
Cluster scheduling for
explicitly-speculative tasks

DAVID PETROU

December 2004

cmu-pdl-04-112

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis committee

Garth A. Gibson, chair
Gregory R. Ganger
Srinivasan Seshan
Thomas E. Anderson, Univ. of Washington

c© 2004 David Petrou

This research is sponsored by member companies of the Parallel Data Laboratory
Consortium, by a National Science Foundation itr grant, and by the Army Research
Office (contract daad19-02-1-0389). The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions in this document are the author’s and should not
be interpreted as representing the official policies or endorsements, either expressed or
implied, of any supporting organization or the U.S. Government.

ii · Cluster scheduling for explicitly-speculative tasks

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Pro-
cess Management — Scheduling
General Terms: Algorithms, Design, Performance
Keywords: speculative scheduling, optimistic scheduling, cluster comput-
ing, grid computing

Imagine homemade sandwiches.

iv · Cluster scheduling for explicitly-speculative tasks

Abstract

A process scheduler on a shared cluster, grid, or supercomputer that is in-
formed which submitted tasks are possibly unneeded speculative tasks can
use this knowledge to better support increasingly prevalent user work habits,
lowering user-visible response time, lowering user costs, and increasing re-
source provider revenue.

Large-scale computing often consists of many speculative tasks (tasks
that may be canceled) to test hypotheses, search for insights, and review
potentially finished products. For example, speculative tasks are issued by
bioinformaticists comparing dna sequences, computer graphics artists ren-
dering scenes, and computer researchers studying caching. This behavior —
exploratory searches and parameter studies, made more common by the cost-
effectiveness of cluster computing — on existing schedulers without specula-
tive task support results in a mismatch of goals and suboptimal scheduling.
Users wish to reduce their time waiting for needed task output and the
amount they will be charged for unneeded speculation, making it unclear to
the user how many speculative tasks they should submit.

This thesis introduces ‘batchactive’ scheduling (combining batch and
interactive characteristics) to exploit the inherent speculation in common
application scenarios. With a batchactive scheduler, users submit explicitly-
labeled batches of speculative tasks exploring ambitious lines of inquiry,
and users interactively request task outputs when these outputs are found
to be needed. After receiving and considering an output for some time,
a user decides whether to request more outputs, cancel tasks, or disclose
new speculative tasks. Users are encouraged to disclose more computation
because batchactive scheduling intelligently prioritizes among speculative
and non-speculative tasks, providing good wait-time-based metrics, and be-
cause batchactive scheduling employs an incentive pricing mechanism which
charges for only requested task outputs (i.e., unneeded speculative tasks are
not charged), providing better cost-based metrics for users. These aspects
can lead to higher billed server utilization, encouraging batchactive adoption
by resource providers organized as either cost- or profit-centers.

vi · Cluster scheduling for explicitly-speculative tasks

Not all tasks are equal — only tasks whose outputs users eventually
desire matter — leading me to introduce the ‘visible response time’ metric
which accrues for each task in a batch of potentially speculative tasks when
the user needs its output, not when the entire batch was submitted, and
the batchactive pricing mechanism of charging for only needed tasks, which
encourages users to disclosure future work while remaining resilient to abuse.
I argue that the existence of user think times, user away periods, and server
idle time makes batchactive scheduling applicable to today’s systems.

I study the behavior of speculative and non-speculative scheduling using
a highly-parameterizable discrete-event simulator of user and task behavior
based on important application scenarios. I contribute this simulator to the
community for further scheduling research.

For example, over a broad range of realistic simulated user behavior
and task characteristics, I show that under a batchactive scheduler visible
response time is improved by at least a factor of two for 20% of the sim-
ulations. A batchactive scheduler which favors users who historically have
desired a greater fraction of tasks that they speculatively disclosed pro-
vides additional performance and is resilient to a denial-of-service. Another
result is that visible response time can be improved while increasing the
throughput of tasks whose outputs were desired. Under some situations,
user costs decrease while server revenue increases. A related result is that
more users can be supported and greater server revenue generated while
achieving the same mean visible response time. A comparison against an
impractical batchactive scheduler shows that the easily implementable two-
tiered batchactive schedulers, out of all batchactive schedulers, provide most
of the potential performance gains. Finally, I demonstrate deployment feasi-
bility by describing how to integrate a batchactive scheduler with a popular
clustering system.

I have the fury of my own momentum.
Bob, Fire Walk With Me

Acknowledgements

I thank Garth Gibson, my thesis advisor, for guiding my intellectual develop-
ment with wisdom and patience. Garth taught me to ask the right questions
and have defensible plans for answering them while giving me freedom to
pursue problems interesting to me. Greg Ganger has been a second advi-
sor, providing resources and dispensing advice. Both Garth and Greg have
been supportive when crises caused me to take breaks. Tom Anderson was
my undergraduate advisor at uc Berkeley and my research advisor in the
Berkeley now Project. His words of encouragement, many years ago, con-
stantly motivate me. I thank Srini Seshan for being on my thesis committee.
I have been lucky to be advised by good people, in mind and heart.

I thank the members of the Parallel Data Laboratory (pdl), especially
Garth for creating and Greg for further promoting and developing this in-
stitution, with its outstanding intellectual, personal, computational, admin-
istrative, and economic resources. The following current and past members
of the pdl Consortium provided support: 3Com, Compaq, emc, Hewlett-
Packard, hgst, Hitachi, ibm, Intel, lsi Logic, Microsoft, Network Appli-
ance, Novell, Oracle, Panasas, Quantum, Seagate, StorageTek, Sun, Veritas,
& Wind River. Guests at pdl retreats expressed interest in and offered in-
sights for my research. pdl staff members Joan Digney, Jennifer Landefeld,
Karen Lindenfelser, & Patty Mackiewicz provided a positive work environ-
ment. Other pdl and ece staff members supported my computing resources.

Sharing 8208 Wean with Jason Flinn, Dushyanth Narayanan, & Sanjay
Rao was often educational and always fun, despite music selection disagree-
ments. Early on, Khalil Amiri was friend, elder gradsperson, and research
collaborator. I profited from communicating with Sonya Allin, Mor Harchol-
Balter, Miron Livny, Andy Myers, Jiri Schindler, & Steve Schlosser. Ex-
changing ideas was a bonus to my friendships with Sourav Ghosh, John Grif-
fin, Dushyanth Narayanan, David Rochberg, Craig Soules, Eno Thereska,
David Tolliver, & Jay Wylie. My time as an eecs undergraduate at uc
Berkeley was pleasantly passed with Will Chow, Daniel (‘danh’) Holliman,

vii

viii · Cluster scheduling for explicitly-speculative tasks

John Milford, Sameer Parekh, & Ali Rahimi. Remzi Arpaci-Dusseau, Doug
Ghormley, Brian Harvey, Carlo Séquin, & Amin Vahdat were inspirations.

My Pittsburgh years have been happy, a time of varied experience and
personal growth. I owe this being close to Dan Baselj, Julie Brick, Ben
Feldman, Mark Lazarev, April Murphy, Dushyanth Narayanan, Hille Marika
Paakkunainen, Jill Penman, Megan Schmidgal, David Tolliver, & Jay Wylie.

Thanks for the existence of the 61C Cafe, where I was found holding
court, courting, coding, writing, composing, and enjoying company. Baristas
of note include Jason Bacasa, Keith Kaboly, Moshe Marvit, Nick Sarno,
& Danielle Skoncey. Crazy Mocha’s Leah Loyd, Deanna Mance, & Dana
Waelde generously hosted me during the final months.

From California, my first best friends and bandmates I acknowledge:
Ean Brown, Brian Gilmore, & Huy Huynh. Highschool friends shape each
other, and I was glad to know Derald Brenneman, Joy(zelle) Davis, Sheila
Salamipour, Kevin Stephenson, (the late) Stuart Tay, & Jason Thibodeau.
My current Pittsburgh bandmates Hille Marika Paakkunainen and Mike
Shanley provide an opportunity to play again. From the Music Department
at Carnegie Mellon University, Nancy Galbraith, Natalie Ozeas, Marilyn
Taft-Thomas, Donald Wilkins, & Colette Wilkins and the Dalcroze Eurhyth-
mics faculty taught me and encouraged my musical aspirations.

Closest to me are my late mom, my dad, sister, brother(-in-law), & niece,
all from whom I receive overwhelming and unconditional love. Nothing in
my life would work without them. My extended Italian and Greek families
are also a source of love and support. I love you all.

And thanks to the Allegheny Cycling Association for providing a conduit
for reoccuring, volcanic bursts of energy, and to Danny Chew for being the
greatest bicycling inspiration.

David Petrou · Pittsburgh, Pennsylvania · December, 2004

Contents

Abstract v

Acknowledgements vii

Figures xiii

Tables xxi

1 Introduction 1

2 Opportunities for batchactive scheduling 13
2.1 Work patterns . 13
2.2 Scenarios . 18

2.2.1 Exploratory searches 19
2.2.2 Sequential tasks . 20
2.2.3 Parameter studies . 22
2.2.4 Non-processor-based scenarios 23
2.2.5 Summary of scenarios 25

2.3 Enabling behavioral conditions 26
2.3.1 Existence of think times 26
2.3.2 Existence of away periods 27
2.3.3 Existence of server idle time 28

2.4 Common practice and its deficiencies 29
2.5 Related speculative work . 30

2.5.1 Speculation across tasks 30
2.5.2 Speculation within tasks 31
2.5.3 Speculation on non-processor resources 32

2.6 Summary . 33

x · Cluster scheduling for explicitly-speculative tasks

3 Scope 35
3.1 Target application domain . 35
3.2 Target architecture . 36
3.3 Focus on the processor resource 38
3.4 Summary . 40

4 Non-speculative scheduling 41
4.1 Architecture . 42
4.2 Cost model . 45
4.3 Definitions and metrics . 48
4.4 Scheduling goals . 53

4.4.1 User goals . 53
4.4.2 Resource provider’s goals 55
4.4.3 Summary of scheduling goals 57

4.5 Policies in theory . 58
4.5.1 Concerning mean response time 59
4.5.2 Concerning mean slowdown 60
4.5.3 Concerning the variance of user resource usage 61
4.5.4 Concerning load . 61
4.5.5 Summary of policies in theory 63

4.6 Scheduling in practice . 64
4.6.1 Supercomputer scheduling 64
4.6.2 Cluster scheduling . 66
4.6.3 Summary of scheduling in practice 68

