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Abstract

MEMS-based storage devices are a new technology that is significantly different from both disk drives and semicon-
ductor memories. These differences motivate the question of whether they need new abstractions to be utilized by
systems, or if existing abstractions will work well. This paper addresses this question by examining the fundamental
reasons that the abstraction works for existing systems, and by showing that these reasons hold for MEMS-based
storage. This result is borne out through several case studies of proposed roles MEMS-based storage devices may
take in future systems, and potential policies that may be used to tailor systems’ access to MEMS-based storage. We
argue that when considering the use of MEMS-based storage in systems, their performance should be compared to
that of a hypothetical disk drive that matches the speed of a MEMS-based storage device. We discuss exceptional
workloads that can use specific features of MEMS-based storage devices and that may require extensions to current
abstractions. Also, we consider the ramifications of the assumptions that are made in today’s models of MEMS-based
storage devices.
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1 Introduction

MEMS-based storage devices (MEMStores) offer an interesting new component for storage sys-
tem designers. With tiny mechanical positioning components, MEMStores offer disk-like densi-
ties (which are consistently significantly greater than FLASH or MRAM projections) with order
of magnitude latency and power reductions relative to high-performance and low-power disks,
respectively. These features make MEMStores worthy of exploration now, so that designers are
ready when the devices become available.

A debate has arisen, during this exploration, about which form of algorithms and interfaces are
appropriate for MEMStores. Early work [11, 26] mapped the linear logical block number (LBN)
abstraction of standard storage interfaces (SCSI and IDE/ATA) onto MEMStores, and concluded
that MEMStores looked much like disks. Many researchers are unhappy with this; since MEM-
Store mechanics are so different from disks they must need a new abstraction. Several groups
[14, 27, 38, 39] are exploring device-specific approaches that may require a new abstraction.

As is often the case with such debates, we believe that each “side” is right in some ways
and wrong in others. Unfortunately, the debate has devolved from educated arguments to closed-
minded assertions, in which papers are promoted in part just because they argue against a disk-like
view and others similarly penalized for accepting such a view. There is clearly a need for careful,
balanced development of input for this debate.

We divide the aspects of MEMStore use in systems into two categories: roles and policies.
MEMStores can take on various roles in a system, such as disk replacement, cache for hot blocks,
metadata-only storage, etc. For the debate at hand, the associated sub-question is whether a sys-
tem using a MEMStore is exploiting something MEMStore-specific (e.g., because of a particularly
well-matched access pattern) or just benefitting from its general properties (e.g., they are faster
than current disks). In any given role, external software uses various policies, such as data lay-
out and request scheduling, for managing underlying storage. The sub-question here is whether
MEMStore-specific policies are needed, or are those used for disk systems sufficient.

The contribution of this paper is to directly tackle a core question about the use of MEMStores
in systems:

Do MEMStores have unique, device-specific characteristics that a computer system
should care about, or can they just be viewed as small, low-power, fast disk drives?

Of course, MEMStores may realize performance and power characteristics that are unachievable
with real disk technologies. The question restated, then, is: would a hypothetical disk, scaled from
existing technology to the same average performance as a MEMStore, look the same to the rest
of the system as a MEMStore? If MEMStores have characteristics that are sufficiently different
from disk drives, then systems should use a different abstraction to customize their accesses to take
advantage of the differences. If MEMStores do not have sufficiently different characteristics, then
systems can simply treat MEMStores as fast disks and use the same abstraction for both.

To help answer this question, we use two simple objective tests. The first test, called the speci-
ficity test, asks: Is the potential role or policy truly MEMStore-specific? To test this, we evaluate
the potential role or policy for both a MEMStore and a (hypothetical) disk drive of equivalent per-
formance. If the benefit is the same, then the potential role or policy (however effective) is not
truly MEMStore-specific. The second test, called the merit test, asks: Given that a potential role
or policy passes the specificity test, does it make a significant impact in performance (or whatever

1



metric) to justify a new abstraction? The test here is a simple improvement comparison, e.g., if the
system is less than 10% faster when using the new abstraction, then it’s not worth the cost.

In most aspects, we find that viewing MEMStores as fast disks works well. While faster than
disks, MEMStores share many of their access characteristics. Signal processing and media access
mechanisms strongly push for a multi-word storage unit, such as the ubiquitous 512 byte block
used in disks. MEMStore seek times are strongly distance-dependent, correlated with a single
dimension, and a dominant fraction of access time, motivating data layouts and scheduling algo-
rithms that are similar to those used for disks. After positioning, sequential access is most efficient,
just like in disks. The result is that most disk-based policies will work appropriately, without spe-
cialization for MEMStores, and that most roles could equally well be filled by hypothetical disks
with equivalent average-case performance and power characteristics. An interesting side effect of
this result is that it suggests developing a new class of low-capacity, high-speed disks would have
similar benefits to computer systems.

In a few aspects, MEMStore-specific features can provide substantial benefits for well-matched
access patterns, beyond the performance and power levels that would be expected from hypo-
thetical fast disks. This paper discusses three specific examples. First, tip-subset parallelism
flexibility, created by expected power and component sharing limitations, can be exploited for
two-dimensional data structures accessed in both row- and column-order. Second, lack of access-
independent motion (e.g., continuous rotation) makes repeated access to the same location much
more efficient than in disks, fitting read-modify-write access sequences well. Third, the ratio of
access bandwidth to device capacity is two orders of magnitude lower than disk drives, making full
device scans a more reasonable access pattern.

The remainder of this paper is organized as follows. Section 2 overviews MEMS-based storage
and related work. Section 3 describes the standard storage interface and how it works for disks.
Section 4 explores how key aspects of this interface fit with MEMStore characteristics. Section 5
gives results applying the objective tests to several roles and policies to test whether MEMStores
should use a standard storage abstraction. Section 6 identifies unique features of MEMStores and
how they could be exploited for specific application access patterns. Section 7 discusses major
assumptions and their impact on the conclusions. Section 8 summarizes the paper.

