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ABSTRACT
Performance monitoring in most distributed systems provides min-
imal guidance for tuning, problem diagnosis, and decision making.
Stardust is a monitoring infrastructure that replaces traditional per-
formance counters with end-to-end traces of requests and allows
for efficient querying of performance metrics. Such traces better
inform key administrative performance challenges by enabling, for
example, extraction of per-workload, per-resource demand infor-
mation and per-workload latency graphs. This paper reports on
our experience building and using end-to-end tracing as an on-line
monitoring tool in a distributed storage system. Using diverse sys-
tem workloads and scenarios, we show that such fine-grained trac-
ing can be made efficient (less than 6% overhead) and is useful for
on- and off-line analysis of system behavior. These experiences
make a case for having other systems incorporate such an instru-
mentation framework.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,Design
studies

General Terms
Design,Performance,Measurement,Management

Keywords
End-to-end tracing, request causal chain, Ursa Minor

1. INTRODUCTION
Performance tuning is a complex issue facing administrators of

any large-scale system. For example, in database systems, tuning
choices include the creation of indices to speed up data lookup,
the layout of data on physical storage devices, and the selection
of appropriate buffer cache parameters. In storage systems, tun-
ing choices include selecting the right data distribution and load
balancing. In operating systems, tuning choices include determin-
ing when to upgrade resources (CPU / RAM / disks), how to best
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partition physical memory among virtual machines, and determin-
ing software modules that may be performance bottlenecks. An
administrator must deal with users that complain about system per-
formance, identify the source(s) of each problem, and determine
corrective actions.

Tuning a distributed system requires good monitoring infrastruc-
ture and tools. Current systems provide little assistance. Most in-
sights they give to the administrator come in the form of hundreds
of performance counters that the administrator can try to interpret,
analyze, and filter to diagnose performance problems. For exam-
ple, most modern databases and operating systems come loaded
with an array of performance counters [21, 29, 33]. Performance
counters, however plentiful, are inadequate for two primary rea-
sons. First, in shared environments, aggregate performance coun-
ters do not differentiate between different workloads in the system
and give only combined workload measurements. If the adminis-
trator is attempting to diagnose an issue with one of several work-
loads, aggregate counters are not helpful. Second, in a distributed
system, performance counters cannot be easily correlated to high-
level user observations about throughput and latency. The lack of
causality and request flow information makes combining informa-
tion across components difficult.

These shortcomings have led to systems for which administrators
need to be very knowledgeable and, hence, system administration
accounts for a large portion of the total cost of ownership [4, 14].
They also push administrators to deploy over-provisioned systems.
Yet, over-provisioning is also expensive, and even over-provisioned
systems need performance tuning when workloads do not behave as
expected or change over time.

Stardust is an infrastructure for collecting and querying end-to-
end traces in a distributed system. Trace records are logged for
each step of a request, from when a request enters the system to
when it is complete, including communication across distributed
components. The trace records are stored in databases, and queries
can be used to extract per-request flow graphs, latencies, and re-
source demands.

This paper describes the design of Stardust and an implementa-
tion inside a large-scale distributed storage system [1]. It discusses
the challenges faced in building this infrastructure and the oppor-
tunities that arise from having it in the system. The challenges
included reducing the overhead the infrastructure places on fore-
ground workloads, reducing the amount of spare resources needed
to collect and process the traces generated, and ease of trace analy-
sis. The opportunities include concrete tuning problems we are able
to solve using Stardust and other tuning problems we have not yet
addressed, but we believe are solvable using this infrastructure. We
also discuss the limitations of end-to-end tracing, as a performance
monitoring tool, and the kinds of problems it will not solve.
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2. BACKGROUND AND RELATED WORK
Performance monitoring is important throughout a system’s life-

time. In the initial system implementation stages, it helps develop-
ers understand inefficiencies in the design or implementation that
result in poor performance. In the system deployment stages, it
helps administrators identify bottlenecks in the system, predict fu-
ture bottlenecks, determine useful upgrades, and plan for growth.
When users complain, administrators can use the observations from
periods of poor performance to help understand the source of the
problem. Observations from real systems even drive research into
building better system models and capacity planning techniques
(much related work collected in [24, 26]). This section further
motivates our work and surveys the traditional and state-of-the-art
approaches in performance monitoring.

2.1 Three “simple” administrator questions
We use three concrete scenarios to focus the discussion in this

section.
More RAM or faster disks?: When money is available to up-

grade hardware, administrators must decide how to spend their lim-
ited budget. “Should I buy more RAM (for caching) or faster
disks?” is a simple example choice and even it is not straightfor-
ward to answer. The value of increased cache space is access pat-
tern dependent and, worse, workload mixing can muddy the picture
of what limits any given application’s performance. When using
performance counters, in particular, it is unclear which counters
should be consulted to answer this question. In the systems we
have observed, none of the performance counters are adequate. For
example, consider the counter that keeps track of buffer cache hits
and misses. Even if that counter indicates that client A’s workload
never hits in the cache, it does not mean that adding more RAM
for the cache would not help—a workload, for example, that scans
a 500 MB object repeatedly, but has been allocated only 499 MB
of RAM space (and thus never hits in buffer cache with an LRU
replacement policy), would benefit greatly from a 1 MB increase
in RAM space. The workload would then see a 100% hit rate.
Similarly, consider a counter that keeps track of the average disk
queue size. A large value does not necessarily mean that faster
disks would be better than more RAM.

Decisions are even more difficult for a shared infrastructure sup-
porting multiple clients. For example, one client may benefit most
from a RAM upgrade while another would benefit more from faster
disks. Aggregate counters show overall averages, rather than per-
workload information, so this information will be hidden. If one
client is more important than the other, going with an average-case
choice is not appropriate. Interactions among workloads can also
create situations where changing the amount of buffer cache for one
causes a ripple effect on the performance of the others (e.g., the se-
quence of disk accesses changes). For example, we have seen cases
where improving the cache hit rate for one client also provides a
bigger than expected efficiency boost for another by reducing disk-
level interference [42].

