
Scheduling speculative tasks in a compute farm

David Petrou
Carnegie Mellon University

Garth A. Gibson
Carnegie Mellon University

Gregory R. Ganger
Carnegie Mellon University

Abstract

Users often behave speculatively, submitting work
that initially they do not know is needed. Farm
computing often consists of single node speculative
tasks issued by, e.g., bioinformaticists comparing dna
sequences and computer graphics artists rendering
scenes who wish to reduce their time waiting for
needed tasks and the amount they will be charged
for unneeded speculation. Existing schedulers are not
effective for such behavior. Our ‘batchactive’ schedul-
ing exploits speculation: users submit explicitly-
labeled batches of speculative tasks, interactively re-
quest outputs when ready to process them, and cancel
tasks found not to be needed. Users are encouraged
to participate by a new pricing mechanism charging
for only requested tasks no matter what ran.

Over a range of simulated user and task character-
istics, we show that: batchactive scheduling improves
visible response time — a new metric for speculative
domains — by at least 2X for 20% of the simulations;
batchactive scheduling supports higher billable load
at lower visible response time, encouraging adoption
by resource providers; and a batchactive policy fa-
voring users who use more of their speculative tasks
provides additional performance and resists a denial-
of-service.

1 Introduction

Imagine a scientist using a shared compute farm to
validate a hypothesis (Figure 1). She submits chains
of tasks that could keep the system busy for hours

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SC|05 November 12–18, 2005, Seattle, Washington, usa
c© 2005 acm 1-59593-061-2/05/0011 . . . $5.00

Figure 1: Users wish to pipeline the execution of chains of
speculative — not known to be needed — tasks with the
consideration of received task outputs and optional rest
periods. This paper removes existing barriers to exploiting
this way of working.

or longer. Tasks listed earlier are to answer press-
ing questions while those later are more speculative.
Early outputs could cause the scientist to reformulate
her line of inquiry; she would then reprioritize tasks,
cancel later tasks, issue new tasks. Moreover, the sci-
entist is not always waiting for tasks to complete; she
spends minutes to hours studying the output of com-
pleted tasks, attends meetings and lunches, and stops
working as evening approaches.

Existing schedulers do not leverage the speculation
inherent in such situations, resulting in a mismatch of
goals and suboptimal scheduling. Should a user who
does not know which tasks will bear fruit submit one
speculative task, a few, many, or every conceivable
task? After all, defining tasks is a time-consuming
activity in itself. A user wishes to reduce the time
waiting for needed task output, increasing the rate
at which scientific inquiry is accomplished, and re-
duce the amount charged for unneeded speculation.
The right amount of speculation depends on consid-
erations difficult and burdensome or impossible for
a user to know, including to what extent a task is
in fact speculative, whether receiving the results of

1

a speculative task will be worth its cost, and the be-
havior (queuing) of other users. In situations in which
resources are not directly charged or users have the
means to pay for wasted work, users might overwhelm
resources with speculative tasks in an attempt to re-
duce delay. This paper addresses these and other con-
cerns with multiuser ‘batchactive’ schedulers (com-
bining batch and interactive characteristics) to ex-
ploit the inherent and easily disclosed speculation
common to many application scenarios.

With a batchactive scheduler, users submit
explicitly-labeled chains or batches of speculative
tasks exploring ambitious lines of inquiry, and users
interactively request task outputs when they are
found to be needed. Batchactive scheduling segre-
gates tasks into two queues based on whether a task is
speculative and gives the non-speculative tasks prior-
ity, and employs a novel incentive pricing mechanism
that charges for only requested task outputs (i.e., un-
needed speculative tasks are not charged). Users are
encouraged to disclose speculative tasks because the
prioritization provides better time metrics and the
pricing mechanism provides better cost metrics. En-
dowing servers with the knowledge of tasks that may
be needed enables servers to get an early start rather
than being idle. Further, this knowledge can expose
parallelism within a user’s workload that can be used
to leverage multiple compute nodes when tasks do
not depend on outputs from one another. After re-
ceiving an output and considering it for some time,
a user decides to request more tasks, cancel tasks, or
disclose new speculative tasks.

We target loosely connected farms of compute
nodes, which we define as collections of individually
scheduled processors, as opposed to clusters which
may imply tighter coordination. Examples include
PCs connected by commodity networks or racks of
servers such as the Apple Xserve G5. We use ‘farm’
to indicate that the workload consists of single-
threaded, non-communicating tasks. While copies
may run simultaneously across multiple compute
nodes to obtain speedups, there is no requirement
that any processes be coscheduled. By restricting our
scope to such applications, we focus our research on
the problems posed by speculation and leave the in-
tegration of coscheduling to future work. The num-
ber of important single processor tasks is large, as
shown by our target applications below. Our scope is
also restricted to processor-bound tasks; I/O-bound

tasks should be addressed by high-performance paral-
lel I/O architectures [Gibson et al., 1998; Hildebrand
and Honeyman, 2004]. Our deployment plan is to aug-
ment the scheduling in, e.g., Condor, Platform lsf,
Globus, or the Sun ONE Grid Engine.

Noting that not all tasks are equal — only tasks
whose outputs users eventually desire matter — we
introduce the ‘visible response time’ metric (the time
between needing and receiving task output irrespec-
tive of when it was submitted) and batchactive pric-
ing (charging only for tasks whose outputs the user
views irrespective of what ran). We specifically show
that: (1) speculative tasks are poorly exploited by ex-
isting schedulers; (2) speculative task disclosure and
batchactive pricing support how people wish to work
for many application scenarios, including their de-
sire to pipeline think time and task execution; (3)
in a single-server simulation, batchactive schedul-
ing can substantially reduce visible response times
(among other time metrics), reduce user costs, and
in some cases improve resource provider revenue; and
(4) batchactive scheduling is simple (thus, it should
be easily deployable) and exhibits low overhead.