2 Background

MEMStores store data in a very small physical medium that is coated on the surface of a silicon
chip. This storage is non-volatile, just as in disk drives. Physically, the devices are much smaller
than disks, on the order a few square centimeters, they store several gigabytes of data, and they
access data in a few milliseconds. This section describes in some detail how MEMStores are built,
how various designs differ, and what they have in common.

Microelectromechanical systems (MEMS) are microscopic mechanical machines that are fab-
ricated on the surface of silicon chips using techniques similar to those used to make integrated
circuits [18]. MEMS devices are used in a wide range of applications, such as accelerometers
for automotive airbag systems, high-quality projection systems, and medicine delivery systems.
MEMStores use MEMS machinery to position a recording medium and access the data stored in
it.

A high-level picture of a MEMStore appears in Figure 1. There are three main components:
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Figure 1: High-level view of a MEMStore. The major components of a MEMStore are the sled containing the
recording media, MEMS actuators that position the media, and the read/write tips that access the media. The simplified
device shown here has a ten by ten array of read/write tips, each of which accesses its own portion (or square) of the
media. As the media is positioned, each tip accesses the same position within its square, thus providing parallel access
to data.

the media sled, the actuators, and the read/write tips. Data is recorded in a medium that is coated
onto the media sled, so named because it is free to move in two dimensions. It is attached to the
chip substrate by beam springs at each corner. The media sled is positioned by a set of actuators,
each of which pulls the sled in one dimension. Data is accessed by a set of several thousand
read/write tips, which are analogous to the heads of a disk drive.

Accessing data requires two steps. First, the media sled is positioned or “seeks” to the correct
offset. Second, the sled moves at a constant rate as the read/write tips access the data stored in the
medium. The appropriate subset of tips is engaged to access the desired data.

There are three important differences between the positioning of disk drives and MEMStores.
First, the media in the MEMStore can be positioned much more quickly than in a disk because
the size, mass, and range of motion of the components are significantly smaller. The seek time of
a disk drive averages around 5 ms, while that of a MEMStore is expected to be less than 1 ms.
Second, there is no access-independent motion in a MEMStore like the rotation of a disk drive’s
platters.1 The rotating media of a disk drive adds, essentially, a random variable (uniform from
zero to the full revolution time) that is independent of the access itself to positioning time. Third,
positioning takes place in two dimensions.

The last of these differences, that positioning is two-dimensional in nature, is one of the most
radical departures of MEMStores from disk drives. Positioning in each dimension takes place
independently and in parallel, making the overall positioning time equal to the longer of the two.
Once the sled arrives at its destination, there is expected to be a non-negligible settle time, while

1Some MEMStore designers have discussed building devices which operate in a resonant mode, in which the media
sled moves in resonance along the recording dimension. Such a design would change this assumption and there would
be access-independent motion, just like the rotation of the platters in a disk drive.
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the actuators eliminate oscillations. Section 4.2 discusses the impact of this difference on systems.

2.1 Related work

Building practical MEMStores has been the goal of several major research labs, universities, and
startup companies around the world for over a decade. The three most widely publicized are from
IBM Research in Zurich, Carnegie Mellon University, and Hewlett-Packard Laboratories. The
three designs differ largely in the types of actuators used to position the media and the methods used
to record data in the medium. IBM’s Millipede designs use electromagnetic motors and a novel
thermomechanical recording technique [19, 35, 33, 34]. The device being designed at Carnegie
Mellon University uses electrostatic motors for positioning and standard magnetic recording [1,
2]. The Hewlett-Packard Atomic Resolution Storage project utilizes electrostatic stepper motors,
phase-change media, and electron beams to record data [12]. Despite these differences, however,
each shares the same basic design shown in Figure 1, utilizing a moving media sled and a large
array of read/write tips. In the Millipede chip, the read/write tips are in constant physical contact
with the media, raising some questions about wear. The others maintain a constant spacing between
the tips and the media.

The performance of the various actuator types seems to be similar, but their energy con-
sumption differs somewhat. The electromagnetic actuators of the IBM Millipede chip draw more
current, and hence consume more energy, as the media sled is pulled further from its rest posi-
tion [22, 33]. The electrostatic actuators require higher voltages as the sled is displaced further,
but require little current, so the energy consumption is lower overall. This difference could lead to
interesting tradeoffs between positioning distance and energy consumption for MEMStores with
electromagnetic actuators.

Since MEMStores are still being developed, systems researchers with knowledge of how they
may be used can influence their design. Madhyastha and Yang [17], Sivan-Zimet [28], and Dra-
maliev [6] studied the many physical parameters of MEMStores and how those parameters should
be chosen to improve performance on various workloads.

Several researchers have studied the various roles that MEMStores may take in computer
systems. Schlosser et al. [26] tested various application workloads on MEMStores, and found that
runtime decreased by 1.9–4.4�. They also found that using MEMStores as a disk cache improved
I/O response time by up to 3.5�. Hong [13] evaluated using MEMStores as a metadata cache,
improving system performance by 28–46% for user workloads. Rangaswami et al. [21] proposed
using MEMStores in streaming media servers as buffers between the disks and DRAM. Uysal et
al. [31] evaluated the use of MEMStores as components in disk arrays. In evaluating the various
roles that a MEMStore may take in a system, it is valuable to apply the two objective tests described
in Section 1. In this way, one can determine if benefits come from the fact that the workload is
particularly well-matched to a MEMStore, or if it just comes from the fact that a MEMStore is
faster than current disks.

