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ABSTRACT

Distributed Shortest-Positioning Time First (D-SPTF) is a
request distribution protocol for decentralized systems of
storage servers. D-SPTF exploits high-speed interconnects
to dynamically select which server, among those with a
replica, should service each read request. In doing so, it
simultaneously balances load, exploits the aggregate cache
capacity, and reduces positioning times for cache misses.
For network latencies expected in storage clusters (e.g., 10—
200us), D-SPTF performs as well as would a hypothetical
centralized system with the same collection of CPU, cache,
and disk resources. Compared to popular decentralized ap-
proaches, D-SPTF achieves up to 65% higher throughput
and adapts more cleanly to heterogenous server capabilities.
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H.3.4 [Information Storage and Retrieval]: Systems
and Software—distributed systems, Performance evaluation

General Terms

Management, Performance
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1. INTRODUCTION

Many envision enterprise-class storage systems composed
of networked “intelligent” storage bricks [7, 8, 9, 14]. Each
brick consists of a few disks, RAM for caching, and CPU
for request processing and internal data organization. Large
storage infrastructures could have hundreds of storage bricks.
The storage analogue of cluster computing, brick-based sys-
tems are promoted as incrementally scalable and (in large
numbers) cost-effective replacements for todays high-end,
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supercomputer-like disk array systems. Data redundancy
across bricks provides high levels of availability and reli-
ability (& la the RAID arguments [20]), and the aggregate
resources (e.g., cache space and internal bandwidth) of many
bricks should exceed those of even high-end array controllers.

An important challenge for brick-based storage, as in clus-
ter computing, is to effectively utilize the aggregate resources.
Meeting this challenge requires spreading work (requests on
data) across storage bricks appropriately. In storage sys-
tems, cache hits are critical, because they involve orders
of magnitude less work and latency than misses (which go
to disk). Thus, it is important to realize the potential of
the aggregate cache space; in particular, data should not be
replicated in multiple brick caches. During bursts of work,
when queues form, requests should be spread across bricks
so as to avoid inappropriate idleness and, ideally, so as to
reduce disk positioning costs. Achieving these goals is fur-
ther complicated when heterogeneous collections of bricks
comprise the system. In traditional disk array systems, the
central disk array controller can provide all of these features.
Existing protocols for decentralized storage cannot.

D-SPTF is a request distribution protocol for brick-based
storage systems that keep two or more copies of data. It ex-
ploits the high-speed, high-bandwidth communication net-
works expected for such systems to achieve caching, load
balancing, and disk scheduling that are competitive with
like-resourced centralized solutions. Briefly, it works as fol-
lows: Each READ and WRITE request is distributed to all
bricks with a replica. WRITE data goes into each NVRAM
cache, but all but one brick (chosen by hash of the data’s
address) evict the data from cache as soon as it has been
written to disk. Only one brick needs to service each READ
request. Bricks explicitly claim READ requests, when they
decide to service them, by sending a message to all other
bricks with a replica. Cache hits are claimed and serviced
immediately. Cache misses, however, go into all relevant lo-
cal queues. Each brick schedules disk requests from its queue
independently and uses CLAIM messages to tell other bricks
to not service them. Pre-scheduling and service time bids
are used to cope with network latencies and simultaneous
scheduling, respectively.

D-SPTF provides all of the desired load distribution prop-
erties. During bursts, all bricks with relevant data will be
involved in processing of requests, contributing according to
their capabilities. Further, when scheduling its next disk
access, a brick can examine the full set of requests for data
it stores, using algorithms like Shortest-Positioning-Time-
First (SPTF) [15, 22]. Choosing from a larger set of options



significantly increases the effectiveness of these algorithms,
decreasing positioning delays and increasing throughput. For
example, in a brick-based system keeping three replicas of
all data (e.g., as in FAB [8]), D-SPTF increases through-
put by 12-27% under heavy loads and also under periods of
transient load imbalance. The improvement grows with the
number of replicas.

D-SPTF also provides the desired cache properties: exclu-
sivity and centralized-like replacements. Ignoring unflushed
NVRAM-buffered writes, only one brick will cache any piece
of data at a time; in normal operation, only one brick will
service any READ and, if any brick has the requested data
in cache, that brick will be the one. In addition to exclu-
sive caching, D-SPTF tends to randomize which brick caches
each block and thus helps the separate caches behave more
like a global cache of the same size. For example, our experi-
ments show that, using D-SPTF and local LRU replacement,
a collection of storage brick caches provide a hit rate within
2% of a single aggregate cache using LRU for a range of
workloads.

This paper describes and evaluates D-SPTF via simula-
tion, comparing it to the centralized ideal and popular de-
centralized algorithms. Compared to LARD and hash-based
request distribution, D-SPTF is as good or better at us-
ing aggregate cache efficiently, while providing better short-
term load balancing and yielding more efficient disk head
positioning. It also exploits the resources of heterogeneous
bricks more effectively.

The remainder of this paper is organized as follows. Sec-
tion 2 describes brick-based storage and request distribution
strategies. Section 3 details the D-SPTF protocol. Sec-
tion 4 describes our simulation setup. Section 5 evaluates
D-SPTF and compares it to other decentralized approaches
and the centralized ideal. Section 6 discusses additional re-
lated work.

2. BRICK-BASED STORAGE SYSTEMS

Most current storage systems, including direct-attached
disks, RAID arrays, and network filers, are centralized: they
have a central point of control, with global knowledge of the
system, for making data distribution and request scheduling
decisions.