4.7 Predicting task service time 69
4.8 Inadequacies when speculative tasks are present 74
4.9 Summary . 75

5 Batchactive scheduling 77
5.1 Batchactive cost model . 80

5.1.1 Problem with the non-speculative pricing mechanism . 80
5.1.2 A new pricing mechanism 81
5.1.3 Consequences . 82
5.1.4 Dismissed extension for selling completed speculative

tasks . 84
5.1.5 Summary of the batchactive cost model 85

5.2 Batchactive definitions and metrics 85
5.3 Batchactive scheduling goals 92

5.3.1 Batchactive user goals 92
5.3.2 Batchactive resource provider’s goals 93

Contents · xi

5.3.3 Summary of batchactive scheduling goals 94
5.4 General batchactive policies 95

5.4.1 Concerning mean visible response time and mean vis-
ible slowdown . 96

5.4.2 Concerning the variance of user requested resource usage 98
5.4.3 Concerning requested load 98
5.4.4 Summary of general batchactive policies 99

5.5 Implemented batchactive policies 99
5.5.1 Two-tiered scheduling 100
5.5.2 Reasonable, not optimal 103
5.5.3 Impractical policy . 105
5.5.4 Summary of implemented batchactive policies 105

5.6 Discordant transformation of existing scheduling 106
5.6.1 Applying Unix scheduling 107
5.6.2 Applying priority-class scheduling 109
5.6.3 Applying Condor scheduling 110
5.6.4 Applying proportional-share scheduling 111
5.6.5 Applying real-time scheduling 112
5.6.6 Knowing whether a task is desired 114
5.6.7 Summary of the discordant transformation of existing

scheduling . 116
5.7 Predicting request probability and deadline of speculative tasks116
5.8 Preventing resource abuse . 118
5.9 Beyond centrally scheduled processing resources 122

5.9.1 Web document prefetching 123
5.9.2 Decentralized speculative task scheduling 124
5.9.3 Feedback-based approach 126

5.10 Summary . 128

6 Simulation results 131
6.1 Simulation model . 132

6.1.1 Task submission and task output consumption cycle . 132
6.1.2 Interactive v. batch v. batchactive usage 135
6.1.3 Simulator parameters 137
6.1.4 Determining model and simulator correctness 144

6.2 Scheduling policy comparison 149
6.2.1 Reported metrics . 150
6.2.2 Central conclusions . 151
6.2.3 Graph formats . 158
6.2.4 Benefits of two-tiered fcfs 159

xii · Cluster scheduling for explicitly-speculative tasks

6.2.5 Determining a better disclosed queue scheduler 183
6.2.6 Benefits of favoring the speculative tasks of better

speculators . 194
6.2.7 Benefits of two-tiered usage-based scheduling 202
6.2.8 Benefits of two-tiered srpt 204
6.2.9 Performance of an impractical disclosed queue subpolicy217

6.3 Simulation details . 221
6.3.1 Omitted warmup period 221
6.3.2 Statistical significance of the results 222
6.3.3 An accounting of the simulator runs 223

6.4 Summary . 223

7 Implementation & proposed deployment 225
7.1 The ba sim simulator . 225

7.1.1 Features . 225
7.1.2 Structure . 227
7.1.3 Coding practices . 228
7.1.4 Overhead . 229

7.2 Cluster scheduling extension 229
7.2.1 Usage of a clustering system 230
7.2.2 Extensibility of existing systems 230
7.2.3 Extending the Condor clustering system 231

7.3 Summary . 234

8 Conclusions 235
8.1 Problem restatement . 235
8.2 Primary contributions . 237
8.3 Challenges to acceptance . 242

Bibliography 245

Figures

1.1 Speculative user behavior. 2
1.2 Centralized cluster scheduler. 4
1.3 The effect of submission aggressiveness on visible response

time and user costs. 5
1.4 The target cluster architecture 7
1.5 Comparison of the usage of non-speculative and batchactive

scheduling. 9

2.1 How visible response time changes when a user discloses work. 14
2.2 Speculative tasks could be desired in flat list order or with no

ordering preference. 16
2.3 Initial exploration of a two-dimensional parameter space, in-

dicating regions for further study. 17
2.4 How successive runs of an any-time application can determine

whether more outputs are fruitful. 18
2.5 Sample output from a blast query. 20
2.6 A completely computer-generated character designed by Weta

Digital for Lord of the Rings. 22
2.7 Sample output from a run of the DiskSim simulator. 23
2.8 How knowing away periods gives a batchactive scheduler op-

portunities to make better decisions. 28

3.1 Overview of the Abacus module migration system. 39

4.1 Interaction between users, clustering software, and cluster re-
sources. 42

4.2 Two relations between the resource owner and resource users. 45
4.3 How load affects server utility and revenue under non-speculative

scheduling. 47
4.4 Task state transitions with a non-speculative scheduler. . . . 49

xiv · Cluster scheduling for explicitly-speculative tasks

4.5 How when a task is requested and executed, along with a
task’s service time, determines its response time and slow-
down in the context of non-speculative scheduling. 50

4.6 How load affects throughput and revenue under non-speculative
scheduling. 56

4.7 An example of applying regression to predict service time. . . 72
4.8 How prediction error decreases with more task runs. 73

5.1 Interaction between users, batchactive clustering software,
and the cluster resources. 79

5.2 How requested load affects server utility and revenue under
the batchactive pricing mechanism. 82

5.3 A task set composed of a weighed dag of increasingly specu-
lative tasks. 86

5.4 Two typical task set organizations: flat list and unordered. . . 87
5.5 Batchactive task state transitions. 89
5.6 How when a task is disclosed, requested, and executed, along

with a task’s service time, determines its visible response time
and visible slowdown in the context of batchactive scheduling. 90

5.7 How requested load affects visible throughput and revenue
under batchactive scheduling. 94

5.8 Segregating requested and disclosed tasks into two queues. . . 100
5.9 Queue lengths of a two-tiered batchactive scheduler. 101
5.10 Emulating batchactive scheduling on Unix scheduling. 109
5.11 The difficulty of mapping utility functions to batchactive schedul-

ing goals. 113
5.12 Interaction between users, each with a batchactive frontend,

and unmodified cluster software and cluster resources. 125
5.13 How feedback affects when the scheduler injects speculative

tasks. 127

6.1 Flowchart of the modeled user behavior. 134
6.2 Interactive usage of a non-speculative scheduler. 135
6.3 Batch usage of a non-speculative scheduler. 136
6.4 Batchactive usage of a batchactive scheduler. 138
6.5 How the number of tasks per task set and the task set change

probability affect whether a task set will be canceled. 140
6.6 Improvement of batchactive usage of fcfs × fcfs over in-

teractive and batch usage of fcfs for mean visible response
time. 160

Figures · xv

6.7 Improvement of batchactive usage of fcfs × fcfs over inter-
active and batch usage of fcfs for mean visible slowdown. . . 161

6.8 Mean scaled billed resources for batch usage of fcfs. 162
6.9 Improvement of batchactive usage of fcfs × fcfs over inter-

active and batch usage of fcfs for requested load. 163
6.10 The effect of the number of users on batchactive usage of fcfs

× fcfs, interactive usage of fcfs, and batch usage of fcfs
for mean visible response time. 165

6.11 The effect of the number of users on batchactive usage of fcfs
× fcfs, interactive usage of fcfs, and batch usage of fcfs
for load. 166

6.12 The effect of the number of users on batchactive usage of fcfs
× fcfs, interactive usage of fcfs, and batch usage of fcfs
for requested load. 167

6.13 The effect of the number of users on batchactive usage of fcfs
× fcfs for the requested (billed, charged) and uncharged load.168

6.14 The effect of the number of users on batchactive usage of fcfs
× fcfs, interactive usage of fcfs, and batch usage of fcfs
for visible task throughput. 169

6.15 The relationship on batchactive usage of fcfs × fcfs, inter-
active usage of fcfs, and batch usage of fcfs between visible
throughput and mean visible response time as the number of
users was varied. 170

6.16 The relationship on batchactive usage of fcfs × fcfs, in-
teractive usage of fcfs, and batch usage of fcfs between
requested load and visible response time as the number of
users was varied. 171

6.17 The effect of the task set change probability on batchactive
usage of fcfs × fcfs, interactive usage of fcfs, and batch
usage of fcfs for visible response time. 172

6.18 The effect of the task set change probability on batch usage
of fcfs for mean scaled billed resources. 173

6.19 The effect of the task set change probability on batchactive
usage of fcfs × fcfs, interactive usage of fcfs, and batch
usage of fcfs for requested load. 174

6.20 The effect of the number of users on batchactive usage of fcfs
× fcfs, interactive usage of fcfs, and batch usage of fcfs
for mean visible response time when all work is needed. . . . 174

xvi · Cluster scheduling for explicitly-speculative tasks

6.21 The effect of the number of users on batchactive usage of fcfs
× fcfs, interactive usage of fcfs, and batch usage of fcfs
for requested load when all work is needed. 175

6.22 The effect of the number of tasks per task set on batchactive
usage of fcfs × fcfs, interactive usage of fcfs, and batch
usage of fcfs for mean visible response time. 176

6.23 The effect of the number of tasks per task set on batch usage
of fcfs for mean scaled billed resources. 177

6.24 The effect of the number of tasks per task set on batchactive
usage of fcfs × fcfs, interactive usage of fcfs, and batch
usage of fcfs for requested load. 178

6.25 The effect of service time on batchactive usage of fcfs ×
fcfs, interactive usage of fcfs, and batch usage of fcfs for
mean visible response time. 178

6.26 The effect of service time on batchactive usage of fcfs ×
fcfs, interactive usage of fcfs, and batch usage of fcfs for
requested load. 179

6.27 The effect of think time on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for mean
visible response time. 180

6.28 The effect of think time on batch usage of fcfs for mean
scaled billed resources. 180

6.29 The effect of think time on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for re-
quested load. 181

6.30 The effect of mean think time over mean service time on
batchactive usage of fcfs × fcfs, interactive usage of fcfs,
and batch usage of fcfs for mean visible response time. . . . 182

6.31 The effect of the number of users on batchactive usage of fcfs
× fcfs, interactive usage of fcfs, and batch usage of fcfs
for mean visible response time when think time is removed. . 183

6.32 Improvement of fcfs × hrp and fcfs × hrr over fcfs ×
fcfs for mean visible response time. 184

6.33 Improvement of fcfs × hrp and fcfs × hrr over fcfs ×
fcfs for requested load. 185

6.34 The effect of the number of users on batchactive usage of fcfs
× hrr, batchactive usage of fcfs × hrp, and batchactive
usage of fcfs × fcfs for mean visible response time. 186

