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Abstract

Storage management is usually handled by skilled system administrators. The specific task of configuring

and allocating disk space for applications, often referred to as storage system design, is especially time-

consuming and error-prone. Automated storage system design, a solution proposed by many, relies on

fast and accurate performance predictions. However, challenges with conventional performance modeling

have prevented such automation from being fully realized in practice.

Relative fitness is a new approach to modeling the performance of storage systems. In contrast to

conventional models that predict the performance of storage systems based on the characteristics of

workloads, referred to in this dissertation as absolute models, relative fitness models predict performance

differences as workloads are moved across storage systems. There are two primary advantages. First,

because relative fitness models are constructed for each pair of storage systems, the feedback of a closed

workload can be captured (e.g., how the I/O arrival rate changes as the workload moves from storage

system A to storage system B). Second, relative fitness models allow performance and resource utilization

to be used in addition to workload characteristics. This is beneficial when workload characteristics are

difficult to obtain or concisely express. For example, rather than trying to describe the spatio-temporal

characteristics of a workload, one could use the observed performance and cache hit rate of storage

system A to help predict the performance of storage system B.

This dissertation describes the steps necessary to build a relative fitness model, with an approach

that is general enough to be used with any black-box modeling technique. Relative fitness models and

absolute models are compared across a variety of workloads and disk arrays (RAID). When compared to

absolute models, relative fitness models reduce the bandwidth prediction error up to 53%, throughput

up to 23%, and latency up to 20%. In general, the best predictors of the relative fitness models are

performance observations, followed by conventional workload characteristics.

Relative fitness models can be used in automated storage system design in a similar way that absolute

models are used. Specifically, workloads can be observed on the storage systems that they are initially

assigned to, relative fitness models can use these observations to predict the performance of different

assignments, and optimization techniques can be used to select an assignment that optimizes performance.
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Chapter 1

Introduction

Storage systems can be costly to manage. The consequences of bad management range from poor per-

formance (violated service-level agreements) to lost data. System administrators try to ensure that the

workload characteristics of applications are appropriately matched to the performance and availability

characteristics of the storage to which they are assigned. This design process includes the configuration of

storage systems (e.g., selecting a RAID level for a disk array) and the allocation of space for applications.

In both cases, a performance prediction is desirable (e.g., “is RAID-10 faster than RAID-5?”).

Though seasoned administrators may develop intuition as to the best way to manage storage, the

many interactions between an application workload and a storage system make accurate performance

prediction difficult. Further, because there are multiple options to consider, the problem of finding the

“optimal” storage system design (e.g., minimum cost, maximum performance, or best price-performance)

is one of bin-packing. Administrators must decide how to pack workloads into storage devices, but finding

an optimal solution would require that an exponential number of possibilities be explored. Because this

is not humanly possible in most cases, administrators often use rules-of-thumb. As might be expected,

this can lead to suboptimal designs and wasted resources. Anyone who has ever attempted to efficiently

pack luggage into a car’s trunk has experienced the bin-packing problem first-hand. Rules-of-thumb and

heuristics can be used to guide the search (e.g., pack the big suitcases first) but can be inefficient (e.g.,

resulting in unreachable space).

Given the high costs of storage management, there is a big payoff if automated tools can offload, or at

least assist in, the design process. In fact, automated storage system design has been an area of interest

for well over 30 years. Solutions generally take the form of optimization solvers and performance models

that predict the outcome of various designs. Using these models, optimization solvers can search the

large solution space for a near-optimal design.

Analytical or statistical models are the type of models typically used in such optimization. Con-

ventionally, these models take as input a concise description of a workload, referred to as workload

characteristics. As output, a performance prediction is made. These models assume that a workload is

described in an absolute manner, such that its characteristics are independent of the storage system on

which they were observed. For example, if a workload is characterized as read-mostly on storage sys-

tem A, a model of storage system B assumes that this characteristic is not relative to storage system A

17
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and that the workload will also be read-mostly on storage system B. In this dissertation, such models are

referred to as absolute models.

Practical challenges with workload characterization have limited the use of absolute models in au-

tomated storage system design. First, compressing the I/O workload of an application into concise

workload characteristics, without losing performance-critical information (e.g., spatial locality and tem-

poral locality), is challenging. Indeed, creating characteristics that are concise is at odds with creating

characteristics that are expressive. Some amount of information is usually lost in the compression, and

the lost information can affect a model’s prediction accuracy. Second, it is often the case that the char-

acteristics of a workload, as observed by a storage system, are not actually absolute. For example, the

average I/O request size of a workload can change between two storage systems; one storage system

may be slower, allowing an operating system more time to coalesce and aggregate I/O requests, thereby

resulting in larger requests.

To specifically address the challenges with absolute modeling, this dissertation presents a new modeling

technique called relative fitness. A relative fitness model uses the observed performance and resource

utilization of a workload on one storage system, in addition to workload characteristics, to predict the

performance of another storage system. Performance, resource utilization, and workload characteristics

are assumed specific, or relative, to a given storage system, hence the term “relative modeling.” In doing

so, the dependence on workload characteristics is reduced, due to the use of performance and resource

utilization, and changes in workload characteristics can be implicitly modeled. In addition, relative fitness

models predict performance ratios, called relative fitness values, rather than performance itself. As an

example, a relative fitness model might learn that a sequential, read-only workload with an observed

bandwidth of 80 MB/sec and a queue depth of 13 on storage system A will run 30% faster on storage

system B.

For every pair of storage systems A and B, two relative fitness models are trained: one to predict the

performance of B relative to A and a second to predict the performance of A relative to B. The models

are black-box models, thereby requiring no knowledge of each storage system’s internals (e.g., number of

drives, RAID level, cache sizes and eviction policies, and bus topology). The models learn various relative

fitness values by discovering statistical correlations between the observations of one storage system and

the performance of another. To make a performance prediction for a new workload, one inputs workload

observations into the appropriate relative fitness model and multiplies the predicted relative fitness value

(the performance ratio) by the observed performance. Figure 1 illustrates.

1.1 Thesis statement and contributions

Thesis statement: The prediction accuracy of a statistical, black-box performance model can be im-

proved by training it to predict the performance of one storage system relative to the observations

of another. Observations include workload characteristics, performance, and resource utilization.

This dissertation presents five independent discoveries. First, the block-level workload characteristics

of an application can change as the application is moved across storage systems. Second, the change can

impact the accuracy of an absolute model. Third, storage systems can be modeled relative to one another
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Figure 1.1: Relative fitness models predict changes in performance between two storage systems. Sample

workloads are used to train a model to predict how two storage systems will differ for a given workload.

and reduce the effect of changing workloads. Fourth, the observed performance and resource utilization

of a workload on one storage system can be used to predict its performance on a different storage system.

Finally, performance ratios (relative fitness values) are better predictors of performance than constant

performance values. Collectively, these discoveries establish the motivation and theory behind relative

fitness modeling.

1.2 Thesis organization

The background material for this dissertation is organized as 4 chapters: automated storage management

(Chapter 2), measuring storage performance (Chapter 3), characterizing storage workloads (Chapter 4),

and predicting storage performance (Chapter 5). Though not comprehensively, Chapters 2 through 5

introduce many basic concepts behind storage systems and performance modeling.

Chapter 2 begins with basic terminology (e.g., “workload”) that will be used throughout this disser-

tation and provides a more in-depth discussion of automated storage management, specifically storage

system design. A hypothetical automated storage system is described with an elaboration of the chal-

lenges that have prevented it from becoming fully realized in practice.

The performance metrics (bandwidth, throughput, and latency) that the relative fitness models are

trained to predict are presented in Chapter 3. Techniques for measuring performance, and common pit-

falls, are discussed. In addition, a variety of industry benchmarks and synthetic workloads are described,

some of which are used to evaluate the relative fitness models.

Workload characterization is discussed in Chapter 4. Basic workload characteristics are presented

first, including operation mixes, I/O request sizes, spatial access patterns, and levels of concurrency (e.g.,

queue depths). More expressive characteristics are also presented, including temporal measures like the

“burstiness” of a workload, self-similarity in an I/O stream, and correlations between space and time (e.g.,

certain blocks accessed at certain times). The challenges with workload characterization are discussed in

greater detail.

Chapter 5 introduces various predictive techniques. I/O trace replay, synthetic I/O, simulation mod-
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els, and emulation models are described, in addition to analytical and statistical models. Particular

attention is given to the statistical models, as they form the foundation for relative fitness modeling.

Chapter 6 presents relative fitness modeling. Despite the many differences between a relative fitness

model and an absolute model, one can regard relative fitness modeling as an evolution of absolute mod-

eling, and the derivation of relative fitness is presented as such. It is shown how relative fitness models

can be implemented using classification and regression trees (CART).

The CART models are evaluated in Chapter 7. Relative fitness modeling is compared with absolute

modeling using a variety of application workloads (synthetic I/O, trace replay, Postmark, and TPC-C)

and disk arrays. It is shown that the relative fitness models can reduce the median relative error of the

bandwidth predictions from 67% to 14%, throughout from 36% to 13%, and latency from 34% to 14%.

Furthermore, the relative fitness models reduce error with much simpler models (Occam’s razor) that

also require less training data.

Chapter 8 summarizes the thesis and provides some thoughts for future work.



Chapter 2

Automated storage management

“Storage management” is a large umbrella that covers a range of activities, including purchasing & instal-

lation, storage system design, performance monitoring, tuning, backup & restore, archiving, and system

upgrades. Plus, there is infrastructure that must be managed, such as networking, power, and cooling.

Further, all of the above must respect data center policies related to quality of service (performance),

security & privacy, data retention, and availability (e.g., “What’s the disaster recovery plan?”). In short,

storage management is not for the faint of heart — especially when a corporation and its customers’ data

are at stake — and it can consume a significant amount of a system administrator’s time.

This chapter introduces storage system design, a component of storage management that can be

especially time-consuming and error-prone. A “storage system” typically refers to one or more disk

arrays (RAID), and the “design” is how they are each configured and assigned work. This is one of many

areas of storage management that can benefit from automation and is the context in which relative fitness

models are intended to be used.

Section 2.1 begins with a canonical depiction of a file and storage system, so as to introduce the basic

storage concepts and terminology that will be used throughout the rest of this dissertation. Section 2.2

continues with a discussion of the high costs of storage management, a trend in the storage industry that

is making the management problem even worse (storage clusters), and the general need for automated

management. Section 2.3 focuses the discussion on storage system design and the problem it poses for

large data centers. Section 2.4 introduces automated design, progress that has been made in this area,

and the challenges going forward. Section 2.5 summarizes the chapter and introduces the potential for

relative fitness modeling.

2.1 Basic concepts and terminology

Storage systems aggregate the capabilities of multiple storage devices in order to increase overall storage

capacity, reliability, availability, or performance. Examples include disk arrays, tape libraries, disk-to-

tape backup systems, and hybrid drives (disk + Flash). Disk arrays, given their prevalence in the data

center, are the focus of this dissertation.

Most disk arrays have an administrative interface for creating logical volumes. Logical volumes may

21
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span multiple disks by concatenating their block address spaces (linear mode), allocating blocks in a

round-robin fashion (striping), or employing some form of data redundancy that may also involve striping

(e.g., RAID [42, 29]). It is the job of a system administrator to set the type and size of each volume. File

systems, databases, and other applications are created within these logical volumes (e.g., C: and D: are

file systems that may reside on the same disk array, but in separate logical volumes). Blocks within a

logical volume are logical blocks which map to physical blocks in the underlying storage devices. A logical

volume is presented to an operating system as though it were a single storage device. Therefore, when

accessing data in a logical volume, an OS can use the same read/write block interface that is uses to

access a storage device (e.g., the SCSI or ATA block command set).

Figure 2.1 (left half) illustrates a canonical file and storage system. An abstracted view (right half) is

the stack that will be referred to throughout the rest of this dissertation. Although only a file system is

used in the figure, the stack could have be shown with a database or any other application that directly

accesses the storage system. The I/O workload of any such application are the logical block I/O requests

that it issues into the storage system, and the block I/O of a specific process (or thread) is referred to as

a stream. As such, an I/O workload is composed of one or more streams.

This work is concerned with predicting the performance of I/O workloads, not individual streams,

and it is assumed that such workloads are not sharing the storage system with any other workloads.

Appendix B contains an early follow-on to this work that predicts the impact of resource sharing.

When referring to the I/O workload an application (e.g., Postmark [7]) running on top of a mounted

file system, this work is referring to its block I/O, after the file requests have passed through the file

system and been translated to logical block requests. That is, a workload is described by its observed

block-level workload characteristics (e.g., read/write ratio, average request size, spatial randomness) and

its observed block-level performance (e.g., bandwidth, throughput, latency). Application-level workload

characteristics and performance (i.e., as observed by an application) are not used in this dissertation.

2.2 The high costs of management

At the highest level, the goal of storage management is to build and maintain logical volumes for appli-

cation servers. However, much work goes behind the simple “C:” that is presented to an application.

It is a well-known fact that it costs more to manage storage than it does to buy it [2, 28, 26, 35, 45, 44],

with estimates as high as 8:1 (Gartner 2003). That is, it costs $8 to manage every $1 of storage.

Although studies vary, the management costs usually include everything in addition to the raw storage

(e.g., storage management software and skilled system administrators). Some studies have found that 1

administrator is needed every 1-20 TB of data [26, 44], which is equivalent to 1 administrator every 2–40

disk drives. Combining these alarming ratios with a 50-100% yearly increase in storage capacity, which

is not uncommon in the data center [34], one can understand why the total cost of ownership (TCO) of

storage is of immediate concern in the enterprise.

In an effort to reduce storage TCO, and in some cases improve scalability, many storage systems

have begun to move from monolithic designs (like that shown in Figure 2.1) to clusters [1, 12, 21, 25,

36, 50, 41, 58], where logical volumes may span multiple disk arrays. This is often referred to as cluster-

based storage. Indeed, storage systems can benefit from the same advantages that clustering brought to
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Figure 2.1: A canonical file and storage system (left half of figure) and an abstracted view (right half). An

application issues file I/O to a file system, the file system translates file requests to logical block requests,

the logical block requests are issued to a logical volume within a storage system, and the storage system

maps logical blocks to physical blocks using some internal mapping (e.g., RAID).

.

application servers [27], like modularity, redundancy, and a “buy as you grow” model. Unfortunately,

this trend has exacerbated the management problem, as managing multiple disk arrays is more difficult

than managing a single array.

The already high cost of storage management, combined with the trend toward cluster-based storage,

has sparked a flurry of activity around automated storage management, with an objective of automating

many of the lower-level and time-consuming tasks. Automated storage management goes by many names,

including system-managed storage [24], self-managed storage [19], autonomic storage [32], and self-*

storage [22]. Names aside, there is a common goal: to offer the administrators some relief and reduce

TCO. As examples, a storage system could configure its own RAID level, decide which workloads it will

and will not host (based on its ability to deliver the proper QoS), adjust tunable parameters (e.g., cache

eviction policies), and be proactive with respect to detecting and reporting security breaches.

2.3 Storage system design

Storage system design is an area of storage management with much potential for automation. It is

a special case of the “generalized assignment problem” [13], where a collection of tasks (application

workloads) are to be assigned to agents (logical volumes) that have varying capacity and performance
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characteristics (e.g., different RAID levels). The generalized assignment problem is an NP-complete [23]

optimization problem, meaning that it cannot be solved or verified in polynomial time. One of the earliest

forms for computer storage is the classic “File Assignment Problem” [14, 18, 57, 43, 53, 9]. The problem

is stated as such: given a collection of file servers, a collection of files and their access patterns, and a set

of performance goals, what is the optimal assignment of files to file servers?

The focus of the problem has since shifted to storage systems, particularly disk arrays. However,

the problem is still fundamentally one of bin-packing (i.e., “packing” workloads into disk arrays). Given

a collection of application workloads and disk arrays, a solution to the generalized assignment problem

involves the following:

1. Deciding which disk arrays to use, which may involve purchasing additional arrays.

2. Creating logical volumes within each disk array. Again, there are two decisions that must be made:

the size of each volume and its type (linear, striping, or RAID).

3. Assigning I/O workloads to the logical volumes.

Though the above steps sound simple, there are an exponential number of possibilities, making the

search space very large. Consider the number of ways one could configure 8 disk arrays for 8 workloads.

Even with the simplifying assumption that each array can contain only a single volume configured as

either RAID-1 (mirroring) or RAID-5 (striping with parity), there are still over 10 million possibilities

(i.e., 28 ways of configuring the disk arrays by 8! ways of assigning each volume a workload.). Clearly,

a system administrator does not have the luxury of physically trying each one. Instead, a prediction is

usually made as to the best way to configure the arrays and assign them work. But, this is usually done in

an ad hoc manner using industry rules-of-thumbs. In general, predicting the performance of a disk array

for an arbitrary workload is difficult [4, 16, 37, 39]. It is even more difficult when multiple workloads are

sharing the same array, as one must predict the effects of resource contention [11].

Given the dizzying number of configuration and assignment possibilities, the lack of information on

the interaction between workloads and the disk arrays, and the risk of not meeting performance goals if

the overall storage system is poorly designed, a common strategy is to simply over-provision [34] — that

is, to buy more storage than one really needs and hope that it is good enough. This might be reasonable

for smaller installations, but it is not practical for larger data centers, especially in light of the 50-100%

yearly growth in storage capacity. Further, over-provisioning provides no guarantees that performance

goals will be met.

2.4 An automated storage system

A better way to attack storage system design is to automatically determine the I/O characteristics of

workloads and model the capabilities of the disk arrays relative to these characteristics. Then, one can

make an informed decision as to the best assignment of workloads to storage. Of course, there is still

the exponential number of possibilities, but optimization software [17] can be used to explore the search

space. This involves using performance models to predict the performance of the disk arrays for various
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workload assignments. Greedy heuristics are often used to guide the search (e.g., iteratively finding the

logical volume that is the “best fit” for each workload).

In effect, one is mapping the characteristics of workloads to the capabilities of storage [47]. This

was the general approach taken by earlier researchers with the File Assignment Problem and is also the

approach used by storage systems researchers today. HP Labs, in particular, has produced multiple gen-

erations of automated storage system designers based on this concept, including Forum [10], Minerva [3],

and Ergastulum [6]/Hippodrome [5]. Further, using the output from these design tools (i.e., a mapping

of workloads to disk arrays), one can also automatically design the storage area network that will be used

to connect the application servers to the disk arrays, so as to find a minimum-cost set of links to route

the flows [30].

An automated storage system should also handle the transparent migration of data across (or within)

disk arrays. There are numerous reasons for data migration, including disk array upgrades and mainte-

nance, array failures, and workload change. Also, the first time a workload is characterized, it may not be

on the “best” disk array. Therefore, after an optimization engine determines the proper assignment, the

application data must be moved to that array, preferably without any application downtime or human

intervention.

A variety of research has focused on automating the migration process. There are techniques for

transparently migrating data between RAID levels [56] (e.g., RAID-1 vs. RAID-5) or different data

distributions [1] (e.g., erasure coding vs. replication), techniques to minimize the impact to foreground

traffic during a data migration [38], and techniques which involve cloning data sets [33]. There has

also been research to minimize the number of migrations. In particular, if one can predict the I/O

characteristics of workload, it can be assigned to the right logical volume from the start, thereby avoiding

a potentially costly migration. One way to do this is to automatically classify files [20, 40] (e.g., read-

only, write-mostly) when they are first created. This can be done using information such as the creation

time, the filename, or the group and user ID (e.g., files created at 3 a.m. by “root” may be write-once-

read-rarely backup files.). Once classified, a file’s data can be allocated from a volume optimized for its

predicted access pattern.

Figure 2.2 illustrates an automated storage system. The storage system is a cluster-based storage

system composed of disk arrays. Logical volumes implement the “optimal mapping” of workloads to disk

arrays, as per the instruction of the optimization engine. The workloads are applications such as file

systems, databases, or any other application directly accessing the storage. The automation system (e.g.,

optimization engine, performance models, and data migration engine) may reside on a single management

server or be distributed across servers or disk arrays. Irrespective of its system architecture, the goal of

such an automation system is to provide application servers with logical volumes for storing and retrieving

data, and this system is expected to evolve over time with the data center. For example, when a new

disk array is purchased, performance models must be trained (offline), after which the disk array can

be introduced into the storage cluster and automatically provisioned, thereby becoming part of a logical

volume. Further, as new workloads are introduced, performance predictions must be made. When the

predictions match the observed performance (i.e., a successful data migration), no additional work is

necessary. Inaccurate predictions, however, will require that a model be automatically retrained, using

the failed predictions as additional training data.
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Figure 2.2: A workload is characterized the first time it is run, on the disk array to which it was originally

assigned. Using these characteristics, an optimization solver can query each of the performance models

and determine the optimal mapping. The workload can then be migrated to the assigned array. If the

characteristics of the workload change, the process can be repeated.

Though not shown in Figure 2.2, there are a variety of other performance-related techniques that can

be automated within a storage system, particularly as they relate to quality of service [8, 54, 55]. As

examples, there could be different bandwidth allocation strategies in the storage system [46, 48, 49] (e.g.,

best-effort vs. soft real-time), performance differentiation among competing workloads [31], performance

isolation among competing workloads [51, 52], and economic-based models where applications bid for

storage resources [15].

2.4.1 Challenges

One of the biggest challenges with automated storage system design is characterizing and predicting the

performance of workloads, and this challenge has been significant enough to keep an automated system,

like that depicted in Figure 2.2, from being fully realized in practice. In short, performance models require

concise workload characteristics, but it is difficult to make a workload characteristic concise without losing

performance-critical information (a Catch-22).

More precisely, performance models require workload characteristics that can be mathematically ma-

nipulated, and these usually take the form of statistics, such as a workload’s average request size or its

read/write ratio. However, statistics can hide important information and misrepresent the real behavior

of a workload. Conversely, one could use a non-statistical description of a workload (e.g., a complete I/O

trace), but it would be difficult to use this information in a performance model.

It is in the process of “compressing” an I/O trace into workload characteristics that information is lost.

That is, expressiveness and conciseness are at odds with one another, resulting in inaccurate performance

predictions. This trade-off will be discussed further in Chapters 4 and 5.
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2.5 Summary and concluding remarks

Determining how to best assign workloads to disk arrays is a task ideally suited to automation. In

summary, one can characterize I/O workloads, model the performance of disk arrays, and use optimization

software to assign workloads to the proper arrays. For each possibility, the performance models can be

used to predict performance, and the optimization software can proceed to find an assignment with the

best overall performance or perhaps the best price-performance.

Though simply stated, this bin-packing problem has challenged storage system researchers for over

30 years, beginning with the File Assignment Problem. Perhaps the biggest challenge is that of workload

characterization. To be used by the performance models, one must be able to describe a workload in a

way that is both expressive and concise.

In many respects, the most expressive and concise description of a workload is its performance on a

given storage system. Indeed, the performance of one storage system may be correlated with another, and

performance is exactly what we want to predict. For example, the average I/O latency of a workload can

indicate the effectiveness of a cache and give some indication of the spatio-temporal access pattern. In

addition, one could describe a workload by its resource utilization (e.g., the CPU, memory, and network

resources that are consumed in the storage system).

Unfortunately, performance and resource utilization metrics are specific to a given storage system and

are usually discarded when building models and making predictions. This is because, conventionally, only

one model is built per storage system. As such, the workload characteristics used by a model must be

independent from the storage system on which they were obtained. This, of course, precludes the use of

performance and resource utilization.

A primary motivation behind relative fitness modeling is finding a way to retain this information,

thereby reducing the dependence on workload characterization. As will be described in Chapter 6, this is

accomplished by modeling storage systems relative to one another. In effect, one can regard performance

and utilization as very concise, performance-critical workload characteristics.
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Chapter 3

Measuring storage performance

“If you can not measure it, you can not improve it.” Lord Kelvin.

A variety of metrics are used to evaluate storage systems, including performance, capacity, availability,

reliability, and cost. Although performance is not the only measure of success, any new storage system

will certainly be judged on its speed. Commonly used performance metrics include I/O bandwidth (data

transfer rate), throughput (I/O request completion rate), and latency (I/O request execution time).

This chapter introduces performance metrics commonly used in evaluating storage systems. Sec-

tion 3.1 describes the performance metrics in more detail and points where they can be measured, in-

cluding the file level and block level. Section 3.2 addresses some of the measurement pitfalls encountered

in this research and provides tips for avoiding them. In effect, Section 3.2 establishes the rules by which

performance will be measured in the Chapter 7 evaluation, where relative fitness models are trained to

predict the performance of various workloads. Section 3.3 introduces various benchmarks used through-

out the storage industry and how they are used to generate I/O workloads from which performance

measurements can be taken.

3.1 Performance metrics

Three performance metrics are commonly used to quantify storage system performance. These are the I/O

bandwidth, throughput, and latency of a workload. Although terminology varies somewhat throughout

the industry, the working definitions are primarily the same. In particular, the Storage Networking

Industry Association (SNIA) [4] defines bandwidth as the “data transfer capacity,” or the maximum rate

in which data can be transmitted. Throughput is the number of I/O operation requests that can be

satisfied per unit time. Latency is the request execution time. Of course, bandwidth and throughput

are both averages over some period of time. Latency is often reported as an average, but one could also

report any percentile (e.g., the 90th percentile of request latency).

In the context of a file system, an “I/O” is a file system operation (e.g., open(), close(), read(), or

write()). Bandwidth measurements apply to the read and write data transfer rates for files, throughput

measurements are typically broken out into individual operations (e.g. the maximum file creation rate),

and latency measurements can apply to any of the file operations (e.g., the average latency for a file
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get/set_attribute()

open(), close(), delete()
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OS system call interface
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File system
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Figure 3.1: Applications interface with the file system through OS system calls. The file system interfaces

with the storage system using write() and read() commands that specify the blocks to be written/read.

creation). For storage systems, however, an I/O is simply a read or a write operation. Figure 3.1

illustrates the relationship between file and block I/O within an operating system.

Performance can be measured at the interface between the application and the file system (the file

level), or the file system and the storage system (the block level). At the file level, performance coun-

ters can be used to measure the end-to-end performance of the file system. This is accomplished by

instrumenting the application or the file system, or by tracing the I/O between an application and the

file system. In contrast, counters at the block level measure the end-to-end performance of the storage

system, which will also include I/O related to file system metadata. For the purpose of storage system

modeling and performance prediction, block-level performance measurements are commonly used. The

block level represents the lowest level in the stack — below all applications, file systems, and OS caches.

As such, it represents the workload as observed by a storage system.

The following sections discuss bandwidth, throughput, and latency in more detail. Each of these

metrics relies on performance counters in the storage system (e.g., total bytes transferred and total I/Os

completed) to calculate the amount of work that has been completed over a specified period of time,

referred to as a measurement window in this dissertation. Counter values are recorded at the beginning

and end of the measurement window. To calculate the total amount of work completed, one simply

subtracts the first set of counters from the second set. Tips for establishing a proper measurement

window are discussed in Section 3.2.

The metrics and their required counters are now discussed. It is assumed that the two sets of counters

have been read and that their differences have been calculated. More detail on using such counters is

presented in Chapter 7.
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3.1.1 Bandwidth

Bandwidth is the data transfer rate. It represents the average number of bytes transferred (read or

written) over a unit of time. The common unit today is megabytes per second (MB/sec). This measure-

ment is obtained by dividing the total bytes transferred (megabytes) over the length of the measurement

window (seconds). Instantaneous bandwidth for a single I/O operation could also be reported, but this

is not commonly done in practice.

Only one counter is required to calculate bandwidth: a count of the total bytes written and read.

Below is the very simple equation for bandwidth:

Bandwidth =
Total number of bytes transferred

Length of measurement window
(3.1)

3.1.2 Throughput

Throughput is the I/O request completion rate. It represents the average number of I/O operations

completed per unit of time. The most common unit is the number of I/O operations completed per

second, often abbreviated as IOPS. Only one counter is required to calculate throughput: a count of the

operations completed. Throughput is calculated by dividing the number of completed operations by the

length of the measurement window:

Throughput =
Total number of I/Os completed

Length of measurement window
(3.2)

A common mistake in calculating throughput is to simply take the inverse of the request execution time

(latency). For example, if the average request latency is 10 ms, then one might (incorrectly) conclude

that the throughput is 1 I/O every 10 ms, or 100 IOPS. However, this is only correct when the multi-

programming level is one (i.e., no command queuing), there is no “wait time” for an I/O request, and

there is no “think time” (computation time) between I/Os. Note, in the context of storage systems, the

multi-programming level is a measure of I/O concurrency. It refers to the number of I/O operations

allowed to enter into the storage system, not necessarily the number of “service stations” or storage

devices that are prepared to service the I/O. When the multi-programming level is greater than one,

there may be some amount of wait time for each I/O in the storage system queues. Similarly, if the think

time is non-zero, there will be some amount of computation (or idle time) before the next I/O is issued

by the application.