Many now envision building storage systems out of collec-

tions of federated smallish bricks connected by high-performance

networks. The goal is a system that has incremental scala-
bility, parallel data transfer, and low cost. To increase the
capacity or performance of the system, one adds more bricks
to the network. The system can move data in parallel di-
rectly from clients to bricks via the switched network. The
cost benefit is expected to come from using large numbers
of cheap, commodity components rather than a few higher-
performance but custom components.

Bricks are different from larger centralized systems in sev-
eral ways: bricks are small, have moderate performance, and
often are not internally redundant. Moderate performance
and size means that the system needs many bricks, and must
be able to use those bricks in parallel. The lack of internal
redundancy means that data must be stored redundantly
across bricks, with replication being the most common plan.
In addition, incremental growth means that, over time, a
storage system will tend to include many different models of
bricks, likely with different storage capacity, cache size, and
IO transfer performance.
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Figure 1: Disk throughput with SPTF scheduling,
as a function of queue depth. The data shown
are for a closed synthetic workload (see Section 5)
with a constant number of pending small requests
to random locations on a Quantum Atlas 10K disk.

Composing a system from independent bricks means that
each brick does a small fraction of the overall work and that
there is no central control. As a consequence, each brick
has only a local viewpoint when making decisions. We focus
here on three issues made more difficult by the lack of global
information: disk head scheduling, cache utilization, and
inter-brick load balancing. Existing mechanisms address one
or two of these problems at the expense of the others. Each
of these problems is compounded when the population of
bricks is heterogeneous. The D-SPTF protocol addresses
all three problems by exploiting the high-speed networks
expected in brick-based systems, allowing bricks to loosely
coordinate their local decisions.

2.1 Disk head scheduling

Disk scheduling has a significant effect on performance,
because the mechanical positioning delays of disk drives
depend on the relative distance between consecutive me-
dia accesses. When the sequence of operations performed
by a drive cannot be orchestrated (e.g., when using FIFO
scheduling), the drive spends almost all of its time seeking
and waiting for the media to rotate into position. The im-
portance of scheduling well continues to grow as the density
of data on media increases: the time required to transfer
a block of data off media decreases much faster than the
positioning delays.

The shortest-positioning-time-first (SPTF) scheduling dis-
cipline [15, 22] is the state-of-the-art. It works by consid-
ering all requests in the queue and selecting the one that
the head can service fastest (i.e., with the shortest total
seek plus rotation delay). SPTF schedules work best when
the request queue has many items in it, giving it more op-
tions to consider. Figure 1 illustrates this effect of queue
depth on SPTEF’s ability to improve disk throughput. With
only one or two operations pending at a time, SPTF has
no options and behaves like FIFO (with two pending, one is
being serviced and one is in the queue). As the number of
pending requests grows, so does SPTF’s ability to increase
throughput—at 16 requests outstanding at a time, through-
put is 70% higher than FIFO.



Brick-based systems tend to distribute work over many
bricks, which decreases the average queue length at each
brick. This, in turn, results in less opportunity for schedul-
ing the disk head well. Avoiding this requires increasing the
queue depths at bricks making scheduling decisions. One
way to do this is to direct requests to only a few bricks;
doing so would increase the amount of work at each brick,
but leaves other bricks idle and thereby results in less over-
all system performance than if all disks were transferring at
high efficiency. Another solution is to send read requests to
all bricks holding a copy of a data item, and use the first
answer that comes back. However, this approach duplicates
work; while it can improve one request’s response latency,
overall system throughput is the same as a single brick.

2.2 Load balancing

When there is a choice of where data can be read from,
one usually wants to balance load.! Centralized systems can
do this because they know, or can estimate, the load on each
disk. For example, the AutoRAID system directs reads to
the disk with the shortest queue [25].

There are simple ways to spread requests across bricks to
get balanced load, over the long term. For example, the sys-
tem can determine where to route a request for a data block
by hashing on the block address, or by using other declus-
tering techniques [13, 12]. Then, as the system reads and
writes data, the load should (statistically) be approximately
even across all the bricks.

However, this is not as good as a centralized system can
do: spreading requests gives balance only over the long term,
but semi-random distribution of requests can cause transient
imbalances, where some bricks get several requests while
others get none. Moreover, having different kinds of bricks
in the system makes this problem more difficult. With het-
erogeneous bricks, request distribution algorithms must try
to route more requests to faster bricks and fewer to slower
ones—where “slower” and “faster,” of course, depend on
the interaction between the workload, the amount of cache
and the specific disk models that each brick has, and any
transient issues (e.g., one brick performing internal mainte-
nance).

2.3 Exclusive caching

Maximizing the cache hit rate is critical to good stor-
age system performance. Hence, the cache resources must
be used as efficiently as possible. The cache resources in
a brick-based system are divided into many small caches,
and replacement decisions are made for each cache indepen-
dently. This independence can work against hit rates. In
particular, the system should generally keep only one copy
of any particular data block in cache, to maximize cache
space and increase hit rate.? Distributed systems do not
naturally do so: if clients read replicas of a block from dif-

!Note that there is a data placement component of load
balancing in large-scale systems, which occurs before request
distribution enters the picture. Clearly, request distribution
can only affect load balancing within the confines of which
bricks have replicas of data being accessed.