For example, over a broad range of simulated user
behavior and task characteristics, we show that un-
der a batchactive scheduler visible response time is
improved by at least a factor of two for 20% of the
simulations. On a non-speculative scheduler, there
are extreme situations (such as high load) in which
users who submit one task at a time results in bet-
ter performance than users who unconditionally sub-
mit batches of tasks at a time. While at other ex-
tremes (such as low load), the opposite is true. But
users submitting work to a batchactive scheduler
results in as good or better performance for both
these extremes and better performance for interme-
diate situations, exhibiting adaptability. Moreover,
visible response time can be improved without de-
creasing the throughput of tasks whose outputs were
desired. User costs decrease while server revenue in-
creases in the reasonable circumstance that lower
cost for needed work leads to increased usage. Re-
lated is that more users can be supported and greater
server revenue generated at the same mean visible
response time. Our results may be verified and fur-
ther research may be conducted using our schedul-
ing simulator (http://www.pdl.cmu.edu/PDL-FTP/
Scheduling/ba sim-0.1.tar.gz).

2

http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz
http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz

1.1 Targeted applications

Users often submit speculative tasks to test hypothe-
ses, search for insights, or review potentially finished
products; called exploratory searches or parameter
studies. For example, an application may be run re-
peatedly with different arguments to search a large
parameter space first in broad stokes — randomly or
at predetermined intervals (called iterative improve-
ment) — then in detail at areas of interest. Any-time
algorithms or imprecise computing generate output
after using some amount of resources or after achiev-
ing some level of quality. Our system, which sched-
ules activity at the task granularity, considers the cre-
ation of each intermediate output to be one task. It
is often initially unclear which task outputs will be
useful. [DeGroot, 1990] The following are important
target applications (consisting of non-communicating
tasks) fitting our scheduling approach:

Bioinformatics comprises methods for solving nu-
cleotide sequencing problems. Bioinformaticists ex-
plore biological hypotheses, searching among dna
fragments with similarity tools like the non-parallel
blast [Altschul et al., 1990] tool. Some algorithms
are more sensitive to differences than others and the
more sensitive ones are slower. Moreover, a single al-
gorithm may have a parameter to control this sensi-
tivity / time tradeoff. These scientists share worksta-
tion farms — such as the dedicated 30 machines at
the Berkeley Phylogenomics Group [Holliman, 2003]
— and issue series of fast, inaccurate searches (tak-
ing from 10 sec to 10 min) followed by slow, accu-
rate searches to confirm initial findings. A batchac-
tive scheduler would enable scientists to explore am-
bitious hypotheses without fear that resources would
be wasted on tasks that might be canceled after early
results were scrutinized.

Computer animation is increasingly used in mo-
tion pictures. Hundreds of artists and engineers cre-
ating a film such as at Dreamworks or Pixar submit
scenes for rendering, where each scene has roughly
200 frames, to compute farms consisting of thousands
of nodes. Each frame, consisting of independent, non-
communicating tasks for lighting, shading, anima-
tion, etc., can take from minutes to hours to ren-
der. This work is highly speculative: the overwhelm-
ing majority of computation never makes the final
cut. [Epps, 2004; Lokovic, 2004] Upon seeing initial
frames (computed by a chain of tasks), an artist may

decide that an object could be in a better location,
e.g. With a batchactive scheduler, artists could pri-
oritize key sections (such as those with more action)
at rough quality to more quickly decide whether ad-
ditional frames are worth seeing. If unviewed, possi-
bly uncomputed, frames will not be needed, artists
would cancel their renderings to free resources for
other tasks belonging to them or their colleagues.

Computer-aided design is employed on shared com-
pute farms to explore high dimensional spaces. Trace-
and analytic-based tools in computer science are used
to study, e.g., microarchitecture, disk characteris-
tics, and network performance (using single processor
tools such as Simplescalar, DiskSim, and ns-2). Pa-
rameter studies for feature extraction, search, or func-
tion optimization can continue indefinitely, homing in
on areas for accuracy or randomly sampling points for
coverage. With a batchactive scheduler, such chains
of tasks could run in parallel with users analyzing de-
sired and completed outputs and guiding the searches
in new directions, canceling branches determined to
not be useful. Speculative tasks would operate in the
background when pressing outputs were needed. We
treat computer-aided design as a subset of simula-
tion, excluding tasks (such as physical grid model-
ing) requiring many communicating nodes and com-
pute time on scales too large (weeks) to speculatively
compute beyond the user’s immediate needs.

2 Related work

Attempting to use traditional, deployed mechanisms
to control speculation leads to poor scheduling and a
cumbersome interface to the user. Mechanisms such
as Unix nice, priorities in the Condor clustering
system, FreeBSD’s idle queue, and classed sched-
ulers [Corbató et al., 1962] do not leverage inherent
properties of user behavior (such as think time) or
provide a useful cost model. (These considerations are
amplified after describing the batchactive scheduling
environment in Chapter 3.) Further, without schedul-
ing support, and assuming user cooperation, which
we do not, there is no clear way for users to throt-
tle their own speculation because meeting individual
and collective time and cost goals depends on many
unknowns: the pattern of other users’ task arrivals,
task sizes, user think times, and the probabilities that
speculative tasks will be needed.