Figures · xvii

6.35 The effect of the number of users on batchactive usage of fcfs
× hrr, batchactive usage of fcfs × hrp, and batchactive
usage of fcfs × fcfs for requested load. 187

6.36 The effect of the number of users on batchactive usage of fcfs
× hrr, batchactive usage of fcfs × hrp, and batchactive
usage of fcfs × fcfs for uncharged load. 188

6.37 The relationship on batchactive usage of fcfs× hrr, batchac-
tive usage of fcfs × hrp, and batchactive usage of fcfs ×
fcfs between requested load and mean visible response time
as the number of users was varied from 1 to 16. 189

6.38 The relationship on batchactive usage of fcfs× hrr, batchac-
tive usage of fcfs × hrp, and batchactive usage of fcfs ×
fcfs between visible throughput and visible response time as
the number of users was varied. 190

6.39 The effect of the number of tasks per task set on batchactive
usage of fcfs × hrr, batchactive usage of fcfs × hrp, and
batchactive usage of fcfs × fcfs for mean visible response
time. 191

6.40 The effect of the number of tasks per task set on batchactive
usage of fcfs × hrr, batchactive usage of fcfs × hrp, and
batchactive usage of fcfs × fcfs for requested load. 192

6.41 The effect of the task set change probability on batchactive
usage of fcfs × hrr, batchactive usage of fcfs × hrp, and
batchactive usage of fcfs × fcfs for mean visible response
time. 193

6.42 Improvement of batchactive usage of fcfs × hrp over in-
teractive and batch usage of fcfs for mean visible response
time. 195

6.43 Improvement of batchactive usage of fcfs × hrp over inter-
active and batch usage of fcfs for mean visible slowdown. . . 196

6.44 Improvement of batchactive usage of fcfs × hrp over inter-
active and batch usage of fcfs for requested load. 197

6.45 The effect of the number of users on batchactive usage of fcfs
× hrp, interactive usage of fcfs, and batch usage of fcfs
for mean visible response time. 198

6.46 The relationship on batchactive usage of fcfs × hrp, inter-
active usage of fcfs, and interactive usage of fcfs between
visible throughput and visible response time as the number
of users was varied. 199

xviii · Cluster scheduling for explicitly-speculative tasks

6.47 The effect of the number of tasks per task set on batchactive
usage of fcfs × hrp, interactive usage of fcfs, and batch
usage of fcfs for mean visible response time. 201

6.48 Improvement of batchactive usage of user-requested-fb× hrp
over batch usage of user-fb for mean visible response time. . 203

6.49 Improvement of batchactive usage of user-requested-fb× hrp
over batch usage of user-fb for mean visible slowdown. 204

6.50 The effect of the number of users on batchactive usage of
user-requested-fb × hrp and batch usage of user-fb for mean
visible response time. 205

6.51 Improvement of batchactive usage of srpt × fcfs over in-
teractive and batch usage of srpt for mean visible response
time. 206

6.52 Improvement of batchactive usage of srpt × fcfs over in-
teractive and batch usage of srpt for mean visible slowdown. 207

6.53 Mean scaled billed resources for batch usage of srpt. 208
6.54 Improvement of batchactive usage of srpt × fcfs over in-

teractive and batch usage of srpt for visible slowdown. . . . 209
6.55 The effect of the number of users on batchactive usage of

srpt × fcfs, interactive usage of srpt, and batch usage of
srpt for mean visible response time. 210

6.56 The effect of the number of users on batchactive usage of
srpt × fcfs, interactive usage of srpt, and batch usage of
srpt for mean visible slowdown. 211

6.57 The relationship on batchactive usage of srpt × fcfs, in-
teractive usage of srpt, and batch usage of srpt between
visible throughput and visible response time as the number
of users was varied. 212

6.58 The effect of the number of tasks per task set on batchactive
usage of srpt × fcfs, interactive usage of srpt, and batch
usage of srpt for mean visible slowdown. 213

6.59 The effect of the number of tasks per task set on batch usage
of srpt for mean scaled billed resources. 214

6.60 Improvement of batchactive usage of srpt × fcfs over in-
teractive and batch usage of srpt for mean visible response
time using Bound Pareto distributions. 215

6.61 Mean scaled billed resources for batch usage of srpt using
Bounded Pareto distributions. 216

6.62 Improvement of srpt × rfcfs over srpt × hrp for mean
visible response time. 217

Figures · xix

6.63 The effect of the number of users on batchactive usage of
srpt × hrp and batchactive usage of srpt × rfcfs for mean
visible response time. 218

6.64 Improvement of srpt × rfcfs over fcfs × hrp for mean
visible response time. 219

6.65 The effect of the number of users on batchactive usage of
fcfs × hrp and batchactive usage of srpt × rfcfs for mean
visible response time. 220

6.66 The queue length of requested tasks for an extreme selec-
tion of simulation parameters stabilizes after approximately
10 hours of simulated time. 221

6.67 Confidence intervals for a small run show that the results are
significant. 222

7.1 Inputs and outputs of the ba sim simulator. 226
7.2 Structure of the ba sim simulator. 227
7.3 The interaction between ba sim and the tools used to gener-

ate thesis results (Chapter 6.2). 228
7.4 Proposed user interface batchactive extension to Condor. . . 232

xx · Cluster scheduling for explicitly-speculative tasks

Tables

4.1 Non-speculative scheduling metrics. 52
4.2 Non-speculative scheduling goals. 57
4.3 Non-speculative scheduling policies. 69
4.4 Evidence that many tasks have predictable service times. . . 71

5.1 Revised scheduling metrics for speculative scheduling. 92
5.2 Speculative scheduling goals. 94
5.3 Disclosed queue scheduling subpolicies. 106

6.1 The parameter ranges used in simulating users and tasks. . . 143
6.2 The fixed parameters used in the sensitivity analyses. 145
6.3 Non-speculative verification using operational laws. 147
6.4 The number of deadlines met among batch usage of fcfs,

interactive usage of fcfs, and batchactive usage of fcfs ×
fcfs. 164

6.5 The standard deviation of visible response time among batch
usage of fcfs, interactive usage of fcfs, and batchactive us-
age of fcfs × fcfs. 164

6.6 Total number of scheduling decisions over two weeks of sim-
ulated time. 182

6.7 The number of deadlines met among batch usage of fcfs,
interactive usage of fcfs, and batchactive usage of fcfs ×
hrp. 195

6.8 The standard deviation of visible response time among batch
usage of fcfs, interactive usage of fcfs, and batchactive us-
age of fcfs × hrp. 196

6.9 The standard deviation of user requested resource usage among
batch usage of user-fb and batchactive usage of user-requested-
fb × hrp. 203

xxii · Cluster scheduling for explicitly-speculative tasks

7.1 Total time in milliseconds to perform scheduling decisions
over two weeks of simulated time. 229

There is nothing more difficult to take in hand,
more perilous to conduct, or more uncertain in
its success, than to take the lead in the
introduction of a new order of things.

Niccolo Machiavelli, The Prince

1 Introduction

A process scheduler on a shared cluster, grid, or supercomputer that is
informed which submitted tasks are possibly unneeded speculative tasks can
use this knowledge to better support increasingly prevalent user work habits,
lowering visible response time (the time between needing and receiving task
output irrespective of when a task was submitted), lowering user costs, and
increasing resource provider revenue.

Large-scale computing often consists of many speculative tasks to test
hypotheses, search for insights, review potentially finished products. Tasks
often sit in queues for a long, unpredictable amount of time. This thesis
addresses how to reduce or eliminate visible response time by prioritizing
work that a user is or will likely soon be waiting on and wasting fewer
resources on speculative tasks quite likely to be canceled.

Imagine a scientist using a shared computing cluster to validate a hy-
pothesis (Figure 1.1). She submits chains of tasks that could keep the system
busy for hours or longer. Tasks listed earlier are to answer pressing ques-
tions while those later are more speculative. Early outputs could cause the
scientist to reformulate her line of inquiry; she would then reprioritize tasks,
cancel later tasks, issue new tasks. Moreover, the scientist is not always wait-
ing for tasks to complete; she spends minutes to hours studying the output
of completed tasks, attends meetings and lunches, and stops working as
evening approaches.

On existing schedulers without speculative task support, this behavior
results in a mismatch of goals and suboptimal scheduling. Should a user
who does not know which tasks will bear fruit submit one speculative task,
a few, many, or every conceivably useful task? After all, defining specula-
tive tasks is a time-consuming activity in itself. A user wishes to reduce the
time waiting for needed task output, increasing the rate at which scientific
inquiry is accomplished, and reduce the amount charged for unneeded spec-
ulation. The right amount of speculation depends on considerations difficult
and burdensome or impossible for a user to know, including to what extent

1

2 · Cluster scheduling for explicitly-speculative tasks

Figure 1.1: Speculative user behavior. While performing computationally intensive
research, users wish to pipeline the execution of chains of speculative — not known
to be needed — tasks with the consideration of received task outputs and op-
tional periods of rest. This thesis removes the barriers presented by existing cluster
scheduling to exploiting this way of working.

a task is in fact speculative and the behavior of other users. In situations in
which resources are not directly charged or users have the means to pay for
wasted work, users might overwhelm resources with speculative tasks in an
attempt to reduce delay. This thesis addresses these and other concerns with
‘batchactive’ scheduling solutions (combining batch and interactive charac-
teristics) to exploit the inherent and easily disclosed speculation in common
application scenarios.

With a batchactive scheduler, users submit explicitly-labeled chains or
batches of speculative tasks exploring ambitious lines of inquiry, and users
interactively request task outputs when they are found to be needed. Af-
ter receiving output and considering this output for some time, a user
decides whether to request more outputs, cancel tasks, or disclose new
speculative tasks. Users are encouraged to disclose more computation be-
cause batchactive scheduling intelligently prioritizes among speculative and
non-speculative tasks, providing good wait-time-based metrics, and because
batchactive scheduling employs an incentive pricing mechanism that charges
for only requested task outputs (i.e., unneeded speculative tasks are not
charged), providing better cost-based metrics for users. These aspects can
lead to higher billed server utilization, encouraging batchactive adoption by
resource providers organized as either cost- or profit-centers.

1 Introduction · 3

Speculation to improve performance is a pervasive concept in computer
systems found at the level of I/O requests, program blocks, instructions
across all areas of computing including architecture, languages, systems.
In this introduction chapter I begin by examining the ways in which cer-
tain work habits, e.g., conducting semi-interactive exploratory searches, can
provide or already provide speculative tasks, and I discuss the mismatch
between this work and traditional processor scheduling. Following this, I
sketch my approach to scheduling. I then state my thesis and foreshadow
my contributions. Before ending this chapter, I state the organization of the
rest of this dissertation.