2In other environments, such as web server farms, there
is value in having very popular items in multiple servers’
caches. For storage, however, repeated re-reading of the
same data from servers is rare, since client caches capture
such re-use. Thus, cache space is better used for capturing
more of the working set.

ferent bricks, each brick will have a copy in cache, decreasing
the effective size of the aggregate cache in the system. Al-
ways reading a particular data item from the same brick will
solve this problem at the cost of dynamic load balancing and
dynamic head scheduling.

2.4 Achieving all three at once

Any one of these concerns can be addressed by itself, and
LARD [19] and hash-based request distribution schemes can
provide both long-term statistical load balancing and ex-
clusive caching. However, no existing scheme provides all
three. Further, a heterogeneous population of bricks compli-
cates most existing schemes significantly, given the vagaries
of predicting storage performance for an arbitrary workload.

The fundamental property that current solutions share
is that they cannot efficiently have knowledge of the cur-
rent global state of the system. They either choose exactly
one place to perform a request, but without knowledge of
the current state of the system, or they duplicate work and
implicitly get global knowledge at tremendous performance
cost.

The D-SPTF approach increases inter-brick communica-
tion to make globally-effective local decisions. It involves
all bricks that store a particular block in deciding which
brick can service a request soonest. When a request will
not be serviced immediately, D-SPTF also postpones the
decision of which brick will service it. By queueing a re-
quest at all bricks that store a copy of the block, the queue
depth at each brick is as deep as possible and disk efficiency
improves. Further, by communicating its local decision to
service a request, a brick ensures that only it actually does
the work of reading the data from disk. This naturally leads
to balanced load and exclusive caching. If a brick already
has a data item in cache, then it will respond immediately,
and so other bricks will not load that item into cache. If
one brick is more heavily utilized than others, then it will
not likely be the fastest to respond to a read request, and
so other bricks will pick up the load.

D-SPTF also naturally handles heterogeneous brick pop-
ulations. Under light load, the fast disks will tend to service
reads and slow disks will not, while writes are processed
everywhere. Under heavy load, when all bricks can have
many requests in flight, work will be distributed propor-
tional to the bricks’ relative speeds. The same balancing
will occur when the brick population is dynamic due to fail-
ures or power-saving shutdowns.

3. THE D-SPTF PROTOCOL

The D-SPTF protocol supports read and write requests
from a client to data that is replicated on multiple bricks.
While a read can be serviced by any one replica, writes must
be serviced by all replicas; this leads to different protocols
for read and write.

The protocol tries to always process reads at the brick
that can service them first, especially if some brick has the
data in cache, and to perform writes so that they leave data
in only one brick’s cache. Bricks exchange messages with
each other to decide which services a read.
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Figure 2: Read operation in D-SPTF. The client
sends a read request to one brick, which forwards it
to others. The brick that can schedule the read first
aborts the read at other bricks and responds to the
client.

For reads (Figure 2), when a storage brick receives the re-
quest from a client, it first checks its own cache. If the read
request hits in the brick’s cache, then it is immediately re-
turned to the client and no communication with other bricks
is required. If not, then the brick places the request in its
queue and forwards the request to all other bricks that have
replicas of the data requested.

When a brick receives a forwarded read request, it also
checks to see if the data is in its own cache. If the request
hits in cache, then the brick immediately returns the data
to the client and sends a CLAIM message to all other bricks
with a replica so that they will not process the request. If
the read request does not hit in cache, then the brick places
the request in its own disk queue.

When it comes time to select a request for a disk to ser-
vice, a brick scans its queue and selects the request that
the disk can service with the shortest positioning time (i.e.,
each brick locally uses SPTF scheduling). If the request is
a read, the brick then sends a CLAIM message to the other
bricks with replicas so that they know to remove the request
from their queues.

When a brick receives a CLAIM message, it scans its queue
for the request and removes it. If a CLAIM message is delayed
or lost, a request may be handled by more than one brick,
which will have two effects. First, some resources will be
wasted servicing the request twice—this should be very rare
in the reliable, high-speed networks of brick-based systems.
Second, the client will receive more than one reply—clients
can simply squash such duplicate replies.

Once a request completes at a brick, that brick returns
the data to the client. If a brick fails after claiming a read,
but before returning the data to the client, the request will
be lost. Clients timeout and retry if this occurs.

The write protocol (Figure 3) is different. When a brick
receives a write request from a client, it immediately for-
wards the request to all the other bricks with a replica of
the data. When a brick receives a write request, either di-
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Figure 3: Write operation in D-SPTF. The client
sends a write request to one brick, which forwards
it to others. Each brick determines whether it is the
one to keep the data in cache.

rectly or forwarded, the brick immediately stores the data
in its local NVRAM cache. Bricks that receive a forwarded
write request send an acknowledgment back to the first brick
when the data is safely stored; the first brick waits until it
has received acknowledgments from all other replicas, then
sends an acknowledgment back to the client. If the original
brick does not hear from all bricks quickly enough, some
consistency protocol must address the potential brick fail-
ure. The basic D-SPTF protocol should mesh well with most
consistency protocols (e.g., [1, 8, 10]).

At some point after the data is put in the NVRAM cache,
it must be destaged to media by placing a write request in
the brick’s disk queue. Some time later, the brick’s local
SPTF head scheduler will write the data back to disk, after
which all but one brick can remove the data from its cache.
Bricks ensure exclusive caching by only keeping the block in
cache if hash(address)mod|replicas| = replica id.

