack as the writer, and the third

on a random node in a remote rack. In addition to load balancing, this policy provides excellent availability

properties—if the node with the primary replica fails, the second replica on the same rack maintains data

availability; if an entire rack fails(e.g., through the failure of a communication link), data availability is

maintained via the third replica. Unfortunately, this policy also prevents power proportionality by imposing

a strong constraint on how many nodes can be turned off. In the case of default HDFS, no more than one

node per rack can be turned off without the risk of making some data unavailable.

Alternate data layout policies are needed to accommodate power proportionality. This section discusses

a basic power proportional data layout and issues involved with tolerating faults and managing I/O resource

sharing. Section 3 builds on this background in describing the data-layout policies used in Rabbit.

2.1 A Simple PDFS Data-layout Policy

Suppose that we wish to store r replicas of B blocks of a dataset on the DFS that is running on a cluster

of N nodes. Since one requirement of a PDFS is a low minimum power setting, we store one replica of B

blocks evenly on p nodes, called the primary nodes, where p ≪ N. Consider an application that reads the

entire dataset and so makes requests for each of the B blocks. If only the p primary nodes are on, each of

these services B/p of the blocks, which corresponds to the minimum performance setting since turning off

any more nodes makes some data unavailable. For the remaining r− 1 replicas, we distribute them evenly

over the N − p nodes. Therefore, at the maximum performance setting, all the nodes in the cluster are

on, and each of these services B/N nodes. This is possible because each of the latter N − p nodes stores

B(r − 1)/(N − p) < B/N for p ≪ N. This “simple” base PDFS arrangement, used in some related work

discussed in Section 5, is shown in Figure 1(a) for N = 100,B = 104, p = 5 and r = 4. However, the key

problem with this approach is that it is not ideally power-proportional. This is because there are cases where

2



all the nodes that are ’on’ cannot perform equal work. In Figure 1(a), with n = 20 nodes ’on’ and the rest

turned off, ideally each of the nodes would service B/n = 500 blocks. But each of nodes i ∈ [10,20], i ∈ Z

only stores about 316 blocks and of course, a node can service a request for a block only if it stores that

block. Therefore, the primary nodes need to service more than B/n blocks leading to an increase in the

overall read completion time and hence a drop in overall throughput. The percentage increase in read time

for such a policy is shown in Figure 1(b).

Therefore, while the goals of a low minimum-power, a high maximum-performance and fast, fine-

grained scaling are met the policy is not ideally power-proportional. Ideal power-proportionality can be

attained by storing the same number of blocks on a primary node as a non-primary node, which will allow

all the nodes to perform an equal amount of work. However, doing so compromises on the goal of a low

minimum power setting, because it necessitates p = N/r. But, it is preferable to keep the number of replicas

r as low as possible. A high value of r implies a proportional use of disk capacity and a slowdown in write

performance since any changes have to be propagated to all the replicas. Therefore, since r cannot be set to

be a large number and this limits the minimum-power setting. We show in Section 3.1 how the equal-work

data-layout policy used with Rabbit achieves all of these desired properties for a PDFS.

2.2 Power Proportional Fault Tolerance

In addition to power-proportionality in failure-free periods, it is desirable for large-scale PDFSs to provide

power-proportional failure and recovery modes. As distributed file systems are deployed across larger clus-

ters, server failures become more and more common, and the amount of time the DFS spends in a failure-

recovery state increases. This has led users of some of the largest distributed file systems to comment that

failure recovery states are now the norm, not the exception [8, 19]. To support such large file systems, a

PDFS must remain power proportional even when it is recovering from a failure. The simple policy fails in

this regard: if a primary server fails, almost all of the non-primary nodes will have to be activated to restore

availability of the data from that primary. This is because the data from each primary is spread evenly over

all nodes, making it difficult to find a small set of nodes containing replicas of all of the blocks from the

failed primary. In section 3.5 we explain this problem in more detail, and describe modifications to the base

Rabbit file system to allow it to restore availability with little effect on the power consumed by the system.

These mechanisms constructed for Rabbit allow us to also solve another related, important problem that is

described next.

2.3 I/O Resource Management

As distributed file systems become more ubiquitous in the data center, the capability to allocate I/O band-

width available through the DFS to specific applications that run on it has significant benefits. Recent

results [11] show that almost 5% of the jobs observed in a large-scale data center run for more than 5 hours

and some jobs run for more than a day. In the presence of such long-running jobs, it is imperative to be

able to guarantee some notion of fair sharing of the resources of the cluster. There should be capabilities,

for example, to temporarily decrease the performance of long jobs during times of high load or when there

are higher priority shorter running jobs to be processed. Although Hadoop or an equivalent implementation

of the map-reduce paradigm is has its own scheduler, the underlying DFS will most likely support multi-

ple kinds of applications in the data center. For example, Google’s BigTable [6] and Hadoop’s HBase are

designed to work directly on top of the DFS. It is therefore impossible with current solutions to guarantee

I/O performance for each of these jobs. In other words, there is no check on a single job monopolizing

the I/O resources of the cluster. The problem is often exacerbated due to the fact that a lot of the jobs are

data-intensive and their overall performance depends significantly on the amount of I/O bandwidth that they

receive.

