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Abstract

Relative fitness modeling is a new approach for predicting the performance and resource utilization of a workload
when running on a particular storage device. In contrast with conventional device models, which expect device-
independent workload characteristics as input, a relative fitness model makes predictions based on characteristics
measured on a specific other device. As such, relative fitness models explicitly account for the workload changes that
almost always result from moving a workload across storage devices—for example, higher I/O performance usually
leads to faster application execution which results in higher I/O rates. Further, relative fitness models allow service ob-
servations (e.g., performance and resource utilizations) from the measured device to be used in making predictions on
the modeled device—such observations often provide more predictability than basic workload characteristics. Overall,
we find that relative fitness models reduce prediction error by over 60% on average when compared to conventional
modeling techniques.
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Relative fitness (RF): the fitness of a genotype compared with the fitness of another genotype
in the same gene system [8].

1 Introduction

Storage administration continues to be overly complex and costly. One challenging aspect of administering
storage, particularly in large infrastructures, is deciding which volumes to store on which devices. Among
other things, this decision involves balancing loads, matching workloads (i.e., request streams on volumes)
to device strengths, and ensuring that performance goals are satisfied. Storage administration currently
relies on experts who use rules-of-thumb to make educated, but ad hoc, decisions. With a mechanism for
predicting the performance and resource utilization for any given workload and storage device, one could
automate this decision-making process [1, 3, 6].

Previous research on such prediction and automation focuses on per-device models that take as input
device-independent workload characteristics (e.g., request arrival rate and read/write ratio). The output from
such a model is a prediction for device performance (e.g., latency). Many envision these device models
being constructed automatically in a black-box manner. Given pre-deployment measurements on a device,
one can train a statistical model [4, 20] to calculate the expected performance of the device as a function of
a workload’s characteristics. We refer to this as the conventional modeling technique.

Though it sounds simple, the above approach has proven quite difficult to realize in practice, for several
reasons. First, workload characterization has been an open problem for decades [9, 14, 20]. Describing
a complex workload in terms of concise characteristics, without losing information about burstiness or
spatio-temporal locality, remains a challenge. Second, and more fundamentally, the conventional modeling
technique does not capture the connection between a workload and the storage device on which it executes.
Generally speaking, application performance depends on storage performance. If applications progress
faster or slower, their I/O rates change in proportion. Such device-dependent feedback is not captured in
conventional models.

This paper proposes a new approach based on relative fitness models. A relative fitness model predicts
how one device will perform based on workload characteristics as measured on a second device. Such
models explicitly capture the device-dependency of their input workloads and model the feedback between
workloads and devices. Further, since the workload characteristics are measured on a specific device, relative
fitness models can just as easily measure and use service observations (e.g., response times and resource
utilizations) in addition to basic workload characteristics. Often, such observations about how another device
handles a workload yield greater information than imperfect workload characterizations—for example, one
may not know how to concisely describe access locality, but a workload that experiences a high cache hit
rate on one device is likely to experience a similar hit rate on another.

This paper describes the mechanics of constructing relative fitness models and evaluates their effective-
ness. Rather than train only one model for each individual device, one constructs two models for each pair
of devices—one for translating measurements on the first to predictions on the second and one for going
in the other direction. Our best models capture similarities (and differences) between devices by predicting
scaling factors (e.g., device �� is X% faster than device �� for random workloads), rather than absolute
values. Such scaling factors adapt well to unseen workloads, and can also help with identifying pools of
similar storage devices (i.e., identical devices will have a scaling factor of 1.0), thereby reducing the number
of models that must be maintained.

Results from experimentation with different storage devices and workloads demonstrate the value of
relative fitness models. Workloads are clearly device-dependent, as we observe arrival rates changing as
much as 50% when moving from one device to another. Other characteristics, such as average request sizes
and read/write ratios, change with device transitions as well. Accounting for these changes is essential.
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Most importantly, we find that relative fitness models consistently provide more accurate predictions
than conventional models for our sample workloads. We see over a 60% reduction in prediction error, on
average, for the micro-benchmarks used in model training and testing. In experiments with the Postmark
benchmark, we observe that the relative approach predicts average throughput within 8% whereas the con-
ventional model mispredicts by a factor of two.

The remainder of this paper is organized as follows. Section 2 describes the conventional and relative
approaches in greater detail. Section 3 describes our experimental setup. Section 4 makes a case for rela-
tive fitness models, demonstrating the device-dependence of workloads and the predictive value of service
observations. Section 5 details the mechanics of our relative fitness models. Section 6 evaluates the efficacy
and discusses the nuances and uses of relative fitness models.

2 Background and motivation

Storage system configuration is a complex optimization problem. Storage devices must be configured ap-
propriately (e.g., RAID levels and LUN sizes), and workloads must be assigned to them (e.g., file systems,
databases, email). Consider the “simple” task of assigning 8 workloads to 8 different storage devices, each
of which can be configured in one of two ways, say RAID1 or RAID5. Even with the simplifying constraint
of one workload per device, there are still over one million ways of configuring the devices and assigning
each a workload (i.e., �� ways of configuring the devices and �� ways of assigning them work).

Such tasks can be automated through system software, but given the large solution space, doing so
requires a method for quickly determining how storage will respond to a particular workload. For this
determination, device models are needed.

2.1 Conventional device modeling

A device model is a representation of a storage device used to predict a workload’s performance. The input
into the model is a description of the workload, and the output is an expected performance value (e.g.,
latency or throughput). For example, a model of a disk drive may predict an average throughput of 166
IO/sec for a workload that is mostly random.