3.1 Concurrent cLain messages

One problem with the base protocol above is that, while
one brick’s CLAIM message is being transmitted across the
network, another brick could select the same read and start
servicing it. Both bricks would then waste disk head time
and cache space. This would occur, in particular, any time
the system is idle when a read request arrives.

D-SPTF avoids this problem by pre-scheduling and wait-
ing for a short period (two times the one-way network la-
tency) after sending the CLAIM message. Assuming an ap-
proximate bound on network latency, waiting ensures that a
brick almost always sees any other brick’s CLAIM message be-
fore servicing a request. If, during the wait period, the brick
receives a CLAIM message from another brick, then only the
one of those two that can service the request fastest should
do so. To enable this decision, each CLAIM message includes
a service time bid (the SPTF-predicted positioning time);
with this information, each brick can decide for itself which
one will service the request. Our current approach is for
the request to be serviced by whichever brick submits the
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Figure 4: Overlapping CLAIM communication with
rotational latency. Issuing the request to disk can
be delayed up to the time when seek latency must
begin to reach the target track before the intended
data passes under the read/write head. The rota-
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lowest service time bid, ignoring when CLAIM messages were
sent. If two or more service time bids are identical, then the
tie is broken by selecting the brick with the lowest brick id.
This will work well for high-speed networks, but may induce
disk head inefficiency when network latencies are significant
fractions of mechanical positioning times.

With pre-scheduling, the wait period can usually be over-
lapped with the media access time of previous requests.
That is, the system does not wait until one disk request
completes to select the next one; instead, the system makes
its selection and sends CLAIM messages a little more than the
wait period before the current request is expected to com-
plete. If the disk is idle when a request enters its queue, the
brick will compute the expected seek and rotational latencies
required to service that request, and will only wait for com-
peting CLAIM messages as long as the expected rotational
latency before issuing the request to disk. As illustrated in
Figure 4, this does not impact performance, until network
latency is a substantial fraction of rotational latency, since
the brick is effectively shifting the rotational latency to be-
fore the seek instead of after.

4. EXPERIMENTAL SETUP

We use simulation to evaluate D-SPTF. The simulation is
event driven, and uses the publicly-available DiskSim disk
models [6] to simulate the disks within bricks. The DiskSim
simulator accurately models many disks [3], including the
Quantum Atlas 10K assumed in our system model.

We implemented four approaches: D-SPTF, LARD, de-
centralized hashing, and a centralized system for compari-
son. The models for the first three systems are similar. Each
brick is modeled as a single disk, processor, and associated
disk block cache, that is connected through a switched net-
work to all bricks that share an overlapping set of replicas.

The one-way network latency is a model parameter, set to
50 microseconds by default.

Each brick contains a request queue. Whenever the disk
is about to become idle, the brick scans the request queue
and selects the request with the shortest positioning time as
the next request for the disk. The simulation model assumes
an outside-the-disk SPTF implementation, which has been
demonstrated as feasible [5, 18, 26], in order to allow the
abort-from-queue capability needed for D-SPTF.

Each brick has its own cache, 512 MB in size unless oth-
erwise stated. All simulated caches are non-volatile and use
an LRU replacement policy.

The only difference between the D-SPTF system and the
decentralized hashing system is how requests are routed.
The D-SPTF implementation follows the protocol outlined
in Section 3, with requests broadcast to all replicas and one
replica claiming each read. In the decentralized hashing sys-
tem, a read request is serviced by only one replica, deter-
mined by hashing the source LBN to get the brick’s id. If a
brick receives a read request for another brick, then it will
forward the request to that brick without placing the re-
quest in its own queue. Hashing on the LBN provides both
exclusive caching and long-term load balancing. However,
since each replica does not see all requests for the replica
set, it will have a reduced effective queue depth for SPTF
scheduling; also, decentralized hashing does not adapt to
short-term load imbalances.

Locality-Aware Request Distribution (LARD) [19] requires
a central front-end to distribute requests among servers.
Our implementation achieves this by routing all client re-
quests for a given set of brick replicas to a single brick. When
an address is initially requested, the lowest loaded replica is
selected to service it. Every additional reference to that ad-
dress would go to that replica. This optimizes cache hits and
balances load in the common case. If the load on a replica
exceeds a threshold then addresses would be moved to lower
loaded replicas to decrease the load. Our implementation
uses the thresholds and tuning values reported in [19].

The centralized system is designed differently from the
decentralized systems. The centralized system contains one
single cache with the same aggregate cache space as all the
bricks in the decentralized systems. It also contains a sin-
gle request queue that contains all requests. When some
disk is about to complete a request, the system selects the
next request for that disk. To represent an ideal centralized
system, we modeled a centralized version of D-SPTF (via a
single outside-the-disk SPTF across disks).

Current disk array controllers are not designed like the
idealized centralized system against which we compare D-
SPTF, though they could be. Instead, most keep a small
number of requests pending at each disk and use a simple
scheduling algorithm, such as C-LOOK, for requests not yet
sent to a disk. Without a very large number of requests
outstanding in the system, the performance of these systems
degrades to that of FCFS scheduling. So, for example, the
throughput of our idealized centralized system is up to 70%
greater than such systems when there are 8 replicas.