Where does time go?: When a particular set of requests are
slower than expected, an administrator often needs to know why
(and then implement a fix). “Where are requests from client A
spending most of their time in the system?” is an example adminis-
trator question. This question is representative of situations in dis-
tributed environments with multiple processing components (e.g.,
a request passing through a web server which checks a database
which retrieves data from a storage system). The administrator may
want to know which component accounts for which fraction of the
average request’s latency. Answering this question requires creat-
ing a request’s latency graph as the request moves from component

to component in the distributed system. Aggregate counters do not
help with this. One needs to know how the request moved through
the system and how long it spent at each component.

Why is the client complaining?: When users complain about
their performance, administrators must figure out what happened,
differentiate between transient problems (which can often be ig-
nored) and recurring ones (which should be fixed), and decide what
to do. “Why was the application’s performance unacceptable at
2pm?” is an example starting point. At a minimum, the system will
need to retain performance observations for a period of time so that
the administrator can go back and check. But, looking at perfor-
mance counters, like CPU load, disk I/O rate, buffer cache hits and
misses will rarely be sufficient for root-cause analysis for the rea-
sons explained above. As well, the administrator may need to know
the specific sequence of requests that led to the poor performance
the client experienced and how those requests moved through the
distributed system.

2.2 Traditional performance measurement
Traditional performance monitoring consists of pre-defined coun-

ters, such as “number of requests completed” and “average queue
length”. In practice, performance instrumentation is found mainly
in single-node systems [9, 21, 27, 29, 33]. There are some moni-
toring infrastructures designed for distributed systems [5, 25], but
they focus on aggregate resource consumption statistics rather than
per-client or per-request information. Such aggregate performance
monitors provide little assistance with problems like those discussed
in Section 2.1.

Although they are useful as a method to visualize overall sys-
tem performance and component utilizations, performance coun-
ters have two primary shortcomings when deeper analysis is needed.
First, in an infrastructure shared among multiple clients, perfor-
mance counters cannot differentiate among their different work-
loads. They provide only aggregate values that do not help an ad-
ministrator understand individual workload behavior and demands.
For example, in a system with an I/O-bound workload from a high-
paying customer and several CPU-bound background workloads,
an administrator cannot easily quantify the effect of a hypothetical
resource upgrade (e.g., a faster CPU) on the high-paying customer.
Counters may indicate that the CPU is a bottleneck, as it indeed
may be for the combined workload, but upgrading the CPU may
have no effect on the I/O-bound workload.

Second, performance counters cannot be easily correlated to high-
level user observations about throughput and latency in a distributed
system. In a busy web server with a backend database, is the
high CPU utilization at the web server, the high I/O rate at the
database server, both, or none of them, responsible for the high la-
tency clients are noticing? Performance counters act like symptom
sensors, without enabling root-cause analysis of the problem.

Detailed process accounting systems can address some of the
shortcomings of performance counters. For example, Bouhana [8]
describes an accounting system that keeps per-user, per-resource
demands in order to later bill the user appropriately. Existing ac-
counting systems, however, are limited to centralized systems and
simple batch processing systems. In most distributed systems, where
request processing may involve applications running on several ma-
chines, existing approaches do not work. Among other things, Star-
dust can be used as an accounting system for distributed systems.

System logs are often used to capture basic workload or utiliza-
tion information. The Windows operating system, for example, of-
fers the ability to log performance counters and request/reply calls
for later analysis [27, 29]. The most common use of such logging
is retaining a history of HTTP calls or SQL database queries. Such
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Figure 1: The instrumentation framework depends on the system under consideration. Black-box systems are made of components that work together
through well-defined interfaces but are closed-source. Instrumented middleware systems consist of the black box components running on top of a well-known
middleware that provides resource multiplexing, management and accounting. Clear-box systems are a term we use for systems whose internals are completely
known, either because the system is being built from the start or because its source code is available. Such systems offer the opportunity to have the necessary
instrumentation built-in from the start.

logging is useful for workload analysis and even trace-based sim-
ulation but, as commonly configured, provides little help with per-
formance analysis. Such logs are usually coarse-grained, and there
are no integrated tools that allow the administrator to correlate log
entries with system performance information. Stardust builds on
fine-grained logging/tracing of activity across a distributed system,
enabling both traditional information extraction and detailed per-
formance analysis.

2.3 Recent work
Researchers are now exploring the use of end-to-end tracing of

requests in a distributed system to better inform diagnosis and tun-
ing questions. End-to-end tracing refers to collection, storage, and
correlation of activity records that are generated by a single request
from the moment it enters the first node in the distributed system
until it leaves the system. Research in this area has focused on
three system types (illustrated in Figure 1): black-box, middleware-
based, and clear-box systems.

Black-box systems are constructed of components that work to-
gether through well-defined interfaces but are closed-source. Al-
though only high-level information can be determined in such an
environment, researchers are developing approaches to determine
causal paths of requests and the relationship between individual
component performance and overall performance. For example,
Aguilera et al. [2] have shown that coarse-grained end-to-end traces
can be extracted via passive network monitoring without requiring
any legacy application changes. Further, they showed that such
tracing is sufficient to identify black-box components that are bot-
tlenecks and guide an administrator’s focus to them. Cohen et
al. [11] explore the efficacy of statistical correlating the values of
per-black-box performance counters with high-level user observa-
tions, such as throughput or latency, to identify relationships that
can guide diagnosis. These approaches improve on traditional ap-
proaches and can work when otherwise uninstrumented third-party
applications are utilized.

Instrumented middleware systems are often deployed as a set
of black box components running on top of middleware, such as
J2EE or .NET, that provides resource multiplexing and manage-
ment [28, 30]. Systems such as Pinpoint [10] tag requests as they
flow through the J2EE middleware and correlate middleware mea-
surements with application-level throughput and latency. Xaffire [44]

and Application Assurance [35] are commercial products that use
similar tagging techniques. Such a model provides deeper insight
than pure black box and traditional approaches, but still leaves
intra-component resource usage and delay sources unclear.

We use the term clear-box system to describe a system whose in-
ternals can be modified and understood, either because the system
is being built from the start or because its source code is available.
Such systems offer the opportunity to have fine-grain instrumenta-
tion built in. For example, Magpie is a prototype system that col-
lects traces at different points in a system and creates causal paths
from those traces [7, 22]. Magpie relies on programmers to place
instrumentation points in the appropriate system modules. In re-
turn, it offers critical path analysis and per-workload, per-resource
monitoring. ETE is a similar system that is used to measure end-
to-end response times [18]. Hrischuk et al. define a specialized
language to describe end-to-end traces and measure per-workload
and per-resource demand as well as request response times [20].
Stardust and this paper build on these ideas and takes them further
by developing an efficient querying framework for traces, reporting
experiences from use in a real large-scale system, and performing
feasibility studies under various system loads.

