
A Transparently-Scalable Metadata Service

for the Ursa Minor Storage System

Shafeeq Sinnamohideen† Raja R. Sambasivan† James Hendricks†∗

Likun Liu‡ Gregory R. Ganger†

†Carnegie Mellon University ‡Tsinghua University

Abstract

The metadata service of the Ursa Minor distributed

storage system scales metadata throughput as metadata

servers are added. While doing so, it correctly han-

dles operations that involve metadata served by differ-

ent servers, consistently and atomically updating such

metadata. Unlike previous systems, Ursa Minor does so

by reusing existing metadata migration functionality to

avoid complex distributed transaction protocols. It also

assigns object IDs to minimize the occurrence of multi-

server operations. This approach allows Ursa Minor to

implement a desired feature with less complexity than al-

ternative methods and with minimal performance penalty

(under 1% in non-pathological cases).

1 Introduction

Ursa Minor [1] is a scalable storage system that, as in

other direct-access storage systems [14], is composed of

a data path and a metadata path. Because modern stor-

age systems must scale to thousands of storage nodes, the

metadata path must scale to tens or hundreds of metadata

nodes and is a large distributed system in its own right.

This paper explains the goals for the metadata path of

Ursa Minor, describes the design and implementation of

a prototype that fulfills them, and introduces and evalu-

ates a novel technique for handling multi-server opera-

tions simply and efficiently.

An Ursa Minor constellation consists of data nodes

and metadata nodes. Ursa Minor is intended to be in-

crementally scalable, allowing nodes to be added to or

removed from the system as storage requirements change

or hardware replacement becomes necessary. To provide

this functionality, Ursa Minor includes a mechanism for

migrating data from one data node to another and meta-

data from one metadata node to another.

The overall goals for Ursa Minor demand that the the

metadata path must be transparently scalable. That is,

it must be able to scale in capacity and throughput as

more nodes are added, while users and client applications

should not have to be aware of the actions the system

∗James Hendricks is currently affiliated with Google.

takes to ensure scalability—the visible semantics must

be consistent regardless of how the system chooses to

distribute metadata across servers. Several existing sys-

tems have demonstrated this design goal (e.g., [3, 6, 36]).

The requirement to be scalable implies that the sys-

tem will use multiple metadata nodes, with each storing

some subset of the metadata and servicing some subset

of the metadata requests. In any system with multiple

servers, it is possible for the load across servers to be un-

balanced; therefore, some mechanism for load balancing

is desired. This can be satisfied by migrating some of the

metadata from an overloaded server to a less loaded one,

thus relocating requests that pertain to that metadata.

The requirement to be transparent implies that clients

see the same behavior regardless of how the system has

distributed metadata across servers. An operation should

have the same result, no matter which server or servers

are responsible for the object or objects that the oper-

ation spans, even if the objects involved are distributed

to different servers, and even if some of those servers

fail during the operation. Ursa Minor utilizes a novel

approach to correctly and efficiently handle multi-server

operations: it reuses the mechanism for migrating object

metadata to implement multi-server operations by mi-

grating the required metadata to a single metadata server

and executing the operation on that server. This tech-

nique simplifies the implementation of the metadata path

while providing good performance and the same failure

semantics as a single server. To prevent most multi-file

operations from being multi-server operations, Ursa Mi-

nor uses an object ID assignment policy that translates

namespace locality into object ID locality.

Experimental results show that Ursa Minor scales lin-

early in metadata throughput when executing a variant

of the SPECsfs97 benchmark. On workloads that con-

tain frequent multi-server operations, performance de-

grades in proportion to the frequency of multi-server op-

erations. Even for workloads where multi-server opera-

tions are 10× more frequent than the worst-case behavior

inferred from traces of deployed file systems, the perfor-

mance overhead due to migration is only 1.5%.

jdigney
Text Box
2010 Usenix Annual Technical Conference, Boston, MA, June 23-25.

2 Background

Many distributed file systems have been proposed and

implemented over the years. Architects usually aim to

scale the capacity and throughput of their systems by do-

ing one or more of the following:

• Increasing the performance of individual servers.

• Reducing the work each server performs per client.

• Increasing the number of servers in the system.

Each of these axes is largely independent of the oth-

ers. This paper focuses on the last approach, which will

still apply if servers become more capable. Most ex-

isting work on decreasing a server’s per-client workload

focuses on the client-server protocols [18, 26, 32]. His-

torically, the adoption of improved protocols has been

slowed by the need to modify every client system to

use the new protocol. Recently, however, some of these

techniques have been incorporated into the NFSv4 stan-

dard [33]. Like the SpinFS protocol [11], Ursa Minor’s

internal protocol is designed to efficiently support the se-

mantics needed by CIFS [27], AFS [18], NFSv4, and

NFSv3 [8]. At present, however, we have only imple-

mented the subset needed to support NFSv3.

As mentioned, challenges in scaling the number of

servers include handling infrequent operations that in-

volve multiple servers and managing the distribution of

files across servers. The remainder of this section dis-

cusses operations that could involve multiple servers,

how close existing systems come to transparent scala-

bility, how systems that handle multi-server operations

transparently do so, and the importance of migration in a

multi-server file system.

2.1 Multi-item operations

There are a variety of file system operations that manipu-

late multiple files, creating a consistency challenge when

the files are not all on the same server. Naturally, every

CREATE and DELETE involves two files: the parent direc-

tory and the file being created or deleted. Most systems,

however, assign a file to the server that owns its parent

directory. At some points in the namespace, of course,

a directory must be assigned somewhere other than the

home of its parent. Otherwise all metadata will be man-

aged by a single metadata server. Therefore, the CREATE

and DELETE of that directory will involve more than one

server, but none of the other operations on it will do so.

This section describes other significant sources of multi-

item operations.

The most commonly noted multi-item operation is RE-

NAME, which changes the name of a file. The new name

can be in a different directory, which would make the RE-

NAME operation involve both the source and destination

parent directories. Also, a RENAME operation can in-

volve additional files if the destination name exists (and

thus should be deleted) or if the file being renamed is a

directory (in which case, the ‘..’ entry must be modified

and the path between source and destination traversed

to ensure a directory will not become a child of itself).

Application programming is simplest when the RENAME

operation is atomic, and both the POSIX and the NFSv3

specifications call for atomicity.

Many applications rely on this specified atomicity as

a building-block to provide application-level guarantees.

For example, many document editing programs imple-

ment atomic updates by writing the new document ver-

sion into a temporary file and then RENAME it to the user-

assigned name. Similarly, many email systems write in-

coming messages to files in a temporary directory and

then RENAME them into a user’s mailbox. Without atom-

icity, applications and users can see unexpected interme-

diate states, such as two identical files, one with each

name, or one file with both names as hard links.

Creation and deletion of hard links (LINK and UN-

LINK) are also multi-item operations in the same way that

CREATE is. However, the directory in which the link is

to be created may not be the original parent of the the file

being linked to, making it more likely that the two are on

different servers than for a CREATE and UNLINK.

The previous examples assume that each directory is

indivisible. But a single heavily used directory might

have more traffic than a single server can support. Some

systems resolve this issue by splitting directories and as-

signing each part of the directory to a different server [37,

29]. In that case, simply listing the entire directory re-

quires an operation on every server across which it is

split, and renaming a file within a directory might re-

quire two servers if the source name is in one part of the

directory and the destination is in a different part.

Multi-item transactions are a useful building block

supported by modern file systems such as NTFS [28] and

Reiser4 [31]. Using transactions, an application could

update a set of files atomically, rather than one at a time,

and thereby preclude others seeing intermediate forms of

the set. This is particularly useful for program installa-

tion and upgrade. The files involved in such a transaction

could be spread across servers.

Point-in-time snapshots [9, 17, 25, 30] have become

a mandatory feature of most storage systems, as a tool

for consistent backups, on-line integrity checking [25],

and remote mirroring of data [30]. Snapshot is usually

supported only for entire file system volumes, but some

systems allow snapshots of particular subtrees of the di-

rectory hierarchy. In either case, snapshots represent an

important multi-item operation, with the expectation that

the snapshot captures all covered files at a single point in

time.

