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Most current storage systems, including direct-attached disks, RAID arrays,
and network filers, are centralized; they have a central point of control, with global
knowledge of the system, for making data distribution and request scheduling
decisions. This central control allows for good cache performance, load balancing
and scheduling efficiency. However, many now envision building storage systems
out of collections of federated “bricks” connected by high-performance networks.
The goal of brick-based storage is a system that has incremental scalability, parallel
data transfer, and low cost. However, with bricks, there is no centralized point of
control to provide request distribution. This lack of central control makes achieving
good scheduling efficiency, load balancing and cache performance a challenge in
decentralized brick-based storage.

Distributed Shortest-Positioning Time First (D-SPTF) is a decentralized re-
quest distribution protocol designed to address this challenge. D-SPTF exploits
high-speed interconnects to dynamically select which server, among those with a
replica, should service each read request. In doing so, it simultaneously balances
load, exploits aggregate cache capacity, and reduces positioning times for cache
misses. For network latencies of up to 0.5ms, D-SPTF performs as well as would a
hypothetical centralized system with the same collection of CPU, cache, and disk
resources. Compared to a popular decentralized approach, hash-based request dis-
tribution, D-SPTF achieves up to 65% higher throughput and adapts more cleanly

to heterogenous server capabilities.
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1 Introduction

Most current storage systems, including direct-attached disks, RAID arrays, and
network filers, are centralized: they have a central point of control, with global
knowledge of the system, for making data distribution and request scheduling
decisions.

This centralized control and associated global knowledge of the system allow
for a number of optimizations. One of these optimizations is centralized caching,
which pools cache resources to achieve good cache hit ratios. Centralized caching
is enabled by having requests arrive at a centralized point of control and checked
against a single cache for cache hits. Additionally, centralized control and global
knowledge of the system also allow for the optimal replica to be selected dur-
ing a cache miss. Selecting the optimal replica for a request allows the system
to maximize load balancing and device scheduling efficiency. These decisions are
made by this central control and require no coordination or communication by the
underlying devices.

However, many envision enterprise-class storage systems composed of net-
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worked “intelligent” storage bricks [equallogic03; Frolund03; Ganger03a; CIBO03].
Each brick consists of a few disks, RAM for caching, and a CPU for request pro-
cessing and internal data organization. Large storage infrastructures could have
hundreds of storage bricks. The storage analogue of cluster computing, brick-
based systems are promoted as incrementally scalable and (in large numbers) cost-
effective replacements for todays high-end, supercomputer-like disk array systems.
Data redundancy across bricks provides high levels of availability and reliability
(ala the RAID arguments [Patterson88]), and the aggregate resources (e.g., cache
space and internal bandwidth) of many bricks should exceed those of even high-end
array controllers.

An important challenge for brick-based storage, as in cluster computing, is to
effectively utilize the aggregate resources. Meeting this challenge requires spread-
ing work (requests on data) across storage bricks appropriately. In storage systems,
cache hits are critical, because they involve orders of magnitude less work and la-
tency than misses (which go to disk). Thus, it is important to realize the potential
of the aggregate cache space; in particular, data should not be replicated in mul-
tiple brick caches. If data is replicated in multiple brick caches, then the total
available cache space is effectively reduced and lower cache hit ratios are possi-
ble. During bursts of work, when queues form, requests should be spread across
bricks so as to avoid inappropriate idleness and, ideally, to reduce disk positioning
cost [Denning67; Worthington95; Ruemmler94).

Achieving these goals is further complicated when heterogeneous collections
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of bricks comprise the system. Traditional disk array systems do not face these
challenges since all of these features can be provided by the central disk array
controller. Prior protocols for decentralized storage systems can provide a subset

of these attributes, but no previous protocol provides all of them.

1.1 Thesis statement

With reasonable communication costs, a decentralized storage protocol can utilize
storage resources (spindles, cache and capacity) nearly as efficiently as a central-
ized storage system.

D-SPTF is a request distribution protocol for brick-based storage systems that
keep two or more copies of data. The goal of D-SPTF is to bring the advantages
of centralized disk array systems to brick-based storage systems. It exploits the
high-speed, high-bandwidth communication networks expected for such systems
to achieve caching, load balancing, and disk scheduling that are competitive with
like-resourced centralized solutions. Briefly, it works as follows: Each READ and
WRITE request is distributed to all bricks with a replica. WRITE data goes into
each NVRAM cache [Baker92; Ruemmler93], but all but one brick (chosen by hash
of the data’s address) evict the data from cache as soon as it has been written to
disk. Only one brick needs to service each READ request. Bricks explicitly claim
READ requests, when they decide to service them, by sending a message to all
other bricks with a replica. Cache hits are claimed and serviced immediately by

the one brick that has the READ data in cache. Cache misses, however, go into
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all relevant local disk queues. Each brick schedules disk requests from its queue
independently, and uses CLAIM messages to tell other bricks to not service them.
Pre-scheduling and service time bids are used to cope with network latencies and
simultaneous scheduling, respectively.

D-SPTF provides all of the desired load distribution properties during both
long-term and short-term load imbalances. During bursts, all bricks with relevant
data will be involved in processing of requests, contributing according to their
capabilities. Further, when scheduling its next disk access, a brick can examine
the full set of requests for data it stores, using algorithms like Shortest-Positioning-
Time-First (SPTF) [Jacobson91; Seltzer90b]. Choosing from a larger set of options
significantly increases the effectiveness of these algorithms, decreasing positioning
delays and increasing throughput.

D-SPTF also provides the desired cache properties: exclusivity and centralized-
like replacements. Ignoring unflushed NVRAM-buffered writes, only one brick will
cache any piece of data at a time; in normal operation, only one brick will service
any READ and, if any brick has the requested data in cache, that brick will be
the one. In addition to exclusive caching, D-SPTF tends to randomize which brick
caches each block and thus helps the separate caches behave more like a global

cache of the same size.
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1.2 Validation

To validate the thesis statement, this dissertation describes an evaluation of the
D-SPTF protocol. The design tradeoffs, including conflict resolution schemes, were

evaluated and experiments designed to show the following:

(1) D-SPTF is able to load balance as well as an idealized centralized system

and as well or better than existing decentralized approaches.

(2) D-SPTF is able to achieve disk scheduling efficiency as well as an ideal-
ized centralized system and as well or better than existing decentralized

approaches.

(3) D-SPTF is able to maintain cache performance of existing decentralized

systems and nearly that of an idealized centralized system.

(4) D-SPTF is able to adapt to heterogenous systems as well as an idealized

centralized system and better than existing decentralized approaches.

(5) The communication costs and latency tolerance of D-SPTF are reasonable

for brick-based environments.

This dissertation describes and evaluates D-SPTF via simulation, comparing
it to a centralized ideal and popular existing decentralized algorithms, such as
LARD [Pai98] and hash-based request distribution. D-SPTF is as good or better

than these algorithms at using aggregate cache efficiently, while providing better
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short-term load balancing and yielding more efficient disk head positioning. It
also exploits the resources of heterogeneous bricks more effectively by balancing

the load to utilize each of the bricks optimally.



2 Existing systems

Current storage systems are going through a transition from centralized architec-
tures to more decentralized and distributed architectures. This transition is being
made to take advantage of the scalability and cost advantage of decentralized

designs, while trying to maintain the performance of existing centralized systems.

2.1 Centralized systems

Most current storage systems, including direct-attached disks, RAID arrays, and
network filers, are centralized: they have a central point of control, with global
knowledge of the system, for making data distribution and request scheduling
decisions.

This centralized control and associated global knowledge of the system al-
low for a number of optimizations. With centralized control, requests are routed
through a central controller that decides which replica will service a request. De-
cisions are made solely by this central control and require no coordination by or

communication between the underlying devices.
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Fig. 2.1: Picture of a centralized storage system. A simple picture of a centralized storage
system. Centralized storage systems can be thought of as a single cache, single scheduling queue,
and a large number or devices to service requests from media.

A typical centralized system is illustrated in Figure 2.1. Request flow is straight-
forward. When any client decides to issue a read request, it first sends the request
to the central storage controller. Once a read request arrives at the central con-
troller, the controller will check its cache. If the requested data is in the cache, the
controller will complete it immediately. If the request is not in the cache, then the
controller will place the request in its disk queue and wait for a scheduling oppor-
tunity. Whenever a disk needs a new request, the controller looks in its queue and
selects a request for the device. Since it knows all the requests that any device can
service, the controller is able to select the optimal request for a device. When a
read request completes at the device, the controller places the data in its cache
and sends it to the client.

For a write request, the protocol is similar. When a write request arrives, it
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Fig. 2.2: Picture of a decentralized storage system. A simple picture of a decentralized
storage system. A decentralized storage system is composed of a number of storage bricks. Each
storage brick has its own cache, its own queue and a small number of commodity devices to
service media requests. Brick are connected to each other through high speed networks.

is first cached in the controller’s NVRAM cache and completion is reported back
to the client. Only one copy is kept in cache and remains there until all replicas
of the data have been written to disk. Once the write has been written back, the
cache copy may be evicted or it may remain in cache, depending upon the caching
policy.

Existing centralized systems have an advantage over decentralized systems.
Their centralized control includes both centralized queueing of requests and cen-
tralized caching of requests. With centralized queueing, all requests are placed
into a single central queue. When a lower level device in the system needs a new
request, the central queue selects one from its queue for that device to service.
Since all requests are stored in a central queue, load imbalances between devices

with replicas of the same data do not occur. Whenever an replica needs work, a
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Fig. 2.3: Operation of a centralized storage system. To service a request in a centralized
storage system, the client first sends a request to the centralized server. The centralized server
first checks its centralized cache. If the request is not in cache then the centralized server will
place it in its centralized queue. When it is time to send a request to media, the centralized server
will scan its centralized queue and select the best request. That request is then sent to one of the
storage devices who completes the request. Once the request is complete the centralized server
informs the client.

request is removed from the central queue and sent to the replica. Only if there is
no work in the central queue, for any data stored by a device, does that device go
idle.

Centralized control also allows for efficient cache decisions. With centralized
systems there is only one cache for all data in the system. If an underlying storage
device services a request, the data will be stored once in the cache, regardless of
which replica in a group services the request. This centralized cache makes efficient
use of all space and prevents wasted cache space.

In addition to centralized control, these systems provide a central location to

store knowledge about the system. This knowledge includes the queue sizes at the
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Fig. 2.4: Operation of a hashed decentralized system. The operation of a hashed decen-
tralized system, begins when a client sends a request to any of the bricks in the system. The
first step that a brick takes when it receives a request is to hash on the LBN of the request to
determine which brick will service that request. The request is then forwarded to the brick who
is supposed to service it. When it arrives at that brick, the brick first checks its cache. If the
request is not in cache then the brick will place it in its queue. Once it is time to send a request
to media, the brick will check its queue and select the best request. That request is sent to one
of the devices who completes the request. Once the request is complete, the brick that serviced
the request will complete the request to the client.

underlying storage devices, the locations of all replicas, and the location of data on
each disk. By having such complete state, the controller is able to make accurate
decisions about which storage devices should service which requests. They have the
capability both to load balance requests and to optimally schedule these requests.
With Shortest Positioning Time First (SPTF) algorithms, the ability to schedule
using large centralized queues results in improved disk access times relative to
systems that use smaller partitioned queues.

While large scale centralized storage systems have a number of advantages,
they are not without their disadvantages. Large centralized systems can run into

scalability limitations. Additionally, these systems can be very expensive to de-
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velop and require one to purchase many years of storage at once rather than
incrementally a needs evolve. As a result, decentralized brick-based systems are

starting to emerge as viable alternatives to large monolithic centralized storage.

2.2 Decentralized systems

Many now suggest building storage systems out of collections of federated smallish
bricks connected by high-performance networks. The goal is a system that has in-
cremental scalability, parallel data transfer, and low cost. To increase the capacity
or performance of the system, one adds more bricks to the network. The system
can move data in parallel directly from clients to bricks via the switched network.
It is expected that brick-based storage will exhibit a significant cost benefit due to
brick-based storage using large numbers of less expensive commodity components
rather than a few higher-performance but custom components.

Brick-based systems are different from larger centralized systems in several
ways: bricks are small, have moderate performance, and often are not internally
redundant. Each brick generally consist of a CPU, modest amount of cache, and
a few to a few tens of commodity disks. The moderate performance and size of
bricks means that the system needs many bricks and must be able to use those
bricks in parallel. The lack of internal redundancy means that data must be stored
redundantly across bricks, with replication being one method. These brick-based
systems are designed with incremental growth in mind. As a result, over time, a

storage system will tend to include many different models of bricks. These brick-
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based storage systems must be able to adapt to heterogenous collections of bricks
automatically.

The challenge of a brick-based storage system is to achieve the advantages of
the centralized system, including scheduling efficiency, load balancing and cache
exclusivity, without significantly increasing the costs of the system.