3.1.3 Latency

Latency is the average I/O request time. It represents the average duration of an I/O operation (i.e., the

time from when an I/O operation is issued to the storage system to when it completes). In queuing theory,

the request time is the sum of the I/O wait time (i.e., waiting to use components of the storage system)

and the service time (i.e., executing in the storage system). The latency calculation is more involved

than that of bandwidth or throughput. One approach is to sum the request times of all completed

I/O operations over a measurement window and divide the sum by the total number of completed I/O

operations:

Latency =

∑
RequestT imei

Total number of I/Os completed
(3.3)
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Similarly to throughput, a common mistake in calculating latency is to simply take the inverse of the

throughput measurement, which produces the average I/O request inter-arrival (or inter-completion)

time. For example, if the throughput of a system is 100 I/O operations per second, the average inter-

arrival time of each I/O is 1/100 of a second or one I/O every 10 milliseconds (ms). Again, this is only

equivalent to the I/O latency when the multi-programming level is one and the think time is zero.

3.2 Measurement pitfalls

At least two pitfalls are encountered when measuring the performance of storage systems: variance in

the measurements and deceptive averages. Variance can make performance prediction difficult. Indeed,

variance is the nemesis of predictability — if results are not repeatable, they are definitely not predictable.

Further, averages can mask the true I/O behavior of an application. For example, if an application runs

for 24 hours and issues all of its I/O in the last hour, it would be misleading to measure and report I/O

performance over the 24 hour period, as the performance would be deceptively low.

In general, such pitfalls are due to variability in the I/O workload. I/O can be bursty (e.g., write

bursts from the file system cache), cyclic (e.g., cache flushes every 30 seconds), and multi-phased (e.g.,

a compute phase, followed by write phase, and then a read phase). When measuring the performance of

a workload on a particular storage system, one must be aware of each of these possibilities and measure

performance over the desired period. This is done by specifying the proper measurement window.

The measurement window is specified by two parameters. The first parameter is the warming time, or

the amount of time before the first set of performance counters is read. In this time, the storage system

is allowed to “warm” and reach a steady state of performance. The second parameter is the testing time,

or the amount of time the application is allowed to run before the second set of counters is read.

In general, if the goal of the performance measurement is to capture the steady-state performance

of a system, the warming time must be chosen large enough that all performance-affecting components

(e.g., caches) have been sufficiently warmed, and the testing time chosen long enough to establish a stable

average, and no longer, else one might be measuring across multiple I/O phases of an application. For

example, the Postmark Benchmark [3] is composed of two phases: file pool creation and file transactions

(e.g., read, append, delete). If one were to measure performance over the entire run of Postmark,

the measurement would reflect average performance over the two phases — a potentially meaningless

measurement. Instead, it is more useful to measure and report the two phases separately.

Of course, completely avoiding these pitfalls requires some awareness of the application’s I/O workload

(i.e., its workload characteristics). Workload characterization is introduced in detail in the next chapter.

However, one quick way of learning about the I/O demands of an application is to visualize its performance

over time, using a graphical performance monitor. Such a tool can show I/O bursts or cyclic activity and

is useful in establishing a good measurement window. In particular, a graphical performance monitor

will show if the performance of an application workload “levels off” and reaches a steady-state and if

there are different I/O phases. Often, a phase change will correspond to sudden (visual) changes in the

I/O performance. For example, Figure 3.2 shows the bandwidth of Postmark over time. One can see two

distinct I/O phases, corresponding to Postmark’s file creation phase and its transactions phase.

Assuming a good measurement window as been chosen (i.e., the application has warmed for sufficiently
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Figure 3.2: A screen shot from a graphical performance monitor [7]. The graph plots the bandwidth of

Postmark over time, illustrating two distinct I/O phases (file creation and file transactions).

long, and a single I/O phase is being measured), one can still run into difficulties with averages. This

is particularly the case with I/O latency. Because latency is an average over all I/O operations, a few

outliers (with extremely high latency) can increase the average considerably. In cases such as these, it can

be better to report the median (or a percentile), rather than the mean. The distribution of I/O latency

can be consulted if one is concerned whether outliers are affecting the average.

In general, one should pick meaningful measures for the statistical dispersion, or the “spread,” of the

data. For performance analysis and prediction, it is always good to take multiple measurements (when

possible) and compute their variance, because variance will limit the predication accuracy of the models.

For example, if the measured performance of an I/O workload varies by 10%, one cannot reasonably

expect a performance model to predict with an accuracy that is better than 10%. For storage systems, it

is useful to have a least two measures of variance: an absolute measure (e.g., the bandwidth measurements

varied by 3 MB/sec) and a relative measure (e.g., the bandwidth measurements varied by 30%). The

mean absolute deviation (an absolute measure) and the coefficient of variation (a relative measure) are

useful statistics for making such measurements. In addition, the range (i.e., the difference between the

minimum and maximum values) gives the maximum spread of a set of measurements. Each of these

statistics will be used in the evaluation of the relative fitness models in Chapter 7.

3.3 Available benchmarks

Many benchmarks have been developed throughput the years for the purposes of file and storage system

evaluation. In addition to reporting application performance metrics (e.g., compilation time or the

database transaction rate), benchmarks are often used to generate I/O workloads from which bandwidth,

throughput, and latency measurements can be taken. There are micro-benchmarks that test specific

functionality (e.g., file creation rate, or sequential I/O performance) and macro-benchmarks composed
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of either real or simulated application workloads (e.g., kernel compilation or database transactions).

Benchmarks can further be described as being either file-level benchmarks (testing the file and storage

system) or block-level (testing only the storage system).

Popular macro-benchmarks for file systems include Andrew [10] (source code manipulation and com-

pilation), Postmark [3] (news, e-mail, and WWW), TPC-C [8] (online transaction processing), and TPC-

H [9] (decision support). Both TPC-C and TPC-H are database benchmarks created by the Transaction

Processing Performance Council (TPC). They test random I/O performance (TPC-C) and sequential

I/O performance (TPC-H). In addition, model-based benchmarking frameworks are beginning to emerge

(e.g., Filebench [13]), where one can model workloads like that of an Internet Service Provider.

Popular micro-benchmarks for file systems include Bonnie [5] and IOzone [14]. Both report the

performance of various I/O operations to a single file. There are also self-scaling [6] micro-benchmarks

specifically designed for NFS file servers, including SPECsfs [15] and Fstress [1]. A self-scaling benchmark

will adjust its workload parameters in response to the performance of the system being measured.

Many of the file system benchmarks offer a variety of application-specific performance metrics that

can be used to quantify the storage system performance. For example, the Andrew benchmark reports

the amount of time necessary to copy, read, and compile a source code repository, Postmark reports

the average file transaction rate (creates, deletes, reads, and writes), TPC-C reports the number of

transactions per minute (tpmC), and TPC-H reports a composite number that reflects the number of

database queries per hour, the database size, single-client query performance, and multi-client query

performance. However, when describing (or predicting) the performance of a storage system, the lower-

level metrics (bandwidth, throughput, and latency) are usually preferred.

For storage systems, the Storage Performance Council (SPC) has developed macro-benchmarks (SPC-1

and SPC-2). These benchmarks are similar to TPC-C and TPC-H, respectively, in that one measures

random I/O throughput and the other sequential. However, the SPC benchmarks are intended only for

storage system benchmarking. They are not allowed, as per the SPC guidelines, to utilize the services of

a file system (e.g., caching and read-ahead).

Buttress [2], Fitness [7], Iometer [11] and Xdd [12] are synthetic workload generators. When configured

in a specific manner, they can be used as storage system micro-benchmarks. Commonly, such tools are

used by varying input parameters such as the read/write ratio, the amount of spatial randomness, the

read/write request sizes, and the level of I/O concurrency.

Traeger and Zadok provide an in-depth study of many of these benchmarks are how they are commonly

used and reported in the literature [16]. New or revised benchmarks appear every year or so. As examples

of the frequency, these are the release dates for the benchmarks just described: Andrew (1988), Bonnie

(1989), TPC-C (1992), SPECsfs (1993), Postmark (1997), Iometer (1998), IOzone (1998), TPC-H (1999),

SPC-1 (2001), Fstress (2002), Buttress (2004), Xdd (2005), SPC-2 (2005), Filebench (2005), and Fitness

(2006).

Postmark, TPC-C, and Fitness will be discussed in greater detail in Chapter 7, where relative fitness

models are trained to predict their performance. As will be explained, one can create multiple workload

samples from each of these benchmarks, simply by varying their input parameters.
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3.4 Summary and concluding remarks

Obtaining good performance measurements is a critical first step in effectively modeling and predicting

the performance of storage systems. This chapter described three block-level metrics that are commonly

used (bandwidth, throughput, and latency) and provided some tips for establishing a proper measurement

window. In particular, one should allow an application to reach a steady-state of performance in a storage

system, measure the performance of a single phase of the application, and measure over multiple runs to

check for variance that might limit the accuracy of performance models.

Although a variety of benchmarks were discussed, which can be used to create workloads from which

storage system performance can be measured, one could argue that the end-to-end performance of a real

application is the only measurement that really matters when it comes to performance prediction. One

could also argue that real applications often fail to reach a steady state of I/O performance in a storage

system, but are characterize more by intermittent bursts of I/O — thereby making a “good” performance

measurement impractical. The author agrees on both counts and assumes that, for such applications,

measuring the average I/O performance (or perhaps a percentile on I/O latency) is useful in predicting

which storage system is best for a workload, even if the measurement is not cleanly taken over a single,

steady-state I/O phase as described.



3.4. SUMMARY AND CONCLUDING REMARKS 42



Bibliography

[1] Darrell Anderson and Jeff Chase. Fstress: A Flexible Network File Service Benchmark. Technical

report, Department of Computer Science, Duke University, 2002.

[2] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and Ram Swaminathan. Buttress: A toolkit for

flexible and high fidelity I/O benchmarking. In Proceedings of the 3rd USENIX Conference on File

and Storage Technologies (FAST 04), San Francisco, CA, March 2004. The USENIX Association.

[3] Network Appliance. PostMark: A New File System Benchmark. http://www.netapp.com.

[4] Storage Networking Industry Association. A Dictionary of Storage Networking Terminology.

http://www.snia.org/education/dictionary.

[5] Tim Bray. The Bonnie Benchmark. http://www.textuality.com.

[6] Peter M. Chen and David A. Patterson. A New Approach to I/O Performance Evaluation - Self-

Scaling I/O Benchmarks. In Proceedings of the International Conference on Measurement and Mod-

eling of Computer Systems (SIGMETRICS 2007), Santa Clara, CA, May 10–14 1993. ACM Press.

[7] Intel Corporation. Open Storage Toolkit. http://www.sourceforge.net/projects/intel-iscsi.

[8] Transaction Processing Performance Council. TPC Benchmark C. http://www.tpc.org/tpcc.

[9] Transaction Processing Performance Council. TPC Benchmark H. http://www.tpc.org/tpch.

[10] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, Mahadev Satyanarayanan,

Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file system.

ACM Transactions on Computer Systems (TOCS), 6(1):51–81, February 1988.

[11] Intel Corporation. Iometer. http://www.iometer.org.

[12] I/O Performance Inc. Xdd. http://www.ioperformance.com.

[13] Richard McDougall, Joshua Crase, and Shawn Debnath. FileBench, 2005.

http://sourceforge.net/projects/filebench.

[14] William Norcott and Don Capps. IOzone Filesystem Benchmark. http://www.iozone.org.

[15] Standard Performance Evaluation Corporation. Spec sfs97 v3.0.

http://www.storageperformance.org.

43



BIBLIOGRAPHY 44

[16] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A Nine Year Study of File

System and Storage Benchmarking. Technical Report FSL-07-01, Computer Science Department,

Stony Brook University, May 2007.



Chapter 4

Characterizing storage workloads

”Not everything that counts can be counted, and not everything that can be counted counts.”

Albert Einstein.

Workload characterization is the process of describing the nature of the work performed (or to be

performed) by a system. In the context of storage systems, workload characteristics quantify an applica-

tion’s I/O demand, including information on operation mixes, temporal and spatial access patterns, and

concurrency. In general, one rarely discusses performance without also mentioning the type of workload.

Workload characterization is a well-researched area, both for file systems [3, 6, 14, 15, 16, 18, 19]

and storage systems [9, 10, 11, 12, 17, 22, 24]. The central goal is to describe an application’s I/O in

as absolute a way as possible, such that the characteristics will not be affected by the storage system on

which the application is running. For example, a read-only workload will always be read-only, and the

storage system on which it runs will do nothing to change this.

In addition to explaining and reasoning about the performance of a storage system, workload charac-

teristics are also used in modeling and predicting performance. Specifically, to predict the performance of

a workload on a given storage system, one inputs the characteristics of the workload into a performance

model of the storage system. Of course, the accuracy of the model will be, in no small part, determined

by the quality of the workload characteristics. As described in Chapter 2, such models can be used in

automated storage system design (e.g., setting the appropriate RAID level of a storage array [25]). Work-

load characteristics are also used for synthetic workload generation [2, 5]. It is often easier to work with

a workload generator than the actual application. However, like models, a synthetic workload generator

is only as good as the workload characteristics used to describe the I/O [7]. Performance models and

workload generators will be discussed in more detail in Chapter 5.

In effect, workload characterization is a form of compression. Given a trace of an application’s I/O,

including the time of each request, the operation type (e.g., read vs. write), and the arguments (e.g., disk

ID, block offset, length), a workload characterization tool (e.g., Rubicon [20]) will try to “compress” the

trace into meaningful characteristics. It is much easier to discuss a workload using characteristics such as

its read/write ratio, average request size, and multi-programming level, as opposed to referring someone

to an I/O trace.

45
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4.1 Workload characteristics

Decades of storage systems research have identified numerous workload characteristics that can be used

to describe I/O. Common among them are measures of the read/write ratio, I/O request sizes, spatial

locality (e.g., average number of blocks skipped, or “jumped,” between successive I/O requests), temporal

locality (e.g., I/O arrival rate), and concurrency (e.g., the number of concurrent streams and the multi-

programming level of each stream). Other, more descriptive, characteristics include the temperature of

data [4] (the ratio of I/O throughput to capacity), the inter-arrival time of I/O bursts [1], the phasing

(overlap) of different I/O streams [1], measures of temporal burstiness [9, 24] (I/Os, especially writes,

often come in bursts), measures of spatial burstiness [10, 22] (a burst might only affect certain blocks on

disk), and spatio-temporal correlations [22] (certain blocks are accessed at certain times).

Note that the same performance measurement points discussed in Chapter 3 (file or block level)

apply to workload characteristics. When characterizing I/O at the block level (e.g., in a SCSI device

driver), one is able to obtain the aggregate I/O workload of all applications using a storage system.

In contrast, at the application or file level, one would need to somehow combine the characteristics of

multiple applications. Doing so, even with a detailed knowledge of the operating system, is challenging.

For example, one would need to predict how write requests are aggregated across I/O streams, if at all,

and how the elevator algorithms schedule I/O requests. Further, characteristics at the application and file

level contain no metadata, which can significantly influence I/O performance. Therefore, when modeling

and predicting the performance of storage systems, the block level is the most convenient level to work

at. The trade-off is the lack of stream detection. At the block-level, one cannot distinguish the I/O of

different applications or processes. However, if the goal is to predict the overall performance of a storage

system, this does not present a problem.

The sections below describe a variety of block-level workload characteristics in greater detail and

how they are useful in modeling and predicting performance. Equations are provided for the workload

characteristics used in the evaluation of the relative fitness models in Chapter 7.

4.1.1 Read/write ratio

Write and read requests are handled differently by most storage systems. Whereas write requests are

delayed, aggregated, and scheduled within a write-back cache, read requests are serviced on-demand. Of

course, read-ahead and caching prevent many reads from going to disk, and scheduling algorithms (e.g.,

elevator) can efficiently order the read requests that do go to disk. Still, the freedom to optimize read

requests is limited by the fact that there usually are not as many of them outstanding.

Because of these performance differences, it is important to distinguish reads from writes, beginning

with the read/write ratio. In addition, many of the other workload characteristics are maintained sep-

arately for write and read requests (e.g., the write request size is measured independently of the read

request size). As will be shown in Chapter 7, when compared to the read characteristics, the write

characteristics are not as critical in predicting storage system performance.

A write fraction can be expressed as follows:
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Write request fraction =
Number of write requests

Number of write requests + Number of read requests
(4.1)

One could also capture the write data fraction:

Write data fraction =
Number of bytes written

Number of bytes written + Number of bytes read
(4.2)

The read request fraction can be obtained by subtracting the write request fraction from 1, and

similarly for the read data fraction. However, for the purposes of performance modeling and prediction,

it is not necessary to maintain these characteristics for both writes and reads. One can be derived from

the other and maintaining both would be redundant.

4.1.2 I/O request sizes

The smallest amount of data that can be accessed in a block-based storage system is a block, which is

typically 512 bytes. However, much more efficient accesses can be made with larger requests that amortize

the cost of each I/O request over a larger transfer of data.

The average request size of a workload is an important characteristic when predicting performance

and should be calculated separately for reads and writes. Unlike writes, read requests are not as likely to

be coalesced (because they are not delayed). Therefore, the read performance can be more sensitive to

the characteristics of the read requests than the write performance is to that of the write requests. For

example, when data is being read, the only requests eligible for coalescing are those currently outstanding

in the queues of the storage system. In the case of, say, random I/O, very little coalescing will occur

for reads. However, for writes, all requests may first hit in a write-back cache (e.g., in the host OS

and/or in the storage system). From there, small random writes can be delayed, possibly coalesced, and

reordered. Indeed, with a large enough write-back cache, all small random writes could be converted to

large sequential writes.

The average write request size is simply the total number of bytes written divided by the total number

of write requests, and the average read request size is calculated in the same manner:

Write request size =
Number of bytes written

Number of write requests
(4.3)

4.1.3 Spatial randomness

The most efficient spatial access pattern for a disk-based storage system is usually that of sequential I/O,

where the maximum data transfer rate is determined by each disk’s rotation speed, track density, and bus

speed. Conversely, the worst performance usually occurs for randomly accessed data, where performance

is limited by positioning (seek) times and rotational delays.

One way to measure the spatial access pattern is to calculate the average “jump” distance for each

I/O, or the number of blocks that are skipped between successive I/Os. For a sequential stream, the

average jump will be zero. For a uniformly random stream, the jump distance will, on average, be one
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third of the block range 1. Therefore, one can normalize by 1/3 of the block range to create a single

“randomness” value. For example, if 100 blocks are accessed 100% randomly, the average jump distance

will be 33 blocks per I/O. If an I/O stream only had an average jump distance of 16.5 blocks per I/O,

then it would be 50% random (i.e., 16.5/33).

To calculate the average jump distance, one must keep track of the last block read or written in the

storage system. For each I/O request, the block distance relative to the last I/O is added to a counter.

Then, to calculate the average jump distance over a collection of I/O requests, one simply divides the

counter by the number of requests observed over a certain measurement period:

Jump =
Jump counter

Number of I/O requests
(4.4)

One can also calculate jump distances separately for reads and writes, where the write jumps are

calculated relative to the last write and the read jumps relative to the last read. This can be more telling

than a single randomness measure, as the read randomness can be unaffected by the write randomness

(due to write-back caching). As will be shown in Chapter 6, the read jump distance is a much better

predictor of performance than the write jump distance. Again, the write requests have more potential

for optimization in a storage system, making performance less sensitive to their spatial randomness.

4.1.4 I/O concurrency

There are two types of I/O concurrency in a storage system: multiple outstanding commands for a given

I/O stream (e.g., an application reading a file, multiple requests at a time) and multiple I/O streams

(e.g., multiple applications reading multiple files). Both types affect the performance of a storage system.

However, one is usually for the better and the other for the worse.

For the better: command queuing

In the case of a single I/O stream, increasing the multi-programming level via command queuing can

increase the efficiency of the storage system because of more efficient I/O scheduling. It can also sub-

stantially improve the performance of sequential I/O. This second point deserves more explanation, as it

is often overlooked.

Consider the case where an application is writing a file stored on a single disk platter, one block

at a time, with a multi-programming level of one and no write-back caching. As such, every I/O will

incur the full rotational latency of the disk, because of the small amount of rotation that occurs between

successive I/O requests. More specifically, because the disk platter continues rotating between requests,

every sector that is requested will have just passed under the disk head and must wait a full rotation

before passing again under the head. Depending on the rotation time, the performance can be worse than

that of random I/O. However, if the drive supports command queuing, the application can issue write

requests back-to-back. As such, there will always an I/O at the disk controller (i.e., no wasted rotations),

and the application will see the full streaming bandwidth of the disk.
1 For the inquiring mind, if there are n blocks in a storage system, the average jump distance from a given block i is

∑
n

k=1

|k−i|
n

. Therefore, the average over all n blocks is
∑

n

i=1

∑
n

k=1

|k−i|
n

n
, which simplifies to n

2−1

3n2
≈

1

3
.
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This above scenario also applies to sequential read requests when there is no read-ahead caching,

though most modern storage systems provide read-ahead. In general, write-back and read-ahead caches

provide performance benefits that are similar to command queuing. In effect, the storage system is issuing

multiple outstanding requests (to/from these caches) on behalf of an application.

For the worse: multiple streams

Increasing concurrency by adding more streams often decreases performance. Consider the sequential I/O

case just described. If one were to add a second sequential stream to a different region of the disk, the

combined performance of the two streams could be much less than the streaming bandwidth of the disk.

This is due to reduced efficiency (i.e., numerous seeks between the two streams) [21]. Although there are

cases where combining streams actually improves efficiency, the streams must be carefully synchronized

for this to occur. For example, if multiple processes are reading a file in an interleaved fashion (a common

access pattern for scientific applications), combining the streams could improve storage system efficiency.

Characterizing concurrency

Because both types of concurrency (command queuing and multiple streams) have a potentially large

impact on I/O performance, it would be ideal to characterize both. Unfortunately, working at the block

level introduces a trade-off. Namely, it is difficult to distinguish among the different streams. Conversely,

stream detection would be much easier if one were characterizing I/O at the file level (i.e., each process

is a stream); but, again, one would somehow need to combine the characteristics of multiple streams and

account for file system metadata, both of which would be difficult.

Given the goal of predicting overall storage system performance, characterizing the aggregate I/O

workload at the block-level is desirable, even at the cost of losing information about the number of

streams composing the workload. So, short of attempting stream detection (e.g., looking for sequential

access, inspecting file system metadata to see which blocks belong to which files, etc.), the best one can do

is to treat the entire file system as a single I/O stream. One can then approximate the multi-programming

level of the file system by observing the number of outstanding commands in the storage system.

To calculate the average write queue depth, one can maintain a counter of write queue depths. When a

new I/O is issued, the current write queue depth, which in this dissertation also includes any commands

being executed, is added to the counter. To calculate the average write queue depth over a certain

measurement window, one simply divides the counter by the number of write requests:

Write queue depth =
Write queue counter

Number of write requests
(4.5)

The average read queue depth is calculated in the same manner.

4.1.5 Other workload characteristics

Many other workload characteristics have been found useful by other storage system researchers. The

following examples illustrate, but they are not used in the evaluation of relative fitness in Chapter 7.

This section can be skipped on a first reading of this dissertation.
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Temperature

Data temperature is the ratio of the throughput to capacity [4]. For example, if a 1000 MB region of a

disk is read at 1000 IO/sec, the data temperature is 1 IO/sec/MB. Of course, this measure does not take

into account the spatial locality of the accesses (e.g., most of the accesses could be to the first block of

the region). Nonetheless, it does give a basic measure of the locality of the I/O accesses.

Burst inter-arrival time

Information as to how often a stream is accessing data is useful. In particular, one would like to know

the length of time between bursts of I/O. For example, it might be the case that an application computes

for one hour and then enters an I/O phase. One can refer to the time spent computing as the “off” time

and the time spent issuing I/O as the “on” time [1].

Of course, unless an I/O stream is asynchronous (open), and therefore unaffected by a storage system’s

service time, the “on” time can change across storage systems. For example, if a synchronous (closed) I/O

stream with no think time (i.e., storage is the only bottleneck) completes in 60 seconds on device A, and

device B is twice as fast as device A, then the same stream will complete in 30 seconds on device B — so

the “on” time is variable. In effect, the “on” time is an indirect measure of the performance of a storage

system and, therefore, only applies to the storage system on which the workload was characterized.

Stream phasing

The overlap of two streams is useful in predicting whether resource contention will affect performance.

This is related to I/O concurrency. For example, if one stream is idle whenever the other stream is

accessing data, there may not be as much conflict as when both streams are attempting to access data

at the same time.

Although two streams can be overlapped in an infinite number of ways, an “overlap fraction” [1] can

be used to quantify, in a course-grained fashion, how often two streams are issuing I/O concurrently. One

could then use this fraction to estimate the reduction in performance due to extra seeks.

Temporal bursts

Previous research has shown that I/O requests typically come in bursts and are self-similar [9]. For

example, suppose the “on” time of an I/O stream is 10 minutes. It may be the case that 80% of the

accesses happen in the first 5 minutes. Also, when focusing on the first 5 minutes of I/O, it may be

the case that the same 80/20 rule applies recursively (i.e., 80% of those accesses happen in the first 2.5

minutes). This is an example of self-similarity in the I/O stream, where one sees the same temporal

burstiness, irrespective of the time scale. The “b-model” [24] can help describe such I/O behavior. It

models temporal bursts in a way that is similar to the “80/20” law of databases (i.e., 80% of the accesses

apply to 20% of the data).
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Spatial-temporal correlation

It has been shown that disk traffic exhibits spatial burstiness [10] (i.e., some blocks are more popular

than others) and that there is also a correlation with time [22] (i.e., certain blocks are accessed at certain

times). The PQRS model [22] helps to describe the spatio-temporal correlations of such bursty traffic,

by recursively subdividing space-time into regions. A value is assigned to each region, specifying the

probability that a given region of blocks will be accessed at a given time. The PQRS model has been

used to synthetically generate representative I/O streams of bursty workloads. It has also been used in

predicting the performance of such workloads [23] using classification and regression trees (CART). There

will be much more discussion of CART in Chapters 6 and 7.

I/O arrival rate

Some latency models will use a workload’s I/O arrival rate as a workload characteristic [23]. However,

this only applies to asynchronous workloads, where the I/O arrival rate is not dependent on the I/O

service time in the storage system. For open workloads, the I/O arrival rate is, in queuing theoretical

terms, a description of the I/O arrival process. For synchronous workloads, however, the arrival process

is dependent on the service rate (i.e., faster storage means a faster application). Therefore, a closed

workload’s I/O arrival rate will not apply across different storage systems and, as such, cannot be used

as a reliable workload characteristic.

4.1.6 Issues and challenges

There is a well-known challenge with workload characterization and another that is not so well-known.

The first relates to compressing an I/O trace without losing information. The second relates to the

volatility of certain workload characteristics. Specifically, as will be shown in Chapter 7, the block-level

I/O characteristics of a synchronous workload can vary across storage systems.

Lossy compression

The goal of workload characterization is to compress an I/O stream into a set of characteristics that can

be used describe the performance of a storage system for a particular workload. In doing so, however,

there is the potential to lose performance-affecting information (e.g., correlations among characteristics,

such as the spatio-temporal correlation). The desire for concise workload characteristics comes from

their intended usage. As examples, one way to predict performance is to synthetically generate I/O

that is representative of an application, and another is to use a performance model. Synthetic workload

generation and performance modeling will be discussed in detail in Chapter 5. As might be expected,

these tasks are much easier, though not always as accurate, when the workload characteristics are concise.

To better illustrate the trade-off between expressiveness and conciseness, suppose that a numerical

average is used to characterize the I/O request size of a workload. Although an average is very concise,

it is not very expressive. Indeed, there could be any number of workloads with different distributions of

request size and the same average. To distinguish such workloads, quartiles could also be specified (i.e.,

the 25th, 50th, and 75th percentiles of request size), but at the cost of conciseness (now 4 number are
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used in the characterization). Yet, still, some workloads could have the same percentiles and the same

average, but a different range of request sizes. So, the minimum and maximum request sizes could also

be specified. In general, one could keep adding information to the characterization until, eventually, the

complete distribution of I/O request sizes has been specified (i.e., the I/O trace).

So, the big question is how much information to use. At the very least, workload characterization

should include enough information to distinguish workloads that have significantly different performance.

Stated simply, workloads with different performance should have different workload characteristics. Con-

sider, for example, two files that are being accessed with the same read/write ratio, the same distribution

of request sizes, the same level of concurrency, the same spatial access pattern (sequential), the same

temporal access pattern, and so on. One would expect that the workloads would have similar perfor-

mance. However, perhaps one file is being processed forward and the other backward. As a result, the

performance of these two workloads could be very different (storage systems do not always perform well

in reverse). That is, a key workload characteristic is missing.