· · ·
Users can often plan ahead, pipelining the consideration of received task

outputs with the execution of speculative tasks whose outputs were not
known to be needed at the time of submission. Important applications con-
sist of speculative tasks and intelligently scheduling these tasks is increas-
ingly important in clusters, grids, and supercomputers.

Scientific disciplines and commercial ventures use shared computer re-
sources to simulate phenomena, evaluate hypotheses, visualize information,
discover invariants. Researchers in high-energy physics, cosmology, seismol-
ogy, weather forecasting, aerodynamics use computing resources specula-
tively. Scientists in national laboratories, academic institutions, private re-
search departments often construct series of experiments in the advancement
of science occupying considerable computing time, in which at the outset it
is unclear which task outputs in such exploratory searches will be useful.

The following are examples of users submitting sets of speculative tasks
when performing exploratory searches or parameter studies. My scheduling
solutions apply to such processor-based, non-parallel examples.

– Bioinformatics comprises the methods for solving nucleotide sequenc-
ing problems such as constructing a genome out of fragments and
determining protein function. Part of solving such problems is compar-
ing new sequences to known sequences. Bioinformaticists share work-
station farms for performing sequencing tasks. A batchactive sched-
uler would enable scientists to explore ambitious biological hypotheses
without fear that resources would be wasted on speculative chains of
work that might be canceled after early outputs were scrutinized.

– Computer animation is increasingly used in motion pictures. Teams of
artists creating a computer-animated film submit scenes for rendering
to clusters. This work is highly speculative. Upon seeing initial frames

4 · Cluster scheduling for explicitly-speculative tasks

Figure 1.2: Centralized cluster scheduler. Users send task requests and cancelations
to a centralized cluster scheduler. This scheduler orders and distributes work among
multiple cluster nodes. Task outputs are written to a shared store (not shown)
accessible by the submitting user.

(computed by a chain of tasks), an artist may decide that a rendered
object could be in a better location, e.g. With a batchactive scheduler,
artists could prioritize key sections of a scene, those with more action,
e.g., to more quickly decide whether additional frames are worth hav-
ing. If it becomes known that unviewed, possibly uncomputed, frames
will not be needed, artists would cancel the renderings of these frames
to free resources for other rendering tasks.

– Computer scientists routinely share clusters to run simulations explor-
ing high dimensional spaces. Parameter studies for feature extraction,
search, or function optimization can continue indefinitely, homing in
on areas for accuracy or randomly sampling points for coverage. Simu-
lations are used to study, among other things, microarchitecture cache
behavior, computer virus propagation, and I/O storage patterns. With
a batchactive scheduler, such chains of simulations could occur in par-
allel with experimenters analyzing desired and completed outputs and
guiding the searches in new directions, canceling branches determined
to not be useful. Speculative simulations would operate in the back-
ground when pressing outputs are needed.

Clustering software provisions the resources of multiple nodes to mul-
tiple users. Users send task requests and task cancelations to a centralized
scheduler employing a policy to distribute work among nodes toward meet-
ing some combination of time and cost goals for users and the resource
provider. This organization is depicted in Figure 1.2.

Existing cluster, grid, supercomputer scheduling, which in practice is a

1 Introduction · 5

Figure 1.3: A sketch of how submission aggressiveness affects visible response time
and user costs under an existing pricing mechanism in which all resource usage is
charged. The more speculative tasks a user submits, the less visible response time
he or she will experience for any task later deemed to be needed, but the more he or
she will pay for larger numbers of unneeded speculation. With sufficient think time
and deep speculative queues, as shown for submission aggressiveness greater than
x, it is possible to eliminate visible response time. The lowest cost to the user that
achieves this is denoted by y. However, unknown or difficult to predict run-time
considerations prevent a user from making such time / cost tradeoffs. Note that the
two vertical axes are of different units.

variant of decay-usage or first-come-first-serve, does not know which tasks
are speculative and thus cannot schedule them differently from tasks that are
known to be needed. Computing time is either sold to another party (under
names such as ‘third-party compute outsourcing’ and ‘information technol-
ogy resource providers’) or the resource owner and user are the same person,
organization, or entity and computing time is not directly charged. When
sold, all resource consumption, whether or not speculative task outputs are
eventually determined to be needed, is charged.

Should a user exploring a space speculatively submit one task, a few,
many, or the entire ‘computational plan?’ When resources cost, the user is
pressured to only submit a few tasks at once because the user does not wish
to be charged for running tasks whose outputs might be determined to be
unneeded. But doing so leads to poor time-based scheduling metrics, such
as visible response time, because the speculative tasks are not executing
concurrently with the user’s think time of received task outputs as much as
possible. This tradeoff is illustrated in Figure 1.3. When resources are not

6 · Cluster scheduling for explicitly-speculative tasks

directly charged (such as in a communal cost-center), or if the user is willing
to pay for unneeded tasks, then the user should submit many speculative
tasks so that they might execute before being needed. However, if every user
did this, then resources would be overwhelmed with speculative tasks and
the response time for non-speculative tasks executed after many eventually
useless tasks will increase dramatically.

In small communities, users would like to appear to submit a ‘reasonable’
number of speculative tasks, in hopes of balancing their wasted costs and
response time with the needs of other users. However, even if everyone wished
to cooperate, there is no clear way for a user to determine which and how
many speculative tasks to submit. Meeting individual and collective goals
depends on many unknown factors: the pattern of other task arrivals, task
service time, user think time, and the probabilities that speculative tasks
will be needed.

These problems cannot be overcome without a scheduler that discrimi-
nates between speculative and non-speculative tasks. Batchactive scheduling
assumes this ability.

Batchactive scheduling leverages existing opportunities to better sched-
ule speculative tasks. The existence of think time gives a batchactive sched-
uler the flexibility to defer the execution of non-pressing, speculative tasks
in favor of known needed or likely to be needed tasks. Since speculative
tasks might be canceled, delaying their execution might result in eventually
unneeded tasks being canceled before they consume significant, if any, re-
sources; deferred work can be saved work. Related to think time is a concept
that can be similarly leveraged that I call ‘away periods,’ reflecting when
people become unavailable to consume task output independent of task com-
pletion — e.g., a user leaving at the end of the work day and not being ready
to consider output until the next morning. Moreover, spare computational
resources, which are available in many settings, can be exploited for execut-
ing speculative tasks. Once users have the means provided by batchactive
scheduling to convey to the system which tasks are speculative v. needed,
even more resources will be available to obtain the benefits of batchactive
scheduling.

· · ·
Batchactive scheduling is intended for shared clusters, the most impor-

tant architecture for high-end computing (Figure 1.4). Clusters are cost-
effective and flexible, used for small computing resources, computational
grids, and supercomputers. The positive results of this thesis can have im-
mediate impact by being deployed as extensions to clustering software such
as Condor, Platform lsf, the Globus Toolkit, Legion (Avaki), and the Sun
ONE Grid Engine.

1 Introduction · 7

Figure 1.4: The target cluster architecture. Clusters, a loose to tight collection
of nodes, are a cost-effective and flexible solution for small- to large-scale com-
puting. A grid is a collection of possibly geographically separate clusters accessed
through a wide area network. Traditional supercomputers are tighter aggregations
of a large number of processor nodes. Clustering software, which can be extended
with batchactive policies, manages user workloads in the form of tasks.

In batchactive scheduling as I define it, users judge tasks as either spec-
ulative or needed, and speculative tasks are organized in some structure,
such as a list (chain), directed acyclic graph, or with no ordering constraints.
There are no ‘levels’ or probabilities of speculation, which would be a burden
for users to predict and provide. Users disclose speculative tasks and request
tasks whose outputs they know they need. A user may cancel any task if
received outputs suggest their irrelevance. I call this ‘batchactive’ usage of
the system, because, like batch usage, many tasks are submitted at once,
and, like interactive usage, the user is waiting for the output of (usually)
one identified task. (However, unlike batch usage, the scheduler knows which
tasks are speculative, and unlike interactive usage, entire sets of speculative
tasks belonging to one user are often in the system at once.)

Speculative disclosure is a form of hinting which only reveals user ex-
pectation, enabling the system to globally optimize resource management.
These hints express information independent of system implementation, re-
maining correct if the environment changes. The disclosure interface, being
the same as for requesting non-speculative tasks, should also be easy to use.

Endowing the scheduler with the knowledge of tasks that may be needed
in the future enables servers to get an early start, rather than being idle,
while preventing speculative tasks from overwhelming the system. Further,
knowing about speculative tasks exposes parallelism from a user’s workload

8 · Cluster scheduling for explicitly-speculative tasks

when the execution of these tasks do not depend on outputs from one an-
other. Such speculative tasks can leverage the parallelism of cluster nodes.

The batchactive incentive pricing mechanism diverges from the norm of
charging for all resource usage. Disclosed tasks that were never needed are
not charged. With this mechanism, the user does not need to weigh the es-
timated cost (wasted money) and benefit (better visible response time) of
each disclosure, encouraging the user to freely disclose tasks. Servers that
are either cost-centers (non-profit) or profit-centers, covering most organi-
zations, can be motivated to institute the batchactive pricing mechanism:
in a cost-center, the cost for requested (needed) tasks can be adjusted so
that total billing over some time is the same as in the traditional pricing
mechanism, and, in a profit-center, improved time-based metrics coupled
with no risk for the user to disclose speculation can encourage more users,
the submission of longer chains of tasks, and larger tasks, resulting in higher
billed server utilization.

The traditional response time metric conflates the time a task was sub-
mitted with the time a task’s output was needed. That is, traditionally
systems measure time from submission to completion of a task regardless
of when its user needs its output. I introduce ‘visible response time,’ the
time between needing (wanting to begin to use) and receiving task output,
or the time ‘blocked on’ output. Visible response time accrues only after a
user asks for output from a task that may have been submitted much earlier
and thus measures the time that a user actually waits for output, which is
usually less than the time that a speculative task has been in the system.
In particular, a task can and often does have zero visible response time if it
was speculatively disclosed and was completed while its user was examining
the output of some other task. Other metrics, such as visible slowdown, are
derived from visible response time.

Most batchactive schedulers in this dissertation share the property that
requested tasks have absolute priority over speculative tasks. (More complex
but harder to deploy policies are also discussed.) This prioritized two-tiered
approach — having independent queues for requested and disclosed work
and shown in Figure 1.5 in contrast to policies which do not discriminate —
is sufficient most of the time. Two out of five disclosed queue subpolicies are
novel. One favors users who speculate less (i.e., users who submit speculative
tasks that are more often found to be needed), while the other favors users
who have requested (paid for) more work.

