
aPril 2009 | Vol. 52 | no. 4 | communicAtionS of the Acm 91

Relative Fitness Modeling
By Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Alice X. Zheng, and Gregory R. Ganger

Doi:10.1145/1498765.1498789

Abstract
Relative fitness is a new approach to modeling the perfor-
mance of storage devices (e.g., disks and RAID arrays). In
contrast to a conventional model, which predicts the per-
formance of an application’s I/O on a given device, a relative
fitness model predicts performance differences between
devices. The result is significantly more accurate predictions.

1. intRoDuction

Relative fitness: the fitness of a genotype compared with
another in the same gene system.

Managing storage within a data center can be surprisingly
complex and costly. Large data centers have numerous stor-
age devices of varying capability, and one must decide which
application data sets (e.g., database tables, web server con-
tent) to store on which devices. Sadly, the state-of-the-art
in Information Technology (IT) requires much of this to be
done manually. At best, this results in an overworked system
administrator. However, it can also lead to suboptimal per-
formance and wasted resources.

Many researchers believe that automated storage man-
agement2, 5 is one way to offer some relief to administrators.
In particular, application workloads can be automatically
assigned to storage devices. Doing so requires accurate pre-
dictions as to how a workload will perform on a given device,
and a model of a storage device can be used to make these
predictions. Specifically, one trains a model to predict the
performance of a device as a function of the I/O characteris-
tics of a given workload.1, 7, 11, 13 Common I/O characteristics
include an application’s read/write ratio, I/O pattern (ran-
dom or sequential), and I/O request size.

Though it sounds simple, such modeling has not been
realized in practice, primarily because of the difficulty of
obtaining workload characteristics that are good predic-
tors of performance, yet also suitable for use in a model.
For example, the I/O request size of an application is often
approximated with an average, as opposed to the actual dis-
tribution (e.g., bimodal). Although such approximations
reduce modeling complexity, they can lead to inaccurate
predictions.

This article describes a new modeling approach called
 relative fitness modeling.9, 10 A relative fitness model uses obser-
vations (performance and resource utilization) from one stor-
age device to predict the performance of another, thereby
reducing the dependence on workload characteristics. Figure 1
illustrates relative fitness modeling for two hypothetical devices
A and B.

The insight behind relative fitness modeling is best
obtained through analogy. When predicting your grade in
a college course (a useful prediction during enrollment),

A previous version of this research paper was published in
the Proceedings of the International Conference on Measure-
ment and Modeling of Computer Systems (San Diego, CA,
June 2007), ACM, NY.

it is helpful to know the grade received by a peer (his
 performance) and the number of hours he worked each
week to achieve that grade (his resource utilization).
Naturally, our own performance for a certain task is a com-
plex function of the characteristics of the task and our abil-
ity. However, we have learned to make predictions relative
to the experiences of others with similar abilities, because
it is easier.

Applying the analogy, two storage devices may behave
similarly enough to be reasonable predictors for each other.
For example, they may have similar RAID levels, caching algo-
rithms, or hardware platforms. As such, their performance
may be related. Even dissimilar devices may be related in
some ways (e.g., for a given workload type, one usually per-
forms well and the other poorly). The objective of relative fit-
ness modeling is to learn such relationships.

2. BAcKGRounD
Storage performance modeling is a heavily researched area,
including analytical models,11 statistical or probabilistic
models,1, 7 and machine learning models.10, 13 Models are
either white-box or black-box. White-box models use knowl-
edge of the internals of a storage device (e.g., drives, con-
trollers, and caches), and black-box models do not. Given
the complexity of modern-day storage devices,12 black-box
approaches are becoming increasingly attractive.

Step 1:

A’s performance

A’s resource utilization

A’s workload characteristics

Device A

Device B

Model learning
algorithm

Relative fitness
model of B

Model differences between devices A and B

Step 2: Use model to predict the performance of B

Training
data

Relative fitness
model of B

B’s relative
fitness

figure 1: using sample workloads, a model learns to predict how the
performance of a workload changes between two devices (A and B).
to predict the performance of a new workload on B, the workload
characteristics, performance, and resource utilization (as measure on
device A) are input into the model of B. the prediction is a performance
scaling factor, which we refer to as B’s “relative fitness.”