2.2 Transparent scalability

We categorize existing systems into three groups based

on how fully they provide transparent scalability as the

number of servers increases. Transparent scaling implies

scaling without client applications having to be aware

of how data is spread across servers; a distributed file

system is not transparently scalable if client applications

must be aware of capacity exhaustion of a single server or

different semantics depending upon which servers hold

accessed files.

No transparent scalability: Many distributed file sys-

tems, including those most widely deployed, do not scale

transparently. NFS, CIFS, and AFS all have the property

that file servers can be added, but each serves indepen-

dent file systems (called volumes, in the case of AFS). A

client can mount file systems from multiple file servers,

but must cope with each server’s limited capacity and

the fact that multi-file operations (e.g., RENAME) are not

atomic across servers.

Transparent data scalability: An increasingly popu-

lar design principle is to separate metadata management

(e.g., directories, quotas, data locations) from data stor-

age [6, 13, 14, 36, 38]. The latter can be transparently

scaled relatively easily, assuming all multi-object opera-

tions are handled by the metadata servers, since each data

access is independent of the others. Clients interact with

the metadata server for metadata activity and to discover

the locations of data. They then access data directly at the

appropriate data servers. Metadata semantics and policy

management stay with the metadata server, permitting

simple, centralized solutions. The metadata server can

limit throughput, of course, but off-loading data accesses

pushes the overall system’s limit much higher [14]. To

go beyond this point, the metadata service must also be

scalable.

Most modern storage systems designed to be scalable

fall into this category. Most are implemented initially

with a single metadata server, for simplicity. Examples

include Google FS [13], NASD [14], Panasas [38], Lus-

tre [24], prior versions of Ursa Minor [1], and most SAN

file systems. These systems are frequently extended to

support multiple metadata servers, each exporting a dis-

tinct portion of the namespace, and the ability to dynam-

ically migrate files from one metadata server to another.

Such a solution, however, is not transparently scalable

because clients see different semantics for operations that

cross metadata server boundaries.

Full transparent scalability: A few distributed file

systems offer full transparent scalability, including Far-

site [10], GPFS [32], Frangipani [36], and the version of

Ursa Minor described in this paper. Most use the data

scaling architecture above, separating data storage from

metadata management. Then, they add protocols for

handling metadata operations that span metadata servers.

Section 2.3 discusses these further.

Another way to achieve transparent scalability is to

use a virtualization appliance or “file switch” with a col-

lection of independent NFS or CIFS file servers [7, 19,

20, 39]. The file switch aggregates an ensemble of file

servers into a single virtual server by interposing on and

redirecting client requests appropriately. In the case of

multi-server operations, the file switch serves as a central

point for serialized processing and consistency mainte-

nance, much as a disk array controller does for a collec-

tion of disks. Thus, the virtual server remains a central-

ized, but much more capable, file system.

2.3 Multi-server operations

Traditionally, multi-server operations are implemented

using a distributed transaction protocol, such as a two-

phase commit [15]. Since each server already must im-

plement atomic single-server operations, usually by us-

ing write-ahead logging and roll-back, the distributed

transaction system can be built on top of the local trans-

action system. A transaction affecting multiple servers

first selects one to act as a coordinator. The coordinator

instructs each server to add a PREPARE entry, covering

that server’s updates, to their local logs. If all servers

PREPARE successfully, the transaction is finalized with a

COMMIT entry to all logs. If the PREPARE did not suc-

ceed on all servers, the coordinator instructs each server

to roll back its state to the beginning of the transaction.

With single-server transactions, recovering from a crash

requires a server to examine its log and undo any incom-

plete transactions. Recovery from a multi-server transac-

tion, however, is much more complicated.

With more than one server, it is possible for some

servers to crash and others survive. If one crashed during

PREPARE, the coordinator will wait until a time-out, then

instruct the other servers to roll back their PREPAREs.

If one crashed between PREPARE and COMMIT, when

that server restarts, it needs to discover whether it missed

the instruction to either COMMIT or UNDO. To do so,

it needs to contact the coordinator or the other servers

to determine whether any of them committed (in which

case the coordinator must have successfully PREPAREd

at all servers). Any step involving communication with

other servers may fail, and if other servers have crashed,

it may not be possible to proceed until they are online.

Distributed transactions may complicate other aspects

of the system as well. Concurrency control within a sin-

gle server requires each transaction to acquire locks to

protect any state it operates on. The same is true for a

multi-server operation, but now it is possible for the lock

holder to crash independently of the server managing the

lock. While there are existing techniques, such as leases,

to handle this situation, a lock recovery scheme is sim-

ply not needed when locks can only be local to a server.

Considering other common faults, such as an intermittent

network failure, adds even more cases to handle.

As discussed, most of the additional complexity is in

the recovery path. Not only must the recovery path han-

dle recovery from a wide variety errors or crashes, it must

also handle errors during recovery. This leads to a large

number of cases that must be detected and handled cor-

rectly. Since errors in general are rare, and any particular

error is even rarer, bugs in the fault-handling path may

be triggered rarely and be even harder to reproduce. This

places more reliance on test harnesses, which must be

crafted to exercise each of the many error conditions and

combinations thereof.

In order to minimize the rarely-used additional com-

plexity of distributed transactions, Ursa Minor takes a

novel approach to implementing multi-server operations.

When a multi-server operation is required, the system

migrates objects so that all of the objects involved in an

operation are assigned to the same server, and the opera-

tion is then performed locally on that single server. This

scheme is discussed in more detail in Section 3.5 and re-

quires only single-server transactions and migration. Mi-

gration is itself a simplified distributed transaction, but it

must already be implemented in the system to provide

even non-transparent scalability.

2.4 Migration

In any system with many metadata servers, the ques-

tion arises as to which files should be assigned to which

servers. Some systems, such as AFS, NFS, Panasas,

and Lustre, split the file system namespace into several

volumes and assign each metadata server one or more

volumes whose boundaries cannot be changed after cre-

ation. Others, such as xFS, Ceph, and OntapGX, are able

to assign individual files to distinct servers. In general,

supporting finer granularities requires more complexity

in the mechanism that maps files to metadata servers.

Managing large-scale storage systems would be very

difficult without migration—at the very least, hardware

replacement and growth must be accounted for. Addi-

tionally, migration is a useful tool for addressing load or

capacity imbalances. Almost every storage system has

some way of performing migration, in the worst case by

backing up data on the original server, deleting it, and

restoring on the destination server.

Such offline migration, however, is obtrusive to

clients, which will notice periods of data unavailabil-

ity. If the need for migration is rare, it can be sched-

uled to happen during announced maintenance periods.

As a system gets larger, the need for migration increases,

while the tolerance for outages decreases. To address

this issue, many modern systems [11, 18, 37, 38] can

perform migration dynamically, while serving client re-

quests, leaving clients unaffected except for very brief

periods of unavailability. Any such system would be able

to utilize the same approach used in Ursa Minor to pro-

vide transparent scalability.

The process of assigning files to servers can be thought

of as analogous to lock management. A server that is

assigned responsibility for a file (or collection of files)

has effectively been granted an exclusive lock on that file

and migration changes the ownership of that lock. Given

the relative rarity and granularity of migration, the cen-

tralized migration managers used in AFS [18] and On-

tapGX [11] need not be as efficient or complex as the

distributed lock managers used for fine-grained locking

in GPFS [32], Slice [5], and Frangipani [36].

3 Design

Ursa Minor is a scalable storage system, designed to

scale to thousands of storage nodes. Ursa Minor is a

direct-access storage system [14], consisting of storage

nodes and metadata servers. The storage nodes, termed

workers, store byte streams named by Object ID, termed

SOID1. There are no restrictions on which objects can re-

side on which worker, and an object’s data can be repli-

cated or erasure-coded across multiple workers, allowing

the flexibility to tune an individual object’s level of fault-

tolerance and performance to its particular needs. Ac-

cessing a particular file’s data requires two steps: first,

the file name must be translated to a SOID, and sec-

ond, the workers(s) responsible for the file data must be

identified so that they can be contacted to retrieve the

data. In Ursa Minor, these functions are performed by

the Namespace Service (NSS) and the Metadata Service

(MDS), respectively. This section describes the high-

level organization of these services and provides more

detail on the internal components that enable transparent

scalability.