3



(a) Simple data layout arrangement

(b) Increase in read time for simple policy

Figure 1: Problems with a simple PDFS data layout policy. For numbers of active nodes between p and one-

third of all nodes, power efficiency is low as the non-primaries contain too little data to contribute equally

to providing service. Most requests must go to the primaries, resulting in significant load imbalance and

performance reduction (relative to ideal) for reading the entire dataset.

4



It is our contention that the DFS is the ideal platform for the implementation of mechanisms to control

the amount of bandwidth provisioned to applications. Rabbit manages I/O resources between datasets stored

in the cluster. It is possible to allocate I/O bandwidth to a particular dataset that would then be shared by the

applications using that dataset. We describe the method in Section 3.4 and show benefits in Section 4.3.

3 Design of Rabbit

Our filesystem, Rabbit, was designed to provide high bandwidth data I/O using commodity compute servers

in a cluster environment; tolerating hardware failures is also a key design goal of Rabbit. Consequently,

Rabbit shares some properties with other recent cluster file systems such as the filesystems of Google [9]

and Hadoop [1]. In particular, files are divided into large blocks and a user selectable number of replicas,

r, of each data block is distributed among the nodes of the cluster. The typical modern cluster for which

these file systems were designed may consist of thousands of servers where each server stores data blocks

on a small number of disks, generally less than 10. The mapping of file names to block identifiers is also

maintained by a separate meta-data service.

However, Rabbit differs significantly from these other systems in providing power-proportionality. As

we shall see, this property, which is especially attractive as cluster file systems are increasingly being em-

ployed for general cluster computing where significant power savings may be possible, has far-reaching

effects– causing changes to the data layout policy, load balancing algorithms, and fault-tolerance techniques.

3.1 Equal-work Data Layout Policy

In this section, we describe the equal-work data layout policy used in Rabbit. Consider a cluster with

N nodes where xn is the I/O throughput obtained and Pn the power consumed, when n nodes are active

(powered on). We state the requirements of a PDFS formally:

1. A low minimum throughput, xp consuming power Pp where p nodes are kept active and p ≪ N.

2. A high maximum throughput, xN consuming power PN where N nodes are kept active.

3. Ideal power-proportionality, which means that xi/Pi = xN/PN for any i ∈ {p, ...,N}.

4. Fast, fine-grained scaling with no data movement required.

The equal-work policy, described next, ensures equal load-sharing. Formally, the equal-work policy

is the result of an optimization problem that minimizes r with the constraints, xi = (i/p)xp for all i =
p + 1, ...,N. In the following subsections, we offer an intuitive explanation of the equal-work policy. An

example is shown in Figure 2 for the case of N = 100,B = 104, p = 5 and r = 4 as before. First, we define

some important terms.

3.1.1 Definitions

A dataset is an arbitrary user-defined set of files stored in the DFS. For each dataset, we define an ordered

list of nodes called the expansion-chain which denotes the order in which nodes must be turned on or off

to scale performance up or down, respectively. The nodes of the expansion-chain that are powered on are

called the active nodes, A(d) for dataset d. For the rest of Section 3.1, we do not consider multiple datasets.

This will be dealt with in Section 3.4.

5



Figure 2: Equal-work data layout

3.1.2 Low Minimum Power

In the equal-work data-layout policy, the first p nodes of the expansion-chain are called the primary nodes.

One replica of the dataset, called the primary replica, is distributed evenly over the primary nodes as shown

in Figure 2. Keeping only these p nodes on is sufficient for guaranteeing the availability of all data. Because

p ≪ N, this state of keeping only the first p nodes of the chain on gives Rabbit a low minimum power

setting.

3.1.3 Ideal Power-proportionality

To ensure ideal power-proportionality, bi = B/i blocks are stored on the i-th node of the expansion-chain,

where i > p. This satisfies a necessary condition for ideal power-proportionality that is violated by the naı̈ve

policy, which is that bi, the number of blocks stored by i-th node in the expansion-chain, must not be less

than B/n for all i ≤ n, when n nodes are active. Obeying this constraint makes it possible for the load to be

shared equally between the nodes that are active. To illustrate, consider the situation when an entire dataset

of B blocks has to be read from the DFS with n(≥ p) nodes active. For ideal power-proportionality, each of

the nodes should service B/n blocks. This is made possible by the equal-work layout because the n-th node

stores B/n blocks while each of the nodes i with i ∈ [p,n) stores B/i > B/n blocks. To scale performance

up, the number of active nodes is increased by turning on nodes according to the order specified by the

6



expansion-chain for the dataset. Scaling requires no data movement and can be done at the granularity of a

single node.

3.1.4 High Maximum Performance Setting

Each node stores no more than the minimum required number of blocks because this will allow the blocks

to be distributed across a larger number of nodes while holding the number of replicas fixed so energy is not

wasted writing an unnecessarily high number of data copies. We define the spread to be the number of nodes

over which the blocks of the dataset are stored. The spread is equal to the length of the expansion-chain for

the dataset. For the equal-work policy, the spread depends on the number of replicas of data used.