3

Speculation to improve performance is found at the
level of I/O requests, program blocks, and instruc-
tions across all areas of computing including architec-
ture, languages, and systems [Hennessy et al., 2002;
Osborne, 1990]. In batchactive scheduling, the mech-
anism of conveying that a task is speculative is a ‘dis-
closure’ hint [Patterson et al., 1995], revealing only
user knowledge, enabling the system to globally op-
timize resource management, and remaining correct
when the application execution environment changes.
Here we compare against a varied set of relevant re-
search systems.

Bubenik and Zwaenepoel [1989] modeled a set of
users engaged in software development using a mod-
ified make tool. At each save of a source code file,
their system speculatively runs the compiler using
the build rules encoded in the project’s Makefile
and isolates speculative compilations from the rest
of the system until the compilations are known to be
needed. Their simulator modeled one task (rebuild)
pending per user. Our model is broader, encompass-
ing users who operate interactively or who submit
batches of speculative work for a number of scenar-
ios, including users behaving speculatively with non-
speculative schedulers. Beyond their study of time-
based metrics, we also study resource cost as it relates
to user charges and server revenue.

Patterson et al. [1995] have shown in the tip sys-
tem how application performance can increase if the
application discloses storage reads in advance of when
data is needed. Programmers insert speculative data
reads as program annotations in the hope that the
system can use this information to reduce application
I/O latency. Our work applies the same concepts and
terminology to the processor resource at the granu-
larity of tasks. As tip uses disclosed reads to exploit
storage parallelism, batchactive scheduling uses dis-
closed tasks to exploit compute farm parallelism.

In the database realm, Polyzotis et al. built a spec-
ulator that begins work on database queries, where
each query could be considered a task, during the user
think time in constructing complex queries [Polyzotis
and Ioannidis, 2003]. Their system predicts what the
user will need before the query is finished. They do
not consider the scheduling issues of a competing set
of users submitting needed and speculative queries.

One could phrase the goal of batchactive scheduling
as minimizing a soft real-time utility function defined
as the total amount of task visible response times.

Figure 2: Batchactive task state transitions. When a
task’s resource usage equals its service time, the task be-
comes executed. If a task is both executed and requested,
then the task is finished and the its output is supplied to
the requesting user. If a task executes and was disclosed
but not requested, then the task’s output is stored in an
isolated location until requested or canceled. If the task is
canceled after executing, its output is dropped. Disclosed
and requested tasks may also be canceled.

However, batchactive schedulers cannot know when a
user will need task output, if the user will need specu-
lative task output at all (i.e., the real-time deadlines
are unknown), making a mapping to existing real-
time scheduling difficult.

3 Batchactive scheduling

In a batchactive scheduler, users tag tasks as either
speculative or certainly needed. (There are no ‘levels’
of speculation which could be burdensome to pro-
vide.) Users disclose tasks whose outputs they are
not sure they will need at that time, i.e., the spec-
ulative tasks, and request tasks whose outputs they
already know they need. Later, a user may promote a
disclosed task to a requested task, or a user may can-
cel any task. This work makes no attempt to guess
what tasks are more or less useful to the user. The
application scenarios in Section 1.1 show that there
exist important problems in which tasks can be cate-
gorized as either speculative or needed. The states in
which a task may reside are depicted in Figure 2.

Tasks may be desired as task sets in a flat list order
or with no ordering preference as shown in Figure 3.
(We believe arbitrary dag orderings would be te-
dious to maintain.) List order indicates the order that

4

Figure 3: Flat list and unordered task sets. Tasks to the
right of the list are more speculative.

the user desires outputs (usually tasks listed later
are more speculative), not data dependencies among
tasks. Applications with data dependencies are not
good candidates for speculative execution. The un-
ordered collection (called ‘dynamic sets’ in the realm
of I/O [Steere, 1997]), often used when sampling a
large space, indicates that the user does not mind
which task outputs are returned first; any answer is
helpful until more is known about the space. We only
present flat list order results (Section 4) because for
the applications under consideration, we think that
users can and will want to order tasks so that they
will not be inundated by many outputs.

Figure 4 depicts user interaction with batchactive
software and the software’s interaction with compute
farm resources. Any number of users disclose, request,
and cancel any number of tasks. The scheduler de-
cides which and when disclosed and requested tasks
run. If a task is canceled, it is no longer a candidate.
The scheduler communicates decisions to the operat-
ing systems running on the resources which handle
the details of running the tasks. If a task executes
and was requested, then the task’s output is supplied
to the requesting user. If a task executes and was dis-
closed but not requested, then its output is stored
in an isolated location until requested or canceled.
There are file system mechanisms, such as permis-
sions or manipulating the namespace with hard links,
that can supply the output without an extra copy.

Hidden outputs impact capacity management. An
administrator may choose from multiple solutions.
If storage limits are reached, the oldest unrequested
outputs may be deleted. Or, the system may guar-
antee that isolated outputs are kept for a minimum
amount of time, and an administrator would add stor-
age if necessary to meet this guarantee. Alternatively,
hidden outputs may consume the user’s file system
quota (with the downside that a clever user may ana-
lyze quota usage to gain information without request-
ing and paying for tasks).

Figure 4: Interaction between users, the batchactive soft-
ware, and compute farm resources.

