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Abstract
Large-scale database, data mining, and multimedia
applications require large, sequential transfers and
have bandwidth as a key requirement. This paper in-
vestigates the performance of reading and writing large
sequential files using the Windows NT™ 4.0 File Sys-
tem. The study explores the performance of Intel
Pentium Pro™ based memory and IO subsystems, in-
cluding the processor bus, the PCI bus, the SCSI bus,
the disk controllers, and the disk media in a typical
server or high-end desktop system. We provide details
of the overhead costs at each level of the system and
examine a variety of the available tuning knobs. We
show that NTFS out-of-the-box performance is quite
good, but overheads for small requests can be quite
high. The best performance is achieved by using large
requests, bypassing the file system cache, spreading the
data across many disks and controllers, and using
deep-asynchronous requests. This combination allows
us to reach or exceed the half-power point of all the
individual hardware components.

1 Introduction
High-speed sequential access is important for bulk data
operations typically found in utility, multimedia, data
mining, and scientific applications. High-speed se-

quential IO is also an important factor in the startup of
interactive applications. Minimizing IO overhead and
maximizing bandwidth frees power to actually process
the data.

Figure 1 shows how data flows in a modern storage
subsystem. Application requests are passed to the file
system. If the file system cannot service the request
from its main memory buffers, it passes requests to a
host bus adapter (HBA) over a PCI peripheral bus. The
HBA passes requests across the SCSI bus to the disk
drive controller. The controller reads or writes the disk
media and returns data via the reverse route.

The large, bold numbers in Figure 1 indicate the ad-
vertised throughputs listed on the boxes of the various
hardware components. These are the figures quoted in
hardware reviews and specifications. Several factors
prevent you from achieving this PAP (peak advertised
performance). The media-transfer speed and the proc-
essing power of the on-drive controller limit disk
bandwidth. The wire’s transfer rate, the disk transfer
rate, and SCSI protocol overheads all limit throughput.

In the case diagrammed in Figure 1, the disk media is
the bottleneck, limiting aggregate throughput to 7.2
MBps at each step of the pipeline. There is a signifi-
cant gap between the advertised performance and this

out-of-the-box performance. Moreover, the
application consumes between 25% and
50% of the processor at this throughput.
The processor would saturate long before it
reached the advertised SCSI or PCI
throughputs.

The goal of this study is to see if applica-
tions can do better cheaply - increase se-
quential IO throughput and decrease proc-
essor overhead while making as few appli-
cation changes as possible. Our goal is to
bring the real application performance
(RAP) up to the half-power point - the point
at which the system delivers at least half of
the theoretical maximum performance.
More succinctly, the goal is RAP  > PAP/2.
Such improvements often represent signifi-
cant (2x to 10x) gains over the out-of-the-
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Figure 1 – The Storage Subsystem – An application makes requests
of the file system, which transfers them across the PCI bus to a SCSI
adapter that sends them across the SCSI bus to the disk. For each com-
ponent, the upper numbers give the advertised speed and the lower
number gives the actual speed in this application reading a single disk.
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box performance. We will see that the half-power point
can be achieved without heroic effort, through a com-
bination of techniques.

Our benchmark is a simple application that uses the
NT file system to sequentially read and write a 100 MB
file and times the result. ReadFileEx()and IO
completion routines were used to keep n asynchronous
requests in flight at all times. All measurements were
repeated three times and, unless otherwise noted, all
the data obtained were quite repeatable (within 3%
margin of error). Multiple disk data was obtained by
using NT ftdisk to build striped logical volumes and
the basic system configuration used for all our meas-
urements is described in Table 1.

The next section discusses our out-of-the-box meas-
urements. Section 3 explores the basic capabilities of
the hardware storage subsystem. Ways to improve
performance by increasing parallelism are presented in
Section 4. Section 5 provides more detailed discussion
of performance limits and some additional software
considerations. Finally, we summarize and suggest
steps for additional study. An extended version of this
paper, and all the benchmark software can be found at
www.research.microsoft.com/barc/Sequential_IO.