3.1 Metadata Service (MDS)

The Metadata Service in Ursa Minor maintains infor-

mation on each object, similar to that maintained by

the inodes of a local-disk file system. For each object,

the MDS maintains a record that includes the object’s

size, link count, attributes, permissions, and the list of

worker(s) storing its data. Clients communicate with the

MDS via RPCs. Since clients are untrusted, the MDS

must verify that each request will result in a valid state

and that the client is permitted to perform that action.

Some requests, such as creating or deleting an object,

require the MDS to coordinate with workers. Others,

such as updating an attribute or timestamp, reside wholly

within the MDS. The semantics defined for the MDS im-

ply that individual requests are atomic (they either com-

1A Self-⋆ Object ID is a 128 bit number analogous to an inode num-

ber and unique across an Ursa Minor constellation

plete or they don’t), consistent (the metadata transitions

from one consistent state to another), independent (si-

multaneous requests are equivalent to some sequential

order), and durable (once completed, the operation’s re-

sults will never be rolled back). The transaction mech-

anism used to ensure this is discussed in detail in Sec-

tion 3.6.

The MDS is responsible for all object metadata in Ursa

Minor. Individual object metadata records are stored in

metadata tables. Each table includes all records within a

defined range of SOIDs. The tables are internally struc-

tured as B-trees indexed by SOID and are stored as in-

dividual objects within Ursa Minor. The ranges can be

altered dynamically, with a minimum size of one SOID,

and a maximum of all possible SOIDS. Within those lim-

its, the MDS may use any number of tables, and, col-

lectively, the set of tables contains the metadata for all

objects. Storing the tables as objects in Ursa Minor al-

lows the MDS to benefit from the reliability and flexibil-

ity provided by Ursa Minor’s data path, and results in the

metadata path holding no hard system state.

Each Ursa Minor cluster includes one or more meta-

data servers. Each metadata server is assigned a number

of metadata tables, and each table is assigned to at most

one server at a time. Thus, accessing the metadata of any

particular object will only involve one server at a time.

Because the metadata tables are themselves objects, they

can be accessed by any metadata server using Ursa Mi-

nor’s normal data I/O facilities.

The assignment of tables to servers is recorded in a

Delegation Map that is persistently maintained by a Del-

egation Coordinator. The delegation coordinator is co-

located with one metadata server, termed the Root Meta-

data Server. This server is just like any other metadata

server, except it happens to host the metadata for the ob-

jects used by the metadata service. Clients request the

delegation map when they want to access an object for

which they do not know which metadata server to con-

tact. They cache the delegation map locally and inval-

idate their cached copy when following a stale cached

delegation map results in contacting the wrong metadata

server. Tables can be reassigned from one server to an-

other dynamically by the delegation coordinator, and this

process is discussed in Section 3.4.

3.2 Namespace Service (NSS)

The Namespace Service manages directory contents.

Directories are optional in Ursa Minor—applications

satisfied with the MDS’s flat SOID namespace (e.g.:

databases, mail servers, scientific applications) need not

use directories at all. Other applications expect a tradi-

tional hierarchical directory tree, which the Namespace

Service provides.

Similarly to a local-disk file system, a directory entry

is a record that maps a filename to a SOID. Directories

are B-tree structured, indexed by name, and stored as or-

dinary objects, with their own SOIDs. At present, each

directory object contains all of the directory entries for

that directory, though there is no obstacle to splitting a

directory across multiple objects.

Namespace servers are tightly coupled with metadata

servers (in our implementation, both are combined in one

server process which exports both RPC interfaces). Each

namespace server is responsible for directories whose

SOIDs are within the range exported by its coupled meta-

data server. This ensures that a directory’s “inode” (the

attributes stored by the MDS) and its contents will al-

ways be served by the same process. For the rest of this

paper, we use the term “metadata server” to refer to the

combined MDS and NSS server.

The NSS aims to support directory semantics suffi-

cient to implement an overlying file system with POSIX,

NFS, CIFS, or AFS semantics. As such, it provides the

POSIX notions of hard links, including decoupling of un-

link and deletion, and the ability to select how already-

existing names are handled. Typical operations include

creating a file with a given name, linking an existing ob-

ject under a new name, unlinking an file, looking up the

SOID corresponding to a file name, and enumerating the

contents of directories.

3.3 SOID assignment

In Ursa Minor, the SOID of an object determines which

table, and thus which metadata server, that object is as-

signed to. It follows that there may be advantages in

choosing to use particular SOIDs for particular files. For

instance, the ls -al command will result in a series of

requests, in sequential order, for the attributes of every

file in a given directory. If those files all had numeri-

cally similar SOIDs, their metadata would reside in the

same (or nearby) B-tree pages, making efficient use of

the server’s page cache. Similarly, most file systems

exhibit spatial locality, so an access to a file in one di-

rectory means an access to another file in that same di-

rectory is likely. Secondly, many directory operations

(CREATE, LINK) operate on both a parent directory and

a child inode at the same time. If the parent and child

had nearby SOID numbers, they would likely reside in

the same table, simplifying the transaction as discussed

in Section 3.5 and Section 3.6.

For these reasons, it would be useful to assign SOIDs

such that children of a directory receive SOIDs similar to

those of the directory itself. Applied over a whole direc-

tory tree, a namespace flattening policy would convert

“closeness” in the directory hierarchy to “closeness” in

SOID values. A number of algorithms could be used for

this task; we use a child-closest policy [16], which works

as follows.

First, the SOID is divided bitwise into a directory seg-

ment and a file segment. The directory segment is further

subdivided into a number of directory slots. Each slot

corresponds to a level in the directory hierarchy, and the

value in a slot identifies that directory within its parent.

The root directory uses the most significant slot, each of

its children the next most significant, and so on. When

creating a new directory, the child’s directory segment is

copied from its parent, with a new value chosen for the

most significant empty directory slot.

The file segment is simple sequential counter for files

created in that directory. A directory itself has a file seg-

ment of all 0s. The first child file of that directory has

the same directory segment, but file segment of 1. The

second has file segment of 2 and so on. Figure 1 shows

an example directory tree and the SOID the child-closest

policy assigns to each file or directory in the tree.

This scheme is similar to that used in Farsite, except

that the Farsite FileID is variable-length and grows with

with directory depth [10]. Supporting variable-length ob-

ject identifiers would unduly complicate the implemen-

tation of Ursa Minor’s protocols and components, so we

use a fixed-size SOID.

With a fixed-size SOID, the namespace may have both

more levels than there are directory slots and more files

in a directory than can be represented in the file segment

bits. To accommodate this, 2 prefix bits are used to fur-

ther split the SOID into 4 regions. The first, primary,

region, uses the assignment policy above. If the hierar-

chy grows too deep, the too-deep child directory is as-

signed a new top-level directory slot with a different pre-

fix (the too-deep region). Its children grow downwards

from there, as before.

If there are too many files in a directory and the next

directory slot value is unused, the large directory takes

over the SOIDs reserved for its nonexistent sibling and

the new file is assigned a SOID that would used by its

nonexistent cousin. If cousins already exist, the new file

is assigned a SOID from the too-wide region. Within this

region, fewer bits are allocated to the directory segment,

and more to the file segment, so more files per directory

can be handled. Finally, if either of these additional re-

gions overflow, the catch-all prefix is used, and SOIDs

are assigned sequentially from this region.

