
Categorizing and differencing system behaviours

Raja R. Sambasivan, Alice X. Zheng, Eno Thereska, Gregory R. Ganger
Carnegie Mellon University

Abstract

Making request flow tracing an integral part of soft-
ware systems creates the potential to better understand their
operation. The resulting traces can be converted to per-
request graphs of the work performed by a service, repre-
senting the flow and timing of each request’s processing.
Collectively, these graphs contain detailed and comprehen-
sive data about the system’s behavior and the workload
that induced it, leaving the challenge of extracting insights.
Categorizing and differencing such graphs should greatly
improve our ability to understand the runtime behavior of
complex distributed services and diagnose problems. Clus-
tering the set of graphs can identify common request pro-
cessing paths and expose outliers. Moreover, clustering
two sets of graphs can expose differences between the two;
for example, a programmer could diagnose a problem that
arises by comparing current request processing with that of
an earlier non-problem period and focusing on the aspects
that change. Such categorizing and differencing of system
behavior can be a big step in the direction of automated
problem diagnosis.

1. Introduction

Autonomic computing is a broad and compelling vision,
but not one we are close to realizing. Many of the core as-
pects require the ability to understand runtime system be-
haviour more deeply that human operators and even de-
velopers are usually able to. For example, healing a per-
formance degradation problem observed as increased re-
quest response times requires understanding where requests
spend time in a system and how that has changed; with-
out such knowledge, it is unclear how potential corrections
or the root cause can be identified, or even which parts of
a complex distributed service to focus on. The (dearth of)
tools available to distributed service developers for under-
standing and debugging the behaviour of their systems of-
fers little hope for those seeking to automate diagnosis and
healing—if we don’t understand how to do such things with
the direct involvement of the people who build a system,
why will it be possible without them?

This paper discusses a new approach to understanding
the behaviour of a distributed service based on analysis of

Figure 1: Example request flow graph. This graph represents
the processing of a CREATE request in Ursa Minor, a distributed
storage service. Nodes are identified by an instrumentation point
(e.g., STORAGE NODE WRITE) and any important parameters col-
lected at that instrumentation point. Edges are labeled with a re-
peat count (see Section 2) and the average latency seen between
the connected points. The tracing infrastructure includes informa-
tion that allows a request’s processing to be stitched together from
the corresponding activity across the distributed system—for ex-
ample, the CREATE request involves activity in the NFS front-end,
the metadata service (MDS), and a storage-node.

end-to-end request flow traces. The rest of this Section de-
scribes such traces and discusses how they can be used to
attack performance debugging problems. The remainder of
the paper describes an unsupervised machine learning tool
(called Spectroscope1) that uses K-means Clustering [4] on
collections of request flow graphs, discusses challenges in-
volved with such a tool, and early experiences with using
it to categorize and difference system behaviour. Spectro-
scope is being developed iteratively while being used to an-
alyze and debug performance problems in a prototype dis-
tributed storage service called Ursa Minor [1], so examples

1Spectroscopes can be used to help identify the properties (e.g., tem-
perature, makeup, size) of astronomical bodies, such as planets and stars.

Second Workshop on Hot Topics in Autonomic Computing. June 15, 2007.
Jacksonville, FL.



from these experiences are used to illustrate features and
challenges.

End-to-end request flow traces: Recent research has
demonstrated efficient software instrumentation systems
that allow end-to-end per-request flow graphs to be cap-
tured [3, 8]—that is, graphs that represent the flow of a
request’s processing within and among the components of
a distributed service, with nodes representing trace points
reached and edge labels corresponding to inter-tracepoint
latencies. See Figure 1 for an example.

The collection of such graphs offers much more infor-
mation than traditional performance counters about how a
service behaved under the offered workload. Such counters
aggregate performance information across an entire work-
load, hiding any request-specific or client-specific issues.
They also tend to move collectively with a performance
problem, when that problem reduces throughput by slow-
ing down clients; so, for example, when a latency problem
causes clients to block, throughput can drop throughout the
system with no indication in the counters other than a uni-
form decrease in rate.