However, even if the workload characteristics are expressive enough to distinguish workloads with dif-

ferent performance, there is no guarantee that they can be used to accurately synthesize an I/O stream or

accurately predict performance using a model. In general, synthetic workload generators and performance

models require only those workload characteristics that will affect storage system performance, and the

granularity in which they are specified must match the sensitivity of the storage system (e.g., if a storage

system is sensitive to 1 KB changes in the request size, the workload characteristics should be specified

with a granularity of at least 1 KB — rounding to, say, the nearest 10 KB would hide information and

may lead to inaccurate workload generation and poor performance predictions.) Determining the right

amount of information to add to a set of workload characteristics is an unsolved problem, and has been

for many years [7]. Usually, this involves iteratively testing a set of workload characteristics, using either

a synthetic workload generator or a model, until all performance-affecting I/O behavior information has

been adequately characterized (i.e., the characteristics can be used to generate synthetic I/O with the

same performance as the characterized workload or used in a model to predict the performance of the

real workload). This is a laborious process and one that is not easily automated.

The key (performance-affecting) workload characteristics may also depend on the storage system in

question. To continue the above example, the “missing” workload characteristic may have gone unno-

ticed in a solid-state storage system (no moving parts), as reading a file in reverse may have the same

performance as reading it forward. As another example, a storage system with a large cache may be less

sensitive to the spatial access pattern of writes than would be a storage system with little cache. So,

models of these systems would likely focus on different workload characteristics when predicting perfor-

mance. Although there has been research on automatically distilling the key workload characteristics for

a given workload and storage system [13], there must still be a rich set of workload characteristics from

which the distillation can proceed (e.g., someone would have needed to discover that reading a file in

reverse is a characteristics worth capturing). Moreover, to create a set of workload characteristics for any

application, one would need to determine this superset a priori, distill the proper characteristics for the

various storage systems one expects the workload to encounter, and specify which characteristics apply

to which storage systems. Needless to say, this is a very difficult problem given the variety of workloads

and storage systems in existence.
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Synchronous workloads

A second, lesser known, challenge relates to the volatility of certain workload characteristics. In particular,

the block-level I/O characteristics of a synchronous (closed-loop) workload can change as the workload is

moved across storage systems, similarly to how the I/O arrival rate can change. Recall that an operating

system is, in effect, a large speed-matching buffer between the applications and the storage system. As

such, much of the optimization (e.g., disk request scheduling, read-ahead, and request coalescing) is

in a feedback loop with the storage system. If the speed of the storage system changes, so too can

the behavior of the OS. Workloads that are completely asynchronous (open-loop) are not affected by

performance feedback, because, by definition, there is no closed loop influencing the arrival process of

I/O requests. However, given that most applications operate, at least in part, in a closed fashion [8],

accounting for changes in workload characteristics is essential when predicting their performance.

As discussed, the most obvious change for a synchronous workload is the I/O arrival rate: if a storage

system completes the I/O faster, then an application or the OS are likely to issue I/O faster. However,

other characteristics of the I/O stream can also change, such as the average request size, the spatial

randomness, and the read/write ratio. Such effects occur when file systems, page caches and other

middleware sit between an application and the storage system. Although the application may issue the

same I/O, the characteristics of the I/O, as seen by the storage system, could change due to a variety of

interactions between an operating system and storage system.

It is also often the case that the arrival process of read requests is determined by the application,

where those of the write requests is determined by the file system (i.e., the application simply writes into

an OS page cache). As such, the arrival process of the write requests can be more sensitive to the speed

of the storage system. This will be discussed further in the Chapter 7 evaluation. For example, a slower

storage system can result in a workload with larger inter-arrival times and larger write requests (due to

request coalescing) when compared to the same workload running on a faster system.2

4.2 Concluding remarks

Workload characterization is intimately tied to performance analysis, modeling, and prediction. Years

of research have produced numerous characteristics as well as synthetic workload generators and models

to put them to good use. However, the challenges with workload characterization will likely get worse

before they get better, as applications and storage systems continue to evolve. Relative fitness modeling

is motivated by these challenges. As will be shown in Chapter 6, one can reduce the dependency on

workload characteristics by modeling storage systems relative to another.

2The author once encountered this when benchmarking an iSCSI storage system [5]. Interestingly, for one of the I/O

benchmarks, the performance of the storage system actually decreased when all I/O hit in the cache. Upon closer inspection,

this was due to the extra latency of disk accesses, which gave the host OS more time to coalesce requests, thereby resulting

in larger, more efficient (network-friendly) I/O.
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Chapter 5

Predicting storage performance

“Occurrences in this domain are beyond the reach of exact prediction because of the variety of

factors in operation, not because of any lack of order in nature.” Albert Einstein.

As discussed in Chapter 2, an important aspect of storage management is assigning applications to

the proper storage systems, and performance predictions play a large role in making this assignment.

Often, administrators (or automated management tools) want to predict the performance of a storage

system before assigning it to an application, so as to guarantee the proper quality of service and to

avoid the wasted time in configuring the wrong storage system. Predictions are useful in a number of

different management scenarios, including the initial assignment of an application to a storage system,

tuning or reconfiguring a storage system for an application (e.g., changing the RAID level), upgrading an

application’s storage system (e.g., by adding more memory or more disks), and moving the application

to a completely different storage system.

Of course, running an application on a new, or reconfigured, storage system is the most accurate way

of predicting its performance, and this technique is common among system administrators. However, this

is not always feasible. In many cases, the application is not available for testing (e.g., it cannot be taken

offline due to ongoing work) or is too complex to configure and run (e.g., a nuclear simulation). Also,

consider the steps necessary to change the storage system of an application:

Step 1: Take the application offline.

Step 2: Backup the data.

Step 3: [Re-]configure the storage system.

Step 4: Format the storage (e.g., create a file system or database).

Step 5: Reload the application data from the backup.

Step 6: Restart the application and ensure the proper performance.

The above steps would be an afternoon project, at minimum, and if the selected storage system or its

configuration was not the proper choice, the steps must be repeated. Obviously, such a trial-and-error

approach is only feasibly for the smallest of data centers. Further, it is not practical within the context
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of automated storage system design, where numerous possible assignments (e.g., 1000s) are considered

before a final decision is made.

Fortunately, there are many techniques for predicting performance that do not require so much time.

In particular, applications can be replaced with I/O traces, synthetic workload generators, or workload

characteristics; and, storage systems can be replaced with models: simulation models, emulation models,

analytical models, and statistical models. In addition to storage system design, such predictive techniques

are also useful for storage architecture. As examples, a storage architect may wonder about the effects of

a new cache eviction policy, a different bus topology, or the addition of a technology yet to be developed

(e.g., phase changing memory). Using models of hypothetical systems, one can begin to answer such

questions.

Of course, due to the complexity of modern-day storage systems, the variety of application workloads,

and the numerous, poorly understood, interactions between workloads and storage systems (e.g., caching

effects and workload interference), it is difficult to predict exactly the performance of a storage system

for an arbitrary workload. Still, close estimates of storage system’s performance are extremely useful,

both in making proper allocation decisions in a data center and in evaluating architectural trade-offs.

The remainder of this chapter introduces each of these predictive techniques in greater detail. Sec-

tion 5.1 discusses I/O trace collection and replay and Section 5.2 discusses synthetic workload generators.

Both of these techniques will be used in the evaluation of relative fitness modeling in Chapter 7. Sec-

tion 5.3 discusses simulation-based models and Section 5.4 discusses emulation-based models. These

methods are presented as alternatives to analytical and statistical performance models. However, they

are not typically used in optimization-based storage system design and, therefore, are not directly re-

lated to relative fitness modeling. These sections can be skipped on a first reading of this dissertation.

Section 5.5 discusses analytical and statistical modeling. Particular attention is paid to the statistical

modeling section, as it forms the foundation for relative fitness modeling.

5.1 Trace replay

I/O traces play a critical role in storage systems evaluation. They are captured through a variety

of mechanisms [3, 7, 4, 31, 21], analyzed to understand the characteristics and demands of different

applications, and used to guide the generation of representative I/O workloads. I/O traces can be replayed

to mimic the I/O behavior of an application and, therefore, can be used to predict an application’s

performance. Often, traces are much easier to work with than actual applications, particularly when the

applications are complex to configure and run or involve confidential data or algorithms.

Given an application, one can trace the I/O accesses at either the file or block level. Figure 5.1

illustrates. File traces can be captured by tracing the system calls between an application and the file

system (e.g., open(), close(), read(), and write()). This can be done by using a system call tracing

tool, such as the Unix strace program, or through library interposition. For file-based tracing, one I/O

trace is usually generated for each process (or thread) of interest. For block-based tracing, one trace is

collected per storage device or, equivalently, a single trace is collected with device IDs associated with

each I/O. Block-based tracing is accomplished by instrumenting either the block-device driver that an

OS uses to access a storage system (e.g., a SCSI device driver) or by instrumenting the storage system.
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get/set_attribute()
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OS system call interface
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File−level I/O trace

Block−level I/O trace

Figure 5.1: Trace collection can occur at the file or block level. File-level traces contain the I/O calls

between an application and a file system. Block-level traces contain the I/O calls between a file system,

or any block-based application, and a storage system.

After traces have been collected, user-level applications can be used to replay the I/O. Figure 5.2

illustrates. In the case of file-based replay, the system calls can be replayed almost as-is, using the same

system call arguments that were captured in the trace. One needs only ensure that the files that existed

prior to the trace collection, if any of these files are accessed by the traced application, are created before

the replay begins. In addition, the file handles present in the traced system calls (e.g., those use in

traced write() and read() calls) will need to be changed to reflect the file handles returned by other

replayed calls, in particular the open() call. A block-based trace, after similarly slight modification,

can be replayed directly against a storage system. In particular, one must map the traced device IDs

to a new set of storage devices (or storage systems) and also ensure that the capacity of each device is

sufficient to satisfy the offsets in the trace. In short, replaying I/O (without regard to timing) is relatively

straightforward.

For performance prediction, however, trace replay usually occurs on a different storage system than

that which was traced. Indeed, a trace replay provides little new information, if it occurs on the same

system from which the trace was collected. Instead, one typically wants to predict the performance of a

new storage system (real, simulated, or emulated). To do so, one must ensure the proper timing during

I/O replay.

The biggest challenge with I/O trace replay, whether file-based or block-based, is replaying I/O at

the right time. A replayer should issue I/Os at the same times as the application would, but this requires

scaling I/O inter-arrival times with the speed of a storage system. There are two things that make this

challenging: computation (e.g., application processing between each I/O) and data dependencies. Such

information is not present in a traditional I/O trace. However, with a mechanism for automatically

extracting such information from an application [21], a replayer can more closely mimic an application’s

I/O behavior.
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Figure 5.2: Trace replay can occur at the file level or block level. A file-level replay executes on top of a

file system. A block-level replay executes on top of a raw storage system.

5.2 Synthetic I/O

Synthetic workload generators[3, 6, 11, 12] are programs that generate and issue I/O requests based on

a specified set of workload characteristics. Typically, a synthetic workload generator runs as a user-level

program and can be configured to issue I/O to a file or directly to a storage system. Figure 5.3 illustrates.

As discussed in Chapter 3, such workload generators can be used as micro-benchmarks to test specific

types of workloads, using any of the workload characteristics described in Chapter 4. However, they can

also be used to mimic the I/O behavior of a particular application and, therefore, used to predict the

performance of various workloads.

The biggest advantage of synthetic I/O is its ease of use. Different workloads can be synthesized by

varying the input parameters of the workload generator. The biggest challenge is synthesizing workloads

that are difficult to characterize (e.g., applications with irregular temporal access patterns). In this

regard, as discussed in Chapter 4, workload characterization and synthetic workload generation are two

sides of the same coin — better workload characteristics improve the synthetic workloads [8]. In fact, a

common way to measure the expressiveness of a new workload characteristic is to use the characteristic

to generate synthetic I/O and to then compare the synthetic I/O to that of the real application from

which the workload characteristic was obtained [14].

5.3 Simulated storage systems

Simulated storage systems model the behavior of real (or hypothetical) storage systems through the

use of modules [5, 9, 23, 25, 29, 30]. Modules simulate various hardware system components, such

as processors, caches, memory, I/O interconnects, and disks. Similarly, modules are used to simulate

software functionality like cache eviction, I/O scheduling, and read-ahead. With rules that describe how
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Figure 5.3: Synthetic workload generators can be configured to issue I/O into a file (left half of figure)

or directly into a storage system (right half). The input parameters into a workload generator are the

I/O characteristics of a workload.

modules are to be plugged together, a storage system designer can simulate different storage systems and

evaluate them with various workloads. Figure 5.4 illustrates how one might simulate an entire RAID

array by composing various simulation modules.

Because a simulated storage system is not a real storage system, but simply a model of how the

real storage system would behave, it cannot be used (stand-alone) to host real applications. Instead,

simulators either provide a programming environment for internally generating synthetic I/O or take an

I/O trace as input. Simulators can be run in a timing-accurate mode, such that I/O requests take the

same amount of wall-clock time as they would for the system being simulated. Simulators can also be

run as fast as possible. This second option is useful if the goal is to locate system bottlenecks, where the

relative performance of the simulated components is all that is needed.

The biggest advantage of a simulated storage system is the wide flexibility and the ability to explore

various system designs. The biggest disadvantage is the considerable amount of time and expertise

necessary to create an accurate simulation, as doing so requires detailed systems component models and

calibration with a real system.

5.4 Emulated storage systems

In contrast to a simulator, an emulated storage system can be used to host real applications. It behaves

as a real (or hypothetical) storage system would in terms of performance, but not necessarily in terms

of persistence or reliability. Internally, emulators contain performance simulation models of the storage

system in question, as previously described, such that a timing-accurate servicing of each I/O request

is possible. Figure 5.5 illustrates. For example, emulation models of MEMS-based storage, a type of

solid-state storage, have used DRAM and disks in place of an actual MEMS device [10].
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Figure 5.4: A RAID array might be simulated using modules for the front-end array controller, the cache,

the back-end RAID controller, the system bus to which the disks are attached, and the disk drives. Such

a model is driven using synthetic workloads or I/O trace replay.
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Figure 5.5: A storage system emulator can host real file-based applications (left half of figure) or block-

based applications (right half). Internally, an emulation-based model contains a simulation model of a

real (or hypothetical) storage system. In addition, an emulation model contains some type of storage

(e.g., perhaps just DRAM) for storing and retrieving actual application data.
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The biggest advantage of emulation is that an application can often run unmodified. Such is the case

when the emulation model implements a standard storage interface (e.g., IDE or SCSI). The application’s

performance can then be analyzed (e.g., monitored, traced, or characterized) as though it were running

on a real storage system. The disadvantages of emulation models are the same as those of simulation

models. Namely, significant expertise is required to make them accurate.

5.5 Analytical and statistical models

Whereas simulated or emulated storage systems require a workload as input, an analytical or statistical

model only requires an application’s workload characteristics. Such models can be further described as

either being white-box (requiring of knowledge of a storage system’s internal structure) or black-box

(requiring no knowledge). Given the challenges in modeling modern-day (complex) storage systems [27],

black-box approaches are becoming an attractive alternative [1, 13, 23, 28]. Figure 5.6 illustrates how an

I/O workload can be traced and characterized, and how the characteristics can later be input into the

models of various storage systems.

Because of their speed, these models are often preferred in the context of automated storage system

design, as described in Chapter 2, where numerous predictions are potentially requested by an optimiza-

tion solver [16, 2] before a final management decision is made. In contrast, simulated or emulated storage

systems must take a measurement over a certain period of time whenever a performance prediction is

needed, just as one would when measuring the performance of a real storage system.

Conventionally, for a given storage system, one analytical or statistical model is built for each per-

formance metric of interest. Further, the workload characteristics used by the models are assumed to be

“absolute,” as described in Chapter 4. That is, any of the storage systems can be used to characterize a

workload, after which the workload characteristics can be input into any of the models to make predic-

tions. However, as discussed, this can lead to problems for synchronous workloads, where the block-level

I/O characteristics can depend on the underlying storage system performance.

The remainder of this chapter provides a more detailed overview of conventional analytical and statis-

tical performance models, discussing their challenges and continuing to build the case for relative fitness

modeling.

5.5.1 Analytical models

Analytical models use mathematical constructs to calculate (predict) the performance of a storage system

based on the characteristics of a workload [15, 17, 18, 19, 16, 24, 26, 27]. For example, one simple model

of a disk’s throughput, for randomly accessed data, is the inverse of its average seek time:

Throughput =
1

Average seek time
(5.1)

To calibrate such a model for any given disk drive, one would measure the drive’s average seek time (a

modeling parameter). For example, if the average seek time of a disk is 6 ms, then the predicted average
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Figure 5.6: Analytical or statistical performance models accept workload characteristics as input. The

characteristics can be obtained by analyzing an I/O trace (offline or online). Though the figure illustrates

block-level I/O, models could also be built to predict file-level performance.

throughput is 1/6 ms, or 167 IOPS. This model requires no workload characteristics as input and always

predicts a throughput of 167 IOPS.

As a model builder, one might discover that prediction accuracy can be improved by modeling the

rotational delay and the data transfer time of each I/O request. Specifically, a random I/O request waits,

on average, one half of a rotation before the first desired sector arrives at the disk head for reading, and

the transfer time depends on the disk’s data transfer rate and the size of the I/O request (a workload

characteristic). As such, the model can be improved as follows:

Throughput =
1

Average seek time + Rotation time
2

+ Transfer rate
Request size

(5.2)

Though simplistic, the above example captures the essence of how an analytical model is constructed,

calibrated against a real system (e.g., the seek time, rotation time, and transfer rate), and used with

workload characteristics (e.g., the request size). In the literature, analytical models are much more

complex. They model the performance of disk drives over a variety of workload characteristics, like those

discussed in Chapter 4. They have also been extended to model RAID controllers, caches, and many

optimizations often found in a storage system (e.g., write-back caching and read-ahead).

The biggest advantages of analytical models, over simulation models, are their speed and ease-of-use.

The only input is a description of the workload, and the output is a performance prediction. As discussed

in Chapter 2, such models are preferred in automated storage system design, as they can be quickly

invoked by optimization solvers.

However, there are two big challenges with analytical modeling. First, one must model the complex
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interactions of various storage system components and do so in a way that is mathematically tractable to

the model builder. Second, an analytical model is dependent on the quality of the workload characteristics

used to describe the I/O. And, as discussed in Chapter 4, these challenges often play against one another.

Specifically, mathematical tractability argues for more concise characteristics (e.g., numbers that can be

plugged into equations), but often at the cost of a reduction in the quality of the workload characteristics.

5.5.2 Statistical models

Statistical models use the performance of past workloads to predict that of future workloads [1, 13, 20,

22, 28]. Perhaps the simplest of all black-box models is a numerical average. For example, given the

performance of a collection of random I/O workload samples on a disk drive with a 6 ms average seek time,

a statistical model could learn that random accesses, on average, perform at 167 IOPS. However, just as

with analytical models, statistical models are more accurate when they use workload characteristics.

Table 5.1, for example, shows a simplified table-based model [1], recording the average bandwidth of

a disk drive for various request sizes. Of course, some form of interpolation is required when an exact

match is not found in the table. To predict the performance of, say, a 3 KB request, one might average

the 2 KB and 4 KB performance and predict 37 MB/sec.

Figure 5.7 shows the same information modeled with a classification and regression tree (CART),

another type of statistical model that can be used to predict the performance of storage systems [28]. In

this example, to predict the performance of a 3 KB request size, one would follow the correct path in the

tree until a leaf node is reached — 42 MB/sec, in this case.

Like analytical models, statistical models are fast and easy to use. The biggest advantage over an

analytical model is the ability to learn the complex interactions of a storage system, by example, rather

than attempting to model them through equations. This is especially advantageous in the context of

black-box modeling, where the internal workings of a storage system are unknown to the model builder.

A disadvantage, like analytical models, is a dependence on workload characteristics. Unlike analytical

models, statistical models also require a potentially large amount of training data, so as to establish a

strong statistical relationship between workload characteristics and storage system performance.

5.5.3 Limitations of absolute models

In this work, conventional performance models (analytical or statistical) are referred to as absolute

models, both to distinguish them from the relative fitness models presented in the next chapter and to

stress that the workload characteristics used by the models are assumed “absolute” by the model builders

(i.e., not relative to the storage system from which they are obtained).

More formally, an absolute model of a storage system i is any function Fi that maps an application’s

workload characteristics WCi to a performance prediction Pi, where WCi is a vector of values repre-

senting workload characteristics, and Pi is any performance metric (e.g., bandwidth, throughput, and

latency). This relationship be expressed as follows:

Pi = Fi(WCi) (5.3)
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Request size Bandwidth

1 KB 15 MB/sec

2 KB 27 MB/sec

4 KB 42 MB/sec

8 KB 66 MB/sec

Table 5.1: A table-based model that records the performance of a disk drive for sequentially-read data.

Request size Request size
<= 4 KB <= 1 KB

yesno

<= 2 KB

MB/sec MB/sec MB/sec
66

MB/sec
47 27 15

Request size

Figure 5.7: A regression tree that learns the performance of a disk drive for sequentially-read data.

The key insight behind Equation 5.3 is that an absolute model assumes that it is using the character-

istics of a workload running on storage system i to predict the performance of storage system i. However,

such an idealized scenario will not occur in practice, as obtaining workload characteristics from storage

system i requires one to first run the corresponding application on that storage system. Of course, if one

runs an application, there is no need for a performance prediction. The performance can be observed.

Therefore, in practice, an absolute model is used to predict the performance of moving a workload

from some storage system j to another storage system i. This involves characterizing the workload on

storage system j to obtain workload characteristics WCj and then inputting WCj into the performance

model of storage system i. However, as will be shown in the Chapter 7 evaluation, many of the presumably

“absolute” workload characteristics can change across storage systems, leading to additional prediction

error. In other words, it is often the case that WCj 6= WCi, and the difference matters.

To illustrate how changing workloads characteristics can be problematic, consider the case where the

average request size of a workload differs between two storage systems (e.g., because of a difference in

request coalescing in the OS). Specifically, suppose the average request sizes for a given workload on

storage systems j and i are 1 KB and 2 KB, respectively. If the workload characteristics measured on

storage system j are input into the performance model for storage system i, the predicted performance

(referring back to Table 5.1 or Figure 5.7) is 15 MB/sec instead of the actual performance of a 2 KB

request on storage system i, which is 27 MB/sec. This hypothetical example illustrates the risk of indexing

into a statistical model with inaccurate workload characteristics. The same misprediction can occur with

an analytical model, as one is making a calculation with an incorrect workload characteristic.
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5.6 Summary and concluding remarks

The need for accurate performance predictions has given rise to a variety of predictive techniques. One

can model just the application (using trace replay or synthetic I/O), just the storage system (using

simulation or emulation), or both the application and the storage system (using workload characteristics

and analytical or statistical performance models).

As discussed in Chapter 2, one of the goals of an automated storage system is to assign workloads

to the proper storage. Doing so requires exploring a number of possible assignments within the context

of an optimization solver and, therefore, requires that prediction time be quick. As such, analytical or

statistical models are the ideal choice, and black-box modeling is especially attractive given the increasing

complexity of storage systems.

For better, and for worse, workload characterization sits at the core of performance modeling. It makes

the modeling both possible and challenging. As discussed in Chapter 4, numerous workload characteristics

have been developed to help explain and predict the performance of storage systems. However, not all

applications lend themselves to characterization, especially those with irregular patterns of access, and

not all storage systems are concerned with the same workload characteristics. Further, the workload

characteristics of synchronous I/O, due to the performance feedback of a closed loop, can change when

the workload is moved from one storage system to another.

Collectively, the above challenges have presented a major roadblock to analytical or statistical per-

formance modeling becoming a widespread and dependable tool for the data center, and they are the

motivation for relative fitness modeling. As will be shown in the following chapters, by assuming that

workload characteristics are relative to a specific storage system, one can build models between pairs

of storage systems and use the performance of one storage system to predict that of another, thereby

reducing the dependency on workload characteristics. In addition, relative modeling implicitly learns how

workload characteristics can change across storage systems.
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Chapter 6

Relative fitness modeling

Relative fitness: the fitness of a genotype compared with another in the same gene system [2].

Relative fitness modeling is a new statistical, black-box approach to modeling the performance of

storage systems, motivated by the challenges with workload characterization and absolute modeling

presented in the previous chapters. Rather than attempt to discover new workload characteristics that

are expressive, yet concise, and “absolute” across storage systems, the goal of relative fitness modeling is

to use observed performance and resource utilization, in addition to workload characteristics, to predict

performance. Of course, doing so requires one to abandon the notion of an absolute model, as performance

and resource utilization are specific to a given storage system.

The insight behind relative fitness is best obtained through analogy. When predicting your perfor-

mance in a college course (a useful prediction during enrollment), it is helpful to know the grade received

by a peer and the number of hours he worked each week to achieve that grade (his resource utilization).

Naturally, our own performance for certain tasks is a complex function of the characteristics of the task

and our ability. However, we often learn to make predictions relative to the experiences of others, because

it is easier.

Applying the analogy, two complex storage systems may be reasonable predictors for one another.

For example, they may have similar RAID levels, caching algorithms, or hardware platforms. As such,

their performance may be related. Even dissimilar storage systems may be related in certain ways (e.g.,

for a given workload type, one usually performs well and the other poorly). The objective of relative

fitness modeling is to learn these types of relationships. More specifically, relative fitness models learn to

predict performance ratios rather than performance itself. For example, storage system A may be 30%

faster than storage system B for small random reads, 40% faster for large sequential writes, and the same

for all other workloads. Thus, only three relative fitness values are needed to describe the performance

of storage system A relative to storage system B: 1.3, 1.4, and 1.0. Then, to predict the performance

of storage system A, one simply multiplies the appropriate predicted performance ratio by the observed

performance of storage system B.

Despite the many differences, relative fitness modeling can be regarded as an evolution of absolute

modeling and is presented as such in this chapter. The differences between an absolute and relative fitness

model are summarized here:
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1. One absolute model is built for each storage system, for each performance metric of interest (e.g.,

bandwidth, throughput, or latency). In contrast, two relative fitness models are built for each pair

of storage systems: one to predict the performance of storage system A given a workload running

on storage system B, and vice versa.

2. An absolute model is trained to predict the performance of a storage system A using workload

characteristics obtained from the same. In contrast, a relative fitness model is trained to predict

the performance of storage system A using workload characteristics from a different storage sys-

tem B. However, the usage of the absolute and relative fitness model is the same. To predict the

performance of storage system A, one inputs the workload characteristics from a different storage

system B (i.e., where the workload is currently running) into the performance model of storage

system A.

3. An absolute model discards the observed performance and resource utilization of storage system B

when making performance predictions for storage system A, because it is not trained to use this

information. In contrast, a relative fitness model uses the observed performance and resource

utilization of storage system B to predict the performance of storage system A.

4. An absolute model predicts performance values (e.g., that the bandwidth of a storage system A will

be 30 MB/sec). In contrast, a relative fitness value predicts a performance ratio (e.g., that storage

system A will be 50% faster than storage system B for the workload in question).

The rest of this chapter is organized as follows. Section 6.1 provides a formal definition of relative

fitness modeling. Section 6.2 discusses how relative fitness modeling addresses many of the challenges

faced by absolute modeling. Section 6.3 describes how to train a relative fitness model. Section 6.4

shows how to build a relative fitness model with a classification and regression tree (CART). Section 6.5

discusses the cost of relative fitness modeling and concludes the chapter.

6.1 Derivation of relative fitness

Relative fitness begins with an absolute model (Eq. 5.3). Recall that a workload is running on storage

system j, WCj is measured on storage system j, and the performance of storage system i is to be

predicted using the absolute model Fi.

The first objective of relative fitness is to capture the changes in workload characteristics from storage

system j to i, that is, to predict WCi given WCj . Such change is dependent on the storage systems, so

a function Gj→i is defined to predict how the workload characteristics will change from j to i:

WCi = Gj→i(WCj).

Gj→i can now be used in the context of the absolute model Fi to predict the performance of storage

system i:

Pi = Fi(Gj→i(WCj)).
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However, rather than learn two functions, the composition of Fi and Gj→i can be expressed as a single

composite function RMj→i, called a relative model:

Pi = RMj→i(WCj). (6.1)

With each model now involving an origin j and target i, one can use the performance of storage

system j (Perfj) and its resource utilization (Utilj) to help predict the performance of storage system i.

