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Abstract

This white paper promotes a new approach to network
security in which each individual device erects its own se-
curity perimeter and defends its own critical resources (e.g.,
network link or storage media). Together with conventional
border defenses, such self-securing devices could provide a
flexible infrastructure for dynamic prevention, detection, di-
agnosis, isolation, and repair of successful breaches in bor-
ders and device security perimeters. We overview the self-
securing devices approach and the siege warfare analogy
that inspired it. We also describe several examples of how
different devices might be extended with embedded security
functionality and outline some challenges of designing and
managing self-securing devices.

1. Overview

From all indications, assured OS security seems to be an
impossible goal. Worse, conventional security architectures
are brittle by design, because a small number of border pro-
tections (e.g., firewalls and/or host OSs) are used to protect
a large number of resources and services. For example, an
attacker who compromises a machine’s OS gains complete
control over all resources of that machine. Thus, such an
intruder gains the ability to transmit anything onto the net-
work, modify anything on the disk, and examine all input
device signals (e.g., typing patterns and video feeds). Like-
wise, an attacker who circumvents firewall-based protection
has free reign within the “protected” environment.

Having shared border protections for large sets of re-
sources creates three fundamental difficulties: (1) the many
interfaces and functionalities for the many resources (e.g.,
consider most multi-purpose OSs) make correct implemen-
tation and administration extremely difficult; the practical
implications are daily security alerts for popular OSs (e.g.,
Windows NT and Linux) and network applications (e.g.,
e-mail and web); (2) the ability of successful attackers to
freely manipulate everything beyond the border protection
greatly complicates most phases of security management,

including intrusion detection, isolation, diagnosis, and re-
covery; (3) having a central point of security checks creates
performance, fault-tolerance, and flexibility limitations for
large-scale environments.

This position paper promotes an alternative architec-
ture in which individual system components erect their
own security perimeters and protect their resources (e.g.,
network, storage, or video feed) from intruder tampering.
This “self-securing devices” architecture distributes secu-
rity functionality amongst physically distinct components,
avoiding much of the fragility and unmanageability inher-
ent in today’s border-based security. Specifically, this ar-
chitecture addresses the three fundamental difficulties by:
(1) simplifying each security perimeter (e.g., consider NIC
or disk interfaces), (2) reducing the power that an intruder
gains from compromising just one of the perimeters, and (3)
distributing security enforcement checks among the many
components of the system.

Conventional application-executing CPUs will still run
application programs, but they won’t dictate which packets
are transferred onto network wires and they won’t dictate
which disk blocks are overwritten. Instead, self-securing
NICs will provide firewall and proxy server functionality
for a given host, as well as throttling or labelling its out-
bound traffic when necessary. Likewise, self-securing stor-
age devices will protect their data from compromised client
systems, and self-securing graphics cards will display warn-
ing messages even when the window manager is compro-
mised. In a system of self-securing devices, compromising
the OS of an application-executing CPU won’t give a ma-
licious party complete control over all system resources —
to gain complete power, an intruder must also compromise
the disk’s OS, the network card’s OS, etc.

Augmenting current border protections with self-
securing devices promises much greater flexibility for se-
curity administrators. By having each device erect an inde-
pendent security perimeter, the network environment gains
many outposts from which to act when under attack. De-
vices not only protect their own resources, but they can ob-
serve, log, and react to the actions of other nearby devices.
Infiltration of one security perimeter will compromise only
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Figure 1. Two security approaches for a computer system. On the left, (a) shows the conventional
approach, which is based on a single perimeter around the set of system resources. On the right,
(b) shows our new approach, which augments the conventional security perimeter with perimeters
around each self-securing device. These additional perimeters offer additional protection and flexi-
bility for defense against attackers. Firewall-enforced network security fits a similar picture, with the
new architecture providing numerous new security perimeters within each system on the internal
network.

a small fraction of the environment, allowing other devices
to dynamically identify the problem, alert still-secured de-
vices about the compromised components, raise the security
levels of the environment, and so forth.