5. EVALUATION

This section evaluates D-SPTF relative to a centralized
ideal and two popular decentralized schemes. As expected,
D-SPTF matches the former and outperforms the latter
across many workloads and system setups, because it of-



Throughput| Idle Service Time
(I0s/sec) Time (ms)
Central SPTF 188 0% 5.28
D-SPTF 187 0% 5.30
Hashing 133 6.5% 7.05
LARD 134 5.9% 7.04

Table 1: Throughput with homogeneous bricks and
random workload. This table shows the per-
brick throughput of an 8-brick system using each
of the four schemes, given a random workload of
90% reads. D-SPTF and Central SPTF outperform
Hashing and LARD, because of superior dynamic
load balancing and disk scheduling.

fers all of cache exclusivity, dynamic load balancing, and
effective disk head scheduling.

5.1 Systems of homogeneous storage bricks

To understand D-SPTF’s base performance, we experi-
ment with small-scale systems of identical storage bricks.
First, we examine random workloads (i.e., those with no lo-
cality of reference) to focus on the load balancing and disk
head scheduling aspects. Then, we use traces of four real
environments to examine decentralized cache behavior.

5.1.1 Random workloads

Table 1 shows the performance of the four schemes for a
synthetic random workload on an 8-replica system of storage
bricks. The workload is a closed loop with 16 IOs outstand-
ing at any time, with 90% reads, request sizes drawn from an
exponential distribution with mean 4KB, and no locality (all
data blocks are equally likely). The table shows per-brick
throughput, the average percent of time that each brick is
idle (due to transient load imbalances), and the average ser-
vice time for cache misses.

Two primary insights can be gained from Table 1. First,
D-SPTF provides almost the same performance as the cen-
tralized ideal, which is the end goal. Second, D-SPTF pro-
vides 40% higher throughput than either decentralized hash-
ing or LARD, which provide similar performance. D-SPTF’s
advantage has two sources: dynamic load balancing and su-
perior disk head scheduling.

Dynamic load balancing. Because all bricks see all
queued requests for replicas they hold, a brick will never be
idle while another brick has queued requests that it could
service. With hashing and LARD, requests are routed to
a specific replica-holder as they arrive, and so short-term
load imbalances are not uncommon. Even with our rela-
tively heavy synthetic workload, roughly 6% of each brick’s
time is idle even though the 8-brick system always has 16
requests pending. As expected, the long-term average bal-
ance of work across bricks is perfect for all of the schemes.
LARD will adapt to heterogeneous server rates, as discussed
in Section 5.2, but does not eliminate these transient imbal-
ances.

This transient imbalance effect varies with both load and
read:write ratio. For example, for a read-only closed work-
load of 16 requests at a time, LARD and hashing leave each
brick idle 15% of the time. Recall that writes go to every
brick with a replica, which can hide much of the potential
transient idleness. At 60% reads, the idle percentage drops
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Figure 5: Scheduling Efficiency as a function of repli-
cation. This graph shows the per-brick throughput
of each algorithm as a funtion of the number of repli-
cas. A random workload of 67% reads was used with
16 requests per replica group.

to 2%. With lower loads, transient imbalances are more ev-
ident because there are fewer requests being semi-randomly
assigned to bricks at once. With higher loads, transient
imbalances result in less idle time, because there are more
chances for each brick to be assigned a pending request.

Disk head scheduling. D-SPTF enables superior disk
head scheduling, because it allows each brick’s scheduler to
consider more pending requests. Specifically, hashing and
LARD partition requests as they arrive (i.e., before they are
queued), whereas D-SPTF queues cache misses at all repli-
cas and partitions them as they are selected for service. As
described in Section 2.1, disk scheduling is much more effec-
tive when given more options. For the experiment reported
in Table 1, the average queue length when scheduling oc-
curs is approximately nine, as compared to approximately
two for hashing and LARD.

More generally, D-SPTF allows a brick to select among
all pending read requests that it could service that are not
yet already being serviced by another brick. So, for read-
only workloads, the average queue depth considered will be
approximately the number of pending requests minus the
number of replicas. For hashing and LARD, read requests
are divided evenly among the bricks with replicas, so the
average queue length of reads considered will be the number
of pending read requests divided by the number of replicas.

Figure 5 illustrates the effect of the number of replicas
on the disk scheduling benefit. The same synthetic random
workload is used, but with a read:write ratio of 2:1 and a
range (from 2-8) of numbers of replicas per data block. The
number of requests in the system is 16 in all cases.

With basic mirroring (two copies), D-SPTF provides 9%
higher throughput than hashing and LARD. As the number
of replicas increases, D-SPTF’s margin increases. At eight
replicas, D-SPTF provides 20% higher throughput. In every
case, the media performance of D-SPTF is close to that of
the centralized ideal.

The 8-replica improvements are lower than the values from
Table 1 because of the difference in read/write ratio. Re-
call that writes go to all bricks with replicas in all schemes.
With 90% reads, each brick will average 1.6 writes and ei-
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Figure 6: Response times for four traces. This
graph shows the response times of the four traces
on a two-replica system with various request distri-
bution schemes.

ther 7.4 reads (for D-SPTF) or 1.8 reads (for hashing or
LARD) pending; with one request being serviced, the queue
depth comparison is 8 for D-SPTF verses 2.4 for hashing and
LARD. With 67% reads, the comparison is 8 versus approx-
imately 5.6. The throughput values in Figure 1 for different
queue depths match those observed in Table 5, for all of the
different schemes and numbers of replicas.

For real workloads, we expect to see similar performance
gains for D-SPTF. To verify this expectation, we use four
traces (Table 2). The SAP trace [11] captures the I/O activ-
ity of a SAP-based system running an Oracle DB support-
ing 3000+ clients accessing billing records. The Cello2002
trace [11] captures the I/O activity from the software de-
velopment activities of a 20-person research lab. The Web-
Search trace [23] captures the performance of a system pro-
cessing web search queries. The Financial trace [23] captures
the performance of a system running a financial transaction
processing system. All traces were run for the duration of
each trace.

Figure 6 shows the results for two-way replication. D-
SPTF matches Central SPTF, and both outperform Hashing
and LARD. D-SPTF provides an 11% reduction in client
side response time for the SAP trace which is in line with
the synthetic workloads running 2-way replication. There
is no increase in the throughput of the system, because the
simulated system is powerful enough to complete all trace
requests within the trace time frame.

Among these traces, the SAP and the Financial traces
have the greatest locality. This results in D-SPTF’s perfor-
mance improvement being between 35-50% over hashing an
LARD compared to 20% for the other traces. Cello2002 also
has good locality but has very low load reducing it’s perfor-
mance impact. Greater locality increases the importance
of rotational latencies relative to seek times, increasing the
value of SPTF scheduling. Since D-SPTF provides higher
effective queue depths, it is able to reduce disk service times
further when requests are localized.

5.1.2 Caching effects

To explore the caching implications of the different schemes
under workloads with locality, we again use the traces. Re-

| | SAP | Cello2002| WebSearch| Financial|
R/W ratio 62% 68% 90% 85%
Size 10KB 11.5KB 8.2K 9K
Requests 4512361 | 5248101 4579809 5334987
Duration 15hrs 24hrs 4hrs 12hrs

Table 2: Trace characteristics.

| | SAP| 061102002| WebSearch| Financial|

Central SPTF | 74% 76% 68% 1%
D-SPTF 73% 72% 67% 69%
Hashing 72% 1% 66% 68%
LARD 2% 1% 66% 68%

Table 3: Cache hit rates. This table shows the
cache hit rates for the different configurations.

call that each brick has its own cache, and the goal in de-
centralized brick-based storage is exclusive caching: if each
brick’s cache holds different data, the aggregate cache space
is the same as a centralized cache of the same total size.
Combined with semi-random distribution of cache misses
across bricks, this should result in behavior much like a
global LRU. All three decentralized schemes provide both
properties, so we expect them to perform similarly to one
another and to the centralized ideal.

Table 3 shows the overall cache hit rates for the four
traces applied to an 8-replica system. The system contain 50
LUNSs and 16GB worth of cache. Centralized caching always
achieves the best hit percentage, and the three decentralized
schemes have hit rates that are 2-4% lower. This matches
the expectations.

5.2 Systems of heterogeneous storage bricks

D-SPTF excels with heterogeneous collections of storage
bricks as well as homogeneous collections. Since storage
bricks are designed to be incrementally added to the sys-
tem, an I'T staff does not have to deploy a monolithic storage
system. Instead the designer can select the storage system
that is needed to meet current demands. If the demands
increase later in the life of the system, then instead of re-
placing the entire storage system, one can add new bricks
to the system to increase the capacity, performance, and re-
liability as needed. However, one challenge introduced by
this incremental scaling is that there will be bricks of dif-
ferent performance in these systems. Having heterogeneous
bricks increases the difficulty of achieving centralized per-
formance. This section shows that D-SPTF is able to adapt
to the heterogeneity more effectively than existing request
distribution schemes.

5.2.1 Satic heterogeneity

Static heterogeneity is the simplest case; for example, con-
sider a two brick system that contains one “fast” device
and one “slow” device. One could modify a hashing-based
scheme so that, if the slow brick was 50% the speed of the
fast brick, the weighted hash function would send 2/3 of the
requests to the fast disk and 1/3 to the slow disk. LARD and
D-SPTF handle static heterogeneity via load-based request
distribution.



Central| D-SPTF | Hashing| LARD| Weighted

SPTF Hash
Fast 195 194 137 182 180
Slow 138 137 137 134 135

Table 4: Throughput balance between a fast and a
slow replica. The disk in the slow replica is half the
speed of the disk in the fast replica. D-SPTF and
a centralized system exploit the full performance of
the fast disk, while random hashing paces the fast
disk to match the slow disk.
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Figure 7: Impacts of static heterogenous devices on
trace workloads. This graph shows the client re-
sponse time of four trace workloads with staticly
heterogenous workloads.

Table 4 shows the “fast” and “slow” brick’s throughput re-
sults under the same synthetic random workload as in 5.1.1.
Both D-SPTF and the centralized ideal have the desired
load balancing property: as the slow disk gets slower, the
throughput of fast brick remains nearly unaffected.

Hashing, however, does not do so well: as the slow disk
gets slower, it drags down the performance of the fast disk
to match. The load between the two disks quickly becomes
unbalanced because hashing assumes that both devices are
of equivalent speed and thus sends half the requests to each
disk. As a result, the rate at which requests are sent to the
fast disk is governed by the rate at which the slow disk can
service its requests, and the performance advantage of the
fast disk is wasted.

Both LARD and a weighted hash function do a better job
of adapting to heterogeneous bricks than standard hashing.
This is because weighted hashing accounts for the relative
performance of the devices. LARD functions well, also, be-
cause it initially allocates requests based upon the load at
the device, which will function similarly to weighted hash-
ing. As shown in the next section, both LARD and the
weighted hash function have difficulty with adapting to de-
vice performance changes.

Figure 7 shows how the slow/fast two-replica systems per-
form for the traces. D-SPTF is close to Central SPTF
and outperforms the other schemes. LARD and weighted
hashing are able to adapt to the load balancing character-
istics but provide inferior disk scheduling. The Financial
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Figure 8: Performance in face of transient perfor-
mance breakdowns. This graph shows the per-
formance of each scheme in a two-replica system
where one replica’s performance varies, halving at
time 25, correcting at time 50, and halving again at
time 75. D-SPTF and Central SPTF adapt best to
the transient degradations. Hashing and LARD do
not adapt well to this dynamic heterogenous behav-
ior. For LARD, the transient load imbalance is not
long enough to trigger a rebalance action.

trace proves the exception to this rule because LARD and
weighted hashing provide similar performance. This is due
to relatively high queue depths at the devices which mini-
mize the scheduling advantage of D-SPTF. In general, un-
modified hashing performs worst, since it both lacks the
ability to properly balance the load and has less efficient
scheduling.

5.2.2 Dynamic heterogeneity

Dynamic heterogeneity can exist even when bricks are ho-
mogeneous in construction. For example, it can occur when
one brick is performing integrity checks, reorganizing its on-
disk layout, or coping with an component failure. To exam-
ine the impact of D-SPTF in such situations, we dynamicly
varied the performance of a two-replica system. The base
system has two identical replicas. The performance of one
replica was altered as follows. Initially each replica was oper-
ating at full speed,® after one quarter of the run had passed,
the first replica experienced a 50% degradation of perfor-
mance. Once half of the time had passed, the degradation
ceased and both replicas were again at equal performance.
Three quarters of the way through the experiment, the sec-
ond replica suffers 50% degradation and remains that way
until the end of the experiment. The workload that was used
to evaluate the system was the SAP trace. To compared the
effectiveness of D-SPTF to other schemes, we measured the
client side response time at specific time intervals.

Figure 8 shows the results. The average response time of
both D-SPTF and Centralized SPTF in non-degraded mode
is around 7.8ms per request, while the response time of both
hashing and LARD are around 9ms. This 15% difference in

3Prior to the experiment, LARD was warmed up long
enough to be in steady state where all addresses had been
previously allocated, 1/2 to each replica, since they are ho-
mogeneous.



response time is due to the improved scheduling efficiency
of D-SPTF and central SPTF. All systems are able to effec-
tively balance load in non-degraded mode.

Once the performance of one replica is degraded, however,
we see the performance disparity increase. D-SPTF /Central
SPTF’s response times rise to 8.6ms while Hashing/LARD’s
response times increase to 11.2ms. This 30% difference oc-
curs because, when the load imbalance occurs, the perfor-
mance of the LARD and Hashing systems are limited by the
slowest replica in the set. Neither adapts to the short-term
degradation.

LARD does not adapt to it because the degradation does
not continue long enough to trigger rebalancing of the sys-
tem given the default parameters. With a shorter rebalance
window, LARD does adapt but still suffers for one window
after the degradation starts and a second after it ends. Also,
with short windows, the cache locality degrades. An advan-
tage of D-SPTF is that it responds quickly to changes in
replica load and balances the load automatically without
requiring external tuning of scheme parameters.

5.3 Communication Costs

D-SPTF provides brick-based storage systems with com-
parable performance to an ideal centralized SPTF. However,
it does so by relying on extra communication bandwidth
and low-latency messaging. This section quantifies the ex-
tra bandwidth required and D-SPTF’s sensitivity to network
latency.

5.3.1 Protocol message overheads

D-SPTF involves sending every read request and every
CLAIM message to each replica holder, which can result in
many more control messages than for hashing-based request
distribution schemes. The number of messages sent per re-
quest depends on the level of activity in the system. The
common case occurs when only one brick attempts to ser-
vice a request, after completing its last disk request. In this
case, the total number of messages will be 2N, where N is
the number of replicas in the system. The maximum num-
ber of messages would be sent when all devices are idle when
a new request arrives, causing them all to decide to try to
service the new request. In this case, N? CLAIM messages
per request will move through the system.

To validate these expectations, we use the synthetic work-
load with 16 requests kept outstanding in each replica group.
Table 5 shows the number of messages per request for differ-
ent numbers of bricks and different degrees of replication. As
expected, the number of messages per request is very close
to 2N. The message count is unaffected by the number of
bricks, since only replica holders for a particular block are
involved in communication regarding requests on that block.

The results are not exactly 2N because some requests find
multiple bricks idle when they arrive. In this case, the idle
bricks each attempt to CLAIM the request, generating N mes-
sages. This happens rarely in systems that have non-light
workloads. For additional insight, Table 6 shows the per-
centage of such conflicts as a function of the number of repli-
cas, with the workload held steady at 16 requests per replica
set. The percentage increases as the number of replicas in-
crease because, with a lower ratio of requests to replicas,
it is more likely that two or more of bricks will attempt to
service the same request at the same time. Even at with
16 requests for eight bricks, fewer than 2.5% of all requests

| | 2-Way | 4-Way | 6-Way | 8-Way |
16 bricks 4.003 8.02 12.07 16.15
32 bricks 4.005 8.01 12.09 16.20
64 bricks 4.007 8.03 12.05 16.17
128 bricks | 4.001 8.05 12.08 16.13

Table 5: Number of messages sent per request. The
number of messages, in the common case, is two
times the number of replicas. The number of mes-
sages is not dependent on the number of bricks in
the system. There are slightly more than 2N mes-
sages because of situations when multiple bricks at-
tempt to schedule the same request.

| | 2-Way [ 4-Way [ 6-Way | 8-Way |
[ Conflicts [ 0.15% [ 0.67% | 1.44% [ 2.44% |

Table 6: Number of conflicts per request versus
replication level. This table shows the percentage
of requests that multiple bricks attempt to claim.
As one can see, as the replication level increases, the
number of such conflicts increase, because the per-
brick workload drops. (Sixteen requests are pending
at a time for each configuration.)

experience such conflict, and the result is a minimal increase
in the number of messages sent.

In the eight-replica case, the number of D-SPTF messages
sent per second per brick was 3230. With a non-data mes-
sage size of 50 bytes, this results in 160KB/s for messages.
If every request were for only 4KB of data, the data commu-
nication would consume 800KB/s and the total bandwidth
consumed per brick would be 960KB/s. In other words,
in this case, the D-SPTF protocol adds approximately 20%
more traffic to the network (independent of the number of
actual bricks in the system) even with very small requests.
For larger requests, of course, the overhead will be lower. For
example, with an average request size of 64KB, the added
bandwidth would be only 1.2%. The network must sup-
port this increase in traffic, without significant performance
degradation, in order to effectively support D-SPTF.

5.3.2 Sensitivity to network latency

The D-SPTF protocol relies on relatively low latency mes-
saging to function well. Recall that D-SPTF pre-schedules
and overlaps CLAIM communication with disk head position-
ing time. Doing so hides network latencies that are smaller
than rotational latencies.

Figure 9 evaluates the effect of network latency. This
experiment uses the 8-replica system and workload from
Section 5.1.1, but varies the one-way network communica-
tion latency from 0 ms to 3 ms. The results show that the
D-SPTF protocol has effectively the same performance as
the centralized ideal up to about 1 ms one-way network la-
tency. Even at 1.75 ms network latency, D-SPTF shows less
than 5% decrease in throughput. For context, FibreChan-
nel networks have 2-140us latencies [21], depending on load,
and Ethernet-based solutions can provide similar latencies.
Thus, D-SPTF should function at full efficiency in storage
clusters and many other configurations.
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Figure 9: Effect of network latency on D-SPTF
throughput. Throughput is shown per replica.
The one-way network latency is varied from 0 ms—
instantaneous communication—to 3 ms.

D-SPTF performance drops off for very slow interconnects
because of the wait period for CLAIM message propagation.
Recall that every request is scheduled two one-way network
latencies before it is issued. So long as the current request
does not complete in less time than two network latencies,
no performance is lost. If a request’s media time is less than
two network latencies, then the system will wait and the
disk will go idle until two network latencies have passed. As
network latency grows and more requests complete in less
than two network latencies, the disks are forced to wait and
performance drops.

6. ADDITIONAL RELATED WORK

Several closely related works have been discussed in the
context of the paper. This section discusses additional re-
lated work.

Several groups have explored the centralized multi-replica
SPTF approach, labelled “Central SPTE” in our evalua-
tions, to which we compare D-SPTF. For example, Lo [17]
proposed and explored Ivy, a system for exploiting replicas
by routing requests to the disk whose head is closest to a de-
sired replica. Wilkes et al. [25] explored a similar approach,
but routing requests based on predicted positioning time.
Most recently, Yu et al. [26] described an approach similar
in spirit to D-SPTF across mirrored local disks, for use in
evaluating their SR-Array system. D-SPTF builds on this
prior work by bringing its benefits to a decentralized context
and simultaneously achieving effective exclusive caching and
load balancing.

Several groups have explored explicitly cooperative caching
among decentralized systems [4, 24]. These systems intro-
duce substantial bookkeeping and communication that are
not necessary if requests are restricted to being serviced by
their data’s homes. However, these techniques could be used
to enhance load balancing and memory usage beyond the
confines of a scheme like D-SPTF, which focuses on the as-
signed replica sites for each data block.

Striping and hashing are popular techniques for load bal-
ancing. More dynamic schemes that migrate or rebalance
load based on feedback are popular for activities like process
executions. With a front-end distributing requests across

a set of storage servers, feedback-based load distribution
works well [2, 12, 16]. Clusters of web servers often use a
load-balancing front-end to distribute client requests across
the back-end workers. For example, LARD [19] provides
such load balancing while maintaining locality.

7. CONCLUSIONS

D-SPTF distributes requests across heterogeneous stor-
age bricks, with no central point of control, so as to provide
good disk head scheduling, cache utilization, and dynamic
load balancing. It does so by exploiting high-speed commu-
nication to loosely coordinate local decisions towards good
global behavior. Specifically, D-SPTF provides all replicas
with all possible read requests and allows each replica to
schedule locally. Limited communication is used to prevent
duplication of work. Overall, given expected communica-
tion latencies (i.e., 10-200us roundtrip), D-SPTF matches
the performance of an idealized centralized system (assum-
ing equivalent aggregate resources) and exceeds the perfor-
mance of LARD and decentralized hash-based schemes.
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