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ABSTRACT

Timing-accurate storage emulation offers a unique performance evaluation capability: the flexibility

of simulation with the reality of experimental measurements. This allows a researcher to experiment

with not-yet-existing storage components in the context of real systems executing real applications.

As its name suggests, a timing-accurate storage emulator appears to the system to be a real storage

component with service times matching a simulation model (or other computational model) of that

component. This allows simulated storage components to be plugged into real systems, which can

then be used for complete, application-based experimentation. Additionally, timing-accurate stor-

age emulation offers the opportunity to investigate more expressive interfaces between storage and

computer systems, permitting forays into the space of hypothetical device functionalities without

the difficulties of developing and supporting extensively nonstandard or novel interface actions in

prototype or production systems. This dissertation identifies that there is a current and pressing need

for a new storage evaluation technique, discusses design issues for achieving accurate per-request

service times in a timing-accurate storage emulator, and demonstrates that it is feasible to construct

and use such an emulator for interesting system-level experimentation.

We built a functional timing-accurate storage emulator and explored its use in experiments in-

volving models of existing storage products, experiments evaluating the potential of nonexistent

storage components, and experiments evaluating interactions between modified computer systems

and expanded storage device functionality. To experiment with existing and hypothetical storage

components in computer systems, we configured our emulator with device models representing a

currently-available production disk drive, a hypothetical 50,000 RPM disk drive, and a hypothetical

MEMS-based storage device, and executed three application-level workloads against these emulated

models. To explore system architectures with expanded device functionality, we applied the princi-

ples of timing-accurate storage emulation in an investigation into storage-based intrusion detection

systems. This experimentation demonstrates that our emulator accurately reflects the performance

of modeled devices, demonstrates the feasibility of including intrusion detection capabilities into

a standalone processing-enhanced disk drive, and demonstrates that extensions to existing storage

communications paths may be used to transmit and receive information regarding the configuration

and operational status of such an enhanced device.
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CHAPTER 1
INTRODUCTION

This dissertation promotes the adoption of timing-accurate storage emulation as a first-class tool for

the evaluation of potential computer system architectures with as-of-yet nonexistent or otherwise

unavailable storage components.

1.1 Problem definition

Secondary storage is an integral and important part of most computer systems. The essence of

computation is computation on data, and many data sets have long-term life spans or are simply so

large as to warrant storage on an out-of-core non-volatile secondary storage system. Additionally,

the cost-per-byte of secondary storage devices (such as hard disk drives) often make them a conve-

niently economical place for bulk data storage. However, these characteristics that make secondary

storage attractive—mass data storage at relatively inexpensive cost—stem from the trade-off of low

performance. (An oft-repeated axiom claims one may “choose any two of high performance, high

capacity, or low cost.”) When compared with the capacity of current processors to consume data,

secondary storage devices fall short by many orders of magnitude in terms of the latency before

data are available and the bandwidth available to transfer data. For these reasons, storage is often

a limiting factor—the “bottleneck”—for many applications of computer systems. In other words,

overall system performance is commonly limited by the vagaries of retrieving and storing data from

the secondary storage components, as opposed to being limited by the actual computations over and

transformations of that data.

Because of the critical role of storage in overall system performance, it behooves a system

designer to carefully consider the options for choosing and integrating storage components into the

overall system. Significant gains can be made by choosing storage configurations that maximize the

most important metric of system-level goodness. For example, business-critical applications (such

as web servers or inventory tracking systems) will often perform faster when they have exclusive

access to a set of storage resources (disk drives, memory caches) that are not shared with other non-

critical applications. However, it can be unnecessary and even detrimental to overprovision storage

resources when such expenditure prevents the improvement of another part of the computer system.

To date, a number of useful techniques have been available to assist with such decisions. At

the drawing board, analytical techniques or computer simulation models can be used in conjunction

with models of the expected workload to evaluate the expected consequences of a proposed device.

At the laboratory bench, real system interactions can be studied whenever real devices or even stor-

age device prototypes are available for a combined evaluation with existing and deployed hardware
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and software systems. However, what these techniques lack is the realism of an actual hardware

and software infrastructure combined with the use of a hypothetical or not-in-hand storage device,

whose behavior or internal functionality offer an interesting potential for improving the metric of

overall goodness. For example, it may be desirable to evaluate a novel scheduling algorithm for a

disk drive in an existing database system, but the high cost of initially developing a prototype with

that firmware functionality is prohibitive to the system designer. Such experimentation is important

because complex system characteristics can hide or reduce predicted benefits of new storage compo-

nents [59, 63]. Further, some new storage architectures and interfaces require both operating system

modifications and new (or modified) storage components; until the new components are physically

available, such collaborative advances cannot be evaluated.

One technique exists that offers an approximation of this: complete system simulation. Under

this technique, the complete hardware of a computer system is simulated in enough detail to boot a

real operating system and run applications. If the simulation of each component progresses accord-

ing to timing-accurate models of the individual system components—such as processors, caches,

buses, the primary memory system, I/O interconnects, and I/O components—this technique can be

used to evaluate the performance and behavioral response of any storage device for which a simula-

tion model exists. This technique offers the dual advantage that any or all of the individual system

components can be speculative and hypothetical: in addition to looking at next year’s storage de-

vice, components such as the processors and memory can be scaled up according to expected trends

to simulate the overall system that will be available next year. Unfortunately, substantial effort is

required to build and maintain a complete machine simulator, both in terms of correctly executing

programs and correctly accounting for time. Additionally, such simulators usually run more slowly

than real systems, which limits the overall scope of what variety of architectural designs can be

considered.

Timing-accurate storage emulation offers a solution to this dilemma, allowing simulated storage

components to be plugged into real systems, which can then be used for complete, application-based

experiments. As illustrated in Figure 1.1, a storage emulator transparently fills the role of a real

storage component (e.g., a SCSI disk), correctly mimicking the interface and retaining stored data

to respond to future reads. A timing-accurate storage emulator uses a software- or hardware-based

device model to compute request service times and respond to each request after the desired service

time passes, causing the performance and behavior observed by the system to match that of the

device model.

Timing-accurate storage emulation offers an interesting mix of features: the flexibility of sim-

ulation and the reality of experimental measurements. That is, storage emulation allows futuristic

storage designs to be evaluated in the context of real operating systems and applications. This

enables two types of experiments. First, end-to-end measurements can be made of the effects of

nonexistent or unavailable storage components in existing systems. These components can be eval-

uated by executing one or more representative application-level workloads and evaluating both the
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Storage Interconnect
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Storage Interconnect

(a) A system with real storage (b) A system with emulated storage

Figure 1.1: System architectures with real and emulated storage. The emulator transparently
replaces storage devices in a real system. By reporting request completions at the correct times,
the performance of different devices can be mimicked, enabling full system-level evaluations of
proposed storage subsystem modifications. The examples in this dissertation use a SCSI bus as the
storage interconnect.

performance of the individual component and of the overall system. Second, end-to-end measure-

ments can be made of the effects of non-existent storage components in modified systems. For

example, it may be interesting to make changes to the storage interface to enable a heightened de-

gree of communication between the component and an application-level or operating system-level

utility. This would require modifications to both the component and the operating system device

driver to support the new interface; even if the requisite changes and new functionality were avail-

able outside the storage device, experimentation is impossible without the ability to also modify the

storage device. This type of modification can be difficult or even impossible given the proprietary

and internally classified nature of the firmware of most disks and disk array controllers.

Perhaps more so than in the past, now is a particularly pertinent time for needing this sort of

evaluation technology. The potential architectural options for non-volatile mass secondary stor-

age are growing. For example, the gap between high-end and low-end disk drives is shifting to

a new paradigm of application-specific storage—recent product development announcements are

indicating a split toward consumer-grade low-cost high-capacity devices on one side and high-end

highly-functional multidisk storage bricks on the other. Both product divisions are areas where the

performance implications and the impact of new functionalities distributed between the operating

system and the device firmware could be readily examined under timing-accurate storage emula-

tion. Outside of disk drives, new alternative nonrotating non-volatile storage technologies such as

MEMS-based storage devices are under consideration and development; until such devices are prac-

tical and widely available, timing-accurate storage emulation will become perhaps the most valuable

tool for predicting their usefulness and potential impact on computer systems.
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1.2 Thesis statement

Currently-adopted approaches to storage evaluation are limited in that they are unable to sufficiently

mix existing prototypical or real hardware with nonexistent or unavailable storage components in

order to take advantage of the best available realism when performing systems-level evaluation

of component design or architectural decisions. In response to these limitations, this dissertation

advocates that:

Timing-accurate storage emulation is feasible and enables full-system experimentation

with hypothetical or unavailable storage components.

1.3 Contributions of this dissertation

This dissertation advances four primary contributions:

1. It presents the concept of timing-accurate storage emulation and clarifies its role in the space

of performance evaluation tools, including both its strengths and its limitations.

2. It demonstrates the feasibility of timing-accurate storage emulation in the context of a com-

plete and functional implementation, and demonstrates the meshing of event-driven simula-

tion with a real-time environment.

3. It describes a general architecture for emulation-based evaluations and mechanisms for mak-

ing them highly accurate, and identifies comparable quantifications for accuracy achieved.

4. It details concrete examples of the use of timing-accurate storage emulation for real explo-

rations of advanced storage devices and functionalities.

1.4 Overview of this dissertation

The text of this dissertation is presented in three conceptual parts corresponding roughly to the

motivation, implementation, and evaluation of timing-accurate storage emulation:

• Chapter 2 discusses the role of timing-accurate storage emulation in system-level evaluations.

• Chapter 3, Chapter 4, and Chapter 5 discuss the design and implementation of a timing-

accurate storage emulator.

• Chapter 6 and Chapter 7 discuss several of the evaluation opportunities enabled through the

use of timing-accurate storage emulation.

Chapter 8 concludes by looking to the future of timing-accurate storage emulation. Additionally, the

text is supplemented with four appendices. Appendix A and Appendix B motivate timing-accurate
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storage emulation by relating our experiences with related work. Appendix C describes the low-

level time interval measurement facility used in Chapter 5. Appendix D presents the full data for

the experiments in Chapter 5 and Chapter 6.

1.4.1 Storage evaluations using timing-accurate storage emulation

Storage emulation is rarely used for performance evaluation of prospective storage system designs.

We argue for more frequent use, noting that timing-accurate storage emulation offers a unique per-

formance evaluation capability: the flexibility of simulation and the reality of experimental measure-

ments. This enables experimentation on as-of-yet unavailable storage components in the context of

real systems running real applications.

We highlight two classes of experiments that are possible using timing-accurate storage emula-

tion. First, end-to-end measurements can be made of the effects of non-existent storage components

in existing systems. These components can then be evaluated by executing one or more representa-

tive application-level workloads and evaluating both the performance of the individual component

and of the overall system. Second, end-to-end measurements can be made of the effects of non-

existent storage components in modified systems. For example, the storage interface can be ex-

tended to support autonomous data mining operations inside the storage device. Evaluating this on

real devices would require modifications to both the operating system device driver and the storage

device firmware to support the new interface; even if the requisite changes and new functionality

were available outside the storage device, it can be difficult or even impossible to modify real de-

vices given the proprietary and internally classified nature of the firmware of most disks and disk

array controllers. However, such evaluations are feasible using timing-accurate storage emulators

of these storage devices.

1.4.2 Design of a timing-accurate storage emulator

As its name suggests, a timing-accurate storage emulator appears to the system to be a real stor-

age component with service times matching a simulation model (or mathematical model) of that

component. This allows simulated storage components to be plugged into real systems, which can

then be used for complete, application-based experiments. To accomplish this, the emulator must

synchronize the simulator’s internal time with the real-world clock, inserting requests into the sim-

ulator when they arrive and reporting completions when the simulator determines they are done.

If the simulator’s model represents a real component, the system-observed performance will be of

that component. Thus, the results from application benchmarking will represent the end-to-end

performance effect of using that component in a real system.

In the timing domain, the objective of a timing-accurate storage emulator is to respond to re-

quests externally with the exact timings associated with the device it models. In theory, this means

that a host system would be unable to distinguish, using solely an analysis of request times as a

comparator, whether or not the real storage component is being used when it is connected to a
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timing-accurate emulator of that component. Practically, this means that the timing-accurate stor-

age emulator must complete each storage request in real time as accurately and precisely as possible

with respect to the device simulation model running inside the emulator. An important characteristic

of the work presented herein is that the correctness of an emulator is independent of the correctness

of the simulation model it follows. The question of executing a device model in real time, and

observing and validating an emulator’s behavior in comparison to the model, is divorced from the

question of whether or not a particular device model has itself been validated. However, the real-

world representativeness of an emulation experiment depends on the accuracy of the model.

For correct system operation, a timing-accurate storage emulator must also retain data stored

on the emulated device. In most computer systems architectures, secondary storage devices are

expected to provide high degrees of integrity and availability over the data that are entrusted to them.

This holds true for most applications of timing-accurate storage emulation: When an emulated

storage device responds to read requests, it is generally expected to transmit data that is consistent

with the data that would be provided by a real device—that is, it should return data identical to what

was most recently written by the host system to the specified location. Emulation software must

therefore generally keep track of the data transferred during write requests in a way that enables

the correct data to be returned quickly on demand; often this requires that the data for a request be

somehow available in the fast memory of the emulator at the time a request arrives.

1.4.3 Evaluation directions enabled by timing-accurate storage emulation

A timing-accurate storage emulator takes a versatile role in storage system evaluations. One use

of timing-accurate storage emulation is as an inexpensive and readily-available alternative to pur-

chasing and installing existing storage products when evaluating multiple potential architectures.

A second use of timing-accurate storage emulation is to evaluate the potential of introducing stan-

dalone hypothetical storage components into computer systems. These devices could represent

either evolutionary changes to existing products or revolutionary storage designs. A third use of

timing-accurate storage emulation involves evaluating external system architectures in which host

software explicitly interacts with new or modified functionalities in the emulated storage subsys-

tem. As needed, the emulation environment can additionally support extended interfaces between

the host system (or another external entity) and the emulated storage components; these interfaces

can then be used to transfer meta-information or functional instructions in either direction to support

the new functionality.

We built a functional timing-accurate storage emulator and demonstrated its use in experiments

represented by the second and third categories above. To explore standalone hypothetical storage

components in computer systems, we configured our emulator with three device models repre-

senting a currently-available production disk drive, a hypothetical 50,000 RPM disk drive, and a

hypothetical MEMS-based storage device, and executed three distinct application-level workloads

against these three emulator configurations. To explore new system architectures with expanded de-
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vice functionality, we applied the principles of timing-accurate storage emulation in an investigation

into storage-based intrusion detection systems. This experimentation demonstrates the feasibility

of including intrusion detection capabilities into a standalone processing-enhanced disk drive, and

also demonstrates how existing communications paths may be used by an operating system to trans-

mit and receive information regarding the configuration and operational status of such an intrusion

detection-enhanced device. The successful results of this experimentation, coupled with previously

published work on active, intelligent, and semantically-smart disk systems, again heralds the call for

the inclusion of processing capabilities inside peripherally-attached computer system components.

1.5 Summary

Timing-accurate storage emulation offers the opportunity to investigate novel uses of storage in

computer systems, permitting forays into the space of hypothetical device functionalities without

the difficulties of developing and supporting extensively nonstandard or novel interface actions in

prototype or production systems. This dissertation demonstrates that there is a current and pressing

need for a new storage evaluation technique, and that it is feasible to design and construct a timing-

accurate storage emulator and to use an emulator for interesting systems-level experimentation.
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CHAPTER 2
BACKGROUND AND MOTIVATION

Despite decades of practice, performance evaluation of proposed storage subsystems is often in-

complete and disconnected from reality. In particular, future storage technologies and potential

firmware extensions usually cannot be prototyped by researchers, so any evaluation must rely upon

simulation or analytic models of the prospective subsystem. Unfortunately, this reliance commonly

limits consideration of real application workloads and complex “real system” effects, both of which

can hide or undo benefits predicted by simulating storage components in isolation. For this reason,

such localized evaluation has long been considered unacceptable in other I/O-related disciplines

such as research into networking or file systems.

This chapter presents a case for widespread use of timing-accurate storage emulation as a tool

for analysis and evaluation of the use of not-yet-existing storage devices in real computer systems,

arguing that the technique overcomes certain limitations of other approaches. It summarizes the

role of timing-accurate storage emulation in the context of existing storage performance evaluation

techniques (Section 2.1), discusses the strengths and weaknesses of timing-accurate emulation as a

storage evaluation technique (Section 2.2, page 17), and discusses related work for timing-accurate

component emulation (Section 2.3, page 20).

2.1 Evaluating the impact of storage components in computer systems

Storage emulation is rarely used for performance evaluation of prospective storage system designs.

This chapter makes a case for more frequent use, arguing that timing-accurate storage emulation

offers a unique performance evaluation capability: experimentation with as-yet-unavailable storage

components in the context of real systems. In particular, future storage technologies and potential

firmware extensions usually cannot be prototyped by researchers, so any evaluation must rely upon

simulation or analytic models of the prospective subsystem. However, these evaluation techniques

are limited in terms of both their inability to execute real application-level workloads and their in-

ability to fully account for system-level interactions with the storage device under test. Further,

some new storage architectures and interfaces require both OS modifications and new (or modified)

storage components—until the new components are available, only timing-accurate storage emula-

tion allows such collaborative advances to be tested and their performance evaluated in the context

of real systems.

This section discusses the currently-available techniques for evaluating hypothetical storage

devices, the available techniques for storage experimentation in the context of complete systems,

and the role of timing-accurate storage emulation in relation to these techniques.
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2.1.1 Techniques for evaluating hypothetical storage devices

Computer system implementors often must consider a wide range of variables when designing

application- or role-specific computing solutions, including often application-behavior-dependent

tradeoffs among such factors as complexity, cost, deployment effort, maintenance sensitivity, per-

formance, and upgrade flexibility. Because secondary storage can significantly impact each of these

variables, the system builder must be especially careful to understand the implications of specific

design choices for the storage subsystem. For example, choosing a simple redundancy-based data

protection scheme for the disk array supporting a frequently-updated transactional database may en-

able a faster initial deployment but may also cause an unsatisfactorily degraded level of performance

during the reconstruction phase following the failure of an individual disk.

By the same token, the researchers and developers who continue to drive innovation in storage

systems components, both in the corporate and academic arenas, are interested in quantifying the

true nature of the system-level impact of a proposed hardware or software modification. Unfor-

tunately, implementing every drawing-board idea can prove prohibitively costly in terms of both

temporal and physical resources, and depending on the timeline of the expected deployment of the

product (or the computer system above) might well be impossible.

In each of these environments, there is a desire to evaluate alternative storage subsystem de-

signs or architectures with postulated but as-of-yet unrealized components. Once an abstract device

model is available for the unrealized device—that is, once the modeler develops a conceptual un-

derstanding of how the novel device will behave—several classes of evaluation techniques exist

that permit exploration of such a device. These include analytic modeling, simulation-based de-

vice modeling, and simulation-based full-system modeling, the latter of which is discussed in the

following subsection. Each class of techniques provides different levels of fidelity in terms of the

accuracy, completeness, and representativeness of the model and evaluation results as compared to

the ultimately deployed storage system. These levels of fidelity are generally tunable in terms of

the model development time and validation effort required for the initial construction of the device

model.

Analytic models for storage use stochastic and queuing theory to create probabilistic models

that quantify a device’s performance response to input workloads. Analytic models have been

used for decades in investigations into individual device behaviors [16, 153]. More recently, at-

tention has turned to the application of analytic models to understanding the behavior of arrays of

devices [167, 169, 180]. (See selected references from Shriver, Hillyer, and Silberschatz for an ex-

tensive history of the development and use of analytic models in studies of disk drives, disk arrays,

and tape systems [154, §3.2].) Once a baseline model is created for a device, it can be replicated

and extended to account for multiple alternate device configurations. Synthetic workload models

based on characterizations of the expected workload are used to drive analytic storage models at

validation and experimentation time. Evaluations using analytic models are advantageous in that

they permit rapid development of an experimental environment, especially when detailed internal
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characteristics of the storage device (such as firmware algorithms or optimizations) are not fully

understood. Additionally, analytic models are generally conceptually easier to understand than the

alternatives of simulation models or empirical models. However, due to the probabilistic nature of

such analyses, experiments using analytic models of storage are best directed toward quantifying

the statistics of aggregate device behavior under a workload rather than understanding individual,

time-critical device responses to specific requests.

Simulation-based models for storage combine a detailed description of a device’s state-based

mechanical and algorithmic behavior with knowledge of how some or all previous storage re-

quests contributed to the current device state; this allows an experimenter to quantify a device’s

performance response to input workloads. Development and use of high-accuracy simulation-based

models has progressed rapidly over the years, which has enabled detailed investigations into the

design, behavior, and performance of disk drives [47, 63, 70, 90, 103, 111, 149, 181], disk ar-

rays [6, 40, 77, 91, 176] hierarchical or distributed memory caches [11, 177], tape systems [81, 80],

and new storage technologies (see Schlosser [144] and selected references therein). Simulation-

based models are generally more complex to build than analytic models, as each functional compo-

nent (both mechanical and algorithmic) must be individually considered regarding its contribution

to the model’s accurate portrayal of a real device’s responses to internal and external stimuli. Addi-

tionally, greater care and effort must be taken at evaluation time to ensure that the focus remains on

quantifying true overall system effects instead of potentially unimportant trends at the device’s sim-

ulated internal components. However, this ability to concentrate on minute details is an attractive

feature of simulation-based modeling, in that it enables fine-grained observation of how individual

physical design decisions or modifications affect the externally-observed overall behavior of the

device. Additionally, simulation-based techniques enable fine-grained analysis of a device model’s

discrete responses to individual storage requests, as well as considerations of how the device behav-

ior and state is affected by a group of specific temporally-ordered storage requests.

2.1.2 Experimentation in a full systems context

Unfortunately, there are several factors that limit the desirability of analytic modeling and simulation-

based modeling. In particular, these techniques limit consideration of real application workloads and

complex real-system effects. Input workloads to these techniques are generally either (possibly tem-

porally scaled) replayed traces of a previously-measured request stream, or an artificially-generated

sequence of requests based on a statistical sampling of previously-measured request streams. Eval-

uations using trace replay or synthetic workload generation are susceptible to errors introduced by

the mismatch between the configuration of the initial trace-gathering system and both the experi-

mental device’s internal characteristics and the real system’s feedback effects. Request interarrival

times for a workload are not necessarily independent of the device’s response time for individual

requests. When the characteristics of the trace-gathering device do not match those of the exper-

imental device—for example, if the devices differ in their physical capacity, geometric layout of
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data, firmware algorithms, or even in the interconnection buses used to join the device to the exter-

nal system—this can cause a loss of realism in the representativeness of the experimental results.

Similarly, errors will likely be introduced when the hardware and software of the trace-gathering

system—for example, the selection of processor or cache components, or the choice of operating

system—differs from the configuration of the real, to-be-deployed system. Worse, trace-based eval-

uation may not adequately capture the feedback between the storage device and the the external

system that impacts overall (i.e., non-I/O-specific) metrics of architectural or experimental good-

ness, as discussed by Ganger and Patt [63].

Techniques involving experimentation with real applications executing on real external hard-

ware provides the most desirable level of realism. These techniques are especially appropriate when

the desired storage component is physically available for experimentation; i.e., when any hardware

modifications or software implementations have already been fully realized in a prototype or pro-

duction device by the device engineers. For example, this technique is used by industrial storage

device developers to look at cutting-edge performance enhancements: to evaluate the gains of in-

cluding a faster spindle motor in a disk, a faster motor may be built and placed inside an otherwise

minimally modified production disk (known as a “mule”) [130]. Unfortunately, although it is ben-

eficial to evaluate real devices in experimental environments, consideration of a large number of

prospective devices may dramatically increase the overall cost and effort of such experimentation.

Additionally, when considering hypothetical devices, it is seldom possible to quickly and inexpen-

sively prototype major refinements to existing devices. This is especially difficult for researchers

not affiliated with the device’s manufacturer who therefore do not enjoy ready access to proprietary

firmware and manufacturing facilities.

A technique that contains the realism of external system interactions combined with evaluations

of hypothetical storage devices is full-system simulation. Examples of timing-accurate full-system

simulators are the Virtual Machine Emulator [25], SimOS [79], Simics [113], and Mambo [18].

The SimOS and Simics simulators in particular have enjoyed widespread dissemination and use

in computer system evaluations. Under the technique of full-system simulation, the hardware of

a computer system is simulated in enough detail to boot a real OS and run applications. If the

simulation progresses according to timing-accurate models of the key system components (e.g.,

processors, caches, buses, memory system, I/O interconnects, I/O components), it can be used for

performance evaluation. Further, by manipulating simulator parameters, the effects of new storage

devices on hypothetical machines (e.g., with 10 GHz CPUs) can be evaluated [132, 146]. Unfor-

tunately, substantial effort is required to build and maintain a complete machine simulator, both in

terms of correctly executing programs and correctly accounting for time. Real computer systems

are complex and they continue to advance rapidly. For example, the SimOS machine simulator re-

quired several years of effort to create and validate; just a few years later, its hardware models were

out of date, the CPU instruction set it emulates was phased out, and source code for the OS that it

boots became difficult to acquire. In addition, full-system simulators usually run much slower than
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real systems, which increases evaluation time and makes it difficult to evaluate interactions between

computer systems and external entities such as workstation users or network-attached components.

2.1.3 The role of timing-accurate storage emulation

Timing-accurate storage emulation fills an important gap in the set of common performance eval-

uation techniques for proposed storage designs: it allows a researcher to experiment with not-yet-

existing storage components in the context of real systems executing real applications. As its name

suggests, a timing-accurate storage emulator appears to the system to be a real storage component

with service times matching a simulation model (or mathematical model) of that component. This

allows simulated storage components to be plugged into real systems, which can then be used for

complete, application-based experiments. To accomplish this, the emulator must synchronize the

simulator’s internal time with the real-world clock, inserting requests into the simulator when they

arrive and reporting completions when the simulator determines they are done. If the simulator’s

model represents a real component, the system-observed performance will be of that component.

Thus, the results from application benchmarking will represent the end-to-end performance effect

of using that component in a real system.

Table 2.1 illustrates a spectrum of seven techniques for evaluating storage designs, placing each

of the techniques from above into a common context. Techniques toward the top generally demand

less of the evaluator: less effort to set up and employ, less time to produce a result, and less need

for the evaluated storage system to be feasible. Techniques toward the bottom generally produce

more believable results: more accurate, more inclusive of complex system effects, and more repre-

sentative of the effects under real workloads. Each of the seven techniques shown are appropriate

in some circumstances, as each offers a different mixture of these features. For example, storage

simulation allows hypothetical storage systems to be evaluated quickly and efficiently. Even futur-

istic technologies and modifications to proprietary firmware can be explored. Simulation results,

however, must be viewed with skepticism, since the simulation may abstract away important char-

acteristics of the storage components, overall system, or workload. In particular, representative

workloads are rarely used, since synthetic workload generation is still an open problem [57], I/O

traces ignore system feedback effects [63], and available traces are often out-of-date—in fact, many

storage researchers still rely on the decade-old HP traces [135] from 1992. As a different example,

experimenting with prototypes allows one to evaluate designs in the context of full systems and real

workloads. Doing so, of course, requires considerable investment in prototype development and

experiment configuration.

Timing-accurate storage emulation offers an interesting mix of features: the flexibility of sim-

ulation and the reality of experimental measurements. That is, storage emulation allows futuristic

storage designs to be evaluated in the context of real OSes and applications. This enables two types

of experiments. First, end-to-end measurements can be made of the effects of non-existent storage

components in existing systems. These components can then be evaluated by executing one or more
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representative application-level workloads and evaluating both the performance of the individual

component and of the overall system. Second, end-to-end measurements can be made of the effects

of non-existent storage components in modified systems. For example, the storage interface can be

extended to support autonomous data mining operations inside the storage device. Evaluating this

on real devices would require modifications to both the operating system device driver and the stor-

age device firmware to support the new interface; even if the requisite changes and new functionality

were available outside the storage device, it can be difficult or even impossible to modify real de-

vices given the proprietary and internally classified nature of the firmware of most disks and disk

array controllers. However, such evaluations are feasible using timing-accurate storage emulators

of these storage devices.

2.1.4 Comparison with full-system simulation

Of the existing storage evaluation techniques, timing-accurate storage emulation is most similar to

full-system simulation in terms of the real-world representativeness of experimental results and the

types of enabled storage system evaluations. Full-system simulation shares many of the advantages

of emulation, in that both techniques can be used to evaluate hypothetical devices in the context of

their interactions with complete computer systems. Identical software-based storage models can be

used in both environments, eliminating any difference in storage model development and validation

time between the approaches. However, few projects have used full-system simulation specifically

for evaluating the interaction between computer systems and storage; examples of these include

the work by Schlosser et al. investigating the architectural implications of integrating MEMS-based

storage technology into the memory hierarchy [146], and the work by Gurumurthi et al. for pro-

filing power dissipation in a power-optimized computer system [76]. We postulate that this is not

due to the inapplicability of full-system simulation for storage evaluations, but rather the historical

emphasis of full-system simulation on exploring components further up the memory hierarchy—as

demonstrated by Maynard, inattention to disk-level validation for the default disk module in full-

system simulators can cause performance misprediction [115]—as well as the propensity of storage

system researchers to press forward with building real systems whenever application-level exper-

imentation is desired. Regardless, we note that successful storage evaluations often do not need

many of the specific advantages provided by full-system simulation, and conversely that there are

advantages to using timing-accurate storage emulation that full-system simulation does not share,

as discussed in the remainder of this section.

Many projects have used full-system simulation to good effect in computer system component

evaluations. The technique offers many experimental-time advantages, which have doubtless con-

tributed to the wide adoption and use of the full-system simulation: Full-system simulators can

provide detailed summaries of performance and behavioral interactions of individual system com-

ponents. The simulation environment has full control over clock advancement, making it straight-

forward to temporarily halt progress and examine intermediate system state during experimentation
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and additionally introduce anomalies wherever desired for debugging purposes. Importantly, eval-

uations using full-system simulation (as well as those using several of the other non-emulation

techniques) can be configured to simulate hypothetical computer systems as well as hypothetical

storage components. This can often be done by simply changing the simulation parameters in a

configuration file, or alternatively the simulation software can also be manually tuned to reflect the

characteristics of the desired system. The most widely used simulator today is Simics, which has a

company with a business model behind its development, which suggests the likelihood of continued

retail availability of full-system simulators.

Unfortunately, full-system simulators have yet to provide accurate operation of experimentally

interesting modern computer systems at real-time speeds. Further, full-system simulators require

prodigious amounts of effort to develop and maintain: as an example, the Simics developers claim to

have spent 50 person-years of development generating approximately one million lines of software

to support the simulator in its various configurations [113]. For comparison, our timing-accurate

storage emulator required approximately two person-years of development. These limitations high-

light three key advantages of timing-accurate storage emulation over full-system simulation:

1. Timing-accurate storage emulation can proceed in real-time, which has the advantage of de-

creasing overall evaluation time, as well as permitting the inclusion of real interactions in

real-time between the real computer system (with the emulated storage) and people using the

system or other computer systems.

2. Timing-accurate storage emulation provides the best possible realism for experimentation

with hypothetical storage devices by incorporating as many real components as are possible

into the experimental environment.

3. Timing-accurate storage emulation requires much less effort to develop and deploy an accu-

rate experimental infrastructure.

Additionally, timing-accurate storage emulation gives the evaluator the ability to concentrate on

the development, validation, and instrumentation of the desired storage component model, without

needing to worry about correctly configuring the simulation environment or interpreting the validity

of a full-system simulator’s execution.2.1

2.1Of course, when using timing-accurate storage emulation the evaluator must instead worry about correctly con-
figuring the emulation environment and interpreting the validity of the real-time emulator. Anecdotally, we found it
straightforward to quickly integrate local emulation capabilities into an operating system, the ease of which is mirrored
by the success other projects using local emulation as enumerated in Section 2.3.2. (The concepts of local and remote
emulation are introduced in Section 3.2.2.) We found it substantially more difficult to develop a stable platform for re-
mote emulator development—this required approximately one graduate-student-year of effort—due mostly to the limited
availability of documentation describing the complex interactions among the emulation software, the operating system
software that supports emulation, and the target-mode bus adapter firmware that supports emulation. As remote emula-
tion functionality continues to grow in popularity and more documented software utilities become publicly available, we
anticipate remote emulator development to become more straightforward. In either case, we expect the configuration and
validation techniques for timing-accurate storage emulators described in Chapter 5 will also simplify the evaluator’s task.
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2.1.5 Previous experiences with non-emulation-based storage evaluations

Two case studies from our recent experience with non-emulation-based storage evaluation are pre-

sented in Appendix A and Appendix B. These case studies identify several experimental situations

where the use of timing-accurate storage emulation would have been applicable and desirable. The

projects described in the case studies used similar to timing-accurate storage emulation in terms

of development effort and representativeness of results: full-system simulation (of MEMS-based

storage devices, referred to here as Project A) and production-device experimentation (with track-

aligned extents, Project B). These case studies highlight the utility of timing-accurate storage emu-

lation in two ways. First, the project descriptions show several types of experiments where timing-

accurate storage emulation would be relevant and would capture many of the same results. Second,

the project evaluations suggest opportunities for continued evaluations using new devices or new

workloads; timing-accurate storage emulation would have allowed pursuit of these new directions,

whereas the existing techniques could not support such investigations.

Projects A and B establish well the utility of existing storage evaluation techniques. Project A

demonstrates system performance and resource consumption implications that arise when introduc-

ing hypothetical non-volatile storage devices as complements or replacements for disk drives in

the computer system memory hierarchy. Project B demonstrates how an operating system can use

device-specific knowledge in its data allocation and access decisions, with the result of increasing

the efficiency of requests at the storage device and therefore reducing application-level stall times.

Unfortunately, each project also demonstrates the limitations of scope and representativeness of the

results available using each technique. Using full-system simulation in Project A, we had no choice

but to use the single available operating system and hardware platform supported by the simulation

environment; both of which were years out of date and were only questionably representative of

the environments into which the hypothetical device would be introduced. Additionally, we were

unable to run experiments involving user interactions with the system containing the hypothetical

device. Using production-device experimentation in Project B, we were unable to evaluate any alter-

native products that lacked the particular firmware support (zero-latency access) that our efficiency

improvements relied on. Were were also unable to adjust or tamper with any hardware character-

istics or firmware functionality to determine where other opportunities might exist to increase the

efficiency of operating system-level storage interactions.

Our experiences with these two projects indirectly emphasize the power and potential of timing-

accurate storage emulation. First, all of the experimental results recorded during our experimenta-

tion would have been equally obtainable using the technique of timing-accurate storage emulation,

except with a higher confidence in the representativeness of the full-system simulation results due

to the use of applications running on a real operating system and real hardware. Second, pursuit of

several new ideas identified during experimentation (other opportunities to improve efficiency, or

user interactions with hypothetical systems) were difficult or impossible to pursue using the existing

techniques but would have been possible using timing-accurate storage emulation.
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2.2 System-level experimentation using timing-accurate storage emulation

A timing-accurate storage emulator can take a versatile role in storage system evaluations. An em-

ulator may be used as an inexpensive and readily-available alternative to acquiring demonstration

or example hardware when choosing which currently existing storage products to purchase. Or, it

can be used to evaluate the impact of storage devices representing significant futuristic technolog-

ical progress, to get an early feel for which innovations would return the most beneficial return if

pursued. The scope of which hardware and software components are emulated can be contained

within a single device or controller, or can span an entire multi-device hierarchical storage subsys-

tem. This section discusses these roles, as well as the limitations on effectiveness and applicability

that are inherent to timing-accurate storage emulation.

2.2.1 Approaches benefitting from emulation

There are three experimental domains for which timing-accurate storage emulation is especially

pertinent: those looking at deployment options involving currently-existing storage products, those

evaluating the potential of nonexistent storage components, and those evaluating modified external

system architectures or interactions with modified or hypothetical storage device functionality.

One use of timing-accurate storage emulation is as an inexpensive and readily-available alter-

native to purchasing and installing existing storage products when evaluating multiple potential

architectures. This of course would rely on the availability of storage devices models, whether pro-

vided by the device manufacturer or an independent testing and development entity. The cost and

complexity of developing or deploying an emulation product would be amortized across the savings

of time and expenditure of obtaining product samples for evaluating, assuming such samples are

even available.

A second use of timing-accurate storage emulation is to evaluate the potential of introducing

standalone hypothetical storage components into computer systems. These devices could represent

either evolutionary changes to existing products or revolutionary storage designs. This would be

appropriate in an advanced host-system product development environment, where one goal is to

evaluate high-end external system prototypes with the storage facilities that will ultimately be avail-

able at deployment time. Alternatively, this would be appropriate in a storage product research and

development environment, where one goal is to evaluate the overall performance impact of potential

device modifications in the physical hardware or even functionality of the component controller or

an individual device’s firmware. The case studies involving MEMS-based storage devices and track-

aligned extents, presented in Appendix A and Appendix B respectively, are examples of experiments

that would fall into these categories if performed using timing-accurate storage emulation.

A third use of timing-accurate storage emulation involves evaluating system architectures in

which external components explicitly interact with new or modified functionalities in the emulated

storage subsystem. As needed, the emulation environment can (explicitly or implicitly) support
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extended interfaces between the external components and the emulated storage components; these

interfaces can then be used to transfer meta-information or functional instructions in either direction

to support the new functionality. Such functionality can exist solely within the domain of the emu-

lated storage system, which would allow evaluations with unmodified host systems. Alternatively,

the approach may be used to evaluate new system-level functionalities or performance improve-

ments based on enhancements split between both the emulated components and the host operating

system or evaluation applications. Our investigation into storage-based intrusion detection systems,

described in Chapter 7, is an example of this type of experiment using the principles of timing-

accurate storage emulation.

2.2.2 Scope of emulated components

We define the scope of a timing-accurate storage emulator as the statement of which components’

timings and behavior are determined wholly by the emulation software. The scope of an emulator

may include just a single device, such as an individual disk drive, or may involve many system com-

ponents. For example, the emulator’s internal model can include bus interconnection components,

multiple storage devices interacting together, device array controllers, or even a hierarchy of com-

ponents such as a non-volatile cache in front of a disk. This is a design-time tradeoff that depends

on several factors. One dependency involves what hardware support is available for emulation; as

discussed later, some forms of storage emulation require both special hardware functionality in the

bus adapter and special operating system support for target-mode operation. Another dependency

involves what real external hardware and software components are available for building the exper-

imental system. If the evaluation system will contain a futuristic storage interconnect, such as a bus

with specific device arbitration characteristics, it would be appropriate to include the interconnect

within the scope of the emulated subsystem. A third dependency involves which component models

are available for emulation, and whether such models have been validated against real components.