3. STARDUST’S DESIGN
Stardust’s design was motivated by several goals:
Resource usage accounting: The instrumentation framework

must provide accurate aggregate and per-client resource account-
ing. Aggregate accounting is sufficient when the administrator is
concerned with the load on a resource. But, per-client accounting
is needed to understand how individual clients contribute to that
load. In a distributed system, a request may propagate through sev-
eral machines, requiring per-client accounting of all resources used
in each machine. Resources of interest in a storage system include
the CPU, buffer cache, network and disks.

Request latency accounting: The instrumentation framework
must provide per-client request latency information that records
where a request spends its time as it flows through the system. Dif-
ferent clients may have different latency profiles. A client whose
requests hit in the buffer cache, for example, will have a different
profile than a client whose requests miss. A request may span ma-
chines in a distributed system, so care must be taken to causally



link together sub-requests in each machine that belong to the same
original request.

Instrumentation framework efficiency: The instrumentation
framework should interfere minimally with the workloads running
in the system. We envision the framework to be monitoring the
system at all times; hence, overheads must be minimal. In addition,
the programming burden for implementing the framework inside a
system should be low.

Querying efficiency: The instrumentation framework must pro-
vide a flexible query interface. In a distributed storage system with
hundreds of nodes and clients, it is important to have a versatile
way to query the wealth of information generated.

3.1 Activity tracking and querying
Stardust is made of two components: the activity tracking infras-

tructure (ATI) and the querying infrastructure. The ATI is respon-
sible for tracking every client request along its execution path. The
ATI retains activity records, such as buffer cache reference records,
I/O records, and network transmit/receive records. The sequence of
records allows tracking of a request as it moves in the system from
one computer, through the network, to another computer, and back.

An activity record is a sequence of values related to a record type.
Figure 2 shows an example activity record. Each activity record
contains an automatically-generated header comprised of a times-
tamp, breadcrumb, kernel-level process ID, and user-level thread
ID. Each timestamp is a unique value generated by the CPU cy-
cle counter that permits accurate timing measurements of requests.
The breadcrumb permits records associated with a given request
to be correlated within and across computers. Activity records are
posted at strategic locations in the code so that the demand on a
resource is captured. These locations are often the point of ar-
rival to and departure from a processing queue. For example, the
disk activity record is posted both when the request is sent to disk
and when the request completes. Both postings contain the same
breadcrumb, because they belong to the same request, and so can
be correlated. Records are posted on the critical path; however,
as our evaluation shows, such posting causes minimal impact on
foreground performance.

Each computer runs a single ATI instance. An ATI instance is
responsible for presenting any process running on that computer
with APIs for posting and querying activity records. For querying
flexibility, ATI records are stored in relational databases (Activity
DBs). Activity records posted to an ATI instance are periodically
sent to Activity DBs. Activity DBs run on the same infrastructure
computers with the rest of the system. The DBs store the records
in relational tables and answer queries on those records. Storing
activity records in a database allows a flexible querying interface.

Activity DBs are part of the querying infrastructure and they
can be queried using SQL. For example, to get a disk I/O trace
for a certain storage-node, one could query the Activity DB that
keeps records for that storage-node’s disk activity records. Activity
records are effectively a super-set of performance counters. Any
performance counter value of interest can be extracted by querying
the Activity DBs.

3.2 Resource usage accounting
This section describes how the ATI enables the extraction of the

per-workload demand placed on four common storage system re-
sources: CPU, buffer cache, network and disk. When requests enter
the system, they are tagged with the user’s ID. The first component
also assigns an initial breadcrumb. This breadcrumb is passed be-
tween components as the request is serviced.

timestamp  breadcrumb  pid  tid diskno  lbn  size  op

header payload

Figure 2: Example activity record. Each activity record has a com-
mon header and a payload. The payload for the disk request activity record
shown includes the disk ID, logical block number (LBN), size of the I/O in
bytes, and operation type.

CPU demand: To measure per-client CPU demand, a compo-
nent must post activity records related to thread context switching.
Context switching happens both in preemptive systems (when it
is time to run another thread) and non-preemptive systems (when
a thread yields). Thus, CPU processing of a request may be
suspended and resumed several times By monitoring the context
switches and the requests being processed during thread run time,
Stardust charges a request the exact amount of CPU time it used.
That time is the sum of the time any thread spent processing that
request and any of its sub-requests.

Buffer cache usage: Buffer cache usage for an individual client
is measured by posting activity records each time the buffer cache is
accessed. Accesses include read hits and misses, writes, readaheads
and evictions. The buffer cache demand for a user during any time
period T is determined by the sequence of such accesses.

Network demand: Network demand for an individual user is
measured by posting a NetworkTransmit activity record each time
a request is transmitted from one component to another. These
records contain, among other attributes, the number of bytes sent
from the source to the destination component. The demand is then
the total number of bytes transmitted during any time period T .

Disk demand: Disk demand for an individual client is measured
by posting a DiskOp activity record each time a request initiates a
disk request. An operation denotes the beginning or completion of
a read or write. The disk demand during any time T is the sum of
disk service times for the user’s requests.

3.2.1 Measuring delayed demands
There are two important, and tricky, cases that complicate re-

source demand accounting. First, whereas read requests are usually
synchronous (the user has to wait until the read completes before
proceeding), there are asynchronous requests (e.g., writes). A write
will often be inserted into a cache and have control returned to the
user. The write propagates to other components (e.g., disk) at a
later time. This is often done to hide the latency of writes and
results in significant performance gains. Resource accounting for
those requests must occur, however, even after control is returned
to the user. Second, some requests from different users may be co-
alesced into a single, larger request to improve performance (e.g.,
coalescing disk requests). It is important to bill the resource usage
of this larger request to the proper original requests.

Figure 3 shows both these problems by illustrating the typical
path of a write request. The request arrives in the system (denoted
by the first black node) and departs (the second black node) after
it has been stored in cache. At a later time, denoted by the broken
arrow (depicting the first problem), the request is coalesced with
other requests and sent to the storage-node (depicting the second
problem). The storage-node, in turn may split it into sub-requests.
For accounting purposes it is important to capture these cases, es-
pecially because writes are frequent in a storage system.