In the case of any overflow, the additional children are

effectively created under new “roots” and thus have very

different SOIDs from their parents. However, those chil-

dren will still have locality with their own children (the

parent’s grandchildren). Thus, one large subtree will be

split into two widely separated subtrees, each with lo-

cality within itself. If the two subtrees are both large

enough, the loss of locality at the boundary between sub-

/ d i r 1(1 . 0 . 0 . 0)/ d i r 1 / d i r 1(1 . 1 . 0 . 0) / d i r 1 / d i r 2(1 . 2 . 0 . 0) / d i r 1 / fi l e 1(1 . 0 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1(1 . 2 . 1 . 0) / d i r 1 / d i r 2 / fi l e 1(1 . 2 . 0 . 1)/ d i r 1 / d i r 2 / d i r 1 / d i r 1(8 . 0 . 0 . 0) fi l e N(A . 0 . 0 1)fi l e 1(1 . 2 . 1 . 1)
Figure 1: Child-closest SOID assignment policy. The SOID chosen

for each element of this simple directory tree is shown. For clarity the

example uses a 16 bit SOID and a “.” is used to separate the value

of each 4 bit directory slot and file segment. The dashed lines show

a too-deep directory overflowing to a new “root” and a file in a large

directory overflowing to the too-wide region.

trees should not have a significant effect because most

operations will be local to one subtree or the other.

By tuning the bit widths of the directory segment,

file segment, and directory slots to match the system’s

workload, instances of overflow can be made extremely

rare [16]. Namespace manipulations, such as linking or

renaming files, however, will result in the renamed file

having a SOID that is not similar to the SOID of its new

parent or siblings. The similar situation happens in local

disk files systems: a renamed file’s inode still resides in

its original cylinder group after a rename.

The SOID of a deleted file is available for re-use as

soon as the file’s storage has been reclaimed from the

relevant workers (this step is performed lazily in most

cases). Thus, as long as a directory’s size does not

change over time, changing its contents does not affect

the chance of overflow. In fact, reusing a SOID as soon

as possible should provide for a slight efficiency gain, by

keeping the metadata B-tree compact.

In all of these cases, outside of the SOID selection pol-

icy, MDS treats the SOID as an opaque integer and will

operate correctly regardless of how much or little locality

the SOIDs preserve. Performance will be be better with

higher locality, however. The segment sizes do not need

to remain constant over the life of a constellation, or even

across the SOID namespace, so there is the potential to

adaptively tune them based on the observed workloads,

however we have not yet implemented this.

The net effect of combining namespace flattening with

SOID-range tables is that each table usually ends up con-

taining a subtree. This is somewhat analogous to the vol-

ume abstraction offered by systems like AFS but without

the predefined, rigid mapping of subtree to volume. Un-

like these systems, a too-large or too-deep subtree will

overflow into another table, quite possibly not one served

by the same server. One can think of these overflowed

subtrees as being split off into separate sub-volumes, as

is done in Ontap GX and Ceph.

3.4 Metadata migration

Ursa Minor includes the ability to dynamically migrate

objects from one metadata server to another. It does so

by reassigning responsibility for a metadata table from

one server to another. Because the metadata table (and

associated directories) are Ursa Minor data objects ac-

cessible to all metadata servers, the contents of the meta-

data table never need to be copied. The responsibility for

serving it is simply transferred to a different server. This

section describes the process for doing so in more detail.

Each metadata server exposes an RPC interface via

which the delegation coordinator can instruct it to ADD

or DROP a table. In order to migrate table T from server

A to server B, the coordinator first instructs server A to

DROP responsibility for the table. When that is complete,

the coordinator updates the delegation map to state that

B is responsible and instructs server B to ADD T. At all

times, at most one server is responsible.

When server A is instructed to DROP T, it may be in the

process of executing operations that use T. Those opera-

tions will be allowed to complete. Operations waiting for

T will be aborted with an error code of “wrong server”,

as will any new requests that arrive. Clients that receive

such a response will contact the coordinator for a new

delegation map. Once the table is idle, server A sets a

bit in the table header to indicate the table was cleanly

shut down, flushes the table from its in-memory cache,

and responds to the coordinator that the table has been

dropped.

Adding a table to server B is also simple. When in-

structed to ADD responsibility, server B first reads the

header page of table T. Since T’s header page indicates it

was shut down cleanly, no recovery or consistency check

procedure is necessary, so server B simply adds an en-

try for T to its in-memory mapping of SOID to table.

Any subsequent client requests for SOIDs within T will

fault in the appropriate pages of T. Before its first write

to T, server B will clear the “clean” bit in the header, so

any subsequent crash will cause the recovery procedure

to run.

3.5 Multi-object operations

For a server, performing a transaction on a single object

is simple: acquire a local lock on the SOID in question

and on the SOID’s table, perform the operation, and then

release all locks.

Performing a transaction with multiple objects or ta-

bles within a single server is similar, but complicated

by the need to avoid deadlocks between operations that

M e t a d a t aS e r v e r B
1 . B o r r o w (S , T) C o o r d i n a t o r

M e t a d a t aS e r v e r A S t o r a g eN o d e5 . A d d (S) 2 . D r o p (S)4 . D r o pC o m p l e t e3 . W r i t e (S)6 . R e a d (S) ST
Figure 2: Borrowing a table The sequence of operations required for

Server A to handle an operation requiring tables S and T, when table

T is initially assigned to server A and table S to server B. Returning to

the original state is similar.

try to acquire the same locks in opposite orders. Each

server’s local lock manager avoids deadlock by tracking

all locks that are desired or in use. When all locks re-

quired for an operation are available, the lock manager

acquires all of them simultaneously and allows the oper-

ation to proceed.

In the more complicated case (shown in Figure 2) of a

multi-object and multi-server operation, the server’s lo-

cal lock manager will discover that all the required re-

sources are not local to the server. The lock manager

blocks the operation and sets out to acquire responsibil-

ity for the required additional tables. To do so, it sends

a BORROW request to the Delegation Coordinator. The

BORROW request includes the complete list of tables re-

quired by the operation; the coordinator’s lock manager

will serialize conflicting BORROWs. When none of the

tables required by a BORROW request are in conflict, the

coordinator issues a series of ADD and DROP requests

to move all the required tables to the requesting server

and returns control to it. Those tables will not be moved

again while as the transaction is executing.

When the transaction completes, the requesting server

sends a RETURN message to the coordinator, indicating

it no longer requires exclusive access to that combina-

tion of tables. The coordinator determines whether it can

now satisfy any other pending BORROW requests. If so,

the coordinator will migrate a RETURNed table directly

to the next server that needs it. Otherwise the coordi-

nator can choose to either migrate that table back to its

original server (the default action), leave it in place un-

til it is BORROWed in the future, or migrate it to some

other server. Note that, while waiting for a BORROW, a

server can continue executing other operations on any ta-

bles it already has; only the operation that required the

BORROW is delayed.

3.6 Transactions

Underlying the Metadata and Namespace Services is a

transactional layer that manages updates to the B-tree

structures used for storing inodes and directories. These

B-trees are stored as data in Ursa Minor objects. The

data storage nodes and their access protocols guaran-

tee that individual B-tree pages are written atomically to

the storage nodes and that data accepted by the storage

nodes will be stored durably. The transaction system ex-

tends these guarantees to transactions involving multiple

B-tree pages spread across multiple B-trees.

Atomicity is provided using a simple shadow-paging

scheme. All updates to the B-tree data object are de-

ferred until commit time. The data object includes two

storage locations for each page, and the location written

alternates on every write of that page. Thus, one loca-

tion will contain the most recent version of that page,

and the other location will contain the next most recent

version. Each page includes a header that links it to all

the other pages written in the same transaction, which

will be used by the recovery mechanism to determine

whether the transaction committed or needs to be rolled

back. Reading a page requires reading both locations

and examining both headers to identify the latest version.

The server may cache this information, so subsequent re-

reads only need the location with the latest page contents.

Isolation is guaranteed by allowing only a single trans-

action to execute and commit on each B-tree at a time.