92 communicAtionS of the Acm | aPril 2009 | Vol. 52 | no. 4

research highlights

Perhaps the simplest of all black-box models is a numeric
average. For example, the fuel efficiency of a car (average
miles per gallon) and a soccer player’s performance (aver-
age goals per game) are both black-box models. Of course,
such models can be easily extended with workload charac-
teristics (e.g., highway or city, home game or away), and an
average can be maintained for each type of workload.

Table 1 shows a simple black-box model of a storage device
(a table of performance averages), and Figure 2 shows the same
information in a regression tree.3 Both models are indexed using
one workload characteristic (the average request size of the I/O
that is issued to the storage device by the application), and both
models must be trained with sample workloads in order to learn
performance averages for various request sizes. Some form of
interpolation is required when an exact match is not found in
the model. For example, to predict the performance of a work-
load with 3KB requests, using Table 1, one might average the 2
and 4KB performance and predict 37MB/s. Of course, storage
researchers have explored a number of workload characteristics
in addition to request size, including the read/write ratio, mul-
tiprogramming level (queue depth), I/O inter-arrival delay, and
spatial locality. More complex characteristics (e.g., I/O bursti-
ness, spatio-temporal correlation) have also been investigated.

More formally, a model of a storage device i (white-box or
black-box) can be expressed as a function Fi. During train-
ing, the inputs are the workload characteristics Wci of an

application running on device i and the output is a perfor-
mance metric Pi (bandwidth, throughput, or latency):

 Pi = Fi (Wci). (1)

We refer to Equation 1 as an absolute model, to signify that the
inputs Wci are absolute, and not relative to some other device.
However, in practice, one does not possess Wci , as this would
require running the workload on device i in order to obtain
them. Because running the workload to obtain Wci obvi-
ates the need for predicting the performance of device i, one
instead uses the characteristics Wcj obtained from some other
storage device j. That is, the model assumes that the character-
istics of a workload are static and will not differ across storage
devices. More precisely, the model assumes that Wci and Wcj
are equivalent. However, this is not always a safe assumption.

2.1. the challenges with absolute models
The primary challenges with absolute models relate to work-
load characterization, which has been an open problem for
decades.4 First, one must discover the performance-affecting
characteristics of a workload. This can be challenging given
the heterogeneity of storage devices.8 For example, a storage
array with a large cache may be less sensitive to the spatial
access pattern than an array with little cache, so models of
the devices would likely focus on different workload charac-
teristics when predicting performance.

Second, one must manage the trade-off between expres-
siveness and conciseness. Most models expect numbers as
input, and it can be challenging to describe complex work-
loads with just a few numbers. In effect, workload character-
ization compresses the I/O stream to just a few distinguishing
features. The challenge is to compress the stream without
losing too much information.

Third, and more fundamentally, an absolute model does
not capture the connection between a workload and the stor-
age device on which it executes. While the assumption of static
workload characteristics (i.e., Wci = Wcj) is safe for open work-
loads, where the workload characteristics are independent
of the I/O service time, it is not safe for closed workloads. The
most obvious change for a closed workload is the I/O arrival
rate: if a storage device completes the I/O faster, then an appli-
cation is likely to issue I/O faster. And other characteristics can
change, such as the average request size, access pattern, read/
write ratio, and queue depth. Such effects occur when file sys-
tems, page caches, and other OS middleware reside between
an application and the storage device. Although the applica-
tion may issue the same I/O, the characteristics of the I/O as
seen by the storage device could change due to write reorder-
ing, aggregation and coalescing, caching, prefetching, and
other interactions between an operating system and a storage
device. For example, a slower device can result in a workload
with larger inter-arrival times and larger write requests (due to
request coalescing) when compared to a faster device.

Collectively, these challenges motivate the work pre-
sented in this article. Rather than attempt to solve the diffi-
cult problem of identifying workload characteristics that are
expressive, yet concise and static across devices, we choose
to use performance and resource utilization. That is, we use

table 1: A table-based model that records the performance of a disk
drive for sequentially-read data.

Request Size Bandwidth

1 KB 15 MB/s
2 KB 27 MB/s
4 KB 47 MB/s
8 KB 66 MB/s

figure 2: A regression tree that learns the performance of a disk
drive for sequentially read data.