2 Out-of-the-Box Performance
Our first measurements examine the out-of-the-box
performance of our benchmark synchronously reading
and writing using the NTFS defaults. The benchmark
requests data sequentially from the file system. Since
the data is not already in the file system cache, the file
system fetches the data from disk into the cache and
then copies it to the application’s buffers. Similarly,
when writing, the program's data is copied to the file
cache and a separate thread asynchronously flushes the
cache to disk in 64 KB units. In the out-of the-box ex-
periments, the file being written was already allocated
but not truncated. The program specified the

FILE_FLAG_SEQUENTIAL_SCAN attribute when opening
the file with CreateFile(). The total user and sys-
tem processor time was measured via GetProc-
essTimes() and Figure 2 shows the results across a
variety of application request sizes.

Buffered, sequential read throughput is nearly constant
for request sizes up to 64 KB. The file system pre-
fetches by issuing 64 KB requests to the disk. The disk
controller also prefetches data from the media to its
internal cache, which hides rotational delay and allows
the disk to approach the media transfer limit. Figure 2
shows a sharp drop in read throughput for request sizes
larger than 64 KB as the file system and disk prefetch
mechanism fails (this problem is fixed in NT5). Figure
2 also indicates that buffered-sequential writes are sub-
stantially slower than reads. The file system performs
write-back caching by default; it copies the contents of
the application buffer into one or more file system
buffers and the application considers the write com-
plete when the copy is made. The file system then coa-
lesces sequential requests into large 64 KB writes,
leading to relatively constant throughput above 4 KB.

Disk controllers also implement write-through and
write-back caching, controlled by the Write-Cache-
Enable (WCE) setting directly at the device [SCSI93].
If WCE is disabled, the disk controller announces IO
completion only after the media write is complete. If
WCE is enabled, the disk announces write completion
as soon as the data is stored in its cache and before the
actual write onto the magnetic disk media. WCE al-
lows the disk to hide the seek and media transfer,
analogous to prefetching for reads. This improves write
performance by giving pipeline parallelism – the write
of the media overlaps the transfer of the next write on
the SCSI even if the file system requests are synchro-
nous. There is no standard default for WCE – a par-
ticular drive may be shipped with WCE enabled or
disabled by default and a SCSI utility must be used to
alter this setting. The effect of WCE can be dramatic as

Processor Gateway 2000 G6-200, 200 MHz Pentium Pro, 1 32-bit PCI bus
64-bit wide 66 MHz memory interconnect, 64MB DRAM 4-way interleave

Host bus adapter 1 or 2 Adaptec 2940UW Ultra-Wide SCSI adapters (40 MBps)
Seagate Barracuda Interface Capacity RPM Seek Transfer (MBps) Cache

External InternalFast-Wide
(ST15150W)

SCSI-2
FastWide 4.3 GB 7200 4.2ms 20 MBps 5.9 – 8.8 1 MB

Disk

Ultra-Wide
(ST34371W)

SCSI-2
UltraWide 4.3 GB 7200 4.2ms 40 MBps 10 - 15 512 KB

Software Microsoft Windows NT Server 4.0 SP3, NT file system and NT's ftdisk for striping experiments

Table 1 Basic Hardware and Software Configuration – This system is representative of a small server or high-end desktop
system at the time these studies were performed in mid-1997.



shown in Figure 2 – WCE approximately doubles buff-
ered sequential write throughput. When combined with
file system write buffering, this allows small requests
to attain throughput comparable to large request sizes
and close to the performance of reads.1

Small requests involve many more system calls and
protection domain crossings per megabyte of data
moved. With 2 KB requests, the 200 MHz processor
saturates when reading writing 16 MBps. With 64 KB
requests, the same processor can generate about
50 MBps of buffered file IO – exceeding the Ultra-
Wide SCSI PAP. As an upper bound, this processor
and memory system can generate up to 480 MBps of
unbuffered disk traffic.

Write requests of 2 KB present a particularly heavy
load on the system. In this case, the filesystem must
read the file prior to the write-back in units of 4 KB
which more than doubles the load on the system. This
pre-read can be avoided by (1) issuing write requests
that are at least 4 KB, or (2) truncating the file at open
by specifying TRUNCATE_EXISTING rather than
OPEN_EXISTING as a parameter to CreateFile().
When we truncated the test file on open, throughput of
2 KB writes was about 3.7 MBps, just less than that of
4 KB and larger. TRUNCATE_EXISTING should only be
used with small, buffered requests. With 4 KB and
larger requests, extending the file after truncation in-
curs overheads which lower throughput up to 20%.
This effect is discussed further in Section 5.3.