In terms of the input workload used to drive the performance and behavior of a timing-accurate

storage emulator, any of the workloads used for other advanced storage evaluation techniques are

appropriate. This ranges from artificially-generated synthetic workloads; unscaled or scaled traces

of storage requests taken from past experimentation; system-level microbenchmarks [133]; and

application benchmarks such as the PostMark benchmark [96], the SSH-build benchmark [151],

and the TPC database benchmarks from the Transaction Processing Performance Council. More

importantly, it includes real application workloads; much of the motivation for timing-accurate stor-

age emulation stems from its ability to execute real applications on both modified and unmodified

external systems. Further, as discussed above, the emulator can use more workload information

than is normally available during experimentation; the emulation environment can support meta-

information passing across the storage interconnect to allow the sharing of application-level or

operating system-level information with the storage components, enabling more “intelligent” op-

erations inside the storage subsystem.
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2.2.3 Limitations of timing-accurate storage emulation

In spite of its strengths and advantages, the technique of timing-accurate storage emulation is not a

panacea and its use is not appropriate in all evaluation scenarios. An evaluator must be cognizant

of several limitations to the approach that can dilute its effectiveness or applicability under certain

circumstances.

One limitation to timing-accurate storage emulation is that the choice of external system com-

ponents are limited to those that are physically available to the evaluator. For example, one can only

use timing-accurate storage emulation to evaluate a database system with novel storage subsys-

tem functionality if the non-storage portions of the hardware and software composing the database

system are on hand. Similarly, when evaluating an architecture with the predicted storage subsys-

tem performance of next year’s disk products, such an evaluation can only be made in the context

of current hardware system products or prototype platforms. One observer has wryly noted that

“timing-accurate storage emulation provides the ability to evaluate tomorrow’s storage in today’s

computer systems.” This is fair criticism, and the evaluator must weigh the pros and cons of this

technique over alternate methods such as full-system simulation, where it is possible to simulate

applications running on any futuristic hardware but where it can be extremely difficult to build and

maintain accurate models of the same. On the other hand, the technique of timing-accurate storage

emulation does enjoy the realism of using existing systems. Use of this technique can be construed

as a valuable incremental step towards an ultimate evaluation using a real storage prototype, making

use of the best resources available until such prototype evaluation is possible.

Another limitation concerns the scarcity of validated physical device models for existing storage

products and speculative device models for future devices, and especially the question of whether

the results of emulation-based experiments are truly representative of the results that would come

from a real device. Whether using simulation models or analytic models as the basis of the emula-

tor’s performance and behavior, emulation-based experiments share the shortcomings of all model-

based experimentation in that the accuracy of the emulator can be no greater (and is potentially less)

than the real-world representativeness of the model. Fortunately, the facts that highly-accurate val-

idated models exist for disk drive products [141], and that there continues to be interest in building

simulation models and analytic models for disk array products [169] and other secondary storage

components [73], suggest that models will continue to be available to evaluators. If timing-accurate

storage emulation develops into a well-used tool, storage product manufacturers might find it prac-

tical and economically feasible to release validated models of their devices to support external

emulation-based evaluation. Regardless, as implied elsewhere and discussed in Section 3.2.4, this

work assumes the existence of an acceptable device model and focuses on the techniques necessary

for replicating the model’s exact behavior in an emulated environment.

A third limitation involves the peak performance of the emulation system itself. As discussed

later, there is in many cases only limited hardware and software support for certain emulation func-

tions, such as the ability for a computer system to receive requests and send replies on a storage
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interconnect (as opposed to the usual role of sending requests and receiving replies). Further, for

some desirable system designs—for example, our initial expectation to use the Linux operating

system as the foundation of our emulation software—the requisite support is currently nonexistent

in the mainstream distributions and it is nontrivial to implement [121]. Also, limited support for

emulation functionality in the interconnect adapter hardware can result in potentially severe limi-

tations on the minimum request time, maximum data rate, and maximum request interarrival rate.

For example, the implementation used in this dissertation has a minimum request time of approxi-

mately 0.1–0.3 ms per request depending on the bus adapter used, as discussed in Section 5.4. Much

smaller minimum times and maximum rates can be achieved by colocating the emulation software

on the experimental host system, but this increases the risk that the emulation software will have a

performance impact on applications running on the now-modified host system.

2.3 Survey of related work

Much previous work related to timing-accurate storage emulation is presented earlier in this chapter:

Section 2.1 discusses non-emulation-based storage evaluation techniques, refers to projects that

make use of such techniques, and compares the techniques with timing-accurate storage emulation.

This section notes additional related work in three areas: it surveys published models that capture

the behavior and performance of storage devices; it identifies projects that have used emulation-like

approaches for storage component evaluation; and it discusses experimental approaches that are

taken in the related I/O-centric disciplines of networking and file systems.

2.3.1 Storage subsystem modeling

Much work has gone into the development of efficient and representative storage device models. We

classify work on model development into the three categories of empirical models, analytic models,

and simulation models. The reader seeking a comprehensive introduction to issues surrounding the

methodology for creating and validating performance models in each of these categories is referred

to the treatment by Jain [94]. This section discusses recent work toward model development in each

category.

Several projects have developed empirical methods that abstract a disk’s mechanical character-

istics into a lookup table of expected disk access times [8, 126, 163], which can then be used in

predicting individual request service times during experimentation. Such table-based models have

the advantages of fast and efficient operation (in terms of the on-line processing requirements),

abstracted and automated off-line or on-line table creation, and some degree of real-world repre-

sentativeness in relation to the mechanical operation of a device’s hardware components. As to the

disadvantages of the approach, an actual device may be needed at table creation time, and it can

take a large number of storage requests to populate the entries in the table. In order to maintain

reasonable table sizes, the table may need to abstract out per-request algorithmic effects such as
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scheduling and caching policies. Additionally, it is difficult to update the table to reflect device

modifications due to the abstract nature of the device model. However, for emulation of very high-

performance secondary storage devices, table-based approaches may allow experimentation when

other approaches fail due to their inability to complete detailed per-request simulation before the

request deadline.

Models developed under these approaches have generally proceeded along two tracks, empha-

sizing either single-device systems or multi-device systems such as disk arrays. Recent analytic

models are presented by Shriver, Merchant, and Wilkes for individual disk drives [153] and by

Varki et al. for disk arrays [169]; previous work in storage-based analytic models includes a series

of incremental and revolutionary models capturing ever-finer-grained detail of the performance and

behavior for disks, disk arrays, and tape systems, as discussed in the related work of these references

and as surveyed by Shriver, Hillyer, and Silberschatz [154, §3.2].

Ruemmler and Wilkes published a brief tutorial on simulation-based modeling of individual

disk drives [136]. A disk simulator created by Kotz, Toh, and Radhakrishnan [105] was later used

as a core disk module in the SimOS full-system simulator [79]. Ganger, Worthington, and Patt de-

veloped the general-purpose DiskSim storage simulation environment [64] which led to the devel-

opment of a disk characterization and model creation utility [141] and a publicly-available database

of validated simulation models for various disk drive products [56]. Work directed toward disk

array simulation includes the Pantheon simulator [174], the raidSim simulator [37, 101], and the

RAIDframe framework [41].

Outside the realm of disk-based storage, simulation models of hypothetical MEMS-based stor-

age devices were developed by Griffin et al. [73] and Madhyastha and Yang [112]. Various analytic

models and simulation models for tape systems are presented by Drapeau and Katz [49], Golubchik,

Muntz, and Watson [71], and Hillyer and Silberschatz [82].

Our implementation of a timing-accurate storage emulator2.2 makes use of simulation models

for single disk devices and MEMS-based storage devices that were built for the DiskSim simulation

environment. Additionally, many of the other models and environments would be appropriate for

evaluation approaches using timing-accurate storage emulation; as discussed in Section 5.1.1, a

primary limitation on which models are available for emulation purposes is that the amount of

processing time required to execute the model and compute the completion time of any given request

(excluding the inactive time during which request is queued at the emulator) must be less than the

actual service time for that request.

2.3.2 Storage emulation evaluations

In a sense, storage emulation is commonplace. For example, the standard SCSI interface allowed

disk arrays to rapidly enter the storage market by supporting a disk-like interface to systems. Simi-

larly, the NFS remote procedure call (RPC) interface allowed dedicated filer appliances to look like
2.2Details of this implementation and its interactions with the simulation models are presented in Chapter 5.
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traditional NFS file servers [83]. Computers from Apple Computer, Inc., support file transfer op-

erations using native target-mode operation: When two Macintosh-brand computers are connected

using a FireWire interconnect, one appears as a locally-attached disk on the other. In addition, we

have been told anecdotal stories of the use of emulation in industry for development and correct-

ness testing of new product designs; support for the requisite target-mode operation is available

and marketed for this purpose in several of the hardware products and operating systems discussed

in Section 4.3. A less direct example is the practice of evaluating non-volatile RAM by simply

pretending that normal RAM is non-volatile [35, 62].

Several projects have used storage emulation to build and evaluate systems containing new

storage functionalities. Generally speaking, these projects introduce new software that intercepts

storage requests destined for a real disk and emulates the desired high-level functionality before al-

lowing the request to proceed to the real disk. This software can either run locally on the system un-

der test or remotely on special hardware dedicated to the emulation task.2.3 Although disk-accurate

request timings are not (to our knowledge) a stated design goal of such projects, the projects use

real disks to determine request times in a similar manner to the timing management for our eval-

uations of a storage-based intrusion detection system as described in Chapter 7. An example of

local software interposition is the implementation of the RAIDframe framework [39]. RAIDframe

is intended for use in researching, verifying, testing, and producing RAID systems, and could be

used both as a storage subsystem simulator or as an application-level or OS-level RAID controller

for evaluating real applications running against an emulated disk array. Examples of remote soft-

ware interposition include the StarFish project at Bell Laboratories [54] and the Network Attached

Secure Disk (NASD) project [68]. The StarFish project used emulation to evaluate the use of host-

transparent, geographically-replicated block storage devices to increase the data availability and

reliability metrics provided by the storage subsystem. The hardware and software components used

for target-mode emulation support in StarFish are very similar to experimental setups used for our

experiments and described in Chapter 4. Some of the investigations in the NASD project used

emulation to evaluate the performance, computational requirements, and scalability of applications

running against storage devices with novel object-based interfaces. As with our investigations into

timing-accurate storage emulation, the NASD evaluations uncovered implementation-specific lim-

itations on evaluation-time performance that did not necessarily reflect the true performance limits

of a real device.

We are aware of only a few previous cases of timing-accurate storage emulation being used

for performance evaluation. One example is the evaluation of the Galley Parallel File System by

Nieuwejaar and Kotz [118]. Galley is composed of computational processing nodes and I/O pro-

cessing nodes that together support the operation of high-performance parallel scientific computing

applications. To avoid false inflation of the observed disk performance due to file system prefetch-

ing and caching effects on the I/O nodes, the evaluators integrated a thread running a disk simulation
2.3This distinction parallels our discussion of local and remote emulation in Section 3.2.2.
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model into each I/O node. This thread determines the actual completion time of a request: when

a request arrives, the simulation model calculates the time required to complete the request, then

the thread suspends itself for that length of time. This thread is similar in functionality to the tim-

ing manager in our emulator design.2.4 Galley additionally supported a limited data management

functionality, in that the disk simulation thread maintained a small cache to store meta-data blocks

important to the file system operation. Unlike the data manager in our implementation, the con-

tents of ordinary data blocks were not preserved by the thread cache, presumably due to the limited

amount of RAM available to the thread on the emulation system.

Another previous example of timing-accurate storage emulation is the evaluation by Wang, Pat-

terson, and Anderson of the virtual-log logging strategy for Programmable Disks that support eager

writing [171]. Under eager writing, data is written to a disk location that is close to the disk head’s

current location. To evaluate the benefits of eager writing, the experimenters used local emulation

to interpose support for virtual logging in the firmware of an emulated disk. Timing management

for emulated disk requests is provided in a similar manner to that of Galley, in that the kernel thread

sleeps for the length of time determined by the disk simulator. The design is additionally augmented

with a small RAM cache that stores and returns written file data.

A more recent example is the exploration of applications of distributed computing on active stor-

age devices by Wickremesinghe, Chase, and Vitter [173]. This evaluation used local timing-accurate

emulation of both storage and network components to demonstrate the potential of dynamic adapta-

tion on active devices. The disk and network simulation models used in the emulation environment

were simple—for example, the disk simulator did not model detailed seek and rotational times—but

these simple models were appropriate for the particular experimentation due to the known fully-

sequential nature of the I/O workload. Evaluations such as this that use workloads with well-known

or straightforward characteristics are good candidates for implementing the multiple-fidelity model

support in limited-processing emulation environments discussed in Section 5.1.1.

The designs of the timing-accurate emulation components in Galley and the Programmable Disk

are similar to our design as presented in Chapter 3. However, there are some notable differences

between this work and previously-published research: We present a technique for synchronously

executing an event-driven simulation model in real time,2.5 enabling our simulation model to react

to additional external events (such as new request arrivals) that occur during the execution of a

request. We develop a method for quantifying and mitigating the per-request errors introduced

by the emulation infrastructure. Additionally, whereas the previous investigations used simulation

models of existing disk products, we use a general-purpose disk simulation environment to evaluate

both current and future storage component designs.
2.4The functions of timing and data management for timing-accurate storage emulators are described in Section 3.3.
2.5As discussed in Section 5.3.1, our implementation introduces the run-synchronously approach, whereas it appears

that the Galley and the Programmable Disk use the run-to-completion approach.
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2.3.3 Evaluations in related I/O-centric disciplines

The importance of capturing real system effects through experimentation with complete computer

systems, timing-accurate emulation, or full-system simulation is well established in other areas of

computer system evaluation, including experiments focusing on network and file system research

and development.

Evaluations of network components and protocols are generally system-level in that they con-

centrate on developing the context of a component modification or protocol design’s effect on a

complete, end-to-end network architecture. To accomplish this, actual experimental computer net-

works are often built and evaluated in the local area or the wide area. However, when scale con-

siderations do not permit construction and deployment of substantial networks, full-system simu-

lation [22] or timing-accurate network emulation [5, 50, 119, 168, 172] techniques are employed.

Timing-accurate network emulation parallels our description of timing-accurate storage emulation:

real hosts interconnected by an network emulator observe normal packet send/receive semantics

and performance that accurately reflects a simulation model. Some controllable performance ef-

fects of the emulated network include propagation delays, bandwidths, and packet losses. The use

of these full-network evaluation techniques enable real system benchmarking and design analysis

whose representativeness would not otherwise be fully captured by component-only analysis.

Evaluations of file system designs, investigations into the operational behavior of file systems,

and quantifications of externally-observed file system performance are almost always performed in

the context of file system prototype experimentation or production file system experimentation in a

complete systems context. This is due in part to the availability of stable and extensible operating

systems upon which to integrate file system modifications or build new file system designs, and

simplified implementation due to semi-rigid specifications regarding the interface between a file

system, the users of the file system, and the remainder of the operating system. In addition to

the veritable cornucopia of file system projects that have used prototype-based or production-based

experimentation, however, there has also been interest in using file system simulation (combined

with varying degrees of emulator-like integration into real-world environments) as a tool for rapid

prototyping of file system modifications with a comfortable degree of real-world representativeness

of the results [13, 20, 104]. Thekkath, Wilkes, and Lazowska report that carefully-designed file

system simulation is able to capture many of the complex interactions and algorithmic behaviors of

a fully-functional file system [162].

2.4 Summary of this chapter

Timing-accurate storage emulation has a role in the toolbox of storage evaluation approaches. The

technique of timing-accurate storage emulation complements currently-utilized techniques where

they are unable to satisfactorily explore the use of nonexistent or unavailable storage components in

real computer systems. Although the technique is not without its limitations—timing-accurate stor-
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age emulation relies both on the availability of accurate storage device models and on hardware and

software support for emulator operation—it has applicability in evaluating both currently-available

storage products and futuristic storage devices representing significant technological progress in

terms of both physical performance and functional capabilities.

The following chapter discusses the design considerations that support the implementation of a

timing-accurate storage emulator.
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CHAPTER 3
DESIGN OF A TIMING-ACCURATE STORAGE EMULATOR

A timing-accurate storage emulator transparently fills the role of a storage component in a real com-

puter system, enabling application-level evaluations of proposed system designs as if they included

the real component. As illustrated in Figure 3.1, a timing-accurate storage emulator must appear to

its host system to be the storage subsystem that it emulates. Accomplishing this requires that the

emulator correctly mimics the protocols and behavior at the component’s external interface: The

emulator accepts storage requests from the host system, exchanges data read or written by the host

system, transmits request completions to the host system after the correct time elapses, and retains

written data to respond correctly to future read requests.

This chapter discusses the design of timing-accurate storage emulators. It introduces terminol-

ogy to describe storage emulation (Section 3.1), examines an emulator’s interactions with the host

system and with the experimenter (Section 3.2, page 27), and describes the major functional com-

ponents that compose a timing-accurate storage emulator (Section 3.3, page 34) and design issues

that affect the operational effectiveness of an emulator (Section 3.4, page 38).

3.1 Nomenclature used to describe timing-accurate storage emulation

This section contains terminology that we use in discussing the design and presenting the imple-

mentation of a timing-accurate storage emulator. The definitions provided herein are intended to

provide an initial understanding of each term, with the full semantics of each term becoming clearer

during a thorough examination of their use in the dissertation text.

host system The hardware and operating system upon which the evaluation applications execute

during an experiment.

emulation system The hardware and operating system upon which the emulation software exe-

cutes, which may or may not be the same as the host system (Section 3.2.2).

emulation software The timing-accurate device model and the software infrastructure used to exe-

cute the device model during emulation. For storage emulation this includes the data manage-

ment components that retain written data and the communications management components

that interact with the host system (Section 3.3).

emulated device The storage component or components whose timings and behavior are modeled

by the emulation software.
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Workstation or Server

Storage Interconnect

Figure 3.1: Am I connected to a real storage component or an emulator? The objective of
timing-accurate storage emulation is to faithfully replicate the performance behavior of a device
model with such fidelity that this becomes a difficult or impossible determination. Compare this
illustration with Figure 1.1 (page 3).

storage interconnect The bus connecting a storage device to the host system. The storage inter-

connect to an emulated device may or may not be physically available; in the latter case the

interconnect timings and behavior must be modeled by the emulation software.

external components Components external in scope to the timing-accurate storage emulator; i.e.,

any part of the experimental system that is not modeled by the emulation software.

storage request A command from the host system to a storage device to read or write data, to set

the device’s configurable parameters, or to get the current device status or configuration.

request propagation path The path taken by the storage request arrival notifications (e.g., to the

emulated device) and completion notifications (to the host system). In an ordinary computer

system, this involves the path through the host operating system, the bus adapter hardware,

the storage interconnect, and the hardware and software paths inside the storage device.

3.2 Interactions with a storage emulator

From the perspective of the external system, interactions with an emulated device are identical the

interactions with the real device—a storage request is transmitted to the device, an exchange of

data occurs with the device, and an acknowledgement is received from the device. Additionally,

the system evaluator is involved at a high level with certain internal specifics of the emulator’s

implementation and operation, including the implications of the hardware platform upon which the

emulation software executes, the pre-experimental calibration of the emulator’s behavior and initial

state, and the post-experimental validation of the emulator’s responses to requests. Each of these

are discussed in this section.
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3.2.1 External system interactions

Conceptually, there are three interactive events between the host system and emulation software

that support the execution of each request during an experiment. These are the request arrival at the

emulator, the exchange of data, and the request completion by the emulator.

The first interactive event involves transmitting a storage request from the host system to the

emulation software. During an experiment, high-level storage traffic—such as application-level file

reads and writes—are converted inside the host operating system into a series of individual storage

requests to be sent to the emulated device. The structure of these requests depends on the host

system’s view of the emulated device. If the device is connected to the host using a file- or object-

oriented protocol, such as the Network File System (NFS), the structure of the storage requests

sent to the emulator will follow the conventions of that protocol; e.g., an object (file) identifier, an

offset into that object, and a request length in bytes. If the device is connected using a block-level

interface, such as the SCSI interface used in our implementation, the requests will be transmitted in

the form of one or more SCSI command blocks; e.g., a device identifier, a block offset, and a request

length in blocks. The paths available for transmitting these requests between the device driver in

the host’s operating system and the emulation software is discussed below in Section 3.2.2. Once

the emulation software receives the request, it saves the request’s arrival time and issues the request

into its internal simulation engine.

The second interactive event involves transmitting the data between the host system and the

emulation software in support of the request. The emulation software controls when the data transfer

begins. In the case of a READ request, data is transferred from the emulator’s internal data cache to

the host’s OS cache. In the case of a WRITE request, data is transferred from the host’s write buffer

into the emulation software’s data cache. The timing of when this transfer begins is a design option;

as discussed in Section 5.1.1, the transfer can either begin immediately once the data are available,

or can proceed instead according to timings calculated by the timing-accurate device model. In

addition to this event-time management of data transfer, the emulation system may perform extra

work in support of data management some time before a request arrives (e.g., prefetching data

it predicts will be requested soon by the host system) or after a request completes (paging data

between the emulator’s internal cache and its backing store).

The third interactive event involves transmitting the completion acknowledgement for the re-

quest across the interconnect from the emulation software to the host system. Once the emulator’s

internal simulation engine determines the completion time of the request—including all device me-

chanical latencies such as (for an emulated disk) the disk arm seek, media rotational delay, and

media transfer time, as well as the communication overheads such as the bus transfer times and

device controller latency—the emulation software must monitor the emulation system’s clock and

initiate its reply to the host system when the appropriate time is reached. However, this completion

must generally be delayed whenever the second event’s data transfer has yet to start or complete by

this time.
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3.2.2 Execution domain of a storage emulator

In ordinary systems, storage requests arrive at the device driver on the host system, which then takes

care of the low-level details of routing the request to the storage device. This architecture is true

of most variants of storage emulation as well. Figure 3.2 and Figure 3.3 show the two most natural

points at which to integrate a storage emulator into a host system. The emulation software can

either execute locally as a user- or kernel-level process on the host system, or remotely as a process

running in a physically separate hardware execution domain from the host system. Under the local

emulation approach described in Section 3.2.2.1, the device driver is modified to communicate

directly with the emulation software rather than with real storage components. Although this does

involve some modifications to the system under test, they are restricted to the device driver. Under

the remote emulation approach described in Section 3.2.2.2, the host system remains unmodified and

the emulation software runs on a second computer attached to the host via a storage interconnect.

The second computer responds just as a real storage device would. Both integration points leave

intact the application and OS software which is doing the real work and generating storage requests.

Both also share the 3-step interface between the emulation software and the rest of the system

described above in Section 3.2.1.

Alternatives to the specific approaches described below may also be appropriate. For example,

the entire emulation infrastructure could exist as a user-level library on the host system. Or, a

hybrid design allowing greater communication utilizes an intelligent network card to forward SCSI

requests to an emulator over a standard network. The availability of hardware and software support

for emulator operation, as well as the desired levels of fidelity, resolution, and performance of the

emulated device, will together dictate which design options are available to an experimenter.

3.2.2.1 Local emulation

In the case of local emulation (Figure 3.2), the device driver on the host system is modified to be

aware of the emulation software process executing on the host and explicitly delivers the request

to it instead of to a host bus adapter. Communication between the device driver and emulation

software can be efficient; the use of shared memory buffers between the two can reduce memory

copy overheads, and consideration of scheduling priorities can minimize undesirable delays on the

request’s critical path through the system. Our initial investigation into timing-accurate storage

emulation was focused on local emulation [72]; the experiments in this dissertation are focused on

remote emulation.

The local design allows for easy implementation of out-of-band communication paths between

the host operating system and the emulated device. For example, the device driver can measure

perceived request service times and easily communicate these to the emulator, enabling the emulator

to refine its model of communications overheads. In addition, this architecture enables evaluation

of nonstandard device interfaces (such as freeblock requests [111] or exposed eager writes [171]).

In addition to device-specific delays, a local emulator must account for bus delays, since there is no
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Figure 3.2: Communication paths under local emulation. As described in Section 3.2.2.1, emu-
lation software communicates directly with a modified device driver in the kernel when run locally.
The three external interactions shown here are explained in detail in Section 3.2.1.
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Figure 3.3: Communication paths under remote emulation. As described in Section 3.2.2.2,
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physical bus between the host and the emulator. An advantage of this is that it allows emulation of

devices “connected” to very fast local buses (for example, the PCI or system bus) or even emulation

of the timings and effects of a new storage interconnect.

The primary disadvantage of local emulation is that, by its nature, it will have some impact

on the system under test. Device driver modifications are necessary for communications with the

emulator, and extra CPU time and memory are used to run the emulation software, which could

perturb the host’s workload. Using a dual-processor machine with additional memory and one CPU

dedicated to emulation can mitigate this overhead, but some interference is inevitable.

3.2.2.2 Remote emulation

In the case of remote emulation (Figure 3.3), the host system does not require a modified device

driver; requests are sent unmodified across the storage interconnect to the specially-configured em-

ulation machine, which in turn delivers the request to the emulation software located there. The

data transfers and completion message are also sent across the interconnect, just as with a normal

storage device, and the unmodified device driver deals with it appropriately.

Depending on the choice of interconnect, it is possible to implement out-of-band communica-

tions paths between the host operating system and the emulated device and to evaluate nonstandard

device interfaces using remote emulation. For example, in our implementation we achieve this

using specially defined SCSI opcodes that would otherwise not be understood by an unmodified

SCSI-based storage device. However, these sorts of communication are less robust in remote em-

ulation than in local emulation, and it can be difficult to efficiently feed per-request performance

information across the interconnect to the emulation software.

Remote emulation can avoid impacting the host system’s performance by performing all emula-

tion functions on separate, dedicated hardware. However, it may not always be the case that system

evaluations under remote emulation will use a completely unmodified host system. For example, it

may be desirable to place timing and data validation hooks into the host system to verify the proper

operation of the emulator, as described below in Section 3.2.4. Or, a special interconnect may be

used to connect the remote emulator to the host system as described in the following paragraph.

A remote emulator that is physically attached to the host via a bus need not consider the bus

delays in its scope or its calculations, unless it is emulating a different storage interconnect; the bus

overheads will actually be incurred during the bus transfers and therefore need not be calculated.

It could also be possible to connect the remote emulator using a non-storage interconnect such as

gigabit ethernet. In this case, an intelligent network adapter or modified network driver would be

used to transfer the data to and from the host operating system. As with the local design, the correct

bus transaction overheads will have to be taken into account by the remote emulator.

There are two primary disadvantages to remote emulation. The first is its reliance on special

“target-mode” bus hardware on the emulation system—in practice we had access to relatively few

SCSI bus adapters that currently support this mode of operation—or alternatively special support
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on a now-modified host system to enable a nonstandard interconnect to the emulated device. The

second is that the approach gives much coarser per-request timing resolutions than local emulation,

because of the hardware involved, and therefore cannot achieve the same throughput and request

rates—or perhaps most importantly, minimum request time—as is possible using local emulation.

3.2.3 Pre-experimental calibration

Before a timing-accurate storage emulator can be used for experimental evaluations, it may be

necessary for the evaluator to perform several calibrations to ensure maximal emulator accuracy is

obtained during experimentation. It is important to focus both on calibration issues that impact the

internal device model state and its response to input workloads, and on issues that impact the actual

operation and execution of the emulation software.

In terms of the internal device model, the experimenter should define initial conditions for the

emulated device state that can be restored deterministically at the beginning of each experimental

run. This may involve considerations such as the mechanical state of the emulated hardware (the

power-conservation state, the geometric position of the disk arms and platter rotational state) and the

state of the software (the contents of the least-recently-used array cache, the remappings of defective

media locations). The contents of the emulated device’s “media” at the start of an experiment

depends on the requirements of the workload; for example, the media could be reset to all zeroes or

loaded from a pre-configured image of a valid file system, or restored to match the contents at the

end of the previous experiment.

In terms of the emulator’s operation, several system factors impact the externally-viewed timing

characteristics of the emulator’s responses to requests. In general, these factors increase the discrep-

ancy between what time the emulator determines is correct for a request, and what time is actually

measured for that request. The factors that impact correctness include hardware factors (delays in

bus adapters, interconnect transmission time) and software factors (scheduling delays, data struc-

ture management) that may or may not be dependent on individual request characteristics (size,

type, interarrival rate). It is important to quantify the effects each of these has on request timings so

the emulation software and its internal device model can adjust their calculations and mitigate any

timing errors that would otherwise be introduced. The specific choices of which factors to include

in the overall emulator calibration depend in part on the configuration of which storage subsystem

components are being emulated; for example, if the emulation model does not include a model of

the storage interconnect, then the effects of interconnect transmission time should not be considered

in this calibration since they are an integral part of each request’s propagation path.

For experiments that push the boundaries of an emulator’s performance capabilities, it may be

important to provide the emulation software with a pre-experimental description of the expected

access patterns or request characteristics for the experimental workload. This may be necessary

for the emulation software to successfully accomplish its internal memory management of loading

and unloading its data cache with the goal of having all read data available when it is needed.
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There may be several options for providing this information. For nondeterministic workloads, high-

level parameters such as read/write mix, spatial and temporal locality characteristics of requests, or

expected request sizes may work well. For deterministic workloads, where the same request stream

is generated for each experimental run, it may be possible to provide the emulation software with a

description of exactly what requests to expect.

3.2.4 Operational validation

Detailed information about the progress of an experiment using a timing-accurate storage emula-

tor can be gathered during an experiment. This information can then be analyzed and used post-

experimentally to provide the evaluator with a quantified metric regarding how accurate the experi-

mental results may be considered to be.

A consideration in the data domain concerns whether the application receives the correct data

throughout an experiment. This is most easily addressed using good software implementation prac-

tices and a robust implementation testing suite that exercises corner cases and boundary conditions

of the emulation software. When a more formal validation is desired, direct or indirect observa-

tion can be used to evaluate the experimental-time correctness of the data received by the appli-

cation. Under the direct observation approach, the actual data transmitted during an experiment

(or digests or checksums over the data) are stored and analyzed to verify the correct orderings and

contents of the stored and retrieved data. Intermittent spot checks of individual data transfers can

be less obtrusively performed, but result in an attendant loss in the completeness of the verification.

Under the indirect observation approach, application behaviors during an experiment (such as the

standard output of the application; the number, addresses, lengths, ordering or timing of storage

requests; or the contents of written data objects) are compared with the behaviors observed during

a non-experimental reference run to identify behavioral differences that could have been caused by

improper data management.

A consideration in the timing domain involves whether the behavior and performance of the de-

vice model was faithfully reproduced in real-time by the emulation software. Successful evaluation

of this requires that one or more measurement points along the request propagation path be config-

ured to observe and report on per-request service times at each point. These points should have the

characteristic that they are unobtrusive and do not slow down the request (i.e., unduly affect timings

on the request’s critical path), yet they are powerful enough to collect fine-grained and precise mea-

surements of elapsed time at the point. The measurements from the most appropriate point—that

is, the point whose location most closely matches the outermost boundary of the storage subsystem

components that are undergoing emulation—can be compared with the times that are being com-

puted by the device model and saved by the emulation software. For pure validation purposes this

data can be aggregated and analyzed after the experiment completes; however, these comparisons

could also be made during the course of an experiment and fed back into the emulation software in

order to achieve more reactive fine-grained tuning of the emulator’s behavior.
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Figure 3.4: Timing-accurate storage emulation software internals. The five components of a
storage emulator provide for the three primary emulator tasks of communications management,
timing management, and data management.

A related but more difficult consideration concerns whether the device model in fact faithfully

represents the performance and behavior of a real device. Some model validations are incomplete or

exist only over a certain range of inputs; for example, a model that is validated against a disk whose

cache is disabled may produce quite incorrect results for when the disk cache is enabled [136]. Ig-

noring this mismatch raises the possibility that an evaluator will be “led down the garden path” by

incorrect evaluation results that otherwise pass the validation tests described in the previous para-

graphs. Additionally, some models cannot be validated against real devices, such as our models of

MEMS-based storage. Although this issue does not relate directly to the principles or applicability

of timing-accurate storage emulation—where the goal is faithful reproduction of the behavior and

performance of a device model and not necessarily of a device—an emulator can assist in deter-

mining the validity of experimental runs. This assumes the author of the device model includes a

usable description of under which workload conditions the device model holds valid. During exper-

imental execution the emulator can generate a summary of the workload characteristics, which can

later be analyzed against the author’s description to produce a quantified metric of “realism” for the

experiment.

3.3 Component design

Three essential tasks define the operation of a timing-accurate storage emulator. First, the emulator

must correctly support the communication protocols of the interface behind which it is implemented.

Second, the emulator must complete requests in the amount of time computed by a model of the

storage subsystem. Third, the emulator must retain copies of written data to satisfy future read

requests. Figure 3.4 shows an architecture of five internal components of a timing-accurate storage

emulator that together support these three tasks. This section describes how these components work

together to satisfy the three tasks of communications management, timing management (the timing

loop and the physical device model), and data management (the high-speed data cache and the

overflow storage).
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3.3.1 Communications management

One function of the emulation software involves the communication of requests and request data: re-

ceiving storage requests and WRITE data from the host system, and transmitting request completions

and READ data to the host system. The communications management component encapsulates this

functionality. To communicate with the host system, this component must understand and export

the interface protocols expected by the host system. The communications manager parses incoming

requests and passes them to the other emulator components, and it properly formats outgoing mes-

sages for return to the host when directed by the timing manager. In addition to servicing requests,

the communications manager must respond appropriately to exceptional cases such as malformed

requests or device errors.

The communications manager has relatively simple functionality in a local emulator, as it is

primarily concerned with two interactions: data transfers between the host operating system and

the emulation software—for example, memory management of data buffers shared with the device

driver—and system calls that interact with the modified device driver to propagate request arrivals

and completions for specific requests. In a remote emulator, the communications manager must un-

derstand the specific details of the interconnect used to bridge the host and emulation systems. If the

interconnect is a storage bus, such as the SCSI bus used in our implementation, this component must

understand how to interact with a target-mode bus adapter3.1 and the operating system infrastruc-

ture that supports receiving and sending storage traffic in target mode. When using a network-based

interconnect, it must understand how to interact with the network stack on the emulator system and

understand the protocol with the modified device driver on the host system.

Once a storage request is received, regardless of the propagation path used to arrive at the com-

munications manager, this component parses the request, checks its validity, and then passes it to

the timing and data management components of the emulator. In some cases, it may have to interact

further with the host (e.g., for bus arbitration or if the emulated device supports disconnection).

In addition to reads and writes, the emulator must support control requests that return information

about the emulated device such as its capacity, status, or most recent error condition. To fully em-

ulate a device over a given interface, all such commands should be implemented, but in practice

a subset of often-used control commands usually suffices. The timing management components

notify the communications manager when a request completion is due, after which this component

formats the response appropriately for the emulated protocol and forwards the response to the host

over the interconnect. Additionally, if the emulation environment is to support an extended storage

interface between the host system and emulated device, the specifics of this extra out-of-band or
3.1Storage bus adapters ordinarily operate in initiator mode, which means they originate (initiate) requests that are

directed to storage devices that reside on the bus. Some bus adapter products additionally support target-mode operation,
where the adapter mimics a storage device (a target) and accepts requests from an initiator. Target-mode operation
generally requires special operating system support by the emulation system. Our implementation uses the target-mode
functionality provided by two bus adapter products and the FreeBSD operating system in its communications with the
host system.
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in-band communication path are handled by the communications manager and routed to the appro-

priate internal component (e.g., the physical device model).

As a concrete example, our implementation is specifically built to interact with the host over a

SCSI bus using target-mode bus adapters. When a SCSI command arrives from the device driver,

the communications manager parses the command to determine the opcode, starting sector number,

and length. For our original implementation based on local emulation, the storage interface also

received the SCSI target and logical unit number (LUN) information from the kernel in case more

than one device was under emulation. In our remote emulation implementation, this information

is conveyed through the SCSI bus protocol. All of these fields are checked for validity and then

demultiplexed to the timing and data managers. When invalid opcodes, out-of-range requests, or

invalid target/LUN pairs are received, the communications manager generates the appropriate sense

code and immediately returns an error condition to the device driver.

3.3.2 Timing management

The two components that together address the timing management task—the timing loop and the

physical device model—work together to provide the timing-accurate nature of the emulation.

Specifically, the physical device model determines how long each request should take to complete,

and the timing loop ensures that completion is reported after the determined amount of time. The

concepts that are advanced in this subsection are elaborated upon in Chapter 5.

The timing loop is a real-time loop that monitors the scheduled times of future internal emu-

lator events and compares these times with the advancement of the system clock, inducing other

emulator components to take action when the scheduled times arrive. These events represent either

internally-visible occurrences, such as the scheduled completion inside the physical device model

of the disk arm seeking, or externally-visible occurrences, such as the scheduled notification of the

communications manager of a request’s completion. This component executes what is conceptually

a tight loop, attempting to maximize the accuracy and minimize the variance of the time which

other components are notified, but at the same time not hogging the processor or unduly delaying

the scheduling and operation of other system components.

There are two ways that the simulation engine and timing loop can interact. One approach keeps

the two separate: when a request arrives, the timing loop calls the simulator code once to get the

service time. In this approach, the simulator code takes the real-world arrival time and the request

details, and it returns the computed service time. After the appropriate real-time delay, the timing

loop tells the communications manager to report completion. Although it is straightforward, this

first approach often does not properly handle concurrent requests. For example, a new request arrival

may affect the service time of outstanding requests due to bus contention, request overlapping, or

request scheduling. A more general approach is to synchronize the advancement of the simulator’s

internal clock with the real-world clock. This synchronization can most easily be done using an

event-based simulator.

36



An event-based simulator [94] breaks each request into a series of abstract and physical events:

REQUEST ARRIVAL, CONTROLLER THINK TIME COMPLETE, DISK SEEK COMPLETE, READ OF

SECTOR N COMPLETE, and so on. Each event is associated with a time, and an event “occurs” when

the simulator’s clock reaches the corresponding time. Event occurrences are processed by simula-

tion code that updates state and schedules subsequent events. For example, the CONTROLLER

THINK TIME COMPLETE event may be scheduled to occur a constant time after the REQUEST AR-

RIVAL event. Our implementation uses the DiskSim storage subsystem simulator [24] as the basis

for the physical device model.

To synchronize an event-based simulation with real-world time, the emulator lets the timing

loop control the simulator clock advancement. When each event completes, the simulator engine

notifies the timing loop of the next scheduled event time. The timing loop waits until that time

arrives, then calls back into the simulator to begin processing the next event. If a new request

arrives, a REQUEST ARRIVAL event is prepended to the simulator’s event list with the current wall

clock time, and the timing loop calls back into the simulator immediately. When the REQUEST

COMPLETE event ultimately occurs, the simulator engine notifies the communications manager.