A resource owner is either a cost-center which
wishes to recoup its costs only, or a profit-center
(a/k/a 3rd-party compute outsourcer, e.g., the host-
ing services provided by ibm and eds) which wishes
to maximize profit. A cost-center wishes to maximize
the time the resource is busy, i.e., server load (varying
from 0–1), to gain maximum utility of its resource.
A profit-center also wishes to do this, but for the
purpose of maximizing profit. Users, however, wish
to pay as little as possible. Under traditional pricing
per cycle, a user might hesitate to disclose specula-
tive work for fear of being charged needlessly. (Even
in a cost-center, some entity is charged, if not the user
directly, then some part of the user’s organization.)
This is problematic because batchactive scheduling
policies work better with more disclosed tasks.

We propose and study a novel pricing mechanism
that does not charge for disclosed tasks that were
never needed, irrespective of whether such a task
did not run at all, ran partway, or finished. That is,
batchactive pricing charges for resources used only by
tasks whose outputs are requested. The user need not
weigh the estimated cost (wasted money) and benefit
(lower visible response time) of each disclosure, en-
couraging the user to freely disclose. Results indicate
that this mechanism often does not hurt server rev-
enue because users are able to submit work faster,
resulting in more normally idle time being billed. (It
is possible that paying less for computed but less de-
sired tasks may make sense, but this is beyond the
scope of the experiments we have done.)

Batchactive pricing is resilient to abuse. If a user
requests speculative work, the user will be charged.

5

(In settings where the user is not charged for resource
use, batchactive pricing does not add any potential
for abuse that did not already exist.) Now consider a
user who attempts to game the system by disclosing
tasks that the user will never request (and thus never
be billed for). For such tasks to benefit a user, they
would have to cause tasks that the user will actually
request to be preferentially scheduled. However, no
policy introduced in this paper does this. The worst
a user could do is swamp the disclosed queue, lessen-
ing its utility for other users. This can be countered
by a policy that favors users who request specula-
tive tasks more often (which we use below mainly to
achieve better visible response times), or by an ob-
servant administrator.

As the server wishes to maximize billed load, users
wish to minimize scaled billed resources, which we de-
fine as the ratio of the billed resources to the needed
resources. Results look at scaled billed resources av-
eraged over all users. It is always optimal (i.e., mean
scaled billed resources takes the minimum value of
1) under batchactive pricing. But under traditional
pricing, when users request tasks they later find they
will not need, the ratio is greater than 1.

With respect to time, users wish to minimize mean
visible response time over all tasks. (Without knowing
relative task importance, as in most online settings,
taking an unweighed mean to measure scheduling ef-
fectiveness is common practice.) A task is needed by
a user at time tn and executes (completes) at time te.
A requested and executed task a has a corresponding
visible response time defined as

V resp
a

def=

{
0 if tn > te,

te − tn if tn ≤ te.

Visible response time accrues only after a user asks
for output from a task that may have been submit-
ted much earlier and thus measures the time that a
user actually waits for output, which is usually less
than the time that a speculative task has been in
the system. In particular, a task can and often does
have 0 visible response time if it was speculatively dis-
closed and was completed while its user was examin-
ing the output of some other task. This consideration
of when a task was needed, instead of when a task
was submitted by users behaving speculatively with
a non-speculative scheduler or disclosed by users with
a batchactive scheduler, is more useful than conven-
tional response time which conflates the time a task

was requested with when it was needed. (We suspect,
along with Feitelson et al. [1997], that this overload-
ing has subsisted because of the difficulty in knowing
when speculative task outputs are needed.)

A batchactive scheduler uses knowledge that some
tasks are speculative. Policies may require informa-
tion easy to obtain or uncertain information that
must be predicted (when a speculative task will
be needed and the probability that a task will be
needed). This paper focuses on the former with
two-tiered batchactive schedulers having two queues:
one for requested (known-needed) tasks, and one
for disclosed (speculative) tasks. Priority is given to
the requested queue. Deployed supercomputer sched-
ulers [NAS, 2002] with debug queues, administrator
queues, etc., should be easy to extend to include a
disclosed queue for batchactive scheduling.

For the requested queue, we studied standard
policies such as fcfs (first-come-first-serve), srpt
(shortest-remaining-processing-time), and user-fb
(user-based foreground-background, i.e., select the
task from the user who has used the fewest re-
sources) [Conway et al., 1967]. For the disclosed
queue, in addition to these policies, we added a novel
policy hrp (highest-request-probability) which se-
lects the next speculative task from the user who has
historically requested a greater fraction of speculative
tasks. By avoiding executing speculative tasks that
are less likely to be eventually requested, visible re-
sponse time and billed load should improve. hrp also
resists an attempt by a user to swamp the disclosed
queue with tasks that will not be requested.

Batchactive scheduling introduces an interface dif-
ferent from traditional scheduling: (1) speculative
tasks are initially disclosed, (2) needed tasks are ex-
plicitly requested when needed (or canceled if found
not to be needed), and (3) task output is isolated until
requested. Disclosure enables a scheduler to prioritize
speculative tasks differently. Requesting (or ‘pulling’
task output) enables better policies based on learn-
ing user behavior (e.g., hrp) and enables the system
to provide feedback to the user of his or her visible
response times. Isolation enables batchactive pricing,
which should encourage speculation.

Deployed schedulers (e.g., FreeBSD’s idle queue
and other classed schedulers) can emulate the two-
tiered nature of batchactive scheduling to different
degrees. Existing interfaces, however, do not provide
information provided by the batchactive interface.