Stardust solves the first issue by storing the breadcrumb as part
of the data in the cache. When the request is later processed, any
sub-requests it generates use that breadcrumb and thus the original
request is properly billed. If that request is coalesced with other



requests, the many-to-one relationship is noted (through an explicit
“stitch” record), and any resources the larger request subsequently
uses are billed to each original request proportionally.

3.3 Request latency accounting
This section describes how Stardust provides per-client request

latency information that shows where a request spends its time as it
is processed in the system. Each instrumentation point can be con-
sidered as a node in a latency graph, with links between nodes de-
noting causal relationships. These links also capture latency infor-
mation between the instrumentation points. As a simple example,
if one instrumentation point was before a disk request and another
after the request completed, the link between them would denote
the disk latency.

Identifying causal paths in a distributed environment: Re-
quests often generate multiple activity records at different compo-
nents in a distributed system. The components of a distributed sys-
tem are not expected to have synchronized clocks. It is important
to causally link, or stitch, activity records together so that the path
of the original request can be reconstructed in such environments.
On the same machine, two records R1 and R2 are totally ordered by
their timestamp. If R1 and R2 have the same breadcrumb, but R1
happens before R2 then R1 is a parent of R2. On different machines,
such ordering is possible only if the records R1 and R2 (which are
created on their respective machines) are explicitly related through
a “stitch” record that contains the breadcrumb of R1 (or any of its
children’ sub-requests) and the breadcrumb of R2 (or any of its par-
ents’ requests).

Figure 3 shows an example path to visually explain the above
rules. Two physical machines are connected through a network. In
a distributed storage system, the first machine could be a generic
Metadata Server (which keeps information on where data is lo-
cated) and the second a generic Storage-Node (which actually stores
the data). Nodes in this illustration show activity records. Links
between records show nodes that are related because they origi-
nated from the same breadcrumb (i.e., breadcrumb 10). On each
machine, all records are totally ordered by a local timestamp, de-
noted by the timeline at the bottom. To show that all records on
the first machine happened before any records on the second ma-
chine a “stitch” record of the form �bc � 11�bc � 12� is posted just
before the request leaves the first machine. The stitch record links
the last record on the first machine (child record of the originating
request) to the first record on the other machine (parent record for
all subsequent records on that machine).

3.4 Instrumentation framework efficiency
There is overhead associated with ATI traces. However, the over-

head can be made negligible in most cases. CPU overhead at ma-
chines posting events is kept to a minimum by reducing the ATI
client work. The client only has to encode the trace records to net-
work byte order and place them in pre-allocated buffers. When the
buffers fill up, records are sent to the Activity DBs. Thus, we are
trading off the possibility of partial trace loss due to machine failure
with lower tracing overhead.

Network and storage overheads are closely related; both depend
on the quantity of trace data generated. Ultimately, the quantity
of trace data generated depends on intended usage. Section 6 de-
scribes several concrete experiences we have had in solving real
problems using such traces. In general, performance problems that
can be answered by looking at resource load require only per-client,
per-resource performance counters. For such problems, it is possi-
ble to drastically reduce the amount of traces kept. This is done
by transforming the raw traces into per-workload, per-resource de-
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Figure 3: Example causal path created by a generic Write call. This di-
agram shows the creation of a causal path in a distributed environment with
two components. Nodes in this illustration show instrumentation points in
the system, and links show a request propagating through two such points.
This diagram also illustrates the case when a Write request is declared com-
plete (component 1, time 3) before it is propagated to the second component
and when multiple writes are coalesced (component 1, time 5).

mand numbers, as well as per-workload graphs that shows the la-
tency of requests as they pass through different modules, every time
period T. Section 5 quantifies the space reduction from pruning.

There are, however, several performance tuning problems that
require certain types of records to be kept in their raw form. Sec-
tion 5 analyses the feasibility of keeping full traces and the effi-
ciency of pruning them. Section 6 then discusses several concrete
uses of these traces and provides guidelines to help determine the
right amount of traces to be kept for solving a certain problem. In
general, we observe that a storage system sustains a limited number
of operations a second (several thousand). This allows the amount
of trace records to be relatively small.

3.5 Querying framework efficiency
Activity records are stored in Activity DBs, which use relational

tables. Any internal system entity (or external administrator) can
use SQL to analyze traces. Each Activity DB contains all the trace
records associated with a set of clients and machines. Thus, no
query will involve accessing more than one Activity DB. We con-
sidered using distributed databases, but opted for simplicity.

Each Activity DB stores activity records in a number of tables,
one for each record type. The system is designed such that the Ac-
tivity DBs do not need to be restarted or recompiled if a component
posts new record types. New tables can be created on-the-fly based
on an XML description of the new record type.

One can generate any performance counter from the end-to-end
activity traces. We call the performance counters generated from
the traces virtual performance counters because they are not hard-
coded into the code, but can be generated on the fly using SQL
queries on the trace tables. As a simple example, consider the tra-
ditional counter that keeps track of the number of hits in a compo-
nent’s buffer cache (e.g., on a Storage-Node component). In our
system, that counter is generated from the following SQL query on
the table that holds the buffer cache records for that Storage-Node:

SELECT count���
FROM STORAGE NODE BUFFER CACHE TABLE
WHERE optype � BUFFER READ HIT

In general, we have found that using a common querying lan-
guage like SQL allows flexibility in querying.

4. IMPLEMENTATION IN URSA MINOR
We have designed and implemented a storage system, Ursa Mi-

nor, to target research problems in system management. Ursa Mi-



Record Type Arguments Description
CPU demand UserThreadSwitch oldthread, newthread A user-level context switch

KernelProcessSwitch CPU ID, oldprocess, newprocess A kernel-level context switch
Buffer cache demand BufferReadHit file, offset, size Denotes a buffer cache hit

BufferReadMiss file, offset, size Denotes a buffer cache miss
BufferWrite file, offset, size Denotes a write and marks buffer dirty
BufferReadAhead file, offset, numpages, pagesize Prefetch pages (non-blocking)
BufferFlush file, offset, size Flush a dirty page to disk
BufferEvict file, offset, size Evict a page from the cache

Network demand NetworkTransmit sender, receiver, numbytes Monitors network flow
Disk demand DiskOp disk ID, LBN, size, operation Monitors disk activity

Table 1: Activity records used to measure resource consumption. KernelProcessSwitch records are provided by the Linux kernel (other operating systems,
such as Windows, already expose kernel-level context switches [27]); the remainder are posted from instrumentation points in user-level processes. Note that
there are multiple buffer caches in the system (e.g., at client, metadata service and storage-nodes), hence the buffer cache records are posted at all those levels.

nor is designed from a clean slate; hence, we had the opportunity
to include the instrumentation in the design of the system from the
beginning without the need to retrofit an existing system.