Perfj is a vector of performance metrics such as bandwidth, throughput and latency. Utilj is a vector of

utilization metrics such as storage system j’s cache utilization, network utilization, and CPU utilization:

Pi = RMj→i(WCj ,Perfj ,Utilj). (6.2)

Equation 6.2 is called a relative performance model, to reflect the fact that performance (and uti-

lization) are used in making the predictions. That is, one can now describe a workload in terms of its

effects on a given storage system. Note that with absolute modeling, only one model is trained for each

storage system, thereby precluding the use of performance and resource utilization, which are specific to

a given storage system. Including such information in an absolute model would require that one specify

the system from which the performance and utilization metrics were obtained, and this is equivalent to

relative modeling.

Next, rather than predict performance values, one can predict performance ratios. The expectation is

that ratios are better predictors for new workloads, as they naturally interpolate between known training

samples. Such a model is called a relative fitness model:

Pi

Pj

= RFj→i(WCj ,Perfj ,Utilj). (6.3)

To use the relative fitness model, one solves for Pi:

Pi = RFj→i(WCj ,Perfj ,Utilj) × Pj .

Models based on Equations 5.3 through 6.3 are evaluated in Chapter 7. The relative model that only

uses workload characteristics (Eq. 6.1) is included to separate the benefits of modeling changes in the

workload characteristics from that of using performance to make predictions (Eqs. 6.2 and 6.3).

6.2 Discussion

By modeling storage systems relative to one another, relative fitness models address many of the challenges

associated with absolute modeling. Specifically, the dependence on workload characteristics is reduced,

the feedback between a synchronous workload and a storage system is implicitly modeled, and models

can potentially be trained with less data. Each of these points is discussed in more detail below.

First, unlike absolute models, relative fitness models allow the use of performance and resource uti-

lization when making predictions, thereby reducing the dependency on workload characteristics. For
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example, rather than attempt to describe the spatio-temporal correlation of an I/O stream (a character-

istic that could be useful in predicting a workload’s cache hit rate and, hence, its performance), one can

simply use the cache hit rate of one storage system when predicting the performance of another storage

system. Similarly, the average request latency of a workload gives some indication of the effectiveness

of a storage system’s cache and, therefore, is an indirect measure of cache locality. With relative fitness

models, both of these characteristics can be used to help predict performance. In general, performance

and resource utilization are much easier to obtain than workload characteristics and, as will be shown in

the next chapter, are usually better predictors of performance.

Second, because relative fitness models are constructed between every pair of storage systems, the

feedback of a synchronous workload is implicitly modeled as it moves from one storage system to another.

As such, changes in the workload characteristics will not affect prediction accuracy like they would for an

absolute model. Recall the example from Chapter 5, where the request size changed from 1 KB on storage

system B to 2 KB on storage system A, resulting in a misprediction. With a relative fitness model, it

is of no consequence that these characteristics change between storage systems B and A, because the

performance of storage system A is modeled relative to the characteristics on storage system B, not A.

Third, relative fitness models help address a general problem with statistical modeling: the need for

a potentially large amount of training data. By predicting performance ratios rather than performance

values, a relative fitness model can often learn the performance of a storage system with fewer training

samples. In effect, a relative fitness model predicts linear functions (the predicted performance ratio is the

slope in a line that relates the performance of storage system A to storage system B) where an absolute

model predicts constant values. Such linear functions can be learned with a simple piecewise-constant

regression model rather than a more complex piecewise-linear model [3].

To illustrate the benefit of performance ratios, by analogy, suppose that Sally always does 10% better

than Bill on exams and that we want to train a model to learn this. On one specific exam, Bill gets

20 points and Sally gets 22. Using this exam as training data, a relative fitness model will learn the

performance ratio of 1.10 between Bill and Sally. In contrast, an absolute model for Sally will simply

learn that she got 22 points on the exam. Now, if Bill took another exam and got 50 points, the relative

fitness model would predict a performance ratio of 1.10, resulting in a prediction of 55 for Sally, and

the absolute model would simply predict 22. In other words, the relative fitness model assumes that

performance scales between Bill and Sally for new workloads, as it did for the training data. In contrast,

the absolute model assumes that Sally’s performance will be similar to her past exams.

Applying the above analogy, because many workloads share relative fitness values, there could be

fewer performance ratios to learn than performance values. As will be shown in Chapter 7, this is often

the case. When using the same amount of training data, relative fitness models exceed the prediction

accuracy of absolute models. Alternatively, relative fitness models can match the prediction accuracy of

absolute models, while using less training data.

6.3 Model training

To train a relative fitness model, one needs to compare the performance of two storage systems over a

variety of workload samples. Samples can be obtained from applications or, as discussed in Chapter 3,
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Sample Predictor variables Predicted variable

1 WCj,1 Perf j,1 Utilj,1 Pi,1/Pj,1

2 WCj,2 Perf j,2 Utilj,2 Pi,2/Pj,2

n WCj,n Perf j,n Utilj,n Pi,n/Pj,n

Table 6.1: Training data format for a relative fitness model. WCj , Perf j , and Utilj are vectors. Pi/Pj

is a performance ratio (the relative fitness value).

Sample Predictor variables Predicted variable

1 WCj,1 Perf j,1 Utilj,1 Pi,1

2 WCj,2 Perf j,2 Utilj,2 Pi,2

n WCj,n Perf j,n Utilj,n Pi,n

Table 6.2: Training data format for a relative performance model. WCj , Perf j , and Utilj are vectors.

Pi is a performance metric.

I/O benchmarks, synthetic workload generators, or trace replay. The challenge is achieving adequate

coverage. One must obtain samples that are representative of future workloads, but determining this

a priori can be difficult. Moreover, even slight changes in the workload characteristics can translate

to large differences in performance (e.g., adding a little spatial randomness to a workload can change

throughput dramatically). In general, the best one can do is to make the most efficient use of the data

that is available. As such, models that require fewer training samples are preferred. Likewise, models that

explain the data in the least complex manner (Occam’s razor) are preferred to models that potentially

over-fit the data by confusing coincidental relationships for fact.

A workload sample is composed of three vectors: workload characteristics (WC), performance (Perf),

and resource utilization (Util). Given multiple samples from two storage systems i and j (the same set of

samples), the goal of a relative fitness model is to discover relationships between the predictor variables

(WCj , Perfj , and Utilj) and the predicted variable Pi (one of the performance metrics in Perfi).

Table 6.1 shows the format of the training data for a relative fitness model. The formats for the relative

performance model (Table 6.2) and the relative model (Table 6.3) are similar, but reflect Equations 6.2

and 6.1, respectively.

In contrast, an absolute model is only trained with workload samples from a single storage system.

The goal of the absolute model is to discover relationships between the predictor variables (WCi) and

the predicted variable Pi; the other metrics in Perfi and Utili are discarded. Table 6.4 illustrates.

Given training data like that shown in Tables 6.1 through 6.4, one can construct a black-box model

using any number of learning algorithms. The problem falls under the general scope of supervised learning,

where one has access to a set of predictor variables, as well as the desired response (the predicted

variable) [4].
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Sample Predictor variables Predicted variable

1 WCj,1 Pi,1

2 WCj,2 Pi,2

n WCj,n Pi,n

Table 6.3: Training data format for a relative model. WCj is a vector. Pi is a performance metric.

Sample Predictor variables Predicted variable

1 WCi,1 Pi,1

2 WCi,2 Pi,2

n WCi,n Pi,n

Table 6.4: Training data format for an absolute model. WCi is a vector. Pi is a performance metric.

6.4 Model selection (CART)

Relative fitness modeling is ideally suited to regression, where one wants to predict a continuous variable

(i.e., a relative fitness value). There are many regression models in the literature [4]. This work focuses

on the use of classification and regression trees (CART) [1] because of their simplicity, flexibility, and

interpretability. As discussed in Chapter 5, CART models have been used successfully in the past to

build absolute models [6].

6.4.1 A CART primer

Trees are built top-down, recursively, beginning with a root node. At each step in the recursion, the CART

model-building algorithm determines which predictor variable in the training data best splits the current

node into leaf nodes. The “best” split is that which minimizes the difference (e.g., root mean squared

error, or RMS) among the samples in the leaf nodes, where the error for each sample is the difference

between it and the average of all samples in the leaf node. In other words, a good split produces leaf nodes

with samples that contain similar values. For example, consider the four training samples in Table 6.5.

There are two predictor variables (request size and queue depth) and one predicted variable (the relative

fitness of storage system i). For the first split, there are two options: the queue depth and the request

size. As shown in Figure 6.1 (top half), splitting on the request size produces more homogeneous leaf

nodes, and it is therefore the best first split. The CART algorithm then continues recursively on each

subtree. The same predictor variable may appear at different levels in the tree, as it may be best to split

multiple times on that variable. In this case, the queue depth is the next best split, resulting in the final

tree shown in Figure 6.1 (bottom half).

Intuitively, the CART algorithm determines which of the predictor variables have the most information

with respect to the predicted variable. The most relevant questions (splits) are asked first, and subsequent

splits are used to refine the search. Trees are grown until no further splits are possible, thereby creating

a maximal tree. A maximal tree is then pruned to eliminate over-fitting, and multiple pruning depths

are explored. The optimal pruning depth for each branch is determined through cross-validation [5], in

which a small amount of training data is reserved and used to test the accuracy of the pruned trees.
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Request size Queue depth RFj→i

1 KB 1 .51

2 KB 2 .52

4 KB 1 .75

8 KB 2 .76

Table 6.5: An example of training samples that might be used to train a CART model.

Queue depth Queue depth

0.510.76 0.75 0.52

<= 2 KB

<= 1 <= 1

Request size

Or

0.51
0.75

no yes

Queue depth
<= 1

0.76
0.52

0.51
0.52

Second split

First split

no yes

0.76

Request size

0.75

<= 2 KB

Figure 6.1: CART determines which split is best by inspecting the similarity of the samples in the

resulting leaf nodes. Given the data in Table 6.5, splitting on the request size (right half) is better than

splitting on the queue depth (left half), as it produces more homogeneous leaf nodes. For the second

split, CART selects the queue depth.

Finally, to make a prediction for a new sample, one follows a path from the root node to a leaf node.

As each node is visited, either the left or right branch is taken, depending on the splitting criterion and

the values of the predictor variables for the sample. Leaf nodes contain the predicted variable that will

be returned (e.g., the average or median value of all samples in the leaf node).

As can be seen in Figure 6.1, CART models are easy to read and interpret. As such, one can determine

why a certain relative fitness value is being predicted by inspecting the internal nodes from the root to

a leaf. A variety of real CART models will be explored in the next chapter.

6.5 Summary and concluding remarks

In summary, whereas conventional modeling constructs one absolute model per storage system and as-

sumes that workload characteristics are unchanging across storage systems, the relative modeling ap-
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proach construct two models for each pair of storage systems (A to B and B to A) and implicitly models

the changing workloads. This approach also allows the use performance and resource utilization when

making predictions, thereby reducing the dependency on workload characteristics.

A perceived cost of the relative approach is the additional model construction: O(n2) versus O(n),

where n is the number of storage systems. However, constructing a model takes at most a few seconds.

Also, in the context of a data center, a storage system is usually a disk array or some other type of storage

system with management processors that could be exploited for model construction. That is, each storage

system could construct n− 1 models that predict its performance relative to all other storage systems, so

the computational resources could be made to scale. Also, in large-scale environments, certain collections

of storage systems will be identical and can share models. In short, the cost of creating additional models

is unlikely to be a significant issue.

The real cost of relative fitness modeling — a cost also shared by any statistical, absolute model — is

the time required to obtain training data. However, relative fitness models have the potential for reducing

this time, because they make more efficient use of the training samples by predicting performance ratios.
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Chapter 7

Evaluation

This evaluation compares the prediction accuracy of absolute, relative, relative performance, and relative

fitness models, using a variety of storage systems and application workloads. The storage systems are

all disk arrays and, as described in Section 2.1, it is assumed that there is one workload per disk array.

Appendix B contains an early follow-on to this work that predicts the performance impact when the disk

arrays are being shared.

The disk arrays have different hardware platforms, software stacks, RAID configurations, number and

type of disks, and cache sizes. The applications include Postmark [1], Cello trace replay [10], TPC-C [7],

and a synthetic workload generator built for this evaluation, called Fitness [4]. Fitness is used to generate

four different workload types: FitnessDirect (where I/O is issued directly to the arrays, with no host

caching), FitnessBuffered (I/O is directed through the host buffer cache), FitnessFS (I/O is directed

through a file in the host file system), and FitnessCache (the same as FitnessDirect, but with a varying

working set size so as to explicitly test the array caches).

Five research hypotheses are evaluated via five experiments. Experiment 1 measures the change in

block-level workload characteristics as the application workloads are moved across disk arrays. Experi-

ment 2 evaluates absolute models, particularly how their prediction error increases as a result of changing

workloads. Experiment 3 evaluates relative models and confirms that the pairwise modeling of disk arrays

can help reduce the effects of changing workloads. Experiment 4 evaluates relative performance models

and confirms that one can use the performance of array j to predict performance of array i. Experiment

5 evaluates relative fitness models and confirms that performance ratios (relative fitness values) further

improve prediction accuracy. In Experiments 2–5, the metric chosen for comparing prediction accuracy

is the relative error:

relative error =
predicted value− measured value

measured value

7.1 Executive summary

Figure 7.1 summarizes the results of Experiments 2–5. It plots the cumulative distribution of relative

error for each of the models evaluated. The CDFs are constructed using all of the predictions from the
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evaluation, of which there are over 5000 per model. The different error distributions visually confirm

each hypothesis.

First, the prediction error of an absolute model, in practice, increases due to changing workload

characteristics. Specifically, when workload characteristics are obtained from one array j and input into

the model of a different array i, there is more error (lowest CDF line in each graph) than the idealized

case in which characteristics are obtained from the same array for which a prediction is being made.

Second, a relative model can reduce this error. As can be seen in the figure, particularly the latency

graph, the relative models have less error than the in-practice absolute models (i.e., where i 6= j). In

fact, one can see that the error distributions of the idealized absolute models (where i = j) and the

relative models (where i 6= j) are nearly identical. In other words, a relative model has similar error

to an idealized absolute model, thereby confirming that relative modeling can remove or eliminate the

prediction errors due to changes in the workload characteristics.

Third, a relative performance model reduces error further, confirming that the observed performance

of array j can be used to predict the performance of a different array i. As can be seen in Figure 7.1, the

relative performance models improve upon the relative models and absolute models.

Finally, as shown by the error distributions of the relative fitness models (the top-most CDF line

in each graph), performance ratios are better predictors than performance values. In each graph, the

relative fitness models produce the least error.

Overall, when comparing the relative fitness models to the absolute models, one can see significant

improvements in prediction accuracy. The average median relative error of the bandwidth predictions

(i.e., the median relative bandwidth prediction error for each application is computed, and these medians

are then averaged) is reduced from 23% to 11%, throughput from 17% to 10%, and latency from 21%

to 14%. Also, the relative fitness models reduce prediction error with simpler models (fewer rules). On

average, the relative fitness models in this evaluation are 22% smaller than the absolute models (i.e.,

relative fitness models have 22% fewer leaf nodes in the CART models).

Moreover, the relative fitness models do not require as much training data. Figure 7.2 plots the

average median relative prediction error of the applications, for various training/testing splits. The size

of the training set varies from 25% of the collected application workload samples to 75%, in increments of

5%. For each training set size, models are trained using x% of the data and tested using the remainder.

As such, Figure 7.2 illustrates how the models “learn” as more workload samples are used for training.

As can be seen in the Figure, the absolute models (AM) produce the most error, the relative models

(RM) reduce the error caused by changing workload characteristics, the relative performance models

(RM’) reduce error further, and the relative fitness models (RF) produce the least error. In all cases, the

relative fitness models are more accurate than the absolute models, even when trained with significantly

fewer samples.

7.2 Organization

This evaluation is organized as follows. Section 7.3 describes the experimental methodology, including

the research hypotheses, the data collection, and the set of experiments. Section 7.4 describes the exper-

imental setup, including the application servers and the storage arrays, the application workloads, the



CHAPTER 7. EVALUATION 87

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (Per-application summary)

Absolute (i=j)
Absolute
Relative

Relative Performance
Relative Fitness

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (Per-application summary)

Absolute (i=j)
Absolute
Relative

Relative Performance
Relative Fitness

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (Per-application summary)

Absolute (i=j)
Absolute
Relative

Relative Performance
Relative Fitness

Figure 7.1: The cumulative distributions of the relative prediction error for the idealized absolute model

(i = j), the in-practice absolute model (i 6= j), the relative model, the relative performance model, and

the relative fitness model. The thick solid line (least error) is that of the relative fitness models. The

thick dashed line (most error) is that of the in-practice absolute models.
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Figure 7.2: Error vs. training set size. The training set size varies from 25% of the collected samples

to 75%; the remaining samples are used for testing. For each training set size, an error metric (median

relative error) is calculated for each pairing of arrays. These metrics are then averaged across all pairings

to produce the values shown.
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workload characteristics and performance metrics, and the machine learning infrastructure. Sections 7.5

through 7.9 present the experimental results. All data is contained in the appendices, but representative

tables and graphs are copied into the evaluation sections as necessary. One need only refer to an appendix

if additional detail is desired.

For each experiment, the results from each application are presented in turn. Particular attention is

given to the first application (FitnessDirect), so as to provide instruction on interpreting the tables

and figures. Only high-level performance summaries and anecdotes are presented for the remaining

applications.

7.3 Experimental methodology

A collection of application workloads are run on various disk arrays in order to characterize their I/O

and measure their performance. As described in Chapters 3 and 4, both the performance and workload

characteristics of each application are measured at the block-level, below all file systems and OS caches.

The collected samples are then used in five different experiments. Each experiment is designed to test

one of the research hypotheses.

7.3.1 Research hypotheses

Summarizing from the preceding chapters, there are five research hypotheses:

Hypothesis 1 (Changing workloads): When storage arrays j and i have different performance char-

acteristics, the block-level workload characteristics of an application can change as the application

is moved from array j to array i (i.e., WCi 6= WCj).

Hypothesis 2 (Absolute models): The change in workload characteristics is significant enough to

affect the accuracy of an absolute model of array i (Equation 5.3) when the workload characteristics

are obtained from a different array j. More specifically, absolute models are most accurate when

the workload characteristics are obtained from the same array for which the performance prediction

is being made. However, as discussed, this ideal situation will not occur in practice.

Hypothesis 3 (Relative models): Because relative models (Equation 6.1) are trained to predict the

performance of array i relative to the workload characteristics of array j, they are less sensitive to

the changes in the workload characteristics and are, therefore, more accurate than absolute models.

Hypothesis 4 (Relative performance models): Unlike an absolute model, a relative model can dis-

tinguish workloads with different performance and similar, if not identical, workload characteristics.

This is trivially accomplished by adding performance information to the model (Equation 6.2). A

relative model trained with performance information is, therefore, more accurate than a relative

model trained only with workload characteristics.

Hypothesis 5 (Relative fitness models): Relative fitness models (Equation 6.3) are more accurate

than relative performance models, as performance ratios naturally interpolate among known training
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samples. Stated differently, linear functions (performance ratios) are better predictors than constant

performance values.

7.3.2 Data collection

As described in Chapter 3, each application is used to generate multiple workload samples. A sample

contains the observed workload characteristics and performance over a specified testing period, after the

application has been allowed to run for a specified warming period. The warming and testing periods

are chosen separately for each application, such that performance reaches a steady state (e.g., the caches

have been sufficiently warmed and performances “levels off”). Multiple samples are obtained from each

application by assigning random values to the application parameters and running the application multiple

times. The same set of samples are collected from each storage array (i.e., the random number generators

are seeded identically).

Each workload sample is run for three iterations. The best performing iteration of each sample is

retained for model training and testing, and it is also used to measure the variance in performance and

workload characteristics across disk arrays, referred to as the inter-array variance. This is done separately

for each metric. For example, when reporting and predicting the average bandwidth, the iterations with

the best bandwidth are used. The remaining two iterations are used to measure the variance of a sample

on a given array, or the intra-array variance.

7.3.3 Description of experiments

Each of the following experiments is designed to test one of the research hypothesis:

Experiment 1 (Changing Workloads): Experiment 1 quantifies performance differences across the

disk arrays and the extent to which the workload characteristics change because of these differences.

For each application, the intra-array and inter-array variance (both workload characteristics and

performance) of the samples are calculated. There are two objectives. The first objective is to show

that the intra-array variance is low (i.e., that identical samples, run on the same disk array, will

have close to identical performance and workload characteristics). The second objective is to show

that the inter-array variance is high (i.e., that identical samples, run on different arrays, can have

different performance and workload characteristics).

Experiment 2 (Absolute models): Experiment 2 measures the effect that changing workloads have

on the prediction accuracy of an absolute model (Equation 5.3). Models are trained for each

combination of disk array and performance metric; a portion of the sample workloads are used

for model training, and the rest are used for model testing. The models are evaluated across all

pairings of disk arrays.

Experiment 3 (Relative models): Experiment 3 compares the accuracy of a relative model (Equa-

tion 6.1) to that of an absolute model. Models are evaluated for each combination of array pairing

and performance metric. As per Equation 6.1, only workload characteristics are used to train the

models.
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Experiment 4 (Relative performance models): Experiment 4 compares the accuracy of a relative

performance model (Equation 6.2) to that of a relative model. Relative performance models are

evaluated for each combination of array pairing and performance metric. Unlike a relative model,

which only uses workload characteristics, a relative performance model is also trained with perfor-

mance observations.

Experiment 5 (Relative fitness models): Experiment 5 compares the accuracy of a relative fitness

model (Equation 6.3) to that of a relative performance model. Relative fitness models are evaluated

for each combination of array pairing and performance metric. Unlike the absolute, relative, and

relative performance models, the relative fitness models predict performance ratios (relative fitness

values) rather than performance values.

7.4 Experimental setup

7.4.1 Initiator and target platforms

All experiments are run on IBM x345 servers (dual 2.66 GHz Xeon, 1.5 GB RAM, GbE, Linux 2.6.12),

directly attached to one of four Internet SCSI (iSCSI) [13] disk arrays using copper gigabit Ethernet.

The direct connection eliminates any potential switch congestion within the shared lab infrastructure.

The servers communicate with each array using an open source iSCSI device driver [4]. The device driver

contains counters, below the file system and page cache, that are used to characterize workloads and

measure their performance.

The disk arrays have different hardware and software platforms, and different configurations:

Vendor 1 is a 4-disk IBM x345 server running Intel’s open source iSCSI target stack [4]. The disk array

is configured as RAID-0 (striping) using Linux software RAID. The disk drives are 36 GB 10K

RPM IBM SCSI drives and are accessed in raw mode (i.e., no caching in the RAID controller).

Vendor 2 is a 6-disk Intel Mt. Jefferson storage system (SSR313MJ2) [5] with a LeftHand iSCSI storage

stack [11]. The array is configured as RAID-0 and has 512 MB of cache. The disk drives are 250 GB

7200 RPM Seagate Barracuda SATA drives.

Vendor 3 is an 8-disk Intel Mt. Adams storage system (SSR212MA) [6] with an Open-E iSCSI storage

stack [12]. The array is configured as RAID-10 (striping over 4 mirrored pairs) with 512 MB of

cache. The disk drives are 250 GB 7200 RPM Seagate Barracuda SATA drives.

Vendor 4 is a 14-disk EqualLogic PS100E storage array [8]. The array is configured as RAID-50 (striping

over two 7-disk RAID-5 arrays) and has 1 GB of cache. The disk drives are 400 GB 7200 RPM

Hitachi Deskstar SATA drives.

The arrays are anonymized for this evaluation. Each is referred to, in some random order, as Array A,

Array B, Array C, and Array D.
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7.4.2 Application workloads

Workload samples are collected from four applications: Fitness [4] (synthetic I/O), Postmark [1], Cello [10]

trace replay, and TPC-C [7]. Fitness is used to automate the sample collection process. That is, in

addition to generating synthetic I/O, Fitness is a test harness for characterizing the I/O and measuring

the performance of other applications. The workload characteristics and performance are obtained from

the iSCSI device driver [4] through the /proc file system. Details on the workload characterization

process are presented in Section 7.4.3.

For each sample, Fitness optionally formats and mounts a 16 GB Ext2 file system, starts the appli-

cation (or the internal workload generator), warms for specified period, tests for a specified period (30

seconds for all applications in the evaluation), records the workload characteristics and performance over

the test window, exits the application, optionally unmounts the file system, and then flushes the storage

array’s cache. The flush is accomplished by reading a large sequential region of each array, twice.

Each application is described in more detail below. Appendix A contains the actual Fitness command-

line arguments and scripts used to generate the workload samples.

Fitness When run as a synthetic workload generator, the arguments to Fitness include the byte range

(or file size), write percent, write request size (KB), read request size (KB), number of outstanding

requests (i.e., queue depth, level of concurrency, or multi-programming level), write randomness,

and read randomness. The workload parameters are randomly selected for each sample. Specifically,

the write percent takes on a value from 0 to 100 (stepping 20), the write and read request sizes each

take on a value from 1 to 256 KB (stepping 1 KB), the write and read randomness a value from

0 to 100 (stepping 20), and the queue depth a value from 1 to 64 (stepping powers of 2). For the

randomness parameters, a value of x means that x% of the I/Os are uniformly random and 100−x

are sequential. All requests are aligned according to the chosen request sizes (e.g., if a 1 MB file is

accessed with a write request size of 1 KB, then there are 1024 possible offsets for performing the

write I/O).

Fitness is configured in one of three I/O modes: direct mode to a block device (i.e., using the

O DIRECT flag during open()), buffered mode to a block device (i.e., though the OS buffer cache),

and file mode through a formatted Ext2 file system. Each mode is considered a separate workload in

this evaluation. Respectively, the workloads are referred to as FitnessDirect, FitnessBuffered,

and FitnessFS. FitnessDirect and FitnessBuffered perform I/O to a 16 GB region of the disk

(no file system), and FitnessFS creates a 4 GB file. All three modes perform I/O to the region/file

according to the randomly selected workload parameters. 200 samples are generated for each mode.

A fourth run of Fitness is used to test workloads that hit completely-in or completely-out of the

array caches. This workload, called FitnessCache, is a random, read-only workload. The read

request size varies from 1 to 64 KB (powers of 2), and the queue depth varies from 1 to 16 (powers

of 2). The byte range is either 16 MB (completely in all caches) or 16 GB (completely outside of

the caches). Only 70 workloads are possible (7 request sizes × 5 queue depths × 2 ranges). So,

rather than randomly sample the workload space, each workload is specified in turn.

In total, 670 workload samples are collected from each storage array: 200 for FitnessDirect, 200
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for FitnessBuffered, 200 for FitnessFS, and 70 for FitnessCache. Again, each sample is run for

three iterations, and the best performing iterations are retained for model training and testing.

Postmark The Postmark benchmark [1] simulates small-file Internet traffic (news, e-mail, and WWW).

In the first phase of Postmark, a large file pool is created across multiple subdirectories. In the

second phase, transactions are performed against the file pool, including file creation, deletion,

writing, appending, and reading.

50 runs of Postmark are generated. For each run, the parameters are randomly selected. The file

size varies from 1 B to 1 MB (stepping 1) and the number of subdirectories from 1 to 1000 (stepping

1). The number of files is selected so as to create an initial pool capacity of approximately 2 GB.

In other words, the number of files is set to 2 GB divided by the randomly selected file size.

Two workload samples are obtained from each run: one from the file creation phase and a second

from the transactions phase. This yields a total of 100 samples from each disk array.

Cello99 The Cello traces are a collection of block-level I/O traces from a file server at HP laborato-

ries [10]. The traces used are from a two-week period: 11/08/99 through 11/12/99 and 11/15/99

through 11/19/99. Each trace covers a 24-hour period. The 10 day-long traces are converted from

binary to ASCII and separated into 80 3-hour traces. Each is considered a separate workload

sample, and Fitness is used to perform the replay (using the --replay option).

All 80 traces are replayed through the OS buffer cache using an as-fast-as-possible arrival process

(no think time between each I/O). Although the traces at HP Labs were collected below the page

cache (at the SCSI device driver level), in this evaluation they are replayed above the caches in

order to introduce caching effects that normally arise in a system. Without information as to how

the I/O would change (e.g., due to feedback effects between a file system and storage system), this

is perhaps the best one can do. Similarly, because the true multi-programming level is unknown, a

random level is selected by the Fitness replayer for each sample (1,2,4,8,16, 32, or 64).

Unlike the other workloads, which have steady-state I/O performance after a certain amount of

warming, the Cello workloads are variable. As such, replay may progress at different rates on each

array, and therefore be at different locations in the trace after a specified warming period. Because

of this, the Cello replay warms until 128 MB of data have been transferred (using the --warm mb

option in Fitness), rather than for a fixed amount of warming time. 128 MB is chosen, as opposed

to a larger warming period, to avoid running out of trace records before a performance measurement

can be taken (i.e., if too much time is spent warming, most of the Cello traces return EOF during

replay).