Self-securing devices will require more computational
resources in each device. However, with rapidly shrink-
ing hardware costs, growing software development costs,
and astronomical security costs, it makes no sense to not
be throwing hardware at security problems. A main chal-
lenge for we OS folks is to figure out how to best parti-
tion (and replicate) functionality across self-securing com-
ponents in order to enhance security and robustness. A
corollary challenge is to re-marshall the distributed func-
tionality to achieve acceptable levels of performance and
manageability. After describing our inspiration for this ar-
chitecture (medieval siege warfare), this position paper out-
lines some of our thoughts on these challenges.

2. Siege Warfare in the Internet Age

Despite enormous effort and investment, it has proven
nearly impossible to prevent computer security breaches.
To protect our critical information infrastructures, we need
defensive strategies that can survive determined and suc-
cessful attacks, allowing security managers to dynamically
detect, diagnose, and recover from breaches in security
perimeters. Borrowing from lessons learned in pre-gun war-
fare, we propose a new network security architecture anal-
ogous to medieval defense constructs.

Current security mechanisms are based largely on singu-
lar border protections. This roughly corresponds to defense

practices during Roman times, when defenders erected
walls around their camps and homes to provide protective
cover during attacks. Once inside the walls, however, at-
tackers faced few obstacles to gaining access to all parts
of the enclosed area. Likewise, a cracker who successfully
compromises a firewall or OS has complete access to the re-
sources protected by these border defenses—no additional
obstacles are faced.1 Of course, border defenses were a
large improvement over open camps, but they proved dif-
ficult to maintain against determined attackers — border
protections can be worn down over time and defenders of
large encampments are often spread thin at the outer wall.

As the size and sophistication of attacking forces grew,
so did the sophistication of defensive structures. The most
impressive such structures, constructed to withstand deter-
mined sieges in medieval times, used multiple tiers of de-
fenses. Further, tiers were not strictly hierarchical in na-
ture — rather, some structures could be defended indepen-
dently of others. This major advancement in defense ca-
pabilities provided defenders with significant flexibility in
defense strategy, the ability to observe attacker activities,
and the ability to force attackers to deal with multiple inde-
pendent defensive forces.

1This is not quite correct in the case of a firewall protecting a set of
hosts that each run a multi-program OS, such as Linux. Such an environ-
ment is more like a town of many houses surrounded by a guarded wall.
Each house affords some protection beyond that provided by the guarded
wall, but not as much in practice as might be hoped. In particular, most
people in such an environment will simply open the door when they hear a
knock, assuming that the wall keeps out attackers. Worse, in the computer
environment, homogeneity among systems results in a single set of keys
(attacks) that give access to any house in the town.
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Figure 2. The self-securing device architecture illustrated via the siege warfare constructs that in-
spired it. On the left, (a) shows a siege-ready system with layered and independent tiers of defense
enabled by device-embedded security perimeters. On the right, (b) shows two small intranets of such
systems, separated by firewall-guarded entry points. Also note the self-securing routers/switches
connecting the machines within each intranet.

Applying the same ideas to computer and network secu-
rity, border protections (i.e., firewalls and host OSs) can be
augmented with security perimeters erected at many points
within the borders. Enabled by low-cost computation (e.g.,
embedded processors, ASICs), security functionality can be
embedded in most device microcontrollers, yielding “better
security via smarter devices.” We refer to devices with em-
bedded security functionality as self-securing devices.

Self-securing devices can significantly increase network
security and manageability, enabling capabilities that are
difficult or impossible to implement in current systems. For
example, independent device-embedded security perimeters
guarantee that a penetrated boundary does not compromise
the entire system. Uncompromised components continue
their security functions even when other system compo-
nents are compromised. Further, when attackers penetrate
one boundary and then attempt to penetrate another, un-
compromised components can observe and react to the in-
truder’s attack; from behind their intact security perimeters,
they can send alerts to the security administrator, actively
quarantine or immobilize the attacker, and wall-off or mi-
grate critical data and resources. Pragmatically, each self-
securing device’s security perimeter is simpler because of
specialization, which should make correct implementations

more likely. Further, distributing security checks among
many devices reduces their performance impact and allows
more checks to be made.

By augmenting conventional border protections with
self-securing devices, this new security architecture
promises substantial increases in both network security and
security manageability. As with medieval fortresses, well-
defended systems conforming to this architecture could sur-
vive protracted sieges by organized attackers.

3. Device-embedded security examples

To make our new security architecture more concrete,
this section gives several examples of how different devices
might be extended with embedded security functionality. In
each case, there are difficulties and research questions to be
explored; here, we focus mainly on conveying the potential.

Network interface cards (NICs): The role of NICs in
computer systems is to move packets between the system’s
components and the network. Thus, the natural security ex-
tension is to enforce security policies on packets forwarded
in each direction [2]. Like a firewall, a self-securing NIC
does this by examining packet headers and simply not for-
warding unacceptable packets into or out of the computer



system. A self-securing NIC can also act as a machine-
specific gateway proxy, achieving the corresponding protec-
tions without scalability or identification problems; by per-
forming such functions at each system’s NIC, one avoids
the bottleneck imposed by current centralized approaches.
NIC-based firewalls and proxies can also protect systems
from insider attacks as well as Internet attacks, since only
the one host system is inside the NIC’s boundary. Further,
self-securing NICs offer a powerful control to network ad-
ministrators: the ability to throttle or tag network traffic at
its sources. So, for example, a host whose security status
is questionable could have its network access blocked or
limited. Security administrators manage and configure self-
securing NICs over the network, since they must obviously
be connected directly to it — this allows an administrator to
use the NIC to protect the network from its host system. By
embedding this traffic management functionality inside the
NIC, one enjoys its benefits even when the host OS or other
machines inside the LAN border are compromised.

Storage devices: The role of storage devices in com-
puter systems is to persistently store data. Thus, the natu-
ral security extension is to protect stored data from attack-
ers, preventing undetectable tampering and permanent dele-
tion [6]. A self-securing storage device does this by manag-
ing storage space from behind its security perimeter, keep-
ing an audit log of all requests, and keeping previous ver-
sions of data modified by attackers. Since a storage device
cannot distinguish compromised user accounts from legit-
imate users, the latter requires keeping all versions of all
data. Finite capacities will limit how long such compre-
hensive versioning can be maintained, but 100% per year
storage capacity growth will allow modern disks to keep
several weeks of all versions. If intrusion detection mech-
anisms reveal an intrusion within this multi-week detection
window, security administrators will have this valuable au-
dit and version information for diagnosis and recovery. This
information will simplify diagnosis, as well as detection, by
not allowing system audit logs to be doctored, exploit tools
to be deleted, or back doors to be hidden — the common
steps taken by intruders to disguise their presence. This in-
formation will simplify recovery by allowing rapid restora-
tion of pre-intrusion versions and incremental examination
of intermediate versions for legitimate updates. By embed-
ding this data protection functionality inside the storage de-
vice, one enjoys its benefits even when the network, user
accounts, or host OSs are compromised.

Biometric sensors: The role of biometric sensors in
computer systems is to provide input to biometric-enhanced
authentication processes, which promise to distinguish be-
tween users based on measurements of their physical fea-
tures. Thus, the natural security extension is to ensure the
authenticity of the information provided to these processes.
A self-securing sensor can do this by timestamping and dig-

itally signing its sensor information. Such evidence of when
and where readings were taken is needed because, unlike
passwords, biometrics are not secrets [4]. For example,
anyone can lift fingerprints from a laptop with the right
tools or download facial images from a web page. Thus,
the evidence is needed to prevent straightforward forgery
and replay attacks. Powerful self-securing sensors may also
be able to increase security and privacy by performing the
identity verification step from within their security perime-
ter and only exposing the results (with the evidence). By
embedding mechanisms for demonstrating authenticity and
timeliness inside sensor devices, one can verify sensor in-
formation (even over a network) even when intruders gain
the ability to offer their own “sensor” data.

Graphical displays: The role of graphical displays
in computer systems is to visually present information to
users. Thus, a natural security extension would be to en-
sure that critical information is displayed. A self-securing
display could do this by allowing high-privilege entities to
display data that cannot be overwritten or blocked by less-
privileged entities. So, for example, a security administrator
could display a warning message when there is a problem
in the system (e.g., a suspected trojan horse or a new e-mail
virus that must not be opened). By embedding this screen
control inside the display device, one gains the ability to
ensure information visibility even when an intruder gains
control over the window manager.

Routers and switches: The role of routers and switches
in a network environment is to forward packets from one
link to an appropriate next link. Thus, one natural secu-
rity extension for such devices is to provide firewall and
proxy functionality; many current routers provide exactly
this. Some routers/switches also enhance security by iso-
lating separate virtual LANs (VLANs). More dynamic de-
fensive actions could provide even more defensive flexibil-
ity and strength. For example, the ability to dynamically
change VLAN configurations would give security admin-
istrators the ability to create protected command and con-
trol channels in times of crisis or to quarantine areas sus-
pected of compromise. When under attack, self-securing
routers/switches could also initiate transparent replication
of data services, greatly reducing the impact of denial-of-
service attacks. Further, essential data sites could be repli-
cated on-the-fly to “safe locations” (e.g., write-once storage
devices) or immediately isolated via VLANs to ensure secu-
rity. Self-securing routers/switches can also take an active
role in intrusion detection and tracking, by monitoring and
mining network traffic. When an attack is suspected, alerts
can be sent to administrators and to other self-securing de-
vices to increase security protections. By embedding traf-
fic monitoring and isolation functionality in self-securing
routers/switches, one can enjoy its benefits even when fire-
walls and systems on the internal network are compromised.



Application-only CPUs: Though not strictly devices,
most future host systems are likely to have multiple CPUs.
They already have multiple functions, including OS-level
resource management and various application-level tasks.
Rather than trying to correctly implement and use a sand-
box to safely host iffy code, we again suggest using physi-
cal boundaries — that is, run untrusted code on a separate
application-only CPU that has no kernel (in the traditional
sense) and no kernel-like capabilities. An application-
only CPU should be physically locked away from its vir-
tual memory mappings and device communication. The
mappings, permissions, and external communication should
be controlled by separate management CPUs, with which
the application-only CPU communicates via a well-defined
protocol. With such an organization, the safety of the hosted
code becomes less critical, and the boundaries between it
and more trusted components become more explicit.

4. Newly-enabled dynamic actions

Many new dynamic network security actions are enabled
by the more numerous and heterogenous security perime-
ters inherent to the self-securing device architecture. To il-
lustrate the potential, this section describes a few such ac-
tions:

Network DefCon Levels: Often, there is a trade-off be-
tween security and performance. For example, the more de-
tailed and numerous the firewall rules, the greater the over-
head introduced. Likewise, the more detailed the event log-
ging, the greater the overhead. One use of the many new
security perimeters is to support dynamic increases of secu-
rity level based on network-wide status. For example, if an
attack can be detected after only a small number of perime-
ters are compromised, the security levels at all other self-
securing devices can be dynamically raised. As suggested
above, this might take the form of more detailed firewalling
at NICs, logging of network traffic to storage, and dynamic
partitioning of the network into distinct VLANs.

Email Virus Stomping: One commonly observed secu-
rity problem is the rapidly-disseminated e-mail virus. Even
after detecting the existence of a new virus, it often takes a
significant amount of time to root it out of systems. Iron-
ically, the common approach to spreading the word about
such a virus is via an e-mail message (e.g., “don’t open
unexpected e-mail that says ‘here is the document you
wanted’”). By the time a user reads this message, it is often
too late. An alternative, enabled by self-securing NICs, is
for the system administrator to immediately send a new rule
to all NICs: check all in-bound and out-bound e-mail for the
new virus’s patterns. This would immediately stop further
spread of the virus within the intranet, as well as quickly
identifying many of the infected systems.

Traffic Throttling at the Source: As the previous ex-
ample suggests, self-securing NICs allow network traffic to
be throttled at its sources. Thus, a system that is deemed
“bad” could have its network traffic slowed or cut off com-
pletely. Also, such malicious network activity as “SYN
bombs” and IP address spoofing can be detected, termi-
nated at its source, and even automatically repaired by the
source’s NIC (e.g., sending RST packets to clear SYN bomb
connections).

Biometric Identity Verification: A more exotic use of
self-securing devices is auxiliary identity checks on users.
For example, imagine that an authenticated user does some-
thing that triggers an intrusion detection alarm. There are
many possible explanations, one of which is that someone
else is using the real user’s session (e.g., while the real user
is away at lunch). To check for this, a network security
administrator could silently consult a nearby (or attached)
self-securing video camera and perform face or iris recog-
nition. Many other biometrics could also be used. The in-
trusion detection system could even trigger this check au-
tomatically and terminate the corresponding system’s net-
work and storage access, if the user is deemed to be an im-
poster.

Migration of Critical Data from Compromised Sys-
tems: If a system is compromised, one important action is
trying to save and retain access to its user data. In our new
architecture, this can be done by having the self-securing
storage device (appropriately and authoritatively directed)
encrypt and send the relevant contents over the network via
the self-securing NIC. The self-securing router can forward
the data to one or more alternate locations and route sub-
sequent accesses to the data appropriately. In fact, differ-
ent user bases could be routed to distinct replicas. With
emerging device-to-device I/O interconnects, the storage-
to-network transfer can be done with no host OS involve-
ment at all, leaving the successful intruder with no way to
stop it. Going back to the first example, another use of this
support would be to frequently transfer the audit logs from
various self-securing devices to on-line intrusion detection
systems during perceived siege situations.

Displaying Trojan-defeating Messages: In perhaps the
simplest example, a security administrator could direct a
self-securing graphics card to override system directives
and display a warning message. Such support would be par-
ticularly useful when users need to be warned to discontinue
(or not start) using a system suspected of housing Trojan
horses. Again, device-to-device communication allows this
to happen over the network without host OS interference.

5. Research challenges

This change in network security architecture raises two
major research questions, each with a number of sub-



questions. First, “what should each device do behind its
security perimeter?” Answering this question will require
exploration of cost, performance, and flexibility trade-offs,
as well as exploring what is possible with the limited in-
formation available at any given device. Section 3 outlines
potential functionalities for a number of devices. Second,
“how does one effectively manage a large collection of in-
dependent security perimeters?” Answering this question
will require exploration of tools and techniques for marshal-
ing sets of self-securing devices, monitoring their current
state, and dynamically updating their policies in the face
of changes to and attacks upon the network environment’s
state.

The second question raises several complex sub-
questions that must be answered in order to realize dynamic
and robust network security environments from large col-
lections of distinct security perimeters. The clearest sub-
questions center on administrative control over the various
devices, where security and convenience must be balanced.
Research is also needed into how to reason about global
network security given the set of local insights provided by
distinct host systems and self-securing devices. Many other
sub-questions exist, including those related to local policy
configuration, robust reconfiguration, coordinated intrusion
diagnosis, and avoidance of internally-imposed denial-of-
service.

6. Related Work

Several researchers have used the siege warfare analogy
to promote more comprehensive information security de-
fenses [1, 3, 5]. Usually, the associated proposals are only
loosely connected to the analogy, simply referring to the
strengths (e.g., many parts), weaknesses (e.g., traitors), or
eventual replacement of siege defenses. We use the anal-
ogy to inspire a specific defense strategy: use of physically-
distinct barriers that monitor one another, defend collec-
tively, and must be penetrated independently.

The concept of using physical separation of functionality
for security is also not new. Perhaps the simplest examples
are physically-secured machines with no network connec-
tions. Perhaps the best examples are firewalls and proxies,
which enforce rules on network traffic entering and leaving
an intranet via hardware specifically dedicated to this pur-
pose. Here, we propose using physical component bound-
aries as the core of a security architecture rather than as a
bandaid on inherently insecure network environments. The
references below identify and discuss more related work.

7 Summary

This white paper promotes a new security architecture
in which traditional boundary protections are coupled with

security functionality embedded into self-securing devices.
The resulting collection of independent security perimeters
could provide a flexible infrastructure for dynamic preven-
tion, detection, diagnosis, isolation, and repair of success-
ful intrusions. Although many research challenges arise, we
believe that the new architecture has great potential.
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