One example of the operation of a based brick system that uses hashing for re-
quest distribution is shown in Figure 2.4. A client can potentially send a request to
any brick in the system, since there is no central request aggregation point. When
a read request arrives at a brick, the request address(the data’s block number) is
hashed and the request is sent to the replica that matches the hash to service it.
Once the request arrives at that replica brick, the replica’s cache is checked. If the
request is in cache, then it is completed immediately. If it is not in cache, then
the request is placed in the replica brick’s queue. When a device in a brick needs
a request to service, the brick scans its request queue and selects the best request
for that device. When a read request completes at a device, the data is cached in
the brick and then delivered to the client.

Write requests in brick-based storage are slightly different. When a write arrives
in the system, it must be written to all replica bricks. Once it arrives at each brick,
it is placed in the replica brick’s NVRAM cache. Once all replica bricks have cached
it, then completion is reported to the client. However, there is now a copy of the
data in each replica brick’s cache, unlike the single copy that exists with centralized

storage systems. This can cause a reduction in effective cache size, which can lead
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to lower cache hit ratios.

Composing a system from independent bricks means that each brick does a
small fraction of the overall work and that there is no central control. As a con-
sequence, each brick has only a local viewpoint when making decisions. Three
crucial aspects are made more difficult by the lack of global information: disk
head scheduling, cache utilization, and inter-brick load balancing. Existing mech-
anisms can address one or two of these aspects but do so at the expense of the
others. Each of these aspects is complicated when the population of bricks is het-
erogenous. The D-SPTF protocol addresses all three aspects by exploiting the
high-speed networks expected in brick-based systems, allowing bricks to loosely

coordinate their local decisions and adapt well to heterogenous brick capabilities.

2.2.1 Disk head scheduling

Disk scheduling has a significant effect on performance, because the mechanical
positioning delays of disk drives depend on the relative distance between consecu-
tive media accesses. When the sequence of operations performed by a drive cannot
be orchestrated (e.g. when using FIFO scheduling), the drive spends almost all of
its time seeking and waiting for the media to rotate into position. The importance
of scheduling well continues to grow as the density of data on media increases; the
time required to transfer a block of data off media decreases much faster than the
positioning delays.

The shortest-positioning-time-first (SPTF) scheduling discipline [Jacobson91;
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Fig. 2.5: Disk throughput with SPTF scheduling, as a function of queue depth. The
data shown are for a closed synthetic workload (see Chapter 6) with a constant number of pending
small requests to random locations on a Quantum Atlas 10K disk.

Seltzer90b] is the state-of-the-art. It works by considering all requests in the queue
and selecting the one that the head can service fastest (that is, with the shortest
total seek plus rotation delay).

SPTF schedules work best when the request queue has many items in it, giv-
ing it more options to consider. Figure 2.5 illustrates this effect of queue depth
on SPTF’s ability to improve disk throughput. With only one or two operations
pending at a time, SPTF has no options and behaves like FIFO (with two pending,

one is being serviced and one is in the queue). As the number of pending requests
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grows, so does SPTF’s ability to increase throughput—at 16 requests outstanding
at a time, throughput is 70% higher than FIFO.

Brick-based systems generally tend to distribute work over many bricks, which
decreases the average queue length at each brick. This, in turn, results in less op-
portunity for scheduling the disk head well, which results in higher media response
times. Maintaining low media access time requires increasing the queue depths at
bricks making scheduling decisions. One way to do this is to direct requests to
only a subset of the bricks; doing so would increase the amount of work at each
brick, but leaves other bricks idle and thereby results in less overall system per-
formance than if all disks were transferring at high efficiency. Another solution
is to send read requests to all bricks holding a copy of a data item and use the
first answer that comes back. However, this approach duplicates work; while it
can improve one request’s response latency, overall system throughput would be
the same as a single brick. The centralized approach to this problem is simple: by
maintaining all requests in one centralized queue, the maximum scheduling queue
depth is obtained and by having global knowledge of the devices in the system,
the centralized system is able to select the optimal request for an individual device
from the global queue. D-SPTF is able to achieve disk scheduling results similar
to a centralized system. D-SPTF’s approach enables it to increase the scheduling
queue depth of the system without causing duplicate work. This allows D-SPTF

to achieve low media access times while utilizing all devices.
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2.2.2 Load balancing

In addition to disk head scheduling, balancing the load among all bricks to prevent
idle resources is a significant challenge. When there is a choice of where data can
be read from, one usually wants to balance load.! Centralized systems can do
this because they know, or can estimate, the load on each disk. For example, the
AutoRAID system directs reads to the disk with the shortest queue [Wilkes96].
This allows the centralized system to balance the load in all conditions, preventing
both transient and long-term load imbalances.

There are many simplistic ways to spread requests across bricks to achieve
long-term load balancing. For example, the system can determine where to route
a request for a data block by hashing on the block address or by using other
declustering techniques [Hsiao90; Hsiao91]. Then, as the system reads and writes
data, the load should (statistically) be approximately even across all the bricks.

However, this is not as good as a centralized system can do. Spreading re-
quests among the bricks gives balance only over the long term, but semi-random
distribution of requests can cause transient imbalances. Some bricks will get sev-
eral requests while others get none. Moreover, having different kinds of bricks in
the system makes this problem more difficult. With heterogenous bricks, request
distribution algorithms must try to route more requests to faster bricks and fewer
to slower ones—where “slower” and “faster,” of course, depend on the interac-
 INote that there is a data placement component of load balancing in large-scale systems,

which occurs before request distribution enters the picture. Clearly, request distribution can only
affect load balancing within the confines of which bricks have replicas of data being accessed.
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tion between the workload, the amount of cache and the specific disk models that
each brick has, and any transient issues (such as one brick performing internal

maintenance).

2.2.3 Exclusive caching

Maximizing the cache hit rate is critical to good storage system performance.
Hence, cache resources must be used as efficiently as possible. The cache resources
in a brick-based system are divided into many small caches, and replacement
decisions are made for each cache independently. This independence can work
against hit rates. In particular, the system should generally keep only one copy of
any particular data block in cache, to maximize effective cache space and increase
the hit rate.? Distributed systems do not naturally do so; if clients read replicas
of a block from different bricks, each brick will have a copy in cache, decreasing
the effective size of the aggregate cache in the system. Always reading a particular
data item from the same brick will solve this problem at the cost of dynamic load
balancing and dynamic head scheduling. Centralized systems achieve exclusive
caching easily. Since all data is stored within one single cache, there will never be
duplicate entries in the cache.

Tther environments, such as web server farms, there is value in having very popular items in
multiple servers’ caches. For storage, however, repeated re-reading of the same data from servers

is rare, since client caches capture such re-use. Thus, cache space is better used for capturing
more of the working set.
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2.3 Achieving all three at once

Any one of these concerns can be addressed individually and some proposed
schemes have been able to achieve more than one of these properties. For example
LARD [Pai98] and hash-based request distribution schemes can provide both long-
term statistical load balancing and exclusive caching. However, no existing scheme
provides all three. Further, a heterogenous population of bricks complicates most
existing schemes significantly, given the vagaries of predicting storage performance
for an arbitrary workload.

The fundamental property that current distributed solutions share is that they
cannot efficiently have knowledge of the current global state of the system. They
either choose exactly one place to perform a request without knowledge of the cur-
rent state of the system, or they duplicate work and implicitly get global knowledge
at a performance cost.

The D-SPTF approach increases inter-brick communication to make globally-
effective local decisions without creating duplicate work. It involves all bricks that
store a copy of a particular block in deciding which brick can service a request
soonest. When a request will not be serviced immediately, D-SPTF also postpones
the decision of which brick will service it. By queueing a request at all bricks that
store a copy of the block, the queue depth at each brick is as deep as possible and
disk efficiency improves. Further, by communicating its local decision to service a

request, a brick ensures that only it actually does the work of reading the data
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from disk. This naturally leads to balanced load and exclusive caching. If a brick
already has a data item in cache, then it will respond immediately, and so other
bricks will not load that item into cache. If one brick is more heavily utilized than
others, then it will not likely be the fastest to respond to a read request, and so
other bricks will pick up the load.

D-SPTF also naturally handles heterogenous brick populations. Under light
load, the fast disks will tend to service reads and slow disks will not, while writes
are processed everywhere. Under heavy load, when all bricks can have many re-
quests in flight, work will be distributed proportional to the bricks’ relative speeds.
The same balancing will occur when the brick population is dynamic due to failures
or power-saving shutdowns.

D-SPTF is not, however, without cost. By increasing the communication be-
tween bricks to achieve load balancing, scheduling efficiency and cache exclusivity,
the network costs are increased over simple request distribution protocols. D-SPTF
exploits high-speed networks and small message sizes to keep these network costs

low.



3 Related work

D-SPTF strives to achieve good scheduling efficiency, load balancing and cache
exclusivity, while providing the added flexibility of using a choice of head schedul-
ing algorithms. These properties have all been individually addressed in related
work but have not been combined in decentralized storage. This chapter discusses
the related work for each of the three topic areas: disk scheduling, caching and

load balancing.

3.1 Disk head scheduling

The ability of a disk drive to schedule well is influenced by the disk head scheduling
algorithm. The goal of many such algorithms is to minimize the disk positioning
overheads. D-SPTF has the ability to use any head scheduling algorithm. It will
improve performance for any disk’s scheduling algorithm that exhibits improved
disk efficiency as the number of requests increase, including SPTF, SSTF, SCAN,
and CLOOK.

The SPTF disk head scheduling algorithm that forms the heart of D-SPTF is
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often used in modern disk drives today. Many studies have been conducted to com-
pare and contrast the performance of SPTF and its predecessors (SSTF, SCAN,
CLOOK and FCFS) [Denning67; Frank69; Coffman72; Teorey72; Gotlieb73; OneyT75;
Wilhelm?76; Hofri80; Coffman82; Wong83; Leffler89; Bitton89]. The goal of the
Shortest Positioning Time First (SPTF) algorithm is to minimize the total posi-
tioning time that a request incurs when it is serviced. The SPTF algorithm does
this by scanning through the queue of requests and computing the seek time and
the rotational time that each request would incur from the current disk head po-
sition. To select the next request to service, SPTF chooses the request with the
minimum sum of seek and rotational latency. This results in an algorithm that will
service requests with the shortest positioning time (seek + rotational latency).
One complaint about SPTF and related algorithms is that a request could suf-
fer from starvation, because these algorithms seek to minimize the service times
without considering how long a request has been in the system [Geist87; Seltzer90;
Jacobson91]. Some algorithms have been proposed to address the potential star-
vation of requests. One prominent example is the age-weighted SPTF [Seltzer90;
Jacobson91]. Age weighting considers how long a request has resided in the queue
in addition to it positioning time. This age factor is weighted by an administrator-
determined amount. As a request resides in the queue longer and longer, it is more
likely to be selected even if it incurs a larger positioning time than a younger re-
quest in the queue. The larger the weight factor the more likely older requests will

be selected.
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For the D-SPTF system, the age-weighted SPTF algorithm was not chosen
partially because the age factor is a tuning parameter. Since D-SPTF was designed
the have as few tunable parameters as possible, this was not desired. In addition,
the performance difference of age-weighted SPTF is not significant. Only for a
few starved requests does it have a noticeable impact in response time [Seltzer90;

Jacobson91].

3.2 Caching

Several groups have explored explicitly cooperative caching among decentralized
systems [Felten91; Schilit91; Franklin92; Dahlin94; Feeley95; Voelker98]. These
systems introduce substantial bookkeeping and communication that are not nec-
essary if requests are restricted to being serviced by a single location. However,
these techniques could be used to enhance load balancing and memory usage be-
yond D-SPTF, which focuses on the assigned replica sites for each data block.
The Berkeley NOW project [Anderson95d] implemented a form of coopera-
tive caching that would scan the memory of the other nodes in the system before
fetching data from disk. The principle was that it was more efficient to retrieve
data from network memory than the local disk. The Globally-Managed Memory
system [Voelker98] also used this form of cooperative caching with some enhance-
ments to allow for application-driven caching and prefetching. xF'S [Wang93b] also
use cooperative caching for their distributed file system, relying on multi-processor

cache coherence protocols for consistency and management.
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One of the attributes of the D-SPTF system is that its cache cooperation is
limited to only the aggregate cache space of the replica group. However, many
disk array controllers already use cache partitioning [Manjikian95] to minimize
cache conflicts between IO streams. This cache partition will limit the cache space
available to individual IO streams to prevent one IO stream from flushing the
entire cache. This increases the hit percentage of the other IO streams. D-SPTF’s

cache cooperation only between replica sets will also have a similar effect.

3.3 Load balancing

Another challenge of storage systems is effectively balancing the load among bricks
to prevent any one brick from becoming overloaded. There have been a number of
techniques developed to specifically address the challenge of load balancing. These
are hashing, round robin distribution, and LARD.