Speculative scheduling may be compared to the concept of delayed or
lazy evaluation found in programming languages. In delayed evaluation, only
desired outputs from an unbounded computation (e.g., an infinite list) are

1 Introduction · 9

Figure 1.5: Comparison of the usage of non-speculative and batchactive scheduling.
The top two queues illustrate two extreme behaviors of users using a non-speculative
scheduler. Needed tasks are requested one at a time (interactive) and needed and
speculative tasks are requested in sets (batch). The bottom queue is a two-tiered
batchactive scheduler which gives priority to non-speculative tasks. Users behaving
in a batchactive manner submit both needed and speculative tasks. In contrast to
batch usage, users label which tasks are speculative so that the scheduler can treat
them differently, to prevent speculative tasks from starving non-speculative tasks.

actually computed. Batchactive scheduling also defers work but often com-
putes outputs not known to be needed. If speculative tasks are executed
only after a user desires their outputs, as in delayed evaluation, then there
is no performance benefit to speculative task disclosure. However, at the
other extreme, if speculative tasks execute with the same priority as non-
speculative tasks, then system resources will be squandered with possibly
unneeded work. How to balance between executing speculative tasks within
a user’s and among users’ tasks (i.e., avoiding self-interference and cross-
interference) is one goal of this thesis; how to execute a speculative task at
the last moment when this moment is unknown.

· · ·
My thesis is that a multiuser process scheduler informed of which sub-

mitted tasks are speculative can provide better time- and cost-based metrics
for users and resource providers. I provide evidence for the following elabo-
rations throughout this dissertation:

– there exists a class of applications in which work is submitted spec-
ulatively and that this class is important and will become more so
(Chapter 2.2);

10 · Cluster scheduling for explicitly-speculative tasks

– speculative tasks are poorly exploited by existing schedulers (Chap-
ters 2.4, 4.8, and 6.2.2);

– speculative task disclosure and the batchactive pricing mechanism
support how people wish to work for many application scenarios, in-
cluding their desire to pipeline think time and task execution (Chap-
ters 2.1, 5.3, and 5.1);

– in a single-server simulation, batchactive scheduling can substantially
reduce visible response time (among other time-based metrics), re-
duce user costs, and in some cases improve resource provider revenue
(Chapter 6.2);

– two-tiered batchactive scheduling is effective, deployable, and exhibits
low overhead (Chapters 7.2 and 7.1.4).

For the scheduling researcher, speculation requires rethinking metrics
and algorithms: not all tasks are equal — only tasks whose outputs users
eventually desire matter — leading me to introduce the ‘visible response
time’ metric and the batchactive pricing mechanism which is resilient to
abuse. I argue that the existence of user think times, user away periods, and
server idle time makes batchactive scheduling applicable to today’s clusters,
grids, and supercomputers.

I study the behavior of speculative and traditional scheduling through
the simulation of a model of users, tasks, and a single server based on im-
portant application scenarios. I created this highly-parameterizable discrete-
event simulator and contribute it to the community for further scheduling
research.

I answer several specific questions: How do the simplest, most easily
deployable batchactive schedulers compare to the simplest commonly used
non-speculative schedulers? Can novel scheduling subpolicies for speculative
tasks leverage historical user patterns to achieve to better performance?
How do such subpolicies compare to each other and to non-speculative
scheduling? How does the improvement of batchactive scheduling over non-
speculative scheduling change when utilizing task size information, which
may be available through prediction? To what extent can an oracular sched-
uler perform even better? Can batchactive scheduling simultaneously lower
user costs on unneeded speculation and increase server revenue by improv-
ing server utilization? At the same user costs, can visible response time be
reduced? At the same visible response time, can user costs be reduced?

1 Introduction · 11

For example, over a broad range of simulated user behavior and task
characteristics, I show that under a batchactive scheduler visible response
time is improved by at least a factor of two for 20% of the simulations us-
ing schedulers based on first-come-first-serve. (For some deployed traditional
batch schedulers based on resource usage, the performance difference is not
as pronounced, but batchactive scheduling still wins.) On a non-speculative
scheduler, there are extreme situations (such as high load) in which users
who submit one task at a time results in better performance than users who
submit batches of tasks at a time. While at other extremes (such as low load),
the opposite is true. But users submitting work to a batchactive scheduler
results in as good or better performance than non-speculative scheduling
for both these extremes and better performance for intermediate situations,
exhibiting adaptability. Another result is that visible response time can be
improved without decreasing the throughput of tasks whose outputs were
desired. Under some situations, user costs decrease while server revenue in-
creases. Related is that more users can be supported and greater server rev-
enue generated at the same mean visible response time. Further, two-tiered
batchactive schedulers that are simple, out of all batchactive schedulers,
provide the bulk of the potential performance gains.

I examine the circumstances regarding task characteristics and user be-
havior in which batchactive scheduling provides the best results versus when
it performs similarly to non-speculative scheduling. Some experiments illu-
minate the non-obvious necessity of user think time to provide speculative
scheduling benefits. Another finding is that my approach applies best when
several to a potentially unbounded number of speculative tasks are sub-
mitted. Considerable performance improvements are found even when the
average length of a user’s speculative tasks is three or four.

I demonstrate deployment feasibility by describing how to integrate a
batchactive scheduler with a popular clustering system called Condor. I also
measure scheduling overhead and show it to be negligible.

I establish these and other aspects and arguments for batchactive schedul-
ing in the following order. Chapter 2 motivates batchactive scheduling by
describing prevalent work patters, important applications, and opportunities
for better scheduling. It also discusses related work in the use of scheduling
speculation across tasks and within tasks. Chapter 3 states what is inside
and outside the scope of my thesis. My scope encompasses important appli-
cation scenarios while avoiding issues orthogonal to how the knowledge of
whether a task is speculative can be used to improve scheduling metrics. In
Chapter 4 I provide non-speculative cluster scheduling background, includ-
ing a description of the target architecture, standard cost models, user and

12 · Cluster scheduling for explicitly-speculative tasks

resource provider goals, and fundamental and commonly-deployed schedul-
ing policies.

Chapter 5 introduces batchactive scheduling, the new batchactive pricing
mechanism, new scheduling metrics based on visible response time, ambi-
tious policies requiring difficult to obtain information, and two-tiered poli-
cies that are deployable. This chapter also discusses speculative scheduling
beyond centrally scheduled processor resources. The simulation results are
in Chapter 6, which details the simulation model, the ranges of simulated
behaviors, and the differences in performance between non-speculative and
batchactive schedulers. Chapter 7 details the design and implementation
of the simulator and describes how to deploy batchactive scheduling to an
existing cluster by extending a popular clustering system.

Finally, Chapter 8 recapitulates the motivation and contributions of
this thesis and discusses non-technical challenges to deploying batchactive
scheduling.

· · ·
Batchactive schedulers, which recognize speculative tasks as first-class

entities, attempt to maximize human productivity and minimize user re-
source costs by scheduling and charging speculative tasks more effectively.
Ambitious user hypotheses potentially requiring an unbounded amount of
resources can be explored without fear that resources would be wasted on
long-shot speculation. What is required is for users to disclose their specula-
tive plans and then request individual task outputs when it becomes known
that these outputs are needed. Existing policies and pricing mechanisms were
designed for non-speculative tasks; tasks whose outputs were all known to be
needed. However, this is not always true and suboptimal scheduling results
when users engaged in speculative searches use non-speculative schedulers.

The cost of cycles decreases while the cost of human time increases,
making task speculation more common and speculative scheduling more ap-
plicable. The heart of this work is deciding when tasks should run to reduce
or eliminate visible response time across users while not wasting contended
resources on speculative tasks that might be canceled. Novel policies for
speculative tasks reward good science; the better someone is able to specify
needed work, the better the scheduler performs for that person.

Opportunity is missed by most people because it
comes dressed in overalls and looks like work.

Thomas Edison

2 Opportunities for batchactive scheduling

This chapter motivates batchactive scheduling (Chapter 5). I begin by de-
scribing a prevalent way in which people work. Users can often plan ahead,
submitting a number of potentially needed speculative tasks and pipelin-
ing the consideration of completed task outputs with the execution of tasks
whose outputs are not yet known to be needed. This behavior, in contrast
to not disclosing speculation, is depicted in Figure 2.1.

The following sections elaborate on these work patterns showing that
there are opportunities for smarter scheduling to aid speculative work. I
present actual scenarios of users engaged in these work patterns for diverse
applications categorized as exploratory searches, sequential tasks, and pa-
rameter studies.

I cite evidence that speculative work is often not known to be actually
desired until some time (sometimes a long time) after the work is submitted.
I also describe the prevalence of idle computational resources that can be
leveraged for speculation.

I then describe how non-speculative schedulers (Chapter 4) handle spec-
ulative tasks poorly with respect to time- and cost-based metrics (Chap-
ter 5.2). In contrast to batchactive schedulers, they do not embrace the
aforementioned opportunities to provide better performance for speculative
tasks. Before summarizing this chapter, I describe related work in applying
speculation to the scheduling of tasks, scheduling speculative parts of a sin-
gle task, and scheduling speculative activity that uses resources other than
the processor.

2.1 Work patterns

O’Day and Jeffries [1993] studied how ‘information seekers’ perform searches.
For a number of activities, they found that people tend to conduct a series
of interconnected but diverse searches. They studied the behavior of fifteen
individuals (including a financial analyst, venture capitalist, marketing en-

13

14 · Cluster scheduling for explicitly-speculative tasks

Figure 2.1: A sketch of how visible response time changes when a user discloses
work. Shown is the total visible response times for a single user submitting four
tasks and waiting for and thinking about the outputs of these tasks. Visible re-
sponse time is the time between needing and receiving task output irrespective of
when the task was submitted. Three settings are shown. First, the user does not
disclose speculative work; he or she behaves interactively, submitting the next task
after thinking about the output of the previous task. Second, the user discloses all
speculation to a single server. And third, all speculation is disclosed to a cluster
with many nodes, allowing all four tasks to run in parallel. Each setting shows the
execution of the tasks and the user cycling between waiting and thinking (this cy-
cle is depicted abstractly in Figure 1.1), over time. In each setting, the user thinks
and the servers are busy the same total amount of time. What differs is the total
visible response time, which improves as the opportunities for pipelining task exe-
cution and think time increases. Due to the limitations of existing schedulers, users
who disclose will either do so and be charged for unneeded work and wait longer
by competing with other users’ speculative work, or behave interactively to avoid
these risks. Batchactive scheduling encourages the behavior depicted in the bottom
two settings with the batchactive pricing mechanism and intelligent scheduling.