In practice, the request arrival and completion times may need to be skewed slightly to account

for processing and communication delays. As discussed in Section 5.3.2, the arrival time of a re-

quest is adjusted backwards slightly to account for the delay in receiving the request. Likewise, the

simulator’s internal clock may need to run slightly ahead of the real-world clock so that the com-

munications manager will start sending completion messages early enough to account for request

propagation delays, such that request completions arrive exactly on time at the host system. An

additional requirement is that the simulation computations themselves be fast enough that they do

not delay completion messages; the computation time for any given request must be lower than the

computed service time.

3.3.3 Data management

In most computer systems architectures, secondary storage devices are expected to provide high de-

grees of integrity and availability for the data that are entrusted to the devices. In normal operation,

incorrect data should never be returned in response to a request, and data should be reported as un-

available only in the event of a catastrophic device failure. This holds true for most applications of

timing-accurate storage emulation: When an emulated storage device responds to read requests, it is

generally expected to transmit data that is consistent with the data that would be provided by a real

device—that is, it should return data identical to what was most recently written by the host system

to the specified location. Emulation software must therefore retain the data transferred during write

requests in a way that enables the correct data to be returned on demand.

The data manager in the emulation software, which is provided for by the high-speed data cache

component and overflow storage component, is tasked with tracking all data written by the host

system and making that data available to the communications manager in advance of the comple-
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tion time for a request. The division of the emulator’s real memory resources between the two data

management components is a function of how the speed of access to each memory resource com-

pares with the speed of access to the emulated device as determined by the physical device model.

We consider resources with equal or faster service times than the emulated device as high-speed

resources, and those with slower service times as low-speed resources. Generally speaking, if the

data for a request are not resident in a high-speed resource when a request arrives then the request’s

completion will be delayed until the data are available. RAM is the primary component we use as a

high-speed resource, although our evaluation of disk-based intrusion detection in Chapter 7 uses an

actual disk as a high-speed resource. Although none of the experiments reported in this dissertation

require the use of low-speed resources, we have considered as future work on data management the

exploration of both locally-attached disks and storage resources on network-connected external sys-

tems (disks or RAM [9]) as the most readily available and practical candidates for this functionality.

Data management is greatly simplified when the emulation system has sufficient high-speed re-

sources to satisfy all requests for a workload, as the emulation software need not be concerned with

determining when to promote and demote data between the data cache and the overflow storage.

The timing characteristics of the data manager’s operation are much less constrained than those

of the timing manager. At the level of individual read requests, successful operation of the data

manager is a binary function: either the data are available in a high-speed resource before the time

arrives for transmission to the host system, or the data are not available—in which case, the request

completion will be unduly delayed until the data are available. When requests are delayed in this

manner, the evaluator will need to quantify post-experimentally the overall impact these delays

had on the experimental performance and emulated device behavior, and re-run the experiment if

necessary.

3.4 Design concerns for correct emulator operation

Several of the design-time options for timing-accurate storage emulators affect the overall validity

and effectiveness of emulator-based experimentation. In particular, many of the design decisions—

such as the choice of hardware for instantiating the host system and emulation system, or the choice

of which storage interconnect is modeled by the emulator—can affect the limits concerning un-

der which operational scenarios emulator-based experimentation remains valid. Evaluators wishing

to push the boundaries of an emulator’s performance—achieving ever-lower request service times,

higher aggregate data throughput, or greater stress on the emulator—must be cognizant of the partic-

ular scenarios under which a particular timing-accurate storage emulator design will not work. This

section characterizes several of the specific issues that can cause an emulator to fail in its portrayal

of a modeled storage device.

Failure due to communications management issues. Two issues involving the design of the

communications manager concern the data throughput available at the storage interconnect and

the correct management of the interconnect during multi-host operation. Regarding the throughput
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available at the storage interconnect, an emulator will be unable to accurately respond to a workload

if the workload calls for a higher peak data rate or sustained data rate than the communications

manager or the storage interconnect can support. This is especially a concern in an experimental

setup where the emulated interconnect is different from the actual interconnect connecting the host

system with the target system, both when emulating an evolutionary change (e.g., using a 160 MB/s

parallel SCSI bus to emulate a 320 MB/s parallel SCSI bus) or a revolutionary change (using parallel

SCSI to emulate serial-attached SCSI or Fibre Channel). Limitations in the supported data rate can

be caused by execution issues with the communications software, such as when other emulation

software components interfere with the OS-level scheduling of the communications manager, or can

be caused by suboptimal use of the existing interconnect—for example, some of our experiments

described in Chapter 5 and Chapter 6 use a 160 MB/s parallel SCSI bus, but we are currently only

able to configure the Linux-based host system and FreeBSD-based emulation system to support

80 MB/s transfers across this bus during experimentation.

We have not explored emulator operation under a multi-initiator architecture, where multiple

host systems are collectively connected to a single emulated storage device. Multi-initiator op-

eration is supported in the specifications of many storage interconnects, and we expect a timing-

accurate storage emulator could be used in such a manner. However, support for multi-initiator

operation will reduce the design-time flexibility available to the evaluator. Care must be taken to

verify that the communications manager can gracefully handle the load of the additional host sys-

tems: the communications manager will need to precisely schedule bus transfers to and from each

of the host systems to prevent artificial contention among the host systems,3.2 and the emulation

software may need different compensation models for mitigating the per-request errors observed

by each of the individual host systems.3.3 It may not be possible to successfully compensate for

per-request errors when the emulator experiences high utilization from multiple host systems, de-

pending on whether the interconnect is included in the scope of the emulated components, because

the realization of the request-completion-time error compensation techniques we describe may rely

on the flexible scheduling of bus transfers to ensure the availability of the bus for early sending of

request completion notifications. In terms of physical dependencies, some hardware configurations

are unable to support full multi-initiator operation—specifically, when using the Adaptec HBA for

remote emulation in FreeBSD (as described in Chapter 4), only one request at a time can currently

be accepted by the communications manager and passed to the emulation software.3.4 This means

that when using the Adaptec HBA in a multi-initiator environment, only one host at a time would

be able to send a request to the emulated storage device. An additional (though unlikely) concern

is that the increased processing and memory overhead of managing the state of multiple initiators

could increase the resource pressure on other emulation software components.
3.2This affects the handling of externally-visible intrarequest events, as discussed in Section 5.1.1.
3.3Compensation models for per-request errors are discussed in Section 5.3.
3.4The reason for this limitation is discussed in footnote 7.2 (page 128); additional software development on target-

mode support in FreeBSD is expected to eventually eliminate this problem. Experimental setups using the QLogic HBA
under FreeBSD do not share this limitation.
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Failure due to timing management issues. Two issues involving the design of the timing man-

ager concern the availability of accurate and efficient device models and the aggregate effective-

ness of long-term error compensation. As with any other technique, meaningful evaluations using

timing-accurate storage emulation are only possible when representative device models are avail-

able for experimentation. Because of the performance-critical nature of storage devices in storage-

oriented evaluations, errors in disk modeling can have a substantial impact on overall system per-

formance [115]. Experimentation with faulty device models can lead an evaluator astray, leaving

little recourse beyond the exercising of common sense to note unusually good or bad device behav-

ior.3.5 An additional requirement for models used in timing-accurate storage emulators is efficient

model operation, in that the emulation software must complete all processing for a request before

the service time elapses for that request. It is this characteristic that currently prevents full-system

simulators from executing in real-time. We have not yet been hampered by an inability to satisfy

this processing requirement for timing-accurate storage emulators, as the device models with which

we are familiar (i.e., those written for the DiskSim simulation environment) complete all per-request

processing well faster than real time. However, as models increase in complexity—whether in an

effort to achieve more accurate modeling of device behavior, or for emulation-based evaluations of

multi-device aggregations such as disk arrays and functional storage bricks—this maximum limit

on per-request processing may become a pressing issue.

As discussed in Section 5.3.3, a timing-accurate storage emulator cannot service a request that

is shorter than the minimum error along the request propagation path. In our remote emulation

experiments, this resulted in minimum per-request service times of approximately 0.1–0.3 ms. Al-

ternatively, local emulation permits much smaller minimum per-request service times; we measured

this value as approximately 0.025 ms for a prototype local storage emulator [72]. Additionally, our

implementation of the per-request error compensation strategies does not achieve perfect results

(i.e., zero error with zero variance), which introduces a hidden assumption that minimizing the per-

request error translates to minimizing overall error at the application level. This assumption has the

potential of producing misrepresentative experimental results, in terms of long-term drift in error

aggregation (e.g., are application and OS-level behaviors biased to include the effects of requests

that either take too much time or too little time at the storage device—perhaps by affecting process

scheduling or OS-level caching?) or a mismatch between individual and aggregate errors (does a 1%

average per-request error actually result in a non-1% overall application-level I/O stall time error?)

Although we believe such effects to be minimal, if present, a fuller characterization of the impact

of uncompensated-for errors is left as interesting future work.

Failure due to data management issues. An issue involving the design of the data manager con-

cerns the ability of the emulation software to make the correct data available at the necessary rates

specified by the workload. This is unlikely to be an issue when the working set of the workload is

wholly contained by the high-speed resources; in such cases, it is rather more likely that any defi-
3.5Section 8.4.2 discusses the need for better model validation methodologies that would help relieve this burden.
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ciencies in the data transfer rate to and from the host system would stem from limitations in the com-

munications management of the storage interconnect than from the data management of the memory

cache. However, as discussed in Section 3.3.3, when the working set size is larger than the avail-

able high-speed resources it may be necessary to transfer data to and from overflow storage during

the emulator-based experimentation. The emulation may fail if the long-term sustained bandwidth

to or from the low-speed resources does not match the needs of the workload—especially during

attempts to both store data from write requests and retrieve data to serve future read requests—or if

excessive computation is required in the prediction code to determine the disposition of current and

future data items in the high-speed resources. Section 8.4.1 discusses opportunities for future work

in characterizing the extent to which this limits emulator-based experimentation.

Discussion. Many of these limitations are exacerbated by the hardware performance issues in-

herent to remote emulation, and can be mitigated through the use of local emulation. Alternatively,

the degree to which each of these is an experimental limitation can often be relieved through the

use of alternative hardware or software components—for example, using the QLogic bus adapter

instead of the Adaptec bus adapter in our experimental configuration increases the per-request er-

ror introduced along the request propagation path, but allows multiple outstanding requests to be

queued at the emulated device, which enabled the experimentation on disk-based intrusion detection

systems described in Chapter 7.

3.5 Summary of this chapter

A timing-accurate storage emulator fills the role of an ordinary storage device in a computer system—

it accepts requests from a host, transfers the correct request data to or from the host, and transmits

request completions to the host at the proper time. To accomplish this, the individual components

of the emulation software work together to execute the three fundamental tasks of communicating

with the host system, completing storage requests at the times determined by a physical device

model, and retaining data written by the host system to satisfy future read requests. When using

a timing-accurate emulator in an experimental environment, pre-experimental calibration steps and

post-experimental validation actions are available to ensure that the emulator operates properly and

responds correctly to the experimental workload.

The following chapter presents the hardware and software framework used in our implementa-

tion of a timing-accurate storage emulator.
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CHAPTER 4
EXPERIMENTAL APPARATUS

To explore the timing-oriented calibration and validation options for timing-accurate storage emula-

tion, we implemented a functional timing-accurate storage emulator known as the Memulator. This

implementation, which takes its name from our motivating interest in emulating MEMS-based stor-

age devices, is a remote emulator4.1 that uses the DiskSim storage subsystem simulator [24] as the

basis for its physical device model. The data manager in our implementation allocates a large frac-

tion (approximately 900 MB) of the available RAM memory on the emulation system and uses this

RAM as high-speed resources to retain the workload data written by the host system. Our implemen-

tation of the timing manager, described in Chapter 5, takes the approach of accurately scheduling

the timing of request completions but greedily scheduling the timing of intrarequest events: bus

transfers of a request’s data are always initiated shortly after the request arrives, which ensures the

bus transfer completes early and therefore avoids delaying the transmission of the request’s comple-

tion notification.4.2 The communications manager is based on the target-mode user-level software

distributed with the FreeBSD operating system, as noted in Section 4.2.

4.1 Experimental hardware

The base experimental apparatus was two workstation-class desktop computers connected by a SCSI

interconnect. For most experiments, one of these computers was configured as the host system and

the other as the emulation system.

The hardware platform used was a pair of Dell Precision Workstation 340 computers purchased

in July 2002, one configured as the host system and the other as the emulation system. Each system

contains one 2.0 GHz Intel Pentium 4 processor, with 8 KB onboard L1 cache and 512 KB onboard

L2 cache. The host system contains 512 MB RAM attached via two 256 MB RAMBUS inline

memory modules; the emulation system contains 1 GB ram via four modules.

Figure 4.1 shows the interconnection of storage devices to the host and emulation systems. The

experimental disks used on both systems are 37 GB Seagate Cheetah 36ES SCSI-3 disks, model

ST336706LC, revision 0109, whose specifications are shown in Table 4.1. These experimental

disks are connected via external 68-pin LVD SCSI cables to Adaptec 29160 Ultra160 SCSI adapters,

which in turn attach internally to the PCI bus of each system.

The host and emulation systems are connected by both a 68-pin LVD SCSI cable and a point-to-

point Fibre Channel cable for emulation experiments. To support this interconnection, each system
4.1The approach of remote emulation is discussed in Section 3.2.2.2 on page 31.
4.2Scheduling options for intrarequest events are discussed in Section 5.1.1 on page 46.
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Figure 4.1: Hardware configuration for prototype emulation experiments. Depending on the
requirements of the experiment, the timings seen at the host system for the emulated device may
come from three sources: (1) a local disk on the host system, (2) the physical device model in the
emulation software, or (3) a local disk on the emulation system.

contains an additional Adaptec 29160 Ultra160 SCSI adapter (distinct from the identical adapter

connected to the experimental disks) and a QLogic QLA2100 Fibre Channel adapter, each of which

support target-mode SCSI operation.

The local disks used for system files on each system are Fujitsu Enterprise SCSI-3 disks, model

MAN3184MP, revision 5507, whose specifications are also shown in Table 4.1. To remove any

dependence of the experimental results on the choice of local disks, these disks are connected via

each Dell’s onboard Adaptec 29160N Ultra160 SCSI adapter, which is not otherwise used in support

of experimentation.

4.2 Configuration of the communications manager

The host system uses the Linux 2.4.20 operating system, based on a modified Red Hat Linux release

8.0 distribution. The emulation system uses the FreeBSD 5.2-RELEASE operating system, with the

special configuration options to support target-mode operation shown in Table 4.2.

The communications manager of the emulation software is based on the SCSI target-mode ex-

ample software included with the FreeBSD 5.2 distribution (and earlier 5.x and 4.x distributions)

in the directory /usr/share/examples/scsi target. This software includes both user-level and

kernel-level routines and together is used to drive the Adaptec and QLogic host bus adapters in

target mode. The current version of the FreeBSD target-mode infrastructure and example software

was contributed by Nate Lawson. Certain of the earlier 4.x releases of FreeBSD include an initial

version of the scsi target software that was contributed by Justin Gibbs.
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Seagate Cheetah Fujitsu Enterprise
ST336706LC MAN3184MP

Year of introduction 2001 2001
Formatted capacity 33.9 GB 17.1 GB
512 B sectors 71,131,721 35,885,448
Interface Ultra160 SCSI Ultra160 SCSI
External transfer rate 160 MB/s 160 MB/s
Spindle speed 10,000 rev/min 10,025 rev/min
Average rotational latency 2.99 ms 2.99 ms
Average seek (read, write) 5.2 ms, 6.0 ms 4.5 ms, 5.0 ms
Track-to-track seek (read, write) 1.0 ms, 1.5 ms 0.4 ms, 0.6 ms
Internal transfer rate 63.2–49.1 MB/s 84.1–52.0 MB/s
Internal buffer 4 MB 8 MB
Disk platters, heads 2, 4 1, 2
Platter size (OD) 95 mm 84 mm
Cylinders 19,036 30,200
Acoustic noise (idle) 3.2 Bels 3.6 Bels
Power requirements (idle) 9 W 7.8 W
Mass 0.81 kg 0.75 kg
Form factor (H×W×D) 26 mm × 102 mm × 147 mm

Table 4.1: Specifications for the Seagate ST336706LC and Fujitsu MAN3184MP disks used
in experimentation. These values are not reported for comparison but rather for reference. Both
products are used as experimental disks in the emulation system. The Seagate product is also used
as an experimental disk in the host system, and a physical device model of the disk is used in the
emulation software. Further details on each disk are available in the product manuals [53, 148].

device targ # SCSI target emulation device
device targbh # Default target device when not driven
device ispfw # Downloadable firmware for QLogic QLA2100
options AHC TMODE ENABLE=0x2 # Enable Adaptec 29160 target-mode
options ISP TARGET MODE=1 # Enable QLogic QLA2100 target-mode
options VFS AIO # Enable asynchronous I/O for data manager
options CAMDEBUG # Enable verbose debugging of SCSI paths

Table 4.2: Configuration parameters for target-mode emulator operation under the FreeBSD
5.2-RELEASE operating system. We compiled a custom operating system kernel using these
parameters to enable target-mode support for the Adaptec and QLogic adapters and asynchronous
I/O support for the data manager’s read operations.
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4.3 Alternative configurations

In addition to various bus adapter products from Adaptec, Inc., and QLogic Corporation, target-

mode bus adapters are available from Advanced Storage Concepts (ASC), Inc., and from LSI Logic

Corporation. ASC offers supported target-mode software drivers for the Microsoft Windows plat-

form as its core “VirtualSCSI” product, and the company reports that hardware and software sup-

port for target-mode Fibre Channel, Serial Attached SCSI, and iSCSI operation are scheduled to be

available from ASC in late 2004.

An alternative target-mode software implementation for FreeBSD was written by Jeff Fellin at

Bell Laboratories as part of the StarFish project [54]. This implementation was made available on

the Internet at starfish.bell-labs.com. The StarFish target-mode code was inspired by Gibbs’

scsi target examples in the early 4.x releases of FreeBSD, and therefore may not work seamlessly

with the updated kernel-level target-mode code in newer FreeBSD releases.

Limitations in the design of the Linux SCSI subsystem preclude easy integration of target-mode

operation into the Linux kernel. A project at the Interoperability Lab at the University of New

Hampshire aims to rewrite portions of the Linux SCSI mid-layer to support flexible target-mode

operation [121]. A recent update to this codebase by Vladislav Bolkhovitin was announced on the

Linux kernel mailing list on June 16, 2004.

Support for target-mode SCSI operation has been documented in other operating systems, in-

cluding Solaris from Sun Microsystems and AIX from IBM Corporation. A good starting point for

designing an implementation from scratch is Brian Sawert’s discussion of target-mode SCSI support

in Windows [137, pp. 127–160].

45

starfish.bell-labs.com


CHAPTER 5
OBTAINING ACCURATE TIMINGS FOR EMULATED STORAGE REQUESTS

This chapter develops techniques for maximizing the timing accuracy of a timing-accurate storage

emulator, including executing an emulated storage device model in real time (Section 5.1), instru-

menting an emulator to measure internally- and externally-observed request timings (Section 5.2,

page 50), quantifying errors in the measured timings (Section 5.3, page 56), and calibrating an em-

ulator to mitigate errors by modifying the emulator’s behavior based on knowledge of measured

request times (Section 5.4, page 66).

5.1 Tasks involved in timing management

In the timing domain, the objective of a timing-accurate storage emulator is to respond to requests

externally with the exact timings associated with the device it models. In theory, this means that a

host system would be unable to distinguish, using solely an analysis of request times as a compara-

tor, which storage component is being used when it is connected to either the real storage device a

timing-accurate emulator of that device (as illustrated previously in Figure 3.1 on page 27). Prac-

tically, this means that the timing-accurate storage emulator must complete each storage request in

real time as accurately and precisely as possible with respect to the device simulation model running

inside the emulator.

5.1.1 Timing-accurate execution of a storage device model

At a high level, an external entity provides the storage emulator with a start time (triggered by the

arrival of a new storage request) and the emulation software will respond in accordance with the

consideration of a request deadline (after an interval corresponding to the overall service time).

This is similar to the requirements of a real-time environment, but with a significant difference:

the “goodness” of an emulated storage request is measured continuously in terms of how closely

it matches a desired request time; in a real-time system, goodness is a discrete measurement of

whether the request completed before a deadline or not. This difference is illustrated in Figure 5.1.

The request response times are determined internally to the emulator by applying the incoming

request stream to a model of the desired device. This model can range in complexity and detail from

a simple constant-time software generator, to a detailed analytic engine, to a low-level hardware-

and firmware-inclusive device simulation program, to a hardware-accurate device prototype. A core

requirement for software-based models is that the amount of processing time required for any given

request is less than the post-queueing service time for that request; otherwise, the emulator would

miss the deadlines for any request that required extra processing time.
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To achieve this, it is possible to have multiple degrees of fidelity achieved by the device model,

depending on the accuracy desired during a particular emulation phase and the amount of processing

required to achieve finer-grained results. The fidelity can be varied during an experiment, or it

can be varied once the experimental requirements are known in order to meet the performance

goals required by the experiment. This idea of dynamically adjustable simulation detail was used

effectively in experiments using the SimOS full-system simulator [79, Ch. 4]. Taking the idea one

step further, an emulator could use levels of fidelity on a per-request basis. This would involve

first making a simple guess of the request time and then attempting to iteratively refine that guess

through additional processing until such time as the originally guessed interval elapses.

The handling of externally-visible intrarequest events (such as device-initiated bus arbitration

activity and data transfers with the host system) can optionally be treated in a timing-accurate man-

ner by the emulation software, as illustrated in Figure 5.2. The detail to which this is possible

depends on several factors, including the scope of which components are being emulated, the limi-

tations of the software control of the bus adapter hardware, and the level of request detail provided

by the device model. An interesting question for future investigation involves identifying under

which circumstances it is necessary for such events to be timing-accurate—for example, determin-

ing whether the host system bus adapter performance is adversely affected when request comple-

tions are delayed for several milliseconds beyond the final data transfer for a request (as in Read

case B of the illustrated figure). In our implementation of a timing-accurate storage emulator, bus

transfers are always initiated shortly after a request arrives.

As discussed in Section 3.2.4, an important characteristic of the work presented herein is that

the correctness of an emulator is independent of the correctness of the simulation model it follows.

The question of executing a device model in real time, and observing and validating an emulator’s

behavior in comparison to the model, is divorced from the question of whether or not a particular

device model has itself been validated. However, the real-world representativeness of an emulation

experiment depends on the accuracy of the model; it is important for an evaluator to keep this in

mind to avoid being misled by misrepresentative results.

5.1.2 Compensating for emulation-induced request timing errors

In the timing domain, the metric of success for a timing-accurate storage emulator is the degree

to which it remains faithful to the device model timings when responding to individual requests.

In order to measure this degree of effectiveness, it is necessary to first measure individual request

times throughout the system and then correlate the measurements to determine and mitigate any

future errors. Per-request errors may stem from hardware-induced request propagation delays (e.g.,

delays in bus adapters or transmission time) or execution issues inside or outside the emulation soft-

ware (data structure management, process scheduling delays). Measuring and correlating request

times enables an emulator to adapt to these errors through pre-experimental calibration, operational

monitoring, and post-experimental verification of the desired emulator performance and behavior.
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Figure 5.1: Success metrics in a real-time environment and an emulated environment. An
emulated environment is similar to a real-time environment, but with a subtle difference. The metric
of goodness in an emulated environment depends on the distance between the request service time
and the deadline; in general, it is equally good (or bad) to be one time unit too early as it is one
time unit too late. The metric in a real-time environment is binary, in that it is good if the request
completes before a deadline and bad otherwise.

Host sends

command

Bus transfers to host proceed

according to model timings

Status message

to host

Data available 

in data manager

Data available 

in data manager

Host sends

command

Bus transfers to host

proceed immediately

Status message

to host

Host sends

command

Bus transfers to emulator

proceed immediately

Status message

to host

SCSI bus

SCSI bus

SCSI bus

Read case A:

Read case B:

Write:

Figure 5.2: Degree of emulated detail for storage requests. When responding to read requests,
a timing-accurate storage emulator can faithfully reproduce the intrarequest timings reported by
the physical device model (such as the exact time bus transfers are initiated) as shown in Read
case A. Alternatively, the emulator can faithfully reproduce only the timings of request completions
as shown in Read case B; this allows greater flexibility in operation of the communications manager
and data manger. When responding to write requests, the data transfers are initiated immediately
once the physical device model reports that a write buffer is available; this represents our assump-
tion that most storage devices operate thusly in response to write requests.
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There are several places in a computer system where times can be measured for eventual feed-

back to an emulator. Certainly, the times from the device model itself will need to be recorded and

tracked, as most other comparisons will be made against the model’s times. Other locations that

are candidates for measurement include inside the emulation subsystem itself, inside the operating

system device driver (or a similar point inside the OS-level communication path) on the emulation

and host systems, and at the application level on the host system (using either a direct bus-level

interface or the standard file system interface). It may be desirable to take measurements at some

or even all of these locations. In the case of local emulation, where the host and target are on the

same physical hardware, it remains useful to distinguish timepoints inside the operating system that

are inside the emulation infrastructure and outside the emulation infrastructure. Alternatively, in the

remote emulation case where the bus itself isn’t under emulation, it may not be necessary to take

time measurements on the host system at all, eschewing these in favor of additional measurement

points inside the target system’s OS.

Analysis of the collected data can occur before, during, or after an experiment, depending on the

manner (static or dynamic compensation, described below) in which the data are fed back into the

emulation environment. Data analysis before or after an experiment has the advantage of minimiz-

ing the effect of the analytical overheads on the run-time behavior of the system, with the limitation

that the emulator cannot be tuned during the course of an experiment based on the observed request

errors. To combine the advantages of the approaches, it may be useful to perform this analysis at two

or perhaps all three times: simpler analyses can be done during the course of an experiment, with

more detailed studies done before and/or after for better evaluation of the experimental results and

better tweaking for future experiments. An additional dependency concerning the decision on which

approach to take is that there needs to exist a method for aggregating times to a central place for this

processing; it may be difficult to feed times measured on the host system back into the emulator in

a remote emulation environment, limiting the options of what analyses can be performed.

Timing measurements can be used internally by the emulation software using an approach based

on static compensation or dynamic compensation. Static compensation, where emulation parame-

ters (such as ∆Tlookahead and ∆Tskew, both introduced below in Section 5.3.2) are adjusted a priori to

an experiment, is useful for the initial calibration of an emulator. An important aspect of the static

compensation approach is to ensure that the training workload used for the static analysis is repre-

sentative of the workload that will be used during the actual experiments. Dynamic compensation

is where the emulation parameters are adjusted during an experiment in an effort to reduce errors

evident in the timing measurements. This may be especially appropriate for host system workloads

that operate in multiple distinct phases, with each phase providing a unique load on the storage

subsystem, when the emulator performance and behavior might be affected by such factors as the

request interarrival rate or the sizes of individual requests in each phase. The compensation may be

able to make use of information both concerning the accuracy of requests, i.e., whether the average

error between the measured request times and the device model times is low, and concerning the

49



precision of requests, i.e., whether the variance of this error is minimal. It is also important to evalu-

ate the emulation infrastructure in terms of the maximum possible performance: for example, what

is the maximum sustained request rate for the emulator during bursty request traffic without miss-

ing deadlines, or how long can the emulator sustain a particular data transfer rate without missing

deadlines.

Additionally, there may be resource allocation concerns that relate to the environment of timing-

accurate storage emulation. For example, in the case of local emulation it is desirable to measure

the effect the emulation infrastructure has on the host system (e.g., the amount of processing time

consumed by the emulator; the memory footprint and backing-store bandwidth required for effective

emulator operation), to quantify any deleterious effect the emulator may have on the experimental

workload running on the same system. In general, the emulation system should be designed to make

efficient use of its processing resources in an effort to maximize both the accuracy and precision for

any given workload, as well as to maximize the range of potential workloads that can be supported

by the emulator.

5.2 Collection and comparison of observed request response times

The basis of our timing-specific emulator calibration and experimental validation involves measur-

ing the total response time for each storage request. These response times are measured at multiple

observation points along the request propagation path in order to gain an understanding of sources

of delay and error introduced by the emulation infrastructure. Because response time includes both

queueing time and service time, and because our implementation does not require a finer-grained

measurement than response time itself, we practically measure response time by taking timepoint

measurements both when a request first arrives at the measurement point and when the completion

notification propagates up to the measurement point.5.1 The locations where response times are

collected in our implementation are described in Section 5.2.1. Analysis of these collected request

response times to quantify the location and magnitude of errors is discussed in Section 5.2.2.

Our experiments implement two types of metrics for evaluating the degree to which externally-

observed request times match the device model’s internal times: individual request comparisons

(Section 5.2.3) and aggregate request comparisons (Section 5.2.4). These metrics are useful for

identifying inefficiencies and other sources of experimental error in the system when designing

and implementing a timing-accurate storage emulator. As discussed in Section 5.1.2, these metrics

can be used to tune emulator behavior to best accommodate a particular request stream during or

after an experiment. Additionally, these metrics are useful for post-experiment evaluation of the

representativeness of experimental results when using a timing-accurate storage emulator.
5.1Because these timepoint measurements (“time stamps”) are taken multiple times in several locations during each

storage request, and taking into account the possible sub-millisecond resolution of an emulated storage request, the
facility for taking time stamps must be both efficient and have a small resolution. Our technique for taking efficient and
precise time stamps is presented in Appendix C. These timepoint measurements are translated into an interval of elapsed
time (∆T ) using Equation C.2 on page 169.
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5.2.1 Measurement points for collecting response times

In our prototype implementation, we measure request response times at three measurement points

(M = 3) along the request propagation path: inside the host system OS (MP1), at the interface

between the emulation software and the emulation operating system (MP2), and inside the device

model itself (MP3).

Measurement point MP1. To measure timepoints inside the host system OS, we built a Linux

loadable kernel module that interposes custom software along the request propagation path in the

Linux SCSI subsystem. Specifically, our module intercepts the queuecommand() call with a cus-

tom function that serves as a new bridge point from the SCSI mid-layer to the device-specific driver,

where the first timepoint is taken. After the timepoint is taken, the original queuecommand() func-

tion is invoked. Additionally, our module replaces the mid-layer scsi done() function with a cus-

tom function that takes the second timepoint before invoking the original scsi done() function.

Each timepoint is buffered temporarily in kernel memory, in order to prevent further interference

with the request’s critical path, and is eventually written out to a file along with the two-byte SCSI

opcode, the block offset and block length of the request, and a flag denoting whether the timepoint

represents the arrival or completion of the request.

Measurement point MP2. The interface between the emulation software and the emulation sys-

tem OS consists of reads and writes of CAM Control Blocks (CCB) on an open file descriptor

representing a special target-mode control device in the OS. The emulation software is notified of

request arrivals (and other events, such as bus transfer completion notifications) from the OS when

a specially marked CCB is passed up from the OS during a read() system call by the emulation

software, at which point a timepoint is taken by the software. When the emulation software deter-

mines that a request completion notification is sent, another marked CCB is sent to the OS during a

write() system call; the software takes a timepoint immediately preceding this system call. Both

timepoints are temporarily buffered and are eventually written to a file along with the SCSI opcode,

the block offset and the block length of the request, a flag denoting whether the timepoint represents

the arrival or completion of the request, and an internally-generated request serial number.

Measurement point MP3. Authoritative request service times are computed by the physical

device model during ordinary emulator operation. These times are based on the value of the physical

model’s internal clock at the time of request arrival and request completion. This internal clock is

kept loosely synchronized to the emulation system’s clock through its interactions with the timing

loop. The physical device model used in the Memulator operates on a clock of the elapsed time

since the start of the simulation (referred to historically as “simtime,” the current simulation time).

Simtime is measured by applying Equation C.2 (page 169) with t ′ equaling the current processor

cycle count and t ′i equaling the cycle count at the start the simulation. ∆T is evaluated simply as

the difference between the arrival simtime5.2 and the completion simtime. This value is temporarily
5.2In practice, we generate the arrival timestamps for MP3 response time calculations by reading the timing loop’s

wall-clock time when the simulator is invoked, and intentionally skewing this value to account for delays in the request
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buffered and is eventually written to a file along with the block offset and block length of the request,

a flag denoting whether the request was a read or write, and the request serial number generated

earlier by the emulation software.

Each measurement point creates a separate file containing the measured timepoints and asso-

ciated request data for each timepoint. These files are processed and collated into a single file

containing correlated timepoint data for each observed request. Correlations between the emulation

software timepoints and device model elapsed times are simplified via the shared serial number

generated by the software.5.3 These requests are then correlated with the host-observed requests by

matching the completion order of requests in the two timelines.

5.2.2 Quantifying sources of error in emulated requests

In order to adjust the behavior of the emulation software and effect the exact desired times at the

external observation point, it is first necessary to form an understanding of what factors contribute to

the incorrectness of the propagated times. It should be noted that this does not (necessarily) involve

quantifying known or unknown sources of error inherent in the device model itself; rather, this

question deals with the inherent propagation delay as requests travel through the emulation system.

The device models used in the Memulator include details of a device’s mechanical operation

and the associated device firmware overheads. These models may additionally include a model of

the host-to-device interconnection bus, which was the case for our experiments. We therefore chose

the measurement point located inside the host operating system (at the Linux SCSI mid-to-low-layer

interface, as described above in Section 5.2.1) as the target point for correctly matching the device

model times, as this point is closely located to the actual bus-level interface on the host system. Our

analysis is broken down into the two propagation paths between the three measurement points: first,

the path from the host system OS to the system-call interface between the emulation software and

the emulation system OS; second, the path from the system-call interface to the device model being

executed by the timing manager.

The path between the host system OS and the emulation software consists of the interconnection

bus itself, the host and target bus adapters, and the low-level device drivers on the host and target

systems. We have identified two components that contribute to request propagation delays across

this path. The first is a roughly constant-time delay, independent of a request’s size or type, between

the time the request completion notification is initiated by the emulation software and the time it

is received by the host system. This constant-time delay can be a noticeable fraction of the overall

propagation path (as per the discussion in Section 5.3.2.1). The completion timestamps are solely based on the simulator’s
unmodified simtime at request completion time.

5.3This requires more careful logic when shared serial numbers are not available. Because a request (R1) can be
delayed by the emulation software (for example, because the communications manager not having completed the transfer
of data for a request, or because the data manager not having data available in high-speed resources when needed), the
communications manager might complete a subsequent request (R2) before it can complete R1. In this case, the ordering
of request completions seen at MP2 will not match the ordering specified by MP3. We noticed this occur occasionally in
our implementation.
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request response time; we measured average times of 0.099 ms using the Adaptec HBA over a SCSI

interconnect and 0.282 ms for the QLogic HBA over a Fibre Channel interconnect. Although we

have not identified the individual contributing factors that comprise these fixed delays, we suspect

they are rooted primarily in the arbitration time required for each HBA to gain control of the bus,

interrupt dispatch delays, and execution of the device firmware5.4 and target-mode device driver

software. The second delay-inducing component is the bulk transfer time required to transmit the

requested data across the interconnect at wire speeds. Because our design focuses only on achieving

proper request response times and not on the detailed accuracy of bus transfers initiating at a correct,

modeled time, our implementation initiates data transfers immediately once the data are available.

As these data transfers generally complete before the request notification is to be sent, we are able

to omit the bus transfer time as a consideration in our calculations. However, our system must take

care to note whenever a request notification was unable to be sent on time due to the bus transfer

not yet having completed.

The errors introduced by the emulation software are inherently related to the efficiency of the

software implementation. In previous versions of our emulation software, we detected overheads

that were dependent on both the type and size of the request. In our current implementation, which

represents a from-scratch rearchitecting of the individual emulator components, the per-request

overheads have been reduced to a constant error of 0.05 ms per request with no dependency on

the request type or request size. Much of the earlier overheads in our implementation were due

to inefficient communication between the timing, data, and communications managers. Substan-

tial delays were caused by data copies between heavyweight processes that relied on the interpro-

cess communication facilities provided by the OS. By utilizing shared memory buffers between the

components, and simplifying the timing and communication managers into a single process to more

quickly propagate request completions to the target OS, the overall efficiency of our implementation

was greatly improved.

The overall expected per-request error between the primary selected measurement point and the

device model can then be specified in terms of the sum of the individual component errors between

the M measurement points. This is demonstrated in Equation 5.1, with Ei→ j representing the error

between measurement points i and j:

E1→M = E1→2 +E2→3 + · · ·+E(M−1)→M (5.1)

Our three measurement points result in M = 3 for our implementation. The empirical analysis we

used to determine E1→2 (the error introduced between the host and the emulation software) and E2→3

(the error introduced between the emulation software and the device model) is presented below in

Section 5.4.
5.4The Adaptec and QLogic bus adapters are certainly good products, but it would surprise the authors if much devel-

opment effort has been spent optimizing target-mode operation (compared with the certain optimizations that have been
performed for the normal initiator-mode operation). Although target-mode storage operation is not an unknown practice,
it has not historically been a market-driving force.
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5.2.3 Individual request comparison metrics

An individual comparison metric quantifies the accuracy of an emulator’s responses on a per-request

basis. Time stamps for each request are collected at various points in the system during the prop-

agation of events along the request path (i.e., the request arrival and completion notifications). An

individual metric evaluates the differences in the time stamps for each request to identify sources

of inaccuracy in the request path and to quantify the correction factors that can be used to mitigate

the inaccuracies. These differences are then summarized across all requests and reported using both

quantitative values and a histogram.

Our metric compares the ∆T (see Equation C.2) for the two quantities we refer to as the reference

time and the comparator time. The reference time, ∆TR, is the supposed “correct,” actual response

time of the request—for example, when one of the two measurements concerns the device model’s

internal times, it would be appropriate to treat this device model time as the reference time. Note,

however, that non-device-model times may also be used as the reference time. ∆TR(n) represents

the reference time for storage request n, where 1 ≤ n ≤ N, with N representing the number of

requests. The comparator time, ∆TC, is the time being compared to the reference time. In general,

the comparator time should be at the closer of the two measurement points to the host system.

(Another way to visualize this is that the reference time should be farther from the host system

along the request path & closer to the device simulation model.) When evaluating the metric over

the measured time in the host system OS and the communication manager in the emulation software,

the appropriate assignment for the emulation software would be the reference time.