Conventional models can be analytical or statistical. Analytical models are based on queueing theory.
Given the internal structure of a storage device, mathematical formulas are constructed to offer a compact
representation of system performance, and the model parameters are calibrated by observing a storage de-
vice’s performance over a wide range of workloads [17, 16, 18]. Statistical models, on the other hand,
require no internal knowledge of the storage device but must be trained over a similarly wide range of work-
loads [20]. Yet another option is a “table-based” approach that memoizes performance values for a particular
type of workload and interpolates between these values for unseen workloads [2]. All three modeling ap-
proaches, from an input/output perspective, work in a similar manner. As input, they take a concise set of
workload characteristics (i.e., discrete or continuous values). As output, they predict a performance metric
for workloads matching the description. Figure 1a illustrates the conventional approach in the context of a
classification and regression tree, one type of statistical model.

2.1.1 Workload characterization

Workload characterization is the process of describing the I/O accesses of a workload, and lies at the core
of model building. I/O has at least three distinguishing components: operation mix (i.e., read vs. writes),
spatial locality (e.g., which blocks are accessed), and temporal locality (e.g., when they are accessed).
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Figure 1: The conventional and relative approaches to device modeling. Given a sufficient number of sample
workloads, a model can be constructed to calculate (predict) the performance of workload, given its characteristics. In
the conventional modeling approach (a), a workload’s I/O characteristics are input into a device model that predicts
throughput, latency, or bandwidth. The device from which the workload characteristics are obtained is not captured
in the model. In the relative approach (b) a workload’s I/O, performance, and utilization characteristics, as measured
on a specified device, are input into a model that predicts a scaling factor relative to that device. The model can be
used to predict changes in performance and utilization (e.g., CPU utilization), or even workload changes, such as the
inter-arrival time.
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Some aspects are quite complex and involve correlations, such as the “burstiness” [11] and spatio-temporal
correlation [19], making them difficult to obtain and concisely represent.

Note that the characteristics of a workload as seen by a storage device can be radically different from
the I/O requests issued by the application. Such is the case when the storage device and the application are
separated by entities such as file systems, page caches, or any other middleware that can delay or modify
the I/O. When we discuss workload characteristics, we are referring to those as seen at the device. For the
purposes of storage system configuration and tuning, the workload as seen by storage is what really matters.

Some common workload characteristics include averages for each of the following:

� The time between I/O requests (inter-arrival delay)

� The percentage of operations that are writes vs. reads

� The request size

� The randomness of the workload (e.g., average inter-request distance in blocks)

In general, workload characterization tries to capture all “important” features of a workload as they
relate to storage performance. The trick is determining which characteristics are the best predictors of per-
formance. For example, whether write requests are random is more critical for a disk drive than for a RAID
array with a large non-volatile cache; models of the two would likely focus on different workload charac-
teristics for predicting device performance. This adds an additional challenge to workload characterization:
one must distill the key performance-affecting attributes for each device in question [13].

2.2 Challenges in conventional modeling

In conventional modeling, workload characteristics are meant to be device-independent, the assumption be-
ing that moving a workload across devices will not significantly change its I/O. This is a reasonable assump-
tion in cases where the devices in question are very similar (e.g., slightly different RAID configurations) or
when the workload is open.

An open workload is one whose I/O accesses are invariant with respect to the performance of the storage
device. In an open system, feedback from storage performance (e.g., request latency and throughput) has
no effect on application behavior. For example, a video player may issue I/O requests at a constant rate,
regardless of the speed of the device storing its media, so the arrival rate can easily be described in terms
of an arrival process (e.g., periodic) and reasoned about analytically. Open systems are mathematically
tractable, and form the foundation for many analytical device models.

In a closed system, however, the I/O accesses of a workload may change with storage performance,
resulting in I/Os of different sizes, frequencies, or types. For example, a slower device can result in a
workload with larger inter-arrival times and write requests when compared to the same workload running on
a faster device. This effect should be intuitive. If applications ever block on I/O (e.g., sequentially reading
a file), then the faster the storage device completes the I/O, the faster the application will issue the next I/O.
In general, any application affected by the speed of its storage (e.g., compilation, backup, file search, etc.)
is operating, at least in part, in a closed fashion. Further, an application’s temporal access pattern is not
the only thing that can change. As we will later show, even characteristics such as the operation mix and
average request size can change in a closed system.

In summary, we see two primary challenges with workload characterization and conventional device
modeling: concisely representing workload characteristics and capturing performance-workload feedback.
Together, these challenges led us down an alternate path.
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2.3 Models of relative fitness

A self-configuring storage system should assume neither open systems nor similar storage devices. Indeed,
data centers comprise devices from a variety of vendors, the devices can be configured in a variety of ways,
and most workloads are at least partially closed in nature [10]. As we will show, the conventional approach
to device modeling will not work well in such situations. The largest shortcoming of conventional modeling
is a reliance on a set of presumably device-independent workload characteristics, or rather, the fact that
device-dependent changes in these characteristics are not anticipated or explicitly modeled.

One could address this concern by explicitly modeling how workloads change when moving across
two devices, say, �� and ��. For example, it may be the case that the write size, on average, increases
by 50%. Given enough sample workloads, this behavior could be learned and the workload characteristics,
as observed by ��, could be adjusted before they are input into the model of ��. Such an adjustment
could account for workload change due to close-loop interactions between the application and storage. The
alternative, not taking such feedback into consideration, may result in inaccurate predictions.