2.1 Work patterns · 15

gineer, demographer, consultant, statistician, among others), half of which
worked for one large computer manufacturer while the other half worked
for a variety of other companies. These individuals conducted searches on
financial and business-related topics. O’Day and Jeffries’ conclusions result
from interviews conducted in the offices of these individuals.

The fifteen individuals participated in surveys for each of 66 activities.
After the surveys were conducted, one-third of their activities were catego-
rized as exploratory searches. Outputs from such searches are analyzed for
trends or correlations, compared against different pieces of data sets, scaled
or aggregated, and finally interpreted. One individual reports, ‘What you
want is a thorough and efficient way that will cover first of all the leading
sources and then second of all more localized sources. . . . So there is a kind
of a general quick and dirty way to find out what’s out there and then once
you do that then you want to go in more specifically and that is where you
get into more detailed searches. There is like a 30, 000-foot view and then
you go into specific areas.’

These individuals were behaving speculatively and exhibited think time:
analysis of preliminary searches may remove the need to consume outputs
from detailed searches that may be computational processes operating in
the background. Speculative behavior is common on computing systems as
shown next (Chapter 2.2) and takes the form of users submitting speculative
tasks. A speculative task is some unit of work, usually corresponding to a run
of an application, whose output is not yet known to be required [DeGroot,
1990]. Other applications never terminate; they cycle between performing
work, delivering output, and idling for the next user directive. Here, the task
is the work cycle of the application. The granularity of a task is such that
a person uses its output after receiving it, e.g., to make task submission
or cancelation decisions. If application output must be processed, filtered,
graphed and if such steps can occur without human intervention, it is simpler
to consider the aggregate of these operations as a task.

The trends of rising cost of an average person’s time and decreasing
cost of computational resources make speculative workloads more prevalent.
Economists argue that the rise of inflation-adjusted average wage, which
has been measured over decades, implies that the time of the average per-
son has become more valuable [Becker, 1965; Romer, 2000; Pashigian et al.,
2003; Walker, 2002]. Chip miniaturization and economies of scale are two
contributing factors to the cheaper and more available computational power
witnessed over decades [Moore, 1965; Gibbs, 1997; Hennessy et al., 2002].
These trends are predicted to continue. Either continuation is sufficient to
suggest that users will increasingly risk wasting computational resources to

16 · Cluster scheduling for explicitly-speculative tasks

Figure 2.2: Two simple organizations for speculative tasks include flat list order
and no ordering preference.

save human time. Together, users are compelled more strongly to increas-
ingly speculate.

I call all the speculative tasks associated with a user his or her task set.
Task sets may include tasks from several applications or from one application
run with different parameters. The user may end up wanting one, all, or some
of these tasks. After a task whose output is known to be needed completes,
the user receives this output and considers this output for some duration or
think time. At that point, the user determines whether more output from
the task set is needed. If not, it could mean that the user has sufficient, con-
clusive output. Or it could mean that the task set is not answering the right
questions, in which case tasks (that may or may not have completed) whose
outputs are undesired are canceled, and a new task set exploring a different
line of inquiry is issued. Two simple organizations for tasks in a task set are
flat list order or no ordering preference as depicted in Figure 2.2. Unordered
desire, similar to the ‘dynamic sets’ of Steere [1997] (Chapter 2.5.3), reflects
users who do not know if any output is more useful than another; any answer
is helpful until more is known. Only applications that require some amount
of user think time (Chapter 2.3.1) to determine whether more outputs are
useful are good candidates for batchactive scheduling,

A common example of speculative work is an application run repeatedly
with different arguments to search a large parameter space first in broad
stokes, randomly or at specific parameter intervals (iterative or successive
refinement or improvement), then in detail at areas of interest (Figure 2.3).

Any-time algorithms (related to imprecise computing) can generate out-
put after using some amount of resources or after achieving some level of
quality [Musliner et al., 1992]. The creation of each intermediate output con-
stitutes the work of one task. Figure 2.4 illustrates a hypothetical simulation
in this spirit whose output changes across runs, until successive runs do not
provide additional information. An actual example is the rendering applica-
tion in Chapter 2.2.2. An example from the database community presents
partial outputs and lets the user guide the search when querying diverse
(both in the nature of the content and size), distributed, Internet-based

2.1 Work patterns · 17

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25
0.2

0.4

0.6

0.8

1

Figure 2.3: A sketch of an initial exploration of a two-dimensional parameter space,
indicating regions for further study. After scanning in low detail a parameter space,
the user will refine his or her search to the interesting region in the lower-right, can-
celing speculative work that would produce more detailed results in other regions.

databases [Raman and Hellerstein, 2002].
There can be a large to unlimited number of tasks in a task set, poten-

tially requiring an unbounded amount of computing resources. Examples are
scientific ‘grand challenges’ which are fundamental problems in science and
engineering with broad economic and scientific import [Argonne, 2004; UK
Computing Research Committee, 2004]. The existence of resource intensive
task sets suggests that the longterm relevance of the scheduling policies for
speculative workloads I present in this thesis will not be diminished by the
speedups in computer hardware predicted by Moore’s law [Moore, 1965].

Defining speculative tasks may be a time-consuming activity for a per-
son to perform. Sometimes an autonomous program agent can work on be-
half of a user in constructing task sets. An agent can choose tasks in an
attempt to anticipate a person’s needs. Tennenhouse argued that effective
computer use, if architectural and task demand trends continue, will neces-
sitate less interaction between people and computers [Tennenhouse, 2000].
Across computing history, the number of processors per person has gone
up. When moving beyond one computer per person, computing paradigms
must shift from human-centric to human-supervised. People are serializa-
tion points that dampen feedback that could sometimes occur automati-
cally. Tennenhouse’s work in ‘proactive computing’ seeks to remove people
from the control loop. Proactive systems will anticipate user needs: excess

18 · Cluster scheduling for explicitly-speculative tasks

Figure 2.4: A sketch of how successive runs of an any-time application can determine
whether more outputs are fruitful. In this example, the more runs, the less useful
the outputs, as the outputs converge to some value c. Queued tasks for any-time
applications are often speculative: the trend of the output values, which may require
user think time to identify, may cause the user to determine that future outputs
are unneeded.

computation and communication capacity will be harnessed to fetch and ma-
nipulate information, producing answers before they are needed. Examples
where an agent designed for a particular domain can automatically construct
relevant task sets are in Chapter 2.5.

Although existing schedulers are not designed for them, users often sub-
mit speculative tasks; i.e., users disclose their computational plans by sub-
mitting tasks whose outputs they do not know whether they need at the time
of submission. For example, users engineer tasks to run overnight [Wenisch,
2003]. They do this to increase the chance that they will have useful task
output and decrease the chance that they must wait for tasks to complete.

The next several sections expand on the above work patterns to motivate
my batchactive scheduling solutions for speculative tasks. I detail scenarios
in which people submit speculative computational work, show the existence
of think times and a related concept I call ‘away periods,’ and show that
there exists computational capacity in clusters, grids, and supercomputers
for running speculative work.

2.2 Scenarios

Scientific disciplines and commercial ventures use computer resources to
simulate phenomena, evaluate hypotheses, visualize information, discover in-
variants. Researchers in high-energy physics, cosmology, seismology, weather
forecasting, aerodynamics use computing resources speculatively. Scientists
in national laboratories, academic institutions, private research departments
often construct series of experiments occupying considerable computing time,
in which, at the outset, it is often unclear which task outputs will be useful.

2.2 Scenarios · 19

This section presents real-world processor-bound examples showing that
computing resources are used for speculative work, motivating the specula-
tive scheduling policies (Chapter 5) central to this thesis. These scenarios
are important, both because of the economic scale of the industries in which
they are found and because of their place in the advancement of science.
They are categorized as exploratory searches, sequential tasks, and parame-
ter studies and concern bioinformatics, computer animation, and computer
simulation, respectively. Although the focus of this thesis is on the proces-
sor resource (Chapter 3.3), I also describe non-processor-based scenarios for
completeness. I obtained much of the following corroborations of the above
work patterns through ad hoc surveys and cited personal communications.

2.2.1 Exploratory searches

An exploratory search (speculative search, speculative test [DeGroot, 1990])
is typically a hand-crafted chain of speculative tasks from different applica-
tions (e.g., process dataset A, filter table B, combine them into C, . . .) whose
outputs increasingly provide evidence to confirm or refute a hypothesis. Ex-
ploratory searches in the area of information retrieval, called ‘berrypicking
techniques,’ has received attention [Bates, 1990]. The applications suitable
for batchactive scheduling are those in which one can form the next search
speculatively, before the prior search completes. The scenario for this type
of speculative work that I examine concerns bioinformatics.

Bioinformatics comprises the computing methods for solving problems
concerning nucleotide sequences. One problem is constructing a complete
genome out of fragments. (The gist of the problem is analogous to putting a
puzzle together when a flashlight can only shine on several pieces at a time.)
A large effort recently sequenced a complete human genome [Genome, 2001].
Another problem is determining protein function, which has implications
in measuring susceptibility to and the prevention of disease. (A protein’s
shape determines its function and nucleotide sequences determine a protein’s
shape [King, 1993; Thomasson, 2004].) An important part of solving both
problems is comparing new sequences to known sequences to find similar
structure, function, and origin.

Several algorithms related to substring matching have been adapted
to comparing nucleotide sequences for similarities [Karp and Rabin, 1987;
Smith and Waterman, 1981]. Sequence similarity is based on biological cri-
teria. Some algorithms are more sensitive to differences in sequences than
others and the more sensitive ones are slower. Moreover, a single algorithm
may have a parameter to control this sensitivity / time tradeoff.

20 · Cluster scheduling for explicitly-speculative tasks

Query = pir|A01243|DXCH 232 Gene X protein - Chicken (fragment)

(232 letters)

Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P01013|OVAX_CHICK GENE X PROTEIN (OVALBUMIN-RELATED) (... 1191 7.7e-160 1

sp|P01014|OVAY_CHICK GENE Y PROTEIN (OVALBUMIN-RELATED). 949 7.0e-127 1

sp|P01012|OVAL_CHICK OVALBUMIN (PLAKALBUMIN). 645 3.4e-100 2

sp|P19104|OVAL_COTJA OVALBUMIN. 626 1.2e-96 2

sp|P05619|ILEU_HORSE LEUKOCYTE ELASTASE INHIBITOR (LEI). 216 3.7e-71 3

Figure 2.5: Sample output from a blast query. Shown are one-line descriptions
of database sequences that match the query, including how closely they matched.
Bioinformaticists identify biologically interesting properties using this tool.