The goals of this system are described by Ganger et al. [13]
and the architecture and implementation are described by Abd-El-
Malek et al. [1]. At the core of the architecture is the separation
of mechanical functions (servicing client requests) from manage-
rial functions (automating administrative activities). The manage-
rial tier consists of agents and algorithms for automating internal
decisions and helping administrators understand the consequences
of external ones. The mechanical tier is designed to self-monitor,
through Stardust, and also includes self-predictive capabilities used
by the management tier, as described in [42]. Below we define the
main structural components of the system.

Clients: Clients of the system access data. Data may have dif-
ferent availability, confidentiality and performance goals. Clients
make use of the PASIS protocol family to encode data [15, 43].
For the purposes of this paper we only consider data replication,
although several other schemes to meet the above goals are possi-
ble. Currently, clients in our setting use the NFS data access proto-
col [41]. Clients contact NFS servers which in turn read and write
data to the storage-nodes on behalf of the clients.

Storage-nodes: The storage-nodes have CPUs, buffer cache and
disks. Storage-nodes are expected to be heterogeneous, as they get
upgraded or retired over time and sometimes are purchased from
different vendors.

Metadata service: The metadata service (or MDS) is responsi-
ble for keeping track of files in the system. It is also responsible
for client access control through the use of capabilities. An access
to a file usually is preceded by an access to the MDS to get the
metadata for accessing that file. Once the metadata is obtained, the
client interacts directly to the storage-nodes to access the data.

Other services: There are several other services that run on the
same machines as the storage-nodes and share resources with them.
Such services include Stardust and various other services that per-
form background maintenance work.

Figure 4 shows a typical request flow through the distributed
system. There are several resources used by a request as it flows
through the system. First, CPU computation is required at both the
client and at the storage nodes. The client requires CPU computa-
tion to encode and decode the data into fragments that are stored
onto N storage nodes, for N-way replication. Part of encoding may
be compressing or encrypting the data. The storage nodes require
CPU to check the integrity of data blocks, through checksums. Sec-
ond, buffer cache is required at the client, metadata service and
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Figure 4: Typical request path through the system. A request from a
client enters the storage system at the NFS server. The server consults the
metadata service to get the metadata from the client. Once the metadata is
received, the data request is served through the data path. The request may
hit in the NFS server cache or miss and have to be serviced from the storage-
nodes. The request may be sent to more than one server, for example, when
the data is replicated or striped among many nodes.

at the storage nodes to hold frequently accessed data or metadata.
Third, network bandwidth is required to transmit requests and re-
sponses from the various components in the system. Fourth, disk
bandwidth is required at the storage nodes to process read requests
that miss in the cache and write requests.

We changed the RPC layer in Ursa Minor to have scheduling
support for the ATI traces. Without scheduling support, large buffers
of traces are periodically sent to the Activity DBs. Any foreground
requests that are blocked behind the buffers incur a large latency.
Scheduling support mitigates this effect. With scheduling support,
the activity traces buffers are split into smaller sizes, and each
small chunk is given a lower scheduling priority than foreground
requests. This greatly reduces the additional latency seen by fore-
ground requests, as Section 5 quantifies.

4.1 Instrumentation points
Table 1 shows the records used to measure resource demands.

Table 2 shows the records used to measure latencies. Some records
are used for both. There are approximately 200 instrumentation
points in our system, which currently has over 250,000 lines of
code. Almost all instrumentation points are posted from user-level
processes, because most request processing in Ursa Minor is done
in user-level threads. The only exceptions are the kernel-level con-
text switch records (KernelProcessSwitch), which are posted by the
Linux kernel. This was the only modification necessary to the op-
erating system. User-level context switches (UserThreadSwitch)
are posted from the State Threads library [39].

In Ursa Minor some level of monitoring is performed at all times.



Record Type Arguments Description
NFS service NFSCall type user ID, call args Request arrives at the NFS service

Buffer type buffer args. See Table 1 Request accesses the NFS buffer cache
NFSReply type reply args Request exits from the NFS service

MDS service MDSCall type call args Request arrives at the MDS service
Buffer type buffer args. See Table 1 Request accesses the MDS buffer cache
MDSReply type reply args Request exits from the MDS service

Storage-node S-NCall type call args Request arrives at the storage-node service
Buffer type buffer args. See Table 1 Request accesses the storage-node buffer cache
S-NReply type reply args Request exits from the storage service
DiskOpCall call args Request accesses the storage-node’s disk service
DiskOpReply call args Request exits from the storage-node’s disk service

Table 2: Activity records used to measure request latency. The above records capture entrance and exit points for key services in the system. NFS
calls monitored include most calls specified in the NFS protocol [41], of which the most common are : NFS GETATTR, NFS SETATTR, NFS LOOKUP,
NFS READ, NFS WRITE, NFS CREATE, NFS MKDIR, NFS REMOVE, NFS RMDIR, NFS RENAME and NFS COMMIT. MDS calls monitored in-
clude: MDS LOOKUP, MDS CREATE OBJECT, MDS RELEASE OBJECT, MDS APPROVE WRITE, MDS FINISH WRITE. Storage-node calls moni-
tored include: READ, WRITE, CREATE, DELETE. Disk calls monitored include: READ, WRITE.

It includes all the above record types. Further types can be added
by programmers through new releases of the system. Such record
types may be enabled or disabled at run time. That encourages pro-
grammers to insert as many record types as necessary to diagnose
a problem; they can always turn them off by default and re-enable
them when a product in the field needs to be analyzed. We currently
use a small embedded database, SQLite [40], for the ActivityDBs.

5. EVALUATION
This section evaluates the efficiency of the instrumentation and

querying framework. Section 6 illustrates experiences we have had
with the system.