The above solution unfortunately require two models (and two predictions): one model to predict the
changes in a workload, and second (conventional) model to predict performance based on these new charac-
teristics. Rather than explicitly predicting workload change and inputing adjusted workload characteristics
into a conventional model, we instead model each device relative to the workload characteristics seen by a
second device — the device that the workload is moving from.

We construct a model of �� that takes as input the workload characteristics as seen by ��. As such,
the model of �� explicitly accounts for changes in workload when moving from �� and ��, because it
was constructed relative to ��. So, in contrast with conventional modeling, we construct a model between
each pair of devices, or at least the pairs we expect to be moving workloads between. In the conventional
approach, only one model is constructed per device.

In addition to coping with changes in workloads, device-dependent models introduce an additional op-
portunity: service observations. We define service observations as the performance and resource utilization
of a given workload as measured on a specific device. Performance includes average throughput, bandwidth,
and latency of requests. Utilization includes CPU utilization, queue depth, context switch rate, and interrupt
rate. So, instead of characterizing a workload by just its workload characteristics, we can now describe a
workload in terms of its performance and resource utilization (e.g., that it consumes 50% of the CPU on
�� and performs at 200 IOPS). Most importantly, service observations allow us to model devices relative to
one another (e.g., that device �� is 30% faster than �� for sequential writes and requires half the CPU). In
other words, we can model a device’s fitness for a particular workload in relation to other devices. We call
this the relative fitness (RF) of a device.

Relative fitness models therefore require training data from two devices, D1 and D2. The inputs into
the model are the workload characteristics and service observations as seen by D1, and the output is a
workload characteristic or service observation expected on D2. That is, RF models can be trained to predict
performance, resource utilization, or workload characteristics. Such models allow for insightful queries
during resource provisioning. For example, a self-tuning storage system may ask the following questions
when deciding whether or not to place a workload on ��: “what is its predicted CPU utilization?, what
is its predicted throughput?, will the average queue depth increase or decrease?” Figure 1b illustrates the
concept.

Service observations create a strong relationship between a workload and the device on which it was
characterized. As we will later show, these additional characteristics are so rich in information that, in some
cases, the need for basic workload characteristics is eliminated altogether.
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DISK SSD RAID
Server Dell PowerEdge 650 IBM x345 IBM x345

Processor P4 2.7 GHz Dual Xeon 2.7 GHz Dual Xeon 2.7 GHz
Memory 1GB 1.5GB 1.5G
Network PRO/1000 PRO/1000 PRO/1000
Storage Cheetah 10K N/A IBM-ESXS 10K

OS Linux 2.4 Linux 2.4 Linux 2.4

Table 1: Storage platforms.

3 Experimental setup

The previous sections claim that workload characteristics change across storage devices, such change is
predictable and can be modeled, and the relative fitness of storage devices can be predicted. In the sections
that follow, we conduct a set of experiments to support each claim. This section describes our experimental
setup.

3.1 The storage platforms

Our experiments use three storage devices: a disk drive (DISK), a solid-state disk (SSD), and a RAID-0
array (RAID). These three target devices are chosen for their heterogeneity, in order to illustrate the benefits
of relative fitness models. Table 1 describes the storage platforms in more detail.

All devices are connected to the host machine using the Internet SCSI (iSCSI) protocol [15] and are
implemented using an open source distribution [12]. The target code is a user-level library with APIs for
receiving SCSI commands, returning status codes, and transferring any data. On top of this library, we
implement each device.

DISK is implemented with a single SCSI disk using the SCSI generic interface in Linux. SSD is
implemented entirely in RAM. RAID is is implemented using the software RAID stack in Linux. The DISK
and RAID devices are implemented without additional caching, thereby forcing a media access on each I/O.
We instrument each storage device to collect the workload characteristics and service observations shown in
Table 2.

3.2 The storage host

For this study, we use a single storage host (i.e., client). The hardware platform is the same as the SSD
and RAID devices shown in Table 1. It is attached to each storage device through a GbE switch. The host
connects to each target through a kernel module (provided by the open source). Each device appears as a
SCSI device in /dev (e.g., /dev/sdb).

To capture the interactions of the file system and page cache, we mount an ext2 file system over each
SCSI device. We limit the host memory to 100MB so as to reduce the amount of read data that can be served
from the page cache — without this the devices see write-mostly traffic for all tests.

6



Characteristic Units Acronym
Inter-arrival delay msecs ARV

Write requests percent WR
Read requests percent RD

Write size KB WSZ
Read size KB RSZ

Randomness percent RND

Observation Units Acronym
Request service time msec SRV

Throughput IO/sec IOPS
Bandwidth MB/sec BW

CPU utilization 0 to 1 CPU
Context switch rate switches/sec CTXT

Interrupt rate interrupts/sec INT
Queue depth integer QDEP

Table 2: Workload characteristics and service observations used in this study. All values are aver-
ages over a specified time period. These acronyms are used in tables and figures.

3.3 Sample generation

To train and evaluate the storage models, we need sample workloads. We define a workload sample as a
synthetically generated sequence of I/O with the following parameters:

� percent of requests that are writes (0 to 100)

� percent of requests that are random (0 to 100)

� queue depth (1 to 16)

� think time (0 to 1000 usec)

� request size (1 to 128KB, stepping powers of 2)

We built a workload generator that takes these parameters as input. From the host system we run the
generator in a loop to generate many samples, each time passing in a uniformly random value for each
parameter. The queue depth represents the number of active threads (workers) in the generator issuing I/O,
and the think time is the time each worker sleeps between I/Os.

Each sample warms for 2 seconds and tests for 8 seconds. These values are large enough for the sample
to reach a steady state within each storage device. For each sample, we take the best of 3 runs in order to
eliminate any transient perturbations in the network or OS. A total of 400 samples are generated per device.