For all experiments, we report N as well as the mean reference time, ∆TR, which is calculated by

Equation 5.2. The product of ∆TR ×N provides a measure of the overall storage subsystem time for

an experiment. ∆TR is important for interpreting the relative magnitude of the absolute quantities

below.

∆TR =

N

∑
n=1

∆TR(n)

N
(5.2)

We suggest a minimum of two quantities be reported as individual comparison metrics. The first

quantity is the mean error between the reference time and the comparator time. This quantity, which

we refer to as EIavg (“error individual average”), is calculated by Equation 5.3. The magnitude

of EIavg indicates the degree to which positive errors (the comparator time was larger than the

reference time) cancel out negative errors over the life of an experiment; for experiments with small

values of EIavg the total time consumed by the emulated storage subsystem was correct, but the

individual requests may or may not have been accurate. We additionally report EIavg%, calculated

by Equation 5.4. EIavg% relates the magnitude of the absolute error in terms of its relative effect on

the experimental result.
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EIavg =

N

∑
n=1

[
∆TC(n)−∆TR(n)

]

N
(5.3)

EIavg% =
EIavg

∆TR
×100.0 (5.4)

The second quantity is the root-mean-square error between the reference time and the compara-

tor time. This quantity, which we refer to as EIrms, is calculated by Equation 5.5. EIrms complements

the measure of EIavg by indicating to what degree the individual requests were accurate: When EIavg

is small, small values of EIrms indicate that the requests were mostly (or completely) accurate. When

EIavg and EIrms are similar, that means that there was generally a constant error between the refer-

ence and comparator times. When EIrms is large, there were several (to many) requests that had a

large, variable error between the reference and comparator times. As before, we additionally report

the root-mean-square percentage error. This quantity, which we refer to as EIrms%, is calculated by

Equation 5.6. As with the average per-request percentage error above, EIrms% relates the absolute

magnitude of EIrms in terms of its relative per-request impact on the experiment.

EIrms =

√√√√√√
N

∑
n=1

[
∆TC(n)−∆TR(n)

]2

N
(5.5)

EIrms% =
EIrms

∆TR
×100.0 (5.6)

In addition to reporting EIavg and EIrms, we visually display the distribution of timing inaccura-

cies by plotting histograms of the individual request errors, ∆TC(n)−∆TR(n), and of the individual

request percentage errors, [∆TC(n)−∆TR(n)]÷∆TR(n)×100.0, for each request (1 ≤ n ≤ N). The

request error histograms in this dissertation use a bucket size of 0.02 ms, and the percentage error

histograms use a bucket size of 1%.

5.2.4 Aggregate request comparison metrics

An aggregate comparison metric quantifies the accuracy of an emulator’s responses for all requests

over the lifetime of an experiment. An aggregate metric does not compare measured ∆T values

for an individual request, but rather compares at the distribution of ∆T values at an individual

measurement point with the distribution at an alternate point. The “demerit figure” aggregate metric

advanced by Ruemmler and Wilkes for evaluating storage device models against real devices [136]

is the basis for our approach to aggregate evaluations herein.5.5

5.5Specifically, Ruemmler and Wilkes plot the time distribution curves from two measurement points and use the root-
mean-square of the horizontal distance of the curves as their metric; our approach is identical to this. EArms and EArms%
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Our metric performs an ordered comparison of the ∆T values across two distributions, the ref-

erence distribution and the comparator distribution. The reference distribution, DR, contains the

reference times—∆TR, described above in Section 5.2.3—sorted in increasing time order. DR(1) is

the smallest reference time; DR(n) represents the nth smallest reference time, where 1≤ n≤N, with

N representing the number of requests and therefore the number of reference times. The comparator

distribution, DC, is a sorted list of the N comparator times (∆TC). Comparisons are made between

elements of the same position within the two distributions; i.e., DR(1) is compared with DC(1). No

importance is attached to which request produced a particular value, as the pair of times represented

by DR(n) and DC(n) may or may not have been measured for the same request.

For all experiments, we report N as well as the mean reference time, ∆TR, which is calculated

by Equation 5.2. The product of ∆TR ×N provides a measure of the overall storage subsystem time

for an experiment. ∆TR is important for interpreting the relative magnitude of the absolute quantity

below.

Following Ruemmler and Wilkes’ example, we report the root-mean-square error between the

reference distribution and the comparator distribution as the aggregate comparison metric. This

quantity, which we refer to as EArms (“error aggregate root-mean-square”), is calculated using

Equation 5.7. An EArms of zero indicates that the every value found in the ∆TR has a one-to-one

correspondence with an identical value in ∆TC, but in such a case it does not necessarily follow

that the entries in ∆TR are ordered the same as in ∆TC. We additionally report the root-mean-square

percentage error. This quantity, which we refer to as EArms%, is calculated by Equation 5.8. EArms%

relates the absolute magnitude of EArms in terms of the mean request time.

EArms =

√√√√√√
N

∑
n=1

[
DC(n)−DR(n)

]2

N
(5.7)

EArms% =
EArms

∆TR
×100.0 (5.8)

In addition to reporting EArms, we visually display the reference and comparator distributions

by plotting the cumulative distribution function for each distribution on a combined graph.

5.3 Request response generation inside an emulator

Once a facility is in place for collecting and measuring request response times, the emulation soft-

ware may be tuned in an attempt to mitigate the per-request errors caused by the processing and data

transfer overheads inherent in the emulation infrastructure. The device model being emulated may

or may not include timing-accurate models of the host-to-device interconnection bus, multi-device

are equivalent to the absolute and relative values reported together as the demerit figure elsewhere in the literature, except
that in our case a real storage device is not always used to create the reference distribution.
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(array) controller, or other non-device hardware along the request propagation path. The goal of the

tuning of the emulation software is to match the response times measured at a selected measure-

ment point—preferably a point at the outermost boundary containing all hardware included in the

device model—with the internal times calculated by the device model. The most straightforward

way to accomplish this is to induce the emulation software to initiate a request completion ahead of

its actual completion time, such that as the completion notification propagates to the selected mea-

surement point it arrives at precisely the desired time. Toward this end, the nature and magnitude

of errors introduced by the request propagation path through the external components5.6 must be

quantified. These errors must also be quantified for the propagation path through the device drivers

and bus adapter on the emulation system, as well as the errors introduced by the emulation software

itself. Next, the device model must be executed in a manner that compensates for these quantified

errors, while simultaneously preserving the correctness of the device model to the extent possible.

Finally, the net effectiveness of this compensation must be evaluated in order to quantify the correct

operation of the emulator and therefore the believability of the experimental results. Our techniques

for achieving this tuning are discussed in the following subsections.

5.3.1 Execution of the device model

As presented in Section 3.3.2, the conceptual and practical execution of the timing-accurate de-

vice model during a request can be split into two interacting components. The first component,

the physical device model, determines the time at which a request should complete. The second

component, the timing loop, interacts with the other emulator components and with the operating

system to ensure that each completion is reported at the determined time. These components can be

highly integrated if desired, but our design enforces a rigid programming interface between these

components—our physical device model is built upon an unmodified DiskSim codebase, and our

timing loop controls the execution of DiskSim using a small set of external-interface functions—in

order to enable the use of alternate physical models in the future. The necessary function prototypes

for this interface in our implementation are shown in Table 5.1. There are three ways in which

the physical model and the timing loop can interact, which we refer to as the run-to-completion,

run-to-completion with rollback, and run-synchronously approaches.

The run-to-completion approach keeps the two components separate: when a request arrives,

the physical device model code is invoked exactly once to determine the service time. Under this

approach, requests are generally considered in isolation: the physical model uses only the real-

world arrival time, the request’s characteristics, and the physical model’s initial internal state in

its calculations. The timing loop then initiates the request completion toward the host after the

determined time elapses. The emulator-based evaluation of eager writing [171] used a disk simulator

by Kotz, Toh, and Radhakrishnan [105] in this manner. Although the run-to-completion approach

is straightforward, it often does not properly handle concurrent requests. For example, the arrival
5.6Definitions of these terms describing timing-accurate storage emulation are provided in Section 3.1 (page 26).
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Functions instantiated in the physical model:

disksim_interface_initialize (<param file>, <callback functions>)
function: initializes internal structures based on supplied parameters
takes: simulator parameter file

timing model callback functions

disksim_interface_request_arrive (<time>)
function: prepends a new request into the simulator’s pending-event list
takes: current simulator time, supplied by timing loop

description of arriving request

disksim_interface_internal_event (<time>)
function: causes the occurance of any events scheduled before time
takes: current simulator time, supplied by timing loop

disksim_interface_shutdown ()
function: cleanly shuts down disksim and prints out statistics

Callback functions instantiated in the timing loop:

clock_schedule_callback (<time>)
function: notifies the timing loop when to next call into physical model
takes: invocation time of next pending event

clock_deschedule_callback (<time>)
function: used to unschedule an event that was reordered or removed
takes: invocation time previously supplied to timing loop

clock_request_complete (<time>)
function: used to notify timing loop of request completion time
takes: request description previously supplied by timing loop

simulated completion time of the request

Table 5.1: The programming interface between the physical model and timing loop. Although
designed around an event-driven simulator under the run-synchronously approach, this interface
would also support an alternative device model using the run-to-completion approach.
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of a new request may affect the service time of outstanding requests due to bus contention, request

overlapping, or request scheduling.

In order to support these issues with concurrent requests, it must be possible for the physical

device model to adjust its calculations for request R1 based on the arrival times and characteristics of

any request (e.g., R2) that arrives subsequent to request R1 but before the completion time of R1. This

can be easily accomplished using event-based simulation. An event-based simulator breaks each

request into a series of abstract and physical events: REQUEST ARRIVAL, CONTROLLER THINK

TIME COMPLETE, DISK ARM SEEK TO TRACK 1976 COMPLETE, READ OF SECTORS 620464–

620492 INTO READ BUFFER COMPLETE, and so on. Each event is associated with a time, and an

event “occurs” when the simulator’s clock reaches the corresponding time. Event occurrences are

processed by simulation code that updates the simulator’s internal device state and schedules sub-

sequent events. For example, when one of the READ OF SECTORS INTO READ BUFFER COMPLETE

events (event e) occurs for read request R1, the simulator may decide to schedule a set of events rep-

resenting the bus acquisition and transfer of the buffered blocks for R1. However, if write request

R2 arrived in the simulator just prior to event e, the simulator may instead decide to first schedule

the bus transfer of the blocks for R2 into the disk’s write buffer before scheduling the acquisition

and bus transfer of the data for R1.

Under the run-to-completion with rollback approach, the physical device model software is

speculatively executed to request completion upon receipt of each request (e.g., R1) by the physical

model, with this calculated completion time reported immediately to the timing loop. Whenever a

subsequent request R2 arrives before the actual completion time of R1, the physical model is noti-

fied of this and instructed to re-calculates the completion time for R1 using the additional knowledge

about R2. Practically, this requires that the physical model support either mid-request checkpoint-

ing or rollback to a specified time before the request completion. In the example of the previous

paragraph, the expected response time ∆T1 for R1 would be calculated by the physical model imme-

diately upon the arrival of R1. Later, when R2 arrived before the completion time of R1, the physical

model state would be rolled back (or a checkpoint restored) in order for a new ∆T ′
1 to be calculated

taking into account knowledge of both requests. The mechanism for this “rewinding” of the device

state could either aim to revert back to the arrival time of R1 or only back to the arrival of R2—

depending on the implementation of the physical model, this may exercise an interesting trade-off

between the processing resources required to repeatedly execute the physical model’s calculations

for a single request (the former approach), versus the resources required to support a fine-grained

event- or time-based checkpoint/rollback facility (the latter approach). Additionally, there may be

a brief time immediately before the end of R1 where it is not computationally possible to consider

any aspect of R2 without unduly delaying the completion of R1. In practice we were unable to pur-

sue this approach because of difficulties in extending the DiskSim simulator to efficiently support

fine-grained checkpointing.
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The run-synchronously approach eliminates the need for checkpointing or rollback support in

the physical device model. Under this approach, which is the approach we follow in our imple-

mentation, the advancement of the simulator’s internal clock is synchronized with the advancement

of the real-world (“wall”) clock. When each event occurs inside the physical model, it informs

the timing loop of the invocation time of the next event it schedules. In turn, the timing loop calls

back into the physical model when the wall clock time matches the invocation time of the next

event. When the time of the REQUEST COMPLETE event is ultimately scheduled inside the physical

model, the timing loop is specially notified and initiates the request completion toward the host once

that time arrives. One concern with this approach is that some request completions may not occur

at the scheduled time because of the delayed processing of the request; in the earlier approaches all

processing was completed immediately, whereas in this approach the processing is distributed over

the lifetime of a request, including near the request completion time. This problem may be exac-

erbated if many internal events, such as simulated buffer interaction events or bus transfer events,

are unevenly distributed to occur near the end of a request. To avoid this, the physical model can

be speculatively executed a short time into the future—i.e., the timing loop can call back into the

physical model slightly before the actual wall clock time that matches the next event—such that the

final notification of a request’s completion time is always presented to the timing loop slightly in

advance.

5.3.2 Error-cognizant execution of the physical device model

Once an understanding has been developed concerning the nature of the per-request errors and the

magnitude of E1→M is known, the physical device model may be executed in such a way that request

completion propagations arrive at the host system at the desired time. Specifically, the measured

arrival time and calculated completion times may be skewed slightly inside the emulator to account

for the request processing and communication delays, with the goal of equalizing the elapsed time

at MP1 and MP3. In our implementation, this means making sure the elapsed request service time

measured in the host system matches the elapsed service time computed by the device simulation

model.

To accomplish this correction, we consider individually the two constituent components of

E1→M: the arrival-time error (EA
1→M) and the completion-time error (EC

1→M). These terms are defined

byEquation 5.9 and their relationship to the experimental error is illustrated in Figure 5.3.

E1→M = EA
1→M +EC

1→M (5.9)

As it is nontrivial to accurately and precisely synchronize the clocks between the host and emulation

systems [107], we assume in our implementation (a remote emulator where M = 3) that these values

are equal, as defined by Equation 5.10. For the remainder of this dissertation we use the term ∆Tskew

to represent our experimental configuration of these values.
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EA
1→3 = EC

1→3 =
E1→3

2
≡ ∆Tskew (5.10)

The mitigation of these constituent errors is discussed in the following two sections. These discus-

sions make use of the terminology presented in Table 5.2.

5.3.2.1 Compensating for request arrival-time errors

Request arrival-time propagation delays can be accounted for in the emulation software by arti-

ficially reducing the arrival time of requests as they are presented to the physical device model.

Under this arrival-time modification technique, illustrated in Figure 5.4, requests are inserted into

the physical model with a modified Tarrive = Tcurrent −EA
1→M. The goal of this technique is twofold:

first to ensure the accurate response time is measured inside the physical model (MP3 in our im-

plementation), and second to ensure the physical model has the most accurate information about its

internal state and the state of other requests at the time the request arrives.

Arrival-time modification will generally not affect the computed completion times of the re-

quests, except that it may cause the requests to (correctly) complete more quickly. Consider a

greatly simplified scenario where a read request for block 714 arrives at an emulated disk. Assum-

ing the emulated disk arm is already positioned over the correct track, then if the request arrives

at wall-clock time T713 (which in this example conveniently corresponds with the time the emu-

lated disk head begins passing over block 713) then the physical model will complete the request

very quickly, after the disk head passes over blocks 713 and 714. However, if the arrival delay

is large—for example, if EA
1→M = 5 and the new request does not therefore arrive at the emulator

until time T718—then the request will take far longer to complete, as almost a full rotation of the

disk platter will occur before block 714 is again available for reading. Arrival-time modification

prevents this problem. Unfortunately, the technique cannot always be used due to limitations in the

run-synchronously approach, as explained in Section 5.3.3.

5.3.2.2 Compensating for request completion-time errors

Request completion-time propagation delays can be accounted for in an emulator by instructing the

emulation software to transmit the request completion early to the host. Under this early-completion

technique, illustrated in Figure 5.5, the request completion is sent by the communications manager

when Tcurrent = Tcomplete −EC
1→M to fully account for the request processing and communication

delays. This includes the delays inherent to process scheduling and OS-level interactions with the

emulation software. The early-completion technique can be used in isolation or can be combined

with the arrival-time modification technique to effect the best overall error compensation time.

Use of the early-completion technique is straightforward under the run-to-completion and run-

to-completion with rollback approaches. Under the run-synchronously approach used in our imple-

mentation, the simtime (the clock in the physical device model) must be maintained at least EC
1→3
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Figure 5.3: Request service times at the various measurement points. In this example, mea-
surement point MP1 is in the host system, MP2 is in the emulation system, and MP3 is inside the
physical device model. The shaded area represents the interval between the request arrival and
request completion at each measurement point. The objective of error compensation is to equalize
the times measured at MP1 and MP3.
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Figure 5.4: Compensating for request arrival-time errors. As explained in Section 5.3.2.1, the
request arrival time presented to the physical device model may be reduced EA

1→M time units into
the past. This compensates for the propagation delays from the host to the emulation software.
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Figure 5.5: Compensating for request completion-time errors. As explained in Section 5.3.2.2,
the simulation time may be advanced into the future (prematurely but intentionally) to determine a
request’s completion time in advance of the actual time. This allows the communications manager
to transmit the completion EC

1→M time units early—compensating for the propagation delays from
the emulation software to the host—which will result in the completion notification arriving at the
correct time in the host system. (In the previous figures, the notification arrives late at MP1.)
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Absolute time specifiers

Tcurrent The current real-world (wall-clock) time maintained by the timing loop.

Tarrive The simulated arrival time of a request as transmitted from the emulator
to the physical model. Note that use of the arrival-time modification tech-
nique causes Tarrive to not necessarily equal Tcurrent at the time the request
arrived inside the emulator.

Tcomplete The simulated completion time of a request as calculated by the physical
model and transmitted to the communications manager.

Tevent The simulated time of the most recent simulation event E that occurred
inside the physical model. Note that the use of the early completion tech-
nique (or ∆Tlookahead) causes Tevent to not necessarily have equaled Tcurrent

when E was processed.

Relative time intervals

EA
1→M The component of E1→M caused during the propagation of the request ar-

rival notification from the host system to the emulation software. This is
also the degree to which the arrival time is reduced under the arrival-time
modification technique.

EC
1→M The component of E1→M caused during the propagation of the request com-

pletion notification from the emulation software to the host system. This
is also the degree to which the completion notification is sent early by the
communications manager under the early-completion technique.

∆Tskew A configuration parameter for our timing-accurate storage emulator im-
plementation. During experimentation, the values of EA

1→M and EC
1→M are

initialized to equal this value.

∆Tlookahead An extra interval (beyond EC
1→M) by which the clock in the physical device

model is kept ahead of Tcurrent during the execution of a request, when using
the early-completion technique under the run-synchronously approach.

Table 5.2: Nomenclature for the discussion of techniques for mitigating the per-request error.
This terminology supports the discussion in Section 5.3.2.

63



time units ahead of the wall-clock time during the execution of request in order for the communica-

tions manager to be able to send the completion early. In practice, we maintain the simtime ahead of

the wall-clock time by a slightly larger value (EC
1→3 +∆Tlookahead).5.7 We refer to this extra interval

as the additional lookahead. It is not necessary for an emulator to support the use of this additional

lookahead; however, as noted in Section 5.4.1, use of ∆Tlookahead has the advantage of eliminating

any variable completion-time processing delays that would otherwise increase E2→3.

5.3.3 Limitations of error compensation

One limitation when considering error compensation is that none of the three approaches from

Section 5.3.1 will be able to accurately satisfy any request with a response time ∆T < E1→M. The

implications of this are that our implementation is unable to service requests shorter than 0.12 ms

using the Adaptec SCSI adapter or 0.30 ms using the QLogic Fibre Channel adapter. In such a

case, where the round-trip delay introduced between the measurement point and the emulator is

greater than the response time itself, one possible workaround is to “short-circuit” the request path

by placing special software in the device driver or operating system on either the host or emulation

system to detect such a request and service it immediately from that location—in effect, creating a

hybrid remote/local emulation system. This may be practical when using a workloads known to be

deterministic, or workloads where it is possible to predict when low response time requests would

occur based on the characteristics of the request stream leading up to such a request. As discussed

before, it may also be possible to balance the response time overage of such a request by servicing

subsequent requests slightly faster than the times reported by the physical model.

A similar concern is that the total processing time for a request must be less than ∆T (or

∆T −EC
1→M when using the early-completion technique). Our initial attempts at emulation of a

MEMS-based storage device model were thwarted by the excessive computational requirements of

the MEMS device simulator.5.8 When request deadlines simply cannot be met by the emulation

software, a similar workaround of utilizing special interception software in the host or emulation

system may be possible.

Although our initial experimentation with the Memulator attempted to use the arrival-time re-

duction technique, we were unable to fully make use of this reduction in our current implementation.

This is because we have been unable to validate the behavior of the DiskSim simulator when it is

presented with simulation times that are not monotonically nondecreasing. As demonstrated in

Figure 5.6, it is nontrivial to use the arrival-time reduction technique when using the physical model
5.7Note that we still do not transmit the request completion until Tcurrent = Tcomplete −EC

1→M ; the use of ∆Tlookahead
is intended to provide a small time buffer before the completion is sent, with the goal of reducing the variance of the
effectiveness of error compensation.

5.8Solving this problem of meeting the real-time requirements of emulation ultimately required us to re-architect the
MEMS device simulator to enable the internal caching of many of its intermediate computational results. This led to
an interesting philosophical debate concerning the unsolved problem of balancing the desire for “fast development of
working and tested code” versus the “worthwhile pursuit of obvious opportunities for efficiency in system software
design.” We leave the solution to this debate as an exercise for the reader.
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Figure 5.6: A concern with the arrival-time reduction technique when accounting for request
propagation delays under the run-synchronously approach. The terms in this figure are intro-
duced in Table 5.2. When Tevent < (Tcurrent −EA

1→M), as shown in Timeline 1, it is possible to reduce
the arrival time by the full value of EA

1→M. However, when (Tcurrent −EA
1→M) < Tevent, as shown in

Timeline 2, the arrival time cannot be reduced by the full value without reversing the flow of time as
presented to the physical device model. This can be nontrivial; the evaluator should first validate
the correct operation of the physical device model under such nonintuitive circumstances.

under a run-synchronously approach. If any previous event for another request occurred within

∆Treduce of the current time (i.e., Tcurrent −EA
1→M < Tevent) then Tarrive cannot be fully reduced to

the desired value without presenting an out-of-order time to the physical model. This problem of

overlapping times will be less of a concern when using one of the run-to-completion approaches for

executing the physical model.

This problem of out-of-order values for Tarrive and Tevent is exacerbated when using the early-

completion technique under the run-synchronously approach. Because Tevent is being artificially

skewed into the future, it is less likely that use of the arrival-time reduction techniques will be

possible for a request that arrives shortly after (< ∆Treduce) the completion of the previous request.

Moreover, this technique introduces the problem that it may not even be possible to set Tarrive =
Tcurrent; in our implementation, we calculate arrival time based on Equation 5.11:5.9

Tarrive =

{
Tevent if (Tevent > Tcurrent)

Tcurrent otherwise
(5.11)

Because we are unable to use arrival-time modification, some requests will incur an extra rotation of

the disk platter before completing. In the worst case this will cause an occasional request to incur an
5.9Equation 5.11 indicates that we do not insert the request into our device simulator with a reduced arrival time.

However, we still calculate the request service time at MP3 using a fully reduced arrival time: Tarrive = Tcurrent −EA
1→3.
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unnecessary full rotational delay before completion, causing the emulator to slightly under-perform

with respect to the true disk model performance. We note that for the disk model used in the

calibration experiments in Section 5.4, values of 60 µs and 151 µs for E1→3 were obtained, which

respectively represent 1% and 2.5% of the 6 ms platter rotation time for the disk model.

Additional workload analysis can be used to determine the degree to which these unmodified

arrival-time requests are a problem. To achieve this, the experimental workload can be traced inside

the emulator, storing Tcurrent at the time of each request’s arrival at the physical model as well as the

calculated value of Tcomplete. This trace can then be replayed post-experimentally against the stand-

alone physical model using the principles of the arrival-time modification technique, to determine

whether any different values for Tcomplete should have been calculated. Alternatively, this could be

checked while an experiment is in progress by running multiple simultaneous instantiations of the

physical model: a primary instantiation connected to the timing loop using the run-synchronously

approach, and a secondary instantiation driven under the run-to-completion approach with arrival-

time modification—with an internal clock lagging at least ∆T behind the primary—used to check

whether the times reported by the primary are indeed accurate.

5.4 Calibrating the emulation software for the reduction of response time errors

This section presents the empirical methodology we used to quantify the errors introduced by the

request arrival and completion propagation paths. The errors we quantify—E2→3 represents the

error between the emulation software and the physical device model times, and E1→2 represents the

error between the measurement points in the host system and the emulator software—are discussed

above in Section 5.2.2.

Our evaluation uses a series of trace-driven microbenchmarks that repeatedly exercise a single

characteristic request. For example, each of these traces contain a fixed-length read from a fixed

offset, repeated many times in succession with a fixed interarrival time. Using single-characteristic

traces allows multiple experimental runs to be compared to determine whether the errors are depen-

dent on any readily-available request characteristics, such as the type of the request or the request

length.

Our mechanism for repeatedly exercising a characteristic request was the trace-replay utility

(dxreplay) of the Dixtrac disk characterization toolkit developed by Jiri Schindler, John Bucy, and

Greg Ganger. This is a user-level utility that reads in a trace file consisting of request arrival times,

the block offset and block length for each request, and a flag representing the request type (read or

write). Each request is sent to the device using the Linux SCSI Generic (sg) bus interface at the

appropriate time as specified in the trace file. These experiments use data collected from replaying

eight traces. The traces represent the cross-product of four request sizes (1 KB, 4 KB, 32 KB, and

64 KB) with the two request types. Each trace contains 1000 requests with a 50 ms interarrival time

between requests. As only one request is sent to the emulated device at a time, this interarrival time

ensures each request completes before the following request is initiated. The emulated device model
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used for these experiments is a validated model for the Seagate Cheetah disk described in Table 4.1

on page 44, which is also the Emulated Cheetah model used for the experiments in Chapter 6.

The remainder of this section is organized as follows.

Error between the emulation software and the physical device model . . . . . . . . . . . . 67

Error between the host and the emulation software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Mitigation of the quantified response time errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

The figures shown in this section contain four fixed-axis subgraphs: (1) the individual request errors

[upper left], (2) a histogram of the individual request errors [upper right], (3) a histogram of the

individual request percentage errors [lower left], and (4) the aggregate request error distribution

[lower right]. The quantitative metrics for the experimental run are included in the title of each

subgraph. The domain and range are fixed in each subgraph for easier comparison among the

figures. Fixing the axes in this way caused abridgment of some of the extreme outliers on the graphs,

so full graphs of the individual request errors for each experiment are provided in Appendix D. To

create these figures, each trace was experimentally executed three times, and the subgraphs and

quantitative metrics presented in each figure represent the best or lowest values obtained across the

three experiments.5.10

5.4.1 Error between the emulation software and the physical device model

Our analysis of the factors contributing to E2→3 begins with the trace of repeated eight-block reads

using the Adaptec bus adapter. The initial results for this trace are shown in Figure 5.7.

The results indicate a dependency between the values calculated for E2→3 and ∆Tlookahead, one of

the values used for the early-completion lookahead technique in the timing loop. To explore this we

repeated the eight-block Adaptec read trace using values for ∆Tlookahead over the range [0 µs, 60 µs]

in increments of 1 µs. The resulting data are shown in Figure 5.8. These data indicate that for values

of ∆Tlookahead < 28 µs there is an additional delay present in E2→3 that inversely correlates with

∆Tlookahead. This suggests that there are two components of E2→3: one fixed component of 18 µs that

represents the emulation software overheads (in the timing loop and communications manager), and

a variable component caused by incomplete calculations in the physical device model as the request

nears completion. When operating with ∆Tlookahead values greater than that shown on the inflection

point—which we do due to the large E1→2 calculated below—the experimenter should calculate

E2→3 with the lookahead enabled. The remainder of the experiments in this section use a lookahead

value of 30 µs.

Using this lookahead value yields the corrected data for the eight-block Adaptec read trace

shown in Figure 5.9. This figure is used as the standard against which the remaining figures for

the Adaptec driver in this section are compared. The full results for the experiments in this section,
5.10Using the best or lowest values here (instead of mean values, for example) is appropriate for calibration purposes

because the emulator should be calibrated with the best available data—i.e., the data containing the fewest large errors.
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representing all eight traces for both the Adaptec and QLogic bus adapters, are presented in Table 5.3

and Table 5.4. As with the figures, the data in these tables represent a composite of the best values

obtained after executing each trace three times.

With our current implementation of the Memulator, we observe no dependence for E2→3 on the

size of the request.5.11 This is evident in a visual comparison of the similarity of the data between

the 128-block Adaptec read trace with lookahead, shown in Figure 5.10, and the data for the eight-

block Adaptec read trace with lookahead in Figure 5.9. This is also evident by direct inspection of

the values in Table 5.3.

In our current implementation, we observe almost no dependence (less than 5 µs) for E2→3 on

the type of the request. This is evident in a visual comparison of the similarity of the data between

the eight-block Adaptec write trace with lookahead, shown in Figure 5.11, and the data for the eight-

block Adaptec read trace with lookahead in Figure 5.9. This is also evident by direct inspection of

the values in Table 5.3.

As expected, we observe no dependence for E2→3 on the choice of host-to-target interconnect.

This is evident in a visual comparison of the similarity of the data between the eight-block QLogic

read trace with lookahead, shown in Figure 5.14, and the data for the eight-block Adaptec read trace

in Figure 5.9. This is also evident by direct inspection of the values in Table 5.3 and Table 5.4.

We additionally confirm each of the earlier findings based on the Adaptec driver by repeating

each of the trace-based experiments using the QLogic bus adapter. After determining the baseline

performance under no lookahead via the trace of repeated eight-block reads (Figure 5.12), we con-

firm the dependence on the additional lookahead (Figure 5.13) and the independence on request size

(Figure 5.15) and request type (Figure 5.16). These findings are also evident by direct inspection of

the values in Table 5.4.

In summary, E2→3 exhibits a dependence on the additional lookahead value ∆Tlookahead, and

exhibits no dependence on the request size or type, or the choice of interconnect. The quantified

value for our implementation is shown in Equation 5.12.

E2→3 =

{
46−∆Tlookahead µs if (∆Tlookahead < 28 µs)

18 µs otherwise
(5.12)

5.11As discussed in Section 5.2.2, inefficiencies in our previous implementation resulted in dependencies for E2→3 on
both request size and type.
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∆TC→∆TR ∆TR EIavg EIavg% EIrms EIrms% EArms EArms%

(mem→sim) [ms] [ms] [%] [ms] [%] [ms] [%]

Adaptec

2 block read 3.077 0.017 0.55 0.020 0.64 0.018 0.60
2 block write 3.148 0.020 0.63 0.021 0.66 0.020 0.64
8 block read 3.172 0.017 0.52 0.017 0.55 0.017 0.53
8 block write 3.235 0.020 0.61 0.020 0.63 0.020 0.61
64 block read 3.894 0.017 0.43 0.017 0.44 0.017 0.43
64 block write 3.999 0.023 0.57 0.043 1.08 0.023 0.58
128 block read 4.704 0.018 0.38 0.019 0.40 0.018 0.38
128 block write 4.792 0.023 0.47 0.024 0.50 0.023 0.48

Table 5.3: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec.

∆TC→∆TR ∆TR EIavg EIavg% EIrms EIrms% EArms EArms%

(mem→sim) [ms] [ms] [%] [ms] [%] [ms] [%]

Qlogic

2 block read 3.069 0.020 0.65 0.025 0.83 0.025 0.80
2 block write 3.206 0.023 0.71 0.024 0.76 0.024 0.75
8 block read 3.156 0.023 0.72 0.079 2.52 0.040 1.25
8 block write 3.288 0.027 0.81 0.081 2.46 0.028 0.86
64 block read 3.870 0.022 0.58 0.078 2.01 0.024 0.61
64 block write 3.970 0.029 0.73 0.096 2.42 0.066 1.67
128 block read 4.713 0.022 0.47 0.086 1.82 0.066 1.41
128 block write 4.799 0.028 0.57 0.075 1.56 0.059 1.23

Table 5.4: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic.
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Figure 5.12: E2→3: ∆Tlookahead=0 µs, ∆Tskew=0 µs, QLogic, 4 KB Reads.
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Figure 5.14: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic, 4 KB Reads.
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Figure 5.15: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic, 64 KB Reads.
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Figure 5.16: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic, 4 KB Writes.
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5.4.2 Error between the host and the emulation software

Following the pattern established in the previous section, the analysis of the factors contributing to

E1→2 begins with the trace of the repeated eight-block reads using the Adaptec bus adapter. The

results for this trace are shown in Figure 5.17. Additionally, the full results for the experiments

in this section, representing all eight traces for both the Adaptec and QLogic bus adapters, are

presented in Table 5.5 and Table 5.6. As with the figures, the data in these tables represent a

composite of the best values after executing each trace three times.

Unlike the dependency observed between the values calculated for E2→3 and ∆Tlookahead, we

discern no dependency between the values calculated for E1→2 and the value used for the addi-

tional lookahead. To explore this we repeated the eight-block Adaptec read trace using values for

∆Tlookahead over the range [0 µs, 400 µs] in increments of 10 µs. The resulting data are shown in

Figure 5.18, and demonstrate no variation in the calculated value of E1→2 across the range of val-

ues for ∆Tlookahead. These results are as expected; the use of ∆Tlookahead mitigates the variable-time

overheads of the emulation software, which should have no effect on the propagation delays across

the storage interconnect. The remainder of the experiments in this section use a lookahead value of

30 µs to match the value used previously.

As with E2→3, we observe no dependence for E1→2 on the size of the request. This is evident in

a visual comparison of the similarity of the data between the 128-block Adaptec read trace, shown in

Figure 5.20, and the data for the eight-block Adaptec read trace in Figure 5.19. This is also evident

by direct inspection of the values in Table 5.5. This independence is as expected; any delays caused

by excessive request transfer time—such as when very large requests are being transferred and the

scope of the emulator includes a fast bus—will appear as delays in the communications manager,

and will result in an increased E2→3. The delays represented by E1→2 are wholly in the transmission

of the fixed-size request arrival and completion notifications.

Also as with E2→3, we also observe no dependence for E1→2 on the type of the request. This is

evident in a visual comparison of the similarity of the data between the eight-block Adaptec write

trace, shown in Figure 5.21, and the data for the eight-block Adaptec read trace in Figure 5.19. This

is also evident by direct inspection of the values in Table 5.5.

Unlike E2→3, we do observe a dependence for E1→2 on the choice of host-to-target interconnect.

The error when using the QLogic driver is almost three times as large (282 µs) than the error when

using the Adaptec driver (99 µs). This disparity is evident in a visual comparison of the dissimilarity

of the data between the eight-block QLogic read trace, shown in Figure 5.24, and the data for the

eight-block Adaptec read trace in Figure 5.19. This is also evident by direct inspection of the values

in Table 5.5 and Table 5.6.

We additionally confirm each of the earlier findings based on the Adaptec driver by repeating

each of the trace-based experiments using the QLogic bus adapter. After determining the baseline

performance under no lookahead via the trace of repeated eight-block reads (Figure 5.24), we con-

firm the independence from the current-time lookahead (Figure 5.23), request size (Figure 5.25)
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and request type (Figure 5.26). These findings are also evident by direct inspection of the values in

Table 5.6.

In summary, E1→2 exhibits a dependence on the choice of interconnect, and exhibits no depen-

dence on the current-time lookahead value or the request size or type. The quantified value for our

implementation is shown in Equation 5.13.

E1→2 =

{
99 µs for the Adaptec bus adapter

282 µs for the QLogic bus adapter
(5.13)
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∆TC→∆TR ∆TR EIavg EIavg% EIrms EIrms% EArms EArms%

(hos→mem) [ms] [ms] [%] [ms] [%] [ms] [%]

Adaptec

2 block read 3.094 0.097 3.12 0.097 3.13 0.097 3.13
2 block write 3.186 0.097 3.04 0.097 3.04 0.097 3.04
8 block read 3.162 0.097 3.08 0.098 3.09 0.098 3.08
8 block write 3.291 0.097 2.95 0.097 2.95 0.097 2.95
64 block read 3.910 0.097 2.48 0.097 2.49 0.097 2.49
64 block write 4.026 0.098 2.42 0.098 2.43 0.098 2.43
128 block read 4.751 0.099 2.08 0.099 2.09 0.099 2.08
128 block write 4.814 0.098 2.04 0.098 2.04 0.098 2.04

Table 5.5: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec.

∆TC→∆TR ∆TR EIavg EIavg% EIrms EIrms% EArms EArms%

(hos→mem) [ms] [ms] [%] [ms] [%] [ms] [%]

Qlogic

2 block read 3.090 0.282 9.13 0.282 9.13 0.282 9.13
2 block write 3.238 0.281 8.68 0.281 8.68 0.281 8.68
8 block read 3.164 0.282 8.91 0.282 8.91 0.282 8.91
8 block write 3.268 0.281 8.59 0.281 8.59 0.281 8.59
64 block read 3.938 0.281 7.14 0.281 7.14 0.281 7.14
64 block write 3.998 0.281 7.04 0.281 7.04 0.281 7.04
128 block read 4.736 0.282 5.96 0.282 5.96 0.282 5.96
128 block write 4.835 0.282 5.83 0.282 5.83 0.282 5.83

Table 5.6: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic.

78



-0.1

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000

∆T
C

(n
) 

− 
∆T

R
(n

),
 u

ni
ts

=
m

s

Request number

Individual request errors

¯¯¯¯¯¯¯∆TR=3.216 ms, EIavg=0.098 ms, EIrms=0.098 ms

0

200

400

600

800

1000

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r 

of
 r

eq
ue

st
s 

(N
=

10
00

)

∆TC(n) − ∆TR(n), units=ms

Individual request error histogram

¯¯¯¯¯¯¯∆TR=3.216 ms, EIavg=0.098 ms, EIrms=0.098 ms

0

200

400

600

800

1000

-25 -20 -15 -10 -5 0 5 10 15 20 25

N
um

be
r 

of
 r

eq
ue

st
s 

(N
=

10
00

)

[∆TC(n) − ∆TR(n)] ÷ ∆TR(n) × 100.0, units=%

Individual percentage error histogram

¯¯¯¯¯¯¯∆TR=3.216 ms, EIavg%=3.06%, EIrms%=3.06%

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n 
of

 r
eq

ue
st

s 
(N

=
10

00
)

Time, units=ms

Aggregate request error distributions

¯¯¯¯¯¯¯∆TR=3.216 ms, EArms=0.098 ms, EArms%=3.06%

DC (hos)
DR (mem)
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
2→

3:
 E

I a
vg

, u
ni

ts
=

m
s

Tlookahead, units=ms

Impact of current-time lookahead on observed error

4 KB read trace

Figure 5.18: The effect of ∆Tlookahead on E1→2, Adaptec. Note that the scale of the X- and Y-axes
have changed from the previous graphs.