Every transaction must specify, when it begins, the set

of B-trees it will operate on. It acquires locks for all

of those B-trees from the local lock manager, and holds

them until it either commits or aborts. If, during exe-

cution, the transaction discovers it needs to operate on a

B-tree it does not hold a lock for, it aborts and restarts

with the new B-tree added to the set. This strategy is

similar to that used by Sinfonia mini-transactions, which

share the limitation of specifying their read and write sets

up front [4]. Most transactions require only a single ex-

ecution. The main sources of repeated executions are

operations that traverse a file system path: at each step,

the SOID of the next directory to read is determined by

reading the current directory.

Consistency is only enforced for the key field of the

B-tree records; maintaining the consistency of the data

fields is the responsibility of the higher level code that

modifies them.

Durability is provided by synchronously writing all

modified pages to the storage nodes at commit time. The

storage nodes may either have battery-backed RAM or

themselves synchronously write to their internal disk.

If the metadata server crashes while committing a

transaction, it is possible for the B-tree to be in an in-

consistent state: for example, only 2 of the 3 pages in

the last transaction may have been written to the stor-

age nodes before the crash. To resolve this condition,

the metadata server performs a recovery process when it

restarts after an unclean shutdown. First, it queries each

storage node to determine the location of the last write

to the B-tree object (the storage node must maintain this

information as part of the PASIS protocol [2]). The loca-

tion of the last write corresponds to the last page written.

Reading that page’s header will reveal the identity of all

other pages that were part of the same transaction. If all

the other pages have transaction numbers that match that

of the last written page, then we know that the transac-

tion completed successfully. If any of them has an ear-

lier transaction number, we know that not all page writes

were completed, and a rollback phase is performed: any

page with the latest transaction number is marked invalid,

and its alternate location is marked as the valid one. At

the end of rollback, the latest valid version of every page

is the same as it was before the start of the rolled-back

transaction. The recovery process can proceed in paral-

lel for B-trees with independent updates, whereas two B-

trees involved in the same transaction must be recovered

together. Because there is at most one transaction com-

mitting at a time on a given B-tree, at most one rollback

on a given B-tree will be necessary.

3.7 Handling failures

Any of the large number of components of the metadata

path can fail at any time, but all failures should be han-

dled quickly and without data loss. In general, our design

philosophy considers servers trustworthy; we are primar-

ily concerned with crashes or permanent failure and not

with faulty computations or malicious servers.

The most obvious components to consider for failure

are the metadata server software and the hardware that

it runs on. A constellation monitoring component polls

all metadata servers (as well as other components) pe-

riodically, and if the server does not respond within a

time-out interval, that metadata server instance is consid-

ered to have failed. The monitoring component will then

attempt to start a replacement metadata server instance,

either on the same hardware or on a different node. The

new instance queries the delegation coordinator to de-

termine the tables for which it is responsible and runs

the recovery process. After recovery completes, the new

instance is in exactly the same state as the previous in-

stance. While the new instance is starting and recover-

ing, client requests sent to the old instance will time-out

and be retried.

It is possible that, due to a network partition, a prop-

erly operating metadata server may be incorrectly de-

clared by the system monitor to have failed. Restarting a

new instance would result in two servers trying to serve

the same objects, violating the consistency assumptions.

To avoid this, the delegation coordinator revokes the ca-

pabilities used by the old instance to access its storage

nodes before granting capabilities to the new instance to

do the same. Thus, while the old instance may still be

running, it will not be able to access its backing store,

preserving consistency; nor will clients be able to use

capabilities granted by old the instance to access client

data. If the revocation attempt fails to reach a quorum

of storage nodes, perhaps because they are also on the

other side of the network partition, the coordinator will

not start a new server instance until the partition heals

and the old instance continues uninterrupted until then.

Not only does a failed metadata server affect clients,

but it may also affect another server if it failed in the

middle of a migration. The delegation coordinator will

see its ADD or DROP request time out and propagate this

error to any operation that depended on the migration.

The metadata being migrated will be unavailable until

the metadata server restarts, just like any other metadata

served by the failed server. It is reasonable for a multi-

server operation to fail because one of the servers it needs

is unavailable.

When the failed metadata server restarts, the delega-

tion map it receives from the coordinator will be un-

changed from when the server began its last ADD or

DROP: a failed ADD will be completed at this time, and

failed a DROP effectively never happened. Instead of

waiting for a server to restart, the tables assigned to the

failed server could simply be reassigned to other working

servers. Doing so, however, complicates the process of

recovering a table that was involved in a multi-table (but

same server) transaction: As described in Section 3.6,

both tables must be recovered together, which poses a

problem if the two tables have been reassigned to differ-

ent servers for recovery. Although it is possible to de-

tect and handle this case, in the interest of simplicity, we

avoid it by always trying to recover all the tables assigned

to a failed server as one unit.

A failed delegation coordinator will prevent the sys-

tem from performing any more delegation changes, al-

though all metadata servers and clients will continue to

operate. As the delegation map is stored in an object

and synchronously updated by the coordinator, the coor-

dinator is stateless and can simply be restarted the same

as metadata servers. There must be at most one delega-

tion coordinator in a constellation. One method to ensure

this, that we have not yet implemented, is to use a quo-

rum protocol to elect a new coordinator [21].

If the failure happened during a migration, the meta-

data table(s) being migrated will be in one of two states:

the delegation map says server A is responsible for table

T but server A does not think it is, or the delegation map

says no server is responsible for T. The delegation map is

always updated in an order such that a server will never

be responsible for a metadata table that is not recorded

in the delegation map. To handle the first case, a newly

started coordinator will contact all metadata servers to

determine which tables they are serving and issue the ap-

propriate ADD requests to make the server state match

the delegation map. In the second case, an appropriate

server is chosen for tables that have no assigned server,

and an ADD request is issued.

For storage node failures, we rely on the Ursa Minor

data storage protocol to provide fault tolerance by repli-

cating or erasure-coding object data across multiple stor-

age nodes. Since the contents of the metadata tables can-

not be reconstructed from any other source, they must be

configured with appropriately high fault tolerance.

4 Evaluation

Our goal was to construct a transparently scalable Meta-

data Service for Ursa Minor. To show we have suc-

ceeded, we evaluate the performance of Ursa Minor with

a standard benchmark as well as with a range of modified

workloads to reveal its sensitivity to workload character-

istics. Section 4.1 describes the benchmark’s workload,

Section 4.2 describes the hardware and software config-

urations used, Sections 4.3 and 4.4 discuss experimental

results, Section 4.5 contrasts these results with the work-

loads seen in traces of deployed file systems, and Sec-

tion 4.6 discusses additional observations.

4.1 Benchmark

The SPECsfs97 [35] benchmark is widely used for com-

paring the performance of NFS servers. It is based on

a survey of workloads seen by the typical NFS server

and consists of a number of client threads, each of which

emits NFS requests for file and directory operations ac-

cording to an internal access probability model. Each

thread creates its own subdirectory and operates entirely

within it. Since each thread accesses a set of files inde-

pendent from all other threads, and each thread only has

a single outstanding operation, this workload is highly

parallelizable and contention-free.

In fact, using the namespace flattening policy de-

scribed in Section 3.3, Ursa Minor is trivially able to as-

sign each thread’s files to a distinct SOID range. Thus,

each metadata table consists of all the files belonging to a

number of client threads, and all multi-object operations

will only involve objects in the same table. While this

is very good for capturing spatial locality, it means that

multi-server operations will never occur for the default

SPECsfs97 workload.

Because the SPECsfs97 benchmark directly emits

NFS requests, these requests must be translated into the

Ursa Minor protocol by an NFS head-end. Each head-

end is an NFS server and an Ursa Minor client, and it

issues a sequence of Ursa Minor metadata and/or data re-

quests in order to satisfy each NFS request it receives. In

the default SPECsfs97 workload, 73% of NFS requests

will result in one or more Ursa Minor metadata opera-

tions, and the remaining 27% are NFS data requests that

may also require an Ursa Minor metadata operation. Like

any Ursa Minor client, the head-end can cache meta-

data, so some metadata operations can be served from

the head-end’s client-side metadata cache, resulting in

a lower rate of outgoing Ursa Minor metadata requests

than incoming NFS requests. Each head-end is allocated

a distinct range of SOIDs for its use, and it exports a

single NFS file system. Thus, different head-ends will

never contend for the same objects, but the client threads

connected to a head-end may access distinct objects that

happen to be in the same metadata table.