TPC-C [7] TPC Benchmark C is an online transaction processing (OLTP) benchmark from the Trans-

action Processing Performance Council. It simulates a computing environment where users submit

transactions against a database, including order placement, order status, payment processing, and

inventory checks. In this work, TPC-C is run on the Shore storage manager [3], configured with 8 KB

pages, 10 warehouses, and 10 clients; the storage footprint is 5 GB. 50 runs of TPC-C are generated,

each with random probabilities selected for prob neworder, prob payment, prob order status,

prob delivery and prob stock level [7], which must sum to 1.
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Counter Meaning Counter Meaning
ops Total operations op latencies wr Sum of write latencies

ops wr Write operations op latencies rd Sum of read latencies
ops rd Read operations op depths wr Sum of write queue depths

bytes sent Bytes written op depths rd Sum of read queue depths
bytes recv Bytes read op jumps wr Sum of write jump distances

op latencies Sum of latencies op jumps rd Sum of read jump distances

Table 7.1: Counters maintained by the iSCSI device driver.

7.4.3 Workload characteristics and performance metrics

Workload characteristics and performance metrics are calculated from kernel counters in the iSCSI device

driver, available to a user application (Fitness in this case) through the /proc file system. The counters

are updated by the driver at the completion of every I/O, including operation counts, bytes transferred,

operation latencies, queue depths (an approximation of the true multi-programming level of an applica-

tion), and I/O jump distances (one measure of the spatial randomness). Note, the latency, queue depth,

and jump distance counters are running sums. When an I/O completes, its latency, queue depth and

jump distance are added, respectively, to each of these counters. This enables one to calculate, say, the

average write queue depth — by dividing the sum of write queue depths by the total number of write

requests. Also, the iSCSI driver maintains separate “file pointers” for writes and reads, which are simply

the offsets of the last write and read request issued to a disk array. These file pointers are used in the

device driver to calculate the jump distance between successive writes and reads to an array.

For each workload sample, Fitness queries the counters once after the warming period and once after

the testing period. Then, the difference between the two sets of counters is used to calculate averages for

the workload characteristics and performance. Table 7.1 summarizes the counters used by Fitness.

The workload characteristics output by Fitness (from the driver counters) are similar to its input

parameters. They include, as described in Chapter 4, the average write fraction (0 to 1), write request

size (KB), read request size, write randomness (jump distance before each write, expressed in MB), read

randomness, write queue depth (number of outstanding writes), and read queue depth. The performance

metrics, as described in Chapter 3, include the average bandwidth (MB/sec), throughput (IO/sec),

request latency (ms), write request latency, and read request latency. Table 7.2 summarizes each workload

characteristic and performance metric. The equations below contain the actual calculations.

Read/write ratio

The write fraction (wr) is the fraction of I/Os that are write requests. Because ops wrwarm represents the

number of write operations seen by the device driver after the warming period, and ops wrtest represents

that after the testing period, the total number of write operations is ops wrtest − ops wrwarm. Similarly,

opstest − opswarm represents the total number of I/Os (write or read). Therefore, the fraction of I/Os

that are writes is calculated as follows:

write fraction =
ops wrtest − ops wrwarm

opstest − opswarm
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Workload characteristic Units Variable
Write fraction 0 to 1 wr

Write request size KB wrsz

Read request size KB rdsz

Write jump distance MB/IO jmp wr

Read jump distance MB/IO jmp rd

Write queue depth IOs qdep wr

Read queue depth IOs qdep rd

Performance measurement Units Variable
Bandwidth MB/sec bw

Throughput IO/sec iops

Latency ms/IO lat

Write latency ms/IO lat wr

Read latency ms/IO lat rd

Table 7.2: Workload characteristics and performance metrics output by Fitness.

Request sizes

The write request size (wrsz) and read request size (rdsz) are the average I/O request sizes (KB):

write request size =
(bytes senttest − bytes sentwarm)/1024

ops wrtest − ops wrwarm

read request size =
(bytes recvtest − bytes recvwarm)/1024

ops rdtest − ops rdwarm

Queue depths

The write queue depth (qdep wr) and read queue depth (qdep rd) are the average number of outstanding

requests when a new I/O is issued:

write queue depth =
op depths wrtest − op depths wrwarm

ops wrtest − ops wrwarm

read queue depth =
op depths rdtest − op depths rdwarm

ops rdtest − ops rdwarm

Spatial randomness

The write randomness (jmp wr) and read randomness depth (jmp rd) are, respectively, the average jump

distance for each write (relative to the last write offset) and each read (relative to the last read offset):

write randomness =
op jumps wrtest − op jumps wrwarm

ops wrtest − ops wrwarm

read randomness =
op jumps rdtest − op jumps rdwarm

ops rdtest − ops rdwarm
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Bandwidth

Bandwidth (bw) is the average data transfer rate of the application over the specified testing period.

Fitness records the wall clock time after the warming period (secswarm) and after the testing period

(secswarm). Therefore, bandwidth is calculated as follows:

bandwidth =
(bytes senttest − bytes sentwarm) + (bytes recvtest − bytes recvwarm)

secstest − secswarm

Throughput

Throughput (iops) is the average I/O rate:

throughput =
opstest − opswarm

secstest − secswarm

Latency

Latency (lat) is the average I/O request latency (i.e., driver completion time − driver issue time). It

can also be calculated separately for writes (lat wr) and reads (lat rd):

latency =
op latenciestest − op latencieswarm

opstest − opswarm

write latency =
op latencies wrtest − op latencies wrwarm

ops wrtest − ops wrwarm

read latency =
op latencies rdtest − op latencies rdwarm

ops rdtest − ops wrwarm

7.4.4 Machine learning infrastructure

Salford Systems’ CART is used for the evaluation [14]. This particular implementation of CART is based

on the original code and direct collaboration with the UC Berkeley statisticians who invented CART

in 1984 [2]. As described in Section 6.3, the input into Salford’s CART algorithm is a training data

file that contains a collection of workload samples. Each row in the file is a workload sample, and each

column is an attribute (a workload characteristic or performance metric). Exactly one attribute is the

target function, or dependent variable, that a CART regression model is trained to predict. The predictor

variables are selected from the remaining attributes.

Attributes are selected by CART as described in Section 6.4. Salford’s CART is specifically configured

to split on attributes that produce leaf nodes with the least absolute deviation among the training samples.

As described in Section 6.4, Salford’s CART algorithm grows a maximal tree, in which no further splits

are possible, and then prunes the tree to help reduce over-fitting. Various pruning depths are explored,

resulting in multiple candidate trees, and not all branches in a tree are necessarily pruned to the same
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depth. Among the candidate trees, Salford’s CART selects the “optimal” tree, or that which produces

the lowest 10-fold cross-validation error over the training samples.

Salford’s CART provides a variety of useful data-mining information along with the tree model, includ-

ing an analysis of the tree-building process (cross-validation, competitor splits, and pruning information)

and a description of the resulting tree, including the number of terminal nodes (or leaves) and the split-

ting criteria for each internal node. The number of terminal nodes is used to describe the complexity of

a tree and is referenced in the evaluation. As described in Section 6.3 (Occam’s razor), trees with fewer

terminal nodes are preferred, so as to prevent over-fitting.

From a given tree, this evaluation computes an importance measure for each attribute. The score is

simply the total number of samples that are split by that attribute, over the entire tree, normalized by

the attribute that split the most samples. As such, the score can be used to rank the attributes from

“most information” to least. Using this scoring method, intuitively, the attributes involved in the most

splits are the ones providing the most useful information. Alternatively, one could visually inspect each

tree to see which attributes are being used by CART.
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7.5 Experiment 1: changing workloads

Experiment 1 is presented in two parts. First, Section 7.5.1 presents a performance analysis of the

application workloads and disk arrays. It establishes that the performance differences among the arrays

are significant, yet also shows that arrays can react in similar ways to changes in workload characteristics.

For example, increasing the queue depth or request size usually increases an array’s performance. Second,

Section 7.5.2 presents the workload characteristics of the application samples and quantifies how they

change across arrays.

Because the training and testing samples are generated in the same manner, by running each applica-

tion multiple times with uniformly random parameters, only the training samples are presented in each

section. The testing samples have similar distributions of performance and workload characteristics.

7.5.1 Performance analysis

Disk arrays can vary in performance, yet still exhibit similar behavior.

This section summarizes the performance behavior of the disk arrays, for each of the application

workloads described in Section 7.4.2. The performance (bandwidth, throughput, and latency) of each

workload sample is calculated as per Section 7.4.3. Then, the samples are averaged for each application

and presented in Table 7.3. Recall that each sample is run for three iterations and that the highest

performing iteration of each sample is used in computing the averages. For example, suppose that only

two samples were obtained from an application: the first sample had a performance measurement of 32

MB/sec for iteration 1, 33 MB/sec for iteration 2, and 31 MB/sec for iteration 3; similarly, a second

(different) sample had performance measurements of 13 MB/sec, 10 MB/sec, and 12 MB/sec. Then, the

average performance reported in Table 7.3 would be the average of the best performing iterations (33

MB/sec and 13 MB/sec), or 23 MB/sec.

As described in Chapter 3, three statistics are used to compare the averages in Table 7.3: their mean

absolute deviation (MAD), their coefficient of variation (COV), and their maximum relative difference

(Max. Diff.). The purpose of the comparison is to quantify the change in performance across arrays.

More specifically, the MAD statistic is the mean deviation of the averages in Table 7.3, the COV statistic

is the mean of the averages divided by their standard deviation (expresses as a percent), and Max. Diff.

is simply the relative difference, or range, of performance between the fastest and slowest array (also

expressed as a percent). Throughout this evaluation, only Max. Diff. is referenced in the text. The MAD

and COV statistics are only provided for reference.

To ensure that the changes in performance are due primarily to the performance characteristics of

the disk arrays, rather than variance in the measurements, the average value of each performance metric

is calculated a second time, using the second-best iteration of each sample. Then, the relative difference

in average performance between the best and second-best iterations, called “Rel. Diff.,” is calculated.

These values can be found in the Appendices. To continue with the previous example, the average

performance of the second best iterations would be 22 MB/sec (i.e., the average of 12 MB/sec and 32

MB/sec). Therefore, the relative difference in performance between the best and second-best iterations

is 23−22

23
× 100, or 4.5%.
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One can compare the Rel. Diff. value directly to the Max. Diff. presented in Table 7.3. If Max. Diff.

is greater (which it is, in all cases), one can conclude that the changes in performance are not related

to variance. This is admittedly a pedantic exercise for the performance metrics which vary by a consid-

erable amount across arrays, clearly more than just variance. However, these same statistics are used

when quantifying the changes in workload characteristics, which can be more subtle, and are therefore

introduced here. Throughout this section, unless otherwise stated, one can assume that the average

intra-array variance in performance for each sample (Rel. Diff.) is small (i.e., < 5%).

Arrays are ranked from “fastest” to “slowest” based on the average bandwidths reported in Table 7.3

(throughput or latency could have also been used). In addition, a variety of distribution functions

and performance graphs are used to illustrate how performance varies across the arrays. Specifically, a

cumulative distribution function (CDF) of each performance metric is provided, composed of the measured

performance of each of the training samples. These CDFs can be quickly eye-balled to see if arrays have

similar performance distributions. Then, the training samples of each application are sorted, according

to the performance of one of the arrays, and their performance is plotted. In other words, the samples

of one array are sorted from lowest to highest in terms of their performance. Then, each of the other

three arrays are sorted in the same order. Such sorted performance graphs allow one to easily see how

the performance of the arrays differs on a sample by sample basis. Of course, such a graph is necessary

given the multiple workload dimensions. Array C is chosen to establish the sort order, as it tends to be

the slowest array and produce the most uncluttered graphs.

Finally, to supplement the performance graphs, a set of additional microbenchmarks (sequential writes,

random writes, sequential reads, and random reads) are used to illustrate how the performance of each

array changes as two workload characteristics are varied: request size and queue depth. These samples

are a subset of the FitnessDirect workload samples, sorted by increasing queue depth and request size.

FitnessDirect

Beginning with FitnessDirect, as shown in Table 7.3, the average bandwidths of Arrays A, B, C,

and D are 30 MB/sec, 30 MB/sec, 13 MB/sec, and 37 MB/sec, respectively. Again, these averages

are computed using the best iterations from each of the 100 training samples of FitnessDirect. The

maximum relative difference in average bandwidth (Max. Diff.) occurs between Array C (13 MB/sec) and

Array D (37 MB/sec): 37.42−12.93
12.93

, or 189%. In other words, the average bandwidth of FitnessDirect

varies by as much as 189% across disk arrays. Similarly, average throughput varies by up to 281% and

average latency by 259%. On average, Array D is the fastest array, Array C is the slowest, and Arrays A

and B are about equal.

To visualize these performance differences, the left half of Figure 7.3 plots the cumulative distribution

function of each performance metric. For example, approximately 90% of the FitnessDirect samples

have an average bandwidth of about 15 MB/sec or less on Array C. Also, a quick inspection of the CDFs

indicate the arrays with similar performance distributions. In particular, note the similarity among Arrays

A, B, and D; Array C is an outlier. Alternatively, probability distribution functions of each performance

metric can be found in the Appendix for FitnessDirect training. Each PDF illustrates the range of

performance values for the FitnessDirect samples; clusters of commonly seen performance values can

be seen in the graphs.
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FitnessDirect

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 30.42 30.05 12.93 37.42 7.4 32.6% 189.4%
Throughput (IO/sec) 280.10 360.82 116.16 442.60 101.8 40.2% 281.0%

Latency (ms) 25.03 25.27 81.70 22.75 21.5 64.2% 259.1%
Write latency (ms) 25.14 11.40 77.46 14.54 22.7 83.0% 579.5%
Read latency (ms) 17.38 40.74 60.74 28.27 14.0 43.8% 249.5%

FitnessBuffered

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 27.54 20.96 16.18 28.83 4.8 21.9% 78.2%
Throughput (IO/sec) 372.61 280.07 225.89 421.02 71.9 23.5% 86.4%

Latency (ms) 34.78 35.61 74.23 28.05 15.5 42.1% 164.6%
Write latency (ms) 66.61 52.38 146.08 36.67 35.3 55.9% 298.4%
Read latency (ms) 13.78 21.20 25.35 16.38 4.1 23.2% 84.0%

FitnessFS

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 23.48 17.59 15.43 23.88 3.6 18.3% 54.8%
Throughput (IO/sec) 302.07 227.98 203.18 316.14 46.8 18.2% 55.6%

Latency (ms) 24.69 21.51 49.03 17.55 10.4 43.6% 179.4%
Write latency (ms) 51.24 39.88 116.70 23.68 29.4 61.1% 392.8%
Read latency (ms) 9.84 15.58 16.99 13.15 2.4 19.5% 72.7%

FitnessCache

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 16.18 15.66 35.25 40.11 10.4 43.5% 156.1%
Throughput (IO/sec) 1473.03 1020.89 5534.83 6542.57 2263.9 72.9% 540.9%

Latency (ms) 6.71 7.89 14.40 4.46 3.0 44.2% 222.9%
Read latency (ms) 6.71 7.89 14.40 4.46 3.0 44.2% 222.9%

Postmark

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 27.39 22.20 14.48 38.62 6.1 30.3% 166.7%
Throughput (IO/sec) 278.92 232.44 165.42 421.64 75.7 34.2% 154.9%

Latency (ms) 50.74 28.62 110.14 19.82 28.9 67.3% 455.7%
Write latency (ms) 75.90 38.05 175.20 23.71 48.5 75.6% 638.9%
Read latency (ms) 8.76 27.90 7.42 10.88 7.1 60.2% 276.0%

Cello

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 8.60 4.33 5.04 10.03 2.1 30.4% 98.8%
Throughput (IO/sec) 807.82 435.87 481.05 974.33 216.3 33.3% 123.5%

Latency (ms) 19.10 44.86 42.51 7.40 15.2 55.5% 506.2%
Write latency (ms) 41.15 123.67 108.74 9.10 45.5 66.8% 1259.0%
Read latency (ms) 6.98 9.35 9.14 10.14 1.0 13.2% 45.3%

TPC-C

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Bandwidth (MB/sec) 1.69 1.12 1.96 2.40 0.4 25.9% 114.3%
Throughput (IO/sec) 211.60 140.04 243.84 296.92 47.3 25.5% 112.0%

Latency (ms) 5.78 17.29 5.12 1.94 4.9 77.2% 791.2%
Write latency (ms) 20.82 85.17 26.93 2.81 25.6 91.0% 2931.0%
Read latency (ms) 4.15 7.31 2.57 2.15 1.7 50.1% 240.0%

Table 7.3: Performance is measured for each of the application samples. The average value for each
measurement is reported in this table. The mean absolute deviation (MAD), coefficient of variation
(COV), and maximum relative difference quantify how the averages change across disk arrays.
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Figure 7.3: The cumulative distribution of performance for FitnessDirect is shown (left). In addition, the
performance of each array is shown (right), sorted by the performance of Array C.
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Looking now at the performance graphs in the right half of Figure 7.3, one can directly compare the

performance behavior of the disk arrays. Again, each graph sorts the performance of each array according

to the sort order of Array C. The samples of Array C are plotted in ascending order of performance,

and the other three arrays are sorted in that same order. As with the CDFs, one can see that Arrays

A, B, and D have very similar performance behavior. For example, a closer inspection of the bandwidth

performance graphs indicates that Arrays A, B, and D track each other closely. They share similar

discontinuities and spike at similar locations, only with different magnitudes.

Finally, Figure 7.4 plots the bandwidth relative fitness values of each disk array. Recall that a relative

fitness value is simply the performance ratio of two arrays for a given workload sample: a value of 1.0

indicates that two arrays perform equally, and values other than 1.0 indicate a performance change when

moving from one array to another. Therefore, the graphs illustrate how each pairing of arrays differs over

the FitnessDirect samples. As can be seen in the graph, the fastest array on average (Array D) is not

always the fastest array, as there are some relative fitness less than 1.0 when moving workload samples

to that array from other arrays. For example, the relative fitness values of bandwidth for Array D when

compared to Array A (“Array A to Array D” in Figure 7.4) indicate that some of the workload samples

run slower on Array D than on Array A. This can be seen in the first bar of the probability distribution

which shows a relative fitness value of less than 0.88 for 12% of the workload samples. In general, the

objective of a relative fitness model is to predict these relative fitness values for a given workload sample

and array pairing. The remaining PDFs in Figure 7.4 give one a sense of the range of relative fitness

values that occur between different array pairings. Similar graphs exist for throughput and latency in

the appendices.

In summary of FitnessDirect, one can make the following observations. First, Array D is the

fastest array, on average, followed by Arrays A, B, and C. Second, Arrays A, B, and D exhibit similar

distributions; Array C is an outlier. Third, there are a wide range of relative fitness values for each

performance metric (i.e., the relative fitness of arrays depends on the characteristics of the workload

sample).

FitnessBuffered

Continuing with FitnessBuffered, the application workloads are identical to FitnessDirect, but all

I/O is directed through the OS buffer cache rather than directly to the disk arrays. As shown in Table 7.3,

Array D is the fastest array (29 MB/sec), followed by Array A (28 MB/sec), Array B (21 MB/sec), and

then Array C (16 MB/sec). The maximum relative difference in performance occurs between Arrays C

and D, where average bandwidth varies by 78%, throughput by 86%, and latency by 165%.

Figure 7.5 shows the performance CDFs for each array. As was the case with FitnessDirect, Arrays

A, B and D are somewhat clustered, and Array C is an outlier. This is especially evident in the latency

CDFs. In the bandwidth and latency graphs (right half), one can see similarities among Arrays A, B,

and D.

When compared to FitnessDirect, the performance differences among the arrays are not as ex-

treme for FitnessBuffered. For example, Array D is twice as fast as Array C, on average. With

FitnessDirect, Array D is over three times as fast. Again, the relative fitness of the arrays can change

with the workload. In this case, the only differences among the samples are those introduced by the
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Figure 7.4: Each graph shows the probability distribution function (PDF) of the bandwidth relative
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Figure 7.5: The cumulative distribution of performance for FitnessBuffered is shown (left). In addition,
the performance of each array is shown (right), sorted by the performance of Array C.
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buffer cache.

Just as with FitnessDirect, no one array is always slowest, or fastest, for FitnessBuffered. As can

be seen in the relative fitness PDFs (see Appendices), there exists a wide range of relative fitness values

for each pairing of arrays, which suggests that a single performance ratio between any two arrays would

be a poor predictor of performance. For example, the bandwidth relative fitness of Array A to Array B

ranges from 0.34 to 1.17, as indicated in the “min” and “max” values in the relative fitness PDFs. In

other words, Array C can be up to 66% slower, or 17% faster than Array B, depending on the workload.

FitnessFS

The FitnessFS samples are identical to FitnessDirect and FitnessBuffered, but all I/O is directed

through a file in a Linux file system (Ext2). From Table 7.3, Array D is again the fastest array

(24 MB/sec), followed by Array A (23 MB/sec), Array B (18 MB/sec), and then Array C (15 MB/sec).

The maximum relative difference in performance occurs between Arrays C and D, where average band-

width varies by 55%, throughput by 56%, and latency by 179%. The performance graphs in Figure 7.6

illustrate still the similarity among Arrays A, B, and D, and the differences with Array C.

FitnessCache

For FitnessCache, Array D (40 MB/sec) is the fastest array, followed by Array C (35 MB/sec), Array A

(16 MB/sec), and then Array B (16 MB/sec). Unlike the previous workloads, Array C is now the second

fastest array, as opposed to the slowest, again underscoring the fact that the relative fitness of disk

arrays is dependent on the workload. The maximum relative difference in performance for bandwidth

and throughput now occurs between Arrays B and D, where average bandwidth varies by 156% and

throughput by 541%. The maximum relative difference in latency is still between Arrays C and D

(223%). Also, FitnessCache exhibits a different clustering of the disk arrays in terms of performance.

The latency graph in Figure 7.7 (right half) is an especially nice example of how Arrays A, B, and D

behave similarly, particularly for samples 25 through 35. Yet, in the bandwidth and throughput graphs,

Arrays A and B are similar to one another, as are Arrays C and D.

Postmark

For Postmark (Figure 7.8), Array D is the fastest array (39 MB/sec), followed by Array A (27 MB/sec),

Array B (22 MB/sec), and Array C (14 MB/sec). The maximum difference in performance occurs between

Arrays C and D, where average bandwidth varies by 167%, throughput by 155%, and latency by 456%. As

with previous workloads, the performance graphs shadow each other well in Figure 7.8. This is especially

true for samples 5-35 in the latency graph (right half).

Cello

Cello (Figure 7.9) has much lower bandwidth when compared to the previous workloads. Array D is the

fastest (10 MB/sec), followed by Array A (9 MB/sec), Array C (5 MB/sec), and Array B (4 MB/sec).

The maximum difference in performance occurs between Arrays B and D, where average bandwidth

varies by 99%, throughput by 124%, and latency by 506%. The cumulative distribution functions and
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Figure 7.6: The cumulative distribution of performance for FitnessFS is shown (left). In addition, the
performance of each array is shown (right), sorted by the performance of Array C.
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Figure 7.7: The cumulative distribution of performance for FitnessCache is shown (left). In addition, the
performance of each array is shown (right), sorted by the performance of Array C.
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Figure 7.8: The cumulative distribution of performance for Postmark is shown (left). In addition, the
performance of each array is shown (right), sorted by the performance of Array C.
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Figure 7.9: The cumulative distribution of performance for Cello is shown (left). In addition, the perfor-
mance of each array is shown (right), sorted by the performance of Array C.

performance graphs in Figure 7.9 indicate a new clustering of arrays: Arrays A and D are similar, as are

Arrays B and C. One can quickly glance at the CDFs and performance graphs in Figure 7.9 in order to

see the two clusters.

The average intra-array performance for Cello varies by less than 10% for all but the bandwidth

and throughput metrics on Array D. As shown by the Rel. Diff statistic in the Appendix for Cello

training, the average bandwidth and throughput on Array D vary by 18% (i.e., the average bandwidth

and throughput of the best and second-best iterations differ by 18%). Such variance must be considered

when making predictions, as it limits the prediction accuracy one can achieve with a model.

TPC-C

TPC-C (Figure 7.10) has the lowest bandwidth of all workloads. Array D is the fastest (2.4 MB/sec),

followed by Array C (2.0 MB/sec), Array A (1.7 MB/sec), and Array B (1.1 MB/sec). The maximum

difference in performance occurs between Arrays B and D, where average bandwidth varies by 114%,

throughput by 112%, and latency by 791%. Arrays A and B have very similar performance graphs, espe-
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Figure 7.10: The cumulative distribution of performance for TPC-C is shown (left). In addition, the
performance of each array is shown (right), sorted by the performance of Array C.

cially in the bandwidth and throughput graphs in Figure 7.10. For example, one can imagine multiplying

the bandwidth or throughput curve of Array B by a constant performance ratio (a relative fitness value)

to arrive at the performance curve of Array A.

Similarly to Cello, the variance in performance is low for most of the disk arrays. However, the

average latency on Array B varies by 14%, as shown in the Appendix for the TPC-C training data.

Microbenchmarks

Across all application workloads evaluated, although one sees significant differences in the average per-

formance across the disk arrays, one can also see similarities in the distributions of performance and in

the shape of the sorted performance graphs. To illustrate this point even further, Figure 7.11 contains

performance graphs for the set of simple microbenchmarks: sequential writes, random writes, sequential

reads, and random reads. These workloads are a subset of the FitnessDirect samples. For each graph,

only two workload characteristics are varied: the queue depth (from 1 to 64, stepping powers of 2) and

the request size (from 1 to 32 KB, stepping powers of 2). Each graph is composed of 42 workload samples
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Figure 7.11: Each graph plots the performance of each disk array, for various queue depths and request
sizes. There is one graph each for sequential writes, random writes, sequential reads, and random reads.
In each graph, the queue depth varies from 1 to 64 (powers of two) and the request size from 1 to 32 KB
(powers of two). The first 7 samples in each graph are for a request size of 1 KB and queue depths of 1
to 64, the second 7 samples are for a request size of 2 KB and queue depths of 1 to 64, and so on.

(7 queue depths × 6 request sizes). Unlike the sorted performance graphs, the samples are not sorted by

the performance of Array C. Instead, because only two workload characteristics being varied, the samples

are sorted first by request size and then by queue depth.

In looking at Figure 7.11, one can see how similar the performance graphs of the arrays are, despite

the large differences in performance. This observation is the key behind relative fitness modeling. If

arrays react similarly to workloads, the performance of one array may be a good predictor for another.

7.5.2 Workload characterization

Performance differences can lead to changes in workload characteristics.

This section summarizes the block-level workload characteristics for each application (i.e., from each

array’s point of view) and the extent to which they change across disk arrays. Changes in the workload

characteristics are quantified in the same manner as the performance metrics. For each application, the

average value for each workload characteristic (across all samples) is compared just as the performance

averages were in the previous section, using the mean absolute deviation (MAD), the coefficient of vari-

ation (COV), and the maximum relative difference between averages (Max. Diff.). For example, the

average write request size of Postmark is calculated for each of the disk arrays, across all of the Postmark

samples. Then, the COV, MAD, and Max. Diff. statistics are used to quantify the change in average

write request size across arrays. See Table 7.4.



7.5. EXPERIMENT 1: CHANGING WORKLOADS 112

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  1
0

 1
5

 2
0

 2
5

F
ra

ct
io

n

Write queue

Array A
Array B
Array C
Array D  0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

F
ra

ct
io

n

Write jump (MB)

Array A
Array B
Array C
Array D

Figure 7.12: CDFs of the average write queue depth for the FitnessDirect samples (left half of figure)
and the average write randomness for the FitnessBuffered samples (right half).

FitnessDirect

Beginning with FitnessDirect, the only workload characteristics that experience any change are the

write and read queue depths. Of course, this is due to the different service rates of the disk arrays.

Recall, FitnessDirect issues I/O directly to the arrays, so I/O requests are not subject to modification

in a file system or buffer cache. Therefore, the queue depths are the only workload characteristics eligible

for change. From Table 7.4, Array A has the longest write queues for the FitnessDirect samples (9 IOs

on average), followed by Array C (4), Array D (3.4) and Array B (3.0). The maximum relative difference

between these averages is 188%, which occurs between Arrays A and B. Similarly, the read queue depth

varies by up to 57%.

To visualize the write queue depth differences, Figure 7.12 (left half) plots the cumulative distribution

functions of the observed write queue depth, over each the 100 FitnessDirect training samples. One

can see the similarity among Arrays B, C, and D. Array A is an outlier (it has the longest queues).