 System behavior under large reads and writes is very
different. During the read tests, processor load is fairly

                                               
1 Enabling WCE improves performance but risks corruption
if the disk fails while uncommitted data is in its cache. The
on-disk cache may also be lost by SCSI bus resets [SCSI93].

uniform. The file system prefetches data into the cache
and then copies the data to the application’s buffer.
The file cache buffer can be reused as soon as the data
is copied to the application. During the write tests, the
processor load goes through three phases. In the first
phase, the application writes at memory speed, satu-
rating the processor as it fills all available file system
buffers. During the second phase, the file system must
free buffers by initiating SCSI transfers. New applica-
tion writes are admitted as buffers become available.
The processor is about 30% busy during this phase. At
the end of this phase, the application closes the file and
forces the file system to synchronously flush all re-
maining writes - one SCSI transfer at any time. During
this third phase, the processor load is negligible.

Not all processing overhead is charged to the bench-
mark process in Figure 2. Despite some uncertainty in
the measurements, the basic trend remains: moving
data with many small requests costs significantly more
than moving the same data with fewer larger requests.
We will return to the cost question in more detail in the
next section.

3 Improving Performance - Bypassing
the File System Cache

Our next experiments bypass file system buffering to
more closely examine the underlying hardware per-
formance. This section provides data on both Fast-
Wide (20 MBps) and Ultra-Wide (40 MBps) disks. The
Ultra-Wide disk is the current generation of the Sea-
gate Barracuda 4LP product line and the Fast-Wide
disk is the previous generation. Figure 3 shows that the
devices are capable of 30% of the PAP speeds. The
input file is opened with CreateFile(,…

FILE_FLAG_NO_BUFFERING|FILE_FLAG_SEQUENTIAL_SC

AN,…) and the file system performs no prefetching, no
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Figure 2 – Out-of-the-box Performance of a Single Ultra-Wide Drive – File system prefetching allows reads to reach full
media bandwidth at small requests, although there is a sharp drop at very large request sizes. Using Write-Cache-Enable
(WCE) nearly doubles write throughput. Processor cost per megabyte transferred shows that writes are more expensive than
reads and overhead is minimal for requests in the 16 KB to 64 KB range.



caching, no coalescing, and no extra copies. The data
moves directly into the application from the SCSI
adapter using direct memory access.

On large (64 KB) requests, bypassing the file system
copy cuts the processor overhead by a factor of ten,
from 2 instructions per byte to 0.2 instructions per
byte. Unbuffered sequential reads reach the media limit
for all requests larger than 8 KB. The older Fast-Wide
disk requires read requests of 8 KB to reach its maxi-
mum efficiency of about 6.5 MBps. The newer Ultra-
Wide drive plateaus at 8.5 MBps with 4 KB requests.
Prefetching by the controller gives pipeline parallelism
and allows drives to read at their media limits. Very
large requests continue to perform at media rates, in
contrast to the problems seen in Figure 2 with large
buffered transfers.

Writes are significantly slower. The left chart of Figure
3 shows that throughput increases only gradually with
request size. We observed no plateau in write through-

put even for requests as large as 1 MB. The storage
subsystem is completely synchronous – first it writes to
the device cache, then to disk – so device overhead and
latency dominate. Application requests above 64 KB
are broken into multiple 64 KB requests in the IO sub-
system, but these can be simultaneously outstanding at
the device. The half-power write rate is achieved with a
request size of 128 KB.

The right graph of Figure 3 shows that WCE compen-
sates for the lack of file system coalescing. The WCE
sequential write rates look similar to the read rates and
the media limit is reached at about 8 KB for the newer
disk and 64 KB for the older one. The media transfer
time and rotational latency costs are hidden by the
pipeline parallelism in the drive. WCE also allows the
drive to perform fewer and larger media writes, re-
ducing the total rotational latency.