Various policies for tailoring access to MEMStores have been suggested. Griffin et al. [11]
studied scheduling algorithms, layout schemes, and power management policies, using a disk-like
interface. Several groups have suggested MEMStore-specific request scheduling algorithms. Hong
et al. [14] evaluated a zone-based shortest-positioning-time-first algorithm that seeks to combine
the performance of SPTF scheduling with the starvation resistance of circular scan. Yu et al. [39]
proposed servicing requests in a minimum-spanning-tree order, with results that are similar to

4



SPTF scheduling. Lin et al. [15] studied several power conservation strategies for MEMStores.
Lastly, two groups have used the two-dimensional nature of MEMStores to efficiently access tabu-
lar data structures [27, 38, 40]. Again, in evaluating potential policies that will be used for MEM-
Stores, one should use the two objective tests to decide whether the policy is MEMStore-specific,
or if it can be applied to both MEMStores and disk systems.

3 Standard storage abstractions

High-level storage interfaces (e.g., SCSI and ATA) hide the complexities of mechanical storage
devices from the systems that use them, allowing them to be used in a standard, straightforward
fashion. Different devices with the same interface can be used without the system needing to
change. Also, the system does not need to manage the low-level details of the storage device. Such
interfaces are common across a wide variety of storage devices, including disk drives, disk arrays,
and FLASH- and RAM-based devices.

Today’s storage interface abstracts a storage device as a linear array of fixed-sized logical
blocks (usually 512 bytes). Details of the mapping of logical blocks to physical media locations
are hidden. The interface allows systems to READ and WRITE ranges of blocks by providing a
starting logical block number (LBN) and a block count.

Unwritten contract : Although no performance specifications of particular access types are
given, an unwritten contract exists between host systems and storage devices supporting these
standard interfaces (e.g., disks). This unwritten contract has three terms:

� Sequential accesses are best, much better than non-sequential.

� An access to a block near the previous access in LBN space is usually considerably more
efficient than an access to a block farther away.

� Ranges of the LBN space are interchangeable, such that bandwidth for sequential transfers
and positioning delays for non-sequential accesses are affected by relative LBN addresses
but not absolute LBN addresses.

Application writers and system designers assume the terms of this contract in trying to improve
performance.

3.1 Disks and standard abstractions

Disk drives are multi-dimensional machines, with data laid out in concentric circles on one or more
media platters that rotate continuously. Data is divided into fixed-sized units, called sectors (usually
512 bytes to match the LBN size). The sector (and, thereby, LBN) size was originally driven by a
desire to amortize both positioning costs and the overhead of the powerful error-correcting codes
(ECC) required for robust magnetic data storage. The densities and speeds of today’s disk drives
would be impossible without these codes, and many disk technologists would like the sector size
(and, thus, the LBN size) to grow by an order of magnitude to support more powerful codes. Each
sector is addressed by a tuple, denoting its cylinder, surface, and rotational position.

LBNs are mapped onto the physical sectors of the disk to take advantage of the disk’s char-
acteristics. Sequential LBNs are mapped to sequential rotational positions within a single track,
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which leads to the first point of the unwritten contract. Since the disk is continuously rotating,
once the heads are positioned, sequential access is very efficient. Non-sequential access requires
large re-positioning delays. Successive tracks of LBNs are traditionally mapped to surfaces within
cylinders, and then to successive cylinders. This leads to the second point of the unwritten contract,
since distant LBNs map to distant cylinders, leading to longer seek times.

The linear abstraction works for disk drives, despite their clear three-dimensional nature, be-
cause two of the dimensions are largely uncorrelated with LBN addressing. Access time is the sum
of the time to position the read/write heads to the destination cylinder (seek time), the time for
the platters to reach the appropriate rotational offset (rotational latency), and the time to transfer
the data to or from the media (transfer time). Seek time and rotational latency usually dominate
transfer time. The heads are positioned as a unit by the seek arm, meaning that it usually doesn’t
matter which surface is being addressed. Unless the abstraction is stripped away, rotational latency
is nearly impossible to predict because the platters are continuously rotating and so the starting
position is essentially random. The only dimension that remains is that across cylinders, which
determines the seek time.

Seek time is almost entirely dependent on the distance traversed, not on the absolute starting
and ending points of the seek. This leads to the third point of the unwritten contract. Also, ten
years ago, all disk tracks had the same number of sectors, meaning that streaming bandwidths (and,
thus, transfer times) were uniform across the LBN space. Today’s zoned disk geometries violate
this term, however, since streaming bandwidth varies between zones.

3.2 Holes in the abstraction boundary

Over its fifteen year lifespan, shortcomings of the interface and unwritten contract have been iden-
tified. Perhaps the most obvious violation [32] has been the emergence of multi-zone disks, in
which the streaming bandwidth varies by over 50% from one part of the disk to another. Some ap-
plication writers exploit this difference by explicitly using the low-numbered LBNs [8, 36], which
are usually mapped to the outer tracks. Over time, this may become a fourth term in the unwritten
contract.

Some have argued [3] that the storage interface should be extended for disk arrays. Disk arrays
contain several disks which are combined to form one or more logical volumes. Each volume can
span multiple disks, and each disk may contain parts of multiple volumes. Hiding the boundaries,
parallelism, and redundancy schemes prevents applications from exploiting them. Others have
argued [7] that, even for disks, the current interface is not sufficient. For example, knowing track
boundaries can improve performance for some applications [25].

The interface persists, however, because it greatly simplifies most aspects of incorporating
storage components into systems. Before this interface became standard, systems used a variety
of per-device interfaces. These were replaced because they complicated systems greatly and made
components less interchangeable. This suggests that the bar should be quite high for a new storage
component to induce introduction of a new interface or abstraction.