Request size
�2KB

Request size
�4KB

Request size
�1KB

66
MB/s

No Yes

No Yes

No Yes

47
MB/s

27
MB/s

15
MB/s

aPril 2009 | Vol. 52 | no. 4 | communicAtionS of the Acm 93

the performance and utilization of device j to predict the
performance of a different device i. Of course, such relative
models must be built between each pair of devices, as per-
formance and resource utilization are device-specific.

3. ReLAtiVe fitneSS moDeLinG
Relative fitness begins with an absolute model (Equation 1).
Recall that a workload is running on device j, Wcj can be mea-
sured on device j, and we want to predict the performance of
moving the workload to a different device i. The first objective
of relative fitness is to capture the changes in workload charac-
teristics from device j to i, that is, to predict Wci given Wcj. Such
change is dependent on the devices, so we define a function Gj→i
that predicts the workload characteristics of device i given j:

Wci = Gj→i (Wcj).

We can now apply G in the context of an absolute model Fi:

Pi = Fi (Gj→i (Wcj)).

However, rather than learn two functions, the composition
of F and G can be expressed as a single composite function
RMj→i which we call a relative model:

 Pi = RMj→i (Wcj). (2)

With each model now involving an origin j and target i, we
can use the performance of device j (Perfj) and its resource
utilization (utilj) to help predict the performance of device i.
Perfj is a vector of performance metrics such as bandwidth,
throughput, and latency. utilj is a vector of values such as
the device’s cache utilization, the hit/miss ratio, its network
bandwidth, and its CPU utilization:

 Pi = RMj→i (Wcj , Perfj, utilj). (3)

In other words, one can now describe a workload relative
to some other device. Recalling the analogy, if you want to
predict your grade in a course that a colleague has already
taken, you could simply have the colleague tell you his grade
and the number of hours he worked each week. Other details
of the course (workload characteristics) could be useful, but
this information may not be as critical.

Next, rather than predict performance Pi, one can predict
the performance ratio , which may be a simpler function
to model (e.g., perhaps device i is twice as fast as device j).
We call such a model a relative fitness model:

(Wcj , Perfj, utilj). (4)

To use the relative fitness model, one solves for Pi:

Pi = RFj→i (Wcj , Perfj, utilj) × Pj .

3.1. model training
Training a relative fitness model requires workload sam-
ples from two devices i and j. Each workload sample can be
described with three vectors: workload characteristics (Wc),

performance (Perf), and resource utilization (util). During
training, the goal is to learn relationships between the pre-
dictor variables (Wcj, Perfj, and utilj) and the predicted rela-
tive fitness value (for some P in Perf).

Table 2(c) shows the format of the training data for a rela-
tive fitness model. For comparison, Table 2(b) shows that of
a relative model which trains to predict performance (not a
ratio), and Table 2(a) shows that of an absolute model which
only requires samples from one storage device.

Given sufficient training data, one can construct a rela-
tive fitness model using a variety of learning algorithms. The
problem falls under the general scope of supervised learning,
where one has access to a set of predictor variables (Wc, Perf,
and util), as well as the desired response (the relative fitness
value). It is as though an oracle (or supervisor) gives the true
output value for each sample, and the algorithms need only
learn the mapping between input and output.

The domain of supervised learning problems can be
further subdivided into classification (discrete-valued pre-
dictions) and regression (continuous-valued predictions).
Relative fitness values are continuous, and there are many
regression models in statistical literature. We choose to use
classification and regression tree (CART) models, for their
simplicity, flexibility, and interpretability.3

3.2. Summary and modeling cost
Whereas conventional absolute modeling constructs one
model per device and assumes that the workload character-
istics are static across devices, relative fitness modeling con-
structs two models for each pair of devices (i → j and j → i)
and implicitly models the changing workload characteristics.
In addition, the relative approaches use performance and
resource utilization when making predictions, thereby relax-
ing the dependency on expressive workload characteristics.

Of course, the cost of the relative approach is the additional
model construction: O(n2) versus O(n), where n is the number
of storage devices. However, in our evaluation, model construc-
tion takes at most a few seconds. Moreover, models can be built
and maintained by each storage device. That is, each device can

table 2: training data formats for the various models. the last
 column in each table is the variable that we train a model to predict.
All other columns are predictor variables.