Figure 4 shows the processor overhead corresponding
to unbuffered sequential writes. In all cases, overheads
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decrease with request sizes. Requests less than 64 KB
cost about 120µs and as requests become larger, the
file system must do extra work to fragment them into
64 KB requests to the device. The first chart shows the
processor time to transfer each megabyte of data. Issu-
ing many small read requests places a heavy load on
the processor while larger requests amortize the fixed
overhead over many more bytes. The time is similar for
reads and writes regardless of the generation of the
disk and disk cache setting. The center chart of Figure
4 shows the processor utilization as a function of re-
quest size. At small requests, reads place a heavier load
on the processor because the read throughput is so
much higher than that of writes. The processor is doing
approximately the same work per byte, but the bytes
are moving faster so the imposed load is higher. Fi-
nally, the chart on the right of Figure 4 shows the
processor time per request. Requests up to 16 KB con-
sume approximately the same amount of time. Since a
16 KB request moves eight times as much data as a
2 KB request, we see a corresponding 8x change. Until
the request size exceeds 64 KB, larger requests con-
sume comparable processor time. Beyond 64 KB, the
processor time increases because the file system does
extra work, breaking the request into multiple 64 KB
transfers and dynamically allocating control structures.
Note that while the cost of a single request increases
with request size, the cost per megabyte always de-
creases.

As a rule of thumb, requests cost about 120 µs, or
about 10,000 instructions. Buffered requests have an

additional cost of about 2 instructions per byte while
unbuffered transfers have almost no marginal cost per
byte. Recall that buffered IO saturates the processor at
about 50 MBps for 64 KB requests. Unbuffered IO
consumes about 2.1 ms per megabyte, so unbuffered IO
will saturate this system’s processor at about 480
MBps. On the system discussed here, the PCI periph-
eral bus would have become saturated long before this
point and the memory bus would be near saturation.

4 Improving Performance via Parallelism
The previous sections examined the performance of
synchronous requests to a single disk. Any parallelism
in the system was due to caching by the file system or
disk controller. This section examines two improve-
ments: (1) using asynchronous IO to pipeline requests
and (2) striping across multiple disks to allow media
transfer parallelism.

Asynchronous IO increases throughput by providing
the IO subsystem with more work to do at any instant.
The disk and bus can overlap or pipeline the presented
load and reduce idle time. As seen above, there is not
much advantage to be gained by read parallelism on a
single disk. The disk is already prefetching and addi-
tional outstanding requests create only a small addi-
tional overlap on the SCSI transfer. On the other hand,
WCE parallelism dramatically improves single disk
write performance.

In our asynchronous IO tests, the application issues
multiple sequential IOs concurrently. When one re-
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Figure 6 – Throughput of a Sin-
gle Fast-Wide Drive and Four
Disk Striping – The graphs show
throughput for 1, 3, and 8 out-
standing requests, as well as one
outstanding request with WCE en-
abled. In the single disk case,
asynchronous requests do not im-
prove read performance because
the disk controller is already pre-
fetching. Asynchronous requests
do improve write performance
and, at larger request sizes, match
the performance of enabling WCE.
In the four drive case, asynchro-
nous requests do improve read
performance as the SCSI bus is
better utilized, but writes are still
substantially slower than reads.



quest completes, the application asynchronously issues
another as part of the IO completion routine from the
earlier request, attempting to keep n requests active at
all times. The top of Figure 6 shows the read and write
throughput of a single disk as the number of outstand-
ing requests grows from 1 to 8. Read throughput is not
much changed, while write throughput improves dra-
matically. Reads reach the half-power point with 4 KB
requests. Writes need 3-deep 16 KB requests or 8-deep
8 KB requests to reach the half-power point, which
represents a 4x improvement over synchronous 8 KB
writes. For requests of 16 KB and more, 3-deep writes
are comparable to the throughput of when WCE.

As more disks are added to the system, asynchronous
IO gives significant benefits for reads and large trans-
fers as well as smaller writes. The lower charts of Fig-
ure 6 show the results when the file is striped across
four Fast-Wide SCSI disks on a single host bus adapter
(and single SCSI bus). ftdisk is used to bind the drives
into a stripe set and each successive disk gets the next
64 KB file chunk in round-robin fashion. At 4 KB and
8 KB requests, increasing request depth increases
throughput as requests are spread across multiple
disks. With a chunk size of 64 KB, 8-deep 8 KB re-
quests will have IOs outstanding to more than one
drive 7/8 of the time, approximately doubling the
throughput. Smaller request depths distribute the load
less effectively – with only two requests outstanding,
IOs are outstanding to more than one drive only 1/4 of
the time. Similarly, smaller request sizes are less ef-
fective since more requests are required for each stripe
chunk. At 4 KB requests and 8 deep requests, at most
two drives are used, and this only 3/8 of the time.
Striping large requests improves the throughput of both
reads and writes and the bottleneck moves from the
disk media to the SCSI bus. Each disk can deliver
about 6 MBps, so four disks should deliver up to
24 MBps. The experiments all saturated at about
16 MBps, so the RAP bandwidth of our Fast-Wide
SCSI subsystem is 80% of the 20 MBps PAP. Ultra-
Wide SCSI (not shown) also delivers 75% of PAP or
about 30 MBps.