79



-0.1

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000

∆T
C

(n
) 

− 
∆T

R
(n

),
 u

ni
ts

=
m

s

Request number

Individual request errors

¯¯¯¯¯¯¯∆TR=3.162 ms, EIavg=0.097 ms, EIrms=0.098 ms

0

200

400

600

800

1000

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r 

of
 r

eq
ue

st
s 

(N
=

10
00

)

∆TC(n) − ∆TR(n), units=ms

Individual request error histogram

¯¯¯¯¯¯¯∆TR=3.162 ms, EIavg=0.097 ms, EIrms=0.098 ms

0

200

400

600

800

1000

-25 -20 -15 -10 -5 0 5 10 15 20 25

N
um

be
r 

of
 r

eq
ue

st
s 

(N
=

10
00

)

[∆TC(n) − ∆TR(n)] ÷ ∆TR(n) × 100.0, units=%

Individual percentage error histogram

¯¯¯¯¯¯¯∆TR=3.162 ms, EIavg%=3.08%, EIrms%=3.09%

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n 
of

 r
eq

ue
st

s 
(N

=
10

00
)

Time, units=ms

Aggregate request error distributions

¯¯¯¯¯¯¯∆TR=3.162 ms, EArms=0.098 ms, EArms%=3.08%

DC (hos)
DR (mem)
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Figure 5.20: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec, 64 KB Reads.
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Figure 5.21: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec, 4 KB Writes.
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Figure 5.22: E1→2: ∆Tlookahead=0 µs, ∆Tskew=0 µs, QLogic, 4 KB Reads.
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Figure 5.23: The effect of ∆Tlookahead on E1→2, QLogic.
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Figure 5.24: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic, 4 KB Reads.
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Figure 5.25: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic, 64 KB Reads.
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Figure 5.26: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic, 4 KB Writes.
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5.4.3 Mitigation of the quantified response time errors

After determining empirical values for E1→2 (Equation 5.13, page 77) and E2→3 (Equation 5.12,

page 68), we applied Equation 5.1 (page 53) to determine the value E1→3. When setting the value

of ∆Tlookahead=30, the expected per-request error for our implementation is 119 µs when using the

Adaptec HBA and 302 µs when using the QLogic HBA.

To verify that the desired results were obtained through this approach, we configured the emula-

tor with an appropriate ∆Tskewvalue (Equation 5.10, page 61)—60 µs when using the Adaptec HBA

and 151 µs when using the QLogic HBA—and replayed each of the experimental traces against the

emulator. The full results for the experiments in this section, representing all eight traces for both

the Adaptec and QLogic bus adapters, are presented in Table 5.7 and Table 5.8. As before, the data

in the tables and figures in this section represent a composite of the best values after executing each

trace three times. Graphs showing the results of individual experiments are presented as follows:

• For the Adaptec HBA: 4 KB reads (Figure 5.27), 64 KB reads (Figure 5.28), and 4 KB writes

(Figure 5.29).

• For the QLogic HBA: 4 KB reads (Figure 5.30), 64 KB reads (Figure 5.31), and 4 KB writes

(Figure 5.32).

These data show that the request errors are mitigated to within a maximum EIavg=0.007 ms

(EIavg%=0.21%). As is evident in the figures, this approach does not eliminate all sources of in-

accuracy in the emulation environment. 5initiation of data transfers is discussed in As seen later,

a higher traffic volume with short interrequest delays appears to exacerbate this problem. We ex-

pect that continued development on target-mode support in operating system device drivers and bus

adapter firmware will further mitigate these problems in future experimentation.
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∆TC→∆TR ∆TR EIavg EIavg% EIrms EIrms% EArms EArms%

(hos→sim) [ms] [ms] [%] [ms] [%] [ms] [%]

Adaptec

2 block read 3.137 0.001 0.02 0.072 2.29 0.013 0.41
2 block write 3.229 0.007 0.22 0.111 3.45 0.015 0.45
8 block read 3.221 0.003 0.10 0.120 3.72 0.014 0.43
8 block write 3.301 0.002 0.07 0.081 2.44 0.009 0.27
64 block read 3.945 0.000 0.00 0.087 2.20 0.008 0.21
64 block write 4.047 0.007 0.17 0.095 2.34 0.061 1.51
128 block read 4.777 0.002 0.04 0.087 1.81 0.061 1.28
128 block write 4.860 0.004 0.09 0.048 0.99 0.036 0.74

Table 5.7: E1→3: ∆Tlookahead=30 µs, ∆Tskew=60 µs, Adaptec.

∆TC→∆TR ∆TR EIavg EIavg% EIrms EIrms% EArms EArms%

(hos→sim) [ms] [ms] [%] [ms] [%] [ms] [%]

Qlogic

2 block read 3.239 0.006 0.17 0.048 1.49 0.035 1.09
2 block write 3.336 0.006 0.17 0.029 0.88 0.027 0.81
8 block read 3.294 0.004 0.13 0.040 1.20 0.034 1.04
8 block write 3.428 0.007 0.21 0.024 0.71 0.022 0.64
64 block read 4.023 –0.002 –0.04 0.011 0.26 0.006 0.14
64 block write 4.146 0.005 0.13 0.024 0.58 0.008 0.20
128 block read 4.880 0.003 0.06 0.064 1.32 0.008 0.17
128 block write 4.963 0.010 0.21 0.076 1.52 0.013 0.27

Table 5.8: E1→3: ∆Tlookahead=30 µs, ∆Tskew=151 µs, QLogic.
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Figure 5.27: E1→3: ∆Tlookahead=30 µs, ∆Tskew=60 µs, Adaptec, 4 KB Reads.
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Figure 5.31: E1→3: ∆Tlookahead=30 µs, ∆Tskew=151 µs, QLogic, 64 KB Reads.
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5.5 Summary of this chapter

The design of the timing manager in a timing-accurate storage emulator involves techniques for

equalizing the request service times between the emulated device model and a measurement point

elsewhere in the computer system. Analysis of collected per-request service times can be used to

calibrate an emulator’s operation and mitigate future errors. Very accurate results were obtained

experimentally when applying error compensation techniques to our implementation of a timing-

accurate storage emulator.

The following chapter demonstrates a strength of timing-accurate storage emulation in evaluat-

ing system architectures containing hypothetical or otherwise unavailable storage components.
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CHAPTER 6
EXPERIMENTS WITH HYPOTHETICAL STORAGE DEVICES

This chapter reports on the experimental setup (Section 6.1) and results of system-level experimen-

tation and experimental validation (Section 6.2, page 96) using timing-accurate storage emulation of

device models for both existing and hypothetical storage devices. The chapter additionally validates

the feasibility of timing-accurate storage emulation by comparing the performance of an emulator

with that of a real storage device (Section 6.3, page 110).

6.1 Experimental setup

The host and emulator systems were configured as described in Chapter 4, specifically using the

Adaptec 29160 parallel SCSI adapters to connect the systems. Each application-level experiment

was executed ten times; the measurements are reported both across all runs (the mean and standard

deviation of each metric) and specifically for the emulated run with the EIavg metric closest to zero.

In an effort to exercise the worst-case storage performance for the experiments, the experimental

devices (both real and emulated) are mounted synchronously by the host computer and caching was

disabled in the device and all device models.

6.1.1 Device models used for experimentation

Each of the application-level experiments are run against one real disk and four emulated device

configurations, as described in this section.

1. Real Cheetah. Each experiment is first run against a local disk on the host system, as a

reference for comparison of the run times under emulation. A Seagate Cheetah disk was

used for this purpose. The characteristics of this disk are described in Table 4.1 on page 44;

of importance to the models below is that the disk platters rotate at 10,000 revolutions per

minute (RPM). The disk was connected to the host system using approach (1) illustrated in

Figure 4.1 on page 43.

2. Emulated Cheetah. The experiments are repeated using timing-accurate storage emulation of

a device model of the Real Cheetah disk. This model was previously validated to an EArms

value of 0.15 ms, as shown in the aggregate distribution in Figure 6.1.

3. Emulated 50K RPM. To explore the impact of modifying a device in a way that is currently

physically impossible, we scaled the physical characteristics of the Emulated Cheetah model

to create a 50,000 RPM disk. Specifically, we reduced the head switch time and increased the

rotation speed each by a factor of five.
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Figure 6.1: Validation of the disk model for the Seagate Cheetah ST336706LC. These data were
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requests, an exponential request size distribution with mean 8 KB, and request locations uniformly
distributed across the disk capacity. Note that these data were not obtained using the specific disk
used in our experimentation, but rather another disk of the same product line.

4. Emulated MEMS. To explore the impact of storage devices that do not yet exist, we built a sim-

ulation model of a MEMS-based storage device. As described in Appendix A, MEMS-based

storage devices are a novel technology under development at several research laboratories and

companies around the world. These devices are expected to perform faster than disk drives

but have much smaller capacities than disks.

5. Emulated Immediate. To verify that the Emulated 50K RPM and Emulated MEMS experi-

ments are not operating at the boundary of possible performance of our emulator, we config-

ured the emulator to respond immediately to requests as soon as the request data are available

in the data manager. Note that due to the architecture of our implementation—specifically, the

data manager runs as a separate process from the communications and timing managers—the

experiments do not represent the absolute best performance that could be achieved with our

hardware configuration.

6.1.2 Description of experimental workloads

Three application-level workloads were used for our experiments, as described in this section. The

first two, PostMark and SSH-build, are based on previously-published file system benchmarks. The

third, Linux kernel build, was created for this dissertation.
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6.1.2.1 PostMark benchmark

The PostMark application-level benchmark was introduced by Katcher in 1997 as a method to recre-

ate file system operations that are representative of those generated by electronic mail, newsgroup,

and web-based services [96]. The benchmark creates a large number of small files, on which a

specified number of transactions are performed. Each transaction consists of two sub-transactions,

with one being a create or delete and the other being a read or append. The transaction types are

chosen randomly with consideration given to user definable weights; in our experiments, we use the

default PostMark configuration with no user-specified weights. We executed the benchmark using

the following procedure:

• Preparation phase.

Make a fresh ext2 file system on the emulated device (/dev/sdd1).

• Execution phase.

mount -osync /dev/sdd1 /mnt/memulator

cp /exp/postmark /exp/postmark.config /mnt/memulator

cd /mnt/memulator

/usr/bin/time ./postmark postmark.config

cd /exp

umount /mnt/memulator

6.1.2.2 Secure shell (SSH) build benchmark

The SSH-build application-level benchmark was introduced by Seltzer et al. in 2000 as a method of

stressing a storage subsystem using a variety of file system operations [151]. Values are reported

representing the three benchmark phases: unarchiving the source code6.1 of the SSH “secure shell”

utility, running a utility to examine the host system and prepare the source code for site-specific

compilation, and compiling the source code into the SSH binary executable and affiliated library

files. We executed the benchmark using the following procedure:

• Warmup phase.

Make a fresh ext2 file system on the emulated device (/dev/sdd1). Execute the unpack,

configure, and build phases in the temporary (/tmp) directory on the host system.

6.1Seltzer et al. used a gzip-compressed tar archive of the source code for SSH version 1.2.26; for historical reasons,
we use an uncompressed tar archive of SSH version 1.2.27. We also mount the emulated device synchronously, and
unmount the emulated device between benchmark phases.
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• Unpack phase.

mount -osync /dev/sdd1 /mnt/memulator

cd /mnt/memulator

/usr/bin/time tar xf /exp/ssh-1.2.27.tar > /dev/null 2>&1

cd /exp

umount /mnt/memulator

• Configure phase.

mount -osync /dev/sdd1 /mnt/memulator

cd /mnt/memulator/ssh-1.2.27

/usr/bin/time ./configure --without-x > /dev/null 2>&1

cd /exp

umount /mnt/memulator

• Build phase.

mount -osync /dev/sdd1 /mnt/memulator

cd /mnt/memulator/ssh-1.2.27

/usr/bin/time make > /dev/null 2>&1

cd /exp

umount /mnt/memulator

6.1.2.3 Linux kernel build

We use the compilation of the Linux 2.4.27 operating system kernel as an additional experiment

representing a much more commonly executed application-level workload6.2 than the SSH-build

benchmark. This Linux-build application-level benchmark offers an interesting alternation between

begin storage-bound and processor-bound during the experiment. The class of benchmarks repre-

sented by Linux-build is intended to compare the impact of storage decisions using identical exter-

nal system configurations—i.e., comparing a disk and a MEMS-based storage device when each are

connected to a 2 GHz processor-based system—and not necessarily to provide comparable results

between different external system configurations.

Due to the interactive nature of the Linux kernel build configuration process (we are not aware of

a method for compiling a default kernel without first running one of the manual-entry configuration

scripts), we omit the unpack and configure phases as are used in SSH-build. Instead, we created

a disk image representing the default post-configuration state. This was accomplished by running

make menuconfig and exiting immediately, saving the configuration. This disk image was loaded

onto the emulated device before the device was mounted, and the benchmark only reports the timing

for the make phase. We executed the benchmark using the following procedure:
6.2We note tongue-in-cheek that operating system kernel recompilation is perhaps one of the most commonly executed

workloads for experimenters who may be interested in timing-accurate storage emulation.
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• Preparation phase. Load the disk image onto the emulated device (/dev/sdd1) as described

above.

• Build phase.

mount -osync /dev/sdd1 /mnt/memulator

cd /mnt/memulator/linux-2.4.27

/usr/bin/time make > /dev/null 2>&1

cd /exp

umount /mnt/memulator

6.2 Results of experimentation

This section reports on the results of our experimentation with the real disk and four emulator

configurations introduced in Section 6.1.1. An initial summary containing a comparison of all

average application-level run times is presented in Table 6.1. The remainder of the section is then

organized as follows:

PostMark benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Secure shell (SSH) build benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Linux kernel build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Tables are provided for each application-level workload showing the average quantitative met-

rics across all experimental runs, as well as the metrics for the three best individual runs with the

lowest individual error (one for each emulated device model). Detailed data for these three best

runs are shown in the figures immediately following the table of results. Each figure contains four

fixed-axis subgraphs, identical to the subgraphs in the figures of Section 5.4 (page 66). Each trace

was experimentally executed three times, and the subgraphs and quantitative metrics presented in

each figure represent the best or lowest values obtained across the three experiments. Each of the

graphs displayed here have fixed X- and Y-axes to aid in comparison between graphs. This caused

an abridgment of some of the extreme outliers on the graphs, so we provide full graphs of individual

request errors for each experiment in Appendix D.
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Real Emulated Emulated Emulated Emulated
Cheetah Cheetah 50K RPM MEMS Immediate

[s] [s] [s] [s] [s] [s] [s] [s] [s] [s]
PostMark

46.21 (0.03) 45.99 (0.12) 15.85 (0.07) 11.42 (0.03) 3.38 (0.90)
99.5% 34.3% 24.7% 7.3%

SSH-build
217.34 (0.20) 218.27 (0.43) 107.97 (0.28) 82.65 (0.34) 51.55 (0.21)

100.4% 49.7% 38.0% 23.7%
(unpack phase)

25.24 (0.04) 25.80 (0.06) 9.30 (0.01) 6.04 (0.03) 1.77 (0.01)
102.2% 36.8% 23.9% 7.0%

(configure phase)
54.38 (0.12) 54.79 (0.21) 26.44 (0.17) 21.67 (0.11) 12.50 (0.04)

100.8% 48.6% 39.9% 23.0%
(make phase)

137.72 (0.19) 137.68 (0.42) 72.23 (0.17) 54.93 (0.33) 37.28 (0.21)
100.0% 52.4% 39.9% 27.1%

Linux-build
535.32 (0.90) 534.95 (0.55) 400.61 (0.81) 359.36 (0.25) 326.09 (0.26)

99.9% 74.8% 67.1% 60.9%

Table 6.1: Summary and comparison of mean run times across all experiments. All non-
percentage values are reported in seconds. Each experiment was executed ten times against each
real or emulated device, which was mounted synchronously by the host system. The first number
represents the mean run time of the experiment. The values in parentheses represent the standard
deviation of the run time. The values reported as percentages compare the mean run time of each
emulated experiment against the mean run time of the Real Cheetah.
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6.2.1 PostMark benchmark

The experimental methodology for the PostMark benchmark is introduced in Section 6.1.2.1. Dur-

ing execution, we observed this benchmark write approximately 41,800 KB of data and read 93 KB

of data. The results for the PostMark-based experimentation presented in this section include:

• The full results across all configurations (Table 6.2).

• Data for the best individual run of the Emulated Cheetah model (Figure 6.2).

• Data for the best individual run of the Emulated 50K RPM model (Figure 6.3).

• Data for the best individual run of the Emulated MEMS model (Figure 6.4).

As discussed in Section 5.4.3, we attribute much of the error to the delays in the target-mode

adapter firmware and device driver software in quickly scheduling and completing transfers of data

across the storage interconnect.

We additionally speculate that these errors may be caused by caching in the host system device

driver. Support for target-mode operation of the Adaptec HBA is limited in that it can only accept

one request at a time from the host, as discussed in Section 7.5.1. If the application workload

triggers multiple storage requests simultaneously in the host (e.g., data prefetching by the host

operating system), some of them will be be queued extra time at measurement point MP1 before

being received at MP2. This may be a primary source of perceived “error” (but not necessarily

real error) in our results. Potential workarounds for this include locating MP1 further down in the

device driver6.3 or eliminate MP1 altogether, as suggested for future exploration in Section 8.4.3

(page 140).

6.3There is a trade-off between this problem and the flexibility and ease of inserting a measurement point. It is architec-
turally straightforward to insert a measurement point at the Linux SCSI mid-to-low-layer boundary, as we do for MP1,
but much less straightforward to do so in the low-level device driver.
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Figure 6.2: PostMark: Individual results for the Emulated Cheetah model.
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6.2.2 Secure shell (SSH) build benchmark

The experimental methodology for the SSH-build benchmark is introduced in Section 6.1.2.2. Dur-

ing execution, we observed this benchmark write approximately 161,500 KB of data and read

4,255 KB of data. The results for the SSH-build-based experimentation presented in this section

include:

• The full results across all configurations (Table 6.3).

• Data for the best individual run of the Emulated Cheetah model (Figure 6.5).

• Data for the best individual run of the Emulated 50K RPM model (Figure 6.6).

• Data for the best individual run of the Emulated MEMS model (Figure 6.7).

Due to the warmup phase of our experimental methodology—the tar archive of the software is

cached by the host operating system—the unpack phase of SSH-build is almost entirely I/O-bound

on our emulator, resulting in large reductions in application run-time for the faster device models;

these reductions are comparable in time to the results from the PostMark benchmark.
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Figure 6.5: SSH-build: Individual results for the Emulated Cheetah model.

-0.1

0

0.1

0.2

0.3

0.4

0 7898 15796 23694 31592 39490

∆T
C

(n
) 

− 
∆T

R
(n

),
 u

ni
ts

=
m

s

Request number

Individual request errors

¯¯¯¯¯¯¯∆TR=1.686 ms, EIavg=0.051 ms, EIrms=0.420 ms

0

5000

10000

15000

20000

25000

30000

35000

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r 

of
 r

eq
ue

st
s 

(N
=

39
49

3)

∆TC(n) − ∆TR(n), units=ms

Individual request error histogram

¯¯¯¯¯¯¯∆TR=1.686 ms, EIavg=0.051 ms, EIrms=0.420 ms

0

5000

10000

15000

20000

25000

30000

35000

-25 -20 -15 -10 -5 0 5 10 15 20 25

N
um

be
r 

of
 r

eq
ue

st
s 

(N
=

39
49

3)

[∆TC(n) − ∆TR(n)] ÷ ∆TR(n) × 100.0, units=%

Individual percentage error histogram

¯¯¯¯¯¯¯∆TR=1.686 ms, EIavg%=3.04%, EIrms%=24.89%

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n 
of

 r
eq

ue
st

s 
(N

=
39

49
3)

Time, units=ms

Aggregate request error distributions

¯¯¯¯¯¯¯∆TR=1.686 ms, EArms=0.315 ms, EArms%=18.69%

DC (hos)
DR (sim)

Figure 6.6: SSH-build: Individual results for the Emulated 50K RPM model.
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Figure 6.7: SSH-build: Individual results for the Emulated MEMS model.
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6.2.3 Linux kernel build

The experimental methodology for the Linux-build experiment is introduced in Section 6.1.2.3.

During execution, we observed this benchmark write approximately 166,000 KB of data and read

119,813 KB of data. The results for the Linux-build-based experimentation presented in this section

include:

• The full results across all configurations (Table 6.4).

• Data for the best individual run of the Emulated Cheetah model (Figure 6.8).

• Data for the best individual run of the Emulated 50K RPM model (Figure 6.9).

• Data for the best individual run of the Emulated MEMS model (Figure 6.10).

These results show an interesting reduction in the application-level benefit of faster storage

device models, as compared with the PostMark and SSH-build benchmarks. This indicates that the

Linux kernel compilation spends a proportionately smaller fraction of time I/O-bound than do the

benchmarks.
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Figure 6.8: Linux-build: Individual results for the Emulated Cheetah model.
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Figure 6.9: Linux-build: Individual results for the Emulated 50K RPM model.
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Figure 6.10: Linux-build: Individual results for the Emulated MEMS model.
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6.3 Comparison of an emulated disk model against the real disk

As an additional demonstration of the ability of a timing-accurate storage emulator to correctly

represent the behavior of modeled devices, we compare the system performance when using a real

disk (Real Cheetah) to the system performance when using an emulator configured with a validated

model of that disk (Emulated Cheetah). The aggregate results comparing the mean service times

achieved using the real disk and emulated disk are presented in Table 6.1 (page 97). Of note is that

overall the Emulated Cheetah performed within 0.5% of the Real Cheetah for the total run times of

each experiment. The worst measured difference was a 2.2% slowdown obtained during the unpack

phase of the SSH benchmark, which itself was only 0.4% slower across all three phases.

We additionally calculate the EArms aggregate comparison metric between the timestamps ob-

tained during the disk and emulator experiments. These values are not technically the same as the

other EArms values reported elsewhere in this dissertation (nor are they the same as the demerit

values reported elsewhere in the literature) as the two runs did not use identical request streams

when generating the graph. However, excellent agreement was obtained between the experiments,

as shown in the accompanying distributions:

• The aggregate distribution for the PostMark benchmark Figure 6.11.

• The aggregate distribution for the SSH-build benchmark Figure 6.12.

• The aggregate distribution for the Linux build Figure 6.13.

Note that the reference distribution (DR) is obtained from the disk times for these figure, unlike in

the previous graphs, where DR is obtained from the times reported by the physical device model.

In general our emulated model slightly underpredicts service times for the disk. We believe this

is primarily caused by the emulator not fully accounting for the times relating to bus management

such as the controller overheads in both bus adapters, as mentioned in Section 5.2.2, the intercon-

nection bus is included in the scope of which components are emulated in these experiments.

110



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n 
of

 r
eq

ue
st

s 
(N

=
10

42
2)

Time, units=ms

Aggregate request error distributions

¯¯¯¯¯¯¯∆TR=4.476 ms, EArms=0.288 ms, EArms%=6.43%

DC (simulator)
DR (disk)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n 
of

 r
eq

ue
st

s 
(N

=
10

42
2)

Time, units=ms

Aggregate request error distributions

¯¯¯¯¯¯¯∆TR=4.476 ms, EArms=0.177 ms, EArms%=3.95%

DC (emulator)
DR (disk)

Figure 6.11: PostMark: performance comparison of an emulated disk model and a real disk.
These are comparisons of measurements taken at measurement point MP1. In the upper graph, the
aggregate comparison is made between on one hand the times computed by the simulator containing
the disk model, and on the other hand the times measured when using a real disk. In the lower graph,
the comparisons are between on one hand the times measured using the emulated device, and on
the other hand the times measured when using the real disk.
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Figure 6.12: SSH-build: performance comparison of an emulated disk model and a real disk.
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Figure 6.13: Linux-build: performance comparison of an emulated disk model and a real disk.
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6.4 Summary of this chapter

A timing-accurate storage emulator can be used for running experiments with real applications on

real hardware and real operating systems. We used our implementation of a timing-accurate storage

emulator to experiment successfully with three applications on three emulated device models. Fur-

ther, using an emulated disk model we achieved application run times that were within 0.5% of the

run times obtained when using a real disk.

The following chapter demonstrates a strength of timing-accurate storage emulation in evaluat-

ing system architectures containing new interfaces to storage devices with autonomous processing

capabilities.
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CHAPTER 7
INVESTIGATING HYPOTHETICAL INTERFACES TO STORAGE

The previous two chapters demonstrate that it is possible to calibrate and use a timing-accurate stor-

age emulator for full-system experimentation with hypothetical or unavailable storage components.

This chapter highlights another strength of timing-accurate storage emulation: the ability to modify

both the host operating system and the emulated storage device in order to evaluate new system

architectures containing storage devices with new standalone functionality.

This chapter presents a case study of investigating the design and implementation of a disk-based

intrusion detection system using the principles of timing-accurate storage emulation. Storage-based

intrusion detection systems (IDSes) can watch for and notify administrators about suspicious soft-

ware executing on a host computer, including many common intrusion toolkits. This chapter argues

the advantages of implementing IDS functionality in the firmware of workstations’ locally attached

disks, where the bulk of critical system files typically reside. To evaluate the feasibility of this

approach, we built a prototype disk-based IDS using a timing-accurate SCSI disk emulator. Exper-

imental results from this prototype indicate that it would indeed be feasible, in terms of increased

processor and memory requirements, to include IDS functionality in low-cost desktop disk drives.

7.1 Introduction to storage-based intrusion detection

Intrusion detection systems (IDSes) are important tools for identifying malicious activity in com-

puter systems. IDSes are commonly deployed both on end-user computers (the host systems) and at

points in the network leading to the host systems. However, there are no perfect intrusion detection

systems. All are susceptible to false positives and undetected intrusions. Also, most are much better

at detecting probes and attempts to intrude than they are at detecting misbehavior after an intrusion.

For example, IDSes running on the same physical hardware as the host system are vulnerable to

being turned off when the host is compromised. IDSes running inside network components detect

attempts to locate and breach vulnerable systems, but their effectiveness at identifying intruder ac-

tions dwindles because many fewer signs are visible once penetration of the host system is achieved.

A storage-based IDS runs inside of a storage device, watching the sequence of requests for

signs of intrusions. Storage-based IDSes are a new vantage point for intrusion detection, offering

complementary views into system activity, particularly after a successful intrusion has begun. Many

root-kits and intruders manipulate files, which can be observed by the disk that stores them. For

example, an intruder may overwrite system binaries or alter log files in an attempt to hide evidence

of the intrusion. Other examples include adding back doors, Trojan horses, or discreet repositories

of intruder content (such as pirated videos). A storage-based IDS can detect such actions. Further,
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Figure 7.1: The role of a disk-based intrusion detection system (IDS). A disk-based IDS watches
over all data and executable files that are persistently written to local storage, monitoring for sus-
picious activity that might indicate an intrusion on the host computer. In this example, all three
IDSes are administered by an external administrative machine (not shown), perhaps as part of a
larger-scale managed computing environment.

because a storage-based IDS is not controlled by the host operating system (or by the host’s IDS), it

will continue to operate even when the network-based IDS is circumvented and the host-based IDS

is turned off.

The vast majority of systems—and those which are most vulnerable to attack—are single-user

workstations with local disks. To be effective in practice, storage-based IDSes must run on the local

disk of each workstation. Figure 7.1 shows an example of such a disk-based IDS deployment. The

host computer is a standard user desktop and is therefore vulnerable to user mistakes and software

vulnerabilities. The storage-based IDS backs up the host and network IDSes, running on a SCSI or

IDE/ATA disk with slightly expanded processing capabilities.

A workstation disk with a block-based interface is a challenging environment for intrusion de-

tection. To function, a disk-based IDS must have some semantic knowledge about the file systems

contained on the disk, so it can analyze low-level “read block” and “write block” requests for ac-
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tions indicating suspicious accesses or modifications to the file system. At the same time, disks are

embedded devices with cost-constrained processing and memory resources and little tolerance for

performance degradation. Additionally, effective operation will require a secure channel for com-

munication between the administrator and the disk-based IDS; for practical purposes, this channel

should seamlessly integrate with the disk’s existing block interface.

Much of the design of a disk-based IDS relies on new interactions between the host system or

external administrator and the disk’s firmware. For example, the administrator will need to send

the access policies and other configuration instructions to the disk. In turn, the disk will need to

transmit status updates and alerts to the administrator, while at the same time providing ordinary

read and write services to the host system.

A practical disk-based IDS product—i.e., one whose cost and deployment complexity are simi-

lar in scope to current product offerings—will likely not have a dedicated external network interface

for such out-of-band traffic to arrive at or be sent by the disk. Rather, it is likely that such traffic

will be routed over the existing storage interconnect between the host system and the device. A

timing-accurate storage emulator permits construction of a system with this message-passing char-

acteristic, with the expectation that the results will be more representative of the effects experienced

by ultimately deployed device. For example, under emulation-based evaluation the storage bus will

actually experience any delays of the ordinary request traffic that are competitively caused by the

introduction of new administrative traffic across the bus.

This chapter demonstrates the feasibility of performing intrusion detection inside locally-attached

workstation disks. It describes a prototype disk-based IDS built on top of a storage device emula-

tor. This prototype connects to the SCSI bus in a real computer system, looking and “feeling” just

like a disk, and monitors real storage requests for behavior that matches the behavior of real-world

intrusion tools. Experiments with this prototype demonstrate that the CPU and memory costs will

be well within tolerable bounds for modern desktop disks for reasonable rule-sets and workloads.

For example, only a few thousand CPU cycles per I/O are needed for over 99% of disk I/Os, and

less than a megabyte is needed even for aggressive rule-sets. Moreover, any disk in which the IDS

is not enabled would incur no CPU or memory cost, making it feasible to include the support in

all devices and enable it only for those that pay for licenses; this model has worked well for 3Com

Corporation’s network interface card (NIC)-based firewall product [1].

The experiments in this section intentionally do not use the techniques described previously for

executing a device simulation model in real time. Instead, the timings (and data) for requests in our

experiments are provided by a real disk controlled by the emulation software. Our intention is to

examine and demonstrate the usefulness of the extended interface to realistic storage devices that is

enabled by the environment of timing-accurate storage emulation. In future experimentation, it is

certainly feasible to perform this sort of experimentation using a much broader array of emulated

storage device types than the specific disk used here—for example, disks with greater or fewer RAM

resources, or small disk arrays.

117



This chapter motivates workstation disks as an untapped location for real-time intrusion de-

tection (Section 7.2), discusses IDS design challenges relating to the workstation disk environ-

ment (Section 7.3, page 120), and describes our prototype disk-based IDS system (Section 7.4)

(page 123). It additionally evaluates the prototype’s performance (Section 7.5, page 128) and dis-

cusses the feasibility of real-world IDS integration (Section 7.6, page 133).

7.2 Background and motivation

This section motivates the use of workstation disks as a target environment for intrusion detection,

discusses previous work that demonstrates the effectiveness of a storage-based IDS in identifying

real-world intruder behavior, and reviews work related to storage-based IDSes.

7.2.1 Intrusion detection in storage

Storage-based intrusion detection enables devices such as workstation disks to watch storage traffic

for suspicious behavior. Because storage-based IDSes run on separate hardware with a limited

external interface, they enjoy a natural compromise-independence from the hosts to which they are

attached. As shown in Figure 7.1, an attacker who breaches the security of the host must then

breach a separate perimeter to disable a security system on a storage device. Also, because storage

devices see all persistent activity on a computer, several common intruder actions [44, p. 218][138,

pp. 363–365] are quite visible inside the storage device.

A storage IDS shines when other IDSes have been bypassed or disabled but neither the storage

device nor the administrator’s computer have been compromised. Our design addresses a threat

model where an attacker has full software control but not full hardware control over the host sys-

tem. This could come in the form of an intruder breaking into a host over the network, or from a

user with administrative privileges mistakenly executing malicious software. We do not explicitly

protect against an aggressive insider with physical access to the disk; other researchers continue

to investigate hardware-based solutions to preserving the security-related semantic integrity of a

device’s physical external boundary.

Administrators can watch for a variety of possible intruder actions inside a storage-based IDS.

First, the IDS could watch for unexpected modifications to file data or meta-data; this is similar to

the functionality of the Tripwire utility [99], with the key difference being that a storage-based IDS

both monitors every access to the disk and performs this monitoring in real time. The IDS could

also watch for suspicious access patterns, such as a non-append write to a system log file—a system

log should remain persistent and only increase in size with no changes to already written data, and a

common intruder action is to selectively erase log entries to nonsuspiciously eliminate evidence of a

successful intrusion. Additionally, the IDS could watch for loss of file integrity for well-structured

files such as /etc/passwd or database files. And it could watch for suspicious content, such as

malformed file names or known virus signatures.
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However, despite its strengths and advantages, storage-based intrusion detection is not a panacea

for monitoring and protecting computer systems against intrusions. While false positives should be

infrequent, legitimate actions that modify a watched file will create an alert to the administrator.

The broader the scope of watched actions, the higher the frequency of false positives will be. On

the other hand, a storage IDS could miss an intrusion entirely if it is configured to watch too limited

a set of files, so there is a tension for the administrator to balance these issues when identifying

the correct scope and types of rules for a disk-based IDS. Additionally, including IDS functionality

inside the storage device will likely have an ultimate performance impact on the host computer’s

workload, or alternatively will require an increase in the device’s cost to mitigate any performance

degradation.

7.2.2 Real-world efficacy of a storage IDS

During our initial investigation into the applicability of storage-based intrusion detection, we an-

alyzed an NFS server that had been extended to include IDS functionality [125]. Our analysis

demonstrates that storage-based intrusion detection is indeed an effective tool for detecting the ef-

fects of real-world attacks, and that the NFS-based implementation is efficient in its processing and

memory requirements.

To evaluate the real-world efficacy of a storage-based IDS, Adam Pennington analyzed the be-

havior of eighteen publicly-available intrusion tools designed to be run on compromised systems.

This analysis indicated that 83% of the intrusion tools modify one or more system files, and that

these modifications would be noticed by their storage-based IDS when it monitored a simple, de-

fault rule-set. Also, 39% of the tools alter a system log file, an action which also would be detected

by a storage-based IDS using a default rule-set. Later, we supplemented his analysis with a foren-

sic analysis of a real desktop computer that had been unexpectedly compromised.7.1 This forensic

analysis concluded that a storage-based IDS would have spotted the intrusion because of various

system binaries that were modified during the attack.

As a supplement to our previous work we analyzed some brief traces of a desktop worksta-

tion’s disk and reported preliminary results indicating that false positives would very rarely be re-

ported by a storage-based IDS, with the exception of (planned) nightly rewrites of the password

file. Section 7.5.4.1 presents results from a more extensive collection of traces, confirming and

underscoring this result.
7.1The tools used during the intrusion were preserved for later forensic analysis using the rather abrupt method of “yank-

ing out the power cord” after quickly saving the active process list and issuing the sync command to save the operating
system’s write buffers. This action prevented the intrusion script from erasing the related files and log entries before the
analysis could proceed. The attack was discovered because it targeted a small server used as a private network gateway,
whose older disk made a loud clicking noise after every seek. After exploiting a vulnerability to gain administrative
access, the intruder began searching all files on the disk for credit card numbers and passwords. This search resulted in
a torrent of seek-related noise just as the owner sat down to eat a bowl of cereal nearby. It is fortunate that the owner’s
cereal was soggy that morning, otherwise he might not have noticed anything over the sound of his own crunching!
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7.2.3 Related work to storage-based intrusion detection

Intrusion detection is a well-studied field. One of the earliest formalizations of intrusion detection

is presented by Denning et al. [43]. Tripwire is one of the more well-known intrusion detection

systems [99, 100]; we use the suggested Tripwire configuration as part of the basis for the rule-set

in the experiments in this chapter. Investigations have been made into intrusion detection systems

founded on machine learning [52] as well as static rules to watch system calls on a machine [102].

In 1998, Axelsson surveyed the state-of-the-art for intrusion detection systems [12].

Recent research has explored other ways of utilizing similar protection boundaries to the device

interfaces exploited in this chapter. Chen and Noble [36] and Garfinkel and Rosenblum [65] propose

using a virtual machine monitor (VMM) that can inspect and observe machine state while remaining

compromise-independent of most host software. This could be expanded by adding a storage-based

IDS into the virtual machine’s storage module. Additionally, recent work explores the idea of

hardware support for doing intrusion detection inside systems [61, 182].

Adding IDS functionality to storage devices can be viewed as part of a recurring theme of

migration of processing capability to peripheral devices. For example, several research groups

have explored the performance benefits of offloading scan and other database-like primitives to

storage devices [3, 98, 131]. Other research has explored the use of device intelligence for eager

writing [34, 171]. Recently, Sivathanu et al. proposed the general notion of having storage devices

understand host-level data semantics and use that knowledge to build a variety of performance,

availability, and security features into “semantically-smart” disk systems [156]. A disk-based IDS

is a specific instance of such a semantically-smart system.

7.3 Design issues for disk-based intrusion detection systems

There are four main design issues for a storage-based intrusion detection system: specifying access

policies, securely administering the IDS, monitoring storage activity for policy violations, and re-

sponding to policy violations. This section discusses the aspects of these that specifically relate to

the challenging environment of workstation disks, and how the technique of timing-accurate storage

emulation supports the evaluation of these design issues.

7.3.1 Specifying access policies

For the sake of of usability and correctness, there must be a simple and straightforward syntax for

human administrators to state access policies to a disk-based IDS. Although a workstation disk

operates using a block-based interface, it is imperative that the administrator be able to refer to

higher-level file system objects contained on the disk when stating policies. As an example, an ap-

propriate statement might be: Warn me if anything changes in the directory /sbin. In our experience,

Tripwire-like rules [99] work well for specifying policies to a disk-based IDS.
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A disk-based IDS must be capable of mapping such high-level statements into a set of violating

interface actions. This set of violating actions may include writes, reads (e.g., of honeytokens [158]

such as creditcards.txt), and interface-specific commands (such as the FORMAT UNIT com-

mand for SCSI). One such mapping for the above “no-change” rule for /sbin could be: Generate

the alert “the file /sbin/fsck was modified” when a write to block #280 causes the contents of block

#280 to change. To accomplish this mapping, the IDS must be able to read and interpret the on-disk

structures used by the file system. However, the passive nature of intrusion detection means that it is

not necessary for a disk-based IDS to also be able to modify the file system, which greatly simplifies

implementation.