As was done with the performance measurements, to ensure that the workload changes are due to

changes in the performance of the disk arrays, rather than variance, one can compare the Rel. Diff. value

in the Appendix for FitnessDirect with the Max. Diff. value in Table 7.4. For example, the average

write queue depth for FitnessDirect varies by less than 1% across different iterations of the same set of

samples, when the samples are measured on the same disk array — compared to 188% when comparing

the average queue depth across arrays. Throughout the rest of this section, unless otherwise stated,

one can assume that the intra-array variance of a workload characteristic is much less than the inter-

array variance, thereby indicating that the change in workload characteristics is due to the performance

differences among the disk arrays.

FitnessBuffered

Looking now at FitnessBuffered, one can see the effects of issuing I/O through the OS buffer cache.

Most notably, the maximum relative difference in the average write randomness is 28%, which occurs

between Arrays B and C. In other words, Array C experiences write jumps that are, on average, 28%

longer than those seen by Array B. Figure 7.12 (right half) illustrates the change, where the distribution

of the write jump distance is markedly different for Array C. The other workload characteristics vary by

less than 10%, as shown in Table 7.4.
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Figure 7.13: CDFs of the average write randomness and queue depth for the FitnessFS training samples.

Note that for the FitnessBuffered samples, Array C itself experiences considerable intra-array vari-

ance in the write randomness. As shown in the Appendix for FitnessBuffered training, the write

randomness of Array C varies by 136%, across different iterations of the same set of samples. This is a

case where the intra-array variance of a workload characteristic (Rel. Diff.) is not significantly less than

the inter-array variance (Max. Diff.). Therefore, it is difficult to conclude, using only the Rel. Diff. statis-

tic, that a change in workload characteristics is due to performance differences among the arrays —

because the workload characteristics change even on the same array. In general, the average write ran-

domness is the characteristic that experiences the most intra-array variance, which suggests that it might

be too sensitive a workload characteristic. One possible remedy for future work is to use the median

jump distance, or a percentile, rather than the mean. Nonetheless, one can see in Figure 7.12 (right half)

that the distribution of write randomness for Array C is noticeably different from the other arrays.

FitnessFS

FitnessFS issues I/O through the file system and behaves similarly to FitnessBuffered, in that Array C

is an outlier with respect to the spatial randomness of writes. The largest difference occurs between

Array C and Array D, where Array D experiences write jumps that are, on average, 179% longer than

those seen by Array C. In addition to the write randomness, the average write queue depth varies by up

to 25%. Figure 7.13 illustrates.

FitnessCache

The workload characteristics of FitnessCache (a read-only workload) vary only slightly. The only mea-

surable change is for the average read queue depth, which varies by up to 21%.

Postmark

One sees a variety of change with Postmark. The average write queue depth varies by up to 63%, the

read queue depth by 45%, and the write randomness by 17%. Again, Array C sees the least randomness.

Figure 7.14 illustrates.
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Figure 7.14: CDFs of the average write randomness and queue depth for the Postmark training samples.

Cello

The write randomness of Cello varies up to 44% and the write queue depth up to 16%. Unlike the other

workloads, one also sees a significant change in the write request size. For example, the average write

request size varies from 18 KB on Array C to 21 KB on Array D.

TPC-C

The write queue depth of TPC-C varies up to 132% and the write randomness up to 105%. Even the

average write fraction experiences a 50% swing (e.g., from 16% writes on Array C to 24% writes on

Array D).

7.5.3 Summary

Workload characteristics can change across disk arrays when the arrays have different performance char-

acteristics. The write and read queue depths can obviously change, as disk arrays may have different

service rates. Other measurable changes can be seen in the spatial randomness, request sizes, even the

read/write ratio. In support of Hypothesis 1, Experiment 1 is summarized as follows:

Result 1 When the same workload is run on different disk arrays, performance varies considerably. On
average, bandwidth varies up to 189% (FitnessDirect), throughput up to 541% (FitnessCache), and
latency up to 791% (TPC-C). Moreover, there are measurable changes in the workload characteristics. On
average, the write queue depth varies up to 188% (FitnessDirect), the write randomness up to 179%
(FitnessFS), the read queue depth up to 57% (FitnessDirect), the write fraction up to 50% (TPC-C),
and the write size up to 21% (Cello). Insignificant changes are seen in the read randomness and the
read size.

In general, the write characteristics vary more than the read characteristics, as read requests are not

delayed, aggregated, and coalesced within the page cache in the same manner that write requests are. The

write characteristics that change the most are the spatial randomness and queue depth. In particular, a

slower disk array can experience less spatial write randomness than a faster array. Such is the case with

Array C.
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FitnessDirect

ArrayA ArrayB ArrayC ArrayD MAD COV Max. Diff.
Write fraction 0.48 0.48 0.48 0.48 0.0 0.2% 0.0%

Write size (KB) 102.18 102.12 102.40 102.06 0.1 0.1% 0.3%
Read size (KB) 119.88 119.54 120.06 119.65 0.2 0.2% 0.4%

Write jump (MB) 2421.29 2467.32 2445.39 2432.69 14.7 0.7% 1.9%
Read jump (MB) 2983.15 2973.14 3025.42 2979.56 17.6 0.7% 1.8%

Write queue 8.69 3.02 4.37 3.47 1.9 46.0% 187.8%
Read queue 3.13 4.92 3.51 4.37 0.7 17.6% 57.2%

FitnessBuffered

Write fraction 0.31 0.31 0.30 0.31 0.0 1.8% 3.3%
Write size (KB) 99.62 100.34 104.30 99.77 1.6 1.9% 4.7%
Read size (KB) 63.82 63.94 63.77 63.77 0.1 0.1% 0.3%

Write jump (MB) 255.22 237.39 302.71 252.20 20.4 9.4% 27.5%
Read jump (MB) 2057.00 2061.67 2116.93 2055.77 22.0 1.2% 3.0%

Write queue 26.36 26.24 24.97 25.96 0.5 2.1% 5.6%
Read queue 5.07 5.07 4.79 5.06 0.1 2.4% 5.8%

FitnessFS

Write fraction 0.30 0.30 0.30 0.30 0.0 0.6% 0.0%
Write size (KB) 104.56 106.12 109.11 105.15 1.4 1.6% 4.3%
Read size (KB) 59.72 59.59 59.30 59.10 0.2 0.4% 1.1%

Write jump (MB) 71.10 55.13 39.51 110.04 21.6 38.0% 178.5%
Read jump (MB) 630.12 629.82 636.29 638.64 3.8 0.6% 1.4%

Write queue 25.12 20.08 21.22 20.34 1.7 9.3% 25.1%
Read queue 2.87 2.83 2.91 2.83 0.0 1.1% 2.8%

FitnessCache

Read size (KB) 15.77 15.77 15.77 15.77 0.0 0.0% 0.0%
Read jump (MB) 1855.03 1861.46 1856.29 1850.03 3.2 0.2% 0.6%

Read queue 6.76 6.68 5.70 5.59 0.5 8.7% 20.9%
Postmark

Write fraction 0.76 0.77 0.76 0.77 0.0 0.7% 1.3%
Write size (KB) 110.72 109.48 108.27 109.50 0.6 0.8% 2.3%
Read size (KB) 53.72 54.12 51.53 54.11 0.9 2.0% 5.0%

Write jump (MB) 1754.38 1722.18 1518.64 1771.54 86.5 6.0% 16.6%
Read jump (MB) 3654.38 3631.52 3784.66 3558.88 63.6 2.2% 6.3%

Write queue 44.46 28.20 32.88 27.34 5.6 20.5% 62.6%
Read queue 2.23 1.95 1.66 1.54 0.2 14.5% 44.8%

Cello

Write fraction 0.45 0.44 0.44 0.47 0.0 2.8% 6.8%
Write size (KB) 17.70 21.41 17.67 20.69 1.7 8.8% 21.2%
Read size (KB) 6.98 7.14 7.37 7.22 0.1 1.9% 5.6%

Write jump (MB) 8.64 8.79 9.15 12.44 1.3 16.0% 44.0%
Read jump (MB) 313.28 303.72 301.67 326.10 8.5 3.1% 8.1%

Write queue 57.95 51.73 53.74 59.93 3.1 5.8% 15.8%
Read queue 5.99 5.84 5.76 6.08 0.1 2.1% 5.6%

TPC-C

Write fraction 0.18 0.21 0.16 0.24 0.0 14.1% 50.0%
Write size (KB) 8.52 8.45 8.61 8.77 0.1 1.4% 3.8%
Read size (KB) 8.14 8.12 8.17 8.12 0.0 0.2% 0.6%

Write jump (MB) 125.28 208.12 101.56 132.96 33.1 28.1% 104.9%
Read jump (MB) 273.16 270.48 277.00 299.40 9.7 4.1% 10.7%

Write queue 18.96 30.82 13.28 13.52 5.8 37.2% 132.1%
Read queue 1.00 1.00 1.00 1.00 0.0 0.1% 0.0%

Table 7.4: Workload characteristics are measured for each application. Average values are reported with
their mean absolute deviation (MAD), coefficient of variation (COV), and maximum relative difference.
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7.6 Experiment 2: absolute models

Experiment 1 showed that block-level workload characteristics can change across disk arrays. Therefore,

an absolute model of array i may experience an increase in prediction error when the workload charac-

teristics are obtained from a different array j (Hypothesis 2). Of course, as described in Chapters 2 and

5, this is how performance models are to be used in practice.

To test Hypothesis 2, absolute models are built for each disk array, as described in Section 6.3.

Summarizing from Section 7.4.3 (Table 7.2), the performance metrics (dependent variables) include the

bandwidth, throughput, and latency of each sample; and the workload characteristics (predictor variables)

include the write fraction, write request size, read request size, write randomness, read randomness, write

queue depth, and read queue depth.

Regarding queue depth, it is arguably more a resource utilization or performance metric than a

workload characteristic and, as such, should not be used in the construction of an absolute model (which

discards performance and utilization information). However, the absolute models evaluated in this work,

overall, are more accurate when the queue depth is included. The queue depth is an approximation of

the true multi-programming level of the application — a valuable, but difficult, workload characteristic

to obtain. So, it can be better to use an informative workload characteristic that changes, rather than

discard it altogether. Indeed, if one were to discard all the workload characteristics that have the potential

for change, as per the result of Experiment 1, there would be few workload characteristics left for training

the models!

To begin, performance models are built and evaluated for each application. Such per-application

models are used to illustrate the differences among the applications, specifically which workload char-

acteristics are the best predictors of performance. In addition, they present somewhat of a best-case

scenario for all the models, where the training data is representative of the testing data.

For the per-application models, 50% of the collected samples are used to train the models and the

remainder are used for testing. In addition, various training/testing splits are explored to compare how

quickly the models learn (i.e., models are first trained on 25% of the samples and tested on 75%, then

trained on 30% of the samples and tested on 70%, and so on).

After the per-application models are presented, more desirable mixed models are trained by combining

50% of all application samples. These models are more desirable in the sense that they attempt to learn

a disk array’s performance across a wide range of applications. This is a test to see that a single

black-box can learn to predict the performance of different applications. All of the per-application

and mixed models can be found in the regression tree appendices. Each model is rendered using the

dot programming environment for directed graphs [9]. Selected models are included throughout the

evaluation for illustrative purposes.

To test the models, three predictions (bandwidth, throughput, and latency) are made for each sample

across all pairings of disk arrays (recall that the models are directional). Because there are four arrays

in this evaluation, there are 16 permutations of two (4 where i = j and 12 where i 6= j). Therefore, for

each sample, absolute models are used to make 16 bandwidth predictions, 16 throughput predictions,

and 16 latency predictions. Stated differently, four predictions are made for each performance metric on

each disk array, for each sample: one uses the workload characteristics as measured by array i, and the
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Bandwidth Throughput Latency
Absolute A B C D A B C D A B C D
ArrayA 0.26 0.27 0.23 0.18 0.20 0.26 0.23 0.29 0.18 0.44 0.58 0.77
ArrayB 0.34 0.17 0.27 0.23 0.23 0.22 0.24 0.29 0.27 0.26 0.33 0.33
ArrayC 0.32 0.19 0.23 0.18 0.27 0.26 0.23 0.29 0.30 0.32 0.28 0.33
ArrayD 0.32 0.17 0.23 0.22 0.24 0.22 0.24 0.29 0.27 0.31 0.31 0.34

Table 7.5: Median relative error for FitnessDirect.

other three use the workload characteristics as measured by a different array j. As such, the errors of

these four predictions can be compared to see if changes in the workload characteristics affect prediction

accuracy.

Of course, as discussed, characterizing a workload on array i obviates the need for a performance

prediction of array i. Nonetheless, the i = j prediction serves as a baseline for the absolute model, where

workload characteristics experience no change as a workload is moved from one array to another. As

such, it is used to calculate the increased error due to changes in the workload characteristics.

Models are quantitatively compared by their median relative error. In addition, two visual comparisons

are used: the cumulative distribution function (CDF) of their relative error, and a graph of the median

relative error for the various training/testing splits. From the CDFs, one can also obtain any of the

percentiles (e.g., the 90th percentile of relative error).

Note, the mean relative error is not reported in the evaluation but is contained in the appendices. For

the applications and disk arrays evaluated, the mean error exaggerates modeling error (due to outliers)

and is a misleading indicator of a model’s accuracy. Also not contained in the evaluation, but contained

in the appendices, are probability distribution functions (PDFs) of the relative errors for each model.

7.6.1 Per-application models

Prediction error increases as a result of changing workload characteristics.

The prediction errors of the absolute models are now presented. Again, special attention is given to

FitnessDirect so as to provide instruction on interpreting the tables and figures.

FitnessDirect

There are 200 FitnessDirect samples (100 for training the absolute models and 100 for testing). The

median relative error when predicting the performance of the 100 test samples for each pairing of arrays

is shown in Table 7.5. The median relative error across all pairings is shown in Figure 7.15.

For example, the median relative error of the Array A latency model, when using the characteristics

obtained from Array A, is 18% (i.e., 50 of the predictions had a relative error of 18% or less). Through

a quick inspection of the table, one can see that the least error usually occurs along the diagonals, that

is, for the pairings where i = j, in which a workload is characterized on the same array for which the

prediction is being made. Unfortunately, this is not a realistic scenario, so one must be prepared for some

amount of error due to changing workloads.

The values off the diagonal (i 6= j) show the impact changing workload characteristics can have on

prediction accuracy. As described in Chapter 5, the absolute model for array i is trained with workload
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Figure 7.15: Median relative error: Experiment 2 (per-application models). The graphs show the median
relative error of each application, comparing the idealized absolute model, title “AM (i=j),” with the
absolute model (AM). Also shown are the average median relative errors of the applications for each
performance metric.

characteristics as measured by array i, not a different array j, hence the increases in error. As examples,

the median relative error for the Array A latency model increases from 18% to 27% when the workload

characteristics are obtained from Array B, 30% when obtained from Array C, and 27% from Array D.

Similarly, the error of the absolute throughput model for Array A is 20% when the workload characteristics

are obtained from Array A, increasing to 23% when obtained from Array B, 27% from Array C, and 24%

from Array D. For bandwidth, the prediction error increases from 26% when characteristics are obtained

from Array A to 34% from Array B, 32% from Array C, and 32% from Array D. Overall, the median

relative error of the bandwidth predictions is 20% for the idealized absolute models, and this increases to

23% for the in-practice absolute models. Similarly, the throughput prediction error increases from 23%

to 26%, and the latency prediction error increases from 25% to 34%.

To visualize the differences in prediction error, Figure 7.16 plots the cumulative distribution of relative

error for all pairwise predictions. Each graph compares the idealized absolute models with the in-practice

absolute models. In these graphs, the darkest line (least error) is that of the idealized absolute model.

For FitnessDirect (top row), one can see the increase in error due to changing workloads, especially in

the latency graph.

Finally, the accuracy of the idealized and in-practice absolute models is compared across varying levels

of training. The models begin by training on 25% of the samples (testing on the remaining 75%) and

proceed to a 75/25 split in increments of 5%. Figure 7.17 plots the median relative error across all such

splits.1 As can be seen in the graph, the idealized absolute, titled “AM (i = j),” is more accurate than

1Note, the errors in the error-versus-training graph, particularly when training on 50% of the samples and testing on
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Overall Bandwidth Throughput Latency
Predictor Score Predictor Score Predictor Score Predictor Score
Read queue 1.00 Read queue 1.00 Read queue 1.00 Write queue 1.00
Write queue 0.76 Read size 0.63 Write size 0.80 Read queue 0.86
Read jump 0.44 Read jump 0.56 Write jump 0.71 Read size 0.24
Read size 0.41 Write size 0.54 Read jump 0.61 Read jump 0.23
Write size 0.38 Write queue 0.44 Write fraction 0.49 Write jump 0.10

Write jump 0.27 Write jump 0.27 Write queue 0.43 Write fraction 0.08
Write fraction 0.14 Write fraction 0.05 Read size 0.25 Write size 0.07

Table 7.6: The normalized importance measure of each predictor for FitnessDirect.

the in-practice absolute model, titled “AM,” across a variety of training/testing splits. Of course, no

amount of training can teach an absolute model how to deal with changing workloads.

In support of Hypothesis 2, one sees that changing workloads increase the prediction error of the

FitnessDirect models. In hindsight, this should not come as a surprise. A simple inspection of the

workload characteristics and an analysis of the regression trees indicate that the most likely to change

workload characteristics are often those that also provide the most information.

Table 7.6 ranks the workload characteristics from most information to least. Again, the rankings

are based on an analysis of the regression tree models. The attribute with the highest ranking is that

involved in the most splits; it has a value of 1.0. For example, the best overall predictors of FitnessDirect

latency are the write and read queue depths. Therefore, one can logically conclude that a change in these

characteristics will lead to an incorrect traversal of the trees. Figure 7.18 shows the actual regression

trees for the absolute latency models, illustrating how a change in the write queue depth can result in an

inaccurate prediction.

The remainder of this section provides further support of Hypothesis 2 from the remaining appli-

cations. For each application, only the cumulative distribution functions of error and the error-versus-

training graphs are shown. The pairwise median relative errors and the attribute importance measures

are summarized from the appendices.

FitnessBuffered

Recall that the workload characteristic experiencing the most change for FitnessBuffered is the spatial

randomness of writes (Table 7.4). In particular, the maximum relative difference in the average write

randomness across arrays is 28%. Such change suggests that any model based on this characteristic

is likely to experience error. However, the write randomness is not a strong predictor of performance.

For FitnessBuffered, the strongest predictors of performance are the read characteristics (read queue

depth, read randomness, write fraction, and read request size). Fortunately, for an absolute model, these

workload characteristics experience only slight change across the arrays. As a result, the increase in

error due to changing workload characteristics is minor. Figure 7.16 plots the cumulative distribution

of error. Unlike the error distributions for FitnessDirect, little difference can be seen between the

the remainder, cannot be directly compared to the median relative errors in Figure 7.23. Although both graphs report
error when the training/testing split is 50%, the error-versus-training graph plots the average median relative error of the
array pairings, as opposed to Figure 7.23 which plots median relative error when the predictions from all array pairings are
combined. The resulting values are similar, but not necessarily the same.
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idealized and in-practice absolute models. The median relative error increases by only 1%. Still, small

differences can be observed in Figure 7.17, where the average median relative error is shown for various

training/testing splits. In general, as with FitnessDirect, the most accurate predictions occur when a

workload is characterized on the same array for which a prediction is being made.

FitnessFS and FitnessCache

FitnessFS and FitnessCache are also affected only slightly by changing workloads. Again, this is due

to the fact that the best predictors of performance for these workloads are the read I/O characteristics,

which only change slightly across the disk arrays for these workloads. Specifically, the best performance

predictors for FitnessFS are the write fraction, followed by the read queue depth and the read random-

ness. For FitnessCache, they are the read randomness, followed by the read queue depth and the read

request size.

In the cumulative error distributions in Figure 7.16, very little difference can be seen between the

idealized and in-practice absolute models. The difference in median relative error is less than 3% for

both of these workloads. One can see these small differences in the error-versus-training graphs in

Figure 7.17. In nearly all cases, due to the magnifying effect of the figure, the idealized absolute models

are distinguishable from the absolute models and are more accurate.

Postmark

With Postmark, the best predictors are the write characteristics. The write fraction is the best overall

predictor, followed by the write request size. However, neither of these characteristics experience much

change across arrays. Therefore, the error introduced by changing workloads is also small for Postmark,

though more evident than the error for FitnessFS and FitnessCache.

In the cumulative error distributions in Figure 7.16, one can see the difference between the idealized

and in-practice absolute models for the throughput and latency predictions. However, the difference in

median relative error between the idealized and in-practice absolute models is still less than 3% for all

performance metrics . These differences can be seen in the error-versus-training graphs in Figure 7.17.

In all cases, the idealized absolute models are distinguishable from the in-practice models and are more

accurate.

Cello

The effects of changing workloads on the Cello predictions are much more pronounced, particularly for

the latency predictions. The median relative error of the latency predictions increase from 11 to 17%; the

changes in bandwidth and throughput are minor. The differences can be seen in the error distributions

graphs in Figure 7.16 and the error-versus-training graphs in Figure 7.17.

As can be seen in the throughput graph in Figure 7.17, the idealized absolute model actually does

worse than the in-practice model, after training on 45% and 60% of the samples. Such inconsistencies in

the results appear now and again. In general, regression trees can be sensitive to the amount of training

data and may therefore experience sudden fluctuations in accuracy. Often, the fluctuations are shared

across all models after training on some number of samples. However, there are cases where only some

of the models experience a sudden change in accuracy.
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Overall Bandwidth Throughput Latency
Predictor Score Predictor Score Predictor Score Predictor Score
Read queue 1.00 Read queue 1.00 Read queue 1.00 Write fraction 1.00

Write fraction 0.72 Read jump 0.70 Read jump 0.66 Read queue 0.72
Read jump 0.56 Read size 0.54 Write size 0.50 Write queue 0.39
Read size 0.40 Write size 0.51 Read size 0.46 Read jump 0.24
Write size 0.37 Write fraction 0.49 Write queue 0.24 Read size 0.16

Write queue 0.37 Write queue 0.30 Write jump 0.21 Write size 0.09
Write jump 0.19 Write jump 0.29 Write fraction 0.19 Write jump 0.05

Table 7.7: The normalized importance measure of each predictor for the absolute models.

For Cello, the best latency predictors are the write fraction and the read queue depth. However,

as shown in Section 7.5, these workload characteristics experience change across the arrays. To cite a

specific example, due to changes in the write request sizes, the write fraction of sample #67 decreases

from 44% to 37% when moving from Array D to Array B. Consequently, an incorrect path is taken in

the tree. Figure 7.19 shows the latency model for Array B. If one inputs the write fraction as measured

by Array D (0.44) into this model, the predicted latency is 58.7 ms. However, when inputing the write

fraction as measured by Array B (0.37), the predicted latency is 46.8 ms. The actual latency for sample

#67 on Array B is 49.61 ms. Therefore, the idealized absolute model has a relative error of 6% versus

an error of 18% for the in-practice model. This is one specific example of how a relatively small change

in the workload characteristics can lead to an increase in prediction error. Overall, the most accurate

Cello predictions occur when the workload characteristics are obtained from the same array for which

the prediction is being made.

TPC-C

Of all the workloads, the TPC-C latency predictions are affected the most by changing workloads. The best

predictors of TPC-C latency are the write queue depth and the write fraction, and both show considerable

change across disk arrays. Recalling from Table 7.4, the average write queue depth changes by 132%

between Array B (31 outstanding) and Array C (13 outstanding), and the write fraction changes by 50%

between Array C (16% writes) and Array D (24%). Consequently, the median relative error increases

from 11% to 23%. The differences can be seen in the error distribution graphs in Figure 7.16 and the

error-versus-training graphs in Figure 7.17. Although the bandwidth and throughput prediction errors

only increase slightly, the error-versus-training graphs distinguish the in-practice and idealized absolute

models, and the idealized model is more accurate across all training/testing splits for each performance

metric.

7.6.2 Best predictors

Table 7.7 summarizes the best overall predictors for bandwidth, throughput, and latency. The val-

ues shown represent averages over all of the absolute models. The best predictors for bandwidth and

throughput are the read characteristics, specifically the read queue depth and read randomness. For

latency, however, the best predictors are the write fraction and the read and write queue depths.
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Application Per-application Mixed-model
FitnessDirect 0.28 0.25
FitnessBuffered 0.21 0.19

FitnessFS 0.16 0.17
FitnessCache 0.40 0.31
Postmark 0.08 0.09
Cello 0.15 0.18
TPC-C 0.10 0.12

Table 7.8: Per-application versus mixed model median relative error for the in-practice absolute models.

7.6.3 Mixed models

Mixed models are built using 50% of all application samples. Three models are built for each disk array

(bandwidth, throughput, and latency). In general, the trees are much larger for the mixed models. This is

because the applications, combined, cover a wider range of workload characteristics and performance than

any one application alone. In practice, such mixed models should be expected, rather than per-application

models.

As an example of a resulting tree, Figure 7.20 contains the regression tree for Array B, with no

additional pruning for readability. There are a total of 76 leaf nodes (rules) for predicting the bandwidth

of Array B. When compared to the tree depths of the per-applications models, the mixed models contain

a much more complex set of rules. Indeed, they attempt to learn the performance characteristics of an

array, rather than just the performance of a given application. To test that such complex models do not

introduce additional error, the mixed models are evaluated using the same set of testing samples used to

test the per-application models.

Figure 7.21 graphs the error of the mixed models. One can see the effects of changing workload

characteristics by comparing the idealized absolute model against the in-practice absolute model. This

result is consistent with the per-application models just presented.

Table 7.8 compares the median relative errors directly. As shown in the table, the per-application and

mixed models are within 3% of one another for all workloads, with the exception of FitnessCache (a 9%

difference). In some cases, prediction error increases slightly when using a mixed model, and in others

it actually improves. This is because additional training data, even though it may come from different

workloads, can provide useful information to CART when learning the performance characteristics of an

array.

7.6.4 Summary

The amount by which changing workload characteristics increases the prediction error of an absolute

model was measured across a variety of workloads and disk arrays. Overall, predictions are more accurate

when the workload characteristics are obtained from the same disk array for which the prediction is being

made. In support of Hypothesis 2, Experiment 2 is summarized as follows:

Result 2 Changing workload characteristics can increase the prediction error of an absolute model.
When compared to an idealized absolute model (i = j), an in-practice absolute model (i 6= j) can in-
crease the median relative error by over a factor of two (the FitnessDirect latency error increases from
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34% for the idealized array pairing D → D to 77% for the pairing A → D; and the TPC-C latency error in-
creases from 11% for C → C to 46% for B → C). Over all array pairings, the bandwidth prediction error
increase up to 3% (FitnessDirect increases from 21% to 24%), throughput up to 3% (FitnessDirect
increases from 23% to 26%), and latency up to 12% (TPC-C increases from 11% to 23%).

In general, the bandwidth and throughput predictions are not affected by changing workloads as much

as the latency predictions are. This is due to the fact that their best predictors (read characteristics) are,

as shown in Experiment 1, the least likely to change across arrays. For latency, however, the write queue

depth can be a leading source of information, and this workload characteristic experiences significant

change across arrays. It is also interesting to note that the write randomness, although it experiences

significant change across arrays, is not a leading source of information. This is an example of a workload

characteristic that changes but has little effect on prediction accuracy.



7.6. EXPERIMENT 2: ABSOLUTE MODELS 124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (FitnessDirect)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (FitnessDirect)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (FitnessDirect)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (FitnessBuffered)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (FitnessBuffered)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (FitnessBuffered)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (FitnessFS)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (FitnessFS)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (FitnessFS)

Absolute
Absolute (i=j)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (FitnessCache)

Absolute
Absolute (i=j)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (FitnessCache)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (FitnessCache)

Absolute
Absolute (i=j)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (Postmark)

Absolute
Absolute (i=j)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (Postmark)

Absolute
Absolute (i=j)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (Postmark)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (Cello)

Absolute
Absolute (i=j)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (Cello)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (Cello)

Absolute
Absolute (i=j)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Bandwidth (TPC-C)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Throughput (TPC-C)

Absolute
Absolute (i=j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

F
ra

ct
io

n

Relative error

Latency (TPC-C)

Absolute
Absolute (i=j)

Figure 7.16: Relative error CDFs .
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Figure 7.17: Error vs. training set size. The training set size varies from 25% of the collected samples
to 75%; the remaining samples are used for testing. For each training set size, an error metric (median
relative error) is calculated for each pairing of arrays. These metrics are then averaged across all pairings
to produce the values shown.
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Figure 7.18: Absolute latency models for FitnessDirect.
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Figure 7.20: Absolute bandwidth model of Array B (WorkloadMix).
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Figure 7.21: Median relative error: Experiment 2 (mixed models). The graphs show the median relative
error of each application, comparing the idealized absolute model, title “AM (i=j),” with the absolute
model (AM). Also shown are the average median relative errors of the applications for each performance
metric.
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7.7 Experiment 3: relative models

Experiment 1 confirmed that performance differences among the disk arrays can lead to changes in

workload characteristics, and Experiment 2 confirmed that changes in workload characteristics can lead

to increases in the prediction error of an absolute model. Hypothesis 3 asserts that one can reduce this

error by modeling an array i relative to the workload characteristics of another array j.