Both large request sizes and multiple disks are required
to reach the SCSI bus half-power point. Fast-Wide
SCSI can reach half-power points with two disks at
read requests of 8 KB and write requests of 16 KB.
Using 64 KB or larger requests, transfer rates up to
75% of the advertised bus bandwidth can be observed
with three disks. Ultra-Wide SCSI reaches the half-
power point with three disks and 16 KB read requests
or 64 KB write requests. Only with very large reads
can we reach 75% of the advertised bandwidth. The
bus protocol overheads and actual data transfer rates do

not scale with advertised bus speed. Further experi-
ments show that three Ultra-Wide disks saturate a sin-
gle Ultra-Wide SCSI bus. Two buses support a total of
six disks and a maximum read throughput of 60 MBps.
When a third adapter and three more disks are added,
the PCI bus limit is reached and the configuration
achieves a total of only 72 MBps – just over the half-
power point of the PCI. Adding a fourth adapter shows
no additional improvement, although the combined
SCSI bandwidth of 120 MBps would seem to be well
within the advertised 133 MBps of the PCI. While the
practical limit is likely to depend on the exact hard-
ware, the PCI half-power point appears to be a good
goal.

5 Detailed Performance Measurements
The previous sections provided an overview of a typical
storage system and discussed a number of parameters
affecting sequential I/O throughput. This section in-
vestigates the hardware components in order to explain
the observed behavior.

5.1 Disk Controller Caching and Prefetching
A simple model for the cost of a single disk read as-
sumes no pipelining and separates the contributing
factors:

The fixed overhead term includes time for the applica-
tion to issue and complete the IO, the time to arbitrate
and transfer control information on the SCSI bus, con-
verting the target logical block to physical media loca-
tion. The fixed time also includes the disk controller
SCSI command handling, and any other processing
common to any data transfer request. The next two
terms are the time required to locate and move the data
from the physical media into the drive cache. The final
term the time required to transfer data from the disk
cache over the SCSI bus.

The actual disk behavior is more complicated because
controllers prefetch and cache data. The media-transfer
and seek times can overlap the SCSI transfer time.
When a SCSI request is satisfied from the disk cache,
the seek time and some part of the fixed overhead is
eliminated. Even without buffering, sequential trans-
fers incur only short seek times. Large transfers can
minimize rotational latency by reading the entire track
– full-track transfers can start with the next sector to
come under the read-write head.

( )
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At the extremes, some simplifications should occur.
For small (2KB) requests, the fixed overhead domi-
nates the transfer times (> 0.5 ms). For large
(> 32 KB) requests, the media-transfer time (> 8 ms)
dominates. The fixed overhead is amortized over a
larger number of bytes and the SCSI transfer rate is
faster (> 2x) than the media-transfer rate. We meas-
ured the fixed overhead component for three genera-
tions of  Seagate drives: the Narrow 15150N, the Fast-

Wide 15150W, and the Ultra-Wide 34371W. Table 3
shows the results. The cache hit data were obtained by
reading the same disk blocks repeatedly. The prefetch
hit column was obtained using the benchmark program
to sequentially read a 100 MB file. To ensure that the
prefetched data would be in the drive cache at all
times, a delay was inserted between SCSI requests for
those transfers marked with asterisks (*).

We expected that the cache hit case would be a simple
way to measure fixed overhead. The data are already in
the drive cache so no media operation is necessary. The
results, however, tell a different story. The prefetch hit
times are uniformly smaller than the cache hit times.
The firmware appears to be optimized for prefetching –
it takes longer to recognize the reread as a cache hit. In
fact, the constant high cache hit times of the 34371W
imply that this drive does not recognize the reread as a
cache hit and rereads the same full track at each re-
quest. At 64 KB, the request spans tracks; the jump in
the 15150 drive times may also be due to media re-
reads.

The prefetch hit data follow a simple fixed cost plus
SCSI transfer model up through 8 KB request sizes.
The SCSI transfer time was computed using the adver-
tised bus rate. The 15150 drives (both Narrow and
Fast-Wide) have fixed overhead of about 0.58 millisec-
onds; the 34371W drive (Ultra-Wide) has overhead of
about 0.3 milliseconds.