Workstation disks are frequently powered down. These mappings must be restored to the IDS

(i.e., from an on-disk copy) before regular operation commences. We anticipate this requiring per-

haps a few megabytes of private disk space. This approach is no different from other tables kept by

disk firmware, such as those for tracking defective sectors and predicting service times efficiently.

A disk-based IDS is capable of watching for writes to free space that do not correspond with

updates to the file system’s block allocation table. Storing object and data files in unallocated disk

blocks is one method used by attackers to hide evidence of a successful intrusion [75]. Such hidden

files are difficult to detect, but are accessible by processes (such as an IRC or FTP server) initiated

by the attacker. Depending on the file system, watching free space may cause extra alerts to be

generated for short-lived files which are deleted after the contents are written to disk but before the

allocation table is updated.

7.3.2 Disk-based IDS administration

For effective real-time operation of a disk-based IDS, there must be a secure method for communi-

cation between an administrator’s computer and the IDS. This communication includes transmitting

access policies to the IDS, receiving alerts generated by the IDS, and acknowledging the receipt of

policies and alerts. Unlike in a server-based environment, a workstation disk will likely not have

direct access to a communications network to handle such administrative traffic. Instead, this traffic

must be routed through the host and over the existing physical link connecting the host with the

disk. In other words, the host must be actively involved in connecting the administrator’s console

and the disk, playing a role much like a switch in the network path.

This communications model presents several challenges. For one, in most block-based storage

interconnects, the disk takes the role of a passive target device and is unable to initiate a data

transfer to the host. Instead, the host must periodically poll the IDS to query if any alerts have been

generated. Also, the administrative communication path is vulnerable to disabling by an attacker

who compromises the host system. In response to such disabling, both the administrator and the

IDS could treat a persistent loss of communication as a policy violation. The IDS could alter its

behavior as described in Section 7.3.4, while additionally logging any subsequent alerts for later

transmission to the administrator.
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The communications channel connecting the disk-based IDS with the administrator must be

protected both from eavesdropping and tampering by an attacker. Such a secure channel can be

implemented using standard cryptographic techniques. For the network intruder and rogue software

concerns in our security model, it is sufficient for secret keys to be kept in the disk’s firmware. If

physical attacks are an issue, secure coprocessors can be used on the disk [182]. Such additions are

not unreasonable for future system components [69, 109].

7.3.3 Monitoring for policy violations

Once the administrative policy is received by a disk-based IDS, all storage requests arriving at the

disk should be checked against the set of violating interface actions. A check should be performed

for every block in a request: a write to block 72 of length 8 blocks should check for violating

actions on any of blocks 72–79. As this check is in the critical path of every request, it should be

implemented as efficiently as possible.

Some file system objects, such as large directories, will span multiple sequential disk blocks.

Space for such objects will generally be allocated by the file system in a multiple of the file system

block (hereafter, fs-block) size. We found it convenient for our disk-based IDS prototype to evaluate

incoming requests by their impact on entire fs-blocks instead of on individual disk blocks: Generate

the alert “the file /sbin/fsck was modified” when a write to fs-block #35 causes the contents of fs-

block #35 to change.

When authorizing a write request, a disk-based IDS may need to first fetch the previously written

(old) data for that block from the disk. The old data can then be compared with the new data in the

write request to determine which bytes, if any, are actually changed by the write. Such a check

would also be necessary when a block contains more than one file system object—for example, a

single block could contain several file fragments or inode structures—and different administrative

policies apply to the different objects. A similar check allows the system to quell alerts that might

otherwise be generated during file system defragmentation or reorganization operations; no alerts

should be generated unless the actual contents or attributes of watched files are modified.

7.3.4 Responding to policy violations

For an intrusion detection system in a workstation disk, the default response to a confirmed policy

violation should be to prepare an administrative alert while allowing the request to complete. This

is because the operating system may halt its forward progress when a locally-attached disk returns

an error or fails to complete a request, especially at boot time or during crash recovery.

There are several other possible responses for a storage-based IDS after a policy violation [125].

The most relevant of these for a disk-based IDS include artificially slowing storage requests while

waiting for an administrative response, and internally versioning all subsequent modifications to

aid the administrator in post-intrusion analysis and recovery [160]. To support versioning without

needing to modify the file system, a disk-based IDS can copy-on-write the previous contents of
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blocks to a private area on the disk that is inaccessible from the host computer. The administrator

can later read the contents of this area over the administrative communication channel to assist in

intrusion recovery or analysis.

After a policy violation, the IDS should make note of any resultant changes to the on-disk file

system structure and adjust its behavior accordingly. For example, for the example policy specified

in Section 7.3.1 (Warn me if anything changes in the directory /sbin), when a new file is created in

the /sbin directory the system should first generate an alert about the file creation and then begin

monitoring the new file for changes.

7.4 Prototype implementation

We built a prototype disk-based IDS called the IDD (Intrusion Detection for Disks). The IDD takes

the form of a PC masquerading as a SCSI disk, enhanced with storage-based intrusion detection.

From the perspective of the host computer, the IDD looks and behaves like an actual disk with this

additional IDS functionality, accepting ordinary storage traffic and administrative commands from

the host system, and providing administrative responses and replying to requests at the appropriate

time. This section describes architectural and implementation details of this prototype.

7.4.1 Architecture

Figure 7.2 shows the high-level interaction between the user’s desktop or notebook (host) computer

and the IDD components. These components are located both in the host’s locally-attached disk (the

timing-accurate storage emulator) and in the Administrator’s Console, which is connected to the

host over a network. Although not shown, the administrator’s console would likely also serve as a

central point of control for other intrusion detection systems running on other users’ host computers.

There are two primary functions of this architecture. The first function, storage traffic moni-

toring, is implemented by the Policy Monitor and the IDD Block Cache. This component handles

the mapping of administrative policy into violating interface actions. It also monitors all ordinary

storage traffic for real-time violations and generates alerts. The second function, administrative

communication, is implemented by the Administrative Bridge process (which runs in the host being

watched) and the Request Demultiplexer. The bridge process forwards commands from the admin-

istrator to the IDD and conveys administrative alerts from the IDD to the administrator. The request

demultiplexer identifies which incoming SCSI requests contain administrative data and handles the

receipt of administrative policy and the transmission of alerts.

7.4.2 Storage traffic monitoring

The policy monitor bridges the semantic gap between the administrator’s policy statements and

violating SCSI requests, and it audits all storage traffic from the host computer in real time. The

policy monitor operates at the file system block (fs-block) level, as discussed in Section 7.3.3.
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Figure 7.2: Intrusion Detection for Disks (IDD) prototype architecture. This figure shows the
communications flow between a user’s host computer and the IDD components, including the IDS-
enabled disk and the administrator’s console machine. The shaded boxes implement the primary
IDD functions of storage traffic monitoring and administrative communication (see Section 7.4.1).
Ordinary storage traffic is initiated by application processes, passed across the SCSI bus, checked
by the policy monitor, and finally serviced by the disk. Administrative traffic is initiated by the
administrator, passed across a TCP/IP network, received by the bridge process on the host computer,
passed across the SCSI bus, and finally serviced by IDD’s policy monitor.

Request block numbers are converted to the relevant partition and fs-block numbers upon request

arrival. (Hereafter in this section, “block” refers to a fs-block.)

The IDD has a relatively simple semantically-smart understanding of the on-disk file system

structures. The IDD currently understands the Second Extended (ext2) file system used by Linux-

based host computers [27]; to support this we hard-coded the structure of on-disk meta-data into the

policy manager. For ext2 this included the ext2 superblock, inode, indirect block, and directory entry

structures. As an alternative to hard-coding, we envision a more flexible administrative capability

where the relevant file system details could be downloaded to the disk across an extended storage

interface. Both of the above approaches are feasible under an economic model of cooperation

between host OS vendors and disk manufacturers. During initial configuration, the administrator

would specify the FS used by the host computer. It may also be possible for the disk to use grey-box

techniques to acquire these details [156].
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As administrative policy is specified, the IDD receives a list of files whose contents should be

watched in particular ways (e.g., for any change, for reads, or for non-append updates). For each of

these watched files, the IDD traverses the on-disk directory structure to determine which meta-data

and data blocks are associated with the file. These blocks are labeled “watched blocks” and are

added to a table of watched blocks, described below. Each such block is then associated with an

number of access check functions that evaluate whether a block access violates a given rule.

The mapping from file-system-level policy to potential block access violations must be thor-

ough. Consider the example rule Warn me if the file /bin/netstat in partition 2 changes. For ext2,

the mapping expands to individual access check functions associated with: (1) the second entry in

the disk’s partition table, (2) certain fields in the ext2 super block, (3) fields in the root inode, (4)

indirect blocks—including doubly- and triply-indirect—for the root inode’s directory entries, (5)

the inode number associated with bin in the root directory, (6) fields in the bin inode, (7) block

pointers for bin’s directory entries, (8) the inode number for netstat, (9) fields in the netstat

inode, (10) indirect blocks for netstat, and (11) each of the data blocks for netstat. Newer file

systems that use complicated internal indexing structures, such as NTFS and ReiserFS, may involve

further steps to fully cover which changes impact a rule.

7.4.2.1 The watched block table (WBT)

The watched block table (WBT) is the primary structure used by the policy manager for storage

request monitoring. It is stored in private, reserved disk space for persistence and paging. A WBT

entry contains a monitored block number, a list of the associated access check functions for the

block (see below), and a human-understandable filename (e.g., /bin/netstat) to be sent whenever the

ACF reports a violation. The IDD maintains a separate WBT for each monitored partition, as well as

a WBT for the partition table and other unpartitioned disk space. For efficiency, our implementation

uses a B*-tree to maintain lists of monitored block extents.

When new storage requests arrive from the host computer, the IDD checks whether any of the

request’s blocks appear in the internal WBT. In the expected very common case, no matches are

found. This means there are no possible policy violations caused by the request, so no further IDS-

related processing is required. (The other case is discussed in Section 7.4.2.2.) It is imperative that

this WBT lookup be efficient, as it must be performed in the critical path (before the media transfer)

for every write request. It cannot proceed in parallel with the media transfer for writes, because in

the case of a WBT match the IDD may need to fetch the old data for comparison purposes.

It may be desirable to minimize the memory footprint used by a disk-based IDS, to conserve

disk memory for traditional data buffering. To achieve this, portions of the WBT could be paged.

The list of monitored block numbers must always remain in-core, but the remaining information (the

access check function pointer and alert-time explanation) could be demand paged once a monitored

block is accessed.
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7.4.2.2 Access check functions (ACFs)

If one or more of the blocks of a request appear in the WBT, the IDD must perform extra processing

to determine whether the request actually causes a rule violation. This is necessary because multiple

file system objects can appear in a single block (e.g., directory entries), only some of which may

set off rules when updated. Unlike the common-case analysis above, it is not necessarily paramount

that these checks have no performance impact on the host’s request stream: since an update to a

watched block may indicate an intruder action, it is imperative for the disk to determine whether the

specified rules have been violated.

As discussed in Section 7.3.3, checking the validity of a write request may require the old data

to be read from the disk. We call this process an “interposed read” (IR). Blocks that have a high

probability of being fetched via IR, such as those containing monitored inodes and directory entries,

can be cached internally by the IDD to reduce IDS-related delays. Note that for the reasons above,

this cache is primarily designed to quickly execute ACFs on block updates that will ultimately not

generate an alert.

As examples from our ext2-based implementation, the ACF for a data block and the “any

change” policy would simply compare the old contents of the block with the new. The ACF for

a directory entry block and the “any change” policy would check the old and new contents to deter-

mine only if a particular filename-to-inode-number mapping changed (e.g., mv file1 file2 when

file2 is watched) and, if so, whether the new inode’s file contents match the old inode’s file con-

tents. The ACF for an inode block and the “non-append updates” policy would compare the old

and new inode contents to ensure that the access time field and the file size field only increased.

Complicating the logic for this rule, the last allocated block pointer is allowed to change, but only if

none of the allocated bytes (i.e., bytes numbered less than the file size) change between the old data

block and the new.

7.4.3 Alert generation and communication

The administrative communications channel is implemented jointly by the bridge process and the re-

quest demultiplexer. The administrator sends its traffic directly to the bridge process over a TCP/IP-

based network connection. The bridge process immediately repackages that traffic in the form of

specially-marked SCSI requests and sends those across the SCSI bus. When these marked requests

arrive inside the IDD, they are identified and intercepted by the request demultiplexer. The end-

points of the secure channel are the administrator’s computer and the request demultiplexer.

The repackaging in the bridge process takes different forms depending on whether the admin-

istrator is sending new policies (outgoing traffic) or polling for new alerts (incoming traffic). For

outgoing traffic, the bridge creates a single SCSI WRITE request containing the entire message. The

request is marked as containing administrative data by setting an unused flag in the SCSI command

descriptor block. The request is then sent to the bus using the Linux SCSI Generic passthrough

driver interface.
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For incoming traffic, the bridge creates either one or two SCSI READ requests. The first request

is always of fixed-size (we used 8 KB) and is used to determine the number of bytes of alert data

waiting in the IDD to be fetched: The first 32 bits received from the IDD indicate the integer number

of pending bytes. The remaining space in the first request is filled with waiting data. If there is more

data waiting than fits in the first request, a second request immediately follows. This second request

is of appropriate size to fetch all the remaining data. These requests are marked as containing

administrative data and sent in the same manner as for outgoing traffic. Once the bridge has fetched

all the waiting data, it forwards the data to the administrator over the network.

The administrative communication channel must also be reliable in the face of message dupli-

cation or omission due to network problems or malicious attack. Our implementation uses per-

message sequence and acknowledgement numbers to ensure that such errors are detected. The IDD

administrator sends one pair of messages (outgoing and incoming) per second by default. In or-

der to reduce administrator-perceived lag, this frequency is temporarily increased whenever recent

messages contained policies or alerts.

7.4.4 Alternative architectures

We intentionally chose a prototype architecture that represents a “limit study” of including com-

prehensive processing capabilities inside the device, and making it independently responsible for

interpreting the on-disk data structures and executing its responses to perceived intrusions. Other

architectures are also practical and are perhaps more feasible than our prototype architecture. For

example, the scope of the policy monitor can be greatly simplified—the mapping of administra-

tive policy to disk blocks can occur instead inside the administrative console, which has far more

powerful computational and memory resources than a disk, and simply downloaded in bulk to the

disk-based IDS. This would require that the administrative console be able to read data from the

disk—which itself could be achieved through an additionally extended storage interface, or again

more simply with the assistance of a support application process executing on the host system. This

would result in a simpler firmware implementation with less dependence on which file system is

used on the disk. However, this reduction in complexity would come at the expense of longer and

more frequent communications with the administrator and would additionally require more detailed

interactions between the disk and administrator whenever rules are violated (by an intruder or oth-

erwise) or are updated by the administrator. Our limit study evaluates the complete system and its

capabilities when all necessary resources are available on the disk and, conversely, quantifies what

resources are required.
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Figure 7.3: Non-alert-generating application benchmarks. These graphs show the impact of
the common-case IDS action (WBT check only) on the SSH-build and PostMark benchmarks. The
emulated disk is mounted synchronously in these experiments. Case (a) is the emulated disk with
the IDD disabled; case (b) is the emulated disk with the IDD engaged but no rules set; case (c) is
the emulated disk with the IDD engaged and the fully enabled ruleset. These results show that there
is nearly zero application-level impact in the common case of no updates to watched blocks.

7.5 Prototype evaluation

This section examines the performance and memory overheads incurred by IDD, our prototype disk-

based IDS. Our results indicate that the processing and memory resources required by the disk-based

IDS are not unreasonable for inclusion in workstation disks.

7.5.1 Experimental setup

The host and emulator systems were configured as described in Chapter 4, specifically using the

QLogic QLA2100 fibre channel adapters7.2 to connect the systems, with the exception that a Fu-

jitsu Enterprise SCSI-3 model MAN3184MP disk (described in Table 4.1 on page 44) was used

to compute the device-related timings and to store written data. In an effort to exercise the worst-

case storage performance, the disk emulator was mounted synchronously by the host computer and
7.2 The use of the QLogic HBA was mandated due to an unfortunate limitation in the FreeBSD target-mode support for

Adaptec bus adapters. Specifically, the Adaptec device driver does not currently support tagged command queuing (TCQ)
in target-mode. TCQ enables multiple outstanding requests to be sent to the emulation software. As our administrative
traffic appears as ordinary storage requests on the bus (with a special flag set), we were unable to send administrative
alerts for a request until after the request completed when using the Adaptec driver . The QLogic device driver fully
supports TCQ, which enables us to delay violating request completions from being sent until IDD sends an alert and
receives post-alert instructions from the administrative console.
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caching was turned off inside the backing store disk. As discussed previously, these experiments

achieve “timing-accuracy” in a different form than that described in Chapter 5, in that here we rely

on a real device to provide the mechanical timings for the emulated IDS-enhanced device.

We do not argue that embedded disk processors will have a 2 GHz clock frequency, as is the

case for our emulation system; this is perhaps an order of magnitude larger than one might expect.

However, an actual disk-based IDS would be manually tuned to the characteristics of the platform

it runs on (e.g., the disk’s SCSI ASICs would obviate much of the IDD’s communication and in-

terposition overheads) and would therefore run more efficiently than the IDD, perhaps by as much

as an order of magnitude. To compensate for this uncertainty, we report processing overheads both

in elapsed time and in processor cycle counts, the latter of which provides a reasonably portable

estimate of the amount of work performed by the IDD.

To approximate the conditions of a production file system deployed in a real environment,

we created a disk image of a freshly installed Red Hat Linux 8.0 desktop system. This image is

loaded into the emulator at the start of each experiment, after which the emulated disk is mounted

synchronously in a root-level directory on the host computer. For each experiment with the IDD

“fully enabled” we set the administrative policy to match the default Tripwire rule set for Red Hat

Linux [166].

Our experiments use a microbenchmark and two macrobenchmarks. Our alert-generating mi-

crobenchmark cycles 1000 times over a single file operation on each of 1000 files, all of which will

generate alerts when the IDD is enabled. We use SSH-build and PostMark as non-alert-generating

macrobenchmarks, as described in Section 6.1.2. Each macrobenchmark result represents the aver-

age of 10 runs of the test program on a warm system, where the system was warmed by loading the

rules into the IDD and running the test program once.

7.5.2 Base resource requirements

Expanding out the default Tripwire rule-set for Red Hat Linux on our freshly installed disk image

resulted in rules being set on 32,970 files, covering a total of 447,829 watched blocks, which we

coalesce into 69,705 contiguous extents. This rule coverage represents watching 14% of the total

number of files in the system.

For our IDD prototype, the fully-enabled rule-set results in a baseline memory footprint of

6,928 KB. This includes 36 KB for the executable image size, 660 KB for internal non-rule-support

data structures, and 6,230 KB for internal structures that track rules and the lists of watched blocks.

This works out to 200 bytes per file watched. Because of our architectural division between the

fast-lookup WBT (required to be in-core) and the non-common-case ACF processing (allowed to

be paged to the private disk area), only 37% (2,300 KB) of the total need be in-core during ordinary

execution.

When the rule-set is first loaded by the IDD, it makes an initial pass through the quiescent file

system to initialize the lists of watched blocks and other structures. In our implementation, this time
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is dominated by the number of disk I/Os required to load the relevant inode and directory structures.

By caching certain the frequently used blocks (such as the superblock, root inode and root directory

blocks, as well as recently touched inodes and directory entries) this requires 22,556 disk I/Os and

takes a total of 160 seconds, or about 4.9 ms per rule. This initialization isn’t necessary every time

the disk is powered up: once the rule-set is loaded, the IDD’s internal state can be written to disk

upon power down and restored quickly when restarted. It may be desirable for a deployed disk-

based IDS to periodically repeat this process in the background, just to verify the consistency of its

internal state.

7.5.3 Common-case performance

As discussed in Section 7.4.2.1, it is imperative that the WBT lookup be efficient, as it must be

performed in the critical path (before the media transfer) for every write request. We examine the

impact of the common-case WBT lookup both in the aggregate using the macrobenchmarks and at

the individual request level using the microbenchmark.

Our macrobenchmark results are shown in Figure 7.3. SSH-build generates 46,217 disk requests

in 335 seconds, and PostMark generates 35,467 requests in 165 seconds. These graphs show both

that the overhead of the IDS infrastructure itself can be small [as shown by case (b), 0.01–0.1%

for our implementation] and that the WBT lookup time is insignificant [case (c), 0.02–1.3%] com-

pared with the request times. Our microbenchmark results, shown in Table 7.1, show that the total

overhead for WBT lookup is about 250 µs. These results show that it is indeed possible to do the

requisite common-case IDS processing with no discernible effect on the application-level workload.

7.5.4 Updates to watched blocks

If one or more of the blocks of a request appear in the WBT, the IDD must perform extra processing

to determine if the request actually causes a rule violation. Unlike the common-case analysis above,

it is not paramount that these checks have no performance impact on the host’s request stream:

since an update to a watched block may indicate an intruder action, it is imperative for the disk to

determine whether the specified rules have been violated. We examine the impact of watched block

checking using the alert-generating microbenchmark. The results are shown in Table 7.1.

This analysis assumes that the entire WBT is kept in-core but that none of data blocks are cached

by the IDD. Depending on the system state, the actual results could be worse or better. If the WBT

were fully paged to disk, the request time would increase by approximately 30% as an additional

interposed request would occur to page in the appropriate entry in the WBT. Conversely, if all the

relevant data blocks were cached (requiring 512 KB for this experiment), the interposed requests

would be unnecessary, reducing the overhead for updates to watched blocks to 6–9%.

For some updates that generate an alert, it may be necessary to modify the internal IDD struc-

tures to reflect the update. For example, given the rule Warn me if anything changes in the directory

/sbin, if the file /sbin/newfile is created it is perhaps appropriate to both generate an alert and
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start watching the new file for subsequent changes. This can either be done by reconstructing the

exact change caused by the alert—which may require additional interposed reads—or by reinvoking

the full initialization process.

These results show that the overhead involved with determining whether to generate alerts dur-

ing watched block updates is not unreasonable, especially if it is assumed that such updates occur

very infrequently. In the following two subsections we analyze desktop traces from a university

laboratory environment to give some insight into the validity of this assumption.

7.5.4.1 Frequency of alert-generating updates

To understand the frequency of overheads beyond the common-case performance, we examined

11 months worth of local file system traces from managed desktop machines in a mid-sized research

group. The traces included 820,145,133 file operations, of which 1.8% translated into modifications

to the disk. Using these traces, we quantify the frequency of two cases: actual rule violations and

non-rule-violating updates, the latter of which are purely updates to shared inode blocks or directory

blocks).

We examine the traces for violations of the storage-based IDS rule-set published by Pennington

et al. [125]. This rule-set includes the default rules in Tripwire for Red Hat Linux, with additional

rules regarding hidden names and append-only audit logs. When applied against our disk image,

rules were set on 29,308 files, which resulted in approximately 225,000 blocks being watched. In

the traces, 5350 operations (0.0007% of the total) impacted files with rules set on them. All but

10 of these were false positives resulting from regularly-scheduled nightly updates to configuration

files such as /etc/passwd and regular updates to system binaries. These false positives can be

eliminated by making the IDD aware of expected updates—special preparatory commands can be

sent by the administrative console in advance of the regular update. This approach has the added

benefit that the IDD can provide a helpful confirmation to the administrator (instead of a false

positive) indicating that the write completed successfully and that the IDD is aware of the new

configuration.

7.5.4.2 Frequency of non-alert-generating updates

The first class of non-rule-violating updates that require ACF execution is shared inode blocks.

Our prototype notices any changes to an inode block containing a watched inode, so it must also

determine if any such modification impacts an inode being watched. In the case of the ext2 file

system, 32 inodes are stored in each inode block. If any inode in a given block is watched, an

update to one of the 31 remaining inodes will incur some additional overhead. To quantify this

effect, we looked at the number of times an inode was changed which was in the same block as a

watched inode. For this analysis, the local file systems of 15 computers were used as examples of

which inodes share blocks with watched files. For our traces, 1.9% of I/Os resulted in changes to

inode blocks. Of these, 8.1% update inode blocks that are being watched (with a standard deviation
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of 2.9% over the 15 machines), for a total of 0.15% of I/Os requiring ACF execution. Most of

the inode block overlap resulted from these machines’ /etc/passwd being updated nightly. This

caused its inode to be in close proximity with many short-lived files in /tmp. On one machine,

which had its own partition for /tmp, we found that only 0.013% of modifications caused writes

to watched inode blocks. Using the values from Table 7.1, we compute that the extra work would

result in a 0.01–0.04% overhead (depending on the IDD cache hit rate).

Similarly, the IDD needs to watch directories between a watched file and the root directory. We

looked at the number of namespace changes that the IDD would have to process given our traces.

Using the same traces, we found that 0.22% of modifications to the file system result in namespace

changes that an ACF would need to process in order to verify that no rule was violated. Based on

the measurements in Table 7.1, these ACF invocations would result in a 0.02–0.06% performance

impact, depending on IDD cache hit rate.

7.6 Extending real disk products to include IDS capabilities

Workstation disks are extremely cost-sensitive components, making feature extensions a tough

proposition. Security features, however, are sufficiently important and marketable today that fea-

ture extensions are not impossible. To make for a viable business case, uninterested customers

must observe zero cost. The cost of any hardware support needed must be low enough that the

profits from the subset of customers utilizing (and paying for) the IDS features must compensate

for the marginal hardware costs incurred on all disks produced. A similar situation exists in the

network interface card (NIC) industry, where 3Com Corporation embedded sufficient hardware in

their standard NICs to allow them to sell firewall-on-NIC extensions to the subset of interested

security-sensitive customers [1]; the purchased software is essentially an administrative application

that enables the support already embedded in each NIC [2] plus per-seat licenses.

Evaluation of our disk-based IDS prototype suggests that IDS processing and memory require-

ments are not unreasonable. In the common case of no ACF invocations, even with our untuned

code, we observe just a few thousand cycles per disk I/O. Similarly, for a thorough rule-set, the

memory required for IDS structures and sufficient cache to avoid disk reads for non-alert ACF ex-

ecutions (e.g., shared inode blocks) is approximately two megabytes. Both are within reasonable

bounds for modern disks. They may slightly reduce performance, for example by reducing the

amount of disk cache. The overall effect of such changes should be minor in practice, since host

caches capture reuse while disk caches help mainly with prefetching. Moreover, neither the mem-

ory nor the CPU costs need be incurred by any disk that does not actually initialize and use its IDS

functionality.

In addition to the IDS functionality, a disk-based IDS requires the disk to be able to perform

the cryptographic functions involved with the secure administrative channel. This requires a key

management mechanism and computation support for the cryptography. Again referring to the

3Com NIC example, these costs can be very small. Further, various researchers have proposed the
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addition of such functionality to disks to enable secure administration of access control functions [4,

69], and it can also be used to assist secure bootstrapping [10].

7.7 Summary of this chapter

Storage-based intrusion detection is a promising approach, but it would be most effective if em-

bedded in the local storage components of individual workstations. From experiences developing

and analyzing a complete disk-based IDS, implemented in a disk emulator, we conclude that such

embedding is feasible. The CPU and memory costs are quite small, particularly when marginal

hardware costs are considered, and would be near-zero for any disk not using the IDS functional-

ity. The promise of enhanced intrusion detection capabilities in managed computing environments,

combined with the low cost of including it, makes disk-based intrusion detection a functionality that

should be pursued by disk vendors.

This work represents an example of evaluating system-level interactions with novel storage

device functionality, which is one of the types of experiment that is enabled using the technique

of timing-accurate storage emulation. A variety of additional evaluation permutations are available

using other experimental approaches enabled by this technique. For example, our use of a real

disk in the emulator’s timing manager could be replaced by a physical device model of a futuristic

storage device, in order to acquire an understanding of how the performance impact will change

by the time devices with programmable functionality are finally available. Overall, this example

of implementing a disk-based IDS using an extended storage interface demonstrates a strength of

timing-accurate storage emulation as an evaluation approach.

The following chapter concludes this dissertation by looking to the future of timing-accurate

storage emulation.
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CHAPTER 8
CONCLUSION

We conclude this dissertation by summarizing the importance of timing-accurate storage emulation,

discussing what will be required for timing-accurate storage emulation to achieve widespread use

in computer systems analysis, presenting some of the implications of this research, and identifying

several promising avenues for continuing work.

8.1 Summary: The importance of timing-accurate storage emulation

Existing techniques are unsatisfactory for evaluating the role of hypothetical storage components

in computer systems. These techniques are unable to evaluate true real-system workloads in the

context of real system components. They are especially unable to achieve an analysis of real inter-

actions between modified host systems and modified storage device firmware components or novel

physical device characteristics. This dissertation describes the technique of timing-accurate storage

emulation and its role in mitigating many of the limitations of alternative evaluation techniques.

8.2 Keys to the widespread use of timing-accurate storage emulation

The benefits of timing-accurate storage emulation as an evaluation technique will not come without

several costs regarding the development and maintenance of an emulation infrastructure. These

costs include those of developing accurate and computationally inexpensive physical device models

for interesting hypothetical devices, extending and stabilizing target-mode functionality across a

wider range of storage interconnects and emulation operating systems, and creating a broader set of

evaluation workloads that are more representative of the systems ultimately to be deployed.

For timing-accurate storage emulation to remain effective, new storage device models need to

continue to be created for existing and prospective storage products. Emulation experiments re-

quire validated or high-confidence physical device models in order to provide useful experimental

results. As discussed before, these can be developed either by individual product manufacturers in

the context (hopefully) of a common or standardized emulation environment, or can be developed

by academic or product-independent laboratories under governmental or corporate alliance grants.

This is not likely to be a problem, since emulation-based experiments use the same physical de-

vice models that are used for the other evaluation techniques of storage subsystem simulation and

full-system simulation, and historical experience suggests that there is sufficient interest to continue

developing models for these environments. As emulated storage devices experiments grow more

complex—for example, emulating multi-device components like disk arrays or devices with mul-

tilevel caches—an interesting question will arise regarding whether the best architecture involves
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building a single instance of an emulator that models all emulated components internally, or using

multiple emulated devices connected via the appropriate real bus architecture.

To expand the applicability of emulation-based experimentation, there will also need to be con-

tinued development on hardware and software support for target-mode operation across existing

interconnects and new interconnects such as Serial Attached SCSI. Historical analysis suggests that

there has been interest for target-mode SCSI support in various operating systems for over a decade

(and perhaps even longer), and the FreeBSD-based software architecture used herein continues to

be actively developed and maintained by the contributors to the FreeBSD project. New hardware

support for target-mode operation can be general-purpose, as are the bus adapters described in this

dissertation, or can be an extension of the currently-available (non-timing-accurate) storage emu-

lation products that are used either for system-level testing and validation and for building “solid

state disks” (large aggregations of high-speed RAM memory resources that are accessed through an

ordinary disk-like interface).

Additionally, a much richer set of application-level workloads will need to be developed in order

to extract the full usefulness of timing-accurate storage emulation. The lack of diverse and repre-

sentative workloads for storage evaluation has been and continues to be a problem in the storage

systems community, with some organizations having a large set of proprietary workloads but there

being few well-planned, well-accepted workloads. We note tongue-in-cheek that authors looking

for citation strength can do well by creating and publishing any reasonable workload to fill this void.

There has at least been recent interest in aggregating available traces of real-system workloads into

a single publicly-available database, the success of which could potentially lead to better character-

izations of real-system workloads [88, 89] and ultimately better benchmark and microbenchmark

utilities to exercise storage devices and emulated storage devices.

8.3 Implications of this research

There exists a need in computer systems today to make better use of the communications interface

between host systems and peripheral components such as locally-attached storage and network de-

vices. This interface is often a demarcation point in computer systems; system designers typically

provide for isolated computational hardware and data management on each side of the interface.

Many of our results argue the advantages of explicit information sharing across this narrow junc-

tion. The packaging and exporting of select characteristics from each side—in effect, sharing ad-

ditional information across the existing communications paths—provides opportunities to enhance

data management, device configuration, and system efficiency. In this way, the complete system

becomes greater than the sum of its parts.

Much of the author’s research (presented in this dissertation and published elsewhere [125,

142, 146]) takes advantage or could beneficially take advantage of sharing information across the

storage interface between operating systems (OSes) and storage devices. The results demonstrate

that OSes and storage devices can indeed take more appropriate actions on both sides of the storage

136



interface by exchanging information. For example, only the OS has detailed information about

which applications generate disk requests and the priorities of different requests. On the other hand,

only the storage device firmware has exact information about its internal firmware algorithms and

current mechanical state. Sharing this information appropriately allows both sides to tune their

activities and yields a more functional and efficient storage system.

Additionally, Acharya, Uysal, and Saltz [3], Ganger [58], Riedel [129], Sivathanu et al. [156],

Wang, Anderson, and Patterson [171], Wickremesinghe, Chase, and Vitter [173], and others ad-

vocate the inclusion of externally-controlled autonomous processing capabilities into standalone

storage devices. When considering the deployment and online use of such an “intelligent” device,

there will likely be a need to transmit data processing instructions or download executable software

into the device, and after execution to retrieve specific results or the execution status from the device;

there is currently no standardized method for conveying this information between the two entities.

Although specialized interfaces to object-based storage devices provide a potential solution to this

problem, the widespread use and universal support of the current block-based interface to storage

indicate that such an environment should additionally be considered when implementing intelligent

functionality. Regardless, there is a tension between on one hand needing more expressive inter-

faces to the device to convey this information, and on the other hand needing to keep the existing

well-supported and well-understood interfaces intact.

Timing-accurate storage emulation offers the opportunity to investigate these novel uses of stor-

age in computer systems, permitting forays into the space of hypothetical device functionalities

without the difficulties of developing and supporting extensively nonstandard or novel interface ac-

tions in prototype or production device firmware. This is especially relevant when considering the

recent trend toward the development of small-volume, high-capacity, application-specific consumer

storage devices for personal and portable computing, especially in the context of audio and video

recording and playback, where support for specific features in individual product offerings will play

a key role in the advantageous positioning of products in the market.

8.4 Opportunities for future work

This work raises a number of questions whose pursuit may be of interest to researchers or developers

that use the technique of timing-accurate storage emulation. In this section we discuss groups

of these questions centered around the themes of data management, timing management, and the

general use of emulation in computer system evaluations.

8.4.1 Support for large storage working sets

As demonstrated by the evaluations in this dissertation, interesting experimentation can be achieved

using only the high-speed resources available to the emulation software. However, One impor-

tant area for continuing investigation into timing-accurate storage emulation involves pushing the
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boundaries of what workloads can be supported by the data manager in a timing-accurate storage

emulator. In particular, support for working set sizes larger than the available RAM on the emula-

tion system will require support for the appropriate loading and unloading of data objects between

the high-speed and low-speed, resources, as discussed in in Section 3.3.3 (page 37).

Standard techniques for efficient cache management are applicable in the operation of the data

manager. In-memory data compression techniques, such as the coalescing of duplicate objects [19,

128] or the keeping of minimal differentials between similar objects [46], may help an emulator

make the best use of the high-speed resources, with a limitation that the processing requirements of

these techniques (e.g., data decompression and checksum or hash calculations) must be achievable

within the relatively short lifespan of an emulated request. A more exhaustive list of such techniques

is provided by Kulkarni et al. [106]. An emulator can also use application-specific knowledge in

its resource management schemes, including application-directed cache preloading hints [26, 123]

and explicit knowledge of the file system structures stored on the emulated device [156]. These

techniques may be useful as the data manager attempts to determine when data objects will (or will

no longer) be required by the application workload, or attempts to correlate which data objects are

likely to be accessed together.

Beyond the usual cache-management techniques, there are opportunities for efficient man-

agement of high-speed and low-speed resources that take advantage of specific characteristics of

emulation-based experimentation. One such opportunity involves identifying and exploiting any de-

terminism present in the experimental workloads to predict what data will be accessed during future

experimentation. Many performance-oriented benchmarks—both those that exercise file systems

and those that exercise other computer system components—share the characteristic of repeatable

execution from a known initial state resulting in deterministic reproduction of the experimental re-

sults. This repeatability is what enables experimental results to be portably compared across system

configurations with various different components. The storage traffic created by benchmark work-

loads may also have a high degree of determinism, both in terms of which blocks are accessed and

in which order the accesses occur. When this is true for a particular experiment, an emulator can

effectively use a trace of request arrivals from a previous run to correctly manage the loading of the

high-speed resources from the low-speed resources during an experiment.

Another opportunity to take advantage of specific characteristics of emulation-based experi-

mentation involves modifying the data that is written by the experimental applications in order to

simplify the operation of the data manager. We expect timing-accurate storage emulation to often be

applied in laboratory environments8.1 where it is feasible to modify the experimental applications so

long as such modifications do not affect the application behavior. The application can be instructed

to write highly compressible data whenever possible, which will enable the emulation software to
8.1This is as opposed to being used in a production environment, although recent interest in emulating the functionality

of older mainframe hardware using newer computers suggests that there may be applications of timing-accurate storage
emulation in filling in for older storage devices used by archaic business-critical applications whose performance is tuned
to match that of a particular device.
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quickly identify and compress such data during experimentation. As examples of this, file system

benchmarks that create files filled with random bytes can be modified to instead create zero-filled

files.8.2 Or, a database storage manager can be instructed to write similar patterns when writing out

tables that will not be read again during an experiment.

In general, the key to effective data management for large working sets is to identify which

pieces of information are the most helpful for a particular workload, and exploit the appropriate

techniques to the maximum gain of the experimenter. Emulation has the advantage that the experi-

mental environment doesn’t have to be general-purpose—you can load the dice as much as possible,

so to speak—with the additional advantage that failed experiments can generally be re-run taking

into account additional knowledge about what failed previously.

8.4.2 Quantifying the real-world representativeness of a device model

As discussed in Section 3.2.4, the real-world representativeness of the timing-accurate emulation

of a device model depends in part on the correctness of the model’s behavior when driven by the

experimental workload. Common problems the authors have encountered in past experimentation

using device simulation models include improper device cache modeling and improper handling

of large sequential requests (64–128 KB), both of which were only discovered when comparing

the results from simulation with the results from experiments with a real disk. Although these

simulation models were “validated,” further investigation revealed that the validation studies used

workloads that were not similar to the workloads used during our experimentation.

As a potential step toward solving such problems, we implore the storage community to develop

a standardized approach or methodology for the validation of storage device models, and as part of

this to provide an authoritative and portable repository of many storage workloads that are repre-

sentative of real-world workloads. The centralized availability of a diverse set of input workloads

will enable model builders to more easily build more accurate and more widely-applicable storage

models. More relevant to timing-accurate storage emulation, this emphasis on standardization could

also encourage development of a standardized method for publishing validation results representing

the real-world representativeness of the device model, which in turn could be used by emulation

software—or any experiment using device models, including those outside the realm of timing-

accurate storage emulation—to quantify the overall correctness (or incorrectness) of the results of

an emulation-based experiment.

As an alternative approach, the metric determining of the representativeness of a device model

could be tied in with a measure of fidelity of the model. As discussed in Section 5.1.1, a device

model may support multiple degrees of fidelity, each building on a tradeoff between the accuracy

of the model and the resource consumption when executing the model. One possible approach to

using fidelity involves the model builder including selectable components (such as scheduling or
8.2Writing zero-filled files may trigger undesirable caching inside the host operating system; in this case the application

may be modified to write an unusual marker pattern such as 0x8badf00d.
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cache algorithms, or detailed models of mechanical movements) that have been validated to behave

correctly and precisely under certain workloads (e.g., small, random read requests) but known to be

incorrect under others (large streaming writes). When servicing a workload for which no precise

and validated component is available, the simulation model could fall back on default performance

approximations (such as table-based lookups) and report this status change to the emulator. The

frequency and potential impact of these situations could be tracked by the emulation software and

reported post-experimentally as a quantified reduction in the real-world representativeness of the

results.

8.4.3 Design choices for timing management

Our choice of the Linux SCSI subsystem mid-to-low-level interface as measurement point MP1

for the host system (as discussed in Section 5.2.1, page 51) exhibited an intriguing disadvantage

whenever the emulated device was not mounted synchronously by the operating system. We dis-

covered that the transmission of write requests across the storage interconnect was often delayed

by several milliseconds somewhere below our measurement point (i.e., somewhere along the re-

quest critical path, after the queuecommand() call). We believe this is intentional behavior, caused

by write-coalescing functionality in the OS intended to improve the performance of non-blocking

sequential writes by applications.8.3 Unfortunately, this severely impacts the comparisons of ob-

served times with simulator-computed times and eliminated the usefulness of the error-reduction

validation. To accomplish this, further study is required on the nature of the delays between the

host and emulator clocks. It may be possible to eliminate the measurement point in the host system

during workload evaluation and still be able to validate the experimental results. Our experience is

that this error is roughly constant for both storage interconnect adapters, as shown by the results in

Section 5.4.2. The ultimate goal of eliminating MP1 is to enable the pre-experimental calibration

and post-experimental validation to be performed using only measurement data from the emulation

system.

A related issue involves to what degree synchronization is possible between the clocks on the

host and emulator systems. In Equation 5.10, we assumed EA
1→3 = EC

1→3 = E1→3 ÷ 2. If better

synchroneity between the clocks is obtained, a nonequal division—such as EA
1→3 = 0.7×E1→3 and

EC
1→3 = 0.3×E1→3—may result in better emulator accuracy during experimentation.

Two additional speculative areas for investigation are introduced by the discussion of the timing-

accurate execution of a storage device model in Section 5.1.1 (page 46). One question involves the

need for precision of both interrequest and intrarequest timings. There may be situations where it is

acceptable for the emulator to not meet a deadline for a particular request, as long as one or more

future requests complete early to compensate for the delay. Such graceful recovery would result

in an average cumulative error of near zero, but may result in incorrect application behavior due
8.3Further, we speculate that similar delays in the host operating system may be a primary reason behind the variable

large delays exhibited by the requests in our experiments in Chapter 6, as discussed in Section 6.2.1 (page 98).
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to closed-loop timing issues with the host system. Along similar lines, the question remains open

concerning whether non-timing-accurate emulation of intrarequest events yields valid overall emu-

lation results, especially when the experimental results re focused on interpreting the performance

of a particular external component such as the host system bus adapter.

8.4.4 Interactions with timing-accurate storage emulators

There are several hardware configuration questions that arise when considering the use of a timing-

accurate storage emulator. For example, the timing-accurate emulation of a multidevice storage

component (such as a disk array) can be accomplished either by using a single emulator containing

an internal model of the entire component, or by using multiple emulators that are configured in a

representative architecture with identical intraconnections within the component. In the latter case,

it remains to be seen whether the overall externally-visible error equals the sum of all the individual

emulator errors (caused, for example, by the E1→2 communications delays between the emulators

and by interdependencies between requests on the individual emulated devices) or simply equals

the maximum of the individual emulator errors.

Another hardware configuration question involves the exploitation of extended interfaces to em-

ulated storage devices. As discussed in Section 7.5.1 (page 128), one of the open questions involves

accurately modeling the timings of hardware that doesn’t match the hardware used by the emula-

tion system. For example, a real device would probably have a specialized embedded processor,

whereas the emulation system will likely be based on a general-purpose processor. Two possible

solutions to this mismatch include building a tighter interplay between the storage emulator and a

real embedded processor to handle the calculations and timings therein, or using a timing-accurate

processor emulator in conjunction with the storage emulator—which may lead into investigating the

applicability of timing-accurate emulation of other computer system components.

The notion of modifying the data written by an experimental application to simplify the task of

data management for a timing-accurate storage emulator is discussed in Section 8.4.1 (page 137).

This may be generally considered the notion of changeable data, where the contents of the data

objects can be changed by either the application or the emulator without affecting the application

performance. (The key question involves which data objects can be considered changeable.) This

essentially represents a relaxation of the data integrity requirements of a storage device. Extend-

ing this thought, another potentially interesting system architecture involves direct communication

between the host system and the storage device regarding storage availability requirements for indi-

vidual data objects. This introduces the concept of what we deem discardable data: data for which

it is possible (if somewhat inconvenient) for the storage device to lose data without affecting the

correctness (but likely affecting the timings) of the workload-generating application. Discardable

data are objects that could be reconstructed by the host system. This reconstruction can be based

on external information, such as cached files in a web browser, or internal information, such as

intermediate object files that are compiled transformations of existing source files. Introducing the
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concept of discardable data allows the storage device to practice priority-based scheduling among

requests [111] in the highly unconstrained environment of being able to fully ignore writes and

reads of at least one class of requests (those reading or writing discardable data). Investigating the

use of discardable data in computer systems is straightforward using an expanded interface to the

storage device to identify which objects are considered discardable by the application; this ability to

explore real systems architectures containing novel storage interactions represents one of the many

strengths of timing-accurate storage emulation.

8.5 Availability of the emulation software

The software composing our implementation of the Memulator will be made freely available on

the Parallel Data Laboratory web site at the Internet address http://www.pdl.cmu.edu following

publication of this dissertation. Additionally, the experimental framework and software used to

execute the timing experiments for Chapter 5 and Chapter 6 (and an archive of the data generated

therein) will be made available at that address.
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APPENDIX A
CASE STUDY: EXPERIENCE WITH FULL-SYSTEM SIMULATION

The need for evaluation tools based on timing-accurate storage emulation was borne out of our

experiences with two recent projects. These experiences are summarized and discussed as case

studies in both this appendix and Appendix B. The purpose of these case studies are twofold:

(1) to demonstrate the real-world applicability of results that are obtainable using the techniques

of timing-accurate storage emulation, and (2) to demonstrate the limitations of existing storage

evaluation techniques that can be overcome through the use of timing-accurate storage emulation.

This appendix explores the system-level applicability of considering a new class of non-volatile

storage devices, MEMS-based storage, in their potential role as a replacement or supplement to

locally-attached disks. A fuller treatment of the concepts in this section, extending beyond the

scope of timing-accurate storage emulation, is available in several conference papers [29, 73, 74,

145, 146, 147] and a dissertation by Steve Schlosser [144].

A.1 Overview of of MEMS-based storage devices

Microelectromechanical systems (MEMS) are very small-scale mechanical structures—on the or-

der of tens to thousands of microns—fabricated on silicon chips using photolithographic processes

much like those employed in manufacturing standard semiconductor devices. MEMS structures

can be made to slide, bend, or deflect in response to an actuator’s electrostatic or electromagnetic

force or external forces. MEMS machines have interesting strengths and limitations compared to

standard mechanical systems. For example, large-aspect-ratio cantilever designs that would fail un-

der load when built at the macroscopic scale can be built reliably on the microscopic scale. As a

counterexample, it is difficult to build durable microbearings for rotating components—prototypes

of micromachined gear trains have locked up from friction within several thousand revolutions. Be-

cause of this limitation it is difficult to replicate disk-based storage designs on the microscopic scale.

Alternative designs, such as rectangular spring-suspended masses (media sleds) that translate two-

dimensionally (instead of rotating about an axis), circumvent this frictional barrier and are proving

to be mechanically robust.

One class of MEMS-based storage device under investigation employs an array of thousands of

cantilevered magnetic read/write heads (probe tips, shown in Figure A.1), each accessing a dense

substrate of magnetic material in much the same way disk heads access magnetic platters [23, 28].

This design offers notable advantages over disk-based storage along several axes, including access

time, device size and mass, energy consumption, cost, failure modes, and sensitivity to shock. Mul-

tiple probe tips can concurrently access the media to achieve one of several forms of parallelism: all
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Figure A.1: Prototype positioning system and probe tip for MEMS-based storage. Because
the recording material is not perfectly flat, the positioning system must be able to actively adjust
the height of the probe tips. The tips could use one of several recording schemes, from simple
“typewriting” with permanent magnets, to more complex magnetoresistive sensing techniques found
in normal disk drives.

tips can be used to access data (to increase throughput); some tips can be used for error detection

and correction (to enhance reliability); or completely independent accesses can proceed in parallel.

In addition, the MEMS fabrication process can be integrated with standard CMOS processes [51],

opening the door to combine processing and non-volatile storage for large-scale manufacturing of

system-on-a-chip architectures.

MEMS microstructures can be used to build storage devices in a variety of ways—design de-

cisions affect the manufacturability, robustness, cost, capacity, access speed and latency of these

devices. Figure A.2 depicts one proposed MEMS-based storage design. In this “fixed media”

model, miniature cantilevered L-shaped beams suspend a probe tip over a fixed magnetic substrate.

Voltages applied to deflectors generate electrostatic forces in the X and Y directions, rapidly mov-

ing the tip to different bit positions. Standard magnetic recording techniques are used to read or

write the bits, with the same unlimited number of read and write cycles as found in disk drives.

The nearly-massless cantilevered beam enables very quick positioning times (on the order of tens to

hundreds of microseconds) but the space efficiency is poor—only about 1% of the potential media

area can be used for storage. In comparison, conventional disk drives use about 50% of their platter

area for data storage. This design is useful for visualizing MEMS-based storage, but its expected

capacity of only tens to hundreds of megabytes per device limits its practicality in comparison to

Flash RAM, battery-backed RAM, and other non-volatile primary storage components.

Researchers at Carnegie Mellon are investigating a more media efficient device design, which

is shown in Figure A.3. In this “moving media” model, a rectangular media sled is suspended by

springs above an array of several thousand fixed probe tips. A device’s footprint is about 14×14 mm,
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Figure A.2: A cantilevered-beam probe tip in the “fixed media” model for MEMS-based stor-
age. The X- and Y-deflectors are capable of quickly positioning the tip anywhere in the small acces-
sible area. The overall capacity of this model is limited to tens or perhaps hundreds of megabytes
because only 1% of the media area is accessible by the tip.

with a usable area on the media sled of about 8×8 mm. Up to 10,000 tips can be fabricated over this

8×8 mm area. Assuming a bit cell of 0.0025 µm2 (50 nm per side) and encoding/ECC overheads

of 2 bits per byte, a device’s data storage capacity is about 4 GB [28]. A more aggressive goal

of 0.0009 µm2 (30 nm per side) yields capacities of 11 GB or greater. While this device design

improves space efficiency to 30–50%, the greater sled mass increases positioning times relative to

the fixed media design above—a necessary tradeoff to achieve disk-like capacities. Carley et al. [28]

and Griffin et al. [73] provide a more thorough description of the characteristics of this design.

A.2 Device data layout and access characteristics

The sled’s magnetic media is organized into rectangular regions as shown in Figure A.4. Each region

stores M×N bits (e.g., 2000×2000). There is a one-to-one mapping between regions and tips; each

tip accesses its exclusive region of the media. Bits within a region are grouped into vertical 90-bit

columns called tip sectors; each tip sector contains 10 bits of sled positioning information and 80

encoded data bits providing 8 data bytes. The 8-byte tip sector is the smallest accessible unit of

data in MEMS-based storage. Groups of 64 tip sectors from separate regions may be combined into

512-byte logical sectors, analogous to logical blocks in SCSI disks. This striping is both possible

and practical because, unlike most conventional disks, large numbers (200–2000) of probe tips

can simultaneously access the media. Striping logical blocks across tip sectors in multiple regions

reduces access time and increases bandwidth, reliability, and fault tolerance.

To access data, electrostatic actuators (capacitive comb fingers) pull the sled to a certain x,y

offset—positioning the tips above an exact location on the media by moving the media—then drag

the sled such that each active tip reads or writes an entire tip sector (i.e., such that groups of tips
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Figure A.3: The “moving media” model for MEMS-based storage. The media sled is attached
below the fixed tips. The sled can move along the X and Y axes, allowing the fixed tips to address
30–50% of the total media area.

access whole logical sectors). As in the earlier design, the probe tips read or write data using

standard magnetic recording techniques.

Positioning the sled for read or write involves several mechanical and electrical actions. To

seek to a desired sector, the appropriate probe tips must be activated, the sled must be positioned

so the tips are above the first bit of the pre-sector servo information, and the sled must be moving

in the correct direction at the correct velocity for access. Whenever the sled moves in X, an extra

constant settling time must be taken into account—the rapid acceleration and deceleration of the

sled causes the spring-sled system to momentarily oscillate in X before damping to zero X motion.

(The sled also oscillates in Y; however, the magnetic sensing logic is expected to compensate for

this motion.) In addition, the springs apply a restoring force toward the “sled-at-rest” position,

increasing or decreasing the effective sled actuating force by as much as 75%.

Media access requires that the sled move at constant velocity in the Y direction. This access

velocity is a design parameter and is determined by the maximum per-tip read and write rates, the

bit width, and the maximum sled acceleration. Large transfers could span multiple columns of bits,

requiring the sled to perform a turnaround (reversing direction such that the sled ends up in the

same position at reverse velocity) and switch the set of active tips. The turnaround time is expected

to dominate any additional activity, such as the time to switch which tips are active.

A.3 Contrasting MEMS-based storage devices with disks

Although MEMS-based storage devices involve some radically different technologies from disks,

they share enough fundamental similarity for a disk-like model to be a sensible starting point. This

section compares MEMS-based storage devices and disks from this standpoint, and the rest of the

dissertation shows that little is lost by taking this view.
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Figure A.4: Physical data organization for MEMS-based storage. The illustration depicts a
small portion of the magnetic media sled. Each rectangle outlines the region accessible by a single
probe tip, with a total of 16 regions shown. (A full device contains thousands of tips and regions.)
Each region stores M×N bits, organized into vertical “tip sectors” containing encoded data and
ECC bits. These tip sectors are demarcated by “servo information” strings that identify the sector
and track information encoded on a disk. This servo information is expected to require about 11%
of the device capacity. To read or write data, the media passes under the active tip(s) in the ±Y
direction while the tips access the media.

Like disks, MEMS-based storage devices stream data at a high rate and suffer a substantial

distance-dependent positioning time delay before each nonsequential access. In fact, although

MEMS-based storage devices are much faster, they have ratios of request throughput to data band-

width similar to those of disks from the early 1990s. Some values of the ratio, γ, of request service

rate (requests/s) to streaming bandwidth (MB/s) for some recent disks include γ = 26 (1989) for the

CDC Wren-IV [122], γ = 17 (1993) [78], and γ = 5.2 (1999) for the Quantum Atlas 10K [127].

γ for disks continue to drop over time as bandwidth improves at a greater rate than mechanical

positioning times. In comparison, the MEMS-based storage device described below yields γ = 25

(1111 requests/s ÷ 44.8 MB/s), comparable to disks within the last decade. Also, although many

probe tips access the media in parallel, they are all limited to accessing the same relative x,y off-

set within a region at any given point in time—recall that the media sled moves freely while the

probe tips remain relatively fixed. Thus, the probe tip parallelism provides greater data rates but not

concurrent, independent accesses. There are alternative physical device designs that would support

greater access concurrency and lower positioning times, but at substantial cost in capacity [73].

The remainder of this subsection enumerates a number of relevant similarities and differences

between MEMS-based storage devices and conventional disk drives.

Mechanical positioning. Both disks and MEMS-based storage devices have two main compo-

nents of positioning time for each request: seek and rotation for disks, X and Y dimension seeks for

MEMS-based storage devices. The major difference is that the disk components are independent

(i.e., desired sectors rotate past the read/write head periodically, independent of when seeks com-

plete), whereas the two components are handled in parallel for MEMS-based storage devices. As
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a result, total positioning time for MEMS-based storage devices equals the greater of the X and Y

seek times, making the lesser time irrelevant. This overlap most strongly affects request scheduling.

Settling time. For both disks and MEMS-based storage devices, it is necessary for read/write

heads to settle over the desired track after a seek. Settling time for disks is a relatively small

component of most seek times (0.5 ms of 1–15 ms seeks). However, settling time for MEMS-based

storage devices is expected to be a relatively substantial component of seek time (0.2 ms of 0.2–

0.8 ms seeks). Because the settling time is generally constant, this has the effect of making seek

times more constant, which in turn could reduce (but not eliminate) the benefit of both request

scheduling and data placement.

Logical-to-physical mappings. As with disks, the lowest-level mapping of logical block num-

bers (LBNs) to physical locations will be straightforward and optimized for sequential access; this

will be best for legacy systems that use these new devices as disk replacements. Such a sequentially

optimized mapping scheme fits disk terminology and has some similar characteristics. Nonetheless,

the physical differences will make data placement decisions (mapping of file or database blocks to

LBNs) an interesting topic.

Seek time vs. seek distance. For disks, seek times are relatively constant functions of the seek

distance, independent of the start cylinder and direction of seek. Because of the spring restoring

forces, this is not true of MEMS-based storage devices. Short seeks near the edges take longer than

they do near the center. Also, turnarounds near the edges take either less time or more, depending

on the direction of sled motion. As a result, seek-reducing request scheduling algorithms [179] may

not achieve their best performance if they look only at distances between LBNs on MEMS-based

storage devices, as is commonly done for disks.

Recording density. Some MEMS-based storage devices use the same basic magnetic recording

technologies as disks [28]. Thus, the same types of fabrication and grown media defects can be

expected. However, because of the much higher bit densities of MEMS-based storage devices, each

such media defect will affect a much larger number of bits.

Numbers of mechanical components. MEMS-based storage devices have many more distinct

mechanical parts than disks. Although their very small movements make them more robust than

the large disk mechanics, the sheer number of parts makes it much more likely that some number

of them will break. In fact, manufacturing yields may dictate that the devices operate with some

number of broken mechanical components.

Concurrent read/write heads. Because it is difficult and expensive for drive manufacturers

to enable parallel activity, most modern disk drives use only one read/write head at a time for data

access. Even drives that do support parallel activity are limited to only 2–20 heads. On the other

hand, MEMS-based storage devices (with their per-tip actuation and control components) could

theoretically use all of their probe tips concurrently. Even after power and heat considerations,

hundreds or thousands of concurrently active probe tips is a realistic expectation. This parallelism

increases media bandwidth and offers opportunities for improved reliability. Further, flexibility
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in the choice of which tips are used to access data allows for novel data access schemes, such as

efficient access to two-dimensional data structures.

Control over mechanical movements. Unlike disks, which rotate at a constant velocity inde-

pendent of ongoing accesses, the mechanical movements of MEMS-based storage devices can be

explicitly controlled. As a result, access patterns that suffer significantly from independent rotation

can be better served. The best example of this is repeated access to the same block, as often occurs

for synchronous meta-data updates or read-modify-write sequences.

Startup activities. Like disks, MEMS-based storage devices will require some time to ready

themselves for media accesses when powered up. However, because of the size of their mechanical

structures and their lack of rotation, the time and power required for startup will be much less than

for disks.

Drive-side management. As with disks, management functionality will be split between host

operating systems and device firmware. Over the years, increasing amounts of functionality have

shifted into disk firmware, enabling a variety of portability, reliability, mobility, performance, and

scalability enhancements. Similar trends are likely with MEMS-based storage devices, whose sili-

con implementations offer the possibility of direct integration of storage with computational logic.

Speed-matching buffers. As with disks, MEMS-based storage devices access the media as the

sled moves past the probe tips at a fixed rate. Since this rate rarely matches that of the external

interface, speed-matching buffers are important. Further, because sequential request streams are

important aspects of many real systems, these speed-matching buffers will play an important role in

prefetching and then caching of sequential LBNs. Also, most block reuse will be captured by larger

host memory caches instead of in the device cache.

Sectors per track. Disk media is organized as a series of concentric circles, with outer circles

having larger circumferences than inner circles. This fact led disk manufacturers to use banded

(zoned) recording in place of a constant bits-per-track scheme in order to increase storage density

and bandwidth. For example, banded recording results in a 3:2 ratio between the number of sec-

tors on the outermost (334 sectors) and innermost (229 sectors) tracks on the Quantum Atlas 10K

drive [56]. Because MEMS-based storage devices organize their media in fixed-size columns in-

stead, there is no length difference between tracks and banded recording is not relevant. Therefore,

block layout techniques that try to exploit banded recording will not provide benefit for these de-

vices. On the other hand, for block layouts that try to consider track boundaries and block offsets

within tracks, this uniformity (which was common in disks 10 or more years ago) will simplify or

enable correct implementations.

A.4 System-oriented evaluation using full-system simulation

This section presents the results from real-world benchmarks, measured on systems with simulated

MEMS-based storage devices in two different configurations: first, as a simple replacement for

disks; and second, as a non-volatile disk cache.
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G1 G2 G3
bit width (nm) 50 40 30
sled acceleration (g) 70 82 105
access speed (kbit/s) 400 700 1000
X settling time (ms) 0.431 0.215 0.144
total tips 6400 6400 6400
active tips 640 1280 3200
max throughput (MB/s) 25.6 89.6 320
number of sleds 1 1 1
per-sled capacity (GB) 2.56 4.00 7.11
bidirectional access no yes yes

Table A.1: Parameters describing the three generations of MEMS-based storage device mod-
els used for experimentation. G1 represents the first-generation model, G2 the second-generation
model, and G3 the third-generation model, as discussed in Section A.4.1.

A.4.1 Description of the devices used for experimental comparison

Given the wide range of parameters, exploring the entire MEMS-based storage design space is not

feasible. Instead, three models of MEMS-based storage are used, based on anticipated technology

advances over the first three generations. The parameters describing the three generational models

are presented in Table A.1.

The first-generation (G1) model represents a conservative initial MEMS-based storage device,

which could be fabricated within the next three years [28]. The sled has a full range of motion

of 100 µm along the X and Y axes, and the actuators accelerate the sled at 70g. To access data,

the device uses a relatively primitive recording scheme, leading to a per-tip data rate of 400 kbit/s.

This design only supports unidirectional accesses, where reads and writes only occur when the sled

moves in the positive Y direction.

G1’s media, tip resolution, and sled positioning system provide a square bit cell of 50 nm such

that each tip addresses a 2000×2000 array of bits. The sled footprint is 0.64 cm2 allowing 6400 tips

for each sled. This yields a raw capacity of 2.56 GB per sled. However, media error management

requires a 10-bit-per-byte encoding. Also, sled tracking and synchronization information requires

10 tracking bits for every 80 data bits. During media access, the sled is restricted to the fixed access

velocity. However, the sled speed is not limited during seeks.

The second-generation (G2) model represents several fundamental improvements over G1. First,

media access occurs in both the +Y and −Y directions. Second, per-tip data rate increases to

700 Kbit/s based on trends in probe tip technology. A decrease in the sled mass and an increase in

the actuator voltage leads to an increase in sled acceleration to 82g. Also, improvement in the servo

system reduces the settling time for each X seek. Decreases in per-tip power utilization can lead to a

larger number of tips that can be active simultaneously, vastly improving the maximum throughput.

Finally, media material improvements increase G2’s bit density by 20%.
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Quantum Atlas 10K Extrapolated SuperDisk
Rotational speed 10,025 rev/min 20,000 rev/min
Maximum bandwidth 25 MB/s 170 MB/s
Data surfaces 6 12
Average rotational latency 2.21 ms 1.36 ms
Average seek (read) 5.7 ms 3.12 ms
Average seek (write) 6.19 ms 3.58 ms
Maximum seek (read) 10.83 ms 8.50 ms
Maximum seek (write) 11.32 ms 8.96 ms

Table A.2: Performance characteristics of the Quantum Atlas 10K disk drive and the extrap-
olated SuperDisk model.

The third-generation (G3) model approaches the high-end of many MEMS-based storage pa-

rameters and characteristics. Here the bit density scales down to 30 nm per bit, and a decrease in the

sled mass leads to higher sled acceleration. In this case a change in the suspension and sled design

leads to a higher resonant frequency, resulting in a shorter X settling time. Throughput is increased,

largely because of the addition of more active tips.

The reference disk used in our experiments is the Quantum Atlas 10K [127]. The existence

of a validated DiskSim module [141] for the Atlas 10K enabled a comparison of a modern disk’s

performance to MEMS-based storage device performance.

The extrapolated “SuperDisk” model was created to compare MEMS-based storage to an ag-

gressive disk drive projection to the year 2005. Extrapolating on the current performance trends

in disk drive technology, the SuperDisk achieves streaming bandwidth of up to 125 MB/s. Its seek

time drops to a 3 ms average and it rotates at 20,000 RPM. The Atlas 10K and SuperDisk parameters

are compared in Table A.2.

Using the model described by Griffin et al. [73] and the device parameters in Table A.1, we

created simulation models for each MEMS-based storage device and integrated those models into

DiskSim, a freely-available disk simulator that accurately models disk drives [64], including the At-

las 10K. DiskSim was integrated with the SimOS machine simulator [132]. SimOS was configured

to model a 1 GHz Alpha 21164-based system with 128 MB of RAM running Digital UNIX ver-

sion 4. The OS runs atop the virtual machine, using special device drivers to interact with simulated

I/O devices. Finally, a model of IBM’s low-power disk drive [38] was used to compare against our

MEMS-based storage power models. These power models were driven using timing-accurate traces

of SCSI block requests gathered from Linux’s SCSI device driver.

A.4.2 MEMS-based storage devices as replacements for disks

The first two applications, the Andrew Benchmark Suite [87] and PostMark [96] were designed

for file system and I/O performance analysis. The Andrew Benchmark consists of a set of file and

directory operations followed by a long compile. The PostMark benchmark performs many small
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Andrew Postmark Gnuld TPC-D #4 TPC-D #6
CPU I/O CPU I/O CPU I/O CPU I/O CPU I/O

Atlas 10k 2.8 3.9 9.8 730.4 0.8 25.1 2.7 27.7 8.9 22.3
SuperDisk 2.8 1.7 10.0 397.0 0.7 8.8 2.7 3.3 8.8 0.3
G1 MEMS 2.8 1.8 10.3 257.4 0.8 11.3 2.7 14.8 8.9 5.5
G2 MEMS 2.8 1.0 10.9 171.0 0.8 4.6 2.7 5.2 8.9 0.2
G3 MEMS 2.8 0.7 11.0 170.9 0.8 3.6 2.7 4.2 8.8 0.3

Table A.3: Comparison of five applications on disks and MEMS-based storage devices. All
numbers are in seconds.

file operations (e.g., create, delete, read, write) and was designed to be representative of the file

system workloads seen in e-mail, news, and electronic commerce environments. Table A.3 shows

that MEMS-based storage devices can significantly reduce the I/O time for these workloads. Both

Andrew and PostMark show an improvement in I/O service time between 4X and 6X, with an

overall application performance improvement between 2X and 4X.

The GNU Linker benchmark, Gnuld, is a test in which a large set of object files are linked using

the GNU linker. All of the MEMS-based storage devices improve performance over the Atlas10k,

with the G3 device decreasing I/O time by 7X. However, SuperDisk’s higher bandwidth greatly

enhances its performance over the G1 device.

The TPC-D [165] benchmarks also see a large reduction in I/O time from the MEMS-based

storage devices. The higher bandwidth of the SuperDisk, however, greatly enhances its performance

for the TPC-D queries. In both cases, the SuperDisk out-performs the G1 MEMS device. The

performance of the MEMS-based storage devices is also hampered by very high disk cache hit

rates for the TPC-D queries, which are between 83% and 90%, respectively, for the disks. Our

MEMS-based storage device does not include a prefetching cache, and so cannot benefit from the

high sequentiality and data reuse of these benchmarks. However, even without a RAM cache, the

MEMS-based storage devices outperform the baseline disk by a wide margin.

A.4.3 MEMS-based storage devices as caches for disks

MEMS-based storage can also be used as an augmentation of the existing storage hierarchy. For

example, with their low entry cost, MEMS-based storage devices could be incorporated into future

disk drives as very large (1–10 GB) non-volatile caches. The superior performance of MEMS-based

storage devices would allow the cache to absorb latency-critical synchronous writes to meta-data

and cache small files to improve small read performance. For example, Baker et al. show that

using fast non-volatile storage to absorb synchronous disk writes both at a client and at a file server

increases performance from 20% to 90% [14].

To explore MEMS-based storage as a non-volatile cache for disk, DiskSim was augmented to

allow a MEMS-based storage device to serve as a cache for a disk. The cache was 2.5 GB, the disk

was 9.2 GB, and the workload was the 1-day cello trace from [135]. This trace actually includes
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eight separate devices so the experiments use a cache per disk. The results show that the average

I/O response time is 14.66 ms for an Atlas10K disk drive without any MEMS cache vs. 4.03 ms

for a disk with a G2 type MEMS-cache (and 2.76 ms for a single large G2 MEMS device that

replaced the disk). Since most of the read requests are serviced from the client-side DRAM cache,

the 3.5X performance improvement, over just a disk drive, is achieved mainly by quickly servicing

writes. However, unlike DRAM-based write caching (which absorbs writes but risks losing data),

the MEMS cache is non-volatile, providing the same data integrity guarantees as disk drives. An

alternate experiment in which all eight devices in the cello trace were re-mapped to a larger version

of the Atlas10K disk with a single MEMS cache only suffered a slight increase in average access

time to 4.66 ms. This longer service time stems from an increase in queueing since the large single

device is doing the work of eight. It shows, however, that caching absorbs enough of the device’s

activity to provide a good performance boost.

Instead of using the MEMS-based storage device as a cache, it is also possible to expose the

device to the OS so that file systems can allocate specific data onto it. Depending on their access

patterns and performance needs, file systems could place small structures (e.g., file system meta-

data) on MEMS-based storage, while using the disk for streamed or infrequently-accessed data. This

could be done on individual disks or within RAID arrays, creating the potential for AutoRAID-like

systems [175]. Further, because RAID arrays are less cost-sensitive than individual disks, arrays

of MEMS-based storage devices could be incorporated more cost-effectively into RAID arrays,

providing significant performance improvements for RAID’s costly write operations.

A.4.4 Power utilization comparison

The physical characteristics of MEMS-based storage devices may make them less power hungry

than even low-power disk drives [92, 93]. This power advantage comes from several sources: lower

overall power requirements for moving the media and operating the read/write tips, and faster tran-

sitions between active and standby modes.

While the media sled in a MEMS-based storage device does move continuously in the X and

Y directions during data access, the sled has much less mass than a disk platter and therefore takes

far less power to keep in motion. Specifically, it takes less than 100 mW to continuously move a

MEMS sled, while it takes over 600 mW to continuously spin a disk drive.

Another power savings comes from the electronics of MEMS-based storage devices. In disk

drives, the electronics span multiple chips and great distance from the magnetic head at the end of

the arm to the drive interface. Therefore, high-speed signals must cross several chip boundaries, in-

creasing power dissipation. Further, disks’ large physical platters, heads, arms and actuators require

sophisticated, power-hungry signal processing algorithms to compensate for imperfect manufactur-

ing, thermal changes, environmental changes, and general wear. Current low-power drives consume

almost 1.5 W [92, 93] in drive electronics, much of it spent on accurately positioning the recording

head. Of course, not all drive electronics must be active during short idle periods; some electronics,
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such as the servo control, can be powered down. This technique reduces total drive power by up to

60%, adding a small additional time penalty to return to active mode (from 40–400 ms).

Drive power can also be saved by turning off the spindle motor during long idle periods. Numer-

ous studies have demonstrated the power savings of this standby mode [48, 86, 108, 110], and cur-

rent low-power drives do incorporate this feature. MEMS-based storage can also employ a standby

mode, stopping sled movement during periods of inactivity. Further, the sled’s low mass allows

MEMS to quickly switch between active and standby mode (0.5 ms), where a low-power drive re-

quires up to 2 seconds to spin up and return to active mode. This long delay significantly increases

access time for the first request after an idle period. Therefore, drive power-management algorithms

usually wait at least 10 seconds before going into standby mode. During this 10 second delay, and

during the 2 second spin-up time, considerable power is wasted. In contrast, MEMS-based devices

can transition from standby-to-active in 0.5 ms, allowing these devices to be much more aggressive

in using standby mode.

MEMS-based storage also has the ability to adjust its power consumption during data accesses

by reading or writing at a smaller granularity than standard 512 byte blocks. Since most power is

dissipated by the probe tips, and not by positioning or moving the media sled, reading or writing

only the necessary data could save considerable power. The device only needs to activate as many

tips as are necessary to satisfy a request, which could result in a substantial power savings. In

contrast, the power required to move a disk drive’s arm and spindle, and to servo control the head

over the appropriate sector is much greater than the power necessary to actually read or write the

512 byte sector.

To understand how much power a MEMS-based storage device could save over a low-power

drive, we simulated both and measured their power consumption across six workloads. The disk

drive power model is based on IBM’s low-power Travelstar disk and power management techniques

described in [92, 93]. The device has 5 power modes: (1) active mode (data is being accessed)

consumes 2.5 W for reads and 2.7 W for writes; (2) performance idle (some electronics are powered

down) consumes 2.0 W; (3) fast idle (head is parked and servo control is powered down) consumes

1.3 W; (4) low-power idle (heads are unloaded from the disk) consumes 0.85 W; (5) standby (spindle

motor is stopped) consumes 0.2 W. According to the disk specification, the maximum time spent in

the intermediate modes is: 1 second for performance idle, 3 seconds for fast idle, and 8 seconds for

low-power idle [38].

For the MEMS-based storage device, power for a benchmark is computed during simulation

by using the physical parameters described by Carley et al. [28]; each probe tip and its signal

processing electronics consume 1 mW. To minimize packaging costs, we set our power budget to

about 1 W. This limits the MEMS-based storage device to no more than about 1,000 simultaneously

active probe tips. Further, given the sled design, the power consumed to keep the sled in motion

is 0.1 W. Therefore, the maximum power for this MEMS-based storage device is 1.1 W. Standby

power consumption is estimated to be 0.05 W.
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Andrew Gnuld Postmark TPC-D #4 TPC-D #6 Netscape
D M D M D M D M D M D M

active 19.5 0.7 84.6 3.6 1930.6 42.0 115.6 8.5 59.0 8.4 321.2 1.4
perfIdle 13.3 0.3 39.8 0.0 1181.1 7.7 45.4 0.1 43.6 0.3 1924.1 0.01
goToActive 0.0 0.0 0.0 0.0 0.0 513.5
fastIdle 0.0 0.0 0.0 0.0 0.0 1799.9
lowPowerIdle 0.0 0.0 0.0 0.0 0.0 1000.5
spinup 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 228.8 20.0
standby 0.0 0.2 0.0 0.0 0.0 8.0 0.0 1.1 0.0 1.9 308.9 327.9
Total (Joules) 32.8 1.2 124.4 3.6 3111.7 57.7 161.0 9.7 102.6 10.6 6096.9 349.3

Table A.4: Comparison of energy required to execute six different workloads using disks and
MEMS-based storage devices. The “D” category represents the disk, whereas the “M” category
represents the MEMS-based storage device. All numbers are given in Joules.

Table A.4 shows that the total energy consumed for the MEMS-based storage device is between

approximately 10X and 50X lower, depending on the application. The five workloads already dis-

cussed are highly active and so most of the savings comes directly from lower energy consumption

during data accesses (active mode). To test a more interactive workload, we traced the disk accesses

generated by a user browsing with Netscape on a Linux workstation for ten minutes. In this case,

much of the power savings comes from MEMS-based storage’s ability to aggressively use its low-

power standby mode. In contrast, the disk drive spends 90% of its power transitioning between

active and standby modes.

A.5 The need for timing-accurate storage emulation

The work described herein analyzes the implications and benefits of introducing hypothetical MEMS-

based storage devices into two levels of the computer system memory hierarchy. When used as

replacements for disks, standalone MEMS-based storage devices reduce I/O stall times by 4–74X

and improve overall application run times by 1.9–4.4X. When used as on-board caches for disks,

MEMS-based storage improves I/O response time by up to 3.5X. When used as disk replacements

in low-power contexts, the energy consumption of MEMS-based storage is 10–54X less than that

of state-of-the-art low-power disk drives. The combination of the high-level physical characteristics

of MEMS-based storage (small footprints, high shock tolerance) and the ability to directly integrate

MEMS-based storage with processing suggests their applicability in currently popular applications

such as portable gigabit storage systems and ubiquitous active storage nodes.

The results in this section were obtained using the techniques of full-system simulation and stor-

age subsystem simulation. The latter technique was necessary due to the experiment-time inability

to integrate user interactivity into the experiments, as would be required to recreate the environment

used to gather the Cello and Netscape traces. This duality demonstrates two of the limitations of

the technique of full-system simulation: first, the difficulty of executing experiments that rely on

time-critical external (to the full system) interactions, and second, the inability to use hardware of

software platforms for which validated simulation models are not available. Even the simulation
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parameters used for these experiments—such as the 1 GHz processor—lay outside the validated

parameters for SimOS and likely degrade the realism of the experimental results. The application-

oriented experimentation and results described herein would be equally obtainable using timing-

accurate storage emulation, with the added advantage that future experimentation would not share

these limitations.
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APPENDIX B
CASE STUDY: EXPERIENCE WITH PRODUCTION-DEVICE EXPERIMENTATION

As discussed in Appendix A, the purpose of this case study is twofold: to demonstrate the real-

world applicability of results that are obtainable using the techniques of timing-accurate storage

emulation, and to demonstrate the limitations of existing storage evaluation techniques that can be

overcome through the use of timing-accurate storage emulation.