If the important control flow decisions are captured, re-
quest flow graphs contain all of the raw data needed to ex-
pose the locations of throughput or latency problems. They
also show exact flow of processing for individual requests
that may have suffered and workload characteristics of such
requests. Of course, the challenge is extracting the informa-
tion needed to diagnose problems from this mass of data.

Understanding system behaviour by categorizing re-
quests: One collection of insights can be obtained by cat-
egorizing requests based on similarity of how they are pro-
cessed. Doing so compresses the large collection of graphs
(e.g., one for each of 100s to 1000s of requests per second)
into a much smaller collection of request types and corre-
sponding frequencies. The types that occur frequently rep-
resent common request processing paths, which allows one
to understand what the system does in response to most re-
quests. The types that occur infrequently and requests that
are poor matches for any type are outliers, worth examining
in greater detail, particularly if they are part of the problem
being diagnosed. Figure 2 shows a hypothetical example
that illustrates the utility of categorizing via clustering.

One of the earliest exploratory uses of Spectroscope il-
lustrated the utility of this usage mode. Spectroscope was
applied to activity tracking data collected while Ursa Minor
was supporting a large compilation workload. The output
consisted of a large number of clusters, analysis of which re-
vealed that most were composed of READDIR requests that
differed only in the number of cache hits seen at Ursa Mi-
nor’s NFS front-end. For example, READDIR requests that
constituted one cluster saw 16 cache hits, while READDIR

requests that constituted another saw only 2 cache hits. Fur-
ther investigation revealed a performance bug in which, in

Figure 2: Example of categorizing system behaviour. Clus-
tering exposes modes of activity (clusters) when a workload is
run against an instrumented system; by analyzing requests in each
cluster, one can categorize (label) each mode of activity. This illus-
tration shows three clusters corresponding to the following three
categories (from left to right): READs that hit in cache, READs that
require disk accesses, and a small number of READs that take an
unusually long time to complete. By determining how requests in
the third cluster differ from those in the first two, one can localize
the portion of the code responsible for inducing the high latencies.

servicing a READDIR, the NFS front-end would iteratively
load the relevant directory block into its cache, memcpy one
the many requested entries from the cache block to the re-
turn structure, and then release the cache block; this tight
loop would terminate only when all relevant entries were
copied. Each iteration of the loop (one per directory entry)
showed up as a cache hit in the activity traces. The fix to this
performance bug involved simply shifting the cache block
get and release actions from inside the loop. But, most im-
portantly, this example illustrates the value of exposing the
actual request flows.

Diagnosing performance changes by differencing sys-
tem behaviour: Another interesting collection of insights
can be obtained by differencing two sets of request flow
graphs. Identifying similarities and differences between the
per-request graphs collected during two periods of time can
help with diagnosing problems that are not always present,
such as a sporadic or previously unseen problem (“why has
my workload’s performance dropped?”). Comparing the
behaviour of a problem period with that of a non-problem
period highlights the aspects of request processing that dif-
fer and thus focuses diagnosis attention on specific portions
of the system. Categorizing both sets of requests together
enables such differencing—one simply computes two fre-
quencies for each type: one for each period. Some types
may have the same frequencies for both periods, some will
occur in only one of the two periods, and some will occur
more in one than the other. This information tells one what
changed in the system behaviour, even if it doesn’t explain
why, focusing diagnosis attention significantly. Figure 3



Non−problem period reqs.
Problem period reqs.

Figure 3: Example of differencing system behaviour. Clus-
tering the request flow graphs of two workloads (or one workload
during two time periods) exposes differences in their processing.
This illustration shows clusters for two datasets: the first collected
during the existence of some performance problem and the second
collected during its absence. The results show four clusters, three
of which are equally comprised of requests from both datasets.
One cluster, however, is made up of requests from just the problem
dataset and is likely to be indicative of the performance problem.
Determining how these requests differ from requests in the other
clusters can help localize the source of the problem.

shows a hypothetical example that illustrates the results of
such clustering.

Early experiences accumulated by injecting performance
problems into Ursa Minor have shown that this usage mode
holds promise. In one particular experiment, two activity
tracking datasets were input into Spectroscope. The first
consisted of a recursive search through a directory tree that
resulted in a 100% cache hit rate at Ursa Minor’s NFS
server. The second consisted of the same search, but with
the cache rigged so that that some of the search queries
hit in cache while others missed. In addition to generating
clusters composed of other system activity (e.g., attribute
requests, etc.), Spectroscope correctly generated a cluster
composed of READs from both datasets and another clus-
ter composed of just READs that missed in cache from the
second dataset.

2. Creating a Spectroscope

Spectroscope uses unsupervised learning techniques
(specifically K-means clustering) to group similar request
flow graphs. Since categories for most complex services
will not be known in advance, it is necessary to perform
the final part of categorization (attaching labels to each
cluster) manually. The utility of Spectroscope depends on
three items: the quality of the clustering algorithm used,
the choice of feature set, and the quality of the visualization
tools employed to help programmers understand the cluster-

ing results. Many exploratory studies are required to iden-
tify the best choices for each. This section describes our
initial approach to these components of Spectroscope.

A version of K-means Clustering [4] is currently imple-
mented in Spectroscope. It takes as input a fixed-size table,
in which each row represents a unique request and each col-
umn a feature. It also optionally accepts a weight indicating
the number of times a given unique request was seen. When
the goal is to difference system behaviour, Spectroscope has
access to a label for each request indicating the dataset to
which it belongs. These labels are only used to annotate the
final results and are not used during clustering.

The K-means Clustering algorithm implemented in
Spectroscope proceeds as follows. First, K random requests
are chosen as cluster centers. Each request computes its Eu-
clidian distance to the cluster centers and joins the closest
cluster. New cluster centers are then computed as the av-
erage of all feature values of requests in each cluster and
the process is repeated. Repetition stops when cluster as-
signment no longer changes. Though K-means will always
converge, only a local optimum is guaranteed. As such,
the entire process is repeated several times and the best lo-
cal optimum (i.e., the assignment that best minimizes intra-
cluster distance while maximizing inter-cluster distance) is
chosen.

In addition to determining the best cluster assignment,
Spectroscope must also automatically determine the best
number of clusters. The programmer cannot be relied upon
to guess this value because doing so would require detailed
prior knowledge of the system behaviour. 2 Spectroscope
determines the best number of clusters by finding the best
cluster assignment for a range of values of K and choosing
the one that yields the best global cluster assignment.

The choice of feature set over which clustering is per-
formed dictates the type of problems Spectroscope can help
diagnose. Several options are being explored; the advan-
tages and tradeoffs of each are described below.

Instrumentation points: In this option, each feature
in the input table is an unique instrumentation point/value
combination that appears in the request flow graphs input
to Spectroscope. Column values indicate whether or not
the corresponding instrumentation point was observed for a
given request. This is both the least expensive and least
powerful method of clustering, as it does not utilize the
structure of the graphs, or the edge labels.

2However, the programmer may possess enough intuition to provide a
best-guess value, which can be used as a starting point by Spectroscope.



The simulated performance problem mentioned in the in-
troduction, in which cache misses were injected into Ursa
Minor, is an example of a problem for which clustering on
the instrumentation points is sufficient to help the program-
mer diagnose the problem. Differences between the instru-
mentation point names themselves reveal the source of the
problem and so no additional detail is required.

Structure+latencies: This mode of clustering is simi-
lar to clustering on instrumentation points, except that each
feature is an unique edge that is traversed by requests in
the input dataset(s). Each edge corresponds to an ordered
pair of instrumentation points. Column values indicate the
average latency incurred when traversing the corresponding
edge for a given request. Clustering on structure+latencies
is more expensive than clustering on instrumentation points,
partially because many more requests are unique when this
mode of clustering is used.

Clustering on structure+latencies is more powerful than
just clustering on instrumentation points in that it utilizes
the structure of the request path as well as the edge laten-
cies. This feature set is useful when debugging performance
problems that arise because a particular component or piece
of code is taking longer than expected to perform its work.
A classic example of this scenario was seen while build-
ing Ursa Minor; specifically, a hash table responsible for
storing mappings from filehandles to object names on disk
would routinely store all of its mappings in one bucket. As
the number of objects in the system grew, queries to the
hash table, necessary to determine the location of objects
on disk, would take progressively longer to complete. Us-
ing Spectroscope on this problem should reveal clusters dif-
ferentiated only by the latency of the edge that bridges the
location of the hash table. This information would allow
the programmer to localize the problem and fingerpoint the
hash table as the root cause.

Structure+counts: This mode of clustering is identical
to clustering on structure+latencies, except that, instead of
average latency, the values of each column in the input table
are counts of the number of times the corresponding edge
was traversed by a given request.

Clustering on structure+counts is useful when debugging
problems related to unintended looping, or certain forms of
reduction in parallelism. For example, the READDIR perfor-
mance problem mentioned in the introduction was revealed
when clustering using this feature set.

The choice of clustering algorithm and feature set are
integral to the quality of results returned by Spectroscope,
however, in the end, Spectroscope will be useless unless
the programmer is able to understand how requests placed
in different clusters differ, since it is this knowledge that

will help him localize the source of a given performance
problem. As a result, good visualization tools are required
to help the programmer interpret the clustering results.

There are two main questions that need to be addressed
with regards to visualization. First, how should clusters be
summarized when being shown to the programmer? Ini-
tially, Spectroscope visualized clusters as average graphs
constructed by using all of the unique edges contained in the
cluster. However, it quickly became apparent that such aver-
age graphs are counter-intuitive and confusing, as they usu-
ally contain false paths that cannot occur in practice. Cur-
rently, calling context trees [2] (CCTs) are being explored
as a more intuitive way of summarizing clusters; such CCTs
are constructed by iterating from the leaves of each request
flow graph to the root and merging pairs of graphs only if
the path from the current node to the root for both is iden-
tical. As such, CCTs represent every unique path in the re-
quest flow graphs they represent without exhibiting redun-
dant information or false paths.

Second, are there ways to help the programmer deter-
mine how requests assigned to one cluster differ from re-
quests assigned to others? In many cases, to understand
why a request is assigned to a given cluster, it is most use-
ful to compare it to requests assigned to the most similar
distinct cluster. For example, consider a cluster that con-
sists entirely of WRITEs. The most knowledge about why
requests in this cluster are distinct can be gained by com-
paring requests in it to requests in another cluster also com-
prised entirely of WRITEs. To facilitate such comparisons,
the utility of a similarity matrix, which identifies Euclid-
ian distances between pairs of cluster centers is being ex-
plored. Additionally, to help the programmer determine
how two request graphs or CCTs differ, a tool that overlays
two graphs on top of one another and highlights the nodes
and edges that are most different is being considered.

3. Further challenges & questions

Our initial experiences using Spectroscope has con-
vinced us that it can be a very useful aid in helping debug
performance problems and understand system behaviour.
However, in further developing Spectroscope, there are sev-
eral challenges that must be addressed. Most importantly,
heuristics must be determined that will allow the quality
of the clustering results to be evaluated independently of
the end-to-end process of debugging the relevant problem.
Without this separation, it will be extraordinarily difficult to
develop and/or evaluate new clustering algorithms for use
with Spectroscope. Perhaps just as important is the chal-
lenge of maximizing generality. In the previous section,
different feature sets were chosen as inputs to the clustering
algorithm based on the type of performance problem ex-
pected. Ideally, this would not be the case; all possible fea-



tures (e.g., structure+counts+latencies) would be used and
Spectroscope would be run without thought to the type of
problem being debugged. However, instance-based learn-
ers, such as K-means Clustering, suffer from the “Curse
of Dimensionality” [4]; adding irrelevant features will only
serve to decrease the quality of the clustering results. The
rest of this section discusses other open questions and chal-
lenges with regards to further development of Spectroscope.

Will clustering using Spectroscope scale for large
problem sizes? Clustering algorithms, in general, are very
computationally expensive. For example, naive implemen-
tations of K-means require O(KdN) time to complete one
iteration, where K is the number of clusters, d is the num-
ber of features, and N is the number of requests. This does
not include the number of iterations necessary for the algo-
rithm to converge, or that necessary to find the best number
of clusters, or guarantee that the algorithm did not fall into a
bad local minima. Unfortunately, a simple 1-minute run of
the IoZone benchmark [6] can generate over 46,000 unique
requests when clustering on structure+latencies. As such,
to make Spectroscope usable for large workloads, it will be
necessary to explore and utilize the fastest possible clus-
tering techniques available. Additionally, sampling may be
necessary to further reduce the number of unique requests.

How can prior expectations or intuition be used to
help direct the results output by Spectroscope? Spec-
troscope currently uses an undirected approach to help pro-
grammers diagnose performance problems. Specifically, it
categorizes requests based on the most discriminating dif-
ferences between them, without consideration of the type of
differences the programmer will find most useful in order to
solve the problem at hand. Directed approaches, which may
be more useful, will require finding ways to mesh the unsu-
pervised machine learning algorithms used by Spectroscope
with known models or expectations.

Where must instrumentation be placed in order to
identify changes in system behaviour due to various
types of performance problems? In developing Spectro-
scope, it has been so far assumed that the underlying end-
to-end tracing mechanism collects all of the information
required to help diagnose complex performance problems.
Clearly, this is not guaranteed. As such, we are interested
interested in developing a taxonomy of performance prob-
lems and the instrumentation required to diagnose them.

4. Related work

There has been a large amount of work in the area of
problem diagnosis of complex distributed systems in the
past few years; such work can be split into two broad cate-
gories: expectation-based methods and statistical methods.

Pip, an example of the former, requires programmers to
manually create categories of valid system behaviour (by

writing expectations) and flags differences when the ob-
served system behaviour does not match [7]. Conversely,
Spectroscope does not require explicitly written expecta-
tions; instead, it learns categories of system behaviour au-
tomatically and leaves it to the programmer to determine
which are valid and which require further investigation.
Though we appreciate the formality of Pip’s approach, we
believe our approach is worth exploring, especially for
large, complex distributed systems, for which it is hard to
know the different categories of behaviour apriori. Pip also
allows for expectations to be generated automatically based
on observed system behaviour. When used in this mode,
Spectroscope can be used to complement Pip by helping
difference two sets of automatically generated expectations.

In general, statistical approaches to performance debug-
ging do not attempt to help characterize system behaviour.
For example, Cohen et al. attempt to aid root cause diagno-
sis by using statistical techniques to identify the low-level
metrics that are most correlated with SLO violations [5].

Acknowledgements

We thank James Hendricks and Matthew Wachs for their
feedback and help with figures. We thank the members and
companies of the PDL Consortium (including APC, Cisco,
EMC, Hewlett-Packard, Hitachi, IBM, Intel, Network Ap-
pliance, Oracle, Panasas, Seagate, and Symantec). This re-
search was sponsored in part by NSF grants #CNS-0326453
and #CCF-0621508, by DoE award DE-FC02-06ER25767,
and by ARO agreement DAAD19–02–1–0389.

References

[1] M. Abd-El-Malek, et al. Ursa Minor: versatile cluster-based storage.
Conference on File and Storage Technologies. USENIX Association,
2005.

[2] G. Ammons, et al. Exploiting hardware performance counters with
flow and context sensitive profiling. ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 1997.

[3] P. Barham, et al. Using Magpie for request extraction and workload
modelling. Symposium on Operating Systems Design and Imple-
mentation. USENIX Association, 2004.

[4] C. M. Bishop. Pattern recognition and machine learning, first.
Springer Science + Business Media, LLC, 2006.

[5] I. Cohen, et al. Correlating instrumentation data to system states: a
building block for automated diagnosis and control. Symposium on
Operating Systems Design and Implementation. USENIX Associa-
tion, 2004.

[6] W. Norcott and D. Capps. IoZone filesystem benchmark program,
2002. www.iozone.org.

[7] P. Reynolds, et al. Pip: Detecting the unexpected in distributed sys-
tems. Symposium on Networked Systems Design and Implementa-
tion. Usenix Association, 2006.

[8] E. Thereska, et al. Stardust: Tracking activity in a distributed stor-
age system. ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. ACM Press, 2006.