At larger requests, no simple model applies. At 64KB,
the computed SCSI transfer times do not account for
the full prefetch hit time and the remainder is greater
than the observed fixed overhead times. The media-
transfer rate is not the limit because of the delay be-
tween requests. Without the delay, the measurements
showed larger variation and the total time was not fully
accountable to media transfer. The total time appears
to be due to a combination of prefetch hit and new

prefetch. A 64KB request may span up to three disk
tracks and at least that many prefetch buffers. Whether
or not the disk prefetches beyond the track necessary to
satisfy the current request is unclear and likely to be
implementation specific. Whether or not the disk can
respond promptly to a new SCSI request when queuing
a new prefetch is also unclear.

Intelligence and caching in the drive allows overlap
and parallelism across requests so simple behavioral
models no longer capture the behavior. Moreover,
drive behavior changes significantly across implemen-
tations [Worthington95]. While the media-transfer
limit remains a valid half-power point target for bulk
file transfers, understanding smaller scale or smaller
data set disk behavior seems difficult at best.

5.2 SCSI Bus Activity
We used a bus analyzer to measure SCSI bus activity.
Table 4 summarizes the contribution of each protocol
cycle type to the total bus utilization while reading the
standard 100 MB file. Comparing the first two col-
umns, small requests suffer from two disadvantages:

Small requests spend a lot of time on overhead. Half
the bus utilization (30% of 60%) goes to setting up the
transfer. There are eight individual 8KB requests for
each 64KB request. This causes the increased arbitra-
tion, message, command and select phase times.

Narrow-ST15150N Fast-Wide-
ST15150W

Ultra-Wide-
ST34371W

Size Cache
Hit

Prefetch
Hit

Cache
Hit

Prefetch
Hit

Cache
Hit

Prefetch
Hit

5K 0.96 0.56 0.93 0.59 8.14 0.30
1K 1.01 0.63 0.97 0.59 8.14 0.32
2K 1.11 0.75 1.02 0.58 8.14 0.34
4K 1.33 0.93 1.13 0.61 8.13 0.40
8K 1.75 1.38 1.36 0.86 8.13 0.51
16K 2.63 2.25 1.81 1.31* 8.13 0.74*
32K 4.35 3.93* 2.75 2.25* 8.13 1.22*

Table 3 – Variation across disk generation
- The elapsed time in ms for a cache hit and
prefetch hit of varying request sizes directly.
Times are measured from an ASPI driver
program issuing SCSI commands and by-
passing the NT file system. For the large
request sizes, the drive is given sufficient
time between requests to ensure that the
request is always satisfied from prefetch
buffers and not limited by media transfer
rates. Surprisingly, the cache hit times are
always larger than the prefetch hit times. 64K 16.50 7.30* 16.50 4.05* 8.15 2.15*



Small requests spend little time transferring user
data. At 64KB, 90% of the bus utilization is due to
application data transfer. At 8KB, only 45% of the bus
time is spent transferring application data.

The last two columns of Table 4 show the effects of
SCSI bus contention. Adding a second disk doubles
throughput but bus utilization increases 125%. The
extra 25% is spent on increased handshaking (SE-
LECT activity and parameter passing). The SCSI
adapter is pending requests to the drives and must re-
SELECT the drive when the request can be satisfied by
the drive. More of the bus is consumed coordinating
communication among the disks. Adding a third disk
increases throughput and fully consumes the SCSI bus,
as discussed in Section 3. The SELECT activity in-
creases again, further reducing the time available for
data transfer. The overall bus efficiency decreases as
disks are added because more bus cycles are required
coordinate among the drives.

5.3 Allocate
Unbuffered file writes have a serious performance pit-
fall. The NT file system forces unbuffered writes to be
synchronous whenever a file is newly created and
whenever the file is being extended either explicitly or
by writing beyond the end of file. This synchronous
write behavior also happens for files that are truncated
(specifying the TRUNCATE_EXISTING attribute at Cre-
ateFile() or after open with SetEndOfFile()).

As illustrated in Figure 12, allocation severely impacts
asynchronous IO performance. The file system allows
only one request outstanding to the volume. If the ac-
cess pattern is not sequential, the file system may actu-
ally zero any new blocks between requests in the ex-
tended region. Buffered sequential writes are not as
severely affected, but still benefit from preallocation.
Extending a file incurs at most about a 20% through-
put penalty with small file system buffered writes.