It is worth noting that some systems usefully throw out abstraction boundaries entirely, and
this is as true in storage as elsewhere. In particular, storage researchers have built tools [24, 29] for
extracting detailed characteristics of storage devices. Such characteristics have been used for many
ends: writing blocks near the disk head [42], reading a replica near the disk head [41], inserting
background requests into foreground rotational latencies [16], and achieving semi-preemptible
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disk I/O [4]. Given their success, adding support for such ends into component implementations
or even extending interfaces may be appropriate. But, they do not represent a case for removing
the abstractions in general.

4 MEMStores and standard abstractions

Using a standard storage abstraction for MEMStores has the advantage of making them imme-
diately usable by existing systems. Interoperability is important for getting MEMStores into the
marketplace, but if the abstractions that are used make performance suffer, then there is reason to
consider something different. This is the essence of the objective tests from Section 1.

This section explains how the details of MEMStore operation dictate that they conform to the
storage abstraction used for today’s disks. Also, the unwritten contract that applications expect
will remain largely intact.

4.1 Access method

The standard storage interface allows accesses (READs and WRITEs) to ranges of sizeable fixed-
sized blocks. The question we ask first is whether such an access method is appropriate for a
MEMStore.

Is a 512 byte block appropriate, or should the abstraction use something else? It is true that
MEMStores can dynamically choose subsets of read/write tips to engage when accessing data, and
that these subsets can, in theory, be arbitrarily-sized. However, enough data must be read or written
for error-correcting codes (ECC) to be effective. The use of ECC enables high media density by
relaxing error-rate constraints. Since the media density of a MEMStore is expected to equal or
exceed that of disk drives, the ECC protections needed will be comparable. Therefore, block sizes
of the same order of magnitude as disks should be expected. Also, any block’s size must be fixed,
since it must be read or written in its entirety, along with the associated ECC. The flexibility of
being able to engage arbitrary sets of read/write tips can still be used to selectively choose sets of
these fixed-sized blocks.

Sizeable block sizes are also motivated by embedded servo mechanisms, coding for signal
processing, and the relatively low data rate of around 1 Mbit/s per tip. The latter means that data
will have to be spread across multiple parallel-operating read/write tips to achieve an aggregate
bandwidth that is on-par with that of disk drives. Spreading data across multiple read/write tips
also introduces physical redundancy which could allow for better tolerance of tip failures. Embed-
ded servo requires that several bits containing position information must be read before any access
in order to ensure that the media sled is positioned correctly. Signal processing techniques com-
monly use transitions between bits rather than the bits themselves to represent data, meaning that a
sequence of bits must be accessed together. Further, signal encodings use multi-bit codewords that
map a sequence of bits to values with interpretable patterns (e.g., not all ones or all zeros). The
result is that, in order to access any data after a seek, some amount of data (10 bits in our model)
must be read for servo information, and then bits must be accessed sequentially with some coding
overhead (10 bits per byte in our model). Given these overheads, a large block size should be used
to amortize the costs. This block will be spread across multiple read/write tips to improve data
rates and fault tolerance.
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Using current storage interfaces, applications can only request ranges of sequential blocks.
Such access is reasonable for MEMStores, since blocks are laid out sequentially, and their abstrac-
tion should support the same style of access. There may be utility in extending the abstraction
to allow applications to request batches of non-contiguous LBNs that can be accessed by parallel
read/write tips. An extension like this is discussed in Section 6.

4.2 Unwritten contract

Assuming that MEMStore access uses the standard storage interface, the next step is to see if the
unwritten contract for disks still holds. If it does, then MEMStores can be used effectively by
systems simply as fast disks.

The first term of the unwritten contract is that sequential access is more efficient than random
access. This will continue to be the case for MEMStores because data still must be accessed in a
linear fashion. The signal processing techniques that are commonly used in magnetic storage are
based on transitions between bits, rather than the state of the bits in isolation. Moreover, they only
work properly when state transitions come frequently enough to ensure clock synchronization so
they encode multi-bit data sequences into alternate codewords. These characteristics dictate that
the bits must be accessed sequentially. Designs based on recording techniques other than magnetic
will, most likely, encode data in a similar fashion. Once the media sled is in motion, it is most
efficient for it to stay in motion, so the most efficient thing to do is to access the next sequential
data, just as it is for disks.

The second term of the unwritten contract is that the difference between two LBN numbers
maps well to the physical distance between them. This is dependent on how LBNs are mapped
to the physical media, and this mapping can easily be constructed in a MEMStore to make the
second point of the unwritten contract be true. A MEMStore is a multi-dimensional machine, just
like a disk, but the dimensions are correlated differently. Each media position is identified by a
tuple of the X position, the Y position, and the set of read/write tips that are enabled, much like
the cylinder/head/rotational position tuples in disks. There are thousands of read/write tips in a
MEMStore, and each one accesses its own small portion of the media. Just as the heads in a disk
drive are positioned as a unit to the same cylinder, the read/write tips in a MEMStore are always
positioned to the same offset within their own portion of the media. The choice of which read/write
tips to activate has no correlation with access time, since any set can be chosen for the same cost
once the media is positioned.

As with disks, seek time for a MEMStore is a function of seek distance. Since the actuators
on each axis are independent, the overall seek time is the maximum of the individual seek times in
each dimension, X and Y. But, the X seek time almost always dominates the Y seek time because
extra settle time must be included for X seeks, but not for Y seeks. The reason for this is that
post-seek oscillations in the X dimension lead to off-track interference, while the same oscillations
in the Y dimension affect only the bit rate of the data transfer. Since the overall seek time is the
maximum of the two individual seek times, and the X seek time is almost always greater than
the Y seek time, the overall seek distance is (almost) uncorrelated with the Y position, as seen
in Figure 2. In the end, despite the fact that a MEMStore has multiple dimensions over which to
position, the overall access time is (almost) only correlated with just a single dimension, which
makes a linear logical block abstraction sufficient.