Striping and hashing are popular techniques for load balancing. With striping
and hashing, the system uses a hash on the logical block number (LBN) of a request
to determine which brick receives the request. The hash ensures that all requests
for an LBN will go to the same replica. Hashing provides long-term, statistical
load balancing; short-term load imbalances can exist either due to imbalances in
the workload, imperfections in the replica placement, or imperfections in the hash
function.

Round robin request distribution schemes and their weighted variations [IBM-

net; CiscoDirector] are in use in many systems. A round robin system achieves load
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balancing by sending requests to each of the replicas in sequence. This provides
each replica with the same amount of work as any other replica. However, with
disk drives, all work is not created equal. In fact, some requests take considerably
longer to service than other requests. As a result, a weighted round robin approach
was utilized. In a weighted round robin approach, the existing load of the device
is also considered when distributing requests. For instance, suppose that device A
has 4 requests and device B currently has 3 requests. The weighted round robin
system would send the next request to device B to balance the load, even if the
prior request was also sent to device B. The goal is to keep the number of requests
at each replica approximately equal.

There are also more dynamic schemes that migrate or rebalance load based
on feedback. These are popular for activities like process or transaction execu-
tions. Clusters of web servers often use a load-balancing front-end to distribute
client requests across the back-end workers. With a front-end distributing re-
quests across a set of storage servers, feedback-based load distribution works
well [ArpaciDusseau99; Hsiao91; Lee96].

LARD [Pai98] is one load balancing scheme that uses feedback, which combines
the load balancing of a round robin replica selection scheme with high locality
for improved caching. Round robin request distribution will result in good load
balancing since requests are delivered round robin to devices that can service
them, weighted by the load at the store to prevent load imbalances. However, this

load balancing technique does not take into account the caching impact and, as



26 . D-SPTF: Decentralized request distribution in brick-based storage systems

a result, can induce poor cache locality, since a request might not be routed to a
store that has the data cached. Locality-based hashing has the opposite problem.
With this technique, the workload is partitioned among all devices that can service
it. This type of system will always route the same request to the same back-end
store resulting in good cache hit ratios. However, if the workload is partitioned
incorrectly, transient and long-term load imbalances can occur.

LARD improves both load balancing and locality by partitioning the workload
initially and then readjusting those partitions if a load imbalance occurs. Specif-
ically, when a request arrives for the first time in the system, LARD selects the
server with the lowest load to service that request. LARD records which server
was selected to service that request. If the request arrives in the system again, it
will be forwarded to the same server that serviced the previous request in order
to increase the probability of cache hits.

This is very similar to the locality-based hashing technique. The difference is
that LARD redistributes when load imbalances occur. If the load between servers
is greater than an administrator-specified threshold, then the LARD system will
repartition requests to rebalance to the load. During a load imbalance, when a
request arrives it will be redirected to lowest-loaded server instead of going to
the server that last serviced it. Again, the new location is recorded so that future
requests will be routed to that server. This rebalancing continues until the load
imbalance drops below the threshold.

Obviously LARD is sensitive to the threshold tuning parameter that the ad-
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ministrator sets. If the threshold is set too low, then LARD will tend to behave like
a weighted round robin load balancer, because it will be continuously distributing
the load to the least-loaded server. If the threshold is set too high, then it will
behave like a locality-based hashing system, because LARD will be less likely to
distribute the workload for transient load imbalances. Each of these systems is
unacceptable. Choosing this parameter in itself is non-trivial, since a load imbal-
ance under one set of conditions may not be a load imbalance under another set
of conditions.

One of the major advantages that D-SPTF has over LARD is that D-SPTF has
no tuning parameters. If the performance of the system changes, then D-SPTF will
automatically adapt to the new system performance without external intervention.
In addition, while LARD can adapt to load imbalances and generate good cache
performance, it has no provision to provide the improved scheduling efficiency that
D-SPTF provides. Thus, D-SPTF is able to provide all of the benefits of LARD,

without requiring tuning, while also providing improved disk scheduling efficiency.

3.4 Replica selection systems

Several previous studies have explored replica selection in multi-disk environments,
including Ivy [Lo90], HP AutoRAID [Wilkes96] and SR-Array [Yu00]. D-SPTF is
not the first system to propose using multi-disk scheduling, though it is the first
to do it in a decentralized setting.

Lo [Lo90] first attempted a technique similar to D-SPTF in a multiple device
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system in Ivy. Lo realized that if a system kept multiple copies of a file, read perfor-
mance could be improved by balancing the load across storage nodes and choosing
the one that gives the fastest response. However, the update cost of such a system
could incur significant overhead. The approach that they took was to alter the
number of replicas of data based upon its access patterns. They hoped to obtain
the advantages of wide replication for read-only workloads [Satyanarayanan89;
Mann89] and avoid update limitations for replicating read and write data [Mor-
ris86; Treese88]. This expands upon user-directed variable schemes [Walker83;
Purdin87] to create an automatic and dynamic replication system. Ultimately,
Ivy tried to achieve a dynamic replica control system that maximizes read perfor-
mance and minimizes the overhead incurred due to updates of replicated data.

Ivy’s particular relevance to D-SPTF lies in how a replica is selected to service
a request. When a file is stored with multiple copies on multiple disks, Ivy sends a
read request to the replica disk with the shortest response time using centralized
knowledge, including service time plus controller overheads. This is similar to
D-SPTF in principal, except that the underlying stores use FCFS, rather than
SPTF, head schedulers. Since Ivy uses FCFS, no reordering of requests occurs
when new requests arrive. Ivy does suggest that CLOOK could be used instead
of FCFS, but this would allow request reordering which makes prior service time
predictions unreliable.

D-SPTF is different from Ivy in that it assumes a high performance SPTF

disk scheduler at the device rather than FCFS. This SPTF disk scheduler has a
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significant increase in scheduling efficiency over a FCFS scheduler. D-SPTF also
sends a request to all replicas that can service it, rather than using a centralized
decision making service. D-SPTF waits until a request is to be serviced to decide
which replica is responsible for that request. This delayed decision allows for better
tolerance for transient load imbalances. Ivy also has no notion of caching at each
of the nodes; it assumes a central cache above the individual storage devices.

The HP AutoRAID [Wilkes96] is another system that suggests a distributed re-
quest selection algorithm. The HP AutoRAID system provides a two-level storage
hierarchy in a single disk array controller. The upper level of the storage hierarchy
provides high-performance mirrored storage for active data. The lower level of the
storage hierarchy provides space-efficient RAID [Lawlor81; Park86; Patterson88;
Patterson89; Chen93; Chen94; Menon93] storage for inactive data. For replica se-
lection, the HP AutoRAID system chose to use random selection when a request
arrives in order to keep an even and balanced load. However, Wilkes et al. also
suggested that one could select the disk to service each request by choosing the
disk that could service the block in the shortest time using the SPTF algorithm.
However, no experimentation was done using the SPTF algorithm. Some exper-
imentation was done using a SSTF algorithm with a centralized controller and
full system knowledge, but Wilkes et al. came to the conclusion that the complex-
ity associated with building a distributed Shortest Seek Time First(SSTF) wasn’t
worth the gains it provided with basic mirroring.

More recently, Yu et al.[Yu00] presented a similar replica selection algorithm to
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D-SPTF. They explored multi-disk array scheduling in the SR-Array, which was
designed to trade off storage capacity for improved media performance. This work
builds upon the prior work in striping [Matloff87], mirroring [Bitton88; Dishon88;
Polyz0is93; Orji93] and rotational replicas [Ng91]. The SR-Array combines the
techniques used in striping and rotational replicas to achieve a reduction in overall
request latency. The SR-Array’s relevance to D-SPTF is due to modifications
that were made to a mirrored array to compare to the SR-array. The changes
that they made to traditional mirroring are very similar to the distributed SPTF
algorithm used in D-SPTF, though in a centralized controller. What they proposed
was to change mirroring so that instead of partitioning the requests between the
mirrors, all requests would be sent to all mirrors. Once a mirror scheduled a
request, it would be removed from the other mirror. This technique was only used
in a alternative ideal mirror system to compare to SR-Array. The SR-Array could
not use such scheduling since all its replicas were made on a single disk. While
Yu et al. never explored this technique in detail nor did they consider replication
levels greater than 2-way mirroring, this scheme is similar to the centralized ideal

against which we compare to D-SPTF.



4 D-SPTF Design

The D-SPTF request distribution protocol was designed with a set of goals in mind:
to maximize read performance of a replica-based system, to minimize wasted cache
space, and to limit protocol communication costs. The challenge of D-SPTF lies in
creating a protocol that is effective for both read and write requests without incur-
ring excessive communication. Additionally, the D-SPTF protocol should prevent
multiple bricks from servicing the same request, which adds complexity to the
problem. This chapter describes the read and write protocols for D-SPTF, fol-
lowed by D-SPTF’s cLAIM conflict resolution mechanism for preventing duplicate

work.

4.1 The D-SPTF protocol

The D-SPTF protocol supports read and write requests from a client to data that
is replicated on multiple bricks. While a read can be serviced by any one replica,
writes must be serviced by all replicas; this leads to different protocols for read

and write. The protocol always tries to process reads at the brick that can service
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Fig. 4.1: Read operation in D-SPTF. The client sends a read request to one brick, which
forwards it to others. The brick that can schedule the read first aborts the read at other bricks,
and responds to the client.

them first, especially if some brick has the data in cache, and to perform writes
so that they leave data in only one brick’s cache. Bricks exchange messages with

each other to decide which services a request.

4.1.1 Read processing

The challenge of replica selection is in selecting which brick will service the request
so that all the resources are optimally utilized. Figure 4.1 illustrates the steps to
service a read request in D-SPTF.

When a storage brick receives the request from a client, it first checks its own
cache. If the read request hits in the brick’s cache, then it is immediately returned
to the client and no communication with other bricks is required. If the request

does not hit in the brick’s cache, then the brick places the request in its disk queue
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and forwards that request to all other bricks that hold replicas of that data.

When a brick receives a forwarded read request, it first checks to see if the
data is in its own cache. If the request hits in cache, then the brick immediately
returns the data to the client and sends a CLAIM message to all other bricks with
a replica so that they will not service the request. If the read request does not hit
in cache, then the brick places the request in its own disk queue.

When it comes time to select a request for a disk to service, a brick scans its
queue and selects the request that the disk can service with the shortest positioning
time (i.e., each brick locally uses SPTF scheduling). If the request is a read, the
brick then sends a CLAIM message to the other bricks with replicas so that they
know to remove the request from their queues. When a brick receives a CLAIM
message, it scans its queue for the request and removes it.

If a cLAIM message is delayed or lost, a request may be handled by more than
one brick, which will have two effects. The first effect is that duplicate work will be
done, which will cause some resources to be wasted. The second effect is that the
client will receive more than one reply—clients can simply squash such duplicate
replies. Message losses should be very rare in the reliable, high-speed networks of
brick-based systems. Even if a CLAIM message is lost, conflicting CLAIM messages
are rare, so duplicate work caused by lost messages will be even rarer.

If a brick fails after claiming a read, but before returning the data to the client,

the request will be lost. Clients timeout and retry if this occurs.



34 . D-SPTF: Decentralized request distribution in brick-based storage systems

Client Brick 1 Brick 2

I write(addr, data) I

copy to
nvram

forward write(addr, data)

| ]

|

| copy to
| nvram

] ack() |
\ ack() )
1

write
I:] back,
keep

|

|

write
back,
evict

Fig. 4.2: Write operation in D-SPTF. The client sends a write request to one brick, which
forwards it to others. Each brick determines whether it is the one to keep the data in cache.

4.1.2 Write processing

The write protocol (Figure 4.2) is somewhat different from the read protocol.
When a brick receives a write request from a client, it immediately forwards the
request to all other bricks with a replica of the data. When a brick receives a
write request, either directly or forwarded, the brick immediately stores the data
in its local NVRAM cache. Bricks that receive a forwarded write request send
an acknowledgment back to the first brick when the data is safely stored; the
first brick waits until it has received acknowledgments from all other replicas,
then sends an acknowledgment back to the client. If the original brick does not
hear from all bricks quickly enough (which should be very rare in the reliable,
high-speed networks of brick-based systems), a consistency protocol must address

the potential brick failure. The basic D-SPTF protocol should mesh well with
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most consistency protocols (e.g., [Amiri00; Frolund03; Goodson02; Goodson03a;
Gray78]). A basic approach would be to timeout requests and resend the request
once the timeout has expired. A brick, upon receiving the duplicate request, would
return an acknowledgment and overwrite the existing data in cache. If a brick
fails to send an acknowledgement after repeated time outs then the request will
be reported as failed to the client and/or administrator. Alternatively, the brick
could first timeout and resend the request to those bricks that failed to respond.
If a few retries fail, then the request can be marked as failed.