There is one notable excep-
tion. If you use tiny 2 KB
requests, allowing the file
system to allocate storage
dynamically actually im-
proves performance. The file
system does not pre-read the
data prior to attempting to
coalesce writes.

To maximize asynchronous
write performance, you
should preallocate the file
storage. If the space is not
pre-allocated, the NT file
system will first zero it be-

Phase 8KB Requests 64KB Requests
1 Disk 1 Disk 2 Disks 3 Disks

Arbitrate 1.1% 0.4% 0.6% 0.4%
Arbitrate Win 0.6% 0.2% 0.3% 0.2%

Reselect 0.2% 0.1% 0.1% 0.1%
Select 25.2% 0.2% 0.8% 4.4%

(Re)Select End 0.3% 0.1% 0.1% 0.1%
Message In 18.5% 7.4% 11.4% 9.1%

Message Out 5.5% 1.4% 2.8% 3.6%
Command 2.1% 0.5% 1.0% 1.1%

Data In 44.9% 89.3% 82.2% 80.4%
Data In End 0.7% 0.3% 0.4% 0.2%

Data Out - - - -
Data Out End - - - -

Status 0.7% 0.2% 0.3% 0.4%

Table 4 – SCSI Activity by Phase - For
8KB requests, only 45% of the SCSI bus
is data transfer (column 2).  The balance
goes to SELECT/RESELECT activity and
parameter messaging. Larger requests
make much more efficient use of the bus
- for 64KB requests, utilization drops by
half and data transfer makes up almost
90% of that time (column 3). When more
disks are added, this efficiency drops
somewhat in favor of more message traf-
fic and SELECT activity. The three-disk
system reaches over 99% bus utilization
and consumes significantly more time
in SELECT (column 5).

Bus Utilization 59.8% 30.1% 67.8% 99.3%

Allocate/Extend While Writing

0

5

10

15

20

2 4 8 16 32 64 128 192
Request Size (KB)

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

1 deep equals
8-deep extend

4-disk write-
8 deep
no-extend

1-disk write
 8-deep
no extend

Figure 12 – File Allocate/Extend
Behavior – When a file is being
extended (new space allocated at the
end), NT forces synchronous write
behavior to prevent requests from
arriving at the disk out-of-order.
Security mandates that the value zero
be returned to a reader of any byte
which is allocated but has not yet
been written. The file system must
balance performance against the need
to prevent programs from allocating
files and then reading data from files
deallocated by other users. The extra
allocate writes dramatically slow
write performance.



fore letting your program read it.

5.4 Alignment
The NT 4.0 file system (using the ftdisk mechanism)
supports host-based software RAID 0, 1, and 5. A fixed
stripe chunk size of 64 KB is used to build RAID0
stripe sets. Each successive disk gets the next 64KB
chunk in round-robin fashion. The chunk size is not
user-settable and is independent of the number or size
of the stripe set components. The file system allocates
file blocks in multiples of the file system allocation
unit chosen when the volume is formatted. The alloca-
tion unit defaults to a value in the range of 512 bytes to
4 KB depending on the volume size. The stripe chunk
and file system allocation units are totally independent;
NT does not take the chunk size into account when
allocating file blocks. Thus, files on a multiple-disk
stripe set will almost always be misaligned with respect
to stripe chunk size.

Figure 13 shows the effect of this misalignment.
Alignment with the stripe chunk improves perform-
ance by 15-20% at 64 KB requests. A misaligned
64 KB application request causes two disk requests
(one of 12 KB and another of 52 KB) that must both be
serviced before the application request can complete.
As shown earlier, splitting application requests into
smaller units reduces drive efficiency. The drive array

and host-bus adapter sees twice the number of requests
and some of those requests are small. As the SCSI bus
becomes loaded, the performance degradation becomes
more noticeable. When requests are issued 8-deep,
there are eight 64 KB requests active at any given time.
In the misaligned case, there are 16 requests of mixed
12 KB and 52 KB sizes to be coordinated.

Misalignment can be avoided by using the NT file sys-
tem format command at the command prompt rather

than the Disk Administrator application.2 Disk Ad-
ministrator limits the allocation size to 512, 1024,
2048, or 4096 bytes, while format command allows
increments up to 64 KB. The cost of using a 64 KB
allocation unit is the potential wasted disk space if the
volume contains many small files; the file system al-
ways rounds the file size to the allocation unit.