The last term of the unwritten contract states that the LBN space is uniform, and that access
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Figure 2: MEMStore seek curve. The seek time of a MEMStore is largely uncorrelated with the displacement in
the Y dimension due to a large settling time applied to the X dimension seek time that is not applied to the Y dimension
seek time [6, 10]. The overall seek time is the maximum of the two independent seek times.

time does not vary across the range of the LBNs. The springs that attach the media sled to the
chip do affect seek times by applying a greater restoring force when they are displaced further.
However, the effect is minimal, with seek times varying by at most 10–15%, meaning that overall
access times at the application level would vary by far less. Also, MEMStores do not need zoned
recording. It is safe to say that the last point of the unwritten contract still holds: ranges of the
LBN space of a MEMStore are interchangeable.

4.3 Possible exceptions

This section explains how MEMStores fit the same assumptions that make storage abstractions
work for disks. There are a few aspects of MEMStores, discussed in Section 6, that set them apart
from disks, for specific access patterns. These exceptions can be exploited with little or no change
to the existing storage interface. Of course, the discussion above is based on current MEMStore
models and their assumptions. Section 7 discusses the most significant assumptions and what
removing them would change.

5 Experiments

As described in Section 1, there are two objective tests that one should consider when evaluating
potential roles and policies for MEMStores. The specificity test asks whether the role or policy is
truly MEMStore-specific. The test here is to evaluate the role or policy for both a MEMStore and
a (hypothetical) disk drive of equivalent performance. If the benefit is the same, then the role or
policy (however effective) is not truly MEMStore-specific. Given that the role or policy passes the
specificity test, the merit test determines whether the difference makes a significant-enough impact
in performance (or whatever metric) to justify customizing the system. This section examines both
a potential role and a potential MEMStore-specific policy, under the scrutiny of these two tests.
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Capacity 3.46 GB
Average random seek 0.56 ms
Streaming bandwidth 76 MB/s

Table 1: G2 MEMStore parameters. These parameters are for the G2 MEMStore design from [ 26].

Capacity 41.6 GB
Rotation speed 60,000 RPM
One-cylinder seek time 0.1 ms
Full-stroke seek time 3.0 ms
Head switch time 0.01 ms
Number of cylinders 39511
Number of surfaces 2
Sectors per track (outer zone) 1200
Sectors per track (inner zone) 800
Average random seek 0.41 ms
Average rotational latency 0.49 ms
Streaming bandwidth 100 MB/s

Table 2: Überdisk parameters. The Überdisk is a hypothetical future disk drive. Its parameters are scaled from
current disks, and are meant to represent those of a disk that matches the performance of a MEMStore. The average
seek time and rotational latency are for a random workload. Given the rotation speed and the density, the media
bandwidth is much higher than the figure above, but the external transfer rate is limited by the controller and bus
speeds.

5.1 G2 MEMStore

The MEMStore that we use for evaluation is the G2 model from [26]. Its basic parameters are
given in Table 1. We use DiskSim, a freely-available storage system simulator, to simulate the
MEMStore [5].

5.2 Überdisk: A hypothetical fast disk

For comparison, we use a hypothetical disk design, which we call the Überdisk, that approximates
the performance of a G2 MEMStore. Its parameters are based on extrapolating from today’s disk
characteristics, and are given in Table 2. The Überdisk is also modeled using DiskSim.

We based the seek curve on the formula from [23], choosing specific values for the one-
cylinder and full-stroke seeks. Head switch and one-cylinder seek times are expected to decrease in
the future due to microactuators integrated into disk heads, leading to shorter settle times. With in-
creasing track densities, the number of platters in disk drives is decreasing steadily, so the Überdisk
has only two surfaces. The zoning geometry is based on simple extrapolation of current linear den-
sities.

An Überdisk does not necessarily represent a realistic disk; for example, a rotation rate
of 60,000 RPM (approximately twice the speed of a dental drill) may never be attainable in a
reasonably-priced disk drive. However, this rate was necessary to achieve an average rotational
latency that is small enough to match the average access time of the MEMStore. The Überdisk is
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meant to represent the parameters that would be required of a disk in order to match the perfor-
mance of a MEMStore. If the performance of a workload running on a MEMStore is the same
as it running on an Überdisk, then we can say that any performance increase is due only to the
intrinsic speed of the device, and not due to the fact that it is a MEMStore or an Überdisk. If the
performance of the workload differs on the two devices, then it must be especially well-matched to
the characteristics of one device or the other. Again, this is the essence of the objective tests from
Section 1.

5.3 Role: MEMStores in disk arrays

One of the roles that has been suggested for MEMStores in systems is that of augmenting or
replacing some or all of the disks in a disk array to increase performance [26, 31]. However,
the lower capacity and potentially higher cost of MEMStores suggest that it would be impractical
to simply replace all of the disks. Therefore, they represent a new tier in the traditional storage
hierarchy, and it will be important to choose which data in the array to place on the MEMStores
and which to store on the disks. Uysal et al. evaluate several methods for partitioning data between
the disks and the MEMStores in a disk array [31]. We describe a similar experiment below, in
which a subset of the data stored on the back-end disks in a disk array is moved to a MEMStore.

We can expect some increase in performance from doing this, as Uysal et al. report. However,
our question here is whether the benefits are from a MEMStore-specific attribute, or just from the
fact that MEMStores are faster than the disks used in the disk array. To answer this question, we
apply the specificity test by comparing the performance of a disk array back-end workload on three
storage configurations. The first configuration uses just the disks that were originally in the disk
array. The second configuration augments the overloaded disks with a MEMStore. The third does
the same with an Überdisk.