Sample Predictor Variables Predicted Variables

(a) Absolute model

1 WCi, 1 Pi, 1

2 WCi, 2 Pi, 2

N WCi, n Pi, n

(b) relative model

1 WCj, 1 Perfj, 1 Utilj, 1 Pi, 1

2 WCj, 2 Perfj, 2 Utilj, 2 Pi, 2

N WCj, n Perfj, n Utilj, n Pi, n

(c) relative fitness model

1 WCj, 1 Perfj, 1 Utilj, 1 Pi, 1/Pj, 1

2 WCj, 2 Perfj, 2 Utilj, 2 Pi, 2/Pj, 2

N WCj, n Perfj, n Utilj, n Pi, n/Pj, n

94 communicAtionS of the Acm | aPril 2009 | Vol. 52 | no. 4

research highlights

construct O(n) models that predict its fitness relative to all other
devices. As such, the computational resources for maintaining
the models can be made to scale with the number of devices.
Also, in large-scale environments, certain collections of devices
will be identical and can share models.

4. eVALuAtion
The motivation and advantages of relative fitness modeling
can be stated as four hypotheses:

hypothesis 1. Workload characteristics can change across
storage devices (Wci ≠ Wcj) and reduce the accuracy of
an absolute model.

hypothesis 2. A relative model (Equation 2) can reduce the
inaccuracies that result from changing characteristics.

hypothesis 3. Performance and resource utilization can
improve prediction accuracy (Equation 3).

hypothesis 4. Performance ratios (Equation 4) can pro-
vide better accuracy than raw performance values
(Equation 3).

To test these hypotheses, the accuracy of various CART
models can be compared: absolute models (Equation 1), rel-
ative models (Equation 2), relative models with performance
(Equation 3), and relative fitness models (Equation 4).

4.1. Setup
Experiments are run on an IBM x345 server (dual 2.66GHz
Xeon, 1.5GB RAM, GbE, Linux 2.6.12) attached to three iSCSI
storage arrays. The arrays have different hardware plat-
forms, software stacks, and are configured with different
RAID levels.a More specifically,

Vendor a is a 14-disk RAID-50 array with 1GB of cache
(400GB 7200 RPM Hitachi Deskstar SATA)

Vendor b is a 6-disk RAID-0 array with 512MB of cache
(250GB 7200 RPM Seagate Barracuda SATA)

Vendor c is an 8-disk RAID-10 array with 512MB of cache
(250GB 7200 RPM Seagate Barracuda SATA)

The server attaches to each array using an iSCSI device
driver6 that contains counters (below the file system and page
cache) for characterizing workloads and measuring their
 performance. A synthetic workload generator6 is used to gener-
ate numerous workload samples, which we refer to as a fitness
test. These samples are used to train and test the CART models.
Similar results from other workloads (e.g., Postmark, TPC-C),
as well as details on the CART algorithm (e.g., tree construction
and pruning), can be found in our conference paper.10

4.2. fitness test results
The fitness test compares the performance of the storage
arrays across a wide range of workloads (various runs of the
workload generator). The measured workload characteristics
(Wc) of each sample include the write percent, the write and

read request sizes, the write and read randomness (average
seek distance, in blocks, per I/O), and the queue depth (aver-
age number of outstanding I/Os). The performance (Perf) of
each sample run is the average bandwidth (MB/s), through-
put (IO/s), and latency (ms). Resource utilization (util) is not
used in this evaluation, as this requires modifying storage
device software to which we did not have access. A total of
3000 samples are generated.

Over all 3000 samples, Vendor A is the fastest array with
an average bandwidth of 25 MB/s, an average throughput
of 624 IO/s and an average latency of 37ms. Vendor B is the
second fastest (17 MB/s, 349 IO/s, and 45ms). Vendor C is
the third (14 MB/s, 341 IO/s, and 84ms). Although Vendor A
is the fastest, on average, it is not necessarily the fastest for
all sample workloads in the fitness test. There are samples
where Vendors B and C do better than A (relative fitness val-
ues greater than 1) and cases where they do worse (values
lesser than 1). In short, the relative fitness of a device can vary
with the workload characteristics.