6 Summary and Conclusions
The NT 4.0 file system out-of-the-box sequential IO
performance is good: reads are close to the media limit
and writes are near the half-power point. This per-
formance comes at some cost; the file system is copy-
ing every byte, and coalescing disk requests into 64 KB
units. Write throughput can be nearly doubled by ena-
bling WCE, although this risks data corruption, and
similar results can be achieved by using large requests
and issuing asynchronous requests. NT file striping
across multiple disks is an excellent way to increase
throughput, but in order to take advantage of the avail-
able parallelism; striping must be combined with large
and deep asynchronous requests.

An application can saturate a SCSI bus with three
drives. By using multiple SCSI busses, it can saturate a
PCI bus. By using multiple PCI buses, it could saturate
the processor bus and memory subsystem. If the system
configuration is balanced (disks do not saturate busses,

busses do not saturate), the NT file
system can reach the half-power
point. In fact, applications can reach
the sum of the device media limits by
using a combination of (1) large re-
quest sizes, (2) deep asynchronous
requests, (3) WCE, (4) striping, and
(5) unbuffered IO.

Write performance is often signifi-
cantly lower than read performance.
The main pitfalls in writing files are:
(1) if a file is not already allocated,
the file system will force sequential

writing in order to prevent applications from reading
data left on disk by the previous file using that disk
space (2) if a file is allocated but not truncated on
open, then smaller than 4 KB buffered writes will first
read a 4 KB unit and then overwrite (3) if the stripe
chunk size is not aligned with the file system allocation
size, large requests are broken into two smaller re-
quests split across two drives, which doubles the num-
ber of requests to the drive array.

                                               
2 A command of the form ‘format e: /fs:ntfs

/a:64k ’ to create a file system with 64 KB allocation.
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Figure 13 – Alignment Across
Disks in a Stripe Set – The per-
formance of a file aligned to the
stripe chunk is compared to a file
that is mis-aligned by 12KB. If
requests split across stripe set
step boundaries, read perform-
ance can be reduced by nearly
20% and writes by 15%. The
effect is more pronounced with 8
requests outstanding because
there is more activity on the SCSI
bus and more contention.



The measurements suggest a number of ways of doing
efficient sequential file access:

• Larger requests are faster. Requests should be at
least 8 KB, 64 KB if possible.

• Small requests consume significantly more
processor time per byte than larger ones. 2 KB re-
quests consume more than 30% of the processor
while 64 KB requests both go faster and consume
only 3% of the processor.

• If an application absolutely must make small
requests, double buffering is not enough parallelism.
There are noticeable gains through 8-deep requests.

• Write-Cache-Enable at drives provides signifi-
cant benefits for small requests. Issuing three-deep
asynchronous requests comes close to WCE per-
formance for larger requests.

• Three disks can saturate a SCSI bus, whether
Fast-Wide (15 MBps max) or Ultra-Wide (31 MBps
max). Adding more disks than this to a single bus
does not improve performance.

• File system buffering coalesces small requests
into 64 KB disk requests for both reads and writes.
This provides significant performance improvement
for requests smaller than 64 KB.

• At 64 KB and larger requests, file system buff-
ering degrades performance from the non-buffered
case.

• When possible, files should be preallocated to
their eventual maximum size.

• Extending a file while writing forces synchroni-
zation of the requests and significantly degrades
performance.

This paper provided a basic tour of the parameters that
affect sequential IO performance in NT and examined
the hardware limitations at each stage in the IO pipe-
line. We have provided guidance on how applications
can take advantage of the parallelism in the system and
overlap requests for best performance. We have also
shown that while out-of-the-box performance is rea-
sonable for some workloads, there are a number of
parameters that can make a factor of two to ten differ-
ence in overall throughput.

Many areas are not discussed here and merit further
attention. Programs using asynchronous I/O have sev-
eral options for managing asynchronous requests, in-
cluding completion routines, events, completion ports,
and multi-threading. Our benchmark uses completion
routines in an otherwise single-threaded program and

we have not explored the tradeoffs and overheads of
using the other methods. This analysis focused on a
single benchmark application issuing a single stream
of sequential requests. A production system is likely to
have several applications competing for storage re-
sources. This complicates the model since the device
array no longer sees a single sequential request stream.
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