In order to use SPECsfs97 to benchmark Ursa Mi-

nor, we found it necessary to make a number of practical

modifications to the benchmark parameters and method-

ology specified by SPEC. First, we modified the con-

figuration file format to allow specifying operation per-

centages in floating point as necessary for Section 4.4.

Second, we doubled the warmup time for each run to

10 minutes to ensure the measured portion of the run did

not benefit from startup effects. Neither of these changes

should affect the workload presented during the timed

portion of the run.

Because we are interested in exploring the scalability

of the MDS, we must provision the Ursa Minor constel-

lation so that the MDS is always the bottleneck. Doing

so requires enough storage nodes to collectively hold the

metadata objects in their caches—otherwise, the storage

nodes become the bottleneck. The number of files used

by SPECsfs97 is a function of the target throughput and,

at high load levels, would require more storage nodes

than we have available. Additionally, as the number of

files varies, so will the miss-rate of the fixed-size head-

end caches, changing the workload seen by the MDS. To

avoid these two effects, we use a constant 8 million or

4 million files, requiring 26 GB or 13 GB of metadata.

To avoid confusion, we refer to this modified benchmark

as SFS-fixed.

To maximize MDS load, we configured the NFS head-

ends to discard any file data written to them and to substi-

tute zeroes for any file data reads. The Ursa Minor meta-

data operations associated with the file read and writes

are still performed, but the Ursa Minor data operations

are not, so we can omit storage nodes for holding file

data. In all other regards, including uniform access, we

comply with the SPECsfs97 run reporting rules.

4.2 Experimental setup

Table 1(a) lists the hardware used for all experiments,

and Table 1(b) lists the assignment of Ursa Minor

components to physical machines. This particular as-

signment was chosen to ensure as uniform hardware

and access paths as possible for each instance of a

component—every storage node was the same number

of network hops away from each metadata server, and

each head-end was the same distance from each meta-

data server.

We configured the test constellations with the goal of

ensuring that the MDS was always the bottleneck. The

root metadata server was only responsible for objects in-

ternal to the MDS (i.e., the metadata for the metadata

table objects themselves). The large constellation had 48

NFS head-ends, each serving 20 SFS-fixed client threads

(960 in total), and the SOID range assigned to each head-

end was split across 8 tables. The resulting 384 tables

were assigned in round-robin fashion across metadata

servers, such that every head-end used some object on

each metadata server. Similarly, tables were stored on 24

storage nodes such that each metadata server used every

storage node. These choices increase the likelihood of

multi-table operations and contention and are intended to

be pessimistic. For small experiments, we used 24 head-

ends, 12 storage nodes, and 480 client threads. The SOID

assignment policy was configured to support a maximum

of 4095 files per directory and 1023 subdirectories per

directory, which was sufficient to avoid overflow in all

cases. Each storage node used 1.6 GB of battery-backed

memory as cache. In addition, 256 MB at each meta-

data server was used for caching B-tree pages, and the

head-ends had 256MB each for their client-side caches.

4.3 Scalability

Figure 3 shows that the Ursa Minor MDS is transpar-

ently scalable for the SFS-fixed workload. Specifically,

the throughput of the system for both NFS and MDS

operations increases linearly as the number of metadata

servers increases. This is as expected, because the ba-

sic SPECsfs97 and SFS-fixed workloads cause no multi-

server operations. Thus, adding additional servers evenly

divides the total load across servers. Because the head-

end servers include caches and because the SFS opera-

tion rate includes NFS data requests, the number of re-

quests that reach the metadata servers is lower than that

seen by the head-end servers. However, the workload

presented to the MDS is much more write-heavy—26%

of requests received by the MDS modify metadata, com-

pared the 7% of NFS requests that definitely will modify

metadata and 9% that possibly will.

4.4 Multi-server operations

Since Ursa Minor uses a novel method of implement-

ing multi-server operations, it is important to consider

its performance on workloads that are are less trivially

parallelizable. To do, so we modified the base SFS-

fixed workload to include a specified fraction of cross-

Type Type A Type B

Count 38 75

RAM 2 GB 1 GB

CPU 3.0 Ghz Xeon 2.8 Ghz Pentium 4

Disk 4× ST3250823AS 1× WD800J

NIC Intel Pro/1000 MT Intel Pro/1000 XT

OS Linux 2.6.26

Switch 3× HP ProCurve 2848

(a) Hardware configuration.

Component Hardware Large Small

Storage nodes Type A 24 12

Metadata servers Type B 8-32 4-16

NFS head-ends Type B 48 24

Load generators Type A 5 2

Root metadata server

Type A 1 1Root storage node

Constellation manager

(b) Ursa Minor configuration.

Table 1: Hardware and software configuration used for large and small experiments. The number of metadata servers used varied; all other

components remained constant. The root metadata server and its storage node only stored metadata for objects used by the metadata service.

Metadata accessible by clients was spread across the remaining storage nodes and metadata servers.

directory LINK operations. To keep the total number

of operations constant, we reduce the number of CRE-

ATE operations by one for every LINK operation we add.

Thus, the sum of LINK and CREATE is a constant 1% of

the NFS workload. The resulting MDS workload con-

tains a higher fraction of both, because the head-end

cache absorbs many of the LOOKUP requests.

We also modify the namespace flattening policy so

each client thread’s directories are spread across all the

tables used by that head-end, giving a 1− (1/N) chance

any LINK being multi-server. Both LINK and CREATE

modify one directory and one inode, so any performance

difference between the two can be attributed to the over-

head of performing a multi-server operation. A RE-

NAME, however, modifies two directories and their in-

odes, and is slower than a CREATE even on a single

server, which is why we use LINK as the source of cross-

directory operations in this experiment.

Figure 4 shows the reduction in MDS throughput

for SFS-fixed with multi-server operations compared to

SFS-fixed without multi-server operations. Workloads

in which 0.05% to 1.00% of NFS operations were cross-

directory LINKs resulted 0.07% to 4.75% of MDS op-

erations involving multiple servers. Separate curves are

shown for Ursa Minor configurations where each head-

end’s metadata is split across 16, 8, or 4 tables for a total

of 384, 192, or 96 tables in the system. As expected,

throughput decreases as the percentage of multi-server

ops increases, since each multi-server op requires a table

migration. Accordingly, the latency of LINKs are up to

3.5 × that of CREATEs (120 ms vs. 35 ms). Furthermore,

when the table is RETURNed to its original server, that

server’s cache will not contain any of the migrated ta-

ble’s contents. The resulting increase in cache miss rate

decreases the throughput of subsequent single-server op-

erations [34].

Additionally, migrating a table makes it unavailable

for serving other operations while the migration is in

progress. When a single table represents a small frac-

tion of the total metadata in the system, making one table

unavailable has a small impact on overall performance.

However, if we configure the system to fit the same meta-

data into fewer tables, the penalty increases, as shown

in Figure 4. This is exacerbated in Ursa Minor because

threads within the metadata server frequently contend for

table-level locks in addition to CPU and I/O. Given that

small tables permit finer-grained load balancing, a rea-

sonable Ursa Minor configuration might place 1%-10%

of a server’s capacity in a single table as suggested for

other systems [6]. The major penalty of having far too

many tables is that the delegation map will be large, pos-

sibly requiring a more efficient means of storing and dis-

tributing it.

4.5 Trace analysis

To put the performance of Ursa Minor under multi-server

operations into context, we examined two sets of well-

studied distributed file system traces to determine what

rates of multi-server operations are seen in real-world

workloads. Table 2 classifies the operations in each trace

by the Ursa Minor metadata operation that would be re-

quired to service it. While all operations except for UP-

DATEs and some LOOKUPs involve more than one object,

those objects are almost always in a parent-child relation-

ship. In any system that preserves namespace locality (as

the child-closest SOID assignment policy in Ursa Minor

does), both objects will be served by the same metadata

server. The exceptions are operations on mountpoints,

operations on directories that are extremely large, and

operations that involve more than one directory. Since

the first case should be extremely rare, we expect that

cross-directory operations will be the major source of

multi-server metadata operations.