5.1 Experimental setup
In the following experiments, we used Dell PowerEdge 650 ma-

chines equipped with a single 2.66 GHz Pentium 4 processor, 1 GB
of RAM, and two Seagate ST33607LW (36 GB, 10k rpm) SCSI
disks. The network configuration consisted of a single Intel 82546
gigabit Ethernet adapter in each machine, connected via a Dell
PowerConnect 5224 switch. The machines ran the Debian “test-
ing” distribution and used Linux kernel version 2.4.22. The same
machine type was used both for clients and storage-nodes. The
storage-nodes used one of the two local disks for data; the other
contained the operating system. Each NFS server and storage-node
has 256 MB and 512 MB of buffer cache respectively. The experi-
ments used several workloads with varying characteristics to assess
the efficiency and efficacy of Stardust.

OLTP workload: The OLTP workload mimics an on-line database
performing transaction processing. Transactions invoke 8 KB read-
modify-write operations to a small number of records in a 5 GB
database. The performance of this workload is reported in transac-
tions per minute (tpm).

Postmark workload: Postmark is a file system benchmark de-
signed to emulate small file workloads such as e-mail and netnews.
It measures the number of transactions per second that the system
is capable of supporting [23]. A transaction is either a file create
or file delete, paired with either a read or an append. The configu-
ration parameters used were 100000 files, 50000 transactions, and
224 subdirectories. All other parameters were left as default. Post-
mark’s performance is reported in transactions per second (tps).

IOzone workload: IOzone is a general file system benchmark
that can be used to measure streaming data access (e.g., for data
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Figure 5: Impact of instrumentation on latency of SFS workload. The
average and standard deviation of five runs is shown. For all throughput and
latency levels the overhead of instrumentation is low.

mining) [32]. For our experiments, IOzone measures the perfor-
mance of 64 KB sequential writes and reads to a single 2 GB file.
IOzone’s performance is reported in megabytes per second read.

“Linux build” development workload: The “Linux build” work-
load measures the amount of time to clean and build the source tree
of Linux kernel 2.6.13-4. The benchmark copies the source tree
onto a target system, then cleans and builds it. The results provide
an indication of storage system performance for a programming
and development workload. The source tree consumes approxi-
mately 200 MB. The performance of this workload is measured in
seconds to complete the build process.

SPEC SFS Suite: SPEC SFS is a benchmark suite designed to
measure the response time of NFS requests for varying throughput
levels. The latency of the NFS server is measured as a function of
throughput.

“S1-V0” scientific workload: This workload corresponds to
storing the output from sample queries performed by a system de-
signed to analyze multi-dimensional wavefield datasets. Query out-
puts are written to storage for further processing. In particular, S1
and V0 correspond to sample queries on multi-gigabyte seismic
wave-fields produced by numerical simulations of ground motion
wave propagation during strong earthquakes in Southern Califor-
nia [3]. S1 corresponds to the output of temporal queries on a plane,



CPU demand Network and storage
demand (MB/s)

Performance without
tracing

Performance with
tracing

Postmark 0.9% 0.34 11 tps 11 tps
OLTP 0.7% 0.57 910 tpm 898 tpm
IOzone 0.1% 3.37 38 MB/s 36 MB/s
Linux-build 0.1% 0.49 1094 secs 1101 secs
S1-V0 0.8% 1.85 669 secs 686 secs

Table 3: Macro-benchmark performance. This table illustrates the overheads of the ATI. The ATI places demands on the CPU for encoding and decoding
trace records, network and storage for sending the traces to the Activity DBs and storing them. It also places a fixed demand of 20 MB of buffer cache at each
client machine. The impact of the instrumentation on the workload’s performance is less than 6%.
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Figure 6: Source of trace records. The largest amount of traces comes
from recording every context switch in the system, in order to measure CPU
demand per workload. The least amount of traces comes from the I/O sub-
system, since many of the workloads fit in buffer cache. Included in the
“Other” category are various database-specific overheads and a global in-
dex that keep track of the various tables each request uses.

and V0 corresponds to the output of temporal queries on a volume.
The performance of this workload is measured as the overall run
time for each workload.

All experiments are run five times and the average is reported,
unless otherwise mentioned.

5.2 Instrumentation framework efficiency
Baseline experiments: Table 3 shows the overheads of the end-

to-end tracing when each of these workloads is run in isolation.
The application data was stored on a single storage-node (i.e., there
is no data replication). There is a single Activity DB for the traces.
The baseline performance and performance with tracing enabled is
shown. As seen from the table, the ATI demands on the CPU, net-
work, and storage are relatively small. The instrumentation added
at most a 6% performance penalty. Figure 5 shows the output from
the SPEC SFS benchmark. Throughout the curve (from low to high
NFS server load) the impact of the instrumentation is low.

Figure 6 shows the source of the traces. For all workloads, most
of the tracing data comes from collecting CPU context switches.
Each time a context switch (at the kernel or user level) occurs, it is
logged (“CPU Kernel” and “CPU User” categories). Many of the
workloads fit fully in buffer cache, and only a few of them gener-
ate disk I/O records. A considerable amount of tracing overhead
comes from keeping causal path information in the form of “stitch”
records.

Network scheduling support for traces: Figure 7 shows the
impact of adding network scheduling support for the activity traces.
We modified the RPC layer in Ursa Minor to have scheduling sup-
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Figure 7: Network scheduling support for the ATI. Latency as seen by
Postmark requests, with and without scheduling support.

port for the ATI traces. Without scheduling support, large buffers
of traces are periodically sent to the Activity DBs. Any foreground
requests that are blocked behind the buffers incur a large latency.
Scheduling support mitigates this effect. With scheduling support,
the activity traces buffers are split into smaller sizes, and each
small chunk is given a lower scheduling priority than foreground
requests. This greatly reduces the additional latency seen by fore-
ground requests.

Efficiency with of data redundancy: Because Ursa Minor is
built on commodity components, to ensure an acceptable level of
reliability and crash tolerance, data is often replicated across storage-
nodes. N-way replication refers to data being replicated across N
storage nodes. During a write, data is written to all N nodes, and
during a read, data is read from one of the N storage nodes. Figure8
shows the overhead of tracing when replication is used for each of
the representative workloads. In general, the overhead increases
linearly with the replication degree, since as the replication factor
increases more storage nodes are accessed. The overhead increases
for several reasons. First, there is more network demand, since
more storage-nodes are accessed (during writes). Second, there is
more buffer cache demand, since now a data block resides on N
nodes. Third, there is more disk demand, since a data block is writ-
ten on N disks. In general, the amount of trace records increases as
replication increases and the trend is similar for all workloads.