The workload is a disk trace gathered from the disks in the back-end of an EMC Symmetrix
disk array during the summer of 2001. The disk array contained 282 Seagate Cheetah 73HH disk
drives. From those, we have chosen the eight busiest (disks 1, 37, 71, 72, 107, 124, 150, and
168), which have an average request arrival rate of over 69 requests per second for the duration
of the trace. Each disk is divided into 7 logical volumes, each of which is approximately 10 GB
in size. For each “augmented” disk, we move the busiest logical volume to a faster device, either
a MEMStore or an Überdisk. The benefit should be twofold: first, response times for the busiest
logical volume will be improved, and second, traffic to the original disk will be reduced. All of the
results shown here are produced with DiskSim. Requests to the busiest logical volume are serviced
by the faster device (either a MEMStore or an Überdisk), and all other requests are serviced by the
original Cheetah 73HH disk.

Figure 3(a) shows the result of running the experiment with the MEMStore. For each disk,
the first bar shows the average response time of the trace running just on the Cheetah 73HH,
which is 15.1 ms across all of the disks. The second bar shows the average response time of
the same requests after the busiest logical volume has been moved to the MEMStore. Across all
disks, it is now 5 ms. The third and fourth bars show, respectively, the average response time of
the Cheetah 73HH with the reduced traffic after augmentation, and the average response time of
the busiest logical volume, which is now stored on the MEMStore. We indeed see the benefits
anticipated – the response time of requests to the busiest logical volume have been reduced to
around 1 ms, and the reduction of load on the Cheetah 73HH disk has resulted in a lower average
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Figure 3: Using MEMStores in a disk array. These graphs show the result of augmenting overloaded disks in
a disk array with faster storage components: a MEMStore (a) or an Überdisk (b). In both cases, the busiest logical
volume on the original disk (a Cheetah 73HH) is moved to the faster device. Requests to the busiest logical volume
are serviced by the faster device, and the traffic to the Cheetah is reduced. The results for both experiments are nearly
identical, leading to the conclusion that the MEMStore and the Überdisk are interchangeable in this role (e.g., it is not
MEMStore-specific.)

response time of 7.6 ms.
Figure 3(b) shows the same experiment, but with the busy logical volume moved to an Überdisk

rather than a MEMStore. The results are almost exactly the same, with the response time of the
busiest logical volume migrated to the Überdisk being around 1 ms, and the overall response time
reduced from 15.1 ms to 5.33 ms.

The fact that the MEMStore and the Überdisk provide the same benefit in this role means that
it has failed the specificity test. In this role, a MEMStore really can be considered to be just a fast
disk. The workload is not specifically matched to the use of a MEMStore or an Überdisk, but can
clearly be improved with the use of any faster device, regardless of its technology.

Uysal proposed several other MEMStore/disk combinations in [31], including replacing all of
the disks with MEMStores, replacing half of the mirrors in a mirrored configuration, and using the
MEMStore as a replacement of the NVRAM cache. In all of these cases, and in most of the other
roles outlined in Section 2.1, the MEMStore is used simply as a block store, with no tailoring of
access to MEMStore-specific attributes. We believe that if the specificity test were applied, and an
Überdisk was used in each of these roles, the same performance improvement would result. Thus,
the results of prior research are not MEMStore-specific and instead apply more generally to faster
mechanical devices.

5.4 Policy: distance-based scheduler

Mechanical and structural differences between MEMStores and disks suggest that request schedul-
ing policies that are tailored to MEMStores may provide better performance than ones that were
designed for disks. Upon close examination, however, the physical and mechanical motions that
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dictate how a scheduler may perform on a given device continue to apply to MEMStores as they
apply to disks. This may be surprising at first glance, since the devices are so different, but after
examining the fundamental assumptions that make schedulers work for disks, it is clear that those
assumptions are also true for MEMStores.

To illustrate, we give results for a MEMStore-specific scheduling algorithm called shortest-
distance-first, or SDF. Given a queue of requests, the algorithm compares the Euclidean distance
between the media sled’s current position and the offset of each request and schedules the request
that is closest. The goal is to exploit a clear difference between MEMStores and disks: that they
position over two dimensions rather than only one. When considering the specificity test, it is
not surprising that this qualifies as a MEMStore-specific policy. In a disk drive, the heads are
positioned only in a single dimension, i.e., over a range of cylinders. The position of the head
within a cylinder is determined by the rotational offset of the platters, which is, essentially, random.

The experiment compared a random workload of 10,000 requests uniformly distributed across
the capacity of the MEMStore. The request size was drawn from an exponential distribution with
a mean of 4 KB. The experiment tests the effectiveness of the various algorithms by increasing the
arrival rate of requests until saturation – the point at which response time increases dramatically
because the device can no longer service requests fast enough and the queue grows without bound.

The algorithms compared were first-come-first-served (FCFS), cyclic LOOK (CLOOK), shortest-
seek-time-first (SSTF), shortest-positioning-time-first (SPTF), and shortest-distance-first (SDF).
The first three are standard disk request schedulers for use in host operating systems [37]. FCFS
is the baseline for comparison, and is expected to have the worst performance. CLOOK and SSTF
base their scheduling decisions purely on the LBN number of the requests, utilizing the unwritten
assumption that LBN numbers roughly correspond to physical positions [37]. SPTF uses a model
of the storage device to predict service times for each request, and can be expected to give the best
performance [11]. The use of the model by SPTF breaks the abstraction boundaries between the
application and the device because it provides the application with complete details of the device
parameters and operation. The SDF scheduler also requires the capability to map LBN numbers to
physical locations, which breaks the abstraction.