The first set of traces are of 3 departmental NFS

servers at Harvard University. The workload of each

server varied significantly and is described by Ellard et

al. [12]. In these traces, RENAME operations may involve

more than one directory, and we count cross-directory

 0 4 8 12 16 20 24 28 32
 0

 20

 40

 60

 80

100

NFS

MDS

Number of MDS servers

T
h
ro

u
g
h
p
u
t
(k

O
p
s
/s

)

Figure 3: Throughput vs. number of metadata servers. The num-

ber of NFS and MDS operations completed per second are shown sep-

arately for the SFS-fixed workload. The difference between NFS and

MDS operation rates is due to data-only requests and the head-end’s

metadata cache. The three benchmark runs performed for each config-

uration are plotted individually. The lines show a linear fit with corre-

lation coefficient of > 0.995. All runs used 8 million files on the large

constellation. Our present implementation is limited to about 1 million

files per server; plots with fewer files and servers are similar [34].

RENAMEs separately from RENAMEs of a file to a dif-

ferent name in the same directory. Additionally, a LINK

operation, while only involving a single file and single

directory, might be adding a link in one directory to a

file originally created in a different directory. While the

original directory does not matter to a traditional NFS

server, in Ursa Minor, the file’s SOID will be similar to

that of its original parent directory, while the new par-

ent directory may have a very different SOID and per-

haps be on a different server. Unfortunately, unlike RE-

NAMEs, the LINK RPC does not contain enough infor-

mation to reliably identify the original parent directory,

so we cannot separate these cases. The highest fraction

of cross-directory RENAME operations occurred in the

DEAS trace and represented only 0.005% of operations

in that trace.

The second set of traces are of CIFS traffic to two

enterprise-class filers in NetApp’s corporate data center.

One was used by their engineering department, the other

by the their marketing, sales, and finance departments.

The fraction of RENAME operations in these traces is

similar to those from Harvard, though the distribution of

other operations is very different. In the CIFS protocol,

the equivalent of the RENAME RPC includes the path of

the source and destination directories, so it is possible to

determine not only that the the directories are different,

but how far apart the source and destination directories

are in the directory tree. We were able to analyze a seg-

ment of the trace from the Corporate server to calculate

rename distances for operations within that segment. Of

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

384 tables

192 tables

 96 tables

Multi−server MDS op percentage

S
lo

w
d
o
w

n

Figure 4: Slowdown vs. percentage of multi-server ops. The

slowdown in MDS throughput (compared to a workload with no multi-

server ops) is shown for SFS-fixed workloads with varying percentages

of multi-server LINKs. The actual percentage achieved in a given run

varies from the target percentage; the actual percentage is plotted for

each run, and the lines connect the average of all runs with the same

target percentage. All runs use 4 million files on the small constellation

with 12 metadata servers. The solid line uses the same configuration of

384 total tables used in Figure 3, additional lines use 192 and 96 tables.

the 80 cross-directory RENAMEs we found, 56% had a

destination directory that was either the immediate par-

ent or child of the source directory.

For comparison, we also show the distribution of op-

erations in the default configuration of SPECsfs97 in

Table 2. In all of these workloads, the percentage of

cross-directory operations is very low. And, of those

cross-directory operations, only a fraction will be multi-

server. If directories were assigned randomly to servers,

the probability both directories will happen to be on the

same server is 1/N. If the directories involved exhibit

spatial locality, as the CIFS traces do, and the OID as-

signment policy can preserve spatial locality, then both

directories are far more likely to be on the same server.

Even pessimistically assuming that all cross-directory

operations are multi-server, Ursa Minor’s approach to

multi-server operations can handle an order of magnitude

more multi-server operations (.06%) with only a 1.5%

decrease in overall throughput compared to a workload

with only single-server operations. A system that could

execute multi-server operations as fast as single-server

ones would be optimal. Even if the workload contains

1% multi-server operations, the slowdown is 7.5%, but

such a high rate seems unrealistic, given the rarity of even

potentially multi-server operations.

4.6 Additional observations

Our motivation for using migration to handle multi-

server operations was that it was the simple solution for

the problem at hand. From the starting point of a meta-

EECS DEAS CAMPUS Engineering Corporate SPECsfs97

Total operations 180M NFS 770M NFS 672M NFS 352M CIFS 228M CIFS 12.5M CIFS 4.9M NFS

LOOKUP 93.113% 98.621% 97.392% 87.1% 73.2% 62.417% 83.000%

CREATE 0.772% 0.243% 0.286% 0.7% 6.7% 13.160% 1.000%

DELETE 0.810% 0.431% 0.555% 0.006% 0.03% 0.030% 1.000%

UPDATE 5.250% 0.683% 1.766% 1.24% 2.2% 14.282% 14.606%

RENAME (all) 0.054% 0.022% < 0.001% 0.02% 0.04% 0.036% 0.000%

RENAME (cross-dir) 0.0012% 0.005% < 0.001% NA NA < 0.001% 0.000%

Table 2: Metadata operation breakdowns for various distributed file system traces. The percentage of operations in the original trace that

incur each type of Ursa Minor metadata operation is shown. This represents the workload that would seen by the Ursa Minor head-end’s metadata

cache. Only LOOKUP requests are cacheable, thus we expect the workload seen by the metadata servers to have fewer LOOKUPS. The columns do

not sum to 100% because of not all CIFS or NFS operations require Ursa Minor metadata. For the large CIFS traces, the values are calculated from

CIFS operation statistics provided by Leung et al. [23] and represent an upper bound for each operation. For the NFS trace and the small CIFS

trace, we scan the trace and count the resulting operations. The operations generated by a 5 minute run of SPECsfs97 at 16000 ops/sec are shown

for comparison. In all workloads, RENAMES that involve two directories are shown separately and are extremely rare.

data service that supported migration and single-server

operations (over 47000 lines of C code), it only required

820 additional lines of code to support multi-server oper-

ations. Of these 820 lines, the global lock manager (nec-

essary for avoiding deadlock) accounted for 530 lines,

while the remainder were additional RPC handlers and

modifications to the local transaction layer to trigger a

BORROW when necessary. In contrast, implementing mi-

gration correctly represented 9000 lines of the original

metadata server and several months of work.

To provide a basis for comparison, we created a ver-

sion of Ursa Minor that implements multi-server opera-

tions using the traditional 2-phase commit protocol. This

version is not nearly as robust or stable as the main ver-

sion, particularly with regard to handling and recovering

from failures, so the 2587 lines required to implement it

represent a lower bound. The code to implement a write-

ahead log is not included in this total because most other

systems include one as part of their basic functionality.

Many of the choices we made in designing the MDS

were guided by the properties of the rest of Ursa Minor.

Other systems with different underlying storage or fail-

ure models might choose to store metadata on the local

disks or NVRAM of each metadata server. Migration in

such a system would be much more expensive because it

requires copying metadata from server to server.

The single delegation coordinator is involved in every

multi-server operation, and could become a bottleneck as

the constellation scales. We found the coordinator was

capable of up to 3500 migrations per second, which is

reached with 32 metadata servers and a workload with

1% multi-server ops. Scaling beyond this point would

require moving to a hierarchy of coordinators rather than

a single one. More details, along with discussion of other

workloads and system parameters, are presented in an

additional technical report [34].

5 Conclusion

Transparent scalability for metadata is a desirable feature

in a large storage system. Unfortunately, it is a difficult

feature to provide because it introduces the possibility of

multi-server operations, which in turn require relatively

complex distributed protocols. By reusing metadata mi-

gration to reduce multi-server operations to single-server

ones, we were able to implement a transparently scal-

able metadata service for Ursa Minor with only 820 ad-

ditional lines of code. Although this approach is more

heavyweight than a dedicated cross-server update proto-

col, the performance penalty is negligible if cross-server

operations are are as rare as trace analysis suggests—less

than 0.005% of client requests could possibly be cross-

server in the traces analyzed. Even if all of those requests

were in fact cross-server, Ursa Minor can tolerate an or-

der of magnitude more cross-server operations (.06%)

with only a 1.5% decrease in overall throughput. We

believe that this approach to handling infrequent cross-

server operations is very promising for distributed file

systems and, perhaps, for other scalable distributed sys-

tems as well.