5.3 Querying framework efficiency
In addition to resource overheads, an important property of Star-

dust is ease of querying. In particular, creating a causal path for a
request is a common operation that needs to be efficient. Table 4
shows the average number of SQL queries required to create such a
path for each of the workloads (these queries are issued internally).
Providing the number of queries is more useful than providing the
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Read path Write path
Postmark 8.5 19
OLTP 8.5 135
IOzone 11.4 109
Linux-build 8.2 42.9
S1-V0 4 12.5

Table 4: Number of SQL queries for creating request path. 10000
causal paths are created and averaged for each workload.

time required to create the path, since that time depends on factors
such as the database used, amount of buffer cache dedicated to the
database, whether the database if over a network link or is local.
The number of SQL queries provides a more standard way to com-
pare the work needed to create a path. All queries are simple and do
not involve joins. The column searched is the breadcrumb column.

The time to create a path depends on two main workload fac-
tors. First, the deeper a request flows into the system (e.g., when
it misses in the NFS server cache and has to go to the storage-
nodes) the longer it takes to re-create its path. Writes, for example,
tend to have deeper paths than reads, since reads often hit in the
buffer cache. Second, coalescing (many-to-one) and splitting (one-
to-many) requests cause the path of a request to include sub-paths
of other requests. As discussed in Section 3.2 write requests are
often coalesced. Re-creating the full path of an original write re-
quest currently re-creates the path of all other requests that were
coalesced with it. Hence, the cost of re-creating the write path is
usually larger than the read cost. Some workloads do not exhibit
sequential behavior (e.g., Postmark) and little or no coalescing hap-
pens for them. In practice, we have seen path creation times rang-
ing from a few microseconds (when the breadcrumbs are still in the
buffer cache of the Activity DBs) to a few milliseconds.

Figure 9 shows the latency graph taken by NFS Create calls from
a specific client for the Postmark workload. Such paths can be
reconstructed online by querying the ActivityDBs.

5.4 Trace pruning methods
The trace-based approach of measuring performance allows for

easy integration into a system. However, the system is not expected
to maintain all raw traces at all times, since they consume storage
space. From our experience with using these traces, we have found
that pruning the CPU, network, and disk traces to generate per-
client performance resource and latency information is acceptable.

MDS_APPROVE_WRITE_CALL_TYPE_MDSCLIENTCACHE_MISS

MDS_APPROVE_WRITE_REPLY_TYPE

140 times --- 268.098017 usecs

MDS_FINISH_WRITE_CALL_TYPE

140 times --- 6807.577612 usecs

NETWORK_TRANSMIT_OP_TYPE

140 times --- 46.260422 usecs

MDS_FINISH_WRITE_REPLY_TYPE

140 times --- 1151.660379 usecs 140 times --- 6751.720641 usecs

STORAGE_NODE_WRITE

MDS_CREATE_OBJECT_CALL_TYPE

MDS_CREATE_OBJECT_REPLY_TYPE

140 times --- 1220.464205 usecs

MDS_LOOKUP_CALL_TYPE_MDSCLIENTCACHE_MISS

140 times --- 12.612003 usecs

MDS_LOOKUP_REPLY_TYPE

140 times --- 268.651109 usecs

140 times --- 10.232537 usecs

NFS3_CREATE_CALL_TYPE

140 times --- 23.898307 usecs

Figure 9: Example path created by NFS Create calls. This path was
obtained using the Postmark workload and averaging 140 paths. The nodes
contain information such as the unique identifier of the component posting
the record and the string name of the record. The edges contain latency
information between two instrumentation points. Some requests may be
processed in parallel. A dashed line indicates that the request is moving to
another physical machine. These graphs are automatically generated using
the trace data and a readily available visualization tool like DOT [17].

However, we keep full buffer cache and disk traces as well.
Figure 10 shows the storage demand when the traces derived

from the workloads are pruned every T units of time. As T in-
creases, the amount of trace data decreases proportionally. The
graph shows the amount of trace data from keeping pruned CPU,
network, and disk traces and also full buffer cache and disk traces
(pruned disk traces reveal disk utilization metrics, whereas the full
traces can be used for trace re-play). The table beneath the graph
shows that further savings can be made if the full buffer cache and
disk traces are not kept. The table shows just the cost of traces
if only the per-client, per-resource demands are kept, or only the
latency graphs are kept. Section 6 discusses cases when we have
found it useful to keep the full buffer cache and disk traces, in ad-
dition to the resource and latency information.

6. EXPERIENCES
This section reports on our experiences and lessons learned with

Stardust.
Predicting effects of workload and resource changes: In Ursa

Minor, Stardust serves as the tracing and querying infrastructure for
several automation agents. In particular, these agents are responsi-
ble for answering What...if questions about hypothetical workload
and resource changes [42]. Concrete What...if questions we solve
include:

� “What would be the performance of client A’s workload if we
add client B’s workload onto the storage-nodes it is using?”

� “What would be the performance of client A’s workload if
its data is re-encoded from 2-way replication to a RAID-5
scheme?”

� “What would be the performance of client A’s workload if
the administrator buys more RAM/faster disks?”
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Figure 10: Savings from pruning. The graph illustrates the storage sav-
ings from pruning the traces to get demand and latency information. Full
traces of buffer cache and disk accesses are still kept, however. The table
beneath shows the amount of data needed for just resource demands and
latency information.

Answering such questions involves understanding per-client, per-
resource demands, which the ATI collects and maintains. We found
it necessary to have the full buffer cache and disk traces for these
predictions. Those traces were needed to simulate the effect of
hypothetical buffer cache and disk changes on performance using
trace-replay techniques.

One realization from this work, is that, in a storage system like
Ursa Minor, it is possible to predict how much CPU a client will
consume from its requests’ size and rate alone. CPU is consumed
both at the client (for encoding the data as described in [42]) and
at the storage-nodes (for checking data checksums to verify data
is not corrupt). Our work showed that the CPU consumed at the
client has a direct relationship with the data encoding chosen. At
the storage-nodes, the CPU consumed per request has a direct re-
lationship to the request’s size and arrival rate. Hence, collecting
detailed context switches may not so important for a storage sys-
tem. Thus, the number of records and their storage size can be
drastically reduced (as shown in Figure 6). However, in a different
system, that information may still be useful.