As an example of how devices can behave similarly, Figure 3
illustrates how the sequential write bandwidth for each array
varies for different request sizes and queue depths. From the
3000 samples, we show only the sequential write workloads.
There are 120 such samples, sorted by the performance of
Vendor A. The graph illustrates the similar performance of
the arrays. In particular, the prominent discontinuity in the
graph is shared by all arrays (a drop in performance when
there are only one or two outstanding requests). Also note
how Vendor B is faster than Vendor C to the left of the discon-
tinuity, but slower to the right. Such piecewise functions are
ideally suited for CART models.

In support of Hypothesis 1, Table 3 contains averages for
the workload characteristics of each sample. Note the vari-
ance across devices (Wci ≠ Wcj), most notably the average spatial
randomness of writes, which varies by as much as 38%. In par-
ticular, Vendor A experiences the most randomness (an average
seek distance of 321MB per write), Vendor B the second most

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

Workload sample

B
an

dw
id

th
 in

 M
B

/s

Vendor A

Vendor B

Vendor C

figure 3: Device similarity. the performance of each array changes
similarly, indicating that the performance of one array is a good
predictor of another.

a RAID level 0 is striping, 1 is mirroring, 5 is striping with parity, 10 is strip-
ing over mirrored pairs (4 in this case), and 50 is striping over RAID-5 parity
arrays (2 in this case).

aPril 2009 | Vol. 52 | no. 4 | communicAtionS of the Acm 95

(250MB), and Vendor C the third (233MB). Although masked by
the averages in Table 3, the request sizes and queue depths also
vary across storage devices for some of the sample workloads.

4.3. interpreting the models
Of the fitness test samples, 75% are used to build the CART
models and 25% are reserved for testing. Figure 4 illustrates
four of the bandwidth models, one of each modeling type.
For readability, each tree is pruned to a depth of 4, resulting
in at most 8 leaves (prediction rules).

The models in Figure 4 predict the performance of Vendor
C given observations from Vendor A. CART builds trees top-
down, so nodes near the top of the tree have the most informa-
tion. In particular, note how the relative and relative fitness
models learn that the bandwidth of Vendor A is the best pre-
dictor of the bandwidth of Vendor C.

As an example of how to use the trees to make a prediction,
suppose a workload is running on Vendor A and we want to
predict its performance on Vendor C. Also suppose that the
workload, as measured by Vendor A, has an average read seek
of 2048 blocks, a request size of 64KB, a write percentage
<0.5%, a bandwidth of 83 MB/s, and a throughput of 1328 IO/s.
The absolute model will predict 75.0 MB/s (see highlighted
path in Figure 4a), the relative model (Figure 4b) predicts
75 MB/s, the relative model trained with performance (Figure
4c) predicts 65.0 MB/s, and the relative fitness model (Figure
4d) predicts that Vendor C is 63% of Vendor A or 51 MB/s.

4.4. modeling accuracy
Recall that 25% of the fitness test samples are reserved for
testing, so the performance of each sample is known and can
be used to determine the relative error of each prediction.

For example, if the performance of Vendor C (for a given test
sample) is 45MB/s and the prediction is 51MB/s, the relative
error is × 100, or 13.3%. To quantify the average error
of each model (over all test samples), we report the average
relative error of the predictions.

As a baseline, Table 4 contains the average relative error of
the bandwidth, throughput, and latency predictions for the
absolute model. The table is organized pairwise. Workload
characteristics (Wcj) are obtained from one array and pre-
dictions (Pi) are made for another. For example, the average
relative error of the bandwidth predictions when character-
izing on Vendor A and predicting for Vendor C is 22% (the
top right cell in Table 4).

The first observation is that the most accurate predic-
tions occur when the workload is characterized on the same
device for which the prediction is being made (Wcj = Wci),
as indicated by the diagonals in bold. However, if one runs a
workload on device i to obtain Wci, there is no need to make
a prediction. These predictions are only included to illus-
trate how changing workload characteristics (Wcj ≠ Wci) can
affect prediction accuracy. For example, the bandwidth pre-
diction error for Vendor A increases from 23% (when charac-
terized on Vendor A) to 29% (when characterized on Vendor
B) and 30% (when characterized on Vendor C). Therefore,
Table 4 supports Hypothesis 1: changing workload charac-
teristics can affect prediction accuracy.