At some point after the data is put in the NVRAM cache, it must be destaged
to media by placing a write request in the brick’s disk queue. Some time later, the
brick’s local SPTF head scheduler will write the data back to disk, after which all
but one brick can remove the data from its cache. Bricks ensure exclusive caching,
despite independent invalidation decisions, by only keeping the block in cache if

hash(address)mod|replicas| = replica id.

4.1.3 Concurrent CLAIM messages

With the base protocol, while one brick’s CLAIM message is being transmitted
across the network, another brick could select the same read and attempt to service
it. If both bricks actually service the same request, then duplicate work would
occur. Both bricks would then waste disk head time and cache space. This is
most likely to occur any time the system is idle when a read request arrives, in

which case, all replicas that can service the request will attempt to service it. This



36 . D-SPTF: Decentralized request distribution in brick-based storage systems

causes each replica to try to CLAIM that request. The system must be designed
so that only one CLAIM succeeds to prevent duplicate work. The greatest problem
duplicate work creates is the potential for continuing conflict. If two bricks service
the same request, then they will be at approximately the same head position to
select the next request. Since SPTF is utilized, it is very likely the next request
that both bricks select will again be the same. This creates a cycle of continuing
conflicts resulting in duplicate work. Duplicate work can be a serious problem.
D-SPTF can use one of two mechanisms to avoid duplicate work: a pessimistic
approach (prescheduling) and an optimistic approach (latency scheduling). The
pessimistic approach assumes that conflicts will occur and avoids conflicts by
prescheduling requests by waiting for a short period (two times the one-way net-
work latency) after sending the CLAIM message to actually send the request to
disk. Assuming an approximate bound on network latency, waiting ensures that
a brick almost always sees any other brick’s CLAIM message before servicing a
request. If, during the wait period, the brick receives a CLAIM message from an-
other brick, then only the one of those two that can service the request fastest
should do so. To enable this decision, each CLAIM message includes a service time
bid (the SPTF-predicted positioning time for the corresponding brick); with this
information, each brick can decide for itself which one will service the request. The
current approach is for the request to be serviced by whichever brick submits the
lowest service time bid, ignoring when CLAIM messages were sent. If the service

time bids are identical for the competing CLAIM messages, then the brick with the
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lowest brick ID will service the request. The brick that lost the bid immediately
schedules another request and sends a new claim message. This will work well for
high-speed networks, but may induce disk head inefficiency when network latencies
are significant fractions of mechanical positioning times.

With prescheduling, the wait period can almost always be overlapped with the
media access time of previous requests. That is, the system does not wait until
one disk request completes to select the next one. Instead, the system makes its
selection and sends CLAIM messages a little more than the wait period before the
current request is expected to complete. If the disk is idle when a request enters
its queue, the brick will compute the expected seek and rotational latencies re-
quired to service that request, and will wait one network round trip before issuing
the request. With no work at the device, this will increase the minimum possible
latency of the request by two network round trips for conflict avoidance. As illus-
trated in Figure 4.3, this does not impact performance unless network latency is a
substantial fraction of rotational latency, since the brick is effectively shifting the
rotational latency to before the seek instead of after.

Prescheduling does introduce a compromise. If two times the network latency
is greater than the service time, then the system will delay servicing the request
until two network latencies have occurred. This can allow the device to go idle
while the request is waiting and can add to the request latency. However, since
many existing networks provide low latencies, this should be rare.

The second approach is more optimistic by assuming that conflicts do not
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Fig. 4.3: Overlapping CLAIM communication with rotational latency. Issuing the request
to disk can be delayed up to the time when seek latency must begin to reach the target track
before the intended data passes under the read/write head. The rotational latency gives a window
for exchanging CLAIM messages with no penalty.

occur with great frequency. In this case, it is permissible for duplicate work to
occur, so long as it does so with low frequency. Instead of prescheduling a request
and waiting two network latencies to issue the request, the optimistic scheme
schedules the next request as soon the first one completes. The scheduler only
waits for conflicting CLAIM messages as long as the disk would take to rotate into
position to service this request before sending the request to disk. Since the disk is
rotating continuously, delaying sending the request to the device during rotational
latency does not increase request latency. Since network latency tends to be a
small fraction of rotational latency, there is sufficient time for competing CLAIM
messages to be received before the request is issued.

The benefit of this approach is that one will never increase request latency

by waiting for potential conflicting claim messages. But if the network latency is
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higher than rotational latency, two bricks may service the same request, resulting
in duplicate work. This duplicate work wastes disk head time and runs the risk of
creating a continuing conflict. The wasted time will result in increased request la-
tency. To prevent continuing conflict, if a conflict has been detected, one scheduler

would need to be temporarily modified to select a different request.
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5 Experimental setup

The evaluation of D-SPTF was performed using a simulated environment of bricks,
disks, and network infrastructure. To compare against D-SPTF, decentralized al-
gorithms and an ideal centralized system were also simulated. This chapter details
the simulation environment utilized and the additional algorithms studied. For
all experiments, confidence intervals were computed based upon techniques for an

unknown mean and unknown standard deviation.

5.1 Simulation Environment

The D-SPTF system was built within a simulated environment. The simulator is
event-driven and is built upon the publicly-available DiskSim disk models [disksim]
to simulate the disks within bricks. The DiskSim simulator accurately models many
disks [Bucy03], including the Quantum Atlas 10K assumed in our system model.
Simulation was chosen for experimentation due to the ease of construction and
the accurate modeling provided by the DiskSim diskmodel component.

Four algorithms were implemented—D-SPTF, LARD, decentralized hashing,
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and a centralized ideal—to compare the different aspects of replica selection in a
brick-based storage systems. The system model for the first three algorithms are
similar. Each system contains multiple replica groups, from 2-50 replica groups
depending the experiment under test. Each replica group consisted of 2-8 bricks.
Each brick is modeled as a single disk, processor, and associated disk block cache.
Bricks are connected through a switched network. The one-way network latency
is a model parameter, set to 50 microseconds by default, but was varied between
50-5000 microseconds.

Each brick contains a request queue. Whenever a brick’s disk is about to be-
come idle, the brick scans its request queue and makes a local decision to select
the request with the shortest positioning time as the next request to be serviced.
The simulation model assumes an outside-the-disk SPTF implementation, which
has been demonstrated as feasible [Dimitrijevic03; Lumb02; Yu00], in order to al-
low the D-SPTF protocol to abort operations in the queue when an operation is
claimed by another brick.

Each brick has its own cache, 512 MB in size unless otherwise stated. All
simulated caches are non-volatile and use an LRU replacement policy. Each brick
is composed of six 9 GB disks. Each disk is represented as its own volume with no

internal striping or redundancy.
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5.2 Request distribution algorithms compared

D-SPTF is compared against the two decentralized protocols, decentralized hash-
ing and LARD, and the centralized system. The primary differences between the
D-SPTF system and the decentralized hashing system is how requests are routed.
The D-SPTF implementation follows the protocol outlined in Section 4.1, with
requests broadcast to all replicas and one replica claiming each read request.

In the decentralized hashing system, a read request is serviced by only one
replica, determined by hashing the source LBN to get the brick’s id. If a brick
receives a read request that should be serviced by a different brick, it will forward
the request to that brick without placing the request in its own queue. Hashing on
the LBN provides both exclusive caching and long-term load balancing. However,
since each replica does not see all requests for the replica set, it will have a reduced
effective queue depth for SPTF scheduling. In addition, while decentralized hashing
provides statistical load balancing, it is susceptible to short-term load imbalances.

The Locality-Aware Request Distribution (LARD) [Pai98] algorithm is de-
signed to maintain good cache performance while preventing load imbalances.
LARD achieves this in the following manner. When a request first arrives in the
system, LARD looks at the bricks in the system and selects the brick that has the
shortest queue depth to service that request. After the LBN has been serviced,
LARD records which brick the LBN was routed to so that all future requests for

that LBN will go to the same brick. Sending all future requests back to the same
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brick allows for good cache hit performance. To prevent load issues, LARD mon-
itors the brick queues and, if any queue reaches a certain set threshold, all new
requests will be routed to bricks with lower queue depths and future accesses to
those LBNs would go to the new brick locations. While the adaptability will help
prevent load imbalances, changing which brick services an LBN can reduce the
cache hit ratio. LARD’s tuning parameters are an exercise in compromise, since
making the system more adaptable improves load balancing at the cost of reducing
cache hits. A less adaptable system will have better cache hit ratio but greater
potential for load imbalances.

LARD was originally proposed for use in a centralized server front-end to dis-
tribute requests. Since decentralized brick-based storage has no centralized control,
the LARD protocol was modified for brick-based storage. The brick-based LARD
system does this by routing all requests to a replica group through one brick. This
brick behaves like the centralized server in that it keeps track of every replica’s
queue depth and which requests have been routed to which replicas. This central
brick also decides when to rebalance and how. The brick-based implementation
uses the thresholds and tuning values reported in [Pai98].

The centralized ideal is obviously designed differently from the decentralized
systems. The centralized system contains one single cache with the same aggregate
cache space as all the bricks in the decentralized systems. It also contains a single
request queue that stores all requests. When a disk is about to complete a request,

the centralized system selects the next request for that disk. To represent an ideal
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centralized system, we modeled a centralized version of D-SPTF (via a single
outside-the-disk SPTF across disks).

Current disk array controllers are not designed like the idealized centralized
system against which we compare D-SPTF, though they could be. Instead, most
keep a small number of requests pending at each disk and use a simple scheduling
algorithm, such as C-LOOK, for requests not yet sent to a disk. Without a very
large number of requests outstanding in the system, the performance of these
systems degrades to that of FCFS scheduling. So, for example, the throughput
of our idealized centralized system is up to 70% greater than such systems when

there are 8 replicas.
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6 Evaluation

This chapter evaluates how well D-SPTF is able to achieve its performance goals.
These goals are to provide load balancing for long-term and transient load im-
balances, to provide for good disk scheduling efficiency, to maintain cache perfor-
mance, and to adapt quickly to heterogenous systems, all without requiring admin-
istrator tuning of the system. In addition, the system should strive to minimize
the communication costs associated with the decentralized request distribution
protocol.

Comparing D-SPTF to the performance of existing alternative systems requires
one to consider three challenges: load balancing, scheduling efficiency, and cache
performance. Each of these challenges has been addressed individually with ex-
isting systems but no systems have been able to address all three simultaneously

before D-SPTF.
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6.1 Load balancing

Load balancing is the equal distribution of work among bricks. This provides each
brick with an equal share of the total work in the system and prevents any one
brick from becoming overloaded, slowing down the entire system. When any one
brick services a disproportionate share of the work in the system, a load imbalance
occurs and the entire system’s performance can be degraded. There are two types
of load imbalances that can occur: long-term load imbalances and transient load
imbalances. Long-term load imbalances occur generally because of a misconfiguring
of the system, while transient load imbalances occur because of some temporary
event that slows the performance of one or more bricks.

Load balancing is a significant problem in storage systems today. Improperly
balanced load can result in devices being underutilized or even idle when work
exists in the system. Replica-based systems increase the problem of load balancing
because traditionally only one replica is selected to receive the request. If the
incorrect replica is chosen, then a load imbalance can occur. An example of this
would be to send equal amount of work to devices of unequal performance. For
the purposes of this dissertation, a load imbalance is measured as the case where
one replica is idle while other replicas have work queued that the idle replica could
service.

One factor in load balancing is deciding when to select the replica to service

the request so that the most informed load balancing decision can be made. If the
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decision is made too early, then conditions can change resulting in the previously
correct decisions causing a load imbalance.

D-SPTF solves the problem of load balancing in replica selection by delaying
the choice of which brick services each request until the request is to be serviced.
This is the last possible moment that the load balancing decisions can be made,
resulting in the most informed load balancing decision.

D-SPTF implements this by sending a request to all bricks that can service
it. This allows all bricks see all requests that they can service, ensuring that no
brick will ever be idle when work exists in another brick’s queue that it could
service. With hashing and LARD, requests are routed to specific replica-holders
as they arrive. These distribution schemes are designed to statistically prevent
long-term load imbalances but do not prevent transient load imbalances. As a
result, a request may be periodically routed to a busy device rather than an idle
device because of the statistical load balancer, wasting the idle device’s resources.

Load imbalances are also affected by properties of the workload in addition to
the request selection algorithm. These properties are the read/write ratio of the
workload and the number of requests outstanding in the system. The read/write
ratio affects the load balance of the system because writes go to all bricks in
a replica group, which reduces load imbalance. Since all bricks receive an equal
amount of work, load imbalance is reduced as the number of writes in the system
increases.

The number of requests outstanding in the system also has an impact on
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load balancing due to the statistical nature of traditional load balancers. In these
systems, with few requests outstanding, statistical load balancing may cause a
replica to receive additional work, even when there are idle devices, creating a
load imbalance. With large numbers of requests outstanding, it is less likely that
a device will be without work.