To capture the effects of client side caching, including write aggregation and pre-fetching, we configure
the workload generator to issue all I/O through a file stored in a Linux ext2 file system. The maximum
footprint (file size) of each sample is limited to 1GB (the capacity of SSD). To also capture workloads
without an intervening page cache, 50 of the 400 samples were obtained with no file system by issuing all
I/O through a raw SCSI device. As we will describe in Section 6, these additional (non-cached) samples
were necessary to train the models to accurately predict the effects of random I/O, as the page cache does a
very good job of re-ordering many of the random writes.
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4 A case for relative modeling

As discussed in Section 2, an application’s I/O workload can change from device to device, even if the
application itself does not change. We measure this change by comparing the distributions of workload
characteristics, as measured by each of our three devices, for our 400 sample workloads. Not surprisingly,
service observations also change across devices.

The data presented in this section makes two important points. First, over a wide range of synthetic
workloads, we see a significant change in the workload characteristics seen by each device. Such change
must be anticipated by device models if they are to make accurate predictions. Second, device similarity
builds a case for predicting scaled, rather than absolute values. That is, rather than predict absolute values of
performance, predicting a scaling factor, or relative fitness, may better leverage device similarity for unseen
workloads.

For the 400 samples used in this study, Figure 2 shows the cumulative distribution function (CDF) for
the workload characteristics and service observations that vary most across the devices. Table 3 contains a
summary of all the workload characteristics used in this study, and Table 4 summarizes their differences.

A note on reading the graphs: each CDF shows the percentage of samples that fall at or below a value
on the x-axis. For example, about 60% of the samples on our single disk device (DISK) had an average
inter-arrival delay of 3 ms or less.

4.1 Workload characteristics

The most interesting differences occur in the workload characteristics as measured by each storage device.
Recall that each device was tested with an identical set of synthetic workloads, so the differences are not in
the application generating the I/O but rather from interactions between the application and the file system
and between the file system and the storage. Although perhaps complex to reason through, such interactions
are not random and can therefore be statistically modeled as we will later show in Section 6.

From the shapes of the CDFs, we can draw the following conclusions for our workload samples. First,
the request inter-arrival delay decreases with the speed of the storage device. The device with the smallest
average delay is SSD, followed by RAID and then DISK. Given a faster device, I/Os complete faster and can
therefore be issued more quickly by the application. Of all of our workload characteristics, the arrival rate
always shows the greatest change. This result should not be surprising given that our workload generator is
operating in a closed manner.

Many of the other workload characteristics also show interesting change, but in a different way. Their
changes are due to interactions with the file system and page cache. In particular, we see the average
write request size decreasing when device performance increases. Given that page caches aggregate write
requests, a slower device allows for more blocks to be aggregated, resulting in slightly larger requests. The
slowest device (DISK) has an average write size of 38KB, the RAID 35KB and the SSD 32KB. Although
a 16% swing in request size may not appear large, conventional models that make predictions based on
request size could see a difference.

Note that these workload differences only arise when we run our tests over a file system with write-back
caching. The same tests when run over a synchronously mounted file system or directly over a raw device
showed no such variance.

4.2 Service observations

Naturally, the utilization characteristics (CPU utilization, context switches, interrupts, queue depth) are dif-
ferent for each device and depend on the workload characteristics. In other words, a storage device’s “level
of exertion” depends on the workload and differs across device types. Despite the differences, there are also
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Figure 2: CDFs of selected workload characteristics and service observations.
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COV Min Median 90%tile Max Mean
SECS 0.86% 8.08 9.28 10.23 14.51 9.41

DISK ARV 1.56% 1129.42 2800.75 4878.47 34947.77 3445.08
SRV 2.08% 2.90 35.85 67.16 90.56 38.62
CPU 6.68% 0.02 0.16 0.25 0.37 0.16
BW 1.64% 0.25 9.36 22.67 46.56 11.28

IOPS 1.58% 31.10 369.78 519.56 923.83 366.82
WR 0.91% 0.02 0.75 0.94 1.00 0.74

WSZ 1.50% 1.00 34.26 75.16 246.96 38.99
RD 3.13% 0.00 0.26 0.49 0.98 0.27

CTXT 1.85% 525.12 4874.56 6456.30 9591.60 4752.78
INTR 1.57% 372.55 2745.43 3902.21 5430.66 2683.44
RND 4.63% 0.00 0.07 0.44 1.00 0.14

QDEP 1.70% 1.00 17.86 28.17 30.86 17.67
SECS 0.55% 8.06 8.65 8.89 14.05 8.66

SSD ARV 2.68% 178.61 824.07 3744.61 33083.40 1702.07
SRV 4.54% 0.06 0.98 6.15 18.77 2.41
CPU 5.25% 0.01 0.14 0.44 0.50 0.17
BW 1.91% 0.46 26.39 70.14 171.93 34.52

IOPS 2.63% 32.44 1304.69 3215.61 5880.19 1577.24
WR 0.63% 0.02 0.69 0.92 1.00 0.69

WSZ 1.42% 1.00 27.41 64.00 244.00 32.90
RD 2.51% 0.00 0.33 0.54 0.98 0.32

CTXT 2.10% 511.30 16135.55 39553.81 78807.39 18324.04
INTR 1.82% 232.73 3049.71 5522.18 7238.46 3101.31
RND 3.40% 0.00 0.12 0.39 1.01 0.18