Handling user complaints: We illustrate a type of complaint a
storage administrator may get by examining a concrete complaint
we have received. One of our users, running the scientific work-
load (S1 and V0 queries), complained about the performance of
our system, hinting that the scientific workload ran faster on a lo-
cal off-the-shelf file system than our cluster storage system. Such
of comparison-based complaints are commonplace and a large time
sink for administrators because of limited information from the sys-
tem and the user.

Using Stardust, we first looked back in time to focus only on
the requests of the client at the time of the complaint. Going back
in time is straightforward, since all traces are kept and correlated,
unlike the current approach of keeping logs and disconnected per-
formance counters.

A query to get the maximum utilization of all system resources
revealed that they were underutilized at all times (i.e., we looked
at the full distribution, not just averages) and thus the problem was
not the result of a bottleneck. The latency map of the requests re-
vealed that the component-to-component latencies did not differ
significantly from the average aggregate latencies observed on the
system, hence the problem was not related to blocking.

Because all resources were underutilized and blocking was rea-
sonable, the next step was to look at the client access patterns to un-
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Figure 11: View of workload access patterns for the scientific workload.
The workload shows strong spatial and temporal locality, hence client-side
caching is the most effective optimization.

derstand the nature of the client requests. Figure 11 illustrates the
locality of client requests through time. After the initial spike in the
graph (showing file creation), all other accesses were small (48-92
bytes). This graph revealed the source of the problem. The client
was using NFS version 3, which does not do client-side caching.
Hence, these small requests, which are cached and coalesced into
bigger requests in the local file system case, were sent to the clus-
ter storage system directly, adding a significant number of network
hops. We suggested that the user use NFS version 4 which would
handle the client-side caching automatically when it becomes avail-
able (instead they implemented a simple application-level write-
back cache).

Utilizing our instrumentation framework had several benefits over
traditional methods. First, we did not need to bother the user with
rerunning the workload for us to debug it in real time. Because our
system keeps all traces, it was easy to go back in time. Second, we
can extract the request latency map in a shared environment, which
is not possible using the traditional methods. Third, we were able
to generate the full distribution of access locations using a single
SQL query. Performance counters and logs fall short of providing
this flexibility. This was also a case where keeping just per-client,
per-resource performance counters was not sufficient. We needed
to look at the client NFS traces for root cause analysis.

Propagating breadcrumbs: Our first design involved propa-
gating breadcrumbs through APIs to reconstruct the request path
through different machines and across machines software modules.
We discovered that the owners of the components were resistant to
changing their APIs to add the breadcrumb structure. Our current
approach does not involve propagating the breadcrumbs through
APIs, but rather through the private data structures associated with
each user-level thread. A request is usually processed by a sin-
gle thread that moves it from one software module to the next.
Throughout the processing, the breadcrumb of the request remains
the same, hence we keep that inside the thread structure. Of course,
when a request spans machines, the RPC layer still needs to propa-
gate the breadcrumb to the new machine.

Another approach which was considered, but not implemented,
was described by Isaacs et al. [22]. It consists of temporal joins
on attributes that make up an activity record. That approach was
subsequently used in the Magpie framework [7]. Such an approach
does not require passing breadcrumbs around, making it more ele-
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Figure 12: Request interarrivals at different points in the system.

gant in that respect. There are fundamental tradeoffs between Mag-
pie’s approach and Stardust’s. Magpie’s approach is more generic
and flexible. The parser that stitches requests together in a chain
can look at any arbitrary attribute when performing the join. Our
approach is specific to a distributed storage system, where we know
the types of requests the system will see. We trade off flexibility
in describing types of requests with efficiency of querying. It is
well-known in the database literature that joins are expensive op-
erations; our approach queries based on breadcrumbs locally and
only uses joins when a request moves to another machine. Mag-
pie’s approach requires joins to track a request even within a single
machine. However, Stardust needs more information to be recorded
(the breadcrumb) in each record.

Furthering future research: We believe that traces of activity
taken at different points in a system are beneficial for furthering re-
search in performance analysis in several ways. First, many tuning
algorithms use trace-replay techniques, which require full traces as
a way to evaluate a hypothetical system change [31, 34, 36, 37, 38].
Second, research in system performance, queueing models [24],
and capacity planning [26] relies on real system measurements and
traces. With most systems, these traces are taken at isolated points,
for example at the disk level [19] or file system level [12, 45], but
not at both simultaneously. Such measurements create a limited
understanding on how the system operates as a whole and may lead
to local solutions that do not work well when taken system-wide.

Figure 12, for example, shows measurements taken from the V0
query at three points in the system: the NFS server, where the re-
quest arrives; the network card, just after the I/O encode/decode
operations happen; and the disk, inside the storage-node. A best-
fit exponential distribution is also shown for each of the measure-
ments. These measurements show that the exponential assumption
does not always hold. When it holds, it may allow the use the
M�G�1 queuing model to predict for response times [45]. How-
ever, rather than designing a predictive model for a particular ar-
rival process, a system should be able to either predict when not
to predict or choose the queueing model among many that best fits
the actual workload. Stardust helps with keeping track of request
arrival history.

What Stardust did not help with: Stardust does not help more
than existing software profiling tools with finding or fixing algo-
rithmic problems in the software. A poor implementation of the
networking layer, for example, may mean that a request spends
most of its time using the network resources. Stardust will iden-
tify the network as the source of latency, but will not make better

suggestions on how to fix the problem than gprof in Linux [16] or
Apple’s Shark tool [6]. These tools already do a good job in in-
forming software developers for paths that need to be optimized in
the code that comprises a single local process.

7. SUMMARY
Stardust is an infrastructure for collection and querying of per-

request end-to-end traces in distributed systems. Such traces bet-
ter support performance diagnosis and tuning tasks by enabling
generation of per-workload latency graphs and per-workload, per-
resource demand information in addition to traditional usage coun-
ters. Experiments with diverse system workloads show that such
fine-grained tracing can be made efficient. Experiences with using
Stardust’s traces for example administrative scenarios confirm their
value for on- and off-line analysis of system behavior.
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