To test Hypothesis 3, relative models are built for each array pairing and performance metric. Each

model implements Equation 6.1, where only the workload characteristics of array j are used to predict

performance of array i. There are 16 pairings and 3 metrics, for a total of 48 relative models. Although

a relative model where i = j is simply an absolute model, these models are presented separately in many

of the appendix tables for improved readability. It also serves as sanity-check that the relative models

and absolute models have trained and tested over the same set of samples (i.e., the prediction errors for

the absolute and relative model should be identical when i = j).

As described in Chapter 6, the only differences between an absolute and relative model are the

workload characteristics used during training. When learning the performance of array i, an absolute

model is trained with workload characteristics as measured by array i, and a relative model is trained with

those measured by a different array j. Summarizing from Section 7.4.3 (Table 7.2), these characteristics

include the write fraction, write request size, read request size, write randomness, read randomness, write

queue depth, and read queue depth. The predicted variable is the same for the absolute and relative

model (i.e., the bandwidth, throughput, or latency of array i).

Just as in Experiment 2, 50% of the workload samples are used for model testing. This involves

inputing the workload characteristics of the sample as measured on array j into the relative performance

models of array i, for all pairings j → i. The prediction accuracies are then compared against the idealized

and in-practice absolute models presented in the previous section. The goal of the relative model is to

reduce the prediction error of the in-practice absolute model or, stated differently, to match the prediction

error of the idealized absolute model. If there is no change in workload characteristics for a pairing j → i,

then a relative model is, in effect, equivalent to an absolute model (same input and same output).

7.7.1 Per-application models

Relative models can reduce the error caused by changing workload characteristics.

FitnessDirect

Figure 7.22 contains the relative latency models of Array A for FitnessDirect. Also shown is the absolute

latency model for Array D. In taking a closer looking at the relative performance model D → A, one can

see many similarities in the internal node structure with the absolute model of Array D. Again, the goal

of the relative model is to learn the performance of Array A relative to the workload characteristics as

measured by Array D. Therefore, it may be the case that the relative and absolute models choose the

same characteristic and in some cases the same splitting value.

For example, the absolute latency model of Array D and the relative model D → A both proceed

down the right half of the tree, if the write queue depth (as measured by Array D) is greater than 6.8.

Naturally, if the models use the same workload characteristics (those of Array D in this case) to separate
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Figure 7.22: Relative latency models for FitnessDirect.

training samples into leaf nodes, then similar (or identical) values can be chosen for the splits. However,

because a regression tree is constructed such that the error in the leaf nodes is minimized, different

splitting values may be chosen, or different splits altogether, as the leaf nodes contain different values

(e.g., the leaf nodes of the D → A model contain performance values for Array A and those for D → D

contain performance values for Array D).

These models, illustrated, further clarify why changes in workload characteristics are a non-issue for a

relative model. Because a relative model of array i is trained using the workload characteristics observed

by array j, an incorrect path cannot be taken in the tree due to changes in workload characteristics

between arrays j and i — because the workload characteristics of array i are not even used by the

relative model.

Figure 7.23 plots the median relative error of the relative models for FitnessDirect. Also shown

are the median relative errors for the idealized and in-practice absolute models from Experiment 2. In

general, one first sees error increasing (due to changing workload characteristics) then decreasing (due

to the use of a relative model). For FitnessDirect, the largest reduction in error is for the latency

predictions, from 34% to 25%; the same increasing/decreasing effect can be seen for bandwidth and

throughput, although not as pronounced.

Figure 7.24 (top row) plots the cumulative distribution functions of relative error. These are the same

CDF graphs as in Experiment 2, but with the relative models added for comparison. In the latency

graph, one can see that the distribution of error for the relative model (now the darkest line) is nearly

identical to that of the idealized absolute model. The same is true for the bandwidth and throughput

CDFs, though more difficult to see.

As with Experiment 2, the differences among the models are more easily seen in the error-versus-
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Figure 7.23: Median relative error (per-application models). The graphs show the median relative error
of each application, comparing the idealized absolute model, title “AM (i=j),” with the absolute model
(AM) and the relative model (RM). Also shown are the average median relative errors of the applications
for each performance metric.

training graphs. Figure 7.25 (top row) plots the same graphs as in Experiment 2, with the relative

models (darkest line) added for comparison. As can be seen, the relative model and idealized absolute

model track each other well. This is especially evident in the latency graph.

Of course, the improvement to be had by using a relative model (one that only uses workload charac-

teristics) is limited by the extent to which workload characteristics change between two arrays. Therefore,

the predictions that suffered the most in Experiment 2, due to changing workloads, will be those that

stand to benefit the most from the use of a relative model. In the case of FitnessDirect, these are the

latency predictions. As an example, recall from the previous section that the in-practice absolute models

experience the greatest error for Array A, either when using the characteristics of Array A to predict the

performance of another array or when predicting the performance of Array A using the characteristics of

one of the other arrays.

Specifically, when compared to the median relative error of the idealized absolute model of Array A

(18%), the in-practice predictions increase error substantially: B → A is 27%, C → A is 30%, and D → A

is 27%. Things are even worse when using characteristics from Array A to predict for the other arrays:

A → B is 44%, A → C is 58% and A → D is 77%. Collectively, the average median relative error of

the latency predictions involving Array A is 44%. However, when relative models are used to make these

predictions, the average median relative error is reduced to 22%. Therefore, although the median relative

error over all pairings is reduced from 34% to 25% (as shown in Figure 7.23), when looking at individual

pairings, the differences can be even greater.
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FitnessBuffered

As shown in Experiment 2, the FitnessBuffered predictions are only affected slightly by changing

workload characteristics. Therefore, the cumulative distribution function of the idealized absolute models,

in-practice absolute models and relative models are, for the most part, indistinguishable, as shown in

Figure 7.24. Still, one can see differences in the error-versus-training graphs in Figure 7.25. In most of

the training/testing splits, the idealized absolute models and relative models perform similarly and are

more accurate than the in-practice absolute models.

Just as with FitnessDirect, one sees a literal reversing of the effects of changing workloads. For

bandwidth, the median relative error increases from 17% to 19% due to changing workloads, and then

decreases to 18% when using a relative model. For throughput, the median relative error of all three

models is the same (20%). For the latency predictions, the median relative error of the idealized absolute

models is 23%, increasing to 25% for the in-practice models, and decreasing back to 23% for the relative

models.

FitnessFS

Similarly to FitnessBuffered, one sees only slight differences across the models for FitnessFS. The

median relative error of the idealized absolute models, in-practice absolute models, and relative models

are within 2% of one another. Again, this result is consistent with that of Experiment 2, as the best

predictors for this workload exhibit the least change across disk arrays. As such, only minor improvements

are to be gained by using a relative model that only uses workload characteristics. As can be seen in the

cumulative distribution functions in Figure 7.24, the models have nearly identical distributions.

FitnessCache

The effect of the relative models on the FitnessCache predictions is similarly small. Prediction error

increases by less than 3% due to changing workloads. For all performance metrics, the difference in

median relative error among the idealized absolute models, in-practice absolute models, and relative

models is within 5%. As further illustrated in the cumulative distributions functions in Figure 7.24 and

the error-versus-training graphs in Figure 7.25, there is very little difference among the models.

Postmark

Although the differences are small, as shown in Figure 7.23, Postmark is another good example of a case

where the relative model eliminates the error due to changing workloads characteristics, albeit only 1%,

and produces the same accuracy as the idealized absolute model. Such is the case for the bandwidth

and throughput predictions. The significance is not so much the reduction in error, but rather that the

relative model is not expected to exceed, but simply match the accuracy of the idealized absolute model.

Further, Postmark illustrates a case where different training/testing splits result in greater differences

among the models, as can be seen in the error-versus-training graphs in Figure 7.25. In particular, the

average median relative error of the in-practice latency models is approximately 18% when training on

25% of the samples and testing on the remaining 75%, versus an error of 11% for the idealized and relative

models.
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Cello

Recall from Experiment 2 that the Cello latency predictions are affected by changing workloads (median

relative error increases from 11% to 17%). Given this, one would expect a commensurate decrease in

error when using a relative model. Unfortunately, this is not the case with Cello.

Cello represents a workload where a relative model cannot cope with the changing workloads and

match the accuracy of the idealized absolute model. As can be seen in the cumulative distribution of

latency error in Figure 7.24, the distribution of error for the relative models is more similar to that of

the in-practice absolute models. The same is true for the error-versus-training graph in Figure 7.25.

Fortunately, a relative model has the option of using potentially more valuable (and less volatile)

performance characteristics in place of workload characteristics. As will be shown in Experiment 4, it is

not until performance is added to the relative models of Cello that one can exceed the accuracy of the

in-practice absolute models.

TPC-C

Recall from Experiment 2 that the TPC-C latency predictions incur the largest error due to changing

workloads. In particular, changes in the read/write ratio and write queue depth lead to a 12% increase

in median relative error, from 11% to 23%. The relative model is able to eliminate most of this error.

As shown in Figure 7.23, the relative models reduce error by 10%, thereby yielding an accuracy within

2% of the idealized absolute model. This effect is illustrated in the cumulative distribution of error in

Figure 7.24, as well as the error-versus-training graphs in Figure 7.25.

Like FitnessDirect, the improvements in relative error for TPC-C are more pronounced for specific

array pairings. For example, the median relative error of the B → C latency predictions, using an

absolute model, is 46%, compared to 11% for C → C. However, when using a relative model, the error

of B → C is reduced to 17%. The Array D latency predictions also suffer considerably from changing

workloads: D → D is 12%, but C → D is 25%, B → D is 36% and A → D is 35%. Collectively, their

average median relative error is 32%. However, relative models reduce this average to 11%.

7.7.2 Best predictors

Table 7.9 contains the best predictors of performance for the relative models. They are primarily the same

as those of the absolute models (Table 7.7); the importance measure of each workload characteristic may

vary slightly. In particular, the best predictors of bandwidth and throughput are the read characteristics

(queue depth and randomness), and the best predictors of latency are the read and write queue depths.

7.7.3 Mixed models

The average median relative errors of the mixed models are within 3% of the per-application models.

As can be seen in Figure 7.26, the relative models, overall, produce the lowest average median relative

error for the throughput and latency predictions; the absolute models and relative models tie for the

bandwidth predictions. In 12 of the 21 cases (i.e., there are 7 bandwidth graphs, 7 throughput graphs,

and 7 latency graphs in Figure 7.26), the relative models reduce error over the absolute models, by up to

5%. In 8 of the cases, the absolute models produce less error, but only up to 3%. In one case (FitnessFS
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Overall Bandwidth Throughput Latency
Predictor Score Predictor Score Predictor Score Predictor Score
Read queue 1.00 Read queue 1.00 Read queue 1.00 Write fraction 1.00

Write fraction 0.65 Read jump 0.72 Read jump 0.67 Read queue 0.88
Read jump 0.57 Read size 0.52 Write size 0.47 Write queue 0.48
Read size 0.42 Write fraction 0.52 Read size 0.46 Read jump 0.32
Write size 0.39 Write size 0.48 Write queue 0.28 Read size 0.28

Write queue 0.37 Write jump 0.34 Write fraction 0.22 Write size 0.23
Write jump 0.24 Write queue 0.27 Write jump 0.20 Write jump 0.16

Table 7.9: The normalized importance measure of each predictor for the relative models.

latency), they tie. This result confirms that the benefits of relative models can also be seen with models

that are trained with a mix of different workloads.

7.7.4 Summary

The amount by which relative models reduce the prediction error caused by changing workloads was

measured across a variety of workloads and disk arrays. Overall, predictions are more accurate when the

performance of array i (the workload target) is modeled relative to the workload characteristics of array

j (the workload origin). In support of Hypothesis 3, Experiment 3 is summarized as follows:

Result 3 When compared to an absolute model, a relative model can decrease the median relative error by
over half (the FitnessDirect latency prediction error decreases from 77% to 29% for the pairing A → D,
and TPC-C decreases from 46% to 17% for B → C). Over all pairings, the bandwidth prediction error
decreases up to 1% (FitnessDirect decreases from 24% to 23%), throughput up to 4% (FitnessDirect
decreases from 26% to 22%), and latency up to 10% (TPC-C decreases from 23% to 13%).

It is no coincidence that the above result is almost an exact complement of Experiment 2. Recall

that in Experiment 2, FitnessDirect and TPC-C are the workloads where prediction accuracy suffers the

most from changing workloads. They are also the workloads that benefit the most from a relative model.
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Figure 7.24: Relative error CDFs.
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Figure 7.25: Error vs. training set size. The training set size varies from 25% of the collected samples
to 75%; the remaining samples are used for testing. For each training set size, an error metric (median
relative error) is calculated for each pairing of arrays. These metrics are then averaged across all pairings
to produce the values shown.
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Figure 7.26: Median relative error (mixed models). The graphs show the median relative error of each
application, comparing the idealized absolute model, titled “AM (i=j),” with the absolute model (AM),
and the relative model (RM). Also shown are the average median relative errors of the applications for
each performance metric.
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7.8 Experiment 4: relative performance models

Experiments 1 through 3 established that changing workload characteristics can increase the prediction

error of an absolute model and that this error can often be reduced, or eliminated, by using a relative

model. The goal of Experiment 4 is to extend a relative model with performance observations, thereby

creating a relative performance model (Equation 6.2). As described in Section 6.3, a relative performance

model uses the observed workload characteristics and performance metrics from array j to predict the

performance of array i.

The test of Hypothesis 4 is similar to that of Hypothesis 3: two relative models (i → j and j → i)

are built for each array pairing and performance metric. Summarizing from Section 7.4.3 (Table 7.2),

the workload characteristics are the same as those of used by the absolute and relative models, including

the write fraction, write request size, read request size, write randomness, read randomness, write queue

depth, and read queue depth. The additional predictor variables (Table 7.2) include the bandwidth,

throughput, and latency of array j, with latency further described by the write latency and read latency.

Just as in Experiments 2 and 3, each of the workload samples reserved for testing is used to measure

the accuracy of the relative performance models. For each performance metric, two predictions are made

for every array pairing (i → j and j → i). This involves inputing the workload characteristics and

performance of the sample as measured on array j into the relative performance model for array j to i,

and vice versa. The prediction errors are then compared against the relative models to see the incremental

benefit of using the observed performance of one array to predict the performance of another.

7.8.1 Per-application models

Observed performance is a good predictor of future performance.

FitnessDirect

The best predictor of performance for FitnessDirect is, in fact, the observed performance of another

array. Figure 7.27 contains the relative performance models for latency. Also shown is the absolute model

of Array A from Experiment 3. One notices that the latency of array j is the strongest predictor of the

latency of array i. Intuitively, this stands to reason. Rather than attempt to learn how queue depths,

request sizes, and spatial randomness influence I/O latency, a model can simply observe the latency of

array j and translate this into a latency of another array i.

Table 7.10 shows the normalized importance measure for each attribute, across all array pairings.

In general, the best predictor of the bandwidth of array i is the bandwidth of array j. Similarly, the

best predictor of throughput is throughput, and the best predictor of latency is latency. Also note

that the second and third best predictors are often performance metrics. In other words, the natural

(mathematical) connection among bandwidth, throughput and latency is automatically discovered by

CART. However, workload characteristics (e.g., read queue depth) are still found to be valuable. So,

rather than discard them, the best solution is to allow a model to determine which combinations of

performance and workload characteristics for array j are most correlated with the performance of array

i.
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Figure 7.27: Relative performance models of the latency of Array A (FitnessDirect).
.

These strong correlations with performance can lead to lower prediction error. When comparing the

relative performance models to the relative models, one sees further reductions in error. Figure 7.28 plots

the median relative error for all applications. One can see that, in nearly all cases, the relative performance

models are more accurate than the relative models. For FitnessDirect, the median relative error of

the bandwidth predictions is reduced from 23% to 19% and the latency predictions from 25% to 20%;

throughput remains the same (22%). These differences can be seen in the cumulative error distributions

in Figure 7.29 as well as the error-versus-training graphs in Figure 7.30. In these graphs, the darkest line

is that of the relative performance model.

FitnessBuffered

The improvements for FitnessBuffered are even more pronounced than those of FitnessDirect. The

median relative error of the bandwidth predictions decreases from 18% to 14%, throughput from 20% to

15%, and latency from 23% to 16%. These differences can be seen in the cumulative error distributions

in Figure 7.29 as well as the error-versus-training graphs in Figure 7.30. Of all the applications, the

FitnessBuffered graphs are the most salient in terms of error reduction from the relative performance

models.

The strongest (top 3) bandwidth predictors for FitnessBuffered are the bandwidth, followed by

the read randomness, and then the read latency. For throughput, they are the throughput, the read

queue depth, and the read randomness. For latency, they are the latency, the read/write ratio and the

bandwidth. Unlike FitnessDirect, the models of FitnessBuffered make greater use of the workload

characteristics. Still, the strongest predictors are the performance metrics.
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Relative performance model
Overall Bandwidth Throughput Latency

Predictor Score Predictor Score Predictor Score Predictor Score
Latency 1.00 Bandwidth 1.00 Throughput 1.00 Latency 1.00

Bandwidth 0.83 Latency 0.24 Bandwidth 0.26 Write latency 0.16
Throughput 0.59 Write fraction 0.15 Latency 0.11 Read latency 0.16
Read queue 0.19 Write jump 0.12 Read queue 0.11 Bandwidth 0.10
Read latency 0.17 Throughput 0.11 Write queue 0.08 Read queue 0.09
Write fraction 0.17 Read size 0.10 Write size 0.05 Write queue 0.08
Write latency 0.16 Read queue 0.10 Write fraction 0.05 Read jump 0.08
Write queue 0.16 Read jump 0.09 Read size 0.05 Write fraction 0.06
Read jump 0.14 Write queue 0.09 Write jump 0.04 Read size 0.05
Read size 0.13 Read latency 0.08 Read jump 0.04 Write size 0.02

Write jump 0.11 Write size 0.05 Write latency 0.02 Write jump 0.02
Write size 0.07 Write latency 0.04 Read latency 0.01 Throughput 0.01

Table 7.10: The normalized importance measure of each predictor.

FitnessFS

One can see similarly large reductions in median relative error for FitnessFS. When compared to the rela-

tive model, the relative performance model reduces bandwidth prediction error from 16% to 11%, through-

put from 14% to 11%, and latency from 16% to 14%. As with FitnessDirect and FitnessBuffered, the

distributions of error for the relative performance models are distinguished from the relative and absolute

models in Figure 7.29. The same is true in the error-versus-training graphs in Figure 7.30.

The top predictors of performance for FitnessFS are the performance metrics (bandwidth is the best

predictor of bandwidth, etc.). However, the second and third best predictors are workload characteristics.

For bandwidth, they are the read queue depth and read randomness. For throughput, they are the write

size and read queue depth. For latency, they are the read/write ratio and the read randomness. In

this regard, FitnessFS is a good example of how useful workload characteristics are, even when the top

predictors are performance metrics.

FitnessCache

The FitnessCache workload exhibits the largest reduction in median relative error, particularly for the

bandwidth predictions, where error is reduced from 70% to 47%. Throughput experiences no change

(36%) and latency only a small reduction, from 18% to 17%. One can see the reduction in bandwidth

error in the error distributions graphs in Figure 7.29 and in the error-versus-training graphs in Figure 7.30.

Upon a closer inspection of the regression trees, it is found that the relative performance models of

bandwidth are able to create more homogeneous leaf nodes, by splitting on the bandwidth metric. For

example, the C → A relative performance model predicts 71.3 MB/sec for FitnessCache sample #64,

and the leaf used to make this prediction has a mean absolute deviation of 9.4 MB/sec. That is, the

training samples mapping to the leaf node have a median value of 71.3 (the prediction) with a mean

absolute deviation of 9.4 from their average value. The actual performance of sample #64 on Array A is

79.3 MB/sec, for a relative error of 10%.

In contrast, the relative models that only use workload characteristics can have less homogeneous
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Figure 7.28: Median relative error: Experiment 4 (per-application models). The graphs show the median
relative error of each application, comparing the idealized absolute model, title “AM (i=j),” with the
absolute model (AM), the relative model (RM), and the relative performance model (RM’). Also shown
are the average median relative errors of the applications for each performance metric.

leaf nodes. For sample #64, the relative bandwidth model for C → A predicts 46.9 MB/sec, with a

mean absolute deviation of 17.0 MB/sec. The relative error of the prediction is 41%. Had the relative

model had additional workload characteristics to better separate the samples, it may have created a more

homogeneous leaf node, resulting in a more accurate prediction. In effect, a performance characteristic

is really just a different type of workload characteristic, just one that is specific to a given array.

Also, it is interesting to note that the relative performance models can trivially distinguish the

FitnessCache workloads that have a high cache hit rate from those that do not. The only work-

load characteristic that somewhat reflects this behavior is the read randomness. However, what is really

needed is a more direct measure of locality, and this is exactly what the performance metrics provide.

For FitnessCache, high bandwidth equates to “in cache” and low bandwidth to “out of cache.” As such,

even without a direct measure of spatial locality, the relative performance model can easily separate the

workloads with different cache behavior.

Postmark

The median relative error of the Postmark predictions is already very small, even for the in-practice

absolute models. As such, further reduction in relative error is going to be difficult. In the case of the

relative performance models, bandwidth remains unchanged (7%) as does throughput (6%). The latency

error increases slightly from 9% to 10%. The similarity of all the performance models can be seen in the

cumulative distribution functions (Figure 7.29) and error-versus-training graphs (Figure 7.30).
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Cello

Cello is a bit more interesting. The median relative error of the bandwidth predictions decreases from

20% to 15%, throughput from 11% to 9%, and latency from 19% to 17%. The reduction in bandwidth

prediction error can be seen in the error-versus-training graphs. In particular, notice how the relative

performance models for bandwidth continue to improve as the training samples are increased. When

training on 75% of the samples, the relative performance models have an average median relative error

less than 14%, compared to an error greater than 20% for the in-practice absolute and relative models. In

this case, the performance metrics enable the relative model to learn at a faster rate than the models that

only use workload characteristics. Indeed, testing error decreases for the relative performance model, as

more training samples are added. For the other models, testing error increases.

TPC-C

Similarly to Postmark, the prediction error for TPC-C is already low for the relative model. Therefore,

further improvements are limited. Bandwidth error remains the same at 7%, as does throughput. Latency

error also remains unchanged at 13%. The cumulative distribution functions (Figure 7.29) and error-

versus-training graphs (Figure 7.30) illustrate.

7.8.2 Best predictors

Overall, the best predictors of the relative performance models are, in fact, the observed performance

of other arrays. Table 7.11 shows the normalized importance measure for each attribute. As can be

seen in the table, the best overall performance predictors are the bandwidth, latency, and throughput.

Specifically, bandwidth is the best predictor of bandwidth, throughput is the best predictor of throughput,

and latency is the best predictor for latency.

Still, workload characteristics are found to be valuable. Overall, the read characteristics are found to

have more information than the write characteristics. Given the ability of disk arrays to optimize write

requests (write-back caching, request coalescing, etc.), it is intuitive that the write I/O characteristics

influence performance much less than those of reads.

7.8.3 Mixed models

The accuracies of the mixed models are consistent with those of the per-application models. As can be

seen in Figure 7.28, the relative performance models, overall, produce the lowest average median relative

error for the bandwidth, throughput, and latency predictions. In all but one case (TPC-C bandwidth,

which experiences a 1% increase in error), the relative performance models are as good or better than

the relative models. This confirms that a single relative performance model can accurately predict the

performance of a disk array when the model is trained over a variety of application types.

7.8.4 Summary

Relative performance models were constructed to measure the benefits of using performance observations

to predict performance. Predictions are more accurate when the performance of array i (the workload
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Overall Bandwidth Throughput Latency
Predictor Score Predictor Score Predictor Score Predictor Score
Latency 1.00 Bandwidth 1.00 Throughput 1.00 Latency 1.00

Bandwidth 0.92 Read jump 0.16 Read queue 0.22 Write fraction 0.13
Throughput 0.79 Write fraction 0.14 Read size 0.15 Bandwidth 0.11
Read queue 0.32 Read queue 0.13 Write size 0.13 Read queue 0.09
Read jump 0.28 Latency 0.11 Read jump 0.13 Read jump 0.08

Write fraction 0.26 Write size 0.10 Bandwidth 0.11 Read latency 0.08
Read size 0.22 Read latency 0.09 Latency 0.11 Write latency 0.08
Write size 0.21 Read size 0.07 Write fraction 0.07 Read size 0.08

Read latency 0.15 Throughput 0.07 Write queue 0.05 Write queue 0.06
Write queue 0.12 Write jump 0.06 Write jump 0.03 Throughput 0.06
Write jump 0.10 Write queue 0.04 Read latency 0.02 Write size 0.05

Write latency 0.09 Write latency 0.02 Write latency 0.02 Write jump 0.04

Table 7.11: The normalized importance measure of each predictor for the relative performance models.

target) is modeled relative to the workload characteristics and the performance of a different array j (the

workload origin). In support of Hypothesis 4, Experiment 4 is summarized as follows:

Result 4 When compared to a relative model that only uses workload characteristics, a relative perfor-
mance model can reduce the median relative error of the bandwidth predictions up to 23% (FitnessDirect
is reduced from 70% to 47%), throughput up to 5% (FitnessBuffered is reduced from 20% to 15%), and
latency up to 7% (FitnessBuffered is reduced from 23% to 16%). Moreover, it is found that the best
predictors of performance are performance observations. Specifically, the best predictor of the bandwidth
of array i is that of another array j; the same is true for throughput and latency.
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Figure 7.29: Relative error CDFs.
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Figure 7.30: Error vs. training set size. The training set size varies from 25% of the collected samples
to 75%; the remaining samples are used for testing. For each training set size, an error metric (median
relative error) is calculated for each pairing of arrays. These metrics are then averaged across all pairings
to produce the values shown.
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Figure 7.31: Median relative error: Experiment 4 (mixed models). The graphs show the median relative
error of each application, comparing the idealized absolute model, titled “AM (i=j),” with the absolute
model (AM), the relative model (RM), and the relative performance model (RM’). Also shown are the
average median relative errors of the applications for each performance metric.
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7.9 Experiment 5: relative fitness models

Experiments 1 through 4 established that changing workload characteristics can increase the prediction

error of an absolute model, that this error can often be reduced by using a relative model, and that

performance can be used to predict performance. The goal of this last experiment is to show that

performance ratios, or relative fitness values, are better predictors than performance values. As described

in Section 6.3, a relative fitness model uses the observed workload characteristics and performance of array

j to predict a performance ratio for array i.

The test of Hypothesis 5 is the same as that for Hypotheses 3 and 4: two relative fitness models (i → j

and j → i) are built for each array pairing and performance metric. Summarizing from Section 7.4.3

(Table 7.2), the workload characteristics are the same as those used by the relative and relative perfor-

mance models. These include the write fraction, write request size, read request size, write randomness,

read randomness, write queue depth, and read queue depth. The performance metrics include the the

bandwidth, throughput, and latency of array j, with latency further described by the write latency and

read latency.

Just as in Experiments 3 and 4, each of the workload samples reserved for testing is used to measure

the accuracy of the relative fitness models. For each performance metric, two predictions are made

for every array pairing (i → j and j → i) for each test sample. This involves inputing the workload

characteristics and performance of the sample as measured on array j into the j → i relative fitness

model, and then multiplying the predicted performance ratio by the performance of array j in order to

predict the performance of array i, and vice versa.

The prediction accuracies are first compared against the relative performance models, to show the

incremental benefit of using performance ratios. Then, they are compared back to the absolute models,

to show the cumulative benefits of 1) relative modeling, 2) using performance to predict performance,

and 3) predicting performance ratios instead of performance values.

7.9.1 Per-application models

Performance ratios are better predictors than performance values.