We can derive a lower-bound on the spread if we begin by observing that the number of blocks stored

on the servers in the range [p+1,s] must correspond to (r−1) replicas of the dataset. Hence,

s

∑
i=p+1

B/i = B(r−1) (1)

If we then let f (p,s) =
s

∑
i=p+1

1/i and remove a factor of B from both sides, we can see that f (p,s) =

r−1. Because 1/i is a monotonically-decreasing function, we also have convenient lower and upper bounds

on f (p,s) as,
Z s+1

p+1
(1/x)dx ≤ f (p,s) ≤

Z s

p
(1/x)dx (2)

From Equations 1 and 2, we get:

s ≥ per−1 (3)

This shows that the spread increases exponentially with the number of replicas while maintaining ideal

power-proportionality. Since the maximum throughput obtainable depends on the spread, this allows the

equal-work policy to obtain a high value for the same. We note that since the spread also depends on p, a

spread spanning the entire cluster can be obtained with any number of replicas r by adjusting the value of p.

3.2 Load Balancer

The equal-work layout policy is complemented by a load balancer whose function is to ensure that each

active node services almost the same number of blocks.

When a request is received from a client for a block, the DFS has a choice of which node to choose to

service the request because the data block is stored on r different nodes. Since a typical data layout policy,

like the default HDFS policy which is not power-proportional, stores data blocks evenly on all the nodes this

decision can be made easily. In our case, some nodes store significantly more data than others, but the work

must still be shared equally between all the active nodes. Therefore, when n nodes are active, although the

n-th node has only bn = B/n blocks from a dataset with B blocks, it must service the requests for the same

number of blocks as a primary node which stores B/p blocks. While a solution to an optimization problem

formulated as a mixed integer program(MIP) can be used to optimally assign blocks to specific nodes for

service, we find that the following heuristic works well in practice. We define a desired hit-ratio, equal to
bi

B/n
for each node i ≤ n. When a dataset is being read, the actual hit-ratio which, at a given time t, denotes

the ratio of the blocks serviced by node i to the number of blocks that could have been serviced by node i

till time t. Of the r possible nodes that a requested block is stored on, some may be turned off so the choice

is made from the nodes that remain on. The load-balancer greedily chooses the node, for which the actual

hit-ratio is the farthest from the desired hit-ratio. For example, if n nodes are active, the n-th node stores B/n

blocks. Therefore, it has a desired hit-ratio of 1, which means any time the nodes appears as a candidate it

7



is very likely to be chosen. Similarly, a primary node has a desired hit-ratio of p/n. To evaluate the load

balancer, we performed a complete read of a 100GB dataset, with 1700 blocks on a cluster of 24 nodes

stored using the equal-work layout policy. With our load balancer, the average number of blocks serviced

by each nodes was 70.83 with a standard deviation of 1.79.

3.3 Write Offloading

So far we have described the performance of a PDFS in terms of read performance. However, a power

proportional DFS, and the design of the equal work layout present two major complications to write perfor-

mance. The first problem is that a copy of every block must be written to a primary server. If the primary set

is very small, as one would like it to be, then these nodes will become a bottleneck for writes. This becomes

especially true in high power modes. In a system with 3-way replication, a perfectly power proportional

DFS would get the write bandwidth of 1
3

of the servers. However, if the primary set is small, for instance

only 10% of the cluster, then the system will only achieve a write bandwidth of 1
10

of the nodes.

The second problem occurs only when operating at reduced power modes. In these cases it is impossible

to write a block to an inactive node. If the layout policy requires that some data be placed on inactive nodes,

the file system would have to activate them to do so. This layout requirement does not depend on the rate

of write or read requests; there could be very little file system activity, but the layout still requires writing

to a node that is currently inactive. Activating these servers will violate power proportionality, because the

throughput achieved by the file system will remain quite low, but the power used by the system will increase.

We build on previous work to solve these problems using write offloading: simply writing to any avail-

able server, and correcting the layout later. Write offloading was used by Everest [15] to avoid bottlenecks

caused by overloaded storage volumes in an enterprise storage setting. This solution is conceptually sim-

ilar to our first problem, of overloaded primary servers. Write offloading solves the bottleneck problem

by allowing the primary replica of a block to be temporarily written to a non-primary server. Before that

non-primary server can be deactivated, all primary copies of blocks must be written to their appropriate

places. At first glance this is not solving the problem of overloaded primaries, but simply delaying it, since

all blocks must reach a primary server eventually. However, the only reason the file system would deactivate

a non-primary is when there is idle disk bandwidth. When this is the case, it can use that idle bandwidth to

migrate the primary replica. The only disadvantage is that the file system will not be able to switch power

modes instantly.

Write offloading solves the second problem, writing to deactivated servers, equally well. This was

demonstrated by PARAID [22] for writing to deactivated disks in a power aware raid setting. It was also

used by Sierra [20] in a setting very similar to our own, a large scale distributed file system. The major

disadvantage in these cases is that data written at a low power mode will reside on a reduced set of servers.

This lowers the effective maximum performance for these data, at least until they can be migrated to the

target layout. Sierra explores this in detail and shows that this is not a problem in practice.

3.4 I/O Scheduling

In this section, we describe how we use the mechanisms used to provide power-proportionality to perform

I/O scheduling for datasets in Rabbit. A dataset is defined to be an arbitrary set of files stored in Rabbit.

Since the jobs in this environment are primarily data-intensive, performance significantly depends on the

amount of I/O bandwidth that the jobs receive. Hadoop has its own fair scheduler that indirectly manages

I/O resources by controlling the compute scheduling but this only guarantees fairness for map-reduce jobs

using the particular instance of the Hadoop library. In a data center environment, there can exist multiple

different applications such as BigTable [6] and Pig [2] that use the services offered by the DFS. In such

scenarios, indirectly managing the I/O resources through compute scheduling becomes impossible. Our

8



solution enables the scheduling of I/O resources at the level of the DFS and allows the I/O bandwidth of the

cluster to be shared between the datasets in an explicit manner.

We explained the equal-work data layout policy used in Rabbit in Section 3.1. To handle multiple

datasets, we use the same policy but overlay the datasets over one another using a greedy strategy to choose

the nodes. We define a score, si for a node i which depends on where that node figures in the expansion-

chains of the different datasets. Let Di be the set of datasets which have blocks stored on node i, let si(d) be

the contribution of dataset d ∈ Di to the score si and let li(d) be the index in the expansion-chain of dataset

d where node i appears. Then:

si = ∑
d∈Di

si(d) (4)

si(d) =

{

1 if li(d) ≤ p ,
1

li(d) otherwise .
(5)

When a new dataset is to be written into the DFS, nodes are chosen greedily choosing nodes with the

minimum score, si. The score is updated once the blocks of the new dataset are stored. Figure 3(a) shows

the layout policy for three datasets. Each of the datasets has a spread that is equal to the size of the entire

cluster, but the order of nodes in the expansion-chains of the datasets is unique for each dataset.

To maintain control over the I/O bandwidth allocated to a dataset, a given node is assigned to exactly

one dataset, which means that the I/O bandwidth of that node is allocated solely to that dataset. We define a

dataset to be live at a given time if an application is reading or writing data to that dataset.

The set of active nodes A(d) is the set of nodes that have been allocated to dataset d and remain ’on’.

The goal of I/O scheduling is, therefore, to allocate A(d), for each of the datasets d ∈ DL where DL is the

set of live datasets. Since a node can only be allocated to one dataset, an arbitration algorithm is required if

multiple, live datasets store blocks on a particular node i. We make this choice simply by picking the dataset

d0 where si(d0) = maxsi(d), with d ∈ Di ∩DL, ie. we pick a live dataset that contributes the most to the

score of the node. For instance, if all three datasets shown in Figure 3(a) are live, fair-sharing would set the

active nodes of the datasets as shown in Figure 3(b).

Rabbit controls the I/O bandwidth of a dataset d by controlling the size of the set A(d). Since all

requests for blocks belonging to that dataset are serviced by the nodes in the set A(d), this limits the total

amount of bandwidth available to the dataset.

A side-effect of providing resource guarantees to datasets is that ideal power-proportionality does not

hold in all cases. Consider, for example, if datasets 1 and 3 from Figure 3(a) are live. In this case, each of

these should get the I/O bandwidth of 50 nodes. However, the first 50 nodes from A(1) and A(3) have many

nodes in common. Since each node can only be allocated to one live dataset, each of the datasets has to settle

for some nodes which are lower in their respective expansion-chains. The final set of allocated active nodes

are shown in Figure 3(c). The active nodes for dataset 1 which are lower in the expansion-chain cannot

perform an equal share of work as the nodes higher in the chain. For instance, in Figure 3(c), because 50

nodes are active, in a read of the entire dataset each of nodes is expected to service B/50 blocks. However,

the active nodes of dataset A that appear below the 50th node in the expansion chain have less than B/50

blocks, causing the higher nodes to perform extra work. This leads to a loss of ideal power-proportionality.

We quantify this loss in power-proportionality by defining a term called the degree of power-proportionality.

Consider a dataset of B blocks. Let n nodes from the expansion-chain be ’on’. Ideally, each of the n

nodes would service B/n blocks. But owing to the overlapping of multiple datasets, a situation such as the

one pictured in Figure 3(c) may result in the n-th node not storing the requisite B/n blocks. In this case, the

’extra work’ consisting of blocks that cannot be serviced by nodes lower down in the expansion-chain has

to be distributed among the nodes with greater number of blocks stored. If be is the extra number of blocks

that each of the these nodes has to service, then the degree of power-proportionality is defined as
B/n

B/n+be
.

9



To understand the extent of this loss in power proportionality, we built a data layout simulator that

allows us to understand the factors on which the degree of power proportionality depends on. In particular,

we investigate the dependence on the total number of datasets stored in the cluster and the number of live

datasets. We show in Section 4.3.1 that the loss in efficiency is not more than an average of 10%.

3.5 Fault Tolerance

In this section we will describe modifications to the equal work layout that allow the file system to remain

power proportional when a primary server fails. We will only be considering crash failures, and not arbitrary

Byzantine failures. The failure recovery process is composed of three parts, though they are not necessarily

separate activities. Each involves restoring some property of the file system:

• Availability is the requirement that all data may be accessed immediately. In the case of a PDFS this

means ensuring that every block is replicated on at least one active node.

• Durability is the property that the file system’s fault tolerance guarantees are met. For a PDFS based

on Hadoop, this means that each block is replicated 3 times.

• Layout is when the file system’s target layout is achieved. For the equal-work layout policy, non-

primary node i has approximately B/i blocks on it.

For most of this discussion we will focus on availability. Restoring durability and layout after a primary

failure uses the same mechanisms as writing new data to the file system, described in section 3.3.

As it has been described, the equal-work data layout cannot always remain power proportional in the

event that a primary server fails. This is because blocks from each primary server are scattered across all

secondary servers. When a primary server fails, all secondary servers must be activated to restore availabil-

ity. Therefore, the non fault tolerant version of the equal-work layout cannot achieve it’s target minimum

power setting of p when there is a primary server failure. Instead, it has a minimum power setting of ep−1.

To avoid this problem we impose further constraints on the secondary replicas of each block. First, the

secondary servers are grouped in a rectangular configuration depicted in figure 4. The rows of this rectangle

are known as gear groups, and the columns are known as recovery groups. Each secondary server belongs

to exactly 1 gear group, and 1 recovery group. The number of servers in these groups, i.e. length of the rows

and columns of the grid, are respectively known as the gear group size and recovery group size.

Each primary server is mapped to exactly 1 recovery group. When placing a new data block, first a

location is chosen for the primary replica. The secondary replica is chosen from the recovery group that

corresponds to the chosen primary. In this way, all of a particular primary’s data can be found on a single

recovery group. This leads to a simple failure recovery strategy: if a primary server fails, the file system

activates the corresponding recovery group. Because all of the server’s secondary replicas reside in that

recovery group, this is sufficient to restore availability to the data stored on the failed primary.

In this layout scheme, gear groups are the basic unit of power scaling. It is not helpful to turn on extra

replicas for some primary server’s data and not others: work can never be shared equally if some primaries

have to read all of their blocks and others have to read only some of their blocks. Therefore, when turning

on servers to increase the power mode, the file system always turns on an entire gear group. To share

work equally each gear group should contain approximately the same amount of data from each primary.

Furthermore, each server in a gear group should store the same amount of data. The amount of data stored

by each server in a gear group is the amount needed to ensure the equal work properties when that gear

group is activated. Specifically, with a group size of g, each server in gear group i stores B
p+gi

blocks.

Figure 3.5 shows the results of a simulation of the fault tolerant layout in a failure free case and with

a single primary server failure. The performance is measured relative to the performance of a single server.

10



Gear size Recovery group size

1 174

5 37

10 20

20 11

50 6

100 4

Table 1: Some example gear sizes and the corresponding size of the recovery group. This example assumes

that the file system is configured with 100 primary servers. Even with a gear size of 5, allowing very fine

grained scaling, the difference in minimum power setting is only 37%.

The steps in the solid line clearly show the effect of gearing: increasing the power setting causes no im-

provement in performance until a gear is completely activated, at which point the performance jumps up to

the next level. The dotted line represents the power and performance curve in the case of a single primary

failure. The file system can achieve the same performance with only a moderate increase in power.

This data layout creates a trade off between gear size and recovery group size. A smaller gear size

implies a larger recovery group size. By setting the gear size very small, we can achieve the goal of fine

grained power settings, but the large recovery group size means that in the event of a failure the minimum

power setting will be very high. On the other hand, a large gear size does not allow fine grained power

adjustments, but can run at very low power even when recovering from a failure. This relationship is

complicated by the fact that the number of secondary servers depends on the gear size. Since the total

Table 1 shows the relationship between the gear size and recovery group for an example file system

with 100 primary servers. The size of the recovery group, as a function of the number of primaries p, and

the gear size g is
e(p−g)−p

g
. As an example from this table, if the gear size is 10% of the number of primary

servers, the recovery group size will be about 20% of the primary size. This means that minimum power

setting during failure recovery is only 20% greater than the minimum power setting with no failures. The

ideal setting of these parameters depends on the workload of the file system and the rate of failure, but these

results show that there is a wide range of reasonable settings for these parameters.

4 Evaluation

In this section, we evaluate the different contributions made in this paper namely, the power-proportionality

of the equal-work data-layout policy, the improvements due to the introduction of gearing for fault tolerance

and the feasibility and benefits of the added capabilities to perform I/O resource management at the DFS

level. Our test bed for the experiments consists of a rack of 25 servers, each consisting of dual Intel Xeon

E5430 processors and 16GB of RAM. For the experiments, we use two SATA disks connected to each node.

The interconnect is a Gigabit switch.

4.1 Implementation

In order to evaluate the properties of the equal work data layout, we have implemented a prototype PDFS

called Rabbit. Rabbit is based on the Hadoop DFS [1], with modifications to the layout and load balancing.

We converted the existing class for choosing block locations into an interface with which different data

layout policies can be used. We implemented the equal-work policy and it’s corresponding load balancer

adhering to the design principles which seek to minimize the role of the meta-data server. The concept of

datasets, which are arbitrary sets of user-defined files, was added to HDFS. Rabbit allows the number of

11



active nodes for each dataset to be specified from the command line, so an I/O scheduling policy can easily

be written in user-space. We are yet to implement the write offloading policy that is used to improve the

performance of writes.

4.2 Power-proportional Operation

To evaluate the performance of the equal-work data-layout policy, we first test the peak I/O bandwidth

available from Rabbit and compare it with that available from default HDFS on the same hardware, using a

microbenchmark that uses the HDFS shell to perform I/O in a distributed manner. We then run a larger scale

experiment using the Hadoop Terasort benchmark to evaluate power-proportionality. For Rabbit, the dataset

is written into the DFS and the number of active nodes is set using a command-line utility. The remaining

nodes can be hibernated to save power. For default HDFS, the data is written onto a number of nodes equal

to the number of active nodes in the Rabbit case being compared with. The Linux buffer cache is cleared

between runs.

4.2.1 Microbenchmarks

We test read performance on a 40GB sized dataset with a replication factor of 3. Figure 6 shows that Rabbit

offers read performance equal to default HDFS while offering the benefit of power- proportionality. The

write performance of Rabbit is, however, not equal to the default case owing to the imbalance in the amount

of data written to the nodes. As discussed in Section 3.3, techniques presented in Everest [15] can be used

to temporarily offload writes from primaries to the non-primaries and transfer the data lazily during times

of low system load.

4.2.2 Terasort

We also evaluate Rabbit with a the Hadoop Terasort benchmark. We use a 100GB dataset for the sort.

Figure 7 shows the results. The default HDFS sort performance is better than Rabbit due to the large write

involved when the sorted dataset is written back to the DFS. For comparison, we also include times for the

map phase of the computation both cases. The map phase involves reading the input files and generating

intermediate data that is typically written by the node locally. It can be seen from Figure 7 that the times for

the map phase in the two cases are comparable.

4.3 I/O Scheduling

In this section, we demonstrate the benefits of the capability to schedule I/O resources explicitly between

datasets. By providing the mechanisms to do so, Rabbit provides the freedom to use an arbitrary scheduling

policy to allocate resources. We implement two simple policies: fair-sharing and priority- scheduling and

evaluate them.

But first we show that although the capability to schedule I/O resources to specific datasets makes ideal

power-proportionality in all cases impossible, the degree of power-proportionality, as defined in Section 3.4,

is around 0.9 in the average case.

4.3.1 Factors affecting power-proportionality

The ability to schedule I/O resources to specific datasets is gained at the cost of ideal power-proportionality.

The feasibility of the mechanism therefore depends on being able to determine the dependence of the degree

of power-proportionality on factors such as the total number of datasets stored in the cluster and the number

of live datasets. With this goal in mind, we built a cluster simulator that stores datasets according to the

12



equal-work data layout policy. Any combination of the stored datasets may then be chosen to be live, after

which the sets of active nodes for each of the live datasets are assigned according to the policy explained in

Section 3.4. The degree of power-proportionality is then evaluated for each of the live datasets by simulating

an entire read of the dataset, and calculating the amount of extra work that the primaries of a dataset must

perform to compensate for the unequal sharing. For a given setting, say the total number of datasets and the

number of live datasets, the simulator tests all combinations of datasets and calculates the average and worst

case values for the degree of power- proportionality.

To validate the simulator, we replicate these experiments on a cluster running Rabbit. Figure 8(a) shows

predicted and experimental values for the dependence on the total number of datasets and Figure 8(b), the

dependence on the number of live datasets for a 14-node cluster. It can be seen that the experimental values

are within 5% of the predicted values which validates our simulator. It can also be seen that in both cases, the

average degree of power- proportionality is more than 90%. With our simulator validated, we also show that

the average value of the degree of power-proportionality remains above 90% for larger clusters. Figure 9(a)

shows the predicted values.

Having shown the feasibility of I/O resource management from the DFS, we give examples of I/O

scheduling policies that could be implemented on top of the allocation mechanism.

Instances of appB
appA Throughput(MB/s)

Rabbit Default HDFS

1 180.3 137

2 175.3 101.2

3 173.6 82.5

Table 2: Fair I/O scheduling provides isolation for appA from appB. As the number of instances of appB

increases, appA running on default HDFS does worse, however appA running with Rabbit based IO isolation

is hardly affected.

4.3.2 Fair I/O Scheduling

The first policy that we discuss is a fair I/O scheduler. The scheduler guarantees equal sharing of I/O band-

width for the all the datasets in DFS that are live. The I/O scheduler is not concerned with the applications

that use the datasets. To demonstrate the benefits of the fair scheduler, two datasets A and B are stored

in Rabbit. The fair scheduler is used to enforce fair sharing on the I/O bandwidth for the two datasets.

Dataset A is used by a map-reduce application(appA) using the Hadoop library and dataset B is used by a

distributed grep application (appB) that directly reads data from the DFS. To test the fair sharing, we in-

crease the number of instances of the grep application. As can be seen from Table 2, the performance of the

Hadoop application remains unaffected in the case of Rabbit but drops steadily as the number of instances

of the grep application increases in the case of default HDFS. Thus, fair sharing can be used in the case of a

cluster where multiple users run their jobs on their own data, to provide a degree of performance isolation

to each user.

4.3.3 Priority Scheduling

The second policy implements a priority-based scheduling policy where, jobs can be allocated different

amounts of I/O resources. Consider the scenario shown in Table 3. We have 3 different jobs with different

arrival times and priorities. Job 1 consists of Hadoop job that operates on a 100GB dataset, whereas Jobs

2 and 3 operate on 40GB and 20GB datasets respectively. In the default HDFS case, there is no explicit

allocation of I/O resources to each job/dataset. In the case of Rabbit, however, an allocation scheme where

13



ID Entry time Prio. HDFS time t0(s) Rabbit time tr(s) Speedup

(t0/tr)

1 1 1 393 558 0.704

2 20 3 182 98.4 1.85

3 200 5 152 94 1.61

Table 3: Priority scheduling allocates different numbers of servers to different jobs so that I/O bandwidth is

allocated proportional to priority.

the I/O bandwidth is divided between the live datasets in a manner weighted by the priorities. For example,

in the case shown, at t = 25, jobs 1 and 2 are running. The I/O bandwidth is therefore divided between those

jobs in the ratio 1:3. This allows the priority-based scheduler to provide faster completion times for high

priority jobs. As shown in Table 3, jobs 2 and 3 obtain significant speedups at the expense of the longer-

running, lower priority job 1. This scheduler would be useful in cases discussed by Isard et al. where they

note that almost 5% of the jobs in their data center ran for over 5 hours, but more than 50% of the jobs ran

for less than 30 minutes.