6

Many task requests and cancelations will not be seen
by the system: If a needed task executes before the
user needs its output, the user will likely directly con-
sume task output (often stored on a distributed file
system) and if an unneeded task executes before the
user knows that its output is unneeded, the user has
no motivation to cancel it. Moreover, the traditional
interface of not isolating speculative output makes
batchactive pricing impossible, for without isolation
a user may never request (and pay) for needed out-
put. When schedulers are available that permit two-
tiered batchactive policies, we recommend a batchac-
tive layer between the user and system so that the
user is presented with the batchactive interface nec-
essary to achieve all the characteristics of batchactive
scheduling.

4 Simulation results

We study batchactive versus traditional scheduling
by simulating synthetic users and tasks on a model of
a single server, and we contribute our simulator called
ba sim for further research (http://www.pdl.cmu.
edu/PDL-FTP/Scheduling/ba sim-0.1.tar.gz).

Model The simulator models a constant number
of users who enter the system at the start and cycle
between submitting tasks to a single server, waiting
for task output, and thinking about task output. Be-
fore submitting, each user plans speculative work as
task sets which are organized as finite lists of tasks.
On a non-speculative scheduler, users request these
tasks either as needed (i.e., one at a time) or all at
once, which we call interactive and batch usage, re-
spectively. On a batchactive scheduler, users disclose
all these tasks and request them only when needed,
which we call batchactive usage. A user receives out-
put after a requested task completes and considers
the output for some think time. Then the user may
need the next task, cancel remaining tasks and sub-
mit a new task set, or submit a new task set if the
end of the current task set has been reached. (Only
whole task set cancelation is performed because we
believe it is simplest for the user.)

We could make batchactive scheduling look ar-
bitrarily better with parameters highlighting its
strengths. However, this would not be convincing. In-
stead, we chose parameters that are not only what

parameter range
number of users 1 to 16
task set change prob. 0.0 to 0.0–0.4 (uni.)
of tasks per task set 1 to 1–21 (uni.)
service time (s) 20 to 3, 620 (exp.)
think time (s) 20 to 18, 020 (exp.)

Table 1: The parameter ranges used in summarizing re-
sults. A uniform distribution (uni.) is described by ‘lower
bound (a) to upper bound (b),’ where the upper bound
is specified by a range varied across runs. An exponential
distribution (exp.) is described by its mean (1/λ).

we believe to be reasonable uses of speculation for
the target applications, but that also include little or
no speculation. Summarizing graphs were generated
by sampling points in the 5-dimensional parameter
space listed in Table 1. When varying individual pa-
rameters, the remaining parameters were fixed to the
values in Table 2, unless otherwise noted.

The range of the number of users was chosen, based
on other parameters, to provide minimal resource
contention among users at the lower bound and to
consume all of the simulated single server’s resources
at the upper bound.

The task set change probability is the probability
that, after considering a task’s output, a user will
cancel his or her current task set and submit a new
one. Each user is assigned a task set change proba-
bility from a uniform distribution whose lower bound
is always 0 and whose upper bound is varied across
runs. The upper bound ranges from modeling a user
who always needs his or her speculative tasks (0%) to
one who cancels his or her task sets 40% of the time
after considering a single task’s output. The number
of tasks per task set dictates how many speculative
tasks make up a user’s task sets. Each user is as-
signed a number of tasks per task set from a uniform
distribution whose lower bound is always 1, reflect-
ing no disclosure, and whose upper bound is varied
across runs. The upper bound ranges from no dis-
closure to a little over twenty disclosures, modeling
a user who uses domain-specific knowledge to make
small to medium-sized task plans.

Service time dictates task sizes. Each task is as-
signed a service time, regardless of who submitted
it, from an exponential distribution whose mean is
varied across runs. This value varies from one third
of a minute to about one hour, based on blast dna

7

http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz
http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz

parameter setting
number of users 8
task set change prob. 0.0 to 0.2 (uni.)
of tasks per task set 1 to 15 (uni.)
service time (s) 600 (exp.)
think time (s) 6, 000 (exp.)

Table 2: The fixed parameters used in sensitivity analyses.
For each sensitivity analysis, all but one parameter were
held constant at these values.

similarity searches [Biowulf, 2004], film frame render-
ing [Hillner, 2003], and anecdotal surveys of wide-
ranging exploratory searches and parameter stud-
ies [Petrou, 2004, ch. 4.7]. Think time dictates the
time that users consider task outputs. Each time a
task’s output is delivered to a user, a think time is
chosen from an exponential distribution whose mean
is varied across runs. This value varies from one third
of a minute to roughly five hours, reflecting a user
who can make a quick decision to one who graphs,
ponders, or discusses output with colleagues.

For each run, metrics were tabulated over two
weeks of simulated time after two warmup days were
ignored. Verification to increase confidence in the
results, including hand-inspected trace outputs and
non-speculative runs compared to operational laws
such as Little’s Law, may be found in Petrou [2004,
ch. 6.1.4]. Further, Petrou [2004, ch. 6.3.2] presents
95% confidence intervals for a subset of the data in
which each particular configuration was run 40 times
with different random seeds, suggesting that the re-
sults are statistically significant, and thus confidence
intervals are omitted for clarity.

Results Two-tiered batchactive policies are speci-
fied as requested task subpolicy × disclosed task sub-
policy. In the graphs, simulations are identified by
the scheduling policy followed optionally by the user
behavior when it is either batch or interactive.