Figure 5, in contrast, shows the prediction errors for
the relative model (Equation 3) and relative fitness model

75.0 32.7 12.0 21.4 4.5 15.2 15.2 23.5 74.6 29.8 7.5 20.7 4.6 14.8 15.3 23.7 2.3 7.1 15.0 23.6 65.0 89.0 64.9 36.9

(a) Absolute (b) Relative

Queue depth
< 7

(c) Relative with Perf.

0.620.730.761.2 0.63 0.45

Read seek
< 2867

1.42.5

(d) Relative fitness

Read seek
< 339934

Read seek
< 414965

Yes No

Write%
< .5

Write size
< 94KB

Write size
< 5KB

Write size
< 101KB

Read seek
< 131116

Read seek
< 85209

Write size
< 41KB

Write size
< 20KB

Read size
< 73KB

Read size
< 73KB

Write%
< 74

Write%
< 76

Bandwidth
< 2.5

Bandwidth
< 79

Bandwidth
< 19

Bandwidth
< 8

Bandwidth
< 37

Bandwidth
< 86

Bandwidth
< 8.2

Bandwidth
< 0.9

Throughput
< 288

Throughput
< 183

Latency
< 9.1

Read size
< 127KB

figure 4: cARt models trained to predict the bandwidth of Vendor c. the leaf nodes in the absolute and relative models represent bandwidth
predictions; the leaves in the relative fitness model are relative fitness predictions. the absolute model (a) and relative model (b) only use
workload characteristics from Vendor A; the relative model (c) with Perf. and relative fitness model (d) also use Vendor A’s performance
(shaded). All but the absolute model account for changes in the workload characteristics between Vendors A and c.

table 4: Prediction error for the absolute model. Workload
 characteristics (Wcj) are obtained from array j and predictions
(Pi) are made for array i.

BandwidthA (%) BandwidthB (%) BandwidthC (%)

WCA 23 25 22
WCB 29 19 21
WCC 30 25 17

throughputA (%) throughputB (%) throughputC (%)

WCA 20 23 22
WCB 28 15 21
WCC 26 21 14

LatencyA (%) LatencyB (%) LatencyC (%)

WCA 20 39 59
WCB 31 21 52
WCC 26 30 21

table 3: fitness test workload characteristics.

Wc

Vendor
maximum

Difference (%)A B c

Write percent 40 39 38 5.2

Write size (KB) 61 61 61 0

read size (KB) 40 41 41 2.5

Write seek (MB) 321 250 233 38

read seek (MB) 710 711 711 0

Queue depth 23 22 21 9.5

96 communicAtionS of the Acm | aPril 2009 | Vol. 52 | no. 4

research highlights

(Equation 4), both of which use performance information to
make a prediction; the absolute model prediction errors from
Table 4 are shown for comparison. Overall, the relative fit-
ness models reduce the average bandwidth prediction error
from 25% to 17%, throughput from 24% to 19%, and latency
from 40% to 29%. Moreover, in most cases, the relative fit-
ness model is slightly more accurate than the relative model.
These results confirm that models trained with performance
can be more accurate (Hypotheses 2 and 3) and that predict-
ing ratios can further improve accuracy (Hypothesis 4).

In summary, workload characteristics can change
across devices and impact the accuracy of an absolute
model (Hypothesis 1), a relative model can reduce the
inaccuracy due to changing workloads (Hypothesis 2),
the performance of one device can be used to predict the
performance of another (Hypothesis 3), and performance
ratios can be better predictors than raw performance val-
ues (Hypothesis 4).

5. concLuSion
By modeling storage devices relative to one another, rela-
tive fitness models can use the observed performance and
resource utilization of a workload on one device when
making predictions for another. Such modeling addresses
many of the challenges associated with workload charac-
terization and, therefore, brings automated storage man-
agement a step closer to becoming a practical solution for
the data center.

In addition, relative fitness models may find a broader
applicability outside of storage management. In the same
manner that storage models can exploit performance and
resource utilization, so too can models of other data center
resources (e.g., application servers).

Acknowledgments
We thank Christos Faloutsos, Arif Merchant, Mic Bowman,
and the PDL Consortium (APC, Cisco, Data Domain, EMC,
Facebook, Google, Hewlett-Packard, Hitachi, IBM, Intel,
LSI, Microsoft, NetApp, Oracle, Panasas, Seagate, Symantec,
and VMware). We thank EqualLogic, Intel, IBM, LeftHand
Networks, NetApp, Open-E, Seagate, and Sun for equipment
donations. This research is sponsored in part by the NSF
(CNS-0326453, CCF-0621499, and 0431008) and the Army
Research Office (DAAD19-02-1-0389). Matthew Wachs is
supported in part by an NDSEG Fellowship.