To evaluate how much better D-SPTF is able to prevent transitory load imbal-
ance than the other schemes, I conducted two experiments. To determine which
schemes balanced the load most effectively, the average time a device spends idle is
measured. A system that is perfectly load balanced will have zero idle time at any
of its devices when there exists enough work to fully saturate the system. A system
that suffers from transient load imbalances will have some of its devices period-
ically go idle. The first experiment examines the impact of workload read/write
ratio on device idleness, and the second experiment varies the number of requests
outstanding in the system.

The first experiment was designed to determine the sensitivity of transient load
imbalances to read/write ratio. This experiment uses a synthetic random workload.
This workload operates in a closed loop with zero think-time. The LBNs are drawn
uniformly from the LBN space of the LUNs tested and the request sizes are drawn
from a Zipf [Zipf35] distribution with a 4KB average. 16 requests were maintained
outstanding in the system. The read/write ratio was varied between write-only
and read-only in 10% increments. Eight replicas are used in the system.

Figure 6.1 show that, irrespective of read/write ratio, D-SPTF never exhibits
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Fig. 6.1: Brick idle percentage as a function of Read/Write ratio. This graph show
the percentage of idle bricks with each specific algorithm. These results were normalized to the
performance of the ideal Centralized SPTF implementation. The 95% confidence intervals for the
results were all within 1% idle percentage.

any idle periods in the system. LARD and hashing however do exhibit periods
of idle behavior. In a completely read-only workload, they exhibit up to 15%
idle periods. However, as the write ratio increases, the idle percentage decreases
to almost zero at 60% read and writes. By changing LARD’s parameters to be
more adaptable, LARD can adapt to transient load imbalances by balancing brick
queues more aggressively, but will suffer additional cache penalties.

The second experiment explores the effect of queue depth on transient load

imbalance. The same workload as before was used with this experiment, with the
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Fig. 6.2: Idle percentage as a function of queue depth. This shows the brick idle percentage
as a function of the system queue depth for each of the different algorithms. Since there were 8
replicas in the system, a minimum of queue depth of 8 was used to provide at least one request
for each replica. At a queue depth of 8 the ideal load balanced systems were slightly idle whenever
a request completed at a replica, due to the system having to wait for completion to be reported
to a client and a new request to be sent. The 95% confidence intervals for the results were all

within 1% idle percentage.

following exceptions: the read/write ratio was fixed at read-only and the queue
depth varied from 8 to 32 requests. This experiment utilized 8 replicas.

Figure 6.2 shows that D-SPTF is able to effectively balance the load in the
system and prevent idle devices, irrespective of the queue depth. D-SPTF only
fails to fully load balance is at queue depths of 8 to 10. At these queue depths,
when any of the bricks completes its 10, that brick is idle until the client sends a

new request into the system, since there is insufficient work to keep all bricks busy.
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LARD and hashing do not fare as well as D-SPTF. These algorithms are able to
prevent idle devices at high system queue depths, but at low system queue depths
they have up to 35% of their head positioning time wasted by idleness. As before,
the more highly adaptive LARD is able to adapt to transitory load imbalances.
However, its cache hit ratio will be affected by increasing adaptability.

These experiments show that, for varying workload conditions, D-SPTF avoids
transient load imbalances while still maintaining long-term load balancing. Hash-
ing and LARD, while balancing load in the long term, do exhibit transient load
imbalances where a request is routed to a busy brick instead of being routed to an
idle brick. Since D-SPTF routes all requests to all bricks that can service them,
it will never create a situation where work exists at one brick that could be ser-
viced by another. This allows D-SPTF to effectively prevent both transient and

long-term load imbalances.

6.2 Scheduling efficiency

With traditional mechanisms, one must trade off between load balancing and
scheduling efficiency. Improved load balancing decreases scheduling efficiency and
vice versa. However, D-SPTF does not have to make this trade-off. It achieves both
at once. To understand why this is the case, one must understand how traditional
load balancers impact scheduling efficiency.

The goal of traditional load balancing schemes is to evenly distribute the re-

quests among all the bricks in the system. This gives each brick an equal fraction
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of work. Given N requests in a system and K replicas, the traditional system will
give each replica N/K requests. But, as shown in Figure 6.4, the more requests
that a device has to schedule, the greater its disk scheduling efficiency. The ideal
scheduling efficiency occurs when all N requests are sent to one replica instead of
evenly distributed for optimal load balancing. But, sending all N requests to one
replica will result in the other replicas being idle, wasting resources. The increased
scheduling efficiency does not offset the the loss of throughput from idle devices.
To maximize system throughput, traditional systems provide load balancing at
the expense of disk scheduling efficiency.

D-SPTF does not have to choose between providing both scheduling efficiency
and load balancing. D-SPTF does this by sending a request to all bricks that can
service it. Since no partitioning occurs at request arrival time, each brick sees all
the requests that it could service. This results in a maximally sized queue for disk
scheduling. To prevent duplicate work, whenever one brick selects a request to
service, that request is removed from the other bricks’ request queues. While D-
SPTF does maximize the scheduling queue it does not increase the amount of work
that each replica services. Each of K replicas still services N/K of the workload on
average.

In Section 6.1, D-SPTF was shown to provide effective load balancing. In this
section, the experiments show that D-SPTF is also able to provide good disk
scheduling efficiency. Scheduling efficiency is sensitive to three workload char-

acteristics: request locality, number of requests outstanding in the system, and
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read/write ratio. To evaluate D-SPTEF’s ability to provide scheduling efficiency
a number of experiments were conducted. The first experiment is a baseline ex-
periment. Additional experiments modified the baseline workload’s queue depth,
read/write ratio and locality to gauge D-SPTF scheduling efficiency under varied
workload conditions.

For the baseline experiment, a synthetic random workload was used. This work-
load operates in closed loop format with zero think-time. The requested LBNs are
drawn uniformly from the LUNs and the request sizes are drawn from a Zipf dis-
tribution with a 4KB average. The requests are 2/3 reads, and 16 requests were
maintained outstanding in the system. Additionally, for the baseline, replication
was varied from 2-8 replicas.

With basic mirroring (two copies), D-SPTF provides 9% higher throughput
than hashing and LARD (Figure 6.3). As the number of replicas increases, D-
SPTF’s performance advantage increases. At eight replicas, D-SPTF provides 20%
higher throughput. In every case, the media performance of D-SPTF is equivalent
to the centralized ideal.

Recall that writes go to all bricks with replicas in all schemes. So, with 90%
reads, each brick will average 1.6 writes and either 7.4 reads (for D-SPTF) or 1.8
reads (for hashing or LARD) pending; with one request being serviced, the queue
depth comparison is thus 8 verses 2.4. With 67% reads, the comparison is 8 versus
approximately 5.6. The throughput values in Figure 6.4 for different queue depths

match those observed in Figure 6.3, for all of the different schemes and numbers
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Fig. 6.3: Throughput comparison of protocols, varying number of replicas. Throughput
is shown per replica (disk or brick). The 95% confidence intervals for the results were all within
2 10/s.

of replicas.

6.2.1 Effect of number of outstanding requests

Evaluating the impact of number of requests outstanding is important, since the
expectation is that as queue depth increases, the performance advantage of D-
SPTF will decrease.

To evaluate this effect, the baseline workload was adjusted to vary the effective

number of requests outstanding per replica group, while the degree of replication
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Fig. 6.4: Disk throughput with SPTF scheduling, as a function of queue depth. The
data shown are for a closed synthetic workload (see Chapter 6) with a constant number of pending
small requests to random locations on a Quantum Atlas 10K disk.

was fixed at two replicas. The number of requests outstanding per replica group
was varied from 2-32 requests outstanding per replica group with the remainder
of the workload parameters kept constant. The results in these experiments were
normalized against the central SPTF algorithm to show the performance difference
of the competing schemes in greater detail.

By examining Figure 6.5, one can see that, as the number of requests outstand-
ing rises, the performance impact of D-SPTF goes down for a 2 replica system.

This is to be expected, because of the diminishing returns that traditional SPTF
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Fig. 6.5: Response time as a function of queue depth for 2-way replication. The dif-
ferences in response time for the differing algorithms is show as queue depth increases. These
results were normalized to the performance of the ideal Centralized SPTF implementation. The
95% confidence intervals for the results were all within 40 microseconds.

exhibits as shown in Figure 6.4. It is after a queue depth of 2 that the scheduling
advantage of D-SPTF drops below 10%. Device manufacturers have often cited
a queue depth of 4 as common for disks. D-SPTF’s advantage grows with higher
replication levels. By increasing replication to 8, D-SPTF’s effectiveness stays at
13% for the baseline case. This is shown in Figure 6.6. The reason that D-SPTF
is more effective with greater replication is that each replica tends to stay within

a certain range of the disk, allowing it to further reduce the positioning times.
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Fig. 6.6: Response time as a function of queue depth for 8-way replication. The dif-
ferences in response time for the differing algorithms is show as queue depth increases. These
results were normalized to the performance of the ideal Centralized SPTF implementation. The
95% confidence intervals for the results were all within 45 microseconds.

6.2.2 Effect of read/write ratio

It is important to evaluate the impact of the read/write ratio on the scheduling
efficiency of D-SPTF. Since the scheduling impact of D-SPTF is derived from the
increase of scheduling queue depth, the more writes there are in the system the
lower D-SPTF’s advantage will be. This is due to writes being sent to every brick
in the replica group, which increases the scheduling queue depth of each brick for
each write in the system.

To evaluate the impact of read /write ratio on scheduling efficiency, the baseline
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Fig. 6.7: Response time as a function of read/write. The differences in response time for
the differing algorithms is show as read/write ratio increases. These results were normalized to
the performance of the ideal Centralized SPTF implementation. The 95% confidence intervals for
the results were all within 40 microseconds.

workload was modified to change the read/write ratio while all other parameters
were kept constant. The read/write ratio was varied from write-only to read-only
in 10% read/write ratio increments.

Figure 6.7 shows that, as expected, D-SPTF extracts the greatest scheduling
efficiency advantage with a read-only workload. The scheduling advantage is re-
duced significantly once writes are introduced into the system, but D-SPTF is still
effective at a common read/write ratio of 67% At a read ratio of less than 90%,

the improved scheduling performance of D-SPTF drops below 10%.
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The reason that D-SPTF performs best for the read-only workload is because
traditional schemes partition the workload. Given a mirrored system (2 bricks),
with 10 read requests outstanding, using LARD or hashing should result in 5
requests in each brick’s queue on average. Using D-SPTF on the same system will
result in 10 requests in each brick’s queue, since each brick sees all requests it can
service. This results in a 2x greater queue depth for D-SPTF to schedule from
with the read-only workload. If, instead of the workload being 10 reads, the ratio
was 6 reads to 4 writes, each brick in LARD and hashing would receive all 4 writes
and 3 of the reads. This would result in a scheduling queue of 7 for LARD and
hashing. Each brick in the D-SPTF would also receive all 4 writes and all 6 reads.
This results in a queue depth of 10 requests and only a 43% greater queue depth
for D-SPTF.

Increasing the number of writes in the system will reduce the scheduling queue
advantage of D-SPTF as a result. At 100% write, D-SPTF’s advantage is reduced

to zero, as shown in Figure 6.7.

6.2.3 Effect of locality

A third factor that can affect scheduling efficiency is locality. The baseline study
utilized a random workload. In real systems, however, workloads often exhibit a
degree of locality.

To evaluate the impact of locality on D-SPTF’s performance, the baseline

workload was modified to introduce localized requests. A localized request is de-
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Fig. 6.8: Normalize response time as a function of request locality. The differences in
response time for the differing algorithms is show as request locality increases. These results were
normalized to the performance of the ideal Centralized SPTF implementation. A local request is
defined as a request that is within 10 disk tracks of the last request sent to the system. The 95%
confidence intervals for the results were all within 30 microseconds.

fined as one that is within ten disk tracks of the last request. The percentage of
localized requests was varied between 0-100% of requests, in 10% increments.
Figure 6.8 shows that the performance advantage of D-SPTF increases as the
fraction of local requests increase. For a purely random distribution of requests (0%
local), D-SPTF achieves 9% better scheduling efficiency than Hashing or LARD.
However with a high-locality IO stream, the D-SPTF scheduling advantage in-

creases to 24% over LARD and hashing.



6.2 Scheduling efficiency -+ 63

—SPTF — FIFO

N

I
I
I
I
I
I
I
I
I
I
I
I
I

N
(8] w
I I

-
(&)
I

Positioning time(ms)
- N

o
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Queue depth

o

Fig. 6.9: Local request throughput with SPTF scheduling, as a function of queue
depth. The data shown are for a closed synthetic workload (see Section 6) with a constant
number of pending small requests to random local locations on a Quantum Atlas 10K disk.