Figure 4 shows the result of the experiment. As expected, FCFS and SPTF perform the worst
and the best, respectively. CLOOK and SSTF don’t perform as well as SPTF because they use only
the linear LBN numbers to make scheduling decisions. The SDF scheduler performs slightly worse
than CLOOK and SSTF. The reason is that positioning time is not as well correlated with two-
dimensional position, as described in Section 4.2. As such, considering the two-dimensional seek
distance provides less utility than just considering the one-dimensional seek distance, as CLOOK
and SSTF effectively do. Thus, the suggested policy fails the merit test: The same or greater
benefit can be had with existing schedulers that don’t need MEMStore-specific knowledge. This
is based, of course, on the assumption that settling time is a significant component of positioning
time. Section 7 discusses the effect of removing this assumption.

The fundamental reason that scheduling algorithms developed for disks work well for MEM-
Stores are that seek time is strongly dependent on seek distance, but only the seek distance in a
single dimension. The seek time is only correlated to a single dimension, which is exposed by
the linear abstraction. The same is true for disks when one cannot predict the rotational latencies,
in which only the distance that the heads must move across cylinders is relevant. Hence, a linear
logical abstraction is as justified for MEMStores as it is for disks.

Of course, there may be yet-unknown policies that exploit features that are specific to MEM-
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Figure 4: Performance of shortest-distance-first scheduler. A MEMStore-specific scheduler that accounts for
two-dimensional position gives no benefit over simple schedulers that use a linear abstraction (CLOOK and SSTF).
This is because seek time in a MEMStore is correlated most strongly with just the X dimension.

Stores, and we expect research to continue in this area. When considering potential policies for
MEMStores, it is important to keep the two objective tests in mind. In particular, these tests can
expose a lack of need for a new policy or, better yet, the fact that the policy is equally applicable
to disks and other mechanical devices.

6 MEMStore-specific features

This section describes three MEMStore-specific features that clearly set them apart from disks,
offering significant performance improvements for well-matched workloads. Exploiting such fea-
tures may require a new abstraction or, at least, changes in the unwritten contract between systems
and storage. Also, at least one may require device-specific information to be exposed to the system.

6.1 Tip-subset parallelism

MEMStores have an interesting access parallelism feature that does not exist in modern disk drives.
Specifically, subsets of a MEMStore’s thousands of read/write tips can be used in parallel, and
the particular subset can be dynamically chosen. This section briefly describes how such access
parallelism can be exposed to system software, with minimal changes to system interfaces, and
utilized cleanly by applications.

Figure 5 shows a simple MEMStore with nine read/write tips and nine sectors per tip. Each
read/write tip addresses its own section of the media, denoted by the nine squares in the figure.
Sectors that are at the same physical offset within each square, such as those indicated with ovals,
are addressed simultaneously by the tip array. We call these sectors equivalent, because they can
be accessed in parallel. However, in many designs, not all of the tips can be actively transferring
data at the same time due to power consumption or component sharing constraints. The device can
choose a subset of the equivalent sectors to access together. Using a simple API, an application or
OS module could query the storage device to identify sets of sectors that are equivalent, and then
choose subsets to access together. Further, since the LBNs which will be accessed together will not
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Figure 5: Data layout with a set of equivalentLBNs highlighted. The LBNs marked with ovals are at the same
location within each square and, thus, are “equivalent”. That is, they can potentially be accessed in parallel.

fall into a contiguous range, the system will need to be able to request batches of non-contiguous
LBNs, rather than ranges.

6.1.1 Efficient 2D data structure access

The standard interface uses a linear logical block abstraction, forcing applications to map their data
into a linear address space. For most applications, this is largely irrelevant. However, applications
that use two-dimensional data structures, such as non-sparse matrices or relational database tables,
are forced to serialize their storage in this linear address space, making efficient access possible
only along a single dimension of the data structure. For example, a database can choose to store its
table in column-major order, making these accesses sequential and efficient. However, once this
choice is made, accessing the table in row-major order is very expensive, requiring a full scan of
the table to read a single row. One option for making operations in both dimensions efficient is
to create two copies of a table; one copy is optimized for column-major access and the other is
optimized for row-major access [20]. This scheme, however, doubles the capacity needed for the
database and requires that updates propagate to both copies.

With proper allocation of data to a MEMStore LBN space, parallel read/write tips can be
used to access a table in either row- or column-major order at full speed [27, 38]. The table is
arranged such that the same attributes of successive records are stored in sequential LBNs. Then,
the other attributes of those records are stored in LBNs that are equivalent to the original LBNs,
as in Figure 5. This layout preserves the two-dimensionality of the original table on the physical
media of the MEMStore. Then, when accessing the data, the media sled is positioned and the
appropriate read/write tips are activated to read data either in row- or column-major order.

To quantify the advantages of such a MEMStore-specific scan operator, we compare the times
required for different table accesses. We contrast their respective performance under two different
layouts on a single G2 MEMStore device. The first layout, called normal, is the traditional row-
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Figure 6: Table scan with different number of attributes. This graph shows the runtime of scanning 10,000,000
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advantage of MEMStore’s parallelism, each attribute scan runtime is proportional to the amount of data occupied by
that attribute. The normal, on the other hand, must read the entire table to fetch any one of the desired attributes.

major access optimized page layout. The second layout, called MEMStore, uses the MEMStore-
specific layout and access described above. The sample database table consists of 4 attributes a1,
a2, a3, and a4 sized at 8, 32, 15, and 16 bytes respectively. The normal layout consists of 8 KB
pages that hold 115 records. The table size is 10,000,000 records for a total of 694 MB of data.

Figure 6 compares the time of a full table scan for all attributes with four scans of the individual
attributes. The total runtime of four single-attribute scans in the MEMStore case takes the same
amount of time as the full table scan. In contrast, with the normal layout, the four successive
scans take four times as long as the full table scan. Most importantly, a scan of a single attribute
in the MEMStore case takes only one ninth (2.43 s vs. 22.93 s) of the full table scan since all of
the available read/write tips read records of a1. This result represents a compelling performance
improvement over current database systems. This role for MEMStores passes both the specificity
test and the merit test.