This appendix explores an opportunity to improve the efficiency of operating system access

to locally-attached disks, by modifying the operating system’s data allocation and access to better

match the performance characteristics of real disks. A fuller treatment of the concepts in this section,

extending beyond the scope of timing-accurate storage emulation, is available in several conference

papers [140, 141, 142, 143] and a dissertation by Jiri Schindler [139].

B.1 The diminishing returns of creating ever-larger disk requests

In determining what data to read and write when, system software attempts to maximize overall per-

formance in the face of two competing pressures. On the one hand, the underlying disk technology

pushes for larger request sizes in order to maximize disk efficiency. Specifically, time-consuming

mechanical delays can be amortized by transferring large amounts of data between each reposition-

ing of the disk head. For example, Point A of Figure B.1 shows that reading or writing 1 MB at a

time results in a 75% disk efficiency for ordinary accesses. On the other hand, resource limitations

and imperfect information about future accesses impose costs on the use of very large requests.

File systems and databases attempt to mitigate the ever-present disk performance problem by

aggressively clustering on-disk data and by issuing fewer, larger disk requests. This is usually

done with only a vague understanding of disk characteristics, focusing on the notion that bigger

requests are better because they amortize per-request positioning delays over larger data transfers.

Although this notion is generally correct, there are performance and complexity costs associated

with making requests larger and larger. For video servers, ever-larger requests increase both buffer

space requirements and stream initiation latency [31, 32, 97]. Log-structured file systems (LFS)

incur higher cleaning overheads as segment size increases [30, 114, 134]. Even for general file

system operation, allocation of very large sequential regions competes with space management

robustness [116], and very large accesses may put deep prefetching ahead of foreground requests.

Also, large requests can be used for small files by grouping their contents [55, 60, 66, 134], but

larger requests require grouping more files with weaker inter-relationships. These examples all

indicate that achieving higher disk efficiency with smaller request sizes would be valuable.

System software designers would like to be able to always use large disk requests in order

to maximize disk efficiency. Unfortunately, resource limitations and imperfect information about
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Quantum Atlas 10K II Efficiency vs. I/O Size
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Figure B.1: Increased disk efficiency resulting from larger request sizes. This graph plots
disk efficiency as a function of I/O size. We define “disk efficiency” as the fraction of total access
time, including seek and rotational latency, spent moving data to or from the media. The maximum
streaming efficiency is less than 1.0, because no data is transferred when switching from one track
to the next. Point A shows that reading or writing 1 MB requests results in a 75% disk efficiency
for ordinary disk accesses. The “Unaligned I/O” curve shows disk efficiency for random, constant-
sized reads within a Quantum Atlas 10K II’s first zone (264 KB per track).

future accesses make this difficult in practice. Four system-level factors oppose the use of ever-

larger requests: responsiveness, limited buffer space, irregular access patterns, and storage space

management.

Responsiveness. Although larger requests increase disk efficiency, they do so at the expense of

higher latency. This trade-off between efficiency and responsiveness is a recurring theme in com-

puter systems, and it is particularly steep for disk systems. The latency increase can manifest itself in

several ways. At the local level, the non-preemptive nature of disk requests combined with the long

access times of large requests (35–50 ms for 1 MB requests) can result in substantial I/O wait times

for small, synchronous requests. This problem has been noted for both FFS and LFS [30, 150].

At the global level, grouping substantial quantities of data into large disk writes usually requires

heavy use of write-back caching. Although application performance is usually decoupled from the

eventual write-back, application changes are not persistent until the disk writes complete. Making

matters worse, the amount of data that must be delayed and buffered to achieve large enough writes

continues to grow. As another example, many video servers fetch video segments in carefully-

scheduled rounds of disk requests. Using larger disk requests increases the time for each round,

which increases the time required to start streaming a new video.

Buffer space. Although memory sizes continue to grow, they remain finite. Larger disk requests

stress memory resources in two ways. For reads, larger disk requests are usually created by fetching
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more data farther in advance of the actual need for it; this prefetched data must be buffered until it

is needed. For writes, larger disk requests are usually created by holding more data in a write-back

cache until enough contiguous data is dirty; this dirty data must be buffered until it is written to

disk. The persistence problem discussed above can be addressed with non-volatile RAM, but the

buffer space issue will remain.

Irregular access patterns. Large disk requests are most easily generated when applications

use regular access patterns and large files. Although sequential full-file access is relatively com-

mon [15, 120, 170], most data objects are much smaller than the disk request sizes needed to

achieve good disk efficiency. For example, most files are well below 32 KB in size in UNIX-like

systems [60, 155] and below 64 KB in Microsoft Windows systems [45, 170]. Directories and file

attribute structures are almost always much smaller. To achieve sufficiently large disk requests in

such environments, access patterns across data objects must be predicted at on-disk layout time.

Although approaches to grouping small data objects have been explored [55, 60, 66, 134], all are

based on imperfect heuristics, and thus they rarely group things perfectly. Even though disk effi-

ciency is higher, misgrouped data objects result in wasted disk bandwidth and buffer memory, since

some fetched objects will go unused. As the target request size grows, identifying sufficiently strong

inter-relationships becomes more difficult.

Storage space management. Large disk requests are only possible when closely related data

is collocated on the disk. Achieving this collocation requires that on-disk placement algorithms be

able to find large regions of free space when needed. Also, when grouping multiple data objects,

growth of individual data objects must be accommodated. All of these needs must be met with

little or no information about future storage allocation and deallocation operations. Collectively,

these facts create a complex storage management problem. Systems can address this problem with

combinations of pre-allocation heuristics [21, 67], on-line reallocation actions [111, 134, 157], and

idle-time reorganization [17, 114]. There is no straightforward solution and the difficulty grows

with the target disk request size, because more related data must be clustered.

B.2 Understanding two efficiency-impacting disk characteristics

In light of the previous discussion, an alternative operating system-level approach is needed that im-

proves the performance of the disk subsystem without resorting to ever-larger request sizes. In this

section we identify an approach—track-aligned, track-sized disk accesses—that uses knowledge of

performance-impacting disk characteristics to improve the efficiency with which the disk responds

to requests.

The first uses of disks in the 1950s ignored the effects of geometry in the interest of achieving

a working system. Later, algorithms were developed that paid attention to disk geometry in order

to improve disk efficiency. These algorithms were often hard-coded and hardware-specific, making

them fragile across generations of hardware. To address this, a layer of abstraction was standardized

between operating systems and disks, virtualizing disk storage as a flat array of fixed-sized blocks.
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(b) Mapping of LBNs onto physical sectors

Figure B.2: Standard system view of disk storage and its mapping onto physical disk sectors.
(a) illustrates the linear sequence of logical blocks, often 512 bytes, that the standard disk protocols
expose. (b) shows one example mapping of those logical block numbers (LBNs) onto the disk media.
The depicted disk drive has 200 sectors per track, two media surfaces, and track skew of 20 sectors.
Logical blocks are assigned to the outer track of the first surface, the outer track of the second
surface, the second track of the first surface, and so on. The track skew accounts for the head switch
delay to maximize streaming bandwidth. The picture also shows a defect between the sectors with
LBNs 580 and 581, depicted as XX, which has been handled by slipping. Therefore, the first LBN
on the following track is 599 instead of 600.

Unfortunately, this abstraction hides too much information, making the OS’s task of maximizing

disk efficiency more difficult than necessary.

Modern storage protocols, such as SCSI and IDE/ATA, expose storage capacity as a linear array

of fixed-sized blocks, as shown in Figure B.2(a). By building atop this abstraction, OS software

need not concern itself with complex device-specific details, and code can be reused across the

large set of storage devices that use these interfaces (e.g., disk drives and disk arrays). Likewise, by

exposing only this abstract interface, storage device vendors are free to modify and enhance their

internal implementations. Behind this interface, the storage device must translate the logical block

numbers (LBNs) to physical storage locations. Figure B.2(b) illustrates this translation for a disk

drive, wherein LBNs are assigned sequentially on each track before moving to the next. Disk drive

advances over the past decade have conspired to make the track a sweet-spot for disk efficiency,

yielding the 50% increase at Point B of Figure B.3, as discussed below.

Head switch. A head switch occurs when a single request accesses a sequence of LBNs whose

on-disk locations span two tracks. This head switch consists of turning on the electronics for the

appropriate read/write head and adjusting its position to account for inter-surface alignment imper-

fections. The latter step requires the disk to read servo information to determine the head’s location
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Figure B.3: Measured advantage of track-aligned access over unaligned access. This graph
extends the data in Figure B.1 with an additional cure representing track-aligned accesses. Both the
“Track-aligned I/O” and “Unaligned I/O” curves show the disk efficiency for random, constant-
sized reads within a Quantum Atlas 10K II’s first zone (264 KB per track). Point B highlights the
higher efficiency of track-aligned access (0.73, or 82% of the maximum) over unaligned access for
a track-sized request. Point A shows where unaligned I/O efficiency catches up to the track-aligned
efficiency at Point B. The peaks in the track-aligned curve correspond to multiples of the track size.

and then to shift the head towards the center of the second track. In the example of Figure B.2(b),

head switches occur between LBNs 199 and 200, 399 and 400, and 598 and 599.

Even compared to other disk characteristics, head switch time has improved little in the past

decade. While disk rotation speeds have improved by 3× and average seek times by 2.5×, head

switch times have decreased by only 20–40% (see Table B.1). At 0.6–1.1 ms, a head switch now

takes about 1/5 of a revolution for a 15,000 RPM disk. This trend has increased the significance

of head switches. Further, this trend is expected to continue, because rapid decreases in inter-track

spacing require increasingly precise head positioning.

Naturally, not all requests span track boundaries. The probability of a head switch, Phs, depends

on workload and disk characteristics. For a request of N sectors and a track size of SPT sectors

(sectors per track), Phs = (N −1)/SPT , assuming that the requested locations are uncorrelated with

track boundaries. For example, with 64 KB requests (N = 128) and an average track size of 192 KB

(SPT = 384), a head switch occurs for every third access, on average. With N approaching SPT ,

almost every request will involve a head switch, which is why we refer to conventional systems as

“track-unaligned” even though they are only “track-unaware”. In this situation, track-aligned access

improves the response time of most requests by the 0.6–1.1 ms head switch time.

Zero-latency access. A second disk feature that pushes for track-based access is zero-latency

access, also known as immediate access or access-on-arrival. When disk firmware wants to read
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Head Avg. 512B Sectors Number
Disk Year RPM Switch Seek per Track of Tracks Capacity

HP C2247 1992 5400 1 ms 10 ms 96–56 25649 1 GB
Quantum Viking 1997 7200 1 ms 8.0 ms 216–126 49152 4.5 GB
IBM Ultrastar 18 ES 1998 7200 1.1 ms 7.6 ms 390–247 57090 9 GB
IBM Ultrastar 18LZX 1999 10000 0.8 ms 5.9 ms 382–195 116340 18 GB
Quantum Atlas 10K 1999 10000 0.8 ms 5.0 ms 334–224 60126 9 GB
Seagate Cheetah X15 2000 15000 0.8 ms 3.9 ms 386–286 103750 18 GB
Quantum Atlas 10K II 2000 10000 0.6 ms 4.7 ms 528–353 52014 9 GB

Table B.1: Trends in representative disk characteristics. Note the minimal improvement in head
switch time relative to improvements in other characteristics.

N contiguous sectors, the simplest approach is to position the head (by a combination of seek and

rotational latency) to the first sector and read the N sectors in ascending LBN order. With zero-

latency access support, disk firmware can read the N sectors from the media into its buffers in any

order. In the best case of reading exactly one track, the head can start reading data as soon as the

seek is completed; no rotational latency is involved because all sectors on the track are needed. The

N sectors are read into an intermediate buffer, assembled in ascending LBN order, and sent to the

host. The same concept applies to writes, except that data must be moved from host memory to the

disk’s buffers before it can be written onto the media.

As an example of zero-latency access on the disk from Figure B.2(b), consider a read request

for LBNs 200–399. First, the head is moved to the track containing these blocks. Suppose that,

after the seek, the disk head is positioned above the sector containing LBN 380. A zero-latency disk

can immediately read LBNs 380–399. It then reads the sectors with LBNs 200–379. In this way,

the entire track can be read in only one rotation even though the head arrived in the “middle” of the

track.

The expected rotational latency for a zero-latency disk decreases as the request size increases,

as shown in Figure B.4. Therefore, a request to the zero-latency access disk for all SPT sectors

on a track requires only one revolution after the seek. An ordinary disk, on the other hand, has an

expected rotational latency of (SPT − 1)/(2 · SPT ), or approximately 1/2 revolution, regardless of

the request size and thus a request requires anywhere from one to two (average of 1.5) revolutions.

Putting it all together. For requests around the track size (100–500 KB), the potential benefit

of track-based access is substantial. A track-unaligned access for SPT sectors involves four delays:

seek, rotational latency, SPT sectors worth of media transfer, and head switch. An SPT -sector

track-aligned access eliminates the rotational latency and head switch delays. This reduces access

times for modern disks by 3–4 ms out of 9–12 ms, resulting in a 50% increase in efficiency.

Of course, the real benefit provided by track-based access depends on the workload. For exam-

ple, a workload of random small requests, as characterizes transaction processing, will see minimal

improvement because request sizes are too small. At the other end of the spectrum, a system that

sequentially reads a single large file will also see little benefit, because positioning costs can be

162



Average Rotational Latency for a 10K RPM disk

0

1

2

3

4

5

6

0% 25% 50% 75% 100%
I/O size [% of track size]

R
ot

at
io

na
ll

at
en

cy
[m

s]

Zero-latency Disk
Ordinary Disk

Figure B.4: Average rotational latency for ordinary and zero-latency disks as a function of
track-aligned request size. The request size is expressed as a percentage of the track size.

amortized over megabyte sized transfers and the disk’s prefetching logic will ensure that this occurs.

Track-based access provides the highest benefit to applications with medium-sized I/Os. One set

of examples is streaming media services, such as video servers, audio (MP3) servers, and content

distribution network (CDN) caches. Another includes storage components (e.g., Network Appli-

ance’s filers [84], HP’s AutoRAID [176], or EMC’s Symmetrix) that map data to disk locations in

mid-sized chunks. A third is a general-purpose operating system’s memory management in reading

and storing data between its internal buffer cache and attached storage devices. This is one of the

paths we chose to explore in further detail, as described in the following subsection.

B.3 OS-level awareness of efficient disk access patterns

Track-based disk access is a design option for any system component that allocates disk locations

and generates disk requests. In some systems, like the one used in our experiments, these decisions

are made in the system software (e.g., file system) of a workstation, file server, or content-caching

appliance. In others, the system software decisions are overridden by a logical disk [42] or a high-

end disk array controller [159, 176], using some sort of mapping table to translate requested LBNs

to internal disk locations. Track-based disk access is appropriate within any of these systems, and

it requires relatively minor changes to existing systems. This section discusses practical design

considerations involved with these changes.

To utilize track boundary information, the algorithms for on-disk placement and request gen-

eration must support variable-sized extents. Extent-based file systems, such as NTFS [117] and

XFS [161], allocate disk space to files by specifying ranges of LBNs (extents) associated with each

file. Such systems lend themselves naturally to track-based alignment of data: during allocation,
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Figure B.5: An example mapping of operating system-level blocks to disk sectors for the
FreeBSD Fast File System (FFS). In this example, physical block 101 maps directly to disk sectors
1626–1641. Block 103 is treated as an “excluded” block in our implementation because it spans
the disk track boundary between LBNs 1669–1670.

extent ranges can be chosen to fit track boundaries. Block-based file systems, such as Ext2 [21]

and FFS [116], group LBNs into fixed-size allocation units (blocks), typically 4 KB or 8 KB in size.

Block-based systems can approximate track-sized extents by placing sequential runs of blocks such

that they never span track boundaries. This approach wastes some space when track sizes are not

evenly divisible by the block size. However, this space is usually less than 5% of total storage space

and could be reclaimed by the system for storing inodes, superblocks, or fragmented blocks. Alter-

nately, this space can be reclaimed if the cache manager can be modified to handle partially-valid

and partially-dirty blocks.

We have developed a prototype implementation of a traxtent-aware file system in FreeBSD.

This implementation identifies track boundaries and modifies the FreeBSD FFS implementation to

take advantage of this information. The following three paragraphs describe the few, small changes

required to integrate traxtent-awareness into FreeBSD FFS.

Excluded blocks and traxtent allocation. We introduce the concept of the excluded block,

highlighted in Figure B.5. Blocks that span track boundaries are excluded from allocation decisions

by marking them as used in the free-block map. Whenever the preferred block (the next sequential

block) is excluded, we instead allocate the first block of the closest available traxtent. When pos-

sible, mid-size files are allocated such that they fit within a single traxtent. On average, one out of

every twenty blocks of the Quantum Atlas 10K is excluded under our modified FFS. As per-track

capacity grows, the frequency of excluded blocks decreases—for the Atlas 10K II, one in thirty is

excluded.

Traxtent-sized access. No fundamental changes are necessary in the FFS clustered read-ahead

algorithm. FFS properly identifies runs of blocks between excluded blocks as clusters and accesses

them with a single disk request. Until non-sequential access is detected, we ignore the “sequential

count” to prevent multiple partial accesses to a single traxtent; for non-sequential file sessions, the

default mechanism is used. We handle the special case where there is no excluded block between
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traxtents by ensuring that no read-ahead request goes beyond a track boundary. At a low level,

unmodified FreeBSD already supports command queuing at the device and attempts to have at least

one outstanding request for each active data stream.

Traxtent data structures. When the file system is created, track boundaries are identified,

adjusted to the file system’s partition, and stored on disk. At mount time, they are read into an ex-

tended FreeBSD mount structure. We chose the mount structure because it is available everywhere

traxtent information is needed.

Our experimentation uncovered an additional design consideration: current systems only real-

ize the full benefit of track-based requests when using command queueing at the disk. Although

zero-latency disks can access LBNs on the media in any order, current SCSI and IDE/ATA con-

trollers only allow for in-order delivery to or from the host. As a result, bus transfer overheads hide

some of the benefit of zero-latency access. By having multiple requests outstanding at the disk, the

next request’s seek can be overlapped with the current request’s bus transfer, yielding the full disk

efficiency benefits shown in Figure B.3. Fortunately, most modern disks and most current operating

systems support command queueing at the disk.

B.4 System-oriented evaluation using production-device experimentation

The experiments described in this section were performed on two disks that support zero-latency

access (Quantum Atlas 10K and Quantum Atlas 10K II) and two disks that do not (Seagate Chee-

tah X15 and IBM Ultrastar 18 ES). The disks were attached to a 550 MHz Pentium III-based PC.

The Atlas 10K II was attached via an Adaptec Ultra160 Wide SCSI adapter, the Atlas 10K and

Ultrastar were attached via an 80 MB/s Ultra2 Wide SCSI adapter, and the Cheetah via a QLogic

Fibre Channel adapter.

This section compares our prototype traxtent-aware FFS to unmodified FFS. We also include

results for a modified FFS, here called fast start FFS, that aggressively prefetches contiguous blocks.

The unmodified FFS slowly ramps up its prefetching as it observes sequential access to a file. The

fast start FFS, on the other hand, prefetches up to 32 contiguous blocks on the first access to a

file, thus approximating the behavior of the traxtent-aware FFS (albeit with larger requests and no

knowledge of track boundaries).

Each test is performed on a freshly-booted system with a clean partition on a Quantum At-

las 10K. The tests verify the expected performance effects: small penalty for single sequential scan,

substantial benefit for interleaved scans, and no effect on small file activity. We also identify and

measure the worst-case scenario. The results are summarized in Table B.2.

Single large file. The first experiment is an I/O-bound linear scan through a 4 GB file. As

expected, traxtent-FFS runs 5% slower than unmodified FFS or fast start FFS (199.8 s vs. 189.6 s

and 188.9 s respectively). This is because FFS is optimized for large sequential single-file access

and reads at the maximum disk streaming rate, whereas traxtent-FFS inserts an excluded block one

out of every twenty blocks (5%). This penalty could be eliminated by changing the file system cache
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4 GB scan 512 MB diff 1 GB copy PostMark SSH build head *
unmodified 189.6 s 69.7 s 156.9 s 53 trans/s 72.0 s 4.6 s
fast start 188.9 s 70.0 s 155.3 s 53 trans/s 71.5 s 5.5 s
traxtents 199.8 s 56.6 s 124.9 s 55 trans/s 71.5 s 5.2 s

Table B.2: Production-device experimentation results for the unmodified and modified
FreeBSD Fast File System (FFS). The FFS configuration for each run in this table is described
in Section B.4. All but the head * values are an average of three runs. The individual run times
deviate from their average by less than 1%. The head * value is an average of five runs and the
individual runs deviate by less than 3.5%. Postmark reported the same number of transactions
per second in all three runs for the respective FFS, except for one run of the unmodified FFS that
reported 54 transactions per second.

to support buffering of partial blocks (much like IP fragments) instead of using excluded blocks in

large files; this approach would give the block-based system extent-like flexibility.

Multiple large files. The second experiment consists of the diff application comparing two

large files. Because diff interleaves fetches from the two files, we expect to see a speedup from im-

proved disk efficiency. For 512 MB files, traxtent-FFS completes 19% faster than unmodified FFS

or fast start FFS. A more detailed analysis shows that traxtent-FFS performs 6724 I/Os (average size

of 160 KB) in 56.6 s while unmodified FFS performs only 4108 I/Os (mostly 256 KB) but requires

69.7 s. The fast start FFS performs 4094 I/Os (all but one at 256 KB) and requires 70.0 s. Sub-

tracting media transfer time, unmodified FFS incurs 6.9 ms of overhead (seek + rotational latency

+ track switch time) per request, and traxtent-FFS incurs only 2.2 ms of overhead per request. In

fact, the 19% improvement in overall completion time corresponds to an improvement in disk effi-

ciency of 23%, exactly matching the predicted difference between single-track accesses and 256 KB

unaligned accesses on an Atlas 10K disk.

The third experiment verifies write performance by copying a 1 GB file to another file in the

same directory. FFS commits dirty buffers as soon as a complete cluster is created, which results

in two interleaved request streams to the disk. This test shows a 20% reduction in run time for

traxtent-FFS over unmodified FFS (124.9 s vs. 156.9 s), and a similar reduction over fast start FFS,

which finished in 155.3 s.

Small Files. Two application benchmarks are used to verify that the traxtent modifications do

not penalize small file workloads. PostMark [96] simulates the small-file activity of busy Inter-

net servers. Our experiments use PostMark v1.11 and its default parameters: 5–10KB files and

1:1 read-to-write and create-to-delete ratios. SSH-build [151] represents software development ac-

tivity, replacing the Andrew benchmark. Its three phases unpack the compressed tar archive of

SSH v1.2.27, generate the header files and Makefiles, and build the program executable.

As expected, we observe little difference. The SSH-build results differ by less than 0.2%, be-

cause the file system activity is dominated by small synchronous writes and cache hits. The fast

start FFS performs exactly like the traxtent FFS having an edge of 0.2% over the unmodified FFS.

PostMark is 4% faster with traxtents (55 transactions/second versus 53 for both unmodified and fast
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start FFS), because the few track switches are avoided. Fast start is not important for PostMark,

because the files consist of only 1–3 blocks.

One might view these results as a negative indication of traxtents’ value, but they are not. Recall

that FreeBSD FFS does not explicitly group small files into large disk requests. Such grouping has

been shown to yield 2–8× throughput increases for static web servers [95], web proxy caches [152],

and software development activities [60]. Based on our measurements, we expect that the additional

50% increase in throughput from traxtents would be realized given such grouping.

Worst case scenario. As expected, we observe no penalty to small file I/O and a minimal

(5%) penalty to the unoptimized single stream case. For random file I/O, FFS’s “sequential count”

prefetch control replaces the traxtent-based fetch mechanism, preventing useless full-track reads.

The one remaining worst-case scenario would be single-block reads to the beginnings of many large

files; in this case, the original FFS will fetch the first 8KB block and prefetch the second, whereas

the modified FFS will fetch the entire first traxtent (≈ 160 KB). To evaluate this scenario, we ran

an experiment, called head *, that reads the first byte of 1000 200 KB files. The results show a

45% penalty for traxtents (3.6 s vs. 5.2 s), closely matching the predicted per-request service time

difference (5.6 ms vs. 8.0 ms). Fortunately, this scenario is not often expected to arise in practice.

Not surprisingly, the fast start FFS performs even worse than the traxtent FFS with an average

runtime of 5.5 s as it prefetches even more unnecessary data.

B.5 The need for timing-accurate storage emulation

The work described herein analyzes the system-level integration of track-aligned extents (traxtents),

logical block extents that are aligned and sized by the operating system so as to match the corre-

sponding disk track size. By utilizing this awareness of a small amount of disk-specific knowledge,

an operating system can significantly increase the efficiency of mid-to-large-sized requests—i.e.,

request sizes of 100 KB and up. Traxtent-aware access results in up to 50% higher disk efficiency—

the fraction of total access time spent moving data to or from the media—which translates into

up to 20% improvements in application-level performance in our experiments. The demonstrated

application-level improvement stems from two main sources. First, ensuring track-aligned access

by the operating system minimizes the number of track switches, whose times have not decreased

much over the years and are now significant (0.6–1.1 ms) relative to other delays. Second, ensuring

full-track accesses by the operating system eliminates rotational latency (averaging 3 ms per request

at 10,000 RPM) for disk drives whose firmware supports zero-latency access.

The results in this section were obtained using the technique of production-device experimen-

tation; this choice was mandated because no other full-system evaluation approach for disks was

available when the analysis was performed. Although the experiments were highly successful and

the results well-received externally, the necessity of production device-based experimentation re-

sulted in two primary limitations on future evaluations. First, zero-latency access is not a supported

feature of all current disk products. A product developer who is interested in evaluating the potential
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of track-aligned extents in a modified disk has no experimental options short of building a proto-

type with the requisite firmware functionality. Second, researchers cannot look at the performance

impact of hypothetical device modifications in a full-systems context—i.e., whether considering

physical changes such as head-switch time reduction or software changes such as a new scheduling

algorithm—without again constructing a physical prototype. For example, one promising approach

that we were unable to pursue is support for out-of-order bus delivery in device firmware, which we

expect would further improve the efficiency of traxtent-based accesses. The experimental approach

and results described in this section would be equally obtainable using a timing-accurate storage

emulator built upon a validated device model, with the added advantage that future experimentation

would not share these limitations.
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APPENDIX C
FINE-GRAINED AND EFFICIENT TIMEPOINT DETERMINATION

Because time stamps are taken multiple times in several locations during each storage request (as

discussed in Section 5.2), and taking into account the possible sub-millisecond resolution of an

emulated storage request, the facility for taking time stamps must be both efficient and have a small

resolution. One resource that meets these goals of efficiency and resolution is the time stamp counter

(TSC) register on the Pentium 4 processor used in our architecture. This appendix describes the

technique we used to calibrate the clocks on the host and emulation system using the TSC register.

C.1 Using a processor cycle counter to measure elapsed time

The TSC is a 64-bit cycle counter register, reset to zero at processor power-up or reset, that is

incremented once per processor clock cycle. Effective use of this counter requires determining

the number of TSC cycles that elapse per second (CPS). CPS can be determined empirically by

counting the number of cycles that elapse over a known time interval, beginning at an initial time ti
and ending at the final time t f , as shown in Equation C.1:

CPS =
(cycle count at t f )− (cycle count at ti)
(system time at t f )− (system time at ti)

(C.1)

CPS is a hardware-dependent value and will likely vary between the host and target systems. It

should not be necessary to recalculate CPS after an initial value has been determined.

Calculations of the elapsed time in milliseconds (∆T ) are used frequently during an experiment.

The emulator needs to know the elapsed time since the beginning of an experiment when a request

arrives, and it needs to determine the elapsed time since the beginning of a currently active request.

∆T is calculated during an experiment by comparing the TSC at an initial time t ′i and again at the

current time t ′, and converting these values to milliseconds as shown in Equation C.2:

∆T =
(cycle count at t ′)− (cycle count at t ′i)

CPS
×1000.0 (C.2)

In a remote emulation environment, where the host and target systems utilize different physical

hardware, it is necessary to verify that the calculated rates of passage of time on both systems are

consistent. It is not necessary for the clocks to be synchronized absolutely with respect to each

other, or for the clock cycles to advance at identical rates; rather, externally-driven events that

propagate end-to-end through the storage request path (such as request arrivals) can be used as

relative synchronization points for such analysis. For example, this verification can be achieved by

comparing the request interarrival times as measured at different points throughout the system: even
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if there is a large difference between the measured length of time of a request on the host and on the

emulator, then assuming no variance in propagation delays there should be no difference between

the measured time between request arrivals. This concept is demonstrated graphically in Figure C.1.

Experimental verification of the correspondence of these times is described in the following section.

C.2 Clock calibration on the host and emulation systems

The basis of time stamp measurements in our implementation of a timing-accurate storage em-

ulator involves measuring elapsed time both in terms of processor cycles and actual wall clock

time. Processor cycles are measured using the Pentium 4 RDTSC (Read Time Stamp Counter)

assembly-language operation. This operation was invoked as shown in Figure C.2. System times

were obtained using the gettimeofday() POSIX-compliant system call, which returns the current

time expressed as the number of seconds and microseconds since a fixed time in the past.C.1 Use of

RDTSC is preferable over the gettimeofday() system call because of both the low resolution and

high overhead of the system call.

To improve the accuracy of the gettimeofday() system call, we enabled the Network Time

Protocol (NTP) service on both the host and emulator systems and each was synchronized with a

pair of Public NTP Secondary (stratum 2) Time Servers. The time-update daemon running on each

system microadjusts the system clock (i.e., the value returned by gettimeofday()) based on the

daemon’s synchronization with the network time servers. However, the daemon does not modify

the values returned by the TSC. This has the interesting effect of causing a slight drift in the CPS

measured via Equation C.1, as shown in Figure C.3 and Figure C.4. These results suggest that time

intervals of as short as 1 second provide estimates for the current CPS on our 2 GHz systems that

are accurate within one part in 10,000, although in practice intervals of 50 s or greater provide the

best precision. When using a clock-adjusting scheme such as the NTP daemon, an evaluator could

mitigate the drift effect by calculating CPS in this manner before every experiment.

When operating in a remote emulation environment, it is necessary to verify that the measured

values for CPS on both the host and emulator systems produce timelines with identical rates of

passage of time on each system, as shown in Figure C.1. The results are shown in Table C.1. The

errors are negligible, which yields confidence in the accuracy with which the CPS values have been

determined. To demonstrate an erroneous determination, we intentionally introduced a 10% error

into the CPS value for the emulated system and repeated this evaluation. The erroneous results are

shown in Table C.2; the magnitude of the error indicates that the determination is invalid.

C.1The number of seconds returned is a signed 32-bit integer that represents the differential number of seconds compared
with a fixed time. The fixed time is currently universally defined as the dawn of the modern computing age: the stroke of
midnight on January 1, 1970. At the time of this writing, it is unclear whether the computing age will come to an abrupt
halt when this 32-bit signed integer overflows on January 18, 2038. However, the author fully believes that the principles
of timing-accurate storage emulation will remain valid at the transition and thereafter. Additionally, the author finds it
curiously fascinating to think of what sorts of storage devices will be being emulated in three decades.
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Figure C.1: Verifying that unsynchronized clocks running on separate hardware systems are
advancing at the same rate of time. R1, R2, and R3 represent three temporally sequential requests.
Although the measured service times of individual requests might differ on the host and emulation
systems due to delays along the request propagation path, the measured request interarrival times
(or intercompletion times) should be equal as long as the clocks on both systems are advancing at
equal rates.

inline void time_stamp (u_int64_t *d) {
asm volatile ("rdtsc" : "=&A" (*d));

}

void foo (void) {
u_int64_t ts;
time_stamp(&ts);

}

Figure C.2: Invocation of the RDTSC assembly-language operation in a C-language program.
The operation returns the number of processor cycles elapsed since processor power-on or reset.
This is an efficient and precise method of obtaining timestamps during an experiment.
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Figure C.3: Drifting of the measured processor cycles-per-second (CPS) for the host system.
Note that the Y-axis does not begin at the origin in these graphs. This graph was generated accord-
ing to Equation C.1 by recording an initial cycle count and system time at time ti, then calculating
a new CPS value using that ti once per second over a period of four days (345,600 s); the mea-
surement at (for example) t f = 1000 was calculated 1000 s after ti using the current cycle count
and system time. The observed drift is caused by the network time protocol daemon, which effects
variable microadjustments of the system time approximately every 1000 seconds in order to keep
the system time synchronized with that of an external server. This causes the system’s definition of
“second” to change over time (the daemon does not affect the processor), causing the CPS value to
vary from the four-day mean of 1,993,908,205 cycles by -0.00011% to +0.00015%. The left-hand
graph is a domain-limited reproduction of the right-hand graph over the range [0,2500]; the first
point at which the microadjustment changes occurs at time 1001.
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Figure C.4: Drifting of the measured processor cycles-per-second for the emulator system.
Note that the Y-axis does not begin at the origin in these graphs. This represents is the same
measurement as in Figure C.3, except the data were taken on the emulation system. The four-
day mean is 1,993,868,931; the drift ranges from -0.00010% to +0.000033%. The left-hand graph
is a domain-limited reproduction of the right-hand graph over the range [0,2500]; the first point at
which the microadjustment changes occurs at time 569.
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QLogic Adaptec
value (ms) percent value (ms) percent

Interarrival time average error 0.000025 0.000025% 0.000043 0.000043%
Interarrival time RMS error 0.29 0.29% 0.20 0.20%
Overall error (based on arrival times) 0.25 0.000025% 0.43 0.000043%
Intercompletion time average error 0.000025 0.000025% 0.000066 0.000066%
Intercompletion time RMS error 0.035 0.035% 0.037 0.037%
Overall error (based on completion times) 0.25 0.000025% 0.41 0.000041%

Table C.1: Verification of the measured CPS values in a remote emulation environment. This
represents a simple workload that repeatedly sends an identical small read request (block offset
zero, length 2 blocks) to the emulated device with frequency 10 Hz (i.e., an average 100 ms inter-
arrival time), over the span of N=10,000 requests. This was performed for emulated devices using
both the QLogic and Adaptec host bus adapters. We examined the average and root-mean-square
interarrival time difference for adjacent request pairs (i.e., the n− 1 times between the arrival of
request n and request n+ 1, where 1 ≤ n ≤ (N − 1)), as well as the overall error between the first
and final requests (based on the arrival time of request 1 and request N). This analysis was repeated
using the intercompletion times of the requests.

QLogic Adaptec
value (ms) percent value (ms) percent

Interarrival time average error 9.1 9.1% 9.1 9.1%
Interarrival time RMS error 9.1 9.1% 9.1 9.1%
Overall error (based on arrival times) 91000 9.1% 91000 9.1%
Intercompletion time average error 9.1 9.1% 18 18%
Intercompletion time RMS error 9.1 9.1% 13 13%
Overall error (based on completion times) 91000 9.1% 91000 9.1%

Table C.2: The effect of erroneous CPS values at verification time. This is the same type of
evaluation as shown in Table C.1, except here the emulator system was artificially calibrated with
an erroneous CPS value 10% too large. Observation of this mismatch would suggest that any exper-
imental results based on this calibration should be discarded as nonrepresentative of the emulated
device model.
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APPENDIX D
FULL DATA FROM THE TIMING-ORIENTED EXPERIMENTATION

Many of the graphs in the figures from Chapter 5 and Chapter 6 are presented with limited X-axis

range and Y-axis domain to simplify comparison among figures. The full plots of the individual

request error subgraphs (i.e., the upper-left subgraph in the figures) are reproduced in this section.

Note that this causes the Y-axis range to vary substantially among each of the subgraphs, though

the X-axis domain is constant among all subgraphs in each figure. The plots for the experiments in

Chapter 5 include:

Figure D.1 (E2→3: ∆Tlookahead=0 µs, ∆Tskew=0 µs, Adaptec) . . . . . . . . . . . . . . . . . . . . . 175

Figure D.2 (E2→3: ∆Tlookahead=0 µs, ∆Tskew=0 µs, QLogic) . . . . . . . . . . . . . . . . . . . . . 176

Figure D.3 (E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec) . . . . . . . . . . . . . . . . . . . . 177

Figure D.4 (E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic) . . . . . . . . . . . . . . . . . . . . 178

Figure D.5 (E1→2: ∆Tlookahead=0 µs, ∆Tskew=0 µs, Adaptec) . . . . . . . . . . . . . . . . . . . . . 179

Figure D.6 (E1→2: ∆Tlookahead=0 µs, ∆Tskew=0 µs, QLogic) . . . . . . . . . . . . . . . . . . . . . 180

Figure D.7 (E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec) . . . . . . . . . . . . . . . . . . . . 181

Figure D.8 (E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic) . . . . . . . . . . . . . . . . . . . . 182

Figure D.9 (E1→3: ∆Tlookahead=30 µs, ∆Tskew=60 µs, Adaptec) . . . . . . . . . . . . . . . . . . 183

Figure D.10 (E1→3: ∆Tlookahead=30 µs, ∆Tskew=151 µs, QLogic) . . . . . . . . . . . . . . . . . 184

The plots for the experiments in Chapter 6 include graphs representing the metrics for the Emulated

Cheetah, Emulated 50K RPM, and Emulated MEMS models:

Figure D.11 (PostMark benchmark) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Figure D.12 (SSH-build benchmark) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure D.13 (Linux kernel build) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
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Figure D.1: E2→3: ∆Tlookahead=0 µs, ∆Tskew=0 µs, Adaptec. Note that the Y-axis range may vary
substantially among each individual subgraph in this chapter.
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Figure D.2: E2→3: ∆Tlookahead=0 µs, ∆Tskew=0 µs, QLogic.
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Figure D.3: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec.
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Figure D.4: E2→3: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic.
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Figure D.5: E1→2: ∆Tlookahead=0 µs, ∆Tskew=0 µs, Adaptec.
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Figure D.6: E1→2: ∆Tlookahead=0 µs, ∆Tskew=0 µs, QLogic.
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Figure D.7: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, Adaptec.
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Figure D.8: E1→2: ∆Tlookahead=30 µs, ∆Tskew=0 µs, QLogic.
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Figure D.9: E1→3: ∆Tlookahead=30 µs, ∆Tskew=60 µs, Adaptec.
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Figure D.10: E1→3: ∆Tlookahead=30 µs, ∆Tskew=151 µs, QLogic.
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(c) Emulated MEMS-based storage device

Figure D.11: PostMark: Emulated Cheetah, Emulated 50K RPM, Emulated MEMS.
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Figure D.12: SSH-build: Emulated Cheetah, Emulated 50K RPM, Emulated MEMS.
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Figure D.13: Linux-build: Emulated Cheetah, Emulated 50K RPM, Emulated MEMS.
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