QDEP 2.11% 1.00 2.98 11.10 14.40 4.40
SECS 0.88% 8.05 8.86 9.31 31.03 8.98

RAID ARV 3.12% 665.05 1678.51 4431.35 109476.98 2851.32
SRV 4.46% 1.82 13.87 31.41 52.02 16.85
CPU 7.04% 0.01 0.08 0.15 0.18 0.09
BW 2.71% 0.25 12.77 38.44 56.70 17.70

IOPS 3.09% 32.37 641.64 1011.20 1564.03 638.78
WR 0.83% 0.02 0.73 0.93 1.00 0.71

WSZ 1.45% 1.00 30.81 66.67 243.15 35.54
RD 2.95% 0.00 0.29 0.52 0.98 0.30

CTXT 2.94% 567.78 7915.73 11958.10 16438.86 7715.50
INTR 2.60% 316.29 3243.80 5151.26 6927.48 3274.21
RND 4.87% 0.00 0.10 0.55 1.02 0.18

QDEP 1.98% 1.00 13.83 26.89 29.97 15.10
SAMPLES: 400

Table 3: Summary statistics.
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Characteristic COV
Inter-arrival delay 27%

Write requests 7%
Read requests 3%

Write size 7%
Read size 0%

Randomness 12%
Observation COV

Request service time 77%
Throughput 60%
Bandwidth 46%

CPU utilization 27%
Context switch rate 57%

Interrupt rate 8%
Queue depth 46%

Table 4: Average differences in workload characteristics. The coefficient of variation (COV) is the
standard deviation divided by the mean.

similarities. For example, DISK and RAID have similar distributions for queue depth, CPU utilization and
interrupt rate. Models can learn these similarities.

Also, it is not surprising that the performance characteristics (service request, time, throughput, and
bandwidth) differ by device type. As would be expected, SSD has the best performance of the three, followed
by RAID and then DISK. As we will show in Section 6, the exact performance differences among these
three depend heavily on the workload characteristics of the sample. If it were not for this fact, predicting
performance and utilization differences between devices could be accomplished with a single scaling factor
between any two pair of devices.

5 Engineering relative fitness models

Relative fitness models are constructed in a similar manner to many conventional black-box models, but
there are two fundamental differences: the data on which they train, and the values they train to predict.
This section describe the mechanics for building relative fitness models.

5.1 Model selection and training

How workload characteristics and service observations change due to moving between two storage devices
can often be determined given enough training data. Table 5 shows some actual training data from this
study. Each row provides a sample of how, in this case, the throughput (IOPS) changes when a workload
moves from RAID to DISK. For example, in the first sample, throughput changes from 122 IO/sec to 115
IO/sec, only a 5% reduction. However, in the second sample we see a 33% reduction.

A trained eye may be able to determine certain correlations by observing such devices over a number
of workload samples. For example, the RAID-5 “write-penalty” (i.e., a read-modify-write of parity when
writing less than a complete stripe) is well-known and avoided if possible. Such an effect could be seen in
training data between, say, a disk and a RAID-5 array. That is, whenever the request size is less than the
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RAID workload characteristics RAID Service Observations DISK
ARV WR WSZ RD RSZ RND QDEP CPU SRV DBW IOPS IOPS
8.2 0.92 5.3 0.07 4.10 0.00 8.43 0.01 7.8 0.62 122 115 (.95)
1.4 0.87 8.2 0.13 4.74 0.02 10.52 0.06 8.9 5.41 718 484 (.67)
3.9 0.91 8.1 0.09 4.26 0.01 9.79 0.02 7.7 1.95 257 247 (.96)

Table 5: The actual training data for a RAID-to-DISK model (CTXT and INT columns omitted
due to lace of space). This table shows 3 of the 200 samples used in training an IOPS model for
DISK, given the workload characteristics and service observations on RAID.

stripe size of the array, a performance hit is taken relative to the disk. Although many of these effects can be
reasoned through by experts, manually keeping track of the numerous correlations between workload and
device type, and the service observations they produce, is not realistic. For this, one can use a statistical
model. We choose a classification and regression tree (CART) [7] for its ability to effectively model a
storage device, and its differences relative to other devices, as a black-box (i.e., requiring no knowledge of
device internals).

CART models are often used when predicting a continuous dependent variable (e.g., IOPS), based on
a set of continuous predictor variables (e.g., request size and arrival rate). In the case of moving a workload
from device �� to ��, the predictor variables are the workload characteristics and service observations on
�� and the dependent variable is a workload characteristic or service observation on ��. That is, for each
dependent variable one wishes to predict, one trains a separate CART model. For this study, we want to
predict averages for request service time, bandwidth, throughput, and CPU utilization.

The first step in training a CART model is obtaining the training data. For this, we use the same
workload samples discussed in Section 3, but only half of them. The other half is the testing data we use for
evaluating the models in Section 6.

A CART-building algorithm attempts to linearly separate the training samples and, in doing so, builds
a regression tree (i.e., the CART model). Each leaf node in the regression tree contains samples with a
similar value for the dependent variable, but also with similar values for the predictor variables. The goal in
building a regression tree is to determine which of the predictor variables provide the most information gain
with respect to predicting the dependent variable. In effect, the regression tree is a sequence of if-then-else
questions, starting at the root, and terminating at a leaf node, as shown in Figure 1.

Information gain naturally varies across device types. For example, the burstiness of write requests
would be more useful when predicting performance changes between two disks, one with write caching and
one without, than between two disks with ample caching for absorbing bursts. Intuitively, the characteristics
and service observations with the most information gain are those that best explain why two observations
are different.