The improvement factors of mean visible response
time, drawing parameters from Table 1, are shown
in Figure 5. An improvement is 2, e.g., if batchac-
tive mean visible response time was half of the non-
speculative mean visible response time for a particu-
lar set of simulation parameters. The solid curve in-
tersection with the value of 3 measured on the hori-
zontal axis indicates that in about 10% of the runs,
the improvement of mean visible response time for

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

improvement of mean visible response time

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 5: Inverse cumulative improvement of batchactive
scheduling for mean visible response time. The horizontal
axis shows improvement factors and the vertical axis in-
dicates the fraction of the runs in which the improvement
was at least as much indicated on the horizontal axis.
fcfs × fcfs performs at least twice as well for about
15% and 25% of the simulated behaviors of batch fcfs
and interactive fcfs, respectively.

batchactive users using fcfs × fcfs compared to in-
teractive users using fcfs was at least 3X.

For half of the cases in Figure 5, batchactive
scheduling provides lower (better) mean visible re-
sponse time than non-speculative scheduling (i.e., im-
provement greater than 1). The reasons for batchac-
tive improvements are examined in the per-parameter
investigations below. This summarizing graph shows
that batchactive scheduling can provide factors of im-
provement (at least 1.5X better than batch usage for
25% of the runs, at least 3X better than interactive
usage for 10%, etc.) and almost never performs worse.

Figure 6 shows how the number of users affects
mean visible response time, drawing other parame-
ters from Table 2. Nearly always, batchactive fcfs
× fcfs performs best, exhibiting adaptability. This
metric improves while simultaneously improving the
throughput of needed tasks as discussed in detail in
Petrou [2004, ch. 6.2.4]. Batchactive fcfs × fcfs is
better than batch fcfs under many users because
requested tasks never wait for speculative tasks; it
is better than interactive fcfs under few users be-
cause it fills idle time with speculative tasks. When
very busy, interactive fcfs and batchactive fcfs ×
fcfs begin to converge because the requested task

8

5 10 15
0

1000

2000

3000

4000

5000

6000

number of users

m
ea

n
vi

si
bl

e
re

sp
on

se
 ti

m
e

(s
) FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6: How the number of users affects mean visible
response time (lower is better). With few users, batch
fcfs is better than interactive fcfs; with many, interac-
tive fcfs is better than batch fcfs. fcfs × fcfs adapts
and always performs best. (In these bar graphs, the left
bar is always batch usage, the middle interactive, and the
right batchactive.)

queue of the batchactive scheduler is never empty.
Thus, with a batchactive system, users do not need to
decide how aggressively to submit speculative work:
they may disclose all work not known to be needed to
obtain these time-based improvements. Even on sat-
urated resources, so long as some work is speculative,
batchactive scheduling is beneficial (i.e., idle time is
not a prerequisite for batchactive benefits). Batchac-
tive scheduling also improves visible slowdown (visi-
ble response time scaled by task size). These improve-
ments occur while also improving the variance of visi-
ble response time and without increasing the number
of scheduling decisions the system needs to make.

srpt is known to optimally minimize mean re-
sponse time. As it requires task size knowledge, it
is not often used. Our experiments show that fcfs
× fcfs outperforms the size-based non-speculative
cases (interactive and batch usage of srpt), imply-
ing that a task size oracle will not diminish the value
of batchactive scheduling. Size- and usage-based
batchactive scheduling also outperforms their non-
speculative, single-queue counterparts. While provid-
ing about the same improvement relative to fcfs in-
teractive usage, the improvement relative to batch
usage is not as pronounced. A more elaborate discus-
sion is in Petrou [2004, ch. 6.2.7–8].

Perhaps unexpectedly, think time is required for
speculation to provide visible response time bene-
fits: Think time enables a batchactive scheduler to
choose a better task ordering — favoring known or
more likely to be needed tasks — because a user does
not need the outputs of every speculative task at
once; the user is either ‘blocked on’ one task’s out-
put or ‘thinking about’ the output of the previously
received task output (Figure 1). We isolated the ben-
efit of user think time (which exists in many con-
texts [Bubenik and Zwaenepoel, 1989; Crovella and
Bestavros, 1995]) by turning off speculation (setting
the task set change probability to 0). When think
time was set to 0, batchactive and non-speculative us-
age resulted in equal mean visible response time. Un-
der the presence of think time, batchactive scheduling
provided performance better than common practice
at all save the lowest and highest loads, though not as
much benefit as when task sets were speculative (Fig-
ure 6). There is no model of think time in traditional
scheduling. Batchactive scheduling and its interface
— disclosing and requesting — exposes and success-
fully leverages think time.

Now we show the benefits of fcfs × hrp, which
learns the likelihood of task request by a user. We
varied how likely users would cancel and issue new
task sets and show this effect on mean visible re-
sponse time in Figure 7. The mean visible response
time of both batchactive fcfs × fcfs and fcfs ×
hrp increases (worsens) as users become more spec-
ulative while the relative advantage of hrp remains
unchanged. hrp schedules disclosed tasks well, even
as well as an impractical oracle policy (discussed in
Petrou [2004, ch. 6.2.9]) which never runs disclosed
tasks that a user will not eventually request.

We varied the number of tasks per task set to
large values — reflecting a search of high-dimensional
spaces — to show its effect on visible response time in
Figure 8. When all task sets have only one task, all
cases provide the same mean visible response time.
Interactive fcfs is immune to task set size because
these users will have submitted at most one task from
their task sets. Mean visible response time for batch
fcfs and fcfs × hrp initially improve when there is
some speculative work that may be performed while
users are in their think times. Soon batch fcfs be-
comes unusable. Both fcfs × fcfs (not shown) and
fcfs × hrp are resilient to large task sets. Between
these two, fcfs × hrp does best, showing that the

9

0 0.05 0.1 0.15 0.2
0

200

400

600

800

task set change prob. (midpoint of uni. dist.)

m
ea

n
vi

si
bl

e
re

sp
on

se
 ti

m
e

(s
) FCFS x FCFS

FCFS x HRP

Figure 7: How task set change probability affects mean
visible response time when introducing hrp. Shown on
the horizontal axis is the average of the probability’s lower
(always 0) and upper bounds. Favoring the user who has
requested the most disclosed tasks does best.

disclosed queue must be scheduled carefully to avoid
a diminishing returns of batchactive improvement as
the queue fills with tasks less likely to be requested.
Eventually batchactive benefits decline as the dis-
closed queue consists largely of unneeded tasks.

The charges for unneeded speculation incurred by
batch users of a non-speculative scheduler are shown
in Figure 9. Under our novel batchactive pricing
(not charging for unneeded speculation), batchactive
users always pay less than users submitting batches
of work to non-speculative schedulers. Interestingly,
batch users pay even more for unneeded speculation
under srpt-based schedulers than here: the better
the scheduling (the faster tasks run to completion),
the more needless work completed.

Resource provider revenue is a function of billed
(requested) load, shown in Figure 10 as the number
of users is varied. fcfs × fcfs provides higher (bet-
ter) requested load than interactive fcfs, because, by
providing lower (better) mean visible response time,
users submit needed work more quickly. At mid load,
fcfs × fcfs is roughly 10% better than interactive
fcfs. In fcfs× fcfs, some actual load is not charged
(not shown). The tradeoff for batchactive schedulers
improving visible response time relative to interactive
usage is increased load. fcfs × fcfs cannot meet the
requested load of batch fcfs, in which users request

10
0

10
1

10
2

0

500

1000

1500

2000

2500

tasks per task set (midpoint of uni. dist.)

m
ea

n
vi

si
bl

e
re

sp
on

se
 ti

m
e

(s
)

FCFS, batch

FCFS, inter.

FCFS x HRP

Figure 8: How the number of tasks per task set affects
mean visible response time. This number is a uniform
random variable and shown on the horizontal axis is the
average of its lower (always 1) and upper bounds. hrp is
resilient to large task sets. (This graph is log-linear.)

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

mean scaled billed resources

fr
ac

tio
n

w
he

re
 v

al
ue

 >
 x

Figure 9: Inverse cumulative graph of mean scaled billed
resources for batch fcfs. Batch usage bills for speculative
tasks that run whether or not they are needed. The aver-
age user who speculates using non-speculative fcfs pays
at least 30% more than necessary for 20% of the runs.
(Mean scaled billed resources is optimal for interactive
and batchactive users, and thus they are omitted.)

10

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

bi
lle

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 10: How the number of users affects billed load.
Compared to interactive fcfs, fcfs × fcfs provides
higher (better) billed load. fcfs × fcfs can only match
batch fcfs’s billed load with many users.

their entire task sets and are billed for any execution,
even that of speculative tasks that will be canceled.

Batchactive scheduling simultaneously provides
lower (better) mean visible response time and higher
(better) requested load (Figure 11). While batch fcfs
can provide better billed load, latency-sensitive users
will not push traditional schedulers into regions of
high billed load, because at those levels of revenue
visible response times are too high. Further, batch
fcfs assumes a willingness for users to pay for po-
tentially unneeded speculation (Figure 9). fcfs ×
fcfs achieves higher billed load relative to both
batch and interactive fcfs under workloads exhibit-
ing good mean visible response times. In other words,
batchactive scheduling’s uncharged load is actually
smaller than the amount of underutilized resources
that would be necessary in a traditional system to
achieve the same kinds of visible response times.

As service time increases, the time-based perfor-
mance of interactive usage and batchactive usage con-
verge. As a limiting case, when a server is always run-
ning requested work, batchactive usage does not im-
prove performance over interactive usage. Likewise,
the performance of batch usage and batchactive usage
converge when service time decreases as there is less
needed work to perform. Think time affects batchac-
tive improvement in opposite ways than service time.

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

billed load

m
ea

n
vi

si
bl

e
re

sp
on

se
 ti

m
e

(s
)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 11: The relationship between requested load and
visible response time as the number of users was varied.
(Both axes are dependent axes.) fcfs × fcfs always si-
multaneously provides higher (better) billed load for the
resource owner and lower (better) mean visible response
time for the users. At a mean visible response time of
1, 000, fcfs × fcfs provides 0.92 billed load while batch
fcfs only provides 0.75.

5 Conclusions

Users often plan ahead, wishing to pipeline the con-
sideration of received outputs with the execution of
tasks whose outputs were not known to be needed
when submitted. Existing limitations cause users who
submit speculative tasks to be charged for unneeded
work and to experience long delays, or behave interac-
tively to avoid these risks. We presented batchactive
scheduling for farm computing to maximize human
productivity while minimizing unnecessary resource
use. Users disclose speculative tasks, request tasks
whose outputs they know they need, and cancel tasks
if received outputs suggest their irrelevance. Batchac-
tive scheduling exposes and leverages user think time
and tracks speculation history to improve perfor-
mance. Batchactive scheduling lowers the new visible
response time metric (tracking only tasks blocking
users) compared to non-speculative scheduling and
users are encouraged to speculate with batchactive
pricing (charging for only needed tasks).