Bioinformaticists explore biological hypotheses, searching among dna
fragments, using tools like blast [Altschul et al., 1990] and fasta [Pearson
and Lipman, 1988]. The blast nucleotide sequence similarity searcher from
the National Center for Biotechnology Information is the most popular tool
for this purpose. Sample execution output is shown in Figure 2.5.

Bioinformaticists share workstation farms — such as the dedicated 30
machines in the Phylogenomics Group of the University of California at
Berkeley [Holliman, 2003] — and issue chains of fast, inaccurate searches
to quickly demonstrate almost all non-matches followed by slow, accurate
searches to confirm initial findings. Service time is dependent on the sizes
of the sequences under comparison and how accurate the search is [Spring
and Wolski, 1998]. Less sensitive searches take from tens of seconds to tens
of minutes when matching against human genome sequences, while other
searches can take up to six hours [Biowulf, 2004]. The accuracy v. runtime
tradeoffs of different convergence algorithms can vary over several orders of
magnitude.

A researcher is often able to plan a number of sequencing tasks ahead.
In the extreme, some scientists wish to submit thousands of sequencing
tasks [Biowulf, 2004] because they ‘really do not know what [. . .] sequences
will work.’ [Giddings and Knudson, 2004] Batchactive scheduling (Chap-
ter 5) would enable scientists to explore ambitious biological hypotheses
without fear that resources would be wasted on speculative blast sequenc-
ing tasks that might be canceled after early outputs were scrutinized.

2.2.2 Sequential tasks

Another type of speculative work is a set of sequential tasks all from a single
application performing the same function such as an any-time algorithm
providing increasingly detailed outputs or ordered (temporal) outputs. The

2.2 Scenarios · 21

scenario for this type of speculative work concerns computer animation in
which each task renders a movie frame.

Computer animated scenes are increasingly used in major motion pic-
tures. The first full-length animated feature film created entirely by artists
using computer tools and technology was Toy Story (1995) [Toy Story,
2004]. The films Finding Nemo, Shrek, Matrix [Taub, 2003], and Lord of
the Rings [BBC News, 2004; Maya Association, 2004] have pushed the state
of computer graphics technology. The following description of a computer-
generated film’s production’s speculative nature I learned from speaking
with Doug Epps from Tippett Studio and Tim Lokovic from Pixar Anima-
tion Studios [Epps, 2004; Lokovic, 2004].

Teams of hundreds of artists creating a computer-animated film at pro-
duction houses such as Dreamworks or Pixar submit shots (scenes) for ren-
dering, where each shot has roughly 200 frames, to a cluster of hundreds
to thousands of processors. Each frame, which consists of up to 50 indepen-
dent operations (for lighting, shading, animation, etc.) known as ‘layers’ can
take minutes to hours to render. Shots are submitted using clustering tools
like lsf [Platform, 2003] and proprietary tools like ‘batchomatic.’ Besides
such software, Apple Computer, Inc. has recently developed a clustering so-
lution explicitly for different aspects of computer graphics rendering called
Qmaster [Think Secret, 2004].

For example, over a nine month production period, Weta Digital used
3, 200 processors to create Lord of the Rings: The Return of the King. This
film had 1, 400 special effects shots, each containing at least 240 frames, and
the average frame took 2 hours to render [Hillner, 2003]. A character from
Lord of the Rings, including two intermediate layers, is shown in Figure 2.6.

This work is highly speculative. Artists submit a number of frames, up
to a shot at once, for rendering. Upon seeing initial frames, an artist may
decide that the lighting model is wrong, that a rendered object could be
in a better location, etc. The overwhelming majority of computation never
makes it into the final film [Epps, 2004; Lokovic, 2004]. Artists rarely get a
scene right in one pass. They use rough renderings (successive refinement)
to determine whether to continue or make changes.

The aggregate rendering operations for each frame could be considered
a task, and the tasks to render a single shot could be considered a task set.
The output of speculative tasks would often be desired in the natural order
of the frames because artists often need to see successive frames to appreci-
ate temporal characteristics, such as character motion. With a batchactive
scheduler, aware of which tasks are speculative, the artist could prioritize
key sections of a shot, those with more action, e.g., to more quickly decide

22 · Cluster scheduling for explicitly-speculative tasks

Figure 2.6: A completely computer-generated character (top) and two of its inter-
mediate layers (bottom), designed by Weta Digital for Lord of the Rings. Source:
Maya Association [2004].

whether additional frames are worth having. These frames would not only
have priority above more speculative, remaining frames from that artist,
but also from non-critical frames from other artists sharing the cluster. If it
becomes known that unviewed output from speculative renderings will not
be needed, the artist would cancel them so that they will not unusefully
compete against other rendering tasks in the system.

2.2.3 Parameter studies

A parameter study [DeGroot, 1990] is a set of tasks exploring an often large
parameter space. They usually begin by exploring the space in broad, shallow
strokes, later to be refined to specific areas of interest. The scenarios for this
type of speculative work are computer simulations.

Computer scientists routinely use clusters to submit chains of simulations
exploring high dimensional spaces. Parameter studies for feature extraction,
search, function optimization can continue indefinitely, homing in on areas
for accuracy or randomly sampling points for coverage.

In the Electrical and Computer Engineering Department at Carnegie
Mellon University, clusters are used by computer systems and computer
architecture researchers for, among other things, studying microarchitecture
cache behavior, computer virus propagation, and storage patterns related
to I/O caching and file access relationships [ECE, 2002]. Many of these
are discrete event simulations (sometimes trace-driven) which observe time-

2.2 Scenarios · 23

Overall I/O System Total Requests handled: 10000

Overall I/O System Requests per second: 100.148471

Overall I/O System Completely idle time: 0.000000 0.000000

Overall I/O System Response time average: 49.917614

Overall I/O System Response time std.dev.: 8.392918

Overall I/O System Response time maximum: 81.359552

Figure 2.7: Sample output from a run of the DiskSim simulator. Shown are overall
statistics from trace-driven I/O accesses to a simulated disk drive.

based behavior [Ball, 2004]. The service times for these tasks range from
seconds to hours and are detailed in Table 4.4.

Simulation applications used by colleagues for parameter studies in-
clude SimpleScalar, DiskSim, and ns for researching microarchitecture, disk
performance characteristics, and network performance, respectively [Sim-
plescalar, 2004; DiskSim, 2004; NS, 2004]. The simulation results in this dis-
sertation (Chapter 6.2) were created by extensive parameter studies (Chap-
ter 6.1.3) using a simulator I wrote called ba sim (Chapter 7.1) in which each
hypothesis I explored consisted of tens to thousands of speculative ba sim
tasks per task set. In trying novel schedulers, simulations were canceled when
the schedulers showed no significant difference in a random sampling of pa-
rameters. Sample output from the widely-used, accuracy-validated DiskSim
tool is shown in Figure 2.7.

The Xfeed tool included in the Xgrid clustering software [Xgrid, 2004]
from Apple Computer, Inc. explicitly supports parameter studies. One spec-
ifies a range of arguments (or a random sampling) to pass to a command.
Xfeed generates task specifications for each possible combination of argu-
ments and submits them; an example sweep would be through two dimen-
sions of parameters in increments of 10 and 20, respectively.

With a batchactive scheduler, such simulations could occur in parallel
with the experimenter analyzing desired and completed outputs and guiding
the search in new directions, with speculative work — which will be canceled
if determined to not be needed — operating in the background when pressing
outputs from tasks among other users are needed.

2.2.4 Non-processor-based scenarios

While I focus on the processor resource (Chapter 3.3), for completeness I
present examples of speculative tasks using the network and disk exten-
sively. The network example can fit in an extended batchactive framework.
Scheduling solutions for the disk cases take different approaches which I cite.

24 · Cluster scheduling for explicitly-speculative tasks

Web document prefetching has the strong potential to improve the ex-
perience of web browsing, a kind of exploratory search. Web cache hit rates
are by their nature low (30–40% even with unlimited cache sizes), and thus
web caches cannot by themselves eliminate web latency [Steere, 1997]. (Web
page popularity follows the Zipf distribution:1 while a small number of pages
are exceedingly popular, the bulk see little reuse [Arlitt and Williamson,
1996].) A prefetching agent could construct a task set of prefetch candidates
(perhaps by examining the links of the currently displayed web page). Web
prefetches are speculative because they may or may not succeed in retriev-
ing pages that the user is interested in viewing. User action (selecting links)
may cause the prefetching agent to cancel prefetches and issue new ones. A
batchactive scheduling policy would determine how many such prefetch tasks
(network accesses) to issue which would be in moto while the user reads the
previously desired web page (i.e., during the user’s think time). The time to
retrieve a page and think time for a user browsing the web are both Pareto
distributed [Crovella and Bestavros, 1995] with expected values under ten
seconds. The scheduler would attempt to balance the response time that the
person experiences with the fractional increase in network usage caused by
prefetching. It is in the user’s interest to control network usage because the
network might also be used for demand-driven work and because network
usage might cost on a per-byte basis (e.g., some low-bandwidth wireless
connections). A more detailed discussion of scheduling speculative network
requests is presented in Chapter 5.9.

Data mining is often an exploratory search, with the relevance of fu-
ture queries dependent on recent outputs. The size and prevalence of data
processing workloads has grown enormously [Fayyad, 1998], making such
mining expensive in time and cost. Increasingly, content is not bound by
particular choices of data organization and the delivery of information is
in forms that go beyond traditional list management and database report
methods [Sculley, 1989]. The Diamond system searches ‘loosely-structured
data’ (AutoCAD drawings, usgs maps, cat scans, etc.) more efficiently by
quickly discarding unneeded information at the data source [Huston et al.,
2003], a type of task cancellation called ‘throttling’ in DeGroot [1990].

Disk I/O often limits application performance. To the extent that an
application knows its future data needs, its performance can improve by
disclosing these accesses before the application stalls for unread data. These

1The Zipf distribution [Zipf, 1932] is related [Crovella, 2000] to the Pareto distribution
(Chapter 6.1.3), sharing its heavy-tailed property. George Zipf discovered that the proba-
bility of encountering the rth most common word in a corpus is roughly P (r) = 0.1/r for
r up to about 1000 [Weisstein, 2004i].

2.2 Scenarios · 25

disclosures are speculative because the data within early reads may deter-
mine which future reads are actually needed. This is the concept behind the
tip system [Patterson et al., 1995] in which programmers manually disclose
future data needs, covered in more detail below (Chapter 2.5.3).