Acknowledgements

We thank our shepherd, Stephen Hand, and the review-

ers for their insightful comments. We thank the mem-

bers and companies of the PDL Consortium (including

APC, EMC, Facebook, Google, Hewlett-Packard, Hi-

tachi, IBM, Intel, LSI, Microsoft, NEC, NetApp, Ora-

cle, Seagate, Symantec, VMware, and Yahoo!) for their

interest, insights, feedback, and support. We also thank

Intel, IBM, NetApp, Seagate and Sun for hardware do-

nations that enabled this work. This material is based

on research sponsored in part by the National Science

Foundation, via grant #CNS-0326453, by the Air Force

Research Laboratory, under agreement number F49620–

01–1–0433, and by CyLab at Carnegie Mellon Univer-

sity under grant DAAD19–02–1–0389 from the Army

Research Office. Likun Liu is supported by the Natu-

ral Science Foundation of China via project #60963005

and the National Basic Research (973) Program of China

via project #2007CB310900.

References

[1] M. Abd-El-Malek, et al. Ursa Minor: versatile cluster-based stor-

age. Conference on File and Storage Technologies. USENIX

Association, 2005.

[2] M. Abd-El-Malek, et al. Fault-scalable Byzantine fault-tolerant

services. ACM Symposium on Operating System Principles.

ACM, 2005.

[3] A. Adya, et al. FARSITE: federated, available, and reliable stor-

age for an incompletely trusted environment. Symposium on Op-

erating Systems Design and Implementation. USENIX Associa-

tion, 2002.

[4] M. K. Aguilera, et al. Sinfonia: a new paradigm for building scal-

able distributed systems. ACM Symposium on Operating System

Principles. ACM, 2007.

[5] D. C. Anderson, et al. Interposed request routing for scalable

network storage. Symposium on Operating Systems Design and

Implementation, 2000.

[6] T. E. Anderson, et al. Serverless network file systems. ACM

Symposium on Operating System Principles. Published as Oper-

ating Systems Review, 29(5):109–126, 1995.

[7] S. Baker and J. H. Hartman. The Mirage NFS router. Technical

Report TR02–04. Department of Computer Science, The Univer-

sity of Arizona, November 2002.

[8] B. Callaghan, et al. RFC 1813 - NFS version 3 protocol specifi-

cation, RFC–1813. Network Working Group, June 1995.

[9] A. L. Chervenak, et al. Protecting file systems: a survey of

backup techniques. Joint NASA and IEEE Mass Storage Con-

ference, 1998.

[10] J. R. Douceur and J. Howell. Distributed directory service in the

Farsite file system. Symposium on Operating Systems Design

and Implementation. USENIX Association, 2006.

[11] M. Eisler, et al. Data ONTAP GX: a scalable storage cluster.

Conference on File and Storage Technologies, 2007.

[12] D. Ellard, et al. Passive NFS tracing of email and research work-

loads. Conference on File and Storage Technologies. USENIX

Association, 2003.

[13] S. Ghemawat, et al. The Google file system. ACM Symposium

on Operating System Principles. ACM, 2003.

[14] G. A. Gibson, et al. A cost-effective, high-bandwidth stor-

age architecture. Architectural Support for Programming Lan-

guages and Operating Systems. Published as SIGPLAN Notices,

33(11):92–103, November 1998.

[15] J. N. Gray. Notes on data base operating systems. In , volume 60,

pages 393–481. Springer-Verlag, Berlin, 1978.

[16] J. Hendricks, et al. Improving small file performance in object-

based storage. Technical report CMU-PDL-06-104. Parallel Data

Laboratory, Carnegie Mellon University, Pittsburgh, PA, May

2006.

[17] D. Hitz, et al. File system design for an NFS file server appliance.

Winter USENIX Technical Conference. USENIX Association,

1994.

[18] J. H. Howard, et al. Scale and performance in a distributed

file system. ACM Transactions on Computer Systems (TOCS),

6(1):51–81. ACM, February 1988.

[19] W. Katsurashima, et al. NAS switch: a novel CIFS server virtual-

ization. IEEE Symposium on Mass Storage Systems. IEEE, 7–10

April 2003.

[20] A. J. Klosterman and G. R. Ganger. Cuckoo: layered clustering

for NFS. Technical Report CMU–CS–02–183. Carnegie Mellon

University, October 2002.

[21] L. Lamport. The part-time parliament. ACM Transactions on

Computer Systems, 16(2):133–169. ACM Press, May 1998.

[22] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. Ar-

chitectural Support for Programming Languages and Operating

Systems. Published as SIGPLAN Notices, 31(9):84–92, 1996.

[23] A. W. Leung, et al. Measurement and analysis of large-scale net-

work file system workloads. USENIX Annual Technical Confer-

ence. USENIX Association, 2008.

[24] Lustre, Apr 2006. http://www.lustre.org/.

[25] M. K. McKusick. Running ’fsck’ in the background. BSDCon

Conference, 2002.

[26] M. N. Nelson, et al. Caching in the sprite network file system.

Transactions on Computer Systems, 6(1):134–154. ACM, Febru-

ary 1988.

[27] J. Norton, et al. Common Internet File System (CIFS) Technical

Reference. SNIA, 12–12 March 2002.

[28] When to Use Transactional NTFS, Apr 2006.

http://msdn.microsoft.com/library/en−us/fileio/

fs/when to use transactional ntfs.asp.

[29] S. V. Patil, et al. GIGA+: Scalable Directories for Shared File

Systems. ACM Symposium on Principles of Distributed Com-

puting. ACM, 2007.

[30] H. Patterson, et al. SnapMirror: file system based asynchronous

mirroring for disaster recovery. Conference on File and Storage

Technologies. USENIX Association, 2002.

[31] Reiser4 Transaction Design Document, Apr 2006.

http://www.namesys.com/txn-doc.html/.

[32] F. Schmuck and R. Haskin. GPFS: a shared-disk file system for

large computing clusters. Conference on File and Storage Tech-

nologies. USENIX Association, 2002.

[33] S. Shepler, et al. Network file system (NFS) version 4 protocol,

RFC–3530. Network Working Group, April 2003.

[34] S. Sinnamohideen, et al. A Transparently-Scalable Metadata Ser-

vice for the Ursa Minor Storage System. Technical report CMU-

PDL-10-102. Parallel Data Laboratory, Carnegie Mellon Univer-

sity, March 2010.

[35] SPEC SFS97 R1 V3.0 Documentation, Jan 2010.

http://www.spec.org/sfs97r1/.

[36] C. A. Thekkath, et al. Frangipani: a scalable distributed file sys-

tem. ACM Symposium on Operating System Principles. Pub-

lished as Operating Systems Review, 31(5):224–237. ACM, 1997.

[37] S. A. Weil, et al. Ceph: A scalable, high-performance distributed

file system. Symposium on Operating Systems Design and Im-

plementation. USENIX Association, 2006.

[38] B. Welch, et al. Scalable performance of the Panasas file system.

Conference on File and Storage Technologies. USENIX Associ-

ation, 2008.

[39] K. G. Yocum, et al. Anypoint: extensible transport switching

on the edge. USENIX Symposium on Internet Technologies and

Systems. USENIX Association, 2003.

	Introduction
	Background
	Multi-item operations
	Transparent scalability
	Multi-server operations
	Migration

	Design
	Metadata Service (MDS)
	Namespace Service (NSS)
	SOID assignment
	Metadata migration
	Multi-object operations
	Transactions
	Handling failures

	Evaluation
	Benchmark
	Experimental setup
	Scalability
	Multi-server operations
	Trace analysis
	Additional observations

	Conclusion