FitnessDirect

Figure 7.32 plots the median relative error for the relative fitness models. When compared to the relative

performance models, the median relative error of the bandwidth predictions for FitnessDirect decreases

from 19% to 14%, throughput from 22% to 14%, and latency from 20% to 14%. The incremental benefit

of predicting the relative fitness values can be seen in the error distributions in Figure 7.33 (darkest line),

as well as the error-versus training graphs in Figure 7.34. In the error-versus-training graphs, one can

also see that the relative fitness predictions experience fewer fluctuations in accuracy when compared

to the other models. When compared back to the absolute models, the bandwidth prediction error is

reduced from 24% to 14%, throughput from 26% to 14%, and latency from 34% to 14%.
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Figure 7.32: Median relative error: Experiment 5 (per-application models). The graphs show the median
relative error of each application, comparing the idealized absolute model, title “AM (i=j),” with the
absolute model (AM), the relative model (RM), the relative performance model (RM’), and the rela-
tive fitness model (RF). Also shown are the average median relative errors of the applications for each
performance metric.

FitnessBuffered

When compared to the relative performance models, the bandwidth prediction error of FitnessBuffered

decreases from 14% to 10%, throughput from 15% to 10%, and latency from 16% to 13%. When compared

to the absolute models, bandwidth prediction error is reduced from 19% to 10%, throughput from 20%

to 10%, and latency from 25% to 13%. That is, median relative error is reduced by roughly half.

Figure 7.33 illustrates these differences. For all performance metrics, the relative fitness models

produce the least error. These differences can be seen in the error-versus-training graphs in Figure 7.34.

FitnessFS

When compared to the relative performance models, bandwidth and throughput prediction errors both

decrease from 11% to 9%, and latency from 14% to 12%. When compared to the absolute models,

bandwidth prediction error decreases from 17% to 9%, throughput from 15% to 9%, and latency from

17% to 12%.

As shown in the error distributions in Figure 7.33, the relative fitness models produce the least error.

Further, across various training/testing splits, Figure 7.34 illustrates how the relative fitness models can

reduce error by more than half. For example, when training on only 25% of the samples, the average

median relative error of the relative fitness models is still less than 10%, compared to the absolute models

with an error greater than 20%.
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FitnessCache

The largest improvements are seen for FitnessCache. When compared to the relative performance

models, bandwidth prediction error decreases from 47% to 14%. This represents the largest incremental

reduction in error from of any of the models (over a factor of three). Further, throughput prediction error

decreases from 36% to 13% (nearly a factor of three), and latency from 17% to 14%.

When compared back to the absolute models, the gains are even more pronounced. Bandwidth

prediction error decreases from 67% to 14% (nearly a factor of 5), throughput from 36% to 13%, and

latency from 20% to 14%.

The error distributions in Figure 7.33 and the error-versus-training graph in Figure 7.34 also show

the benefits of the relative fitness models for FitnessCache.

Postmark

Despite the already low prediction error for Postmark, when compared to the relative performance models,

the relative fitness models decrease bandwidth prediction error by 2%, from 7% to 5%. Throughput

prediction error increases by 1%, from 6% to 7%, and latency decreases by 1%, from 10% to 9%.

Overall, the differences in median relative error across all the models are minor. Bandwidth predic-

tions are within 3%, throughput predictions within 1%, and latency predictions with 1%. Nonetheless,

Figure 7.33 shows that the relative fitness models improve the error distribution over the absolute models.

Cello

When compared to the relative performance models, bandwidth prediction error decreases from 15% to

13%, and throughput remains unchanged (9%). These small improvements can be seen in the error CDFs

in Figure 7.33. Latency prediction error, however, increases by 3%, from 17% to 20%. When compared

to the absolute models, bandwidth prediction error is reduced from 20% to 13% and throughput from

10% to 9%. Latency prediction error, however, still experiences the same 3% increase, from 17% to 20%.

The Cello latency predictions represent the only case where none of the relative models (relative,

relative performance, or relative fitness) are able to achieve the accuracy of the idealized absolute model.

As shown in Figure 7.33, the idealized model has the best error distribution for latency.

For bandwidth and throughput, however, one can see the improvements of relative fitness in the error-

versus-training graphs in Figure 7.34. Also, the bandwidth graph in Figure 7.34 is another good example

of how the error of the relative fitness models can fluctuate much less than the other models.

TPC-C

When compared to the relative performance models, TPC-C sees a slight increase in median relative error

for each of the performance metrics. Bandwidth prediction error increases from 7% to 9%, throughput

from 7% to 8%, and latency from 13% to 16%. As such, TPC-C is the only application in this evaluation

where relative fitness modeling does not show a benefit over relative performance modeling, for any of

the performance predictions.

When compared to the absolute models, one sees the same small increases in error for bandwidth

and throughput. Latency prediction error, however, is reduced from 23% to 16%. For TPC-C, the only



Overall Bandwidth Throughput Latency
Predictor Score Predictor Score Predictor Score Predictor Score
Latency 1.00 Bandwidth 1.00 Write fraction 1.00 Latency 1.00

Write fraction 0.92 Write fraction 0.99 Bandwidth 0.98 Write fraction 0.70
Bandwidth 0.89 Latency 0.91 Latency 0.92 Bandwidth 0.64

Read latency 0.61 Read jump 0.85 Read latency 0.85 Throughput 0.45
Read jump 0.61 Read queue 0.82 Read jump 0.77 Read size 0.43
Read queue 0.60 Read latency 0.74 Throughput 0.64 Write jump 0.37
Throughput 0.60 Throughput 0.66 Read queue 0.60 Read queue 0.37
Read size 0.45 Read size 0.46 Read size 0.40 Read latency 0.26
Write size 0.33 Write size 0.41 Write size 0.36 Read jump 0.24

Write queue 0.32 Write queue 0.40 Write queue 0.34 Write size 0.22
Write jump 0.28 Write latency 0.23 Write latency 0.30 Write latency 0.21

Write latency 0.25 Write jump 0.17 Write jump 0.22 Write queue 0.21

Table 7.12: The normalized importance measure of each predictor for the relative fitness models.

performance metric showing any substantial change in prediction error across all the models is latency.

As shown in Figure 7.33, the error distributions of the models are nearly indistinguishable for bandwidth

and throughput. But, for latency, one can see the benefits of relative fitness modeling. Further, the

error-versus-training graphs in Figure 7.34 illustrate how the largest errors occur for the absolute models.

7.9.2 Best predictors

As with the relative performance models, the best predictors of the relative fitness models are the per-

formance metrics. Table 7.12 shows the normalized importance measure for each attribute. As can be

seen in the table, the best overall performance predictors are the bandwidth, latency, and throughput.

The next best are the read characteristics, and the least useful are the write characteristics.

7.9.3 Mixed models

The mixed model prediction errors are within 2% of the per-application models. As shown in Figure 7.35,

the relative fitness models are the best predictors, overall. In all but a few cases (Postmark throughput,

Cello latency, and TPC-C), the relative fitness models reduce median relative error when compared to the

relative performance models. In all but one case (TPC-C latency), the relative fitness models improve

upon the absolute models.

Model complexity

Relative fitness models can substantially reduce prediction error, and often do so with much simpler

models. Indeed, as per Occam’s Razor, perhaps this is why they tend to be more accurate. Table 7.13

contains the tree complexity for all of the mixed models. Each number represents the number of leaf

nodes (or prediction rules) for a particular regression tree. Averages are also shown.

The relative fitness models are generally smaller. For example, the relative fitness latency model

(B → A) has 20 leaf nodes, compared to 59 leaf nodes for the absolute model of Array A. In other words,

the absolute model requires nearly three times as many rules to model the same disk array. As illustrated

in Figure 7.36, performance ratios can be easier to model.
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Model Bandwidth Throughput Latency Average
Absolute 78.8 69.2 75.5 74.5
Relative 85.6 55.2 65.5 68.8

Relative Performance 71.9 64.3 66.8 67.7
Relative Fitness 58.2 52.6 62.8 57.9

Pairwise
Absolute ArrayA ArrayB ArrayC ArrayD
ArrayA 68.7 - - -
ArrayB - 86.0 - -
ArrayC - - 61.7 -
ArrayD - - - 81.7

Relative Fitness ArrayA ArrayB ArrayC ArrayD
ArrayA 1 64.0 65.7 48.3
ArrayB 30.3 1 52.3 67.0
ArrayC 81.7 78.7 1 72.0
ArrayD 43.7 56.3 34.3 1

Bandwidth Throughput Latency
Absolute A B C D A B C D A B C D
ArrayA 83.0 - - - 64.0 - - - 59.0 - - -
ArrayB - 76.0 - - - 88.0 - - - 94.0 - -
ArrayC - - 66.0 - - - 43.0 - - - 76.0 -
ArrayD - - - 90.0 - - - 82.0 - - - 73.0

Bandwidth Throughput Latency
Relative Fitness A B C D A B C D A B C D

ArrayA 1 92.0 98.0 25.0 1 62.0 54.0 54.0 1 38.0 45.0 66.0
ArrayB 32.0 1 34.0 73.0 39.0 1 34.0 26.0 20.0 1 89.0 102.0
ArrayC 85.0 43.0 1 60.0 74.0 95.0 1 58.0 86.0 98.0 1 98.0
ArrayD 55.0 56.0 46.0 1 36.0 76.0 23.0 1 40.0 37.0 34.0 1

Table 7.13: Tree sizes (leaf nodes) and their averages.

Consider an extreme case where one array is always half as fast as another, regardless of the workload.

Then, only one relative fitness value (0.5) is necessary to model the performance of the slow array relative

to the faster one. In fact, the diagonal in Table 7.13 for the relative fitness models shows the size of a

tree when an array is compared with itself (i.e., each model has one leaf node with a ratio of 1.0).

In practice, relative fitness models must learn different relative fitness values, depending on the work-

load. In the worst case, each workload type will have a different relative fitness value, and a relative

fitness model may learn a rule for each. However, it is often the case that different workloads share

the same relative fitness value, thereby resulting in much smaller trees. When averaged over all trees in

this evaluation, the relative fitness models, when compared to the absolute models, are 26% smaller for

bandwidth, 25% smaller for throughput, and 20% smaller for latency.

7.9.4 Summary

Relative fitness models were constructed to measure the benefits of predicting performance ratios rather

than performance values. In support of Hypothesis 5, Experiment 5 can be summarized as follows:
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Result 5 The best predictors of the relative fitness models are the performance observations, followed by
the read characteristics, and then the write characteristics. When compared to the relative performance
models, the relative fitness models can reduce the median relative error of the bandwidth predictions up
to 33% (FitnessCache is reduced from 47% to 14%), throughput up to 23% (FitnessCache is reduced
from 36% to 13%), and latency up to 6% (FitnessDirect is reduced from 20% to 14%). When compared
to the absolute models, bandwidth error is decreased up to 53% (FitnessCache is reduced from 67%
to 14%), throughput up to 23% (FitnessCache is reduced from 36% to 13%), and latency up to 20%
(FitnessDirect is reduced from 34% to 14%). Overall all applications, the relative fitness models reduce
the average median relative bandwidth prediction error from 23% to 11%, throughput from 17% to 10%,
and latency from 21% to 14%.
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Figure 7.33: Relative error CDFs.
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Figure 7.34: Error vs. training set size. The training set size varies from 25% of the collected samples
to 75%; the remaining samples are used for testing. For each training set size, an error metric (median
relative error) is calculated for each pairing of arrays. These metrics are then averaged across all pairings
to produce the values shown.
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Figure 7.35: Median relative error: Experiment 5 (mixed models). The graphs show the median relative
error of each application, comparing the idealized absolute model, titled “AM (i=j),” with the absolute
model (AM), the relative model (RM), the relative performance model (RM’), and the relative fitness
model (RF). Also shown are the average median relative errors of the applications for each performance
metric.
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Figure 7.36: The absolute latency model of Array A for WorkloadMix (top) versus the relative fitness
model for Array B → A (bottom). These are the actual models with no additional pruning for readability.
The absolute model has 59 leaf nodes (or predictions rules) versus 20 rules for the relative fitness model.
In other words, the relative fitness model learns the latency of Array A, relative to Array B, with
approximately one third as many rules as that required by the absolute model.
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Chapter 8

Summary and future work

Storage management is an expensive component of data center administration. Automated storage

management could help reduce costs by offloading many time-consuming and error-prone tasks. One

such task is storage system design. Numerous optimization-based methods have been explored, many of

which require fast and accurate performance predictions. Conventionally, absolute performance models

have been used to make these predictions. However, researchers have wrestled with a necessary ingredient

of such models (workload characterization) for more than three decades.

The fundamental challenge with workload characterization is compressing an I/O workload into a con-

cise set of workload characteristics without losing performance-affecting information. A second challenge

imposed by absolute models is the requirement that the characteristics be absolute. However, as shown

by Experiment 2, a variety of workload characteristics can change due to the closed-loop interactions

between an operating system and a storage system. Also, an additional challenge for black-box models

is achieving sufficient coverage over the space of workload characteristics so that training workloads can

accurately predict the performance of new workloads. Relative fitness models are designed to help address

each of these challenges.

First, the closed-loop relationship between an operating system and storage system can be learned by

modeling storage systems relative to one another, thereby reducing the prediction error due to changing

workload characteristics. This dissertation’s results show that the write characteristics are more likely

to change than the read characteristics (Experiment 1), that these changes increase the prediction error

of an absolute model (Experiment 2), and that a relative model can significantly reduce this prediction

error (Experiment 3). For example, the median relative error of the TPC-C latency predictions for the

array pairing B → C increased from 11% to 46% due to changing characteristics, and a relative model

reduced this error to 17%.

Second, the dependence on workload characteristics can be reduced by also using performance obser-

vations. For the relative performance models (Experiment 4), it was shown that a workload’s observed

bandwidth on one storage system is the best predictor of its bandwidth on another storage system, as

well as for throughput and latency, and that training a model to use observed performance can reduce

prediction error. For example, the relative performance model reduced the median relative error of the

FitnessBuffered latency predictions (over all array pairings) from 23% to 16%.

Third, one can reduce the amount of required training data for a statistical, black-box performance
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model by predicting performance ratios (relative fitness values) rather than performance itself. It was

shown that relative fitness models (Experiment 5) require less training data for an equivalent, or better,

level of prediction accuracy, when compared to absolute, relative, and relative performance models. For

example, when compared to a relative performance model, the median relative bandwidth prediction

error for FitnessCache was reduced from 67% to 14%.

Over all predictions in this study, when compared to the absolute models, the relative fitness models

reduced the median relative bandwidth prediction error from 23% to 11%, throughput from 17% to 10%,

and latency from 21% to 14%. This result supports the thesis statement that one can improve the

prediction accuracy of statistical, black-box models by modeling storage systems relative to one another.

8.1 Future work

Additional research is required to quantify the benefits of relative fitness modeling with respect to reducing

storage management costs. This would include integrating relative fitness models into an optimization

framework for automated storage system design. And, there are many other interesting areas of future

work, including the use of workload interference models, resource utilization, domain knowledge, cost

functions, collaborative filtering techniques, machine learning models (other than CART), and active

learning. Each of these is described below.

First, storage consolidation may require that multiple workloads share the same storage system, so the

effect of resource contention among multiple I/O streams is important to model. Appendix B introduces

the potential for predicting whether workloads will interfere with one another, but much more work is

required in this area.

Resource utilization is an area not explicitly explored in this work, as this would have required

modifying the storage systems (e.g., to retrieve cache statistics). However, a workload’s observed resource

utilization could provide additional information to the relative fitness models.

The models presented in this dissertation are black-box and require no knowledge of a storage system’s

internals. However, domain knowledge may produce more accurate grey-box models. Examples of domain

knowledge include a description of a storage system’s hardware/software platform (e.g., cache size, cache

eviction algorithms, number of disk drives), its configuration (e.g., the RAID level), and its expected

performance behavior for various workload types.

One could explore the risk/reward trade-off when making predictions. Although relative fitness models

have the ability to make a prediction for any workload, the confidence of any such prediction can vary

considerably (e.g., 95% versus 75%). Such confidence levels could be consulted when deciding whether

to move application data from one storage system to another. In some cases, the cost of a misprediction

may be too high.

By using multiple relative fitness models, techniques based on collaborative filtering could further

improve prediction accuracy. Such a scenario is possible when a workload has been observed by more

than one storage system. Rather than use a single model, one could explore ways of combining the

predictions of multiple models.

This dissertation presented relative fitness modeling in the context of CART, but any number of

machine learning algorithms could be used. For example, an early follow-on to this work (A. Zheng, M.
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Mesnier, and C. Faloutsos) indicates that relative fitness models based on nearest neighbor algorithms

produce lower relative error than equivalent models based on CART.

Finally, a large cost of black-box modeling is the time required to obtain representative training data.

In this work, a synthetic workload generator was used to randomly sample (uniformly) the large space of

possible workloads, but doing so required many hours of workload generation. Such sampling does not

base future samples on the performance of past samples. However, more active approaches to sample

collection could potentially reduce the amount of required training time, by more intelligently selecting

training samples. Moreover, as described in Section 2.4, the performance of real, truly representative,

workloads – as they are introduced into the data center – could be used as additional training data if the

models fail to accurately predict their performance. Using the same modeling techniques presented in

this work, the characteristics and performance of such workloads could be used to construct new models.

One could also explore machine learning techniques that would weigh real workloads more heavily than

synthetic workloads.
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Appendix A

Open Storage Toolkit

The software used in this dissertation is based on the 2002 iSCSI/OSD open source release from Intel.

The original code was extended with support for workload characterization and synthetic I/O generation

(Fitness). All code has been re-released as Intel’s Open Storage Toolkit.

This appendix contains the Fitness command-line arguments and scripts used to generate the workload

samples, based on version 2.0.18 of the Open Storage Toolkit.

A.1 Fitness usage

Usage: fitness [options]

--file <file> Data file (e.g., /mnt/data)

--no_create Assume file already exists (dflt 0)

--allow_sparse Do not zero-fill file before doing I/O (dflt 0)

--device <device> Target device (e.g., /dev/sd0, /dev/raw/raw0)

--mount <dir> Mounts an ext2 on <device> and then creates <file>

--direct O_DIRECT flag for <file> or <device>

--config <file> ips.conf file (dflt /etc/ips.conf)

--tid <num> Target id (specify -1 if not iSCSI)

--lun <num> iSCSI lun (dflt 0)

--samples <samples> Number of samples (default 1)

--skip <skip> Samples to skip over (default 0)

--iters <iters> Iterations per sample (default 1)

--seed <seed> Seed for RNG (default 1234)

--flush <cmd> Command to run after each iteration

--flush_args <args> Args to pass to flush command

--breather <secs> Time to rest after each iteration (dflt 0)

--cap <capacity> Working set size in MB (default 128)

--disp <capacity> Displacement from lba 0 in MB (default 0)

--wr <num> Percent writes (default rnd)

--str <1|2> Shared or separate rd/wr streams (default rnd)

--qdep <num> Queue depth (default rnd)

--wrsz <num> Write size (KB) (default rnd)

--rdsz <num> Read size (KB) (default rnd)

--wr_stride <num> Write stride (KB) (default 0)

--rd_stride <num> Read stride (KB) (default 0)

--wrnd <num> Percent random writes (default rnd)

--rrnd <num> Percent random reads (default rnd)
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--wrsk <dist> Seek (KB) distribution per write I/O

--rdsk <dist> Seek (KB) distribution per read I/O

--think <num> Think time (default rnd)

--warm <secs> Warm time in secs (default 10)

--warm_io <num> Warm for this many IOs

--warm_mb <num> Warm for this many MB of data

--test <secs> Test time (default 10)

--term <capacity> Stop test after <capacity> MB bytes transferred

--outfile <outfile> Output file for results (default stdout)

--mock Don’t actually do any I/O

--extern <cmd> Run command for each iteration, instead of sampling

--extern_args <args> Pass these args to the external command

--extern_suppress Suppress stdout and stderr from external command

--extern_shutdown Run this command to shutdown external command

--extern_mark <string> Start warming after <string> encountered in stdout

--replay <trace> Replay udisk trace (see udisk -t option)

--timing_accurate Attempt a timing accurate trace replay

--filter Apply sample filter hardcoded in fitness.c

--i_counters Retrieve initiator counters after each iteration

--i_counters_loop <secs> Retrieve initiator counters every <secs> secs

--version Show version

--help Show usage

A.2 Command for --flush option

This script is used to flush the storage array caches after each workload sample is collected. It reads 1 GB

of data sequentially (twice) at an offset of 16 GB. The script is stored in the file ~/usr/bin/doflush:

#!/bin/sh

fitness --device /dev/sd0 --tid 0 --cap 1024 --disp 16384 --term 1024 \

--wr 0 --rdsz 64 --qdep 16 --rrnd 0 --iters 2 --direct

A.3 Options for FitnessDirect

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 --warm 30 --test 30 \

--samples 200 --iters 3 --flush ~/usr/bin/doflush --direct

A.4 Options for FitnessBuffered

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 --warm 30 --test 30 \

--samples 200 --iters 3 --flush ~/usr/bin/doflush

A.5 Options for FitnessFS

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 --warm 30 --test 30 \

--samples 200 --iters 3 --flush ~/usr/bin/doflush --file /mnt/data --mount /mnt
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A.6 Options for FitnessCache

#!/bin/sh

for cap in 16 16384; do for qdep in 1 2 4 8 16; do for rdsz in 1 2 4 8 16 32 64; do \

fitness --tid 0 --device /dev/sd0 --direct --i_counters --warm 30 --test 30 \

--iters 3 --samples 1 --flush ~/usr/bin/doflush --wr 0 --rrnd 0 \

--qdep $qdep --rdsz $rdsz --cap $cap; \

done; done; done

A.7 Options for Postmark (creation phase)

!#/bin/sh

for i in ‘seq 0 49‘; do \

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 \

--warm 60 --test 30 --iters 3 --samples 1 --skip $i \

--flush ~/usr/bin/doflush \

--mount /mnt --extern postmark \

--extern_args ~/rf/etc/postmark-create.$i.cfg \

--extern_suppress; \

done

A.8 Options for Postmark (transactions phase)

!#/bin/sh

for i in ‘seq 0 49‘; do \

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 \

--warm 60 --test 30 --iters 3 --samples 1 --skip $i \

--flush ~/usr/bin/doflush \

--mount /mnt --extern postmark \

--extern_args ~/rf/etc/postmark-trans.$i.cfg \

--extern_suppress \

--extern_mark transactions; \

done;

A.9 Options for Cello

#!/bin/sh

for i in ‘seq 0 79‘; do \

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 \

--warm 999 --warm_mb 128 --test 30 --samples --iters 3 \

--flush ~/usr/bin/doflush --replay tracefile.$i.txt

done

A.10 Options for TPC-C

#!/bin/sh
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for i in ‘seq 0 49‘; do \

fitness --tid 0 --device /dev/sd0 --i_counters --cap 16384 \

--warm 30 --test 30 --samples 1 --iters 3 \

--mount /mnt \

--flush ~/usr/bin/doflush \

--extern ~/usr/bin/run-tpcc --extern_suppress \

--extern_args $i --extern_mark START; \

done

A.10.1 Contents of ~/usr/bin/run-tpcc

#!/usr/bin/perl

$SIG{INT} = sub {

$pid = getpgrp(0);

system("iscsi-kill-tree $pid");

};

$skip = $ARGV[0];

$dir = "/mnt";

# copy in a configuration file with randomly generated values for

# prob_neworder, prob_payment, prob_order_status, prob_delivery and prob_stock_level

system("cp ~/rf/etc/exampleconfig.$skip ~/usr/src/tpcc-kit/exampleconfig");

if (fork()!=0) {

while (1) {

sleep(1);

}

} else {

system("mkdir $dir/tpcc-log");

system("cd $dir; /h/ss/dist/benchmark-tpcc/tpcc-kit/main -s0");

system("cd $dir; /h/ss/dist/benchmark-tpcc/tpcc-kit/main -s1 -sm_logging n");

system("sync");

printf("START\n");

system("cd $dir; /h/ss/dist/benchmark-tpcc/tpcc-kit/main -r0");

}

A.10.2 Contents of ~/usr/bin/tpch-run

if (fork) {

system("rm -f /tmp/tpch.COPYDONE");

system("echo y | sudo mkfs /dev/sd0 16777216 > /dev/null");

system("sudo mount /dev/sd0 /mnt");

system("sudo chmod a+w /mnt");

system("cp -Rv ~/rf/cache/tpch/data /mnt > /dev/null");

system("touch /tmp/tpch.COPYDONE");

system("postmaster -D /mnt/data > /dev/null");

system("sudo umount /mnt");

system("rm -f /tmp/tpch.COPYDONE");

} else {

do {

sleep(1);

} until (-f "/tmp/tpch.COPYDONE");



APPENDIX A. OPEN STORAGE TOOLKIT 167

sleep(10);

system("echo parent: RUNNING PSQL");

system("psql tpch < ~/usr/src/tpch_postgres/var/queries/$ARGV[0]-ready.sql > /dev/null");

}

A.10.3 Contents of ~/usr/bin/tpch-shutdown

#!/bin/sh

killall psql

sleep 1

killall postmaster
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Appendix B

Concurrent workloads

This experiment models the performance impact of two workloads running concurrently on the same disk

array. The hypothesis is that a regression tree can be used to predict whether two workloads, running

together, will yield more/less bandwidth than the first workload running alone. Throughput or latency

could have also been used.

Of course, when multiple workloads are sharing a disk array, one really wants to predict the quality of

service that each workload will receive (e.g., the proportion of the bandwidth), rather than the aggregate

performance of the array. As a first step toward this goal, this experiment establishes that one can use

workload characteristics to predict the relative change in aggregate performance when another workload

is added. If aggregate performance is predicted to decrease, then one has established the minimum

(predicted) performance degradation that the first workload will experience. Longer term, it may be

possible to use such models recursively. For example, if two workloads are running and characterized as

a single workload, one might be able to predict the performance impact of adding a third workload, and

so on.

The performance metric used is referred to, in this experiment, as an impact factor, or the amount

by which aggregate bandwidth changes when the second workload is added to the first. Values less than

1.0 indicate an adverse impact, and values greater than 1.0 indicate a performance improvement. For

example, if a single workload has a performance of 100 MB/sec, and adding a second workload reduces

the aggregate bandwidth to 75 MB/sec, the impact factor is 0.75.

B.1 Setup

The same hardware and software platforms, as described in Section 7.4.1, are used for this experiment.

Each disk array is modeled independently (i.e., no relative modeling).

Concurrent runs of Fitness are used to generate pairs of synthetic workloads. The application-level

workload parameters of Fitness are used to characterize each workload. As described in Section 7.4.2,

these include the write percent (0 to 100), write size (KB), read size (KB), write randomness (0 to 100),

read randomness (0 to 100), and queue depth. Because application-level parameters are used as workload

characteristics, there is no change in workload characteristics across disk arrays. Further, the arrays are

accessed in raw mode (no page cache or file system).
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Figure B.1: Distribution of performance impact on each disk array.

1000 pairs of synthetic workload are generated for each disk array. The first workload of each pair

is run first, and the performance is observed. The second workload is then added, and the aggregate

bandwidth of the two workloads is observed. From these observations, the impact factor is calculated as

previously described.

B.2 Distributions of performance impact

Figure B.1 plots the distribution of the performance impact for each disk array, over all 1000 workload

pairs. Two observations can be made. First, in approximately 50% of the cases, on each disk array, adding

a second workload to the first increases aggregate bandwidth. In the remaining 50%, adding a second

workload results in a less efficient I/O, thereby leading to a reduction in bandwidth. In other words, the

performance impact depends on the type of workloads composing the pair. Second, as indicated by the

differing distributions, a pair of workloads can react differently across arrays. Some arrays may show an

adverse performance impact, others may not. Together, these two observations suggest that modeling the

performance impact on a disk array will require that a) one use workload characteristics (and possibly

performance) and b) one create separate models for each disk array.

B.3 Performance models

Using 50% of the workload pairs, CART models are trained to predict the performance impact. The

model inputs are 1) the workload characteristics and performance of the first workload on a given disk

array and 2) the workload characteristics of the second workload.

Table B.1 shows the median relative error for each disk array. These values represent the relative
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Naive Predictor CART Predictor
Array A 48% 14%
Array B 62% 13%
Array C 66% 18%
Array D 49% 16%

Table B.1: Error when predicting the change in aggregate bandwidth when a second workload is added
to a disk array.

error when predicting the impact factor. Also shown is a naive model that predicts the average impact

factor over all training workloads. As can be seen in the table, a CART model can significantly improve

the prediction error over a naive model, thereby suggesting that predicting the effects of resource sharing

is possible with CART.

B.4 Discussion

This experiment established the potential for modeling the performance impact of concurrent workloads.

A more general hypothesis, but one not tested in this experiment, is that this process can be applied

recursively. That is, if n workloads are running on a disk array, their aggregate workload characteristics

and performance can be observed, and a CART model can be used to predict whether adding an additional

workload will negatively impact the overall bandwidth. In such a scenario, assuming workloads receive

a proportional/fair share of resources, one can continue adding workloads to a disk array as long as

the aggregate performance continues to increase. This methodology is similar to continuing to admit

processes into a multi-user system, so long as the system is not “thrashing.”