In simulation, for mean visible response time, fcfs
× fcfs performed at least twice as well for about
15% and 25% of the scenarios as batch usage and in-
teractive usage, respectively, while almost never do-

11

ing worse. This metric was improved while simulta-
neously improving the throughput of needed tasks.
We showed significant improvements when several to
many speculative tasks were submitted and early task
outputs were acted on while uncompleted tasks re-
main. As the number of tasks in the average task set
increases beyond 10, the mean visible response time
of batch usage of fcfs became unusable. Throughout
a range of average tasks per task set from 10 to 512,
the improvement of batchactive fcfs × hrp (which
also resists a denial-of-service) over interactive fcfs
was between a factor of 1.5 and 3. As the cancelation
probability for the average task set increased from
no speculation (0%) to 20%, we showed the advan-
tage of favoring users who historically requested more
disclosed tasks using hrp compared to the simplest
batchactive scheduler fcfs × fcfs.

Batch users on non-speculative schedulers some-
times pay greatly for unneeded speculation. The po-
tential fear of paying for unneeded speculation moti-
vates batchactive pricing. While batchactive pricing
leads to some resources being consumed without be-
ing billed, our results suggest that disclosed specula-
tion benefits the resource’s overall utility. Simulations
showed that higher billed load cannot be sustained
on traditional systems without resulting in dismal
time metrics for users (and much lower needed task
throughput). Further, if users are latency-sensitive,
they will actually request and pay for more needed
work under batchactive usage compared to batch us-
age. Thus, under batchactive scheduling, improved
time metrics coupled with no monetary risk for
the user to disclose speculation can encourage more
users, the submission of longer chains of tasks, and
larger tasks, resulting in higher billed load (increased
server revenue). Our simulator is available for testing
batchactive scheduling for particular domains.

Acknowledgements

We thank the members and companies of the pdl Consor-

tium (including apc, emc, Equallogic, Hewlett-Packard,

Hitachi, ibm, Intel, Microsoft, Network Appliance, Ora-

cle, Panasas, Seagate, and Sun) for their interest, insights,

feedback, and support. This material is based on research

sponsored in part by the Army Research Office, under

agreement number daad19-02-1-0389.

References

Altschul, S., Gish, W., Miller, W., Myers, E., and
Lipman, D. 1990. Basic local alignment search tool.
Molecular Biology 215.

Biowulf 2004. Using blast on Biowulf. http://biowulf.
nih.gov/apps/blast/index.html.

Bubenik, R. and Zwaenepoel, W. 1989. Performance
of optimistic make. SIGMETRICS.

Conway, R. W., Maxwell, W. L., and Miller, L. W.
1967. Theory of Scheduling. Addison-Wesley.

Corbató, F. J., Merwin-Daggett, M., and Daley,
R. C. 1962. An experimental time-sharing system.
AFIPS.

Crovella, M. E. and Bestavros, A. 1995. Explaining
world wide web traffic self-similarity. Tech. Rep. bucs-
tr-1995-015, Dept. of Comp. Sci., Boston Univ.

DeGroot, D. 1990. Throttling and speculating on par-
allel architectures. Parbase ’90.

Epps, D. 2004. Personal comm. R&D at Tippett Studio.
Feitelson, D. G., Rudolph, L., Schwiegelshohn, U.,

Sevcik, K. C., and Wong, P. 1997. Theory and prac-
tice in parallel job scheduling. IPPS / SPDP.

Gibson, G., Nagle, D., Amiri, K., Butler, J., Chang,
F., Gobioff, H., Hardin, C., Riedel, E., Rochberg,
D., and Zelenka, J. 1998. A cost-effective, high-
bandwidth storage architecture. ASPLOS.

Hennessy, J. L., Patterson, D. A., and Goldberg,
D. 2002. Computer Architecture: A Quantitative Ap-
proach, 3rd ed. Morgan Kaufmann.

Hildebrand, D. and Honeyman, P. 2004. nfsv4 and
high performance file systems: Positioning to scale.
Tech. Rep. citi-04-02, Univ. of Michigan.

Hillner, J. 2003. The wall of fame. Wired Maga-
zine 11, 12.

Holliman, D. 2003. Personal comm. Past sys. admin.
for the Berkeley Phylogenomics Group.

Lokovic, T. 2004. Personal comm. Engineer at Pixar.
NAS 2002. nas system documentation. http://www.nas.

nasa.gov/User/Systemsdocs/systemsdocs.html.
Osborne, R. B. 1990. Speculative computation in Mul-

tilisp. Conf. on LISP and Functional Programming.
Patterson, R. H., Gibson, G. A., Ginting, E.,

Stodolsky, D., and Zelenka, J. 1995. Informed
prefetching and caching. SOSP.

Petrou, D. 2004. Cluster scheduling for explicitly-
speculative tasks. Ph.D. thesis, Dept. of Elect. &
Comp. Eng., Carnegie Mellon Univ. cmu-pdl-04-112.

Polyzotis, N. and Ioannidis, Y. 2003. Speculative
query processing. CIDR.

Steere, D. C. 1997. Exploiting the non-determinism and
asynchrony of set iterators to reduce aggregate file I/O
latency. SOSP.

12

http://biowulf.nih.gov/apps/blast/index.html
http://biowulf.nih.gov/apps/blast/index.html
http://www.nas.nasa.gov/User/Systemsdocs/systemsdocs.html
http://www.nas.nasa.gov/User/Systemsdocs/systemsdocs.html

	1 Introduction
	1.1 Targeted applications

	2 Related work
	3 Batchactive scheduling
	4 Simulation results
	5 Conclusions
	Bibliography