The reason that D-SPTF benefits from more localized access is the behavior
of SPTF scheduling in the presence of local requests. Figure 6.9 demonstrates this
behavior. If one compares Figure 6.9 to Figure 6.4, one can see that, for localized
requests, SPTF improves positioning time overhead by 3x at a queue depth of 16
relative to a queue depth of 2. On the other hand, with random requests, SPTF
only schedules 1.8x better at a queue depth of 16 requests than at a depth of 2. One
can also see the the slope of the curve with localized requests is initially greater

than with random requests. The reason for this is that localized requests reduce
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the seek times significantly. As a result, SPTF is mostly minimizing rotational

latency, which can be reduced more easily than seeks.

6.2.4 Effect of combinations

Each of these three attributes (number of outstanding requests, read/write ratio,
and locality) can have a significant effect on its own. However, it is important
to understand the impact on the system when these effects are combined. This
section explores the impacts of read-only workloads with varied queue depths and
high-locality workloads with varied queue depth. Also, read-only workloads with
high locality and varied queue depth are examined.

Figure 6.10 shows the effect of varying the number of outstanding requests for
a read-only workload. The primary impact of increasing queue depth is that the
performance of D-SPTF has been increased, making its performance advantage
more resilient to increased queue depth. In this case, D-SPTF is provides at least
10% scheduling performance improvement for all measured queue depths. This is
considerably better than the benefits for the 67% read/write ratio shown in Figure
6.5.

Figure 6.11 shows the impact of a localized workload with varied queue depths.
As in the prior example, D-SPTF’s increased advantage allows the system to
maintain increased performance in the light of increasing queue depth. Localized
requests allow D-SPTF to maintain at least a 10% scheduling performance advan-

tage for the entire range of queue depths, whereas the baseline workload(shown in
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Fig. 6.10: Response time as a function of queue depth. The differences in response time
for the differing algorithms is show as queue depth increases with a read only workload. The 95%
confidence intervals for the results were all within 50 microseconds.

Figure 6.5) reaches at least 10% performance improvement only at 2 requests.
The final experiment demonstrates the impact of increasing queue depth on a
read-only, local workload. Figure 6.12 shows that D-SPTF produces much greater
benefits in the presence of a read-only localized workload with low replica queue
depth. Combining locality and high read ratio results in a maximum performance
advantage of 57% for queue depths of below 10. This is considerably better than

the baseline maximum of 18% performance improvement shown in Figure 6.5.
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Fig. 6.11: Response time as a function of queue depth. The differences in response time
for the differing algorithms with a highly local request pattern is shown as queue depth increases.
These results were normalized to the performance of the ideal Centralized SPTF implementation.
The 95% confidence intervals for the results were all within 35 microseconds.

6.2.5 Traced workloads

In addition to running synthetic workloads, trace workloads were used to exam-
ine the impact of D-SPTF in real systems. For real workloads, we expect to see
performance gains similar to synthetic workloads for D-SPTF. To verify this ex-
pectation, we use four traces (Table 6.1). The SAP trace [HPLtraces| captures
the I/O activity of a SAP-based system running an Oracle DB supporting 3000+
clients accessing billing records. The Cello2002 trace [HPLtraces| captures the

I/0O activity from the software development activities of a 20-person research lab.
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Fig. 6.12: Response time as a function of queue depth. The differences in response time
for the differing algorithms under a read only, highly localized workload is shown as queue depth
increases. These results were normalized to the performance of the ideal Centralized SPTF im-
plementation. The 95% confidence intervals for the results were all within 40 microseconds.

The WebSearch trace [SPCtraces| captures the performance of a system processing
web search queries. The Financial trace [SPCtraces] captures the performance of
a system running a financial transaction processing system.

Figure 6.13 shows the results for two-way replication. D-SPTF matches Cen-
tral SPTF, and both outperform Hashing and LARD. D-SPTF provides an 11%
reduction in client observed response times for the SAP trace, which is in line
with the synthetic workloads running 2-way replication. There is no change in the

throughput of the system, because the simulated system is powerful enough to
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\ | SAP | Cello2002 | WebSearch| Financial |
R/W ratio 62% 68% 90% 85%
Size 10KB | 11.5KB | 8.2K 9K

Requests 4512361 | 5248101 | 4579809 | 5334987
Duration 15hrs 24hrs 4hrs 12hrs

Table 6.1: Trace characteristics.

complete all trace requests within the trace time frame.

Among these traces, the SAP and the Financial traces have the greatest lo-
cality. This results in D-SPTF’s performance improvement being between 35-50%
over hashing and LARD compared to 20% for the other traces. Cello2002 also has
good locality but has very low load, reducing the potential impact of any scheduling
algorithm. Greater locality increases the importance of rotational latencies relative
to seek times, increasing the value of SPTF scheduling. Since D-SPTF provides
higher effective queue depths, it is able to reduce disk service times further when
requests show higher locality.

One last issue to consider is the impact of request sizes on D-SPTF. D-SPTF
functions best with low request sizes, where positioning time dominates media ser-
vice time. As the requests increase in size, media transfer time becomes a larger
percentage of response time. As the role of positioning time is reduced, the schedul-
ing impact of D-SPTF is also reduced. Today there are many workloads with small
1Os that are limited by positioning delays. This trend is likely to continue in the
future. This is because capacity doubles every 18 months or so while media re-

sponse time increases only about 10% a year. What is considered a large IO this
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Fig. 6.13: Response times for four traces. This graph shows the response times of the four
traces on a two-replica system with various request distribution schemes.

year may not be so next year.

6.2.6 Summary

Overall, D-SPTF exhibits a significant increase in scheduling efficiency compared
to traditional schemes such as hashing and LARD. This is due to D-SPTF for-
warding all requests to all replicas that can service them which maintains load
balancing and maximizes scheduling efficiency since each replica has the greatest
possible queue to schedule requests from. Unlike traditional systems, D-SPTF does

not have to choose between scheduling efficiency and load balancing. D-SPTF can
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achieve both simultaneously.

6.3 Cache performance

One of the more challenging aspects of brick-based storage is building a system
where many small independent caches behave like one large cache. If the caches fail
to work cooperatively, then system performance can suffer from a lack of cache
exclusivity and correspondingly lower cache hit rates. Lack of cache exclusivity
occurs when two bricks each decide to cache the same data. This effectively reduces
the size of the aggregate cache and can cause a lower cache hit ratio. Additionally,
lower cache hit ratios can be caused by load imbalances between bricks. Load
imbalances can cause one brick to service more requests than another brick, causing
the cache of that brick to be cycled too quickly causing lower cache hit ratios.

These two problems do not exist within a traditional centralized system with
a single centralized cache. With a centralized cache, only one copy of data is
maintained, preserving cache exclusivity and effective cache size. Additionally,
with a single centralized cache, there are no load balancing problems resulting in
lower cache hit rates.

D-SPTF provides a solution to these problems. D-SPTF is able to both main-
tain cache exclusivity and keep a high cache hit ratio. For the first problem, cache
exclusivity in read requests, D-SPTF sends a request to all replicas that can service
that request. When a brick receives each request, it checks its cache, and if it hits

in cache, it informs the other bricks so that they do not attempt to service that
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request. In the event that two bricks service the same request, conflict resolution
after the fact will only save one copy of the data. For write requests, only one brick
is selected to cache the new data after writing it to disk media, thus preventing
wasted cache space.

For the second problem, D-SPTF aids in maintaining a high cache hit ratio by
effectively maintaining balanced load between replicas. As a result, no hot or cold
replicas exist, which prevents one cache cycling too quickly.

Hashing and LARD also effectively address both of these issues. Both hashing
and LARD, in the common case, send a request for an LBN to a specific replica and
only that replica. Since a request is only serviced by a single replica brick, multiple
copies in multiple bricks caches are prevented. This maintains exclusive caching
and maximizes use of cache space. Additionally, while hashing and LARD may
suffer from transient load imbalances, they do effectively provide long-term load
balancing. This prevents hot and cold caches. Since all three decentralized schemes
provide both caching properties, one would expect them to perform similarly to
one another and to the centralized ideal.

To explore the caching implications of the different schemes under workloads
with locality, we use the same traces described in Section 6.2.5. Trace character-
istics are shown in Table 6.1.

Table 6.2 shows the overall cache hit rates for the four traces applied to an
8-replica system in which each brick has 512MB. The centralized ideal is equipped

with an equivalent total memory capacity of 4GB. Centralized caching always
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‘ ‘ SAP ‘ Ce1102002‘ WebSea:rch‘ Financial‘
Central SPTF 74.03% | 76.12% | 68.24% | 71.32%
D-SPTF 72.67% | 71.82% | 66.58% | 68.83%
Hashing 72.23% | 71.34% | 66.25% | 68.41%
LARD 72.41% | 71.39% | 66.37% | 68.47%
Adaptive LARD | 35.21% | 35.87% | 32.41% | 32.79%

Table 6.2: Cache hit rates. This table shows the cache hit rates for the different configurations.

achieves the best hit rate, and the three decentralized schemes have hit rates that
are 2-4% lower. This matches the expectations.

The evaluations in previous sections include a variant of LARD that adapts to
load imbalances quickly to prevent transient load imbalances. Very small differ-
ences in queue depths of bricks would cause a redistribution of load. However, the
cost of the load balancing is that this LARD configuration often changes which
replica services requests for a given block. This aggressive load rebalancing reduces
the cache hit ratios, since the data could have been in cache at the brick that last
serviced a request, but not in cache at the new brick. This can also cause two
bricks to have the same data in cache, violating exclusive caching, when the new
brick reads the data into the cache before it has been flushed from the cache of
the previous brick. As a result, the cache hit ratio of Adaptive LARD is signif-
icantly reduced. One can see that the cache hit ratio of Adaptive LARD drops
from 66-72% to 32-35%. While Adaptive LARD does a better job at transient

load balancing, it results in a much worse cache hit ratio.
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6.4 D-SPTF communication costs

D-SPTF provides brick-based storage systems with comparable performance to
an idealized centralized system. However, it does so by relying on extra commu-
nication bandwidth and low-latency messaging. This section quantifies the extra
bandwidth required, the number of additional messages required per request, and

D-SPTF’s sensitivity to network latency.

Protocol message overheads

D-SPTF involves sending every read request and every CLAIM message to each
replica holder, which can result in many more control messages than for hashing-
based request distribution schemes. The number of messages sent per request
depends on the level of activity in the system. The common case occurs when
only one brick attempts to service a request, either because it is a cache hit or
after completing its last disk request. In this case, the total number of messages
will be 2N, where N is the number of replicas of the data. Those 2N messages
include the original request and the request completion. The maximum number of
messages would be sent when all devices are idle when a new read request arrives,
causing them all to decide to try to service the new request. In this case, N2 CLAIM
messages per request would move through the system. The minimum number of
messages sent occurs during a cache hit on the original brick contacted. In this

case, only 2 messages are sent: the request and its completion.
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| 2Way | 4-Way | 6-Way | 8-Way |
16 bricks | 4.003 | 802 | 1207 | 16.15
32 bricks | 4.005 | 801 | 1209 | 16.20
64 bricks | 4.007 | 8.03 | 1205 | 16.17
128 bricks | 4.001 | 8.05 | 12.08 | 16.13

Table 6.3: Number of messages sent per request. The number of messages, in the common
case, is two times the number of replicas. The number of messages is not dependent on the number
of bricks in the system. There are slightly more than 2N messages because of situations when
multiple bricks attempt to schedule the same request.

To validate these expectations, we use the synthetic workload with 16 requests
kept outstanding in each replica group. Table 6.3 shows the number of messages
per request for different numbers of bricks and different degrees of replication.
As expected, the number of messages per request is very close to 2N. The mes-
sage count is unaffected by the number of bricks, since only replica holders for a
particular block are involved in communication regarding requests on that block.

The results are not exactly 2N because some requests find multiple bricks idle
when they arrive. In this case, the idle bricks each attempt to CLAIM the request,
generating N messages. This happens rarely in systems with normal loads. For
additional insight, Table 6.4 shows the percentage of such conflicts as a function
of the number of replicas, with the workload held steady at 16 requests per replica
set. The percentage increases as the number of replicas increase because, with a
lower ratio of requests to replicas, it is more likely that two or more of bricks will
attempt to service the same request at the same time. Even with 16 requests for
eight bricks, fewer than 2.5% of all requests experience such conflict, and the result

is a minimal increase in the number of messages sent.
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\ | 2Way | 4Way | 6-Way | 8-Way |
[ Conflicts [ 0.15% | 0.67% | 1.44% [ 2.44% |

Table 6.4: Number of conflicts per request versus replication level. This table shows the
percentage of requests that multiple bricks attempt to claim. As one can see, as the replication
level increases, the number of such conflicts increase, because the per-brick workload drops.
(Sixteen requests are pending at a time for each configuration.)