References

figure 5: errors of the absolute (first bar in each graph), relative (second), and relative fitness models (third), where iÆj indicates that
workload characteristics from array j are used to predict the performance of array i.

0

5

10

15

20

25

30

Array pair Array pair Array pair

Bandwidth Throughput

A→B A→C B→A B→C C→A C→B A→B A→C B→A B→C C→A C→B A→B A→C B→A B→C C→A C→B

Latency

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

(p
er

ce
nt

)

0

5

10

15

20

25

30

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

(p
er

ce
nt

)

0

10

20

30

40

50

60

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

(p
er

ce
nt

)

 1. anderson, e. Simple Table-Based
Modeling of Storage Devices. technical
report hPl-ssP-2001-4, hewlett-
Packard laboratories, july 2001.

 2. anderson, e., hobbs, m., keeton, k.,
spence, s., uysal, m., Veitch, a.
hippodrome: running circles
around storage administration.
in Proceedings of the 1st USENIX
Conference on File and Storage
Technologies (FAST 02) (monterey,
ca, january 2002), the usenix
association.

 3. breiman, l., friedman, j., olshen,
r.a., stone, c.j. Classification and
Regression Trees. chapman and hall,
new york, ny, 1984.

 4. ganger, g.r. generating representative
synthetic workloads: an unsolved
problem. in Proceedings of the 21st
International Computer Measurement
Group Conference (CMG) (nashville,
tn, December 1996), computer
measurement group (cmg).

 5. ganger, g.r., strunk, j.D.,
klosterman, a.j. Self-* Storage:
Brick-Based Storage with Automated
Administration. technical report
cmu-cs-03-178, carnegie mellon
university, august 2003.

 6. intel corporation. open storage
toolkit. http://www.sourceforge.net/
projects/intel-iscsi.

 7. kelly, t., cohen, i., goldszmidt, m.,
keeton, k. Inducing Models of Black-
Box Storage Arrays. technical report
hPl-2004-108, hewlett-Packard
laboratories, june 2004.

 8. kurmas, Z., keeton, k. using the
distiller to direct the development
of self-configuration software. in

Proceedings of the 1st International
Conference on Autonomic Computing
(ICAC-04) (new york, ny, may 2004),
ieee computer society.

 9. mesnier, m. On Modeling the Relative
Fitness of Storage. Ph.D. dissertation.
carnegie mellon university,
Pittsburgh, Pa, December 2007.

 10. mesnier, m., Wachs, m., sambasivan,
r.r., Zheng, a., ganger, g.r. modeling
the relative fitness of storage. in
Proceedings of the International
Conference on Measurement and
Modeling of Computer Systems
(SIGMETRICS 2007) (san Diego, ca,
june 2007), acm.

 11. uysal, m., alvarez, g.a., merchant, a.
a modular, analytical throughput
model for modern disk arrays. in
Proceedings of the 9th International
Symposium on Modeling Analysis
and Simulation of Computer and
Telecommunications Systems
(MASCOTS-2001) (cincinnati, oh,
august 2001), ieee/acm.

 12. Varki, e., merchant, a., xu, j., Qiu, x.
issues and challenges in the
performance analysis of real disk
arrays. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 15, 6
(june 2004), 559–574.

 13. Wang, m., au, k., ailamaki, a.,
brockwell, a., faloutsos, c., ganger,
g. r. storage device performance
prediction with cart models. in
Proceedings of the 12th International
Symposium on Modeling Analysis
and Simulation of Computer and
Telecommunications Systems
(MASCOTS-2004) (Volendam, the
netherlands, october 2004), ieee.

Michael P. Mesnier
intel corporation
hillsboro, or.

Matthew Wachs
carnegie mellon university
Pittsburgh, Pa.

Raja R. Sambasivan
carnegie mellon university
Pittsburgh, Pa.

Alice X. Zheng
microsoft research
redmond, Wa.

Gregory R. Ganger
carnegie mellon university
Pittsburgh, Pa.

© acm 0001-0782/09/0400 $5.00