2.2.5 Summary of scenarios

Speculative work and speculative scenarios cover broad areas, are impor-
tant, and are becoming more common; the speculative work patterns of
Chapter 2.1 occur across many types of users executing many types of appli-
cations. Scientists, researchers, private individuals at commercial ventures,
academic institutions, research laboratories simulate phenomena and evalu-
ate hypotheses by issuing tasks speculatively.

I described three types of speculative work in this section. An exploratory
search is a hand-crafted, based on domain-specific expertise, collection of
tasks to confirm or refute a hypothesis. I cited the usage of blast in the
field of bioinformatics as an important scenario. Sequential tasks perform a
single function in which the order that outputs are desired is well-defined.
The important scenario for this type of speculation is rendering the frames of
a computer-animated film. Parameter studies begin as broad, shallow explo-
rations of a high-dimensional space that are refined to areas of interest. The
important scenario here includes any type of parameterized computer simu-
lation. I also discussed non-processor-based speculative scenarios, including
data mining and web prefetching.

Users submit work they know they need and work they do not know
they need (speculative work) and traditional schedulers do not have the
knowledge to treat these types of tasks differently. The batchactive approach
to scheduling speculative tasks (Chapter 5) improves time- and cost-based
metrics for these scenarios by intelligently prioritizing among needed and
speculative tasks between one user and among all users sharing a computa-
tional resource. Ambitious hypotheses potentially requiring an unbounded
amount of resources can be explored without fear that resources would be
wasted on long-shot speculation. All that is required is for users to disclose
their speculative plans as task sets and then request individual task outputs
when it becomes known that they are needed. I do not believe the cost for
users to generate speculative task sets in the above scenarios is large.

26 · Cluster scheduling for explicitly-speculative tasks

2.3 Enabling behavioral conditions

Besides the behavior of users and the kinds of application they run described
above (Chapters 2.1 and 2.2), there exist several user behavioral conditions
suited to batchactive scheduling.

Speculative work is often desired some time after the work is submitted.
This occurs for two reasons. The first is that a user needs time to think
about (viz., the ‘think time’) the most recently received task output before
being ready to consume the subsequent task output. The second is that
a user may become temporarily unavailable to process new task output
independent of the nature or availability of previous task output, such as
when the user leaves the office for the day and will not resume work until the
next morning. I also describe the prevalence of idle computational resources
that can be leveraged for speculation and argue that even apparently busy
servers can fruitfully engage in speculation.

2.3.1 Existence of think times

The speculative systems covered in related work (Chapter 2.5) share the
property that think times exist and that think times are leveraged to im-
prove performance. However, the notion of think time — one element of a
system not being ready to consume output from another part — is not always
given this name, and does not necessarily involve a human. For example, in
the tip prefetching system [Patterson et al., 1995], an instruction stream
consumes prefetched data. The time that the processor is executing instruc-
tions (i.e., not stalled on data) is effectively its think time during which
the (potentially speculative) data prefetching can be pipelined. In hardware
instruction speculation [Hennessy et al., 2002], the delays incurred by the
memory subsystem is effectively think time during which the speculative
execution of instructions can be pipelined.

The existence of user think times provides the opportunity for a specu-
lative scheduler to choose a task ordering that better (Chapter 6.2.2) meets
user and resource provider scheduling goals (Chapters 4.4 and 5.3) because
a user does not need the outputs of every speculative task at once; the user
is either ‘blocked on’ one task’s output or ‘thinking about’ the output of the
previously received task output (Figure 1.1). Think time gives a batchactive
scheduler the flexibility to delay the execution of non-pressing, speculative
tasks in deference to known or more likely to be needed tasks. Since spec-
ulative tasks might be canceled, delaying their execution might even result
in eventually unneeded tasks being canceled before they consume signifi-

2.3 Enabling behavioral conditions · 27

cant, if any, resources. This section cites situations in which think times
were measured. The non-obvious dependence on think time for batchactive
improvements is confirmed in experiment (Chapter 6.2.4).

Bubenik and Zwaenepoel [1989] built a system to optimistically build
(compile and link) software applications before the developer explicitly asks
to do so (Chapter 2.5.1). Part of their work measured the time between a
build being needed and the last time a source file that is part of the build
was modified. This ‘out-of-date time’ is a conservative estimate of think time
because there was additional time that the developer spent modifying source
files not included. ‘Out-of-date’ time is important to them because source
files need to be saved before builds can proceed speculatively.

They observed that most build targets are requested soon after a change
to source files but that these rebuilds usually consist of compiling one source
file; a developer testing a small change, e.g. However, sometimes users wait
a long time between source modification and executing a build request, and
these builds are more likely to involve more computational work. Specifically,
the median out-of-date time was 32 seconds while the mean was 378 seconds.

In the domain of web browsing, think time also exists. Many web prefetch-
ing schemes rely on think time to reduce browsing response time [Steere,
1997; Padmanabhan and Mogul, 1996; Bestavros, 1996; Fisher, 2002]. Crov-
ella and Bestavros [1995] found that web think times (also called ‘off-times’)
are Pareto distributed, a discovery used in their accurate web workload gen-
eration tool called Surge [Barford and Crovella, 1998].

2.3.2 Existence of away periods

This section describes a related concept to think time that further aids
batchactive scheduling. A user can have away periods during which the user
does not wait for task output. People routinely become unavailable to con-
sume task output and knowing when this occurs enables a scheduler to bet-
ter order work, especially if the scheduler knows which tasks are speculative.
Away periods can be thought of as the creation of think time independent of
task completion — e.g., a user leaving at the end of the work day and not be-
ing ready for output until the next morning (Figure 1.1). (The prediction of
away periods was used in other work to decide when to restore the memory
state of cluster desktop workstations harnessed for remote execution [Petrou
et al., 1996].)

To help see the flexibility provided by knowing away periods, consider
the following example taken from Feitelson et al. [1997] and illustrated in
Figure 2.8: ‘Assume that a task needs 3 hours of computation time. If the

28 · Cluster scheduling for explicitly-speculative tasks

Figure 2.8: How knowing away periods gives a batchactive scheduler opportunities
to delay some speculative tasks so that more pressing tasks can run.

user submits the task at 9am, he may expect to receive the results after
lunch. It does not matter to him whether the task is started immediately
or delayed as long as it is done by 1pm. Any delay beyond 1pm will reduce
user satisfaction. However, if the task is not completed before 5pm, it may
be sufficient if the user gets his or her results early next morning.’ Further,
because my application scenarios are speculative, tasks delayed because the
submitting user was in an away period that were later determined to not be
needed would not have competed for potentially scarce resources.

Because of the difficulties in knowing away periods (Chapter 5.7), the
policies, results, and conclusions of this thesis do not rely on predicting or
obtaining away periods. I consider away periods an additional opportunity
beyond think time for a batchactive scheduler to more effectively execute
potentially needed work for even better performance.

2.3.3 Existence of server idle time

Batchactive schedulers leverage spare computational resources for executing
speculative tasks. A batchactive scheduler that improves performance often
increases load with speculative tasks as a side-effect (Chapter 6.2.2).

Cluster workstations are available 60–80% of the time [Mutka and Livny,
1987; Douglis and Ousterhout, 1991; Arpaci et al., 1995; Acharya et al.,
1997]. Arpaci et al. [1995] state that, ‘although the set of idle machines
changes over time, the total number of idle machines stays relatively con-
stant [. . .] even during the busiest time[s].’ Many additional citations stating
similar statistics can be found within the above studies. Even the highly de-
sired resources at the Pittsburgh Supercomputer Center (psc) are idle 10%
of the time [Harchol-Balter, 2003a].

2.4 Common practice and its deficiencies · 29

Note, however, that such idle time statistics are a conservative estimate
of the resources available for speculation. While, anecdotally, some report
that during ‘crunch times,’ resources are saturated [Epps, 2004; Lokovic,
2004], what is important for improving (Chapter 6.2.2) scheduling metrics
(Chapter 5.2) is the load made up of needed tasks; i.e., the total load minus
the load made up of speculative tasks. This is because such speculative load
can be delayed until needed or canceled. When an interface exists for and is
used by the user to distinguish among needed and speculative tasks, it may
become apparent that much of the total load comprises speculative work
that can be scheduling more effectively with a batchactive scheduler.

2.4 Common practice and its deficiencies

Non-speculative schedulers (Chapter 4) were not designed for and poorly
support speculative workloads. Yet users regularly submit batches of specu-
lative tasks as shown by the scenarios above (Chapter 2.2). These task sets
mix with known needed tasks (Chapter 4.6), confusing the scheduling pol-
icy’s attempt to meet scheduling goals. Further, because speculative tasks
look like needed tasks, when resources are charged, they are charged regard-
less of whether their computations were eventually needed (Chapter 4.2).

Should a user with speculative tasks submit one speculative task, a few,
many, or the entire task set? The user wishes to reduce the time he or she
waits for needed task output and the user wishes to reduce how much he or
she will be charged for unneeded speculation. There is confusion as to how
many tasks a user should submit, resulting in ineffective scheduling; i.e., poor
time- and cost-based scheduling metrics (Chapter 5.2). When resources are
not directly charged (such as in a communal cost-center) or if all the users
have the economic resources to pay for wasted work, then the resources will
be overwhelmed, making the system unusable.

Further, traditional metrics are insufficient when users behave specula-
tively and have think times and away periods. According to Feitelson et al.
[1997], ‘The use of metrics such as throughput and response time [. . .] may
be due to the simplicity of the evaluation, or it may be a sign of some non-
obvious influence from theory.’ What is more important is the response time
experienced by the user, the visible response time of needed, no longer or
never initially speculative tasks, which accrues outside of think time and
away periods, introduced in Chapter 5.2. Relevant metrics (Chapter 5.2), a
new pricing mechanism (Chapter 5.1), and new speculative policies (Chap-
ters 5.4 and 5.5) overcome (Chapter 6.2.2) the deficiencies of existing cluster
scheduling.

30 · Cluster scheduling for explicitly-speculative tasks

2.5 Related speculative work

Speculation to improve performance is found at the level of I/O requests,
program blocks, and instructions across all areas of computing including
architecture, languages, and systems. I discuss related work for schedul-
ing across speculative tasks such as those scenarios discussed above (Chap-
ter 2.2), scheduling speculative parts of a single task, and scheduling specu-
lative activity that uses resources other than the processor. The latter two
types of speculation, which are outside my scope (Chapter 3), are covered
because they inform my terminology and solutions (Chapter 5) and they
place my solutions in context.

When speculation has time or space overheads, one tradeoff is between
unbounded speculation and delayