
A (In)Cast of Thousands: Scaling Datacenter TCP to
Kiloservers and Gigabits

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat,
David G. Andersen, Gregory R. Ganger, Garth A. Gibson

Carnegie Mellon University

CMU-PDL-09-101

February 2009

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

This paper presents a practical solution to the problem of high-fan-in, high-bandwidth synchronized TCP workloads in datacenter
Ethernets—the Incast problem. In these networks, receivers often experience a drastic reduction in throughput when simultaneously
requesting data from many servers using TCP. Inbound data overfills small switch buffers, leading to TCP timeouts lasting hundreds
of milliseconds. For many datacenter workloads that have a synchronization requirement (e.g., filesystem reads and parallel data-
intensive queries), incast can reduce throughput by up to 90%.
Our solution for incast uses high-resolution timers in TCP to allow for microsecond-granularity timeouts. We show that this
technique is effective in avoiding incast using simulation and real-world experiments. Last, we show that eliminating the minimum
retransmission timeout bound is safe for all environments, including the wide-area.

Acknowledgements: We would like to thank Brian Mueller at Panasas Inc. for helping us to conduct experiments on their systems. We also
would like to thank our partners in the Petascale Data Storage Institute, including Andrew Shewmaker, HB Chen, Parks Fields, Gary Grider, Ben
McClelland, and James Nunez at Los Alamos National Lab for help with obtaining packet header traces. We thank the members and companies
of the PDL Consortium (including APC, Cisco, Data Domain, EMC, Facebook, Google, Hewlett-Packard, Hitachi, IBM, Intel, LSI, NetApp,
Oracle, Seagate, Sun Microsystems, Symantec, and VMware) for their interest, insights, feedback, and support. Finally, we’d like to thank Michael
Stroucken for his help managing the PDL cluster. This material is based on research sponsored in part by the National Science Foundation, via
grants #CNS-0546551, #CNS-0326453 and #CCF-0621499, by the Army Research Office under agreement number DAAD19–02–1–0389, by the
Department of Energy under Award Number #DE-FC02-06ER25767, and by DARPA under grant #HR00110710025.

Keywords: Cluster-based storage systems,
TCP, performance measurement and analysis

1

1 Introduction

In its 35 year history, TCP has been repeatedly chal-
lenged to adapt to new environments and technol-
ogy. Researchers have proved adroit in doing so, en-
abling TCP to function well in gigabit networks [27],
long/fat networks [18, 10], satellite and wireless en-
vironments [22, 7], among others. In this paper, we
examine and improve TCP’s performance in an area
that, surprisingly, proves challenging to TCP: very
low delay, high throughput, datacenter networks of
dozens to hundreds of machines.

The problem we study is termed incast: A drastic
reduction in throughput when multiple senders com-
municate with a single receiver in these networks.
The highly bursty, very fast data overfills typically
small Ethernet switch buffers, causing intense packet
loss that leads to TCP timeouts. These timeouts last
hundreds of milliseconds on a network whose round-
trip-time (RTT) is measured in the 10s or 100s of
microseconds. Protocols that have some form of syn-
chronization requirement—filesystem reads, parallel
data-intensive queries—block waiting for the timed-
out connections to finish. These timeouts and the
resulting delay can reduce throughput by 90% (Fig-
ure 1, 200ms RTOmin) or more [25, 28].

In this paper, we present and evaluate a set of
system extensions to enable microsecond-granularity
timeouts – the TCP retransmission timeout (RTO).
The challenges in doing so are threefold: First, we
show that the solution is practical by modifying the
Linux TCP implementation to use high-resolution
kernel timers. Second, we show that these modifi-
cations are effective, enabling a network testbed ex-
periencing incast to maintain maximum throughput
for up to 47 concurrent senders, the testbed’s max-
imum size (Figure 1, 200µs RTOmin). Microsecond
granularity timeouts are necessary—simply reducing
RTOmin to 1ms without also improving the timing
granularity may not prevent incast. In simulation,
our changes to TCP prevent incast for up to 2048
concurrent senders on 10 gigabit Ethernet. Lastly, we
show that the solution is safe, examining the effects
of this aggressively reduced RTO in the wide-area
Internet, showing that its benefits to incast recovery
have no drawbacks on performance for bulk flows.

The motivation for solving this problem is the in-
creasing interest in using Ethernet and TCP for inter-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35 40 45

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)

200us RTOmin
1ms RTOmin Jiffy

200ms RTOmin (default)

Figure 1: TCP Incast: A throughput collapse can oc-
cur with increased numbers of concurrent senders in
a synchronized request. Reducing RTO to microsec-
ond granularity alleviates Incast.

processor communication and bulk storage transfer
applications in the fastest, largest data centers, in-
stead of Fibrechannel or Infiniband. Provided that
TCP adequately supports high bandwidth, low la-
tency, synchronized and parallel applications, there
is a strong desire to “wire-once” and reuse the ma-
ture, well-understood transport protocols that are so
familiar in lower bandwidth networks.

2 Background

Cost pressures increasingly drive datacenters to
adopt commodity components, and often low-cost
implementations of such. An increasing number
of clusters are being built with off-the-shelf rack-
mount servers interconnected by Ethernet switches.
While the adage “you get what you pay for” still
holds true, entry-level gigabit Ethernet switches to-
day operate at full data rates, switching upwards of
50 million packets per second—at a cost of about
$10 per port. Commodity 10Gbps Ethernet is now
cost-competitive with specialized interconnects such
as Infiniband and FibreChannel, and also benefits
from wide brand recognition to boot. To reduce cost,
however, switches often sacrifice expensive, power-
hungry SRAM packet buffers, the effect of which we
explore throughout this work.

The desire for commodity parts extends to trans-
port protocols. TCP provides a kitchen sink of pro-

2

tocol features, giving reliability and retransmission,
congestion and flow control, and delivering packets
in-order to the receiver. While not all applications
need all of these features [20, 31] or benefit from
more rich transport abstractions [15], TCP is ma-
ture and well-understood by developers, leaving it
the transport protocol of choice even in many high-
performance environments.

Without link-level flow control, TCP is solely re-
sponsible for coping with and avoiding packet loss
in the (often small) Ethernet switch egress buffers.
Unfortunately, the workload we examine has three
features that challenge (and nearly cripple) TCP’s
performance: a highly parallel, synchronized request
workload; buffers much smaller than the bandwidth-
delay product of the network; and low latency that
results in TCP having windows of only a few pack-
ets.

2.1 The Incast Problem

Synchronized request workloads are becoming in-
creasingly common in today’s commodity clusters.
Examples include parallel reads/writes in cluster
filesystems such as Lustre [8], Panasas [34], or
NFSv4.1 [33]; search queries sent to dozens of
nodes, with results returned to be sorted1; or paral-
lel databases that harness multiple back-end nodes to
process parts of queries.

In a clustered file system, for example, a client ap-
plication requests a data block striped across several
storage servers, issuing the next data block request
only when all servers have responded with their por-
tion. This synchronized request workload can result
in packets overfilling the buffers on the client’s port
on the switch, resulting in many losses. Under se-
vere packet loss, TCP can experience a timeout that
lasts a minimum of 200ms, determined by the TCP
minimum retransmission timeout (RTOmin). While
operating systems use a default value today that may
suffice for the wide-area, datacenters and SANs have
round-trip-times that are orders of magnitude below
the RTOmin defaults:

1In fact, engineers at Facebook recently rewrote the middle-
tier caching software they use—memcached [13]—to use UDP
so that they could “implement application-level flow control for
... gets of hundreds of keys in parallel” [12]

Scenario RTT
WAN 100ms

Datacenter <1ms
SAN <0.1ms

OS TCP RTOmin

Linux 200ms
BSD 200ms

Solaris 400ms

When a server involved in a synchronized request
experiences a timeout, other servers can finish send-
ing their responses, but the client must wait a mini-
mum of 200ms before receiving the remaining parts
of the response, during which the client’s link may
be completely idle. The resulting throughput seen by
the application may be as low as 1-10% of the client’s
bandwidth capacity, and the per-request latency will
be higher than 200ms.

This phenomenon was first termed “Incast” and
described by Nagle et. al [25] in the context of paral-
lel filesystems. Nagle et. al coped with Incast in the
parallel filesystem with application specific mecha-
nisms. Specifically, Panasas [25] limits the num-
ber of servers simultaneously sending to one client
to about 10 by judicious choice of the file strip-
ing policies. It also reduces the default size of its
per-flow TCP receive buffers (capping the adver-
tised window size) on the client to avoid incast on
switches with small buffers. For switches with large
buffers, Panasas provides a mount option to increase
the client’s receive buffer size. In contrast, this work
provides a TCP-level solution to incast for switches
with small buffers and many more than 10 simulta-
neous senders.

Without application-specific techniques, the gen-
eral problem of incast remains: Figure 1 shows the
throughput of our test synchronized-read application
(Section 4) as we increase the number of nodes it
reads from, using an unmodified Linux TCP (200ms
RTOmin line). This application performs synchro-
nized reads of 1MB blocks of data; that is, each of
N servers responds to a block read request with 1
MB / N bytes at the same time. Even using a high-
performance switch (with its default settings), the
throughput drops drastically as the number of servers
increases, achieving a shockingly poor 3% of the
network capacity—about 30Mbps—when it tries to
stripe the blocks across all 47 servers.

Prior work characterizing TCP Incast ended on
a somewhat down note, finding that existing TCP
improvements—NewReno, SACK [22], RED [14],
ECN [30], Limited Transmit [3], and modifica-

3

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

32KB buffer
64KB buffer

128KB buffer
256KB buffer
512KB buffer

1024KB buffer

Figure 2: Doubling the switch egress buffer size dou-
bles the numbers of concurrent senders needed to see
incast.

tions to Slow Start—sometimes increased through-
put, but did not substantially change the incast-
induced throughput collapse [28]. This work found
three partial solutions: First, as shown in Figure 2
(from [28]), larger switch buffers can delay the on-
set of Incast (doubling the buffer size doubled the
number of servers that could be contacted). But in-
creased switch buffering comes at a substantial dollar
cost – switches with 1MB packet buffering per port
may cost as much as $500,000. Second, Ethernet
flow control was effective when the machines were
on a single switch, but was dangerous across inter-
switch trunks because of head-of-line blocking. Fi-
nally, reducing TCP’s minimum RTO, in simulation,
appeared to allow nodes to maintain high throughput
with several times as many nodes—but it was left un-
explored whether and to what degree these benefits
could be achieved in practice, meeting the three cri-
teria we presented above: practicality, effectiveness,
and safety. In this paper, we answer these questions
in depth to derive an effective solution for practical,
high-fan-in datacenter Ethernet communication.

3 Challenges to Fine-Grained TCP
Timeouts

Successfully using an aggressive TCP retransmit
timer requires first addressing the issue of safety
and generality: is an aggressive timeout appropri-
ate for use in the wide-area, or should it be limited

to the datacenter? Does it risk increased congestion
or decreased throughput because of spurious (incor-
rect) timeouts? Second, it requires addressing im-
plementability: TCP implementations typically use
a coarse-grained timer that provides timeout sup-
port with very low overhead. Providing tighter TCP
timeouts requires not only reducing or eliminating
RTOmin, but also supporting fine-grained RTT mea-
surements and kernel timers. Finally, if one makes
TCP timeouts more fine-grained, how low must one
go to achieve high throughput with the smallest ad-
ditional overhead? And to how many nodes does this
solution scale?

3.1 Jacobson RTO Estimation

The standard RTO estimator [17] tracks a smoothed
estimate of the round-trip time, and sets the time-
out to this RTT estimate plus four times the linear
deviation—roughly speaking, a value that lies out-
side four standard deviations from the mean:

RTO = SRT T +(4×RT TVAR) (1)

Two factors set lower bounds on the value that the
RTO can achieve: an explicit configuration parame-
ter, RTOmin, and the implicit effects of the granular-
ity with which RTTs are measured and with which
the kernel sets and checks timers. As noted earlier,
common values for RTOmin are 200ms, and most im-
plementations track RTTs and timers at a granularity
of 1ms or larger.

Because RTT estimates are difficult to collect dur-
ing loss and timeouts, a second safety mechanism
controls timeout behavior: exponential backoff. Af-
ter each timeout, the RTO value is doubled, helping
to ensure that a single RTO set too low cannot cause
an long-lasting chain of retransmissions.

3.2 Is it safe to disregard RTOmin?

There are two possible complications of permitting
much smaller RTO values: spurious (incorrect) time-
outs when the network RTT suddenly jumps, and
breaking the relationship between the delayed ac-
knowledgement timer and the RTO values.

Spurious retransmissions: The most promi-
nent study of TCP retransmission showed that a
high (by the standards of datacenter RTTs) RTOmin

4

helped avoid spurious retransmission in wide-area
TCP transfers [4], regardless of how good an esti-
mator one used based on historical RTT informa-
tion. Intuition for why this is the case comes from
prior [24, 11] and subsequent [35] studies of Inter-
net delay changes. While most of the time, end-to-
end delay can be modeled as random samples from
some distribution (and therefore, can be predicted by
an RTO estimator), the delay consistently observes
both occasional, unpredictable delay spikes, as well
as shifts in the distribution from which the delay is
drawn. Such changes can be due to the sudden in-
troduction of cross-traffic, routing changes, or fail-
ures. As a result, wide-area “packet delays [are]
not mathematically [or] operationally steady” [35],
which confirms the Allman and Paxson observation
that RTO estimation involves a fundamental tradeoff
between rapid retransmission and spurious retrans-
missions.

Fortunately, TCP timeouts and spurious timeouts
were and remain rare events, as we explore further
in Section 8. In the ten years since the Allman and
Paxson study, TCP variants that more effectively re-
cover from loss have been increasingly adopted [23].
By 2005, for example, nearly 65% of Web servers
supported SACK [22], which was introduced only in
1996. In just three years from 2001—2004, the num-
ber of TCP Tahoe-based servers dropped drastically
in favor of NewReno-style servers.

Moreover, algorithms to undo the effects of spu-
rious timeouts have been both proposed [4, 21, 32]
and, in the case of F-RTO, adopted in the latest Linux
implementations. The default F-RTO settings con-
servatively halve the congestion window when a spu-
rious timeout is detected but remain in congestion
avoidance mode, thus avoiding the slow-start phase.
Given these improvements, we believe disregarding
RTOmin is safer today than 10 years ago, and Sec-
tion 8 will show measurements reinforcing this.

Delayed Acknowledgements: The TCP delayed
ACK mechanism attempts to reduce the amount of
ACK traffic by having a receiver acknowledge only
every other packet [9]. If a single packet is received
with none following, the receiver will wait up to the
delayed ACK timeout threshold before sending an
ACK. The delayed ACK threshold must be shorter
than the lowest RTO values, or a sender might time
out waiting for an ACK that is merely delayed by the

receiver. Modern systems set the delayed ACK time-
out to 40ms, with RTOmin set to 200ms.

Consequently, a host modified to reduce the
RTOmin below 40ms would periodically expe-
rience an unnecessary timeout when communi-
cating with unmodified hosts, specifically when
the RTT is below 40ms (e.g., in the data-
center and for short flows on the wide-area).
As we show in the fol-
lowing section, delayed
ACKs themselves impair
performance in incast
environments: we suggest
disabling them entirely.
This solution requires
client participation, how-
ever, and so is not general.
In the following section, we discuss three practical
solutions for interoperability with unmodified,
delayed-ACK-enabled clients.

As a consequence, there are few a-priori reasons
to believe that eliminating RTOmin—basing timeouts
solely upon the Jacobson estimator and exponen-
tial backoff—would greatly harm wide-area perfor-
mance and datacenter environments with clients us-
ing delayed ACK. We evaluate these questions ex-
perimentally in Sections 4 and 8.

4 Evaluating Throughput with
Fine-Grained RTO

How low must the RTO be allowed to go to re-
tain high throughput under incast-producing condi-
tions, and to how many servers does this solution
scale? We explore this question using real-world
measurements and ns-2 simulations [26], finding that
to be maximally effective, the timers must operate
on a granularity close to the RTT of the network—
hundreds of microseconds or less.

Test application: Striped requests. The test
client issues a request for a block of data that is
striped across N servers (the “stripe width”). Each
server responds with blocksize

N bytes of data. Only
after it receives the full response from every server
will the client issue requests for the subsequent data
block. This design mimics the request patterns found
in several cluster filesystems and several parallel

5

workloads. Observe that as the number of servers
increases, the amount of data requested from each
server decreases. We run each experiment for 200
data block transfers to observe steady-state perfor-
mance, calculating the goodput (application through-
put) over the entire duration of the transfer.

We select the block size (1MB) based upon read
sizes common in several distributed filesystems, such
as GFS [16] and PanFS [34], which observe work-
loads that read on the order of a few kilobytes to a
few megabytes at a time. Prior work suggests that
the block size shifts the onset of incast (doubling the
block size doubles the number of servers before col-
lapse), but does not substantially change the system’s
behavior; different systems have their own “natural”
block sizes. The mechanisms we develop improve
throughput under incast conditions for any choice of
block sizes and buffer sizes.

In Simulation: We simulate one client and multi-
ple servers connected through a single switch where
round-trip-times under low load are 100µs. Each
node has 1Gbps capacity, and we configure the
switch buffers with 32KB of output buffer space per
port, a size chosen based on statistics from commod-
ity 1Gbps Ethernet switches. Because ns-2 is an
event-based simulation, the timer granularity is in-
finite, hence we investigate the effect of RTOmin to
understand how low the RTO needs to be to avoid
Incast throughput collapse. Additionally, we add a
small random timer scheduling delay of up to 20µs
to more accurately model real-world scheduling vari-
ance.2

Figure 3 depicts throughput as a function of the
RTOmin for stripe widths between 4 and 128 servers.
Throughput using the default 200ms RTOmin drops
by nearly an order of magnitude with 8 concurrent
senders, and by nearly two orders of magnitude when
data is striped across 64 and 128 servers.

Reducing the RTOmin to 1ms is effective for 8-16
concurrent senders, fully utilizing the client’s link,
but begins to suffer when data is striped across a
larger number of servers: 128 concurrent senders uti-
lize only 50% of the available link bandwidth even

2Experience with ns-2 showed that without introducing this
delay, we saw simultaneous retransmissions from many servers
all within a few microseconds, which is rare in real world set-
tings.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2
0

0
u

1
m

5
m

1
0

m

5
0

m

1
0

0
m

2
0

0
m

G
o

o
d

p
u

t
(M

b
p

s
)

RTOmin (seconds)

RTOmin vs Goodput
 (Block size = 1MB, buffer = 32KB)

4
8

16
32
64

128

Figure 3: Reducing the RTOmin in simulation to mi-
croseconds from the current default value of 200ms
improves goodput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

20
0u 1m 5m 10
m

50
m

10
0m

20
0m

G
oo

dp
ut

 (
M

bp
s)

RTOmin (seconds)

RTOmin vs Goodput
 (Fixed Block = 1MB, buffer = 32KB (estimate))

servers = 4
servers = 8

servers = 16

Figure 4: Experiments on a real cluster validate the
simulation result that reducing the RTOmin to mi-
croseconds improves goodput.

with a 1ms RTOmin. For 64 and 128 servers and low
RTOmin values, we note that each individual flow
does not have enough data to send to saturate the
link, but also that performance for 200µs is worse
than for 1ms; we address this issue in more detail
when scaling to hundreds of concurrent senders in
Section 7.

In Real Clusters: We evaluate incast on two clus-
ters; one sixteen-node cluster using an HP Procurve
2848 switch, and one 48-node cluster using a
Force10 S50 switch. In these clusters, every node has
1 Gbps links and a client-to-server RTT of approxi-
mately 100µs. All nodes run Linux kernel 2.6.28.

6

We run the same synchronized read workload as in
simulation.

For these experiments, we use our modified Linux
2.6.28 kernel that uses microsecond-accurate timers
with microsecond-granularity RTT estimation (§6)
to be able to accurately set the RTOmin to a de-
sired value. Without these modifications, the default
TCP timer granularity in Linux can be reduced only
to 1ms. As we show later, when added to the 4x
RTTVAR estimate, the 1ms timer granularity effec-
tively raises the minimum RTO over 5ms.

Figure 4 plots the application goodput as a func-
tion of the RTOmin for 4, 8, and 16 concurrent
senders. For all configurations, goodput drops with
increasing RTOmin above 1ms. For 8 and 16 concur-
rent senders, the default RTOmin of 200ms results in
nearly 2 orders of magnitude drop in throughput.

The real world results deviate from the simu-
lation results in a few minor ways. First, the
maximum achieved throughput in simulation nears
1Gbps, whereas the maximum achieved in the real
world is 900Mbps. Simulation throughput is always
higher because simulated nodes are infinitely fast,
whereas real-world nodes are subject to myriad in-
fluences, including OS scheduling and Ethernet or
switch timing differences, resulting in real-world re-
sults slightly below that of simulation.

Second, real world results show negligible differ-
ence between 8 and 16 servers, while the differences
are more pronounced in simulation. We attribute this
to variances in the buffering between simulation and
the real world. As we show in Section 7, small mi-
crosecond differences in retransmission scheduling
can lead to improved goodput; these differences ex-
ist in the real world but are not modeled as accurately
in simulation.

Third, the real world results show identical perfor-
mance for RTOmin values of 200µs and 1ms, whereas
there are slight differences in simulation. We find
that the RTT and variance seen in the real world
is higher than that seen in simulation. Figure 5
shows the distribution of round-trip-times during an
Incast workload. While the baseline RTTs can be be-
tween 50-100µs, increased congestion causes RTTs
to rise to 400µs on average with spikes as high as
1ms. Hence, the variance of the RTO combined with
the higher RTTs mean that the actual retransmission
timers set by the kernel are between 1-3ms, where

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

of

 O
cc

ur
re

nc
es

RTT in Microseconds

RTT Distribution in SAN

Figure 5: During an incast experiment on a 16-node
cluster, RTTs increase by 4 times the baseline RTT
(100µs) on average with spikes as high as 1ms. This
produces RTO values in the range of 1-3ms, resulting
in an RTOmin of 1ms being as effective as 200µs in
practice.

an RTOmin will show no improvement below 1ms.
Hence, where we specify a RTOmin of 200µs, we are
effectively eliminating the RTOmin, allowing RTO to
be as low as calculated.

Despite these differences, the real world results
show the need to reduce the RTO to at least 1ms to
avoid throughput degradation.

4.1 Interaction with Delayed ACK for Un-
modified Clients

During the onset of In-
cast using five or fewer
servers, the delayed
ACK mechanism acted
as a miniature timeout,
resulting in reduced, but
not catastrophically low,
throughput [28] during
certain loss patterns.
As shown to the right,
delayed ACK can delay
the receipt of enough duplicate acks for data-driven
loss recovery when the window is small (or reduce
the number of duplicate ACKs by one, turning a
recoverable loss into a timeout). While this delay
is not as high as a full 200ms RTO, 40ms is still
large compared to the RTT and results in low

7

throughput for three to five concurrent senders.
Beyond five senders, high packet loss creates 200ms
retransmission timeouts which mask the impact of
delayed ACK delays.

While servers require modifications to the TCP
stack to enable microsecond-resolution retransmis-
sion timeouts, the clients issuing the requests do not
necessarily need to be modified. But because de-
layed ACK is implemented at the receiver, a server
may normally wait 40ms for an unacked segment that
successfully arrived at the receiver. For servers us-
ing a reduced RTO in a datacenter environment, the
server’s retransmission timer may expire long before
the unmodified client’s 40ms delayed ACK timer
fires. As a result, the server will timeout and resend
the unacked packet, cutting ssthresh in half and re-
discovering link capacity using slow-start. Because
the client acknowledges the retransmitted segment
immediately, the server does not observe a coarse-
grained 40ms delay, only an unnecessary timeout.

Figure 6 shows the performance difference be-
tween our modified client with delayed ACK dis-
abled, delayed ACK enabled with a 200µs timer, and
a standard kernel with delayed ACK enabled.

Beyond 8 servers, our modified client with de-
layed ACK enabled receives 15-30Mbps lower
throughput compared to the client with delayed ACK
disabled, whereas the standard client experiences be-
tween 100 and 200Mbps lower throughput. When
the client delays an ACK, the standard client forces
the servers to timeout, yielding much worse perfor-
mance. In contrast, the 200µs minimum delayed
ACK timeout client delays a server by roughly a
round-trip-time and does not force the server to time-
out, so the performance hit is much smaller.

Delayed ACK can provide benefits where the
ACK path is congested [6], but in the datacenter en-
vironment, we believe that delayed ACK should be
disabled; most high-performance applications favor
quick response over an additional ACK-processing
overhead and are typically equally provisioned for
both directions of traffic. Our evaluations in Sec-
tion 6 disable delayed ACK on the client for this
reason. While these results show that for full per-
formance, delayed ACK should be disabled, we note
that unmodified clients still achieve good perfor-
mance and avoid Incast.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Num Servers vs Goodput (DelayedACK Client)
 (Fixed Block = 1MB, buffer = 32KB (est.), Switch = Procurve)

Delayed ACK Disabled
Delayed ACK 200us

Std Client (Delayed ACK 40ms)

Figure 6: Disabling Delayed ACK on client nodes
provides optimal goodput.

5 Preventing Incast

In this section we briefly outline the three compo-
nents of our solution to incast, the necessity for and
effectiveness of which we evaluate in the following
section.

1. Microsecond-granularity timeouts. We first
modify the kernel to measure RTTs in microseconds,
changing both the infrastructure used for timing and
the values placed in the TCP timestamp option. The
kernel changes use the high-resolution, hardware-
supported timing hardware present in modern oper-
ating systems. In Section 9, we briefly discuss alter-
natives for legacy hardware.

2. Randomized timeout delay. Second, we mod-
ify the microsecond-granularity RTO values to in-
clude an additional randomized component:

timeout = RTO+(rand(0.5)∗RTO)

In expectation, this increases the duration of the
RTO by up to 25%, but more importantly, has the ef-
fect of de-synchronizing packet retransmissions. As
we show in the next section, this decision is unimpor-
tant with smaller numbers of servers, but becomes
critical when the number of servers is large enough
that a single batch of retransmitted packets them-
selves cause extensive congestion. The extra half-
RTO allows some packets to get through the switch
(the RTO is at least one RTT, so half an RTO is

8

at least the one-way transit time) before being clob-
bered by the retransmissions.

3. Disabling delayed ACKs. As noted earlier, de-
layed ACKs can have a poor interaction with mi-
crosecond timeouts: the sender may timeout on the
last packet in a request, retransmitting it while wait-
ing for a delayed ACK from the receiver. In the
datacenter environment, the reduced window size is
relatively unimportant—maximum window sizes are
small already and the RTT is short. This retransmis-
sion does, however, create overhead when requests
are small, reducing throughput by roughly 10%.

While the focus of this paper is on understanding
the limits of providing high throughput in datacen-
ter networks, it is important to ensure that these so-
lutions can be adopted incrementally. Towards this
end, we discuss briefly three mechanisms for inter-
acting with legacy clients:

• Bimodal timeout operation: The kernel could
use microsecond RTTs only for extremely low
RTT connections, where the retransmission
overhead is much lower than the cost of coarse-
grained timeouts, but still use coarse timeouts
in the wide-area.

• Make aggressive timeouts a socket option: Re-
quire users to explicitly enable aggressive time-
outs for their application. We believe this is an
appropriate option for the first stages of deploy-
ment, while clients are being upgraded.

• Disable delayed ACKs, or use an adaptive de-
layed ACK timer. While the former has nu-
merous advantages, fixing the delay penalty of
delayed ACK for the datacenter is relatively
straightforward: Base the delayed ACK timeout
on the smoothed inter-packet arrival rate instead
of having a static timeout value. We have not
implemented this option, but as Figure 6 shows,
a static 200µ s timeout value (still larger than the
inter-packet arrival) shows that these more pre-
cise delayed ACKs restore throughput to about
98% of the no-delayed-ACK throughput.

6 Achieving Microsecond-
granularity Timeouts

The TCP clock granularity in most popular operat-
ing systems is on the order of milliseconds, as de-
fined by the “jiffy” clock, a global counter updated
by the kernel at a frequency “HZ”, where HZ is typi-
cally 100, 250, or 1000. Linux, for example, updates
the jiffy timer 250 times a second, yielding a TCP
clock granularity of 4ms, with a configuration option
to update 1000 times per second for a 1ms granular-
ity. More frequent updates, as would be needed to
achieve finer granularity timeouts, would impose an
increased, system-wide kernel interrupt overhead.

Unfortunately, setting the RTOmin to 1 jiffy (the
lowest possible value) does not achieve RTO values
of 1ms because of the clock granularity. TCP mea-
sures RTTs in 1ms granularity at best, so both the
smoothed RTT estimate and RTT variance have a 1
jiffy (1ms) lower bound. Since the standard RTO
estimator sums the RTT estimate with 4x the RTT
variance, the lowest possible RTO value is 5 jiffies.
We experimentally validated this result by setting the
clock granularity to 1ms, setting RTOmin to 1ms, and
observing that TCP timeouts were a minimum of
5ms.

At a minimum possible RTOmin of 5ms in stan-
dard TCP implementations, throughput loss can not
be avoided for as few as 8 concurrent senders.
While the results of Figures 3 and 4 suggest reduc-
ing the RTOmin to 5ms can be both simple (a one-
line change) and helpful, next we describe how to
achieve microsecond granularity RTO values in the
real world.

6.1 Linux high-resolution timers: hrtimers

High resolution timers were introduced in Linux ker-
nel version 2.6.18 and are still actively in devel-
opment. They form the basis of the posix-timer
and itimer user-level timers, nanosleep, and a few
other in-kernel operations, including the update of
the jiffies value.

The Generic Time of Day (GTOD) framework
provides the kernel and other applications with
nanosecond resolution timing using the CPU cycle
counter on modern processors. The hrtimer imple-
mentation interfaces with the High Precision Event

9

Timer (HPET) hardware also available on modern
systems to achieve microsecond resolution in the ker-
nel. When a timer is added to the list, the kernel
checks whether this is the next expiring timer, pro-
gramming the HPET to send an interrupt when the
HPET’s internal clock advances by a desired amount.
For example, the kernel may schedule a timer to ex-
pire once every 1ms to update the jiffy counter, and
the kernel will be interrupted by the HPET to update
the jiffy timer only every 1ms.

Our preliminary evaluations of hrtimer overhead
have shown no appreciable overhead of implement-
ing TCP timeouts using the hrtimer subsystem. We
posit that, at this stage in development, only a few
kernel functions use hrtimers, so the red-black tree
that holds the list of timers may not contain enough
timers to see poor performance as a result of repeated
insertions and deletions. Also, we argue that for in-
cast, where high-resolution timers for TCP are re-
quired, any introduced overhead may be acceptable,
as it removes the idle periods that prevent the server
from doing useful work to begin with.

6.2 Modifications to the TCP Stack

The Linux TCP implementation requires three
changes to support microsecond timeouts using
hrtimers: microsecond resolution time accounting
to track RTTs with greater precision, redefinition of
TCP constants, and replacement of low-resolution
timers with hrtimers.

Microsecond accounting: By default, the jiffy
counter is used for tracking time. To provide mi-
crosecond granularity accounting, we use the GTOD
framework to access the 64-bit nanosecond resolu-
tion hardware clock wherever the jiffies time is tradi-
tionally used.

With the TCP timestamp option enabled, RTT es-
timates are calculated based on the difference be-
tween the timestamp option in an earlier packet and
the corresponding ACK. We convert the time from
nanoseconds to microseconds and store the value in
the TCP timestamp option3. This change can be ac-

3The lower wrap-around time – 232 microseconds or 4294
seconds – is still far greater than the maximum IP segment life-
time (120-255 seconds)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 32KB (est.), Switch = Procurve)

200us RTOmin
1ms RTOmin Jiffy

200ms RTOmin

Figure 7: On a 16 node cluster, our high-resolution
1ms RTOmin eliminates incast. The jiffy-based im-
plementation has a 5ms lower bound on RTO, and
achieves only 65% throughput.

complished entirely on the sender—receivers simply
echo back the value in the TCP timestamp option.

Constants, Timers and Socket Structures All
timer constants previously defined with respect to the
jiffy timer are converted to exact microsecond val-
ues. The TCP implementation must make use of the
hrtimer interface: we replace the standard timer ob-
jects in the socket structure with the hrtimer struc-
ture, ensuring that all subsequent calls to set, reset, or
clear these timers use the appropriate hrtimer func-
tions.

6.3 hrtimer Results

Figure 7 presents the achieved goodput as we in-
crease the stripe width N using various RTOmin val-
ues on a Procurve 2848 switch. As before, the client
issues requests for 1MB data blocks striped over
N servers, issuing the next request once the previ-
ous data block has been received. Using the de-
fault 200ms RTOmin, throughput plummets beyond
8 concurrent senders. For a 1ms jiffy-based RTOmin,
throughput begins to drop at 8 servers to about 70%
of link capacity and slowly decreases thereafter; as
shown previously, the effective RTOmin is 5ms. Last,
our TCP hrtimer implementation allowing microsec-
ond RTO values achieves the maximum achievable
goodput for 16 concurrent senders.

10

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35 40 45

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)

200us RTOmin
1ms RTOmin Jiffy

200ms RTOmin (default)

Figure 8: For a 48-node cluster, providing RTO val-
ues in microseconds eliminates incast.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35 40 45

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 512KB (est.),

Switch = S50 with QoS Disabled)

1ms RTOmin Jiffy
200ms RTOmin (default)

Figure 9: Switches configured with large enough
buffer capacity can delay incast.

We verify these results on a second cluster con-
sisting of 1 client and 47 servers connected to a
single 48-port Force10 S50 switch (Figure 8). The
microsecond RTO kernel is again able to saturate
throughput for 47 servers, the testbed’s maximum
size. The 1ms RTOmin jiffy-based configuration ob-
tained 70-80% throughput, with an observable drop
above 40 concurrent senders.

When the Force10 S50 switch is configured to dis-
able multiple QoS queues, the per-port packet buffer
allocation is large enough that incast can be avoided
for up to 47 servers (Figure 9). This reaffirms the
simulation result of Figure 2 – that one way to avoid
incast in practice is to use larger per-port buffers in
switches on the path. It also emphasizes that rely-
ing on switch-based incast solutions involves more

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

of

 O
cc

ur
re

nc
es

RTT in Microseconds (binsize = 10us)

RTT Distribution at Los Alamos National Lab Storage Node

Figure 10: Distribution of RTTs shows an apprecia-
ble number of RTTs in the 10s of microseconds.

than just the switches total buffer size: switch con-
figuration options designed for other workloads can
make its flows more prone to incast. A generalized
TCP solution should reduce administrative complex-
ities in the field.

Overall, we find that enabling microsecond RTO
values in TCP successfully avoids the incast through-
put drop in two real-world clusters for as high as 47
concurrent servers, the maximum available to us to
date, and that microsecond resolution is necessary
to achieve high performance with some switches or
switch configurations.

7 Next-generation Datacenters

TCP Incast poses further problems for the next gen-
eration of datacenters consisting of 10Gbps networks
and hundreds to thousands of machines. These net-
works have very low-latency capabilities to keep
competitive with alternative high-performance in-
terconnects like Infiniband; though TCP kernel-to-
kernel latency may be as high as 40-80µs due to ker-
nel scheduling, port-to-port latency can be as low
as 10µs. Because 10Gbps Ethernet provides higher
bandwidth, servers will be able to send their portion
of a data block faster, requiring that RTO values be
shorter to avoid idle link time. For example, we plot
the distribution of RTTs seen at a storage node at Los
Alamos National Lab (LANL) in Figure 10: 20% of
RTTs are below 100µs, showing that networks today
are capable and operate in very low-latency environ-

11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 32 64 128 256 512 1024

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (Block size = 40MB, buffer = 32KB, rtt = 20us)

Goodput
Throughput

Figure 11: In simulation, flows still experience re-
duced goodput even with microsecond resolution
timeouts (RTOmin = RTT = 20µs) without a random-
ized RTO component.

ments, further motivating the need for microsecond-
granularity RTO values.

Scaling to thousands of concurrent senders: In
this section, we analyze the impact of incast and the
reduced RTO solution for 10Gbps Ethernet networks
in simulation as we scale the number of concurrent
senders into the thousands. We reduce baseline RTTs
from 100µs to 20µs, and increase link capacity to
10Gbps, keeping per-port buffer size at 32KB as we
assume smaller buffers for faster switches.

We increase the blocksize to 40MB (to ensure each
flow can mostly saturate the 10Gbps link), scale up
the number of nodes from 32 to 2048, and reduce the
RTOmin to 20µs, effectively eliminating a minimum
bound. In Figure 11, we find that without a random-
ized RTO component, goodput decreases sublinearly
(note the log-scale x-axis) as the number of nodes
increases, indicating that even with an aggressively
RTO granularity, we still observe reduced goodput.

Reduced goodput can arise due to idle link time
or due to retransmissions; retransmissions factor into
throughput but not goodput. Figure 11 shows that for
a small number of flows, throughput is near optimal
but goodput is lower, sometimes by up to 15%. For
a larger number of flows, however, throughput and
goodput are nearly identical – with an aggressively
low RTO, there exist periods where the link is idle
for a large number of concurrent senders.

 0

 200

 400

 600

 800

 1000

 0.35 0.4 0.45 0.5 0.55 0.6

M
bp

s

time (seconds)

Repeated Retransmissions, Backoff and Idle-time

Instanteous Link Utilization
Flow 503 Failed Retransmission

Flow 503 Successful Retransmission

Figure 12: Some flows experience repeated retrans-
mission failures due to synchronized retransmission
behavior, delaying transmission far beyond when the
link is idle.

These idle periods occur specifically when there
are many more flows than the amount of buffer ca-
pacity at the switch due to simultaneous, successive
timeouts. Recall that after every timeout, the RTO
value is doubled until an ACK is received. This has
been historically safe because TCP quickly and con-
servatively estimates the duration to wait until con-
gestion abates. However, the exponentially increas-
ing delay can overshoot some portion of time that
the link is actually idle, leading to sub-optimal good-
put. Because only one flow must overshoot to delay
the entire transfer, the probability of overshooting in-
creases with increased number of flows.

Figure 12 shows the instantaneous link utilization
for all flows and the retransmission events for one
of the flows that experienced repeated retransmission
failures during an incast simulation on a 1Gbps net-
work. This flow timed out and retransmitted a packet
at the same time that other timed out flows also re-
transmitted. While some of these flows got through
and saturated the link for a brief period of time, the
flow shown here timed out and doubled its timeout
value (until the maximum factor of 64 * RTO) for
each failed retransmission. The link then became
available soon after the retransmission event, but the
RTO backoff set the retransmission timer to fire far
beyond this time. When this packet eventually got
through, the block transfer completed and the next
block transfer began, but only after large periods of
link idle time that reduced goodput.

12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 32 64 128 256 512 1024 2048

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (Block size = 40MB, buffer = 32KB, rtt = 20us)

200us RTOmin
20us RTOmin

20us RTOmin + RandDelay

Figure 13: In simulation, introducing a random-
ized component to the RTO desynchronizes retrans-
missions following timeouts and avoiding goodput
degradation for a large number of flows.

This analysis shows that decreased good-
put/throughput for a large number of flows can be
attributed to many flows timing out simultaneously,
backing off deterministically, and retransmitting at
precisely the same time. By adding some degree of
randomness to the RTO, the retransmissions can be
desynchronized such that fewer flows experience
repeated timeouts.

We examine both RTOmin and the retransmission
synchronization effect in simulation, measuring the
goodput for three different settings: a 200µs RTOmin,
a 20µs RTOmin, and a 20µs RTOmin with a modified,
randomized timeout value set by:

timeout = RTO+(rand(0.5)∗RTO)

Figure 13 shows that the 200µs RTOmin scales
poorly as the number of concurrent senders in-
creases: at 1024 servers, throughput is still an order
of magnitude lower. The 20µs RTOmin shows im-
proved performance, but eventually suffers beyond
1024 servers due to the successive, simultaneous
timeouts experienced by a majority of flows.

Adding a small random delay performs well re-
gardless of the number of concurrent senders because
it explicitly desynchronizes the retransmissions of
flows that experience repeated timeouts, and does not
heavily penalize flows that experience a few time-
outs.

A caveat of these event-based simulations is that

the timing of events is as accurate as the simula-
tion timestep. At the scale of microseconds, there
will exist small timing and scheduling differences in
the real-world that are not captured in simulation.
For example, in the simulation, a packet will be re-
transmitted as soon as the retransmission timer fires,
whereas kernel scheduling may delay the actual re-
transmission by 10µs or more. Even when offloading
duties to ASICs, slight timing differences will exist
in real-world switches. Hence, the real-world behav-
ior of incast in 10GE, 20µs RTT networks will likely
deviate from these simulations slightly, though the
general trend should hold.

8 Implications of Reduced RTOmin
on the Wide-area

Aggressively lowering both the RTO and RTOmin

shows practical benefits for datacenters. In this sec-
tion, we investigate if reducing the RTOmin value to
microseconds and using finer granularity timers is
safe for wide area transfers. We find that the im-
pact of spurious timeouts on long, bulk data flows
is very low – within the margins of error – allowing
RTO to go into the microseconds without impairing
wide-area performance.

8.1 Evaluation

The major potential effect of a spurious timeout is a
loss of performance: a flow that experiences a time-
out will reduce its slow-start threshold by half, its
window to one and attempt to rediscover link capac-
ity. Spurious timeouts occur not when the network
path drops packets, but rather when it observes a sud-
den, higher delay, so the effect of a shorter RTO on
increased congestion is likely small because a TCP
sender backs-off on the amount of data it injects into
the network on a timeout. In this section we analyze
the performance of TCP flows over the wide-area for
bulk data transfers.

Experimental Setup We deployed two servers
that differ only in their implementation of the RTO
values and granularity, one using the default Linux
2.6.28 kernel with a 200ms RTOmin, and the other
using our modified hrtimer-enabled TCP stack with

13

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

%
 s

a
m

p
le

s
 (

w
it
h
 R

T
T

 <
=

 x
)

RTT (ms)

200ms RTOmin (Default)
200us RTOmin

Figure 14: A comparison of RTT distributions of
flows collected over 3 days on the two configurations
show that both servers saw a similar distribution of
both short and long-RTT flows.

a 200µs RTOmin. We downloaded 12 torrent files
consisting of various Linux distributions and begin
seeding all content from both machines on the same
popular swarms for three days. Each server uploaded
over 30GB of data, and observed around 70,000
flows (with non-zero throughput) over the course of
three days. We ran tcpdump on each machine to col-
lect all uploaded traffic packet headers for later anal-
ysis.

The TCP RTO value is determined by the esti-
mated RTT value of each flow. Other factors be-
ing equal, TCP throughput tends to decrease with
increased RTT. To compare RTO and throughput
metrics for the 2 servers we first investigate if they
see similar flows with respect to RTT values. Fig-
ure 14 shows the per-flow average RTT distribution
for both hosts over the three day measurement pe-
riod. The RTT distributions are nearly identical, sug-
gesting that each machine saw a similar distribution
of both short and long-RTT flows. The per-packet
RTT distribution for both flows are also identical.

Figure 15 shows the per-flow throughput distribu-
tions for both hosts, filtering out those flows with
a bandwidth less than 100bps, which are typically
flows sending small control packets. The throughput
distributions for both hosts are also nearly identical –
the host with RTOmin = 200µs did not perform worse
on the whole than the host with RTOmin = 200ms.

We split the throughput distributions based on

 0

 20

 40

 60

 80

 100

 1 10 100

%
 s

a
m

p
le

s
 (

w
it
h
 K

b
p
s
 <

=
 x

)

Throughout (Kbps)

200ms RTOmin (Default)
200us RTOmin

Figure 15: The two configurations observed an iden-
tical throughput distribution for flows. Only flows
with throughput over 100 bits/s were considered.

 0

 20

 40

 60

 80

 100

 1 10 100

%
 s

a
m

p
le

s
 (

w
it
h
 K

b
p
s
 <

=
 x

)

Throughout (Kbps)

200ms RTOmin (over 200ms RTT)
200ms RTOmin (sub 200ms RTT)
200us RTOmin (over 200ms RTT)
200us RTOmin (sub 200ms RTT)

Figure 16: The throughput distribution for short and
long RTT flows shows negligible difference across
configurations.

whether the flow’s RTT was above or below 200ms.
For flows above 200ms, we use the variance in the
two distributions as a control parameter: any vari-
ance seen above 200ms are a result of measurement
noise, because the RTOmin is no longer a factor. Fig-
ure 16 shows that the difference between the distri-
bution for flows below 200ms is within this measure-
ment noise.

Table 1 lists statistics for the number of spurious
timeouts and normal timeouts observed by both the
servers. These statistics were collected using tcp-
trace [2] patched to detect timeout events [1]. The
number of spurious timeouts observed by the two
configurations are high, but comparable. We at-

14

RTOmin Normal
timeouts

Spurious
timeouts

Spurious
Fraction

200ms 137414 47094 25.52%
200µs 264726 90381 25.45%

Table 1: Statistics for timeout events across flows
for the 2 servers with different RTOmin values. Both
servers experience a similar % of spurious timeouts.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 500 1000 1500 2000

R
T

T
 a

n
d
 R

T
O

 (
m

s
)

Time (sec)

RTT RTO

Figure 17: RTT and RTO estimate over time for a
randomly picked flow over a 2000 second interval –
the RTT and RTO estimate varies significantly in the
wide-area which may cause spurious timeouts.

tribute the high number of spurious timeouts to the
nature of TCP clients in our experimental setup. The
peers in our BitTorrent swarm observe large varia-
tions in their RTTs (2x-3x) due to the fact that they
are transferring large amounts of data, frequently es-
tablishing and breaking TCP connections to other
peers in the swarm, resulting in variations in buffer
occupancy of the bottleneck link.4 Figure 17 shows
one such flow picked at random, and the per-packet
RTT and estimated RTO value over time. The dip
in the estimated RTO value below the 350ms RTT
band could result in a spurious timeout if there were
a timeout at that instance and the instantaneous RTT
was 350ms.

This data suggests that reducing the RTOmin to
200µs in practice does not affect the performance of
bulk-data TCP flows on the wide-area.

4An experiment run by one of the authors discovered that
RTTs over a residential DSL line varied from 66ms for one TCP
stream to two seconds for four TCP streams.

9 Related Work

TCP Improvements: A number of TCP improve-
ments over the years have improved TCP’s ability to
respond to loss patterns and perform better in partic-
ular environments, many of which are relevant to the
high-performance datacenter environment we study.
NewReno and SACK, for instance, reduce the num-
ber of loss patterns that will cause timeouts; prior
work on the incast problem showed that NewReno,
in particular, improved throughput during moderate
amounts of incast, though not when the problem be-
came severe [28].

TCP mechanisms such as Limited Transmit [3]
were specifically designed to help TCP recover from
packet loss when window sizes are small—exactly
the problem that occurs during incast. This solution
again helps maintain throughput under modest con-
gestion, but during severe incast, the most common
loss pattern is the loss of the entire window.

Finally, proposed improvements to TCP such as
TCP Vegas [10] and FAST TCP [19] can limit win-
dow growth when RTTs begin to increase, often
combined with more aggressive window growth al-
gorithms to rapidly fill high bandwidth-delay links.
Unlike the self-interfering oscillatory behavior on
high-BDP links that this prior work seeks to resolve,
Incast is triggered by the arrival and rapid ramp-up of
numerous competing flows, and the RTT increases
drastically (or becomes a full window loss) over a
single round-trip. While an RTT-based approach is
an interesting approach to study for alternative solu-
tions to Incast, it is a matter of considerable future
work to adapt existing techniques for this purpose.

Efficient, fine-grained kernel timers. Where
our work depends on hardware support for high-
resolution kernel timers, earlier work on “soft
timers” shows an implementation path for legacy
systems [5]. Soft timers can provide microsecond-
resolution timers for networking without introducing
the overhead of context switches and interrupts. The
hrtimer implementation we do make use of draws
lessons from soft timers, using a hardware interrupt
to trigger all available software interrupts.

Understanding RTOmin. The origin of concern
about the safety and generality of reducing RTOmin

was presented by Allman and Paxson [4], where they
used trace-based analysis to show that there existed

15

no optimal RTO estimator, and to what degree that
the TCP granularity and RTOmin had an impact on
spurious retransmissions. Their analysis showed that
a low or non-existent RTOmin greatly increased the
chance of spurious retransmissions and that tweaking
the RTOmin had no obvious sweet-spot for balancing
fast response with spurious timeouts. They showed
the increased benefit of having a fine measurement
granularity for responding to good timeouts because
of the ability to respond to minor changes in RTT.
Last, they suggested that the impact of bad timeouts
could be mitigated by using the TCP timestamp op-
tion, which later became known as the Eifel algo-
rithm [21]. F-RTO later showed how to detect spuri-
ous timeouts by detecting whether the following ac-
knowledgements were for segments not retransmit-
ted [32], and this algorithm is implemented in Linux
TCP today.

Psaras and Tsaoussidis revisit the minimum RTO
for high-speed, last-mile wireless links, noting the
default RTOmin is responsible for worse throughput
on wireless links and short flows [29]. They suggest
a mechanism for dealing with delayed ACKs that at-
tempts to predict when a packet’s ACK is delayed – a
per-packet RTOmin. We find that while delayed ACK
can affect performance for low RTOmin, the benefits
of a low RTOmin far outweigh the impact of delayed
ACK on performance. Regardless, we provide alter-
native, backwards-compatible solutions for dealing
with delayed ACK.

10 Conclusion

This paper presented a practical, effective, and safe
solution to eliminate TCP throughput degradation
in datacenter environments. Using a combination
of microsecond granularity timeouts, randomized re-
transmission timers, and disabling delayed acknowl-
edgements, the techniques in this paper allowed
high-fan-in datacenter communication to scale to 47
nodes in a real cluster evaluation, and potentially to
thousands of nodes in simulation. Through a wide-
area evaluation, we showed that these modifications
remain safe for use in the wide-area, providing a gen-
eral and effective improvement for TCP-based clus-
ter communication.

References

[1] TCP Spurious Timeout detection patch for tcp-
trace. http://ccr.sigcomm.org/online/?q=node/220.

[2] tcptrace: A TCP Connection Analysis Tool.
http://irg.cs.ohiou.edu/software/tcptrace/.

[3] M. Allman, H. Balakrishnan, and S. Floyd. En-
hancing TCP’s Loss Recovery Using Limited
Transmit. Internet Engineering Task Force,
January 2001. RFC 3042.

[4] Mark Allman and Vern Paxson. On estimating
end-to-end network path properties. In Proc.
ACM SIGCOMM, Cambridge, MA, September
1999.

[5] Mohit Aron and Peter Druschel. Soft timers:
Efficient Microsecond Software Timer Support
for Network Processing. ACM Transactions on
Computer Systems, 18(3):197–228, 2000.

[6] H. Balakrishnan, V. N. Padmanabhan, and R.H.
Katz. The Effects of Asymmetry on TCP Per-
formance. In Proc. ACM MOBICOM, Bu-
dapest, Hungary, September 1997.

[7] H. Balakrishnan, V. N. Padmanabhan, S. Se-
shan, and R.H. Katz. A comparison of mech-
anisms for improving TCP performance over
wireless links. In Proc. ACM SIGCOMM, Stan-
ford, CA, August 1996.

[8] Peter J. Braam. File Systems for
Clusters from a Protocol Perspective.
http://www.lustre.org.

[9] R. T. Braden. Requirements for Internet
Hosts—Communication Layers. Internet Engi-
neering Task Force, October 1989. RFC 1122.

[10] L. S. Brakmo, S. W. O’Malley, and L. L. Peter-
son. TCP Vegas: New Techniques for Conges-
tion Detection and Avoidance. In Proc. ACM
SIGCOMM, London, England, August 1994.

[11] k. claffy, G. Polyzos, and H-W. Braun. Mea-
surement considerations for assessing unidi-
rectional latencies. Internetworking: Re-
search and Experience, 3(4):121–132, Septem-
ber 1993.

16

[12] Scaling memcached at Facebook.
http://www.facebook.com/note.php?note id=39391378919.

[13] Brad Fitzpatrick. LiveJournal’s back-
end: A history of scaling. Presentation,
http://tinyurl.com/67s363, August 2005.

[14] S. Floyd and V. Jacobson. Random Early De-
tection Gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, 1(4),
August 1993.

[15] Bryan Ford. Structured streams: A new trans-
port abstraction. In Proc. ACM SIGCOMM,
Kyoto, Japan, August 2007.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google file system. In Proc.
19th ACM Symposium on Operating Systems
Principles (SOSP), Lake George, NY, October
2003.

[17] V. Jacobson. Congestion Avoidance and Con-
trol. In Proc. ACM SIGCOMM, pages 314–329,
Vancouver, British Columbia, Canada, Septem-
ber 1998.

[18] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. Internet En-
gineering Task Force, May 1992. RFC 1323.

[19] Cheng Jin, David X. Wei, and Steven H.
Low. FAST TCP: motivation, architecture, al-
gorithms, performance.

[20] Eddie Kohler, Mark Handley, and Sally Floyd.
Designing DCCP: Congestion control without
reliability. In Proc. ACM SIGCOMM, Pisa,
Italy, August 2006.

[21] R. Ludwig and M. Meyer. The Eifel Detection
Algorithm for TCP. Internet Engineering Task
Force, April 2003. RFC 3522.

[22] M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-
manow. TCP Selective Acknowledgment Op-
tions. Internet Engineering Task Force, 1996.
RFC 2018.

[23] Alberto Medina, Mark Allman, and Sally
Floyd. Measuring the evolution of transport
protocols in the Internet. April 2005.

[24] Amarnath Mukherjee. On the dynamics and
significance of low frequencey components of
internet load. Internetworking: Research and
Experience, 5:163–205, December 1994.

[25] David Nagle, Denis Serenyi, and Abbie
Matthews. The Panasas ActiveScale Stor-
age Cluster: Delivering Scalable High Band-
width Storage. In SC ’04: Proceedings of the
2004 ACM/IEEE Conference on Supercomput-
ing, Washington, DC, USA, 2004.

[26] ns-2 Network Simulator.
http://www.isi.edu/nsnam/ns/, 2000.

[27] C. Partridge. Gigabit Networking. Addison-
Wesley, Reading, MA, 1994.

[28] Amar Phanishayee, Elie Krevat, Vijay Vasude-
van, David G. Andersen, Gregory R. Ganger,
Garth A. Gibson, and Srinivasan Seshan. Mea-
surement and analysis of TCP throughput col-
lapse in cluster-based storage systems. In Proc.
USENIX Conference on File and Storage Tech-
nologies, San Jose, CA, February 2008.

[29] Ioannis Psaras and Vassilis Tsaoussidis. The
tcp minimum rto revisited. In IFIP Networking,
May 2007.

[30] K. Ramakrishnan and S. Floyd. A Proposal to
Add Explicit Congestion Notification (ECN) to
IP. Internet Engineering Task Force, January
1999. RFC 2481.

[31] S. Raman, H. Balakrishnan, and M. Srinivasan.
An Image Transport Protocol for the Internet.
In Proc. International Conference on Network
Protocols, Osaka, Japan, November 2000.

[32] P. Sarolahti and M. Kojo. Forward RTO-
Recovery (F-RTO): An Algorithm for Detecting
Spurious Retransmission Timeouts with TCP
and the Stream Control Transmission Protocol
(SCTP). Internet Engineering Task Force, Au-
gust 2005. RFC 4138.

[33] S. Shepler, M. Eisler, and D. Noveck. NFSv4
Minor Version 1 – Draft Standard.

17

[34] Brent Welch, Marc Unangst, Zainul Abbasi,
Garth Gibson, Brian Mueller, Jim Zelenka, and
Bin Zhou. Scalable Performance of the Panasas
Parallel File System. In Proc. USENIX Con-
ference on File and Storage Technologies, San
Jose, CA, February 2008.

[35] Y. Zhang, N. Duffield, V. Paxson, and
S. Shenker. On the constancy of Internet path
properties. In Proc. ACM SIGCOMM Internet
Measurement Workshop, San Fransisco, CA,
November 2001.

18