In the eight-replica case, the number of D-SPTF messages sent per second per
brick was 3230. With a non-data message size of 50 bytes, this results in 160KB/s
for messages. If every request were for only 4KB of data, the data communication
would consume 800KB/s and the total bandwidth consumed per brick would be
960KB/s. In other words, in this case, the D-SPTF protocol adds approximately
20% more traffic to the network (independent of the number of actual bricks in the
system) even with very small requests. For larger requests the overhead would be
lower. For example, with an average request size of 64KB, the added bandwidth
would be only 1.2%. The network must support this increase in traffic, without

significant performance degradation, in order to effectively support D-SPTF.

Sensitivity to network latency

The D-SPTF protocol relies on relatively low-latency messaging to function well.
Recall that D-SPTF pre-schedules and overlaps CLAIM communication with disk
head positioning time. Doing so hides network latencies that are smaller than
rotational latencies.

Figure 6.14 shows the effect of network latency. This experiment uses the 8-

replica system and workload from Section 6.1, but varies the one-way network
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Fig. 6.14: Effect of network latency on D-SPTF throughput. Throughput is shown per
replica. The network latency varies from 0 ms—instantaneous communication—to 3 ms.

communication latency from 0 ms to 3 ms. The results show that the D-SPTF
protocol has effectively the same performance as the centralized ideal up to about
1 ms one-way network latency. Even at 1.75 ms network latency, D-SPTF shows
less than 5% decrease in throughput. For context, FibreChannel networks have
2-140ps latencies [Schuchart02], depending on load, and Ethernet-based solutions
can provide similar latencies. Thus, D-SPTF should function at full efficiency in
storage clusters and many other configurations.

D-SPTF performance drops off for very slow interconnects because of the wait

period for CLAIM message propagation. Recall that every request is scheduled two
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one-way network latencies before it is issued. So long as the current request does
not complete in less time than two network latencies, no performance is lost. If
a request’s media time is less than two network latencies, then the system will
wait and the disk will go idle until two network latencies have passed. As network
latency grows and more requests complete in less than two network latencies, the
disks are forced to wait and performance drops.

D-SPTF’s ability to tolerate network latency will decrease if disk positioning
times improve at a more rapid pace than network latencies. However, current
trends indicate disk head performance improvement significantly less per year than
network latency improvement. This suggests that as time goes on, network latency
will be an even smaller fraction of media access time than in current systems. This

should increase D-SPTF’s ability to tolerate network latency in the future.

6.5 Systems of heterogenous storage bricks

D-SPTF excels with heterogenous collections of storage bricks as well as homo-
geneous collections. Since storage bricks are designed to be incrementally added
to the system, an IT staff does not have to deploy a monolithic storage system.
Instead the designer can select a storage system size that is appropriate to meet
current demands. If the demands increase later in the life of the system, one can
add new bricks to the system to increase the capacity, performance, and reliabil-
ity as needed. However, one challenge introduced by this incremental scaling is

that there are likely to be bricks of differing performance in these systems. Hav-
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ing heterogenous bricks increases the difficulty of achieving the performance of a
centralized system. This section shows that D-SPTF is able to adapt to hetero-
geneity more effectively than existing request distribution schemes. Two types of
heterogenous systems are evaluated. These are static and dynamically heteroge-

nous systems.

Static heterogeneity

A static heterogenous system is a system with devices of differing performance that
do not change. A simple example of this is an old brick and a new brick: a new
brick will often provide higher performance than an older brick. Since brick-based
storage is designed for incremental addition, it is likely that systems will have de-
vices of differing performance. Failure of D-SPTF to adapt to static heterogeneity
can result in load imbalances and under-utilization of resources.

Consider a two-brick system that contains one “fast” brick and one “slow”
brick. One could modify a hashing-based scheme so that, if the slow brick was
50% the speed of the fast brick, the weighted hash function would send 2/3 of the
requests to the fast brick and 1/3 to the slow brick. LARD and D-SPTF handle
static heterogeneity via this type of load-based request distribution.

To explore the impact of static heterogeneity on the system, a synthetic ex-
periment was run. For this experiment, a synthetic random workload is used.
This workload operates in closed loop with zero think-time. The LBNs are drawn

uniformly from the LBN space, and the request sizes are drawn from a Zipf dis-
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tribution with a 4KB average. The requests are 67% reads, and 16 requests are
maintained outstanding in the system. Two replicas were used. One of the replicas
in the group functioned at normal speed(fast) and the second replica had 20%
longer media response times(slow).

The algorithms tested are the centralized SPTF, D-SPTF, hashing and LARD.
Additionally a weighted hashing algorithm was designed. This algorithm sends
fewer 10s to the slower replica than the faster one (66% of the faster brick’s load)
to give a more even load distribution.

Table 6.5 shows the “fast” and “slow” bricks throughput results for this ex-
periment. Both D-SPTF and the centralized ideal have the desired load balancing
property: as the speed of the brick decreases, the throughput of fast brick remains
nearly unaffected.

Hashing, however, does not do so well: as the slow disk gets slower, it drags
down the performance of the fast disk to match. The load between the two disks
quickly becomes unbalanced because hashing assumes that both bricks are of
equivalent speed and thus sends half the requests to each disk. The problem is
that the fast brick completes requests more quickly than the slow brick and, as a
result, all of the requests end up queued at the slow brick. This causes the fast
brick to have to wait for the slow brick to complete requests before it can re-
ceive new work. As a result, the rate at which requests are sent to the fast disk
is governed by the rate at which the slow disk can service its requests, and the

performance advantage of the fast disk is wasted.
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Central D-SPTF Hashing LARD Weighted
SPTF Hash

Fast | 19510/s | 194 10/s | 137 10/s | 182 10/s | 180 I0/s
Slow | 138 I0/s | 137 10/s | 137 10/s | 134 1I0/s | 135 1I0/s

Table 6.5: Throughput balance between a fast and a slow replica. The disk in the slow
replica is two-thirds the speed of the disk in the fast replica. D-SPTF and a centralized system
exploit the full performance of the fast disk, while random hashing paces the fast disk to match
the slow disk. The 95% confidence intervals for the results were all within 1 IO/s.

Both LARD and a weighted hash function do a better job of adapting to het-
erogenous bricks than standard hashing. This is because weighted hashing accounts
for the relative performance of the bricks. LARD functions well, also, because it
initially allocates requests based upon the load at the brick, which will function
similarly to weighted hashing. As shown in the next section, both LARD and the
weighted hash function have difficulty with adapting to brick performance changes.

Figure 6.15 shows how the slow/fast two-replica systems perform under traced
workloads. D-SPTF is close to Central SPTF and outperforms the other schemes.
LARD and weighted hashing are able to adapt to the performance difference but
provide inferior disk scheduling. In general, unmodified hashing performs worst,
since it both lacks the ability to properly balance the load and has less efficient

scheduling.

Dynamic heterogeneity

In a dynamic heterogenous system, the performance difference between bricks
changes over time. The difference could come from bricks servicing different appli-

cations, such as background activity, from short-term internal housekeeping, such
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Fig. 6.15: Impacts of static heterogenous devices on trace workloads. This graph shows
the client response time of four trace workloads with statically heterogenous workloads. These
results were normalized to the performance of the ideal Centralized SPTF implementation.

as defragmentation, and from differences in how bricks respond to different access
patterns. A system that fails to adapt to this dynamic heterogeneity can result in
load imbalances and under-utilization of resources.

To examine the impact of D-SPTF in such situations, I varied the performance
of a two-replica system dynamically. The base system had two identical replicas.
The performance of one replica was altered as follows. Initially each replica was
operating at full speed;' after one quarter of the run had passed, the first replica

!Prior to the experiment, LARD was warmed up long enough to be in steady state where all
addresses had been previously allocated, 1/2 to each replica, since they are homogeneous.
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Fig. 6.16: Performance in face of transient performance breakdowns. This graph shows
the performance of each scheme in a two-replica system where one replica’s performance varies,
halving at time 25, correcting at time 50, and halving again at time 75. D-SPTF and Central
SPTF adapt best to the transient degradations. Hashing and LARD do not adapt well to this
dynamic heterogenous behavior. For LARD, the transient load imbalance is not long enough
to trigger a rebalance action. The 95% confidence intervals for the results were all within 40
microseconds.

experienced a 50% degradation of performance. Once half of the time had passed,
the degradation ceased and both replicas were again at equal performance. Three
quarters of the way through the experiment, the second replica suffered 50% degra-
dation and remained that way until the end of the experiment. The workload that
was used to evaluate the system was the SAP trace. I measured the client-side
response time at specific time intervals to judge the effectiveness of each scheme.

Figure 6.16 shows the results. The average response time of both D-SPTF
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and Centralized SPTF, in non-degraded mode, is around 10ms per request. The
response time of both hashing and LARD are around 13.75ms. This 37% difference
in response time is due to the improved scheduling efficiency of D-SPTF and
Central SPTF. All systems are able to effectively balance load in non-degraded
mode.

Once the performance of one replica is degraded, however, we see the perfor-
mance disparity increase. D-SPTF /Central SPTF’s response times rise to 11.2ms
while Hashing/LARD’s response times increase to 17.3ms. This 55% difference
occurs because, when the load imbalance occurs, the performance of the LARD
and Hashing systems are limited by the slowest replica in the set. Neither adapts
to the short-term degradation.

LARD does not adapt to the change because the degradation does not continue
long enough to trigger rebalancing of the system given the default parameters.
With a more adaptive parameters, LARD is able to adapt quickly to the load
imbalance caused by the transient heterogeneity. But, by increasing adaptability,
cache performance is negatively impacted. An advantage of D-SPTF is that it
responds quickly to changes in replica load and balances the load automatically

without requiring external tuning of scheme parameters or hurting cache hit rates.

6.6 Little’'s Law Check

To verify the simulated results of D-SPTF, I applied Little’s law for closed systems:

N = X % E[Ts]. Where N is the total number of jobs the system, X is the
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2-Way 4-Way 6-Way 8-Way
replica- replica- replica- replica-
tion tion tion tion

Requests(N) 16 16 16 16
Throughput(X) 397 10/s | 799 10/s | 1204 1I0/s | 1595 10 /s
Calculated Response(E[T's]) | 40.3ms | 20.02ms | 13.29ms 10.03ms
Measured Response 40.35ms | 20.04ms 13.32 10.07ms

Table 6.6: Little’s Law verification of D-SPTF system.

throughput, and E[T's] is the expected service time of each request. Using Little’s
Law, I calculated the expected service time of each request (E[T's] = N/X) and
compared it with the observed service time of each request. I used the baseline
experiment to demonstrate that the observed results agreed with the computed

results from Little’s Law as shown in Table 6.6.

6.7 Conclusions

The experiments show that D-SPTF meets all our goals. D-SPTF provides both
long-term and transient load balancing, preventing bricks from experiencing up to
35% idle during periods of low queue depth. D-SPTF also provides significantly
better disk scheduling efficiency than the other request distribution algorithms.
This improved scheduling efficiency of D-SPTF allows for a 50% increase in media
performance. In addition to these benefits, D-SPTF maintains effective caching in
the system, without causing the significant decreases in cache effectiveness that
occur with the Adaptive LARD algorithm. All of these features are gained with

only 1.2%-20% additional bandwidth, depending upon the average size of data



requests.

6.7 Conclusions
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7 D-SPTF Design Decisions

Chapter 6 evaluates D-SPTF assuming one set of design choices being made.
However, those choices are not the only possible options. This chapter explores
three design decisions for D-SPTF protocol instantiation. First, the mechanisms
for resolving request CLAIM conflicts will be evaluated, comparing both the conser-
vative and optimistic approaches introduced in Chapter 4. The goal is to identify
the scheme that scales best with increasing request latency. Second, the choice of
disk scheduling algorithm will be evaluated. It will be determined how much of the
performance advantage of D-SPTF comes from SPTF scheduling, versus SSTF or
CLOOK scheduling. If much of the performance improvement of D-SPTF can be
achieved using SSTF or CLOOK, then it may be easier to adapt this approach to
existing systems. Third, a new request abort mechanism will be compared against
the default abort mechanism to determine the increase in conflicts that would arise
from aborting requests after they have been completed, rather than before they
are issued. The advantage of aborting requests after they complete at a device is

that it will minimize the device changes required to implement D-SPTF.
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7.1 Conflict Handling

One of the substantial challenges with developing a distributed replica selection
protocol is deciding the best method to handle conflicts when two or more bricks
decide to service the same request at the same time. Many schemes (e.g., hashing
and LARD) don’t worry about this problem since each brick sees an exclusive
subset of all requests. In D-SPTF, however, all bricks in a replica group see all re-
quests and so the potential for conflicts exists. When conflicts occur, bricks should
be able to resolve them to prevent duplicate work from occurring too frequently.