5 Related Work

Power-proportionality was expressed as a desirable property for systems by Barroso and Hölzle [4]. There

exists a large body of work on CPU power management techniques such as dynamic voltage and frequency

scaling (DVFS). Owing to the increasing proportion of non-CPU power, there has also been significant

research in the area of power management by turning off servers [7, 17] and consolidating load. Power-

Nap [13] discusses techniques to reduce server idle power through a variety of techniques. Guerra et al [10]

show the potential effectiveness of power proportionality in the data center. They describe the potential

power savings of an ideally power proportional storage system using workload data collected from produc-

tion systems. They also outline a number of techniques that may be used to achieve power proportionality.

A number of recent projects have attempted to bring power proportionality to the data center in general,

and large scale file systems specifically. Leverich et al [12] introduce the idea of a “covering set” of servers,

analogous to what we have been calling the “primary set”. These servers satisfy the property that if they are

functioning, all of the data is available. We build on this work by exploring the effects of power scaling on

efficiency.

Vasic et al [21] also describe the problem of power scaling in HDFS and talk about an architecture to

allow cluster services to collaboratively make power decisions. They use a data layout policy described in

Fab [18] to maintain data availability when turning off up to two-thirds of the machines.

PARAID [22] introduces the design of a power-aware RAID, using a geared scheme for managing

different power settings. The block layout used by PARAID allows the array to be run in a variety of

power modes, and for efficiently migrating data as disks are activated. We adopt the technique of gearing to

distributed file systems for providing power proportional fault tolerance.

Narayanan et al [14] introduce the concept of write offloading for power management. When an ap-

plication issues a write to a currently idle volume, the write may be redirected to an active volume. This

technique increases the idle periods, allowing the system to save more power by spinning down idle disks.

Everest [15] uses write offloading to avoid unusually high peaks in activity, allowing a system to be provi-

sioned for less than the maximum request rate. Data is migrated to its target volume during periods of low

activity to restore the desired data layout. In section 3.3 we describe how these techniques can be used to

offload write traffic from the primary servers onto others.

Sierra [20] explores motivations for a power aware storage system using trace data collected from large

14



scale production services. In addition, Sierra introduces a technique for writing data while the system is in

a low-power mode, and migrating to the target layout in the background when the power mode is increased.

Rabbit’s data layouts complement Sierra’s techniques for handling writes, providing for lower minimum-

power settings, more fault-tolerant power-proportionality, and a mechanism for controlled sharing.

Rather than building on clusters of commodity servers, some researchers are exploring system designs

specifically designed for particular classes of data-intensive computing. The FAWN [3] and Gordon [5]

architectures use many nodes with low-power processors and flash storage to provide data-intensive com-

puting and key-value indexing much more energy-efficiently, measured for example as queries per joule [3].

This is an interesting approach, which may also benefit from Rabbit’s data-layout policies, but there is also

value in exploring energy efficiency in commodity cluster-based storage.

6 Conclusions and Future Work

Rabbit is a power-proportional, distributed file system(PDFS). We defined the desirable properties that

should be possessed by a PDFS, including a wide range of power-performance states, ideal power- propor-

tionality and fast, fine-grained scaling. As our primary contribution, Rabbit uses the equal-work data-layout

policy that meets all the stated requirements. To ensure power proportionality in practice, we used a load

balancer that was designed to spread work equally even when the amount of data stored on each of the nodes

was not the same. With respect to reads, we showed that ideal power proportionality was obtained. Write

performance is an issue with PDFS in general, but we adapted the write offloading technique to solve this

problem. We also postulated that recovery from failures must happen in a power proportional manner since

failures in modern data centers are commonplace events. We used the gearing technique to ensure that it

is possible for a small number of servers to be turned on to respond to a primary failure. We also showed

that the techniques used to obtain power proportionality in Rabbit can be used to provide the DFS with

capabilities to divide the available I/O bandwidth of the cluster between the datasets stored in the DFS. Our

future work in this domain will consider the issue of write performance in PDFS.

References

[1] Hadoop. http://hadoop.apache.org.

[2] Pig. http://hadoop.apache.org/pig.

[3] David G. Andersen, Jason Franklin, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan. FAWN:

A Fast Array of Wimpy Nodes. In SOSP ’09: Proceedings of the 22nd ACM Symposium on Operating

Systems Principles, New York, NY, USA, 2009. ACM.

[4] Luiz A. Barroso and Urs Hölzle. The case for energy-proportional computing. Computer, 40(12):33–

37, 2007.

[5] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: using flash memory to build

fast, power-efficient clusters for data-intensive applications. In ASPLOS ’09: Proceeding of the 14th

international conference on Arc hitectural support for programming languages and operating systems,

pages 217–228, New York, NY, USA, 2009. ACM.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for

structured data. ACM Trans. Comput. Syst., 26(2):1–26, June 2008.

15



[7] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and Ronald P. Doyle.

Managing energy and server resources in hosting centers. SIGOPS Oper. Syst. Rev., 35(5):103–116,

December 2001.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In

OSDI ’04: Proceedings of USENIX Conference on Operating Systems Design and Implementation,

pages 137–150, 2004.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun T. Leung. The google file system. SIGOPS Oper. Syst.

Rev., 37(5):29–43, 2003.

[10] Jorge Guerra, Wendy Belluomini, Joseph Gilder, Karan Gupta, and Himabindu Pucha. Energy pro-

portionality for storage: Impact and feasibility. In HotStorage ’09: SOSP Workshop on Hot Topics in

Storage and File Systems, 2009.

[11] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg.

Quincy: fair scheduling for distributed computing clusters. In SOSP ’09: Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles, pages 261–276, New York, NY, USA,

2009. ACM.

[12] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop clusters. In HotPower

’09, Workshop on Power Aware Computing and Systems, 2009.

[13] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server idle power. In

ASPLOS ’09: Proceeding of the 14th international conference on Architectural support for program-

ming languages and operating systems, pages 205–216, New York, NY, USA, 2009. ACM.

[14] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading: practical power

management for enterprise storage. In FAST’08: Proceedings of the 6th USENIX Conference on File

and Storage Technologies, pages 1–15, Berkeley, CA, USA, 2008. USENIX Association.

[15] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony Rowstron. Ever-

est: Scaling down peak loads through i/o off-loading. In OSDI ’08: Proceedings of the 1st USENIX

conference on Operating Systems Design and Implementation, 2008.

[16] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis. Eval-

uating MapReduce for Multi-core and Multiprocessor Systems. In HPCA ’07: Proceedings of the

2007 IEEE 13th International Symposiu m on High Performance Computer Architecture, pages 13–

24, Washington, DC, USA, 2007. IEEE Computer Society.

[17] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino, and Aaron Watson. Energy-efficient real-time

heterogeneous server clusters. In RTAS ’06: Proceedings of the 12th IEEE Real-Time and Embed-

ded Technology and Applications Symposium, pages 418–428, Washington, DC, USA, 2006. IEEE

Computer Society.

[18] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan Spence. Fab: building dis-

tributed enterprise disk arrays from commodity components. In ASPLOS-XI: Proceedings of the 11th

international conference on Architectural support for programming languages and operating systems,

pages 48–58, New York, NY, USA, 2004. ACM.

[19] Sorting 1PB with MapReduce, http://googleblog.blogspot.com/2008/11/sorting-1pb-with-

mapreduce.html.

16



[20] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: a power-proportional, distributed storage system.

Technical report, Microsoft Research, 2009.

[21] Nedeljko Vasić, Martin Barisits, Vincent Salzgeber, and Dejan Kostic. Making cluster applications

energy-aware. In ACDC ’09: Proceedings of the 1st workshop on Automated control for datacenters

and clouds, pages 37–42, New York, NY, USA, 2009. ACM.

[22] Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang, Peter L. Reiher, and Geoffrey H. Kuen-

ning. Paraid: A gear-shifting power-aware raid. TOS, 3(3), 2007.

17



(a) Data layout for multiple datasets

(b) Fair sharing with 3 live datasets. Shaded regions represent the active nodes.

18



G
e
a
r 
g
ro
u
p
s

Recovery groups

P1 P2 P3

G1

G2

G3

G4

Figure 4: Gear groups and recovery groups. All data from a single primary exists on a single recovery

group, such as the grey box. When increasing the power setting, the file system turns on gear groups in an

all-or-nothing fashion.

0 10 20 30 40 50
0

10

20

30

40

50

Power

P
e
rf

o
rm

a
n
c
e

 

 

Gear groups

Gear groups + 1 failure

Figure 5: Simulated performance of fault tolerant layout with 10 primary servers and a gear size of 5. The

dotted line indicates the ideal performance if all servers were sharing work equally. The geared layout

achieves very nearly ideal performance when a full gear is turned on, but less than ideal when a gear is

only partially enabled. The performance of the geared layout when a primary failure has occurred is nearly

identical to the failure-free case.

19



Figure 6: Read only performance of Rabbit at various power settings. HDFS cannot scale dynamically, and

had to be re-configured before each run, while the power setting of rabbit can be set without restarting the

file system.

20



Figure 7: Time to sort a 100GB file using Hadoop. Map time (hatched) depends only on read performance,

and is comparable between Rabbit and HDFS. Reduce time involves writing results back to the file system.

Since we have not yet implemented write offloading in our prototype, the reduce phase is much slower on

Rabbit.

21



(a) Total nodes:14; Primary nodes per dataset, p:2

22



(a) Total nodes: 500; Primary nodes per dataset, p:20

23


	Introduction
	Need new data layouts
	A Simple PDFS Data-layout Policy
	Power Proportional Fault Tolerance
	I/O Resource Management

	Design of Rabbit
	Equal-work Data Layout Policy
	Definitions
	Low Minimum Power
	Ideal Power-proportionality
	High Maximum Performance Setting

	Load Balancer
	Write Offloading
	I/O Scheduling
	Fault Tolerance

	Evaluation
	Implementation
	Power-proportional Operation
	Microbenchmarks
	Terasort

	I/O Scheduling
	Factors affecting power-proportionality
	Fair I/O Scheduling
	Priority Scheduling


	Related Work
	Conclusions and Future Work