5.2 Absolute relative fitness (ARF)

Figure 3 shows an actual regression tree obtained from the entire set of training samples from which Table 5
was taken. While training, we limited the tree to a depth of 3 so we could show the complete tree and also to
illustrate that the inter-arrival delay (ARVL), service time (SRVC), and percentage of reads (RD) have the
most information gain for this particular training data. In other words, of all the workload characteristics
and service observations shown in Table 5, these are the best three to look at when predicting changes in
throughput between these two devices. Unpruned, the tree has a depth of 12 and, oddly enough, found
the throughput (IOPS) of RAID to have the least amount of information when prediction the throughput of
DISK, and therefore omitted it from the tree.
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if (ARVL � 2143.33) then
if (ARVL � 1271.65) then

if (ARVL � 975.44)
then IOPS = 554.916
else IOPS = 459.059

else
if (SRVC � 14377.6)
then IOPS = 408.165
else IOPS = 347.357

else
if (ARVL � 4244.6) then

if (ARVL � 2685.86)
then IOPS = 301.745
else IOPS = 238.028

else
if (RD � 0.035)
then IOPS = 63.88
else IOPS = 157.394

Figure 3: A pruned regression tree used to predict the throughput (IOPS) of DISK given the work-
load characteristics and service observations on RAID. In this example, the read percent (RD),
arrival rate (ARVL) and service time (SRVC) on RAID were found to have the most information
gain when predicting the throughput of DISK for the same workload.

This modeling technique we refer to as absolute relative fitness (ARF). That is, given the workload
characteristics and service observations on ��, we build a model to predict a service observation on ��.

5.3 Scaled relative fitness (SRF)

Rather than predicting an absolute value, however, one can train the model to instead predict a scaling factor
between �� and ��. In doing so, one can better capture the similarity between devices. For example, the
best predictor of IOPS on DISK is the IOPS on RAID, multiplied by some constant. This constant is our
scaling factor, or relative fitness value. However, the relative fitness depends on workload characteristics
and other service observations, so we again build a regression tree. The training data is identical to that
for absolute relative fitness. The only difference is that we train using the relative fitness values shown in
parenthesis in the last column of Table 5. For example, the first sample shows a relative fitness value of
����������� � ���. Figure 4 shows the actual SRF model pruned to a depth of 2.

In this case, RAID’s IOPS and QDEP are found to have the most information when linearly separat-
ing the relative fitness values in our training data. Similarly to the ARF model, an unpruned SRF model
also grew to a depth of 12 and found useful information in each of the other characteristics and service
observations.

5.4 Discussion

Absolute and scaled relative fitness differ from the conventional modeling approach in fundamental ways.
First, the workload characteristics are specified relative to a specific device ��. Second, we introduce
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if (IOPS � 138.015) then
if (QDEP � 2.205)
then RF = 269.72
else RF = 113.65

else
if (IOPS � 657.95)
then RF = 71.82
else RF = 51.81

Figure 4: A pruned regression tree used to predict the relative fitness (RF) of DISK. In this example,
the throughput (IOPS) and queue depth (QDEP) on RAID were found to have the most information
gain when predicting the relative fitness of DISK for the same workload. The RF value is a scaling
factor for DISK throughput (IOPS) relative to that observed on RAID.

service observations on �� as additional input into the model. Third, in the case of scaled relative fitness, we
predict a scaling factor rather than an absolute value. Fourth, relative fitness models may not be symmetric,
so we distinguish direction (i.e., moving a workload from �� to �� will use a different model than from
�� to ��).

6 Evaluation

This section evaluates the efficacy of relative fitness models for predicting three performance characteristics:
request service time (SRVC), throughput (IOPS) and bandwidth (BW); and one utilization characteristic:
CPU utilization.

Summarizing from previous sections, our hypotheses are as follows:

� Hypothesis 1: Models that do not account for changes in workload characteristics when moving a
workload between devices will give inaccurate predictions unless the devices have similar perfor-
mance.

� Hypothesis 2: One can capture changes in workload characteristics by training a model using pairs
of devices. Building such models will more accurately predict the absolute performance or resource
utilization of a workload when running on a given device. Moreover, service observations add addi-
tional useful information.

� Hypothesis 3: Because devices have similar characteristics, assuming similarity by default and pre-
dicting a scale factor will be beneficial for unseen workloads.

This section compares conventional modeling to absolute and scaled relative fitness. To test hypothesis
1, we use only conventional modeling. To test hypothesis 2, we add absolute relative fitness. To test
hypothesis 3, we further add scaled relative fitness. All three modeling techniques are evaluated on their
ability to accurately predict changes in performance and resource utilization across each of our devices, for
200 of the sample workloads discussed in Section 3. The other 200 are used to train the models. As a final
test, we evaluate the models using the Postmark benchmark [5].

In total, we evaluate 12 conventional models, one for each prediction (SRVC, BW, IOPS, CPU) on
each device (DISK, SSD, RAID). For each of absolute and scaled relative fitness, we evaluate 24 models,
one for each prediction and (direction-specific) device pair. For each prediction, the difference between the
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Figure 5: Predicted CDFs of SRVC (a), CPU (b), BW (c), and IOPS (d) when moving a workload
from RAID to SSD.

expected and actual value is used to calculate the relative error, ���������������
������

, and we report the median
relative error 1 across all samples as a metric of the model’s “goodness.”

6.1 Results

This subsection defends each hypothesis on the basis of which models yield the lowest median relative
error. To illustrate prediction accuracy, Figure 5 shows the predicted and actual CDFs when moving our
200 test workloads between RAID and SSD. Due to lack of space, we cannot show the CDFs for all pairs
of devices. Table 6 summarizes the prediction accuracies between all pairs of devices, Table 7 summarizes
the prediction for each service observation (SRVC, CPU, BW, and IOPS), and Table 8 provides an overall
summary.

1The trends are the same when reporting the mean.
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CM DISK SSD RAID
DISK 0.12 0.58 0.31
SSD 0.35 0.18 0.30

RAID 0.29 0.43 0.14

ARF DISK SSD RAID
DISK 0.04 0.26 0.12
SSD 0.15 0.05 0.17

RAID 0.10 0.22 0.06

SRF DISK SSD RAID
DISK 0.00 0.24 0.10
SSD 0.14 0.00 0.14

RAID 0.08 0.20 0.00

Table 6: Summary of predictions between pairs of devices

Hypothesis 1 - Conventional Modeling

A quick glance at the predicted CDFs in Figure 5 supports hypothesis 1. The conventional modeling tech-
nique provides, at best, a rough approximation of the actual distributions (the darkest line) when workloads
are moved from RAID to SSD. For each of the four predicted CDFs, the line furthest from the darkest line is
that predicted by the conventional model. Overall, the average error for all predictions from RAID to SSD
is 43%, and the average error between all pairs of devices for the conventional model is 38%.

These low prediction accuracies can easily be explained upon closer inspection of the CART models
used to make the predictions. The workload characteristics with the most information (i.e., nearest the top
of the regression tree) are often the most likely to change between devices. For workloads moving between
RAID and SSD, these characteristics are the inter-arrival delay (ARVL), write size (WRSZ), and randomness
(RND). Although the workload randomness, on average, does not change between RAID and SSD (i.e., both
see 18%), the inter-arrival delay changes by 40%, the write size by 7%, and the percent of write requests by
3%. Consequently, using workload characteristics as measured by RAID as input into the models for SSD
often results in incorrect paths being taken in the regression trees.

Yet, when the workload characteristics come from the same device for which the prediction is being
made, the conventional model works well with an average error of 15%, as shown by the diagonal for the
conventional model (CM) in Table 6 (i.e., DISK to DISK, SSD to SSD, or RAID to RAID). These results
are consistent with prediction accuracies seen in other black-box modeling approaches [20].

Hypothesis 2 - Absolute Relative Fitness

The CDFs predicted by the models of absolute relative fitness track and, in many cases, are indistinguishable
from, the actual CDFs. Overall, the average error between all pairs of devices is 17%.

These results support hypothesis 2 in three ways. First, modeling a device relative to the characteristics
as measured by another device reduces the misprediction due to changing workloads. Second, for our
devices, there is enough information in the workload characteristics of �� to build an accurate device
model of ��. (Note that this does not always necessarily have to be true. In an early experiment we ran, a
programming bug in one of the devices resulted in only sector-sized requests being sent to the device. As
such, the request size as measured by that device was always 512 bytes (i.e., zero information). Any device
model paired up with this buggy device would learn very little from knowing that the request size is 512.)
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Average WC SO WC+SO
CM 0.72 0.33 - -
ARF 0.72 0.26 0.21 0.19
SRF 0.52 0.22 0.21 0.20

(a) SRVC

Average WC SO WC+SO
CM 0.44 0.32 - -
ARF 0.44 0.20 0.21 0.20
SRF 0.45 0.17 0.16 0.15

(b) CPU

Average WC SO WC+SO
CM 0.58 0.29 - -
ARF 0.58 0.18 0.16 0.15
SRF 0.31 0.12 0.13 0.11

(c) BW

Average WC SO WC+SO
CM 0.58 0.29 - -
ARF 0.58 0.18 0.16 0.15
SRF 0.31 0.12 0.13 0.11

(d) IOPS

Table 7: Summary of predictions for request service time (a), CPU utilization (b), bandwidth (c),
and throughput (d). We compare the conventional model (CM) using workload characteristics
(WC) with absolute relative fitness (ARF) and scaled relative fitness (SRF). For ARF and SRF, we
show results when using only workload characteristics, only service observations (SO), and both
together.

Average WC SO WC+SO
CM 0.51 0.38 - -
ARF 0.51 0.20 0.19 0.17
SRF 0.41 0.16 0.17 0.15

Table 8: Overall Summary of predictions. We compare the conventional model (CM) using work-
load characteristics (WC) with absolute relative fitness (ARF) and scaled relative fitness (SRF).
For ARF and SRF, we show results when using only workload characteristics, only service obser-
vations (SO), and both together.
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Third, upon closer inspection of the regression trees, we see that service observations provide slightly more
information than the workload characteristics.

To directly test this last point, we construct a model using only service observations and find that
the prediction accuracy across all device pairs and predictions is 19%, compared to 20% when only using
workload characteristics. With both together, we see the 17%. These differences are captured in Table 8.

Compared to conventional modeling, absolute relative fitness reduces prediction error by 53% and
supports our second hypothesis.

Hypothesis 3 - Scaled Relative Fitness

The CDFs predicted by our models of scaled relative fitness are, in all cases, nearly indistinguishable from
the actual CDFs. The average error across all device pairs and predictions is 15%. This is a 12% error
reduction when compared to absolute relative fitness and a 61% reduction when compared to conventional
modeling.

Scaled relative fitness models assume a default similarity between devices, and therefore naturally
interpolate for unseen workloads. When the number of training samples is comprehensive, reducing the
need for interpolation, we find that absolute and scaled relative fitness perform similarly. Early tests (not
presented here) were conducted with fewer training samples. In such cases, the differences between scaled
and absolute relative fitness were more pronounced.

The ability to measure device similarity is a direct side-effect of our scaled models. Notice the diagonal
of zeros for SRF in Table 6. Given the training data, the SRF model for each pair of like devices was a single
node tree with a value of 1.0. In other words, the tree easily captured the fact that any workload running on
�� will change by 0% if moved to ��, so the relative fitness value is 1.0.

We can therefore use relative fitness to determine which devices are similar, and which ones are not,
with respect to performance and resource utilization. Looking again at Table 6, we see that SRF prediction
errors are much lower between DISK and RAID than they are between DISK and SSD, or between RAID
and SSD, suggesting that DISK is more similar to RAID, and this is indeed the case.

With respect to the information for workload characteristic vs. service observations (Table 8), unlike
absolute relative fitness, we see a slight increase in prediction error (1%) when building SRF trees that only
use service observations. The most effective trees were those that used both workload characteristics and
service observations.

6.2 A macro benchmark

Our final test evaluates the trained models on a workload for which there was no explicit training: the
Postmark benchmark [5]. Postmark was built to simulate Internet and small file workloads. The first of
three phases creates a large pool of files. The second phase performs transactions on these files (create,
delete, read, or write). The third phase deletes them all. Postmark tests the small-file performance of a file
system, especially its ability to efficiently handle short-lived files and their associated metadata operations
(e.g., adding/removing names from a directory, and creating/deleting inodes). When the Postmark working
set (i.e., the number of files) exceeds the size of the file system page cache, each Postmark transaction will,
on average, result in multiple trips to the storage device. Because the files are being selected at random, the
resulting I/O at the device is relatively random. In this case, the latency of the storage device determines the
maximum throughput of Postmark. We configure Postmark with 20,000 files and 20,000 transactions. The
resulting footprint is approximately 100MB (5KB average file size � 20,000 files) and exceeds the page
cache memory of the host on which Postmark is running.

For this test we select SSD and DISK, our storage devices with the largest disparity in average request
latency. On SSD, Postmark completes in 21 seconds with an average device throughput of 2052 IO/sec. On

18



 0

 500

 1000

 1500

 2000

 2500

 0  20  40  60  80  100  120  140  160

D
ev

ic
e 

IO
P

S

Elapsed time (s)

Actual disk
Actual solid-state disk

Scaled relative fitness prediction for disk
Absolute relative fitness prediction for disk

Conventional model prediction for disk

ARF SRF

Solid-state disk

Conventional

Disk

Figure 6: We compare the ability for CM, ARF and SRF to predict the change in device throughput
when moving a Postmark workload from SSD to DISK. Both ARF and SRF use service observa-
tions and workload characteristics. CM only uses workload characteristics. Due to a change in
throughput, SSD completes the Postmark test in 21 seconds, and DISK takes 156 secs. CM pre-
dicts this within 205%, ARF within 25%, SRF within 8%.

DISK it takes 156 seconds with an average throughput of 269 IO/sec. The challenge to our models is to
make this prediction.

Figure 6 shows our results. Each line plots I/O throughput as a function of time. There is one line for
SSD (the tallest line), one for DISK (the shortest line), and one for each prediction for DISK (CM, ARF,
and SRF). CM predicts with an average error of 205%, ARF 25%, and SRF 8%.

Just as in the training/testing workloads, the workload characteristics experienced significant change.
On SSD the arrival rate was approximately one I/O every 487 usec. On DISK, it was one every 3.7 ms.
Similarly, average request service time changed from 600 usec to 24 ms, queue depth changed from 2 to 8,
and the randomness, originally 65%, became 80%. Given this, it is no surprise that the conventional model
mispredicted as badly as it did. As for absolute and scaled relative fitness, we see a 17% improvement when
predicting a scaled rather than absolute value, a result consistent with hypothesis 3.

Interestingly, the first time we ran Postmark, we noticed that the device randomness (65%-80%) was,
on average, much higher than the maximum being generated by our micro-benchmarks on the devices (about
30%). Upon closer inspection, we realized that the randomness from the micro-benchmarks, although spec-
ified as high as 100% in the workload generator, was being ordered by the OS before going to disk. Recall
that the workload generator issues all I/O to the same file, so writes are delayed and optimized by elevator
scheduling algorithms within the OS. Postmark, however, did not benefit as much from such out-of-order
scheduling due to the large amounts of file system metadata, leading to much more random I/O on the
devices. The result was that the models were not trained with a sufficient number of random samples to
predict Postmark performance accurately. As such, the models did not distinguish between, say, a 40%
random workload and one that was 90% (i.e., both were greater than 30% and mapped into the same leaf of
the regression tree), and all three models predicted poorly.

To account for this, we trained each model with an additional 50 workload samples that performed
all I/O through a raw SCSI device. Raw devices do not use the page cache and are therefore ineligible
for elevator scheduling or request coalescing within the OS. Although the additional training data did not
benefit CM, ARF and SRF learned from the new samples, resulting in the Figure 6 predictions.
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6.3 Summary

The experiments presented support our hypotheses with respect to relative device modeling. First, the effect
of a workload changing between two devices �� and �� can be reduced by training a device model of ��

using the workload characteristics as measured by ��. Second, the service observations on �� can provide
just as much information as the workload characteristics when building a model. Third, predicting scale
factors best captures the similarity between devices, and can be used to identify like devices in a data center.

7 Conclusion

Relative device modeling is a promising new approach to predicting workload performance and resource
utilization. By accounting for the device-dependency of workloads and enabling the use of service ob-
servations, relative device modeling significantly increases model accuracy. Experiments show that relative
device modeling reduces prediction error by over 60% on average when compared to conventional modeling
techniques.
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