6.2 Quick turnarounds

Another aspect of MEMStores that differs from disk drives is their ability to quickly access an LBN
repeatedly. In a disk, repeated reads to an LBN may be serviced from the disk’s buffer, but repeated
synchronous writes or read/modify/write sequences will incur a full rotation, 4-8 ms on most disks,
for each access. A MEMStore, however, can simply change the direction that the media sled is
moving, which is predicted to take less than a tenth of a millisecond [11].
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6.3 Device scan time

Although the volumetric density of MEMStores is on-par with that of disk drives, the per-device
capacity is much less. For example, imagine two 100 GB storage bricks, one using disk storage
and the other using MEMStores. Given that the volumetric densities are equal, the two bricks
would obviously consume about the same amount of volume. But, the MEMStore brick would
require at least ten devices, while the disk-based brick could consist of just one device. This means
that the MEMStore storage would have more independent actuators for accessing the data, leading
to several interesting facts. First, the MEMStore-based brick could handle more concurrency, just
as in a disk array. Second, MEMStores in the brick that are idle could be turned off while others
in the brick are still servicing requests, reducing energy consumption. Third, the overall time to
scan the entire brick would be reduced since there are more actuators and the scan can proceed in
parallel. This assumes that the bus connecting the brick to the system is not a bottleneck, or that
the data being scanned is consumed within the brick itself.

The lower device scan time is particularly interesting because disk storage is becoming less
accessible as device capacities grow more quickly than access speeds [9].

7 Major assumptions

Unfortunately, MEMStores do not exist yet, there are no prototypes that we can experiment with,
and they are not expected to exist for several more years. As such, we must base all experiments on
simulation and modeling. We have based our models on detailed discussions with researchers who
are designing and building MEMStores, and on an extensive study of the literature. The work and
the conclusions in this paper are based on this modeling effort, and is subject to the assumptions
that about the devices. This section outlines two of the major assumptions we have made and how
our conclusions would change given different assumptions.

Some of our conclusions are based on the assumption that post-seek settling time will affect
one axis more than another. This effectively uncorrelates seek time with one of the two dimensions,
as described in Section 4.2. The assumption is based on the observation that different mechanisms
determine the settling time in each of the two axes, X and Y. In all published MEMStore designs,
data is laid out linearly along the Y-axis, meaning that oscillations in this dimension must be
damped enough for the read/write tips to reliably access data. While any oscillations are present
along the Y-dimension, on the other hand the tips are still over data; the oscillations will appear to
the channel as minor variations in the data rate. Contrast this with oscillations in the X-axis, which
pull the read/write tips off-track.

Because one axis is more sensitive to oscillation than the other, its positioning delays will
dominate the other’s unless the oscillations can be damped in near-zero time.

However, if this assumption no longer held, and oscillations affected each axis equally, then
MEMStore-specific policies that take into account the resulting two-dimensionality of the seek pro-
file, as illustrated in Figure 7, would become more valuable. Now, for example, two-dimensional
distance would be a much better predictor of overall positioning time. Figure 8 shows the result
of repeating the experiment from Section 5.4, but with the post-seek settle time set to zero. In
this case, the performance of the SDF scheduler very closely tracks shortest-positioning-time-first,
SPTF, the scheduler based on full knowledge of positioning time. Further, the difference between
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Figure 8: Performance of shortest-distance-first scheduler without settle time. If post-seek settle time is
eliminated, then the seek time of a MEMStore becomes strongly correlated with both the X and Y positions. In this
case, a scheduler that takes into account both dimensions provides a great deal better performance than those that only
considers a single dimension (CLOOK and SSTF).

SDF and the two algorithms based on single-dimension position (CLOOK and SSTF) is now very
large. CLOOK and SSTF have worse performance because they ignore the second dimension that
is now correlated strongly with positioning time.

Another assumption, that is closely related, is that data in a MEMStore is accessed sequentially
in a single dimension. One could imagine a MEMStore in which data is accessed one point at a
time. As a simple example, imagine that media sled would position to a single position and then
engage 8� 512 read/write probes in parallel to read one 512 byte sector from the media at once.
From that point, the media sled could then re-position in either the X or Y dimension and read
another 512 byte sector. In fact, the device could stream sequentially along either dimension.
Current designs envision using embedded servo to keep the read/write tips on track, just as in
disks [30]. Both servo and code-words would have to be encoded along both dimensions somehow
to allow this. The ability to read sequentially along either dimension at an equal rate would greatly
improve the performance of applications using two-dimensional data structures, as described in
Section 6.1.1. Rather than using tip subset parallelism, however, data tables could be stored directly
in their original format on the MEMStore, and then accessed in either direction efficiently. Note,

18



however, that the added complexity of the coding and access mechanisms would be substantial,
making this unlikely to occur.

8 Summary

A key question that should be asked when considering how to use MEMStores in computer sys-
tems is whether they have unique characteristics that should be exploited by systems, or if they
can be treated as small, low-power, fast disk drives. This paper has examined this question by
establishing two objective tests that can be used to determine if potential performance gains are
due to MEMStore-specific features, or if they are due only to the fact that a MEMStore is faster
than existing disk drives. If an application utilizes a MEMStore-specific feature, then there may be
reason to use something other than existing disk-based abstractions. After studying the fundamen-
tal reasons that the existing abstraction works for disks, we conclude that the same reasons hold
true for MEMStores, and that a disk-like view is justified. Considering several potential roles that
MEMStores may take in systems, and policies for their use, also supports this conclusion.
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