
Writeback-Aware Caching

Nathan Beckmann ∗ Phillip B. Gibbons ∗ Bernhard Haeupler ∗ Charles McGuffey ∗

Abstract

The literature on cache replacement, while both detailed
and extensive, neglects to account for the flow of data
to storage. Motivated by emerging memory technologies
and the increasing importance of memory bandwidth and
energy consumption, we seek to fill this gap by studying
the Writeback-Aware Caching Problem. This problem
modifies traditional caching problems by explicitly
accounting for the cost of writing modified data back to
memory on eviction.

In the offline setting with maximum writeback cost
ω > 0, we show that writeback-aware caching is NP-
complete and Max-SNP hard. Moreover, we show that
Furthest-in-the-Future, the optimal deterministic policy
when ignoring writebacks, is only (ω + 1)-competitive.
These negative results hold even for the simple variant of
the problem in which data items have unit size, unit miss
cost, and unit writeback cost (ω = 1). To overcome this
difficulty, we provide practical algorithms to compute
upper and lower bounds for the optimal policy on real
traces.

In the online setting, we present a deterministic
replacement policy called Writeback-Aware Landlord
and show that it obtains the optimal competitive ratio.
Our bounds on the optimal offline policy and our optimal
competitive ratio hold even for the most general variant
in which data items have variable sizes, variable miss
costs, and variable writeback costs. Finally, we perform
an experimental study on real-world traces showing
that Writeback-Aware Landlord outperforms state-of-
the-art cache replacement policies when writebacks are
costly, thereby illustrating the practical gains of explicitly
accounting for writebacks.

1 Introduction

The long history of papers on caching problems [1, 4, 6,
7, 8, 21, 22, 26, 27, 29, 38, 39, 42, 46, 52, 54, 62, 63] has
largely overlooked an increasingly important cost in real
caches: the cost of writebacks. Any data item that has
been modified since being fetched into the cache (i.e., a
dirty item) must be written back to memory on eviction.
In contrast, a data item that has not been updated since

∗Carnegie Mellon University. Contact author: Charles McGuf-
fey, cmcguffe@cs.cmu.edu.

being fetched (a clean item) can simply be discarded
from the cache on eviction. Although largely ignored by
real-world cache replacement policies in the past, two
key trends are causing writebacks to become increasingly
important in real memory systems:

Trend 1: Memory Bandwidth and Energy.
Traditionally, most memory systems were designed to
minimize response time, with replacement policies de-
signed to maximize the number of cache hits. Mod-
ern processors, however, have greatly increased their
instruction throughput by increasing parallelism (num-
ber of cores) rather than increasing clock frequency. For
memory-intensive programs, the number of concurrently
in-flight memory requests grows linearly with the num-
ber of cores, such that the available memory bandwidth
is often the primary performance bottleneck. Moreover,
these additional requests combined with the end of Den-
nard scaling [16, 25] has caused power consumption to
become critical for computing systems ranging from exas-
cale computing [57] to microcomputing [23]. The practi-
cal importance of these metrics has been underscored by
a significant amount of systems research [45, 56, 60]. Re-
ducing writebacks reduces the strain on memory system
bandwidth and significantly reduces power consump-
tion [33, 45].

Trend 2: New Memory Technologies. Several
new main memory technologies that store data in the
physical state of material are being developed [47], such
as the Intel Optane (3D-Xpoint) technology that is
available today as both a solid state drive (SSD) [24] and
a memory module (DIMM) [35]. These technologies offer
a variety of benefits, including higher storage density,
lower idle power, and non-volatility. However, writing
data into these memories requires more time and energy
than reading data, sometimes by an order of magnitude
or more [34, 36, 43, 51, 58].

A variety of research has been done both in the
systems [3, 5, 20, 44, 50, 59, 61, 64, 65] and theory [9, 10,
13, 14, 15, 19, 20, 32, 37, 59] communities investigating
the effects of this cost asymmetry and how to mitigate
it. For the default setting of these systems wherein
the (traditional memory) cache sits in front of the new
memory, reducing writebacks reduces expensive writes
to the new memory.

With these two trends in mind, systems researchers

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

have begun to consider writebacks in caching. Initial
work has proposed partitioning the cache into a dirty
part and a clean part [64] or tracking frequently written
data items [50, 61] to reduce total costs. On the theory
side, we are aware of only two prior works. Back in
2000, Farach-Colton and Liberatore [28] studied a local
register allocation problem that is a special case of
writeback-aware caching with unit size data items, unit
miss cost and unit writeback cost (which they called
paging with writebacks). They showed the offline decision
problem is NP-complete using a reduction from set cover.
Second, Blelloch et al. [13] provided a writeback-aware
online algorithm that is 3-competitive to offline optimal
when given 3× the cache size, for the setting with unit
size, fixed miss cost and fixed writeback costs. Their
algorithm partitions the cache into a dirty half and a
clean half, and applies Sleator and Tarjan’s analysis [54]
to each half.

Our Contributions. In this paper, we initiate a
general exploration of writeback-aware caching, seeking
to bridge the gap between real caching systems and
the theoretical understanding of caches. We define and
study the Writeback-Aware Caching Problem, which
generalizes traditional caching problems by adding
writeback costs: Given a sequence of reads and writes
to data items and a specified cache size, the goal is to
minimize the sum of the miss and writeback costs when
servicing the sequence in order. For our algorithms, we
allow data items to have variable sizes, variable miss
costs, and variable writeback costs. For our hardness
results, we assume data items have unit size, unit miss
cost, and any fixed positive writeback cost.

Accounting for writeback costs adds considerable
challenges to the caching problem. Intuitively, tradi-
tional caching is concerned with making decisions about
whether or not to keep a data item x in the cache for the
interval (time period) between consecutive accesses to
x—the intervals for x are disjoint, and evicting x during
an interval incurs a single miss (i.e., at the end of the
interval when it is next accessed). When accounting for
writebacks, one must consider competing intervals for x,
namely, the intervals between consecutive writes to x.
Evicting x during such an interval incurs an additional
writeback, whereas keeping x for the entire write interval
saves not only this writeback but also all of the reads to
x during the write interval.

Our main result is an online algorithm, called
Writeback-Aware Landlord, and an analysis showing
that it achieves the following (optimal) bound:

Theorem 1.1. For the Writeback-Aware Caching Prob-
lem, Writeback-Aware Landlord with cache size k has a
competitive ratio of k/(k−h+ 1) to the optimal (offline)
algorithm with cache size h.

Our algorithm and analysis is a careful generalization
of the well-studied Landlord algorithm [63] to properly
account for the distinction between clean and dirty
items. Comparing to Blelloch et al. [13], our new
algorithm uses a completely different approach/analysis
(no cache partitioning), handles general sizes and costs,
and improves the bound from 3-competitive with 3×
more cache to 2-competitive with 2× more cache.

Although we prove a competitive ratio between our
algorithm and the offline optimal, computing that opti-
mal is hard. We extend Farach-Colton and Liberatore’s
NP-completeness proof to show NP-completeness regard-
less of the items’ writeback cost(s) and miss cost(s). We
further show the Writeback-Aware Caching Problem is
Max-SNP hard, using a reduction from 3D-matching.

Because finding an exact solution is difficult, we
turn to approximations. We show that Furthest-
in-the-Future, the optimal deterministic policy when
ignoring writebacks, is only a (ω + 1)-approximation
to optimal in our setting, and this is tight. We also
provide an algorithm that is a 2-approximation of the
savings. Furthermore, we provide practical algorithms
for bounding the offline optimal cost from above and
below. Although there are no formal guarantees of their
accuracy, we show they work reasonably well for large
real-world traces that would otherwise be difficult to
analyze.

Finally, we perform a detailed experimental study
using real-world storage traces. Our main finding is
that Writeback-Aware Landlord outperforms state-of-
the-art online replacement policies when writebacks are
expensive, reducing the total cost by 14% on average
across these traces. This illustrates the practical gains
of explicitly accounting for writebacks.