Two solutions are proposed to address such conflicts: a pessimistic one and
an optimistic one. The first approach, referred as prescheduling, is pessimistic. It
assumes that conflicts might occur frequently. All experiments in Chapter 6 used
this approach. It works by coordinating requests before scheduling. Specifically it
selects a request, sends a CLAIM message, and then waits two network latencies
to receive responses. This approach results in good overall performance if the disk
response time is greater than network delay but erodes performance as network
latency approaches average response time.

A more optimistic approach, which is called “latency scheduling”, is to assume
that conflicts do not occur often, so full prescheduling may be unnecessary. In-
stead of prescheduling, a request is selected when the previous request completes,
and the scheduler waits for however long the rotational latency for that request

would be to receive conflicting CLAIM messages. The advantage of this approach
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is that no additional request latency is added to wait for potential messages. The
disadvantage is that, if network latency exceeds rotational latency, then two bricks
could service the same request.

To compare the effectiveness of these two approaches, three attributes are
measured: the latency of requests to the client, the number of conflicts and the
number of duplicates.

For this evaluation, a synthetic workload was used.. This workload has 66%
reads, a Zipf distributed set of request sizes with a mean of 4K. The requests
accessed randomly selected blocks uniformly chosen from the LBN space. Caches
are disabled to test the two types of protocols. For this experiment, the simulations
vary the interbrick network latencies between 0-bms to evaluate how effectively
each approach tolerates increasing network latency.

Figure 7.1 shows that, when network latency is under lms, each approach
provides the same performance. However, above 1ms, latency scheduling tolerates
latency better than prescheduling. Prescheduling forces each request to wait at
least two network latencies, even if the service time is shorter, whether there is
a conflict or not. Latency scheduling only suffers if conflicts and duplicate work
actually occur. Since duplicate work does not occur for every request, latency
scheduling tends to perform better at high network latencies.

This is seen by examining Figure 7.2. One sees that the percentage of requests
that experience conflicts increases as network latency increases. What one sees

is that prescheduling encounters few conflicts (max 1.5%) in the system, because
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Fig. 7.1: Request latency as a function of network latency. The data shown here evaluates
the impact of increasing network latency on both prescheduling and latency scheduling. As one
can see, up until 1 ms of network latency, there is little difference in the two protocols. As network
latency increases latency scheduling performs increasingly better. The 95% confidence intervals
for the results were all within 30 micorseconds.

it throttles progress, for network latencies up to 4ms. Latency scheduling results
in many more conflicts, up to 43% of all request conflicting at 4ms. The reason
that latency scheduling has 43% of all requests conflicting is that, once two bricks
service the same request, they can continue to service the same requests. We
call this a conflict cycle. A conflict cycle is defined as when two or more bricks
continuously select the same requests to service. Prescheduling prevents conflict

cycles by preventing two or more bricks from servicing the same request. Latency
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Fig. 7.2: Conflicts as a function of network latency. This graph shows the increasing number
of conflicts as network latency increases. Clearly, prescheduling results in the fewest number of
conflicts

scheduling will allow transient conflict cycles to exist, but will break out of them,
eventually, so long as the rotational latency time period is less than twice the
network latency.

Additional insight is provided by examining duplicate request rates in Fig-
ure 7.3. As expected, prescheduling never results in duplicate requests. On the
other hand, latency scheduling has almost half its requests as duplicate during
high network latencies, since each conflict results in duplicated disk access and

client response. This results in wasting almost half of the bandwidth of the sys-
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Fig. 7.3: Duplicates as a function of network latency. This graph shows the increasing
number of duplicates as network latency increases. Prescheduling results in no duplicate requests
while, latency scheduling’s number of duplicate requests increase considerably as latency increases.

tem.

These results suggest that the optimistic approach, in its purest form, may not
be the best approach because it suffers from a significant number of conflicts. How-
ever, the majority of these conflicts are due to the system not being able to break
out of a conflict cycle once one starts. Thus, a continuous cycle of conflicts occurs.
To provide better conflict resolution, rotational latency scheduling was modified
so that, if duplicate work occurred, the brick that should not have scheduled the

request would schedule its next request by selecting a random request from its
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queue. This allows for the conflicting bricks to select different requests for the
next access. When a different request is selected, the conflict cycle is broken. This
provides a proactive method to break out of conflict cycles quickly and results in
significant latency tolerance.

Figure 7.4 shows that rotational latency scheduling with random selection has
better network latency tolerance than both prescheduling and regular rotational
latency scheduling. This is due to its lack of duplicate requests. Figure 7.5 shows
that, by adding the random conflict resolution, duplicate requests are reduced by
10x. In fact, this enhancement reduces duplicates from 43% at 4ms to 4.6%.

With the enhanced optimistic scheme, D-SPTF functions well in high latency
environments. Overall, one can see that rotational latency scheduling with random
conflict resolution results in good overall performance for a variety of network

latencies.

7.2 Beyond SPTF

One of the remaining questions with D-SPTF is how much of the performance
benefit is derived from using SPTF scheduling at the device. How much perfor-
mance could be lost by using alternative local request scheduling algorithms, such
as SSTF or CLOOK, which are simpler to implement? Fortunately, the D-SPTF
protocol is designed to be modular and changing local schedulers is easy.

To quantify how much performance is gained due to SPTF scheduling, I com-

pare D-SPTF to a Distributed Shortest Seek Time First (D-SSTF) and a Dis-
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Fig. 7.4: Request latency as a function of network latency. The data shown here evaluates
the impact of increasing network latency on prescheduling, latency scheduling, and random backoff
of latency scheduling. As one can see, up until 1 ms of network latency, there is little difference in
the three protocols. As network latency increases latency scheduling performs increasingly better.
However adding random backoff to latency scheduling results in a scheme that tolerates network
latency very well. The 95% confidence intervals for the results were all within 40 micorseconds.

tributed CLOOK algorithm. The expectation is that D-SPTF should have the
best performance, followed by D-SSTF and then D-CLOOK.

To evaluate the performance impact, I use a synthetic workload. This workload
operates in closed loop with zero think-time. The LBNs are drawn uniformly from
the LBN space, and the request sizes are drawn from a Zipf distribution with a
4KB average. The requests are 67% reads and the queue depth is varied from 2-32

requests.
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Fig. 7.5: Duplicates as a function of network latency. This graph shows the increasing
number of duplicates as network latency increases. Prescheduling results in no duplicate requests
while, latency scheduling’s number of duplicate requests increase considerably as latency increases.
Adding random backoff to latency scheduling results in a dramatic reduction in duplicate requests.

Figure 7.6 shows that the different algorithms performed as expected. D-SPTF
had the best performance advantage, followed by D-SSTF and D-CLOOK. D-
SPTF performs on average 20% better than D-SSTF. Even though D-SSTF per-
forms worse than D-SPTF, D-SSTF does perform better than hashing based re-
quest distribution. In environments with dynamic heterogenous systems, D-SSTF

can be an advantage over using traditional request distribution schemes.
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Fig. 7.6: Client latency comparison of protocols, varying number of replicas. As ex-
pected, the performance difference of the three protocols is similar at low queue depths but
increased considerably as the queue depths increase. The 95% confidence intervals for the results
were all within 35 microseconds.

7.3 Post request abort

One of the challenges with implementation of D-SPTF in a real system is con-
vincing device manufactures to provide interfaces that will allow full realization
of the D-SPTF protocol. To implement D-SPTF in a real system, one would need
two commands, an abort command and a scheduled request command. The abort
command would be able to remove a request from the queue. This abort command

is used to prevent duplicate work by removing requests completed by other bricks.
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Fig. 7.7: Latency comparison D-SPTF versus Post Abort D-SPTF, varying queue
depth. One can see that, as queue depth increases, the performance difference of D-SPTF and
post abort maintains rough similarity. The 95% confidence intervals for the results were all within
45 microseconds.

The scheduled request command would be needed so that devices can be asked to
schedule the request in advance and reveal how long it will take. This command
could be used to construct claim messages when a request is scheduled. No cur-
rent disk interface contains both required commands. As a result, both commands
would be needed to be added to disk interfaces before D-SPTF could be fully
implemented without an outside-the-disk scheduler.

As an interim measure, one can use the existing SCSI protocol since it has

an abort request command. Implementing D-SPTF using only an abort command
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is not the ideal situation and will require some changes to the D-SPTF protocol.
Currently, the D-SPTF protocol aborts request at other bricks before a request
is sent to a disk to be serviced. However, since no schedule command exists to
inform a brick which request a local disk scheduler will service next, the brick will
only know what request a disk serviced after that disk completes the request. As
a result, the brick can only send an abort message to the other members of its
replica group after a request has been serviced. This is a post completion abort,
called “post abort” for short, instead of a prescheduling abort. This post abort
increases potential for conflicts and duplicate work to occur. This is because the
window of vulnerability when two bricks can service the same requests expands to
include the time it takes to service the request.

The question that must answered is, how much performance is lost by post
aborting due to the increased conflict potential? To answer this question, the
simulation environment was changed to abort requests after they completed rather
than before they were issued to the device.

To evaluate the performance impact, a synthetic workload was used. This work-
load operated in closed loop format with zero think-time. The LBNs were drawn
uniformly from the LBN space and the request size was drawn from a Zipf distri-
bution with a 4KB average. The requests were read only and the queue depth was
varied from 2-32 requests.

Figure 7.7 shows the comparison of traditional D-SPTF with “post abort”.

One can see that the performance of “post abort” is between 8-25% lower than
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traditional D-SPTF, except at a queue depth of 2. This is due to the increased
number of conflicts observed by “post abort”. The problem with “post abort” is
that the window for conflicts is much larger, increasing their frequency. In addition,
by the time that a conflict has been detected, the next request has been scheduled.
This will result in a second conflict occurring after the first. Only after these two
conflicts occur can the cycle be broken.

Even though “post abort” does perform worse than D-SPTF, its performance
is still superior to the performance of traditional approaches like hashing-based
request distribution. This suggests that, while “post abort” may not be optimal, it
could be used to gain some of the benefits of D-SPTF with minimal implementation

costs.
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8 Conclusions

D-SPTF demonstrates that,

With reasonable communication costs, a decentralized storage protocol can uti-
lize storage resources (spindles, cache and capacity) nearly as efficiently as a cen-
tralized storage system.

To validate this claim, this dissertation demonstrated the following five prop-

erties of D-SPTF.

(1) In Section 6.1, I demonstrate that D-SPTF was able to balance load as
effectively as an idealized centralized system and 37% better than existing
request distribution algorithms. D-SPTF is able to load balance so effectively
because it does not partition requests amongst replicas that can service them.
Instead, all replicas see all requests and work is performed in the replica that
can service it first. Other decentralized schemes partition requests among the

replicas, which will periodically cause transient load imbalances.

(2) In Section 6.2, I show that D-SPTF achieves disk scheduling efficiency that

is equivalent to an idealized centralized system and 67% better than exist-
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ing request distribution schemes. Because D-SPTF sends all requests to all
replicas, the replicas to have much larger disk queues to schedule with. This
improves the disk scheduling efficiency of the replicas and decreases the me-
dia response time. This efficiency is gained without increasing the queuing
time of requests and without negatively impacting load balancing. Unlike
other decentralized request distribution protocols, D-SPTF does not have to

make a compromise between scheduling efficiency and load balancing.

In Section 6.3, I demonstrate that D-SPTF matches the cache performance
of existing request distribution schemes and approaches the performance of
the idealized centralized system. The reason that D-SPTF does not match
the performance of the centralized system is because it is not working with
one single cache. Instead, it works with the decentralized per brick caches

with only a small number that function cooperatively with each other.

In Section 6.5, I demonstrate that D-SPTF automatically adapts to heteroge-
nous systems as well as the idealized centralized system. D-SPTF performs
better than existing request distribution schemes because it can make a sep-
arate choice for each IO request. That choice is made as late as possible and
done so with as much global knowledge as possible. This ensures maximum

performance. Competing schemes don’t adapt on a per-request basis.

In Section 6.4, I show that, while the D-SPTF protocol does increase the com-

munication costs of brick-based systems, these costs are not large enough to
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preclude the implementation of the D-SPTF protocol with modern network-

ing hardware.

D-SPTF distributes requests across heterogeneous storage bricks, with no cen-
tral point of control, so as to provide good disk head scheduling, cache utilization,
and dynamic load balancing. It does so by exploiting high-speed communication
to loosely coordinate local decisions towards good global behavior. D-SPTF pro-
vides all replicas with all possible read requests and allows each replica to schedule
locally. Limited communication is used to prevent duplication of work.

Overall, given expected communication latencies (i.e., 10-200us roundtrip), D-
SPTF is often able to match the performance of an idealized centralized system
(assuming equivalent aggregate resources) and exceeds the performance of LARD

and decentralized hash-based schemes.
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