2 Preliminaries and Prior Work

2.1 Caching Basics. The widely studied caching
problem focuses on a single level of the memory hierarchy
(cache), with capacity k, that must serve a trace, which is
a sequence of requests for data. A request is considered
to have been served when the cache contains or loads the
data item associated with that request. Associated with
each item e is a size S(e) and a load cost L(e). In order
to load e, the cache first evicts items from the cache as
needed in order to have S(e) available space, and then
pays L(e) to load the item. Solutions to the caching
problem, known as replacement policies, are strategies
for selecting items to evict in order to minimize the total
cost of the loads. Offline policies are given the entire
trace in advance, whereas online policies observe the
next request in the trace only after serving the previous
request.

Variants. For the generalized caching problem

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

(generalized-model), the cost and size of an item may be
arbitrary positive functions. Simpler versions include,
for all items e: (i) the basic-model in which items have
unit size and cost: S(e) = L(e) = 1, (ii) the bit-model in
which cost equals size: S(e) = L(e), (iii) the cost-model
in which items have unit size: S(e) = 1, and (iv) the
fault-model in which items have unit cost: L(e) = 1 [1].

2.2 Prior Work. Theoretical work on the caching
problem traditionally begins with the offline version of
the problem. The first to be considered was the basic-
model, which was solved optimally by Belady [7] and
Mattson separately [46]. Chrobak et al. [21] introduced
the cost-model for caching and provided an optimal
algorithm for its offline version. Albers et al. [1] provided
the first algorithms approximating optimal for the offline
versions of the generalized-model. Bar-Noy et al. [4]
showed an algorithm that is a 4-approximation of optimal
for this model. Later, Chrobak et al. [22] proved that
the offline decision problem for any caching variant with
multiple item sizes (bit-, fault-, and generalized-models)
is NP-complete, and Brehob et al. [17] provided similar
hardness proofs for several non-standard caching variants.
Recently, Berger et al. [11] provided an algorithm that
yields tight approximations of offline optimal in the fault-
model for traces with certain statistical properties.

Initial work comparing the offline and online ver-
sions of caching problems was done by Sleator and Tar-
jan [54]. They provided a lower bound for the cost ratio
of any deterministic online algorithm compared to the
optimal offline algorithm for a worst-case trace in the
basic-model (and therefore any model). Furthermore,
they showed that several deterministic algorithms had
matching upper bounds in that model. Fiat et al. [29]
provided a lower bound for randomized online replace-
ment policies compared to optimal and a randomized
policy that matches that bound; they also showed ways
of approximating online policies using other online poli-
cies. Young [62] found that the ‘greedy-dual’ algorithm
for the cost-model had an upper bound matching Sleator
and Tarjan’s lower bound for the basic-model. He later
generalized this algorithm to the generalized-model and
obtained a matching upper bound [63] using the Land-
lord algorithm. Even et al. [27] considered a model
where the cost and size of an item can change when it
is accessed. Although this has some similarities to the
model we introduce, neither the model nor their online
algorithm can accurately model writebacks.1

The effects of writebacks have been well studied at
the storage layer. Some of this work [30, 53] studies
how to schedule writebacks to disk in order to minimize

1Personal communication with Guy Even at SPAA’18.

cost. Other work studies using write caches in front
of storage to achieve sequential rather than random
performance [12, 55]. These works provide many useful
ideas that could be used to extend this work, but ignore
the issues that arise with cache workloads containing
mixed reads and writes.

With the emergence of highly asymmetric memory
technologies, the systems community has begun to in-
vestigate the effects of writebacks on cache performance.
Zhou et al. [64], motivated by phase-change memory tech-
nology, explicitly considered writebacks and proposed
a partitioning scheme to reduce the effect of writes to
main memory. Wang et al. [61] and Qin and Jin [50]
provided similar techniques for reducing writebacks to
memory by keeping track of frequently written items.
These replacement policies lack worst-case bounds, and
in fact it is not hard to construct request traces that
yield arbitrarily bad performance.

To our knowledge, the only prior theory work related
to writeback-aware caching were the two papers [13, 28]
discussed in Section 1.

3 Writeback-Aware Caching

We modify the caching problem to account for writebacks
by identifying each request in the trace as either a read or
a write. An item in the cache is dirty if either (i) it was
loaded as a result of a write request or (ii) there has been
a write request for the item since it was loaded. All other
items in the cache are clean. Because clean items have no
changes that need to be propagated to memory, evicting
them has no cost. However, dirty items need to be
written back to memory upon eviction. The Writeback-
Aware Caching Problem (WA Caching Problem for short)
adds a writeback cost V (e) for evicting an item e that
is dirty, and modifies the goal to be minimizing the sum
of the miss and writeback costs.

Definition 3.1. In the (generalized) Writeback-Aware
Caching Problem, we are given (i) a cache size k, (ii)
an (online or offline) trace σ of requests, where each
request is an item e and a flag indicating whether it is
a read or write, and (iii) each item e has an associated
size S(e) > 0, miss cost L(e) > 0 and writeback cost
V (e) > 0. Starting and ending with an empty cache, the
goal is to minimize the sum of the miss and writeback
costs while serving all the requests in σ.

Since none of the original parameters of the caching
problem are changed, any variant of the original problem
can be made writeback-aware. In fact, the original
problem is equivalent to setting the writeback costs
to zero, i.e. V (e) = 0 ∀ e. Unless stated otherwise,
when we refer to the WA Caching Problem, we mean
the generalized variant defined above.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

4 An Optimal Online Algorithm

We present a deterministic online algorithm called
Writeback-Aware Landlord, and show that it achieves the
optimal competitive ratio for deterministic algorithms.

4.1 Algorithm Description. Our algorithm is
based on the classic Landlord algorithm [63]. In Land-
lord, there is a credit assigned to each item that is used
to determine how long the item will remain in the cache.
When an item e is accessed, its credit is set to its load
cost L(e). Whenever items must be evicted to make
space in the cache, Landlord decreases the credit of each
item in proportion to the item’s size until an item reaches
zero credit. This item (or items) may then be evicted.

To adapt Landlord to the writeback-aware setting,
we must account for writeback costs. In particular, we
must determine how to balance loads and writebacks
in a way that leads to an optimal competitive ratio.
Our algorithm, called Writeback-Aware Landlord and
shown in Figure 1, maintains two separate credits that
are increased independently. In particular, accessing an
item e sets (increases) its load credit to L(e) and writing
e sets its writeback credit to V (e). This accounting
strategy helps in the proof of optimality. The algorithm
described in Figure 1 decreases the writeback credit first,
but this is not necessary for optimality.

4.2 Frontloading Writeback Accounting. Caches
in a writeback-aware setting pay costs at two different
times: upon retrieving an item that is not in the cache,
and upon evicting a dirty item. Having to consider
costs upon eviction increases the complexity of analysis
and encourages online policies to maintain dirty items
past the point of usefulness in order to delay paying
costs. To prevent these issues, in calculating the cost
of a policy run on a prefix of a trace, we will charge
the cost of writebacks to the write access that dirtied
the item. Writes to items that are already dirty are
not charged, because they do not result in additional
writebacks. In other words, write accesses are charged
both for loading the item (if not already in the cache)
and writing it back (if it is not already dirty). This does
not affect a policy’s total cost for the full trace, because
each charged writeback will happen later when the item
is eventually evicted (recall that we must end with an
empty cache).

4.3 Writeback-Aware Landlord is Optimal.

Theorem 4.1. Writeback-Aware Landlord with size k
has a competitive ratio of k/(k − h+ 1) to the optimal
(offline) algorithm with size h ≤ k.

Proof. We consider the contents of two caches: the first

def WritebackAwareLandlord(item e, bool write) :
i f e is not in cache:

#make space for the item
while freeSpace < e. size :

find victim
minRank, victim = infinity , none
for f in cache:

credit = f .wbCredit + f . loadCredit
i f credit / f . size < minRank:

minRank = credit / f . size
victim = f

evict(victim)
decrease other items ’ credit
for f in cache:

delta = f . size ∗ minRank
decrease wb credit f i r s t
i f delta > f .wbCredit:

f . loadCredit−= (delta − f .wbCredit)
f .wbCredit = 0

else :
f .wbCredit−= delta

add the item to the cache
insert(e)

update requested item’s credit
e. loadCredit = e. loadCost
i f write :

e.wbCredit = e.wbCost

Figure 1: Writeback-Aware Landlord assigns each item
two credit values: one for loads and one for writebacks.
On access, an item’s credits are updated to the cost
of the request (i.e., writeback cost for writes). When
needed, the item with the least credit per size is evicted,
and all other items’ credits are reduced in proportion.

is size h and makes optimal caching decisions (OPT), and
the second is size k and runs Writeback-Aware Landlord
(WALL). Both caches serve the same request trace. For
the purposes of the analysis, we say that OPT uses its
cache to serve the request first, and then WALL serves
the request using its own cache. In Figure 2 we define
a potential function Φ, which is carefully defined to
capture both how resistant WALL is to change, and how
far it is from the state of OPT.

We show the following:

1. Φ is zero at the beginning of the trace.

2. Φ is never negative.

3. Each cost c paid by Writeback-Aware Landlord can
be charged to a unique decrease in Φ of at least
(k − h+ 1)c.

4. Φ can only ever increase by an amount kc when the
optimal algorithm pays a cost c.

Facts 1 and 2 together mean that Φ can never have

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Φ = (h− 1)×
∑

f∈WALL

(
creditl(f) + creditw(f)

)
+ k ×

∑
f∈OPT

(costl(f)− creditl(f))

+ k ×
∑

f∈OPT and dirty(f)

(costw(f)− creditw(f))

Figure 2: The potential function used to prove the
competitive ratio for Writeback-Aware Landlord. Here,
WALL refers to the contents of the cache for Writeback-
Aware Landlord and OPT refers to the contents of the
cache of the offline optimal policy. The first term is the
sum of the credits of each item in WALL’s cache. The
second and third terms are the difference between how
much cost was paid for an item to enter OPT’s cache
and how much credit that item retains in WALL.

decreased more than it has increased. Fact 3 limits the
cost paid by WALL relative to the decrease in potential.
Fact 4 limits the increase in potential relative to the cost
paid by OPT. When combined, these facts prove that
the cost of WALL cannot exceed the cost of the optimal
algorithm by a factor larger than k/(k − h+ 1).

We now provide proofs for the four facts above.
1. At the beginning of a trace, the cache is empty.

Therefore, each summation is empty and Φ is zero.
2. Credit values always range between zero and the

associated cost of that item. Therefore, Φ is always
non-negative.

3. Consider any access that causes charges to WALL.
This can happen if the accessed item is not in the cache,
or if the access dirties the item. If the item is not in the
cache, WALL performs eviction(s) to clear space, and
then loads the item. Evicting an item with no credit has
no effect on Φ. We apply Young’s analysis [63] to the
combined credit to show that Φ does not increase when
WALL reduces credit.

Young’s analysis is applied to the potential function
used to analyze Landlord (LL), which is like that
of WALL, but does not contain any terms involving
writebacks. The analysis compares the total size of
items in LL that decrease in credit to the total size of
such items in OPT. Since decreasing credit only occurs
in order to make space for a requested item and OPT
processes requests before LL, we know that the requested
item is in OPT’s cache but not LL’s at the time of the
access. This means that the size of items in OPT that
have their credit decreased by LL is at most the size of
OPT minus the size of the requested item. Furthermore,
since LL is evicting items to make space, it must contain

a total size greater than its size minus the size of the
requested item. The ratio of LL’s effected object size to
OPT’s effected object size is thus greater than the ratio
of the two cache sizes, which means that the decrease in
potential due to the first term outweighs the increase in
potential due to the second term.

When we apply Young’s analysis to WALL, we see
that the aggregrate credit decrease in the first term will
remain the same. However some of this decrease will
occur in writeback credit rather than load credit. For
items that are clean in OPT’s cache, this decrease in
credit will not show up in the second and third terms of
Φ. Since these omitted reductions are to negative terms,
Φ will decrease overall.

We then consider the change in credits for the
accessed item after eviction. If the item was not in
the cache, its load credit changes from zero to its load
cost. If the access dirtied the item, the writeback credit
changes from zero to the writeback cost. This means
that the total credit increase i of the item is at least the
cost charged to WALL by the access. Since the item
has just been accessed (and OPT serves requests before
WALL), it must also be in OPT and be dirty if the access
was a write. This means that the second and third terms
cause Φ to decrease by ki, while the first increases Φ by
(h − 1)i. Since i ≥ c, and the potential change due to
eviction is not positive, any access that causes a charge
c to WALL causes Φ to decrease by at least (k− h+ 1)c.

4. We now show that any increase in Φ can be
charged to costs paid by the optimal algorithm. Φ can
increase due to changes in credits, items joining OPT,
or items in OPT becoming dirty. Credits only decrease
when WALL is evicting items, which we have already
shown does not increase Φ. The credit for an item is
only increased when WALL serves an access to that
item. In such cases the item must also be in OPT. Thus,
the decrease in Φ due to the second and third terms
outweigh the increase due to the first. When an item is
loaded into or becomes dirty in OPT, Φ increases by kc
where c is the load cost, writeback cost, or their sum,
depending on the transition. However, c is exactly the
amount that the optimal algorithm is charged to load
these items.

This proof shows that Writeback-Aware Landlord
can perform no worse than Sleator and Tarjan’s [54] lower
bound. Writeback-Aware Landlord therefore achieves
the optimal competitive ratio for deterministic policies.

5 Offline Complexity Results

In this section, we show that the offline WA Caching
Problem is NP-complete and Max SNP-hard, and we
describe both theoretical and practical approximations.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

5.1 Writeback-Aware Caching is NP-Complete.
In 2000, Farach-Colton and Liberatore (FL) showed that
the offline writeback-aware paging decision problem is
NP-complete using a reduction from set cover [28]. We
will provide a brief overview of the FL proof, and then
adjust it to match our problem.

The set cover problem is: given a set of elements
and non-empty subsets of that set, find a collection of
subsets (a cover) of minimum size such that the union of
the collection equals the original set of elements. The FL
reduction generates an instance of the offline writeback-
aware paging problem from an instance of set cover.
The cache size is set to the number of subsets. The
reduction uses one item in the trace for each element
and each subset in the set cover instance. We refer to
items associated with elements as element items and
items associated with subsets as subset items. For each
element, we call the subsets that contain it adjacent
subsets, and other subsets non-adjacent subsets.

The generated trace consists of a write to each
subset item, followed by a subtrace for each element.
The subtrace for an element consists of a write to the
associated element item, followed by a read of the element
item and the non-adjacent subset items. This read
pattern is repeated a total of four times.

The FL reduction shows that any solution to the set
cover problem maps to a solution to the paging problem,
and that any optimal solution to the paging problem
can be converted to a solution to the set cover problem.
The high-level idea is that writing back a subset item
corresponds to choosing that subset for the cover.

There are two differences between the FL model
and ours. The FL model assumes that both loads and
writebacks have unit cost for all items, while we support
different costs for each item and access type. In the FL
model data does not need to be written back to memory
if it is not evicted prior to its last use, while we assume
all dirty items must eventually be propagated to storage.

To adapt the FL reduction to our data propagation
model, we replace each write to an element item in the
generated trace with a read to the same item, and we
add a write to each set item at the end of the trace.

To support general writeback costs, we define the
parameter ω as the maximum writeback cost to read
cost ratio for any item. We modify the FL reduction
such that the read pattern of the subtrace is repeated
bω + 3c times rather than four times. This ensures that
repeated reads in a subtrace are more valuable than the
single writeback that could be saved by forgoing them.

Making these adjustments allows the FL reduction to
reduce the set cover problem to the Offline WA Caching
Problem. Since set cover is NP-Complete, this suffices
to show that the Offline WA Caching Problem is also.

5.2 WA Caching is MaxSNP-Hard. In this sec-
tion, we show that the Offline WA Caching Problem is
max SNP-hard using a reduction from bounded three-
dimensional (3D) matching.

The 3D Matching Problem. Consider a hypergraph
G = (V,E). We say that V = {v1, v2, ..., vn} is the set of
vertices in G and |V | = n. Similarly, E = {e1, e2, ..., em}
is the set of hyperedges in G and |E| = m. Each
hyperedge ei consists of a subset of vertices from V
that it connects. For each vertex, we call the edges
that contain that vertex adjacent edges, and other
edges non-adjacent edges. A hypergraph G is tripartite
if the vertices can be divided into three disjoint sets
V = {V1 ∪ V2 ∪ V3}, V1 ∩ V2 = V2 ∩ V3 = V3 ∩ V1 = ∅
such that no edge contains more than one item from any
set. A hypergraph G is three-uniform if each hyperedge
is incident upon exactly 3 vertices. A hypergraph G is
B bounded if no vertex has degree greater than B.

The maximum bounded 3D matching problem, given
a bounded three-uniform tripartite hypergraph G, is to
find the largest collection of edges such that no edges
in the subset share vertices. More formally, we define
M to be a matching of G = (V,E) if M ⊆ E and
∀ ei, ej ∈ M, ei ∩ ej = ∅. We say a matching M of G
is maximum if all other matchings M ′ of G contain at
most as many edges as M , i.e. |M | ≥ |M ′|. The decision
version of this problem is: given a hypergraph G and an
integer k, decide if there exists a matching of cardinality
k. This problem is known to be NP-Complete [41] and
max SNP-hard [40].

Generating the Caching Instance. Given a 3D
matching instance G, we will construct an instance P
of the Offline WA Caching Problem such that any valid
matching in G corresponds to a solution to P .

An example bounded three-uniform tripartite hyper-
graph and the generated trace are shown in Figure 3. We
will use this example to step through the construction.

Without loss of generality, we discard every vertex
from the graph with degree zero.

The cache size of the generated instance will be
the number of edges m. The trace will use one edge
item ei for each edge ēi ∈ E and d − 1 filler items
v(i,j), j ∈ [1, d − 1] for each vertex v̄i, where d is the
degree of v̄i. All items share a load cost of one and a
writeback cost of ω, which can be any positive real. In
the example, we set the cache size to three and use three
edge items and four filler items (one each for v̄1 and v̄6,
and two for v̄2). We also set ω = 0.5.

Like the trace generated by the FL reduction, the
trace we generate consists of a prefix and suffix, with a
subtrace for each vertex in G. We will refer to the prefix
and suffix as gadget G1. This gadget consists of one
write to each edge item.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒆𝟑

𝒆𝟐

𝒆𝟏

G1 G1
2 G3 G2

2 G3 G3
2 G3 G4

2 G3 G6
2 G3 G1

W (e1) e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 W (e1)
W (e2) e2 e2 e2 e2 e2 e2 e2 e2 e2 e2 e2 W (e2)
W (e3) e3 e3 e3 e3 e3 e3 e3 e3 e3 e3 e3 W (e3)

v1,1 v1,1 v1,1 v2,1 v2,1 v2,1 v6,1 v6,1 v6,1
v2,2 v2,2 v2,2

Figure 3: Example 3D Matching to WA Caching Problem Conversion. Performing the conversion on the
graph above results in the trace below. The trace should be read column-wise from left to right, where each column
is read from top to bottom. Requests are reads unless otherwise specified. Gadgets are marked above the trace.

Each subtrace will be composed of two gadgets.
Gadget Gi

2 will be created based on the vertex v̄i.
This gadget will contain reads of every non-adjacent
edge item and every filler item for v̄i. This read
pattern will repeat bωc + 3 times. For the example,
the gadget G1

2 generated for vertex 1 would look
like {R(e3);R(v(1,1));R(e3);R(v(1,1));R(e3);R(v(1,1))}
for ω < 1. The second gadget in the trace, G3, consists
of reads to each edge item.

Mapping Solutions. Consider any maximum match-
ing for G. We generate a solution for the caching instance
as follows: For any time during G1 or G3, all m active
items can all be kept in the cache. During Gi

2, the m−1
items that are being read during the gadget are kept in
cache. In addition, if an edge adjacent to v̄i is in the
matching (there can be at most one), that edge item is
kept in the cache during the gadget. Otherwise, any of
the remaining items can be chosen to remain in cache.
The cost of the resulting solution is 7m−2n+2mω−ωk
for a matching of size k.

We now show that the solution generated for the
maximum matching is the optimal solution to the caching
instance. Because the only cache contention is during
Gi

2, we can ignore G1 and G3. During Gi
2, retaining

each read item for the entirety of the gadget saves bωc+2.
Retaining items that are not read during the gadget can
save at most ω + 1 (one read and one writeback). It is
thus optimal to retain all read items and one adjacent
edge item. An edge item can only avoid a writeback if
it is retained across all vertex subtraces. Because the
matching solution will retain the edge items for each
edge in the matching at all times, the matching with the
most edges will have the greatest writeback savings.

To generate a solution to the matching problem from

the caching solution, simply take for the matching every
edge associated with an item held during the entire trace.

Lower Bounding the Size of the Matching. For
any 3-uniform tripartite hypergraph G with maximum
vertex degree B and m edges, the size of the maximum
3D matching k ≥ m/(3B − 2).

Consider any edge e in the input graphG. BecauseG
is 3-uniform, e must be incident upon exactly 3 vertices.
Each of these vertices can have at most B−1 edges other
than e incident upon them. e can be adjacent to at most
3(B− 1) other edges. For any maximum matching M , if
none of the edges adjacent to e are in M , then e must be
in M . Because we consider any edge in the input graph,
there can be at most 3(B − 1) edges not in M for each
edge in M . Dividing the m edges in G by the ratio of
edges in the matching finishes the proof.

Generating an Approximation Algorithm. As-
sume there exists a 1 + ε approximation algorithm A for
the Offline WA Caching Problem. Consider an instance
M of the 3D matching problem with maximum matching
size k. Let x and x′ be the cost of the optimal solution
and the solution generated by A, respectively, for the
Offline WA Caching instance generated by applying the
process above to M . We know from the solution map-
ping that x = 7m− 2n+ 2mω − ωk. By algebra, we see
that k = (7m− 2n+ 2mω − x)/ω and the same relation
holds for k′ and x′.

When we subtract the k′ equation from the k
equation, we see that k − k′ ≤ (x′ − x)/ω. By
plugging in the relationship between x and x′, we get
k − k′ ≤ εx/ω. By bounding x as a function of m and
using the bound relating m and k above, we see that
k − k′ ≤ ε(7 + 2ω)k(3B − 2)/ω. Rearranging, we get
k′ ≥ k(1− ε(7 + 2ω)(3B − 2)/ω). As ω becomes large,

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

this becomes k′ ≥ k(1− ε2(3B − 2)).
This means that any constant approximation algo-

rithm for the Offline WA Caching Problem can be used
as a constant approximation to Bounded 3D Matching.
Since the matching problem is max SNP-complete, the
Offline WA Caching Problem is max SNP-hard.

5.3 Analyzing FitF. In this section, we analyze
the performance of the Furthest-in-the-Future (FitF)
policy [7, 46] in the presence of writeback costs. FitF,
which evicts the item accessed furthest in the future,
optimally solves the basic version of the Offline WA
Caching Problem. We show how its performance changes
when items have a writeback cost of ω units.

Theorem 5.1. FitF is an ω + 1 approximation to the
basic Offline WA Caching. This bound is tight.

Proof. Consider a basic Offline WA Caching instance.
Let LB and LA be the number of loads in the solution
generated by FitF and algorithm A, respectively. Be-
cause FitF minimizes loads, LB ≤ LA. The number of
writebacks an algorithm suffers cannot be greater than
the number of loads it suffers, so WB ≤ LB. Through
substitution: CostB = LB + ωWB ≤ (1 + ω)LB ≤
(1 + ω)LA ≤ (1 + ω)CostA.

We now provide a family of traces where the solution
generated by FitF has ω + 1 − ε times the cost of the
optimal solution for arbitrarily small values of ε. For a
cache of size k, we generate a trace T using k − 1 dirty
items and k− 1 clean items. T consists of a read to each
clean item, followed by a write to each dirty item. The
family F of traces consists of each trace that is generated
by an integral number of repetitions of T .

Because FitF loads the clean items first and makes
eviction decisions when they are closer to reuse than the
single dirty item in cache at the time, FitF will retain all
clean items for the duration of the trace. The optimal
solution is to retain all dirty elements for the duration
of the trace. In each iteration after the first, FitF will
suffer k−1 loads and k−1 writebacks, while the optimal
solution will suffer only k − 1 loads. Thus the ratio of
costs for all iterations after the first will be ω+ 1.

One reason that FitF is not optimal is that it is
a so-called stack algorithm [46]. Stack algorithms are
replacement policies where the content of a larger cache is
always a superset of the content of a smaller cache serving
the same trace. We show in Appendix A that stack
algorithms, despite being intuitive and useful, cannot
optimally solve caching problems with multiple costs,
such as the WA Caching Problem.

5.4 Approximation Algorithms. Having shown
that we cannot solve the Offline WA Caching Prob-
lem, we turn to approximate solutions. We provide a
method with a theoretical guarantee, and practical up-
per and lower bounds for the optimal solution. Our
practical bounds are based on the work of Berger et
al. [11], modified for the writeback-aware setting.

A 2-Approximation for Savings. We provide a
scheme that provides a 2-approximation of the savings of
the optimal solution. We define the savings of a solution
as the difference between the cost of the solution and
the cost of loading and then immediately evicting each
item accessed by the trace.

The scheme considers loads and writebacks sepa-
rately. Although running any writeback-oblivious opti-
mal algorithm on the trace is an ω + 1 approximation of
the cost (see Section 5.3), it will provide a upper bound
for the savings that can be obtained due to loads. A
similar bound for the savings due to writebacks can be
found by running the same algorithm on a modification
of the original trace that treats reads as having load
cost zero and writes as having load cost equal to their
writeback cost. As the eviction decisions of both of these
algorithms are valid solutions to the original problem, we
choose the one with greater savings as the approximate
solution. Because the optimal savings must lie between
the larger of the savings and the sum, we can be off by
at most a factor of two.

This technique will likely perform well when the
savings available in the trace are dominated by either
loads or writebacks, but will perform poorly when both
metrics contribute evenly to the total savings.

A Practical Lower Bound. We compute a practical
lower bound for the cost of the optimal solution by
considering the relaxed view of time introduced in Berger
et al. [11]. In this view, the solution has capacity equal to
the size of the cache multiplied by the length of the trace.
Intervals between consecutive accesses to an item take up
space equal to the product of the item size and interval
length, and have cost equal to the savings obtained by
holding the item in cache for the entire interval. By
packing the cache with intervals of highest density, the
ratio of interval cost to space, a solution is generated
that reflects a cache with the same average size, but that
can change size over the course of the trace.

To make this scheme writeback-aware, we add into
consideration intervals between consecutive writes to the
same item. These intervals are assigned cost equal to
the sum of the costs of the load intervals to the item
during its time period and the item’s writeback cost.
The addition of the writeback intervals also affects the
packing scheme. While the writeback-oblivious version
could simply choose intervals while it had space, the

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

aware version must update the dependent intervals of
each interval it selects. Chosen writeback intervals
invalidate load intervals to the same item that occur
during their time period. Chosen load intervals cause the
writeback interval (if any) that share an item and time
period with them to decrease in cost and capacity by the
values of the load interval. Despite these complications,
the result is a lower bound for the optimal offline solution
that is accurate and efficient for many real-world traces.
Following the naming convention of Berger et al., we
call this algorithm writeback-aware practical flow-based
offline optimal - lower (WAPFOO-L).

A Practical Upper Bound. We similarly adapt the
ideas of Berger et al. [11] to create a practical upper
bound. Their bound relies on converting the instance of
the caching problem to an instance of the minimum-
cost flow (MCF) problem. The MCF problem and
conversion from the caching problem are described in
Appendix B. In the writeback-oblivious setting, this
transformation completely captures the caching problem
instance. However, computing the MCF for instances
generated from large traces is prohibitively expensive. To
make this more practical, Berger et al. consider subsets
of edges at a time, breaking the graph into bite-size
chunks and reducing the processing complexity.

By applying the same principles used to make the
lower bound writeback-aware, we can achieve the same
result for the upper bound. The difference here is that
the changes are being made to edges rather than intervals,
involving increased data management and requiring
careful ordering or edge processing. Although these
changes are expensive, we believe that the resulting
algorithm remains reasonably practical.

6 Experimental Evaluation

To demonstrate that the theory behind Writeback-Aware
Landlord holds up well in practice, we evaluate it against
several state-of-the-art replacement policies on real-world
storage traces [48]. This experimental study shows that
Writeback-Aware Landlord is effective in the presence of
significant read-write asymmetry, reducing total cost to
cache the trace by 41% over LRU and by 24% over
GDS [18]. We further study how Writeback-Aware
Landlord’s performance varies for different writeback
costs, performance metrics, and additional heuristics,
and analyze from where its benefits come.

6.1 Methodology.

Workloads. For our simulations, we make use of block
traces from Microsoft Research (MSR) [48]. These traces
represent the access patterns experienced by various
MSR servers during one week of operation, and represent

many commonly seen behaviors. They are distributed
in a format that specifies the time, type, offset, and size
of the request. We use the size as specified and treat the
offset as a request ID. We evaluate 512 M requests for
each trace, replaying the trace if necessary.

Competing Policies. We compare Writeback-Aware
Landlord primarily against two policies. LRU is the
simplest policy commonly used in practice, and works
well on traces with high temporal locality. It treats all
items equally, ignoring the size and cost of items. GDS
is an efficient implementation of (non-writeback-aware)
Landlord that considers item cost and size when making
decisions, but does not distinguish between reads and
writes. Both LRU and GDS have theoretical worst-case
bounds on their performance similar to Writeback-Aware
Landlord in the basic and generalized model, respectively
(Section 2.1 describes these models). Comparing against
these policies thus isolates the importance of accounting
for writebacks in the WA Caching Problem.

We also compare our results to the offline optimal
algorithm. Because this is difficult to compute exactly,
we use WAPFOO-L, the lower bound described in Section
5.4. By comparing against WAPFOO-L, we can see how
much potential for improvement exists both before and
after the application of our ideas.

In Section 6.3, we further compare against GDSF, an
extension of GDS that favors frequently accessed objects,
and show that Writeback-Aware Landlord can also be
effectively extended with such heuristics.

Unfortunately, fair comparisons against prior
writeback-aware policies developed for processor
caches [64, 60, 50] are not possible because these policies
assume items have fixed size (as cache lines do in proces-
sors), whereas in the traces we run on, item sizes vary by
orders of magnitude. This difference would cause these
prior policies to perform poorly for reasons unrelated to
writebacks and read-write asymmetry.

Metrics. We compare policies primarily on their total
cost over the trace, as defined in Section 3. Because
the traces do not specify cost, we consider the fault
model, where each item is considered to have unit load
cost and writeback cost ω. This represents a system
where the cost of communication between the cache
and storage is largely independent of the amount of
data being communicated, i.e., where latency trumps
bandwidth. For most of our experiments, we set ω = 10,
which lies between the read-write asymmetry of emerging
technologies like Intel Optane [24] and the read-write
asymmetry of flash memory (which can range up to
ω ≈ 50 [31]).

Implementation. The version of Writeback-Aware
Landlord described in Figure 1 simplifies the theoretical
analysis, but requires work proportional to the number

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

WAPFOO-L_10.0 Writebacks
WAPFOO-L_10.0 Misses

LRU Writebacks
LRU Misses

GDS Writebacks
GDS Misses

WALL_10.0 Writebacks
WALL_10.0 Misses

WALLHW_10.0 Writebacks
WALLHW_10.0 Misses

T
ot
al

C
os
t

16 32 64 12
8

25
6

51
2

Cache Size (GB)

0

2

4

6
1e8

(a) proj 1

16 32 64 12
8

25
6

51
2

Cache Size (GB)

0.00

0.25

0.50

0.75

1.00
1e9

(b) proj 2

4 8 16 32 64 12
8

Cache Size (GB)

0

1

2

1e9

(c) src1 0

T
ot
al

C
os
t

4 8 16 32 64 12
8

Cache Size (GB)

0

2

4

6
1e8

(d) src1 1

16 32 64 12
8

25
6

51
2

Cache Size (GB)

0

1

2

3

4

1e8

(e) usr 1

Figure 4: Total cost (misses + weighted writebacks) for different replacement policies on the five storage traces at
cache sizes 4–512 GB.

of cached items for each eviction. Because this is
impractical, we implement WALL in an equivalent
fashion that requires only logarithmic work per eviction.
Our implementation is based on Greedy Dual Size
(GDS) [18]. In this policy, aging is performed by
increasing a global “inflation value” L, rather than
decreasing the credit of each item. To maintain credit
values equivalently to Figure 1, we combine credits and
scale them by the item’s size during assignment, e.g.:
credit = L+ cost/size. Finally, all credits are stored in
a min-heap to avoid scanning over cached items to find
a victim.

We also test a version of WALL, called WALLHW,
that reduces load credit before writeback credit. The
optimality proof in Theorem 4.1 also holds for this policy.

6.2 WALL Reduces Caching Costs. Figure 4
shows the total cost for the chosen caching algorithms
across five different MSR traces for cache sizes from 4
to 512 GB. Each cost bar is split between cost due to
misses (cost = 1), and costs due to writebacks (cost = ω).
For nearly all traces, both versions of Writeback-Aware
Landlord outperform GDS and LRU.

The performance difference is fairly uniform across
all traces, excluding src1 0. src1 0 is an outlier: in this
trace, 43% of accesses are writes, and the number of bytes
written is an even larger fraction. Worse, these writes
are distributed across a large number of distinct items,
making it impossible for Writeback-Aware Landlord to
signficantly reduce writebacks. The other traces have
write percentages ranging from 5–12%, providing few
enough writes for the extra credit they receive to be

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

GDS
GDSF

WALL_10.0

WALLF_10.0

WALLHW_10.0

WALLHWF_10.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Co

st
 N

or
m

al
ize

d
to

 W
AP

FO
O-

L

Figure 5: Total cost normalized to WAPFOO-L, aver-
aged across all traces at 128 GB. The light and dark
portions of each bar show the cost due to misses and
writebacks, respectively.

meaningful. WAPFOO-L follows the same general trends
as the other policies, but performs meaningfully better.
This gap shows that there are still potential gains to be
made by better replacement policies.

The arithmetic mean across traces and cache sizes
of the miss cost of WALL is only 3.2% greater than that
of GDS. However, WALL reduces writeback cost relative
to GDS by 47%. In other words, WALL significantly
saves on writebacks without significantly harming hit
rate. The result is that WALL’s total cost is, on average,
88% of GDS, 72% of LRU, and 156% of WAPFOO-L.
WALLHW performs even better, increasing miss rate by
2.6% for a 51% writeback cost reduction. This results
in average total cost that is 86% of GDS, 70% of LRU,
and 151% of WAPFOO-L.

6.3 WALL Benefits from Additional Heuristics.
It is common practice for systems to augment replace-
ment policies with heuristics. Among the most popular
is frequency, which says that items that have been re-
quested frequently will be requested again. GDSF [2]
modifies GDS to account for frequency by multiplying
an item’s credit by the number of hits it has received
while in the cache. Although this algorithm actually
has worse theoretical guarantees than GDS, it performs
well on real traces. We make a similar modification to
Writeback-Aware Landlord, which we call WALLF.

Figure 5 shows the effect of the frequency heuristic
on the costs incurred by GDS and WALL at a cache size
of 128 GB. Costs are averaged across traces and, to avoid
biasing results towards a particular trace, are normalized
to WAPFOO-L. We see that considering frequency

1.0 4.0 10.0 25.0
Writeback Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
st

 N
or

m
al

ize
d

to
 W

AP
FO

O-
L

Figure 6: Total cost normalized to WAPFOO-L, av-
eraged across all traces at 128 GB. Writeback-Aware
Landlord’s benefits improve as writeback cost ω varies
from 1–25.

reduces the number of both misses and writebacks
for all considered policies. These results suggest that
writebacks share many of the locality patterns seen in
loads, and that frequency is a useful indicator of utility.
These improvements occur in both GDS and WALL,
although they are more pronounced in GDS.

However, the benefits of adding frequency to
writeback-aware caches may be less than adding it to
writeback-oblivious caches. This could be explained by
the fact that both frequency and writeback-awareness are
weighting particular items more heavily, which becomes
less impactful as it affects more items.

6.4 Sensitivity to Writeback Cost. Our previous
results have assumed that writebacks are 10× as expen-
sive as reads. This cost asymmetry may have a large
impact on caching decisions and the resultant costs. Fig-
ure 6 shows how the system changes with different cost
ratios from ω = 1 to 25, representing a reasonable range
from bandwidth-sensitive DRAM systems through stor-
age technologies with heavy read-write asymmetry [31].

GDS does not consider writebacks, so its miss cost
remains constant and its writeback cost increases in
proportion with ω. However, because these results are
normalized to WAPFOO-L, these trends are seen as an
increasing fraction of cost spent on writebacks.

WALL’s results are more interesting, and show how
it trades off misses and writebacks. Overall, WALL’s
total cost decreases relative to LRU and GDS as ω
increases, primarily because it manages to reduce the
number of writebacks as they become more valuable.
This is at the cost of additional loads, which can be seen

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

in the miss costs for WALL rising relative to GDS with
ω. These results show that WALL effectively accounts
for cost asymmetry to reduce total cost.

7 Conclusion

Going forward, parallel systems will be increasingly
limited by scarce bandwidth and power. Prior work in
caching has not considered how writebacks impact these
constraints, especially in emerging non-volatile memory
technologies with read-write asymmetry. This paper
introduced the Writeback-Aware Caching Problem to fill
this gap. We showed that optimally solving Writeback-
Aware Caching is hard even in the simplest setting, and
we developed an online replacement policy with strong
theoretical guarantees and good empirical performance.
We believe that these results will help build a foundation
for further theoretical and empirical work in caching on
systems constrained by energy or bandwidth.

Acknowledgements

This work is supported in part by NSF grants CCF-
1533858, CCF-1618280, CCF-1814603, CCF-1527110,
SHF-1815882, CCF-1725663, CCF-1750808, CCF-
1919223, a Google Faculty Research Award, and a Sloan
Research Fellowship.

References

[1] S. Albers, S. Arora, and S. Khanna, Page replace-
ment for general caching problems, in SODA, vol. 99,
Citeseer, 1999, pp. 31–40.

[2] M. Arlitt, L. Cherkasova, J. Dilley,
R. Friedrich, and T. Jin, Evaluating content
management techniques for web proxy caches, ACM
SIGMETRICS Performance Evaluation Review, 27
(2000), pp. 3–11.

[3] J. Arulraj and A. Pavlo, How to build a non-volatile
memory database management system, in Proceedings
of the 2017 ACM International Conference on Manage-
ment of Data, ACM, 2017, pp. 1753–1758.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor,
and B. Schieber, A unified approach to approximating
resource allocation and scheduling, Journal of the ACM
(JACM), 48 (2001), pp. 1069–1090.

[5] D. Bausch, I. Petrov, and A. Buchmann, Making
cost-based query optimization asymmetry-aware, in
Proceedings of the Eighth International Workshop on
Data Management on New Hardware, ACM, 2012,
pp. 24–32.

[6] N. Beckmann and D. Sanchez, Maximizing cache
performance under uncertainty, in High Performance
Computer Architecture (HPCA), 2017 IEEE Interna-
tional Symposium on, IEEE, 2017, pp. 109–120.

[7] L. A. Belady, A study of replacement algorithms for
a virtual-storage computer, IBM Systems journal, 5
(1966), pp. 78–101.

[8] L. A. Belady and F. P. Palermo, On-line mea-
surement of paging behavior by the multivalued min
algorithm, IBM Journal of Research and Development,
18 (1974), pp. 2–19.

[9] N. Ben-David, G. E. Blelloch, J. T. Fineman,
P. B. Gibbons, Y. Gu, C. McGuffey, and J. Shun,
Parallel algorithms for asymmetric read-write costs, in
Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), ACM,
2016, pp. 145–156.

[10] , Implicit decomposition for write-efficient
connnectivity algorithms, in International Parallel and
Distributed Processing Symposium (IPDPS), IEEE,
2018, pp. 711–722.

[11] D. S. Berger, N. Beckmann, and M. Harchol-
Balter, Practical bounds on optimal caching with
variable object sizes, Proc. ACM Meas. Anal. Comput.
Syst. (SIGMETRICS’18), (2018).

[12] M. Bhadkamkar, J. Guerra, L. Useche, S. Bur-
nett, J. Liptak, R. Rangaswami, and V. Hristidis,
Borg: Block-reorganization for self-optimizing storage
systems., in FAST, vol. 9, Citeseer, 2009, pp. 183–196.

[13] G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
Y. Gu, and J. Shun, Sorting with asymmetric read and
write costs, in Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA),
ACM, 2015, pp. 1–12.

[14] , Efficient algorithms with asymmetric read and
write costs, in European Symposium on Algorithms,
2016.

[15] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun,
Parallel write-efficient algorithms and data structures
for computational geometry, in Proceedings of the 30th
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), ACM, 2018, pp. 235–246.

[16] M. Bohr, A 30 year retrospective on dennard’s mos-
fet scaling paper, IEEE Solid-State Circuits Society
Newsletter, 12 (2007), pp. 11–13.

[17] M. Brehob, S. Wagner, E. Torng, and R. Enbody,
Optimal replacement is np-hard for nonstandard caches,
IEEE Transactions on computers, 53 (2004), pp. 73–76.

[18] P. Cao and S. Irani, Cost-aware www proxy caching
algorithms., in Usenix symposium on internet technolo-
gies and systems, vol. 12, 1997, pp. 193–206.

[19] E. Carson, J. Demmel, L. Grigori, N. Knight,
P. Koanantakool, O. Schwartz, and H. V.
Simhadri, Write-avoiding algorithms, in 2016 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), IEEE, 2016, pp. 648–658.

[20] S. Chen, P. B. Gibbons, and S. Nath, Rethinking
database algorithms for phase change memory, in
Proc. Conference on Innovative Data Systems Research
(CIDR), 2011.

[21] M. Chrobak, H. J. Karloff, T. H. Payne, and
S. Vishwanathan, New results on server problems, in

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

SIAM Journal on Discrete Mathematics, 1991, pp. 172–
181.

[22] M. Chrobak, G. J. Woeginger, K. Makino, and
H. Xu, Caching is hard-even in the fault model,
Algorithmica, 63 (2012), pp. 781–794.

[23] A. Colin and B. Lucia, Termination checking and
task decomposition for task-based intermittent programs,
in Proceedings of the 27th International Conference on
Compiler Construction, ACM, 2018, pp. 116–127.

[24] I. Corporation, Optane ssd dc p4800x se-
ries, 2018. Retrieved online on 11 Jan 2019 at
https://ark.intel.com/products/97161/Intel-

Optane-SSD-DC-P4800X-Series-375GB-2-5in-PCIe-

x4-3D-XPoint-.
[25] R. H. Dennard, F. H. Gaensslen, V. L. Rideout,

E. Bassous, and A. R. LeBlanc, Design of ion-
implanted mosfet’s with very small physical dimensions,
IEEE Journal of Solid-State Circuits, 9 (1974), pp. 256–
268.

[26] N. Duong, D. Zhao, T. Kim, R. Cammarota,
M. Valero, and A. V. Veidenbaum, Improving cache
management policies using dynamic reuse distances,
in Microarchitecture (MICRO), 2012 45th Annual
IEEE/ACM International Symposium on, IEEE, 2012,
pp. 389–400.

[27] G. Even, M. Medina, and D. Rawitz, Online gen-
eralized caching with varying weights and costs, in Pro-
ceedings of the 30th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), ACM, 2018,
pp. 205–212.

[28] M. Farach-Colton and V. Liberatore, On local
register allocation, Journal of Algorithms, 37 (2000),
pp. 37–65.

[29] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch,
D. D. Sleator, and N. E. Young, Competitive paging
algorithms, Journal of Algorithms, 12 (1991), pp. 685–
699.

[30] B. S. Gill and D. S. Modha, Wow: Wise ordering
for writes-combining spatial and temporal locality in
non-volatile caches., in FAST, 2005.

[31] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf,
Characterizing flash memory: anomalies, observations,
and applications, in Microarchitecture, 2009. MICRO-
42. 42nd Annual IEEE/ACM International Symposium
on, IEEE, 2009, pp. 24–33.

[32] Y. Gu, Y. Sun, and G. E. Blelloch, Algorithmic
building blocks for asymmetric memories, in European
Symposium on Algorithms, 2018, pp. 44:1–44:15.

[33] M. Horowitz, Computing’s energy problem (and what
we can do about it), in Proc. of the IEEE Intl. Solid-
State Circuits Conf. (ISSCC), 2014.

[34] www.slideshare.net/IBMZRL/theseus-pss-nvmw2014,
2014.

[35] Intel. www.intel.com/content/www/us/en/

products/docs/processors/xeon/xeon-scalable-

platform-where-to-buy.html, 2019.
[36] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,

A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R.
Dulloor, et al., Basic performance measurements of
the Intel Optane DC persistent memory module, arXiv
preprint arXiv:1903.05714, (2019).

[37] R. Jacob and N. Sitchinava, Lower bounds in the
asymmetric external memory model, in Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), ACM, 2017, pp. 247–254.

[38] A. Jain and C. Lin, Back to the future: leveraging
belady’s algorithm for improved cache replacement,
in Computer Architecture (ISCA), 2016 ACM/IEEE
43rd Annual International Symposium on, IEEE, 2016,
pp. 78–89.

[39] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and
J. Emer, High performance cache replacement using re-
reference interval prediction (rrip), in ACM SIGARCH
Computer Architecture News, vol. 38, ACM, 2010,
pp. 60–71.

[40] V. Kann, Maximum bounded 3-dimensional matching
in max snp-complete, Inf. Process. Lett., 37 (1991),
pp. 27–35.

[41] R. M. Karp, On the computational complexity of
combinatorial problems, Networks, 5 (1975), pp. 45–68.

[42] G. Keramidas, P. Petoumenos, and S. Kaxiras,
Cache replacement based on reuse-distance prediction, in
Computer Design, 2007. ICCD 2007. 25th International
Conference on, IEEE, 2007, pp. 245–250.

[43] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu,
Evaluating phase change memory for enterprise storage
systems: A study of caching and tiering approaches,
ACM Transactions on Storage (TOS), 10 (2014), p. 15.

[44] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,
Architecting phase change memory as a scalable dram
alternative, in ACM SIGARCH Computer Architecture
News, vol. 37, ACM, 2009, pp. 2–13.

[45] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu,
and Y. N. Patt, Dram-aware last-level cache writeback:
Reducing write-caused interference in memory systems,
tech. rep., U.T. Austin, 2010.

[46] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger, Evaluation techniques for storage hierarchies,
IBM Systems journal, 9 (1970), pp. 78–117.

[47] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng,
Overview of emerging nonvolatile memory technologies,
Nanoscale research letters, 9 (2014), p. 526.

[48] D. Narayanan, A. Donnelly, and A. Rowstron,
Write off-loading: Practical power management for en-
terprise storage, ACM Transactions on Storage (TOS),
4 (2008), p. 10.

[49] J. B. Orlin, A faster strongly polynomial minimum
cost flow algorithm, Operations research, 41 (1993),
pp. 338–350.

[50] H. Qin and H. Jin, Warstack: Improving llc replace-
ment for nvm with a writeback-aware reuse stack, in
Parallel, Distributed and Network-based Processing
(PDP), 2017 25th Euromicro International Conference
on, IEEE, 2017, pp. 233–236.

[51] M. K. Qureshi, S. Gurumurthi, and B. Rajendran,

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Phase change memory: From devices to systems, Syn-
thesis Lectures on Computer Architecture, 6 (2011),
pp. 1–134.

[52] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely,
and J. Emer, Adaptive insertion policies for high
performance caching, in ACM SIGARCH Computer
Architecture News, vol. 35, ACM, 2007, pp. 381–391.

[53] J. Schindler, J. L. Griffin, C. R. Lumb, and
G. R. Ganger, Track-aligned extents: Matching access
patterns to disk drive characteristics., in FAST, vol. 2,
2002, pp. 259–274.

[54] D. D. Sleator and R. E. Tarjan, Amortized effi-
ciency of list update and paging rules, Communications
of the ACM, 28 (1985), pp. 202–208.

[55] G. Soundararajan, V. Prabhakaran, M. Balakr-
ishnan, and T. Wobber, Extending ssd lifetimes with
disk-based write caches., in FAST, vol. 10, 2010, pp. 101–
114.

[56] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter,
and L. K. John, The virtual write queue: Coordinating
dram and last-level cache policies, ACM SIGARCH
Computer Architecture News, 38 (2010), pp. 72–82.

[57] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos,
Energy-efficient thermal-aware task scheduling for ho-
mogeneous high-performance computing data centers: A
cyber-physical approach, IEEE Transactions on Parallel
and Distributed Systems, 19 (2008), pp. 1458–1472.

[58] A. van Renen, L. Vogel, V. Leis, T. Neumann,
and A. Kemper, Persistent memory i/o primitives, in
International Workshop on Data Management on New
Hardware, 2019, pp. 12:1–12:7.

[59] S. D. Viglas, Write-limited sorts and joins for persis-
tent memory, Proceedings of the VLDB Endowment, 7
(2014), pp. 413–424.

[60] Z. Wang, S. M. Khan, and D. A. Jiménez, Improving
writeback efficiency with decoupled last-write prediction,
in ACM SIGARCH Computer Architecture News,
vol. 40, IEEE Computer Society, 2012, pp. 309–320.

[61] Z. Wang, S. Shan, T. Cao, J. Gu, Y. Xu, S. Mu,
Y. Xie, and D. A. Jiménez, Wade: Writeback-
aware dynamic cache management for nvm-based main
memory system, ACM Transactions on Architecture
and Code Optimization (TACO), 10 (2013), p. 51.

[62] N. Young, The k-server dual and loose competitiveness
for paging, Algorithmica, 11 (1994), pp. 525–541.

[63] N. E. Young, On-line file caching, Algorithmica, 33
(2002), pp. 371–383.

[64] M. Zhou, Y. Du, B. Childers, R. Melhem, and
D. Mossé, Writeback-aware partitioning and replace-
ment for last-level caches in phase change main memory
systems, ACM Transactions on Architecture and Code
Optimization (TACO), 8 (2012), p. 53.

[65] O. Zilberberg, S. Weiss, and S. Toledo, Phase-
change memory: An architectural perspective, ACM
Computing Surveys (CSUR), 45 (2013), p. 29.

A Stack Algorithms

Part of what makes the basic caching problem so readily
tractable is the fact that most good algorithms to solve
it are stack algorithms. Stack algorithms, defined by
Mattson et al. [46], are replacement policies where the
content of a larger cache is always a superset of the
content of a smaller cache serving the same trace.

Stack algorithms are useful for several reasons.
On an intuitive level, they make the problem easier
to reason about, because each cache decision can be
considered individually. Stack algorithms can be more
easily computed using greedy algorithms or dynamic
programming. They are also easy on system designers,
as multiple cache sizes can be simulated on a trace
simultaneously [46].

To the best of our knowledge, stack algorithms have
not been investigated in any model other than the basic
model. Here, we show that stack algorithms are not
optimal in the presence of multiple item costs or multiple
item sizes.

Consider the Offline WA Caching instance shown in
Figure 7. The optimal solution for a cache of size 2 is to
hold items B, D, and E in the cache. When the cache
size increases to 3, a stack algorithm must keep each of
these items. However, the optimal solution is to hold A,
B, C, and E in the cache, dropping D. This means that
the optimal solution is not a stack algorithm.

Such bad cases are not limited to small cache sizes,
or to a single change in cache size. It is possible to
construct an example where the optimal solution for a
cache of size k is not a subset of the optimal solution for
a cache of size k + 1 for any value of k by modifying the
trace in Figure 7 to replace each item and request in the
trace with k − 1 items and one request for each of the
replacement items, respectively. The optimal solution
for a cache of size k retains all replacement items for
B, D, and E, while the optimal solution for size k + 1
will replace one of the D items with one of the A items
and one of the C items. Furthermore, as the cache
increases in size from k to 2k, the D items will gradually
be replaced with A and C items.

Our construction holds for any variant of caching
with multiple costs. As long as each request interval for
A, B, C, and E provide more potential savings than the
request intervals for D, then the cache will switch from
D to A or C as soon as the space becomes available.

It is also straightforward to construct traces with
multiple item sizes where stack algorithms are non-
optimal. An example is having multiple items share
the same time period with access frequency proportional
to the square of item size. As the cache becomes large
enough to accommodate larger items, these items will
displace the lesser-used smaller items.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

(A,W), (B,W), (F,R), (B,W), (C,W), (D,R), (G,R), (D,R), (A,W), (E,W), (H,R), (E,W), (C,W)

Figure 7: An Example Trace that Breaks Stack Algorithms.

(A,W), (B,R), (A,R), (A,R), (A,W), (B,R), (C,R), (C,W), (C,R), (A,W)

Sink Source

A B A A A B C C C A

3 + 𝜔 1 + 𝜔

Figure 8: Example WA Caching Problem to MCF Conversion. The trace above is converted to the MCF
problem below. All items are said to have load cost 1 and writeback cost ω. Black edges have cost 0 and capacity
equal to the cache size. Red edges have cost -1 and capacity 1. Blue edges have labeled cost and capacity 1.

Because we have constructed examples that break
stack algorithms for varying costs and varying sizes, we
claim the following.

Theorem A.1. For any caching problem with multiple
costs or multiple sizes, the optimal solution is not a stack
algorithm.

B Writeback-Aware Caching and Minimum
Cost Flow

The minimum cost flow problem is commonly used to
model offline versions of caching problems. Some of our
approximations make use of this technique, which we
describe here.

Minimum Cost Flow. The minimum cost flow (MCF)
problem [49] consists of a directed graph G = {V,E} and
an amount of flow f . One vertex s ∈ V is designated as
the source vertex and another vertex t ∈ V is designated
as the sink. Each edge e ∈ E has both a cost per unit
flow c(e) and flow capacity u(e) associated with it. The
goal of the problem is to route f units of flow from the
source to the sink while minimizing the total cost. Each
vertex other than the source and sink must have the
same amount of flow leaving and entering.

Converting Between Problems. An example trace
and the generated MCF problem are shown in Figure 8.
The transformation creates one vertex in the graph for
each request in the trace. For simplicity, we will refer
to vertices as if they were the requests they represent.
The first and last requests are chosen as the source
and sink, respectively. To simulate empty cache space
between requests, we generate an edge from each request

to the next with cost 0 and capacity k. For modeling
load savings, we generate an edge between subsequent
requests to the same item with cost equal to the item’s
load cost and capacity 1. We model writeback savings
with an edge between each write and the subsequent
write to the same item. Edges representing writebacks
have cost equal to the item’s writeback cost plus the
sum of the costs of load intervals for that item that
overlap with the writeback interval. In the example,
we show edges representing loads and writebacks in red
and blue, respectively. We set the flow from source to
sink to be equal to the size of the cache. The result is
a directed acyclic graph (DAG) that approximates the
cost savings that can be found in the instance of the
basic WA Caching Problem.

Solving the generated MCF problem provides a close
approximation to the solution of the original WA Caching
Problem. It is not exact, because a solution to the MCF
problem can obtain savings from an item twice during
same time period. However, it is a useful foundation
that algorithms can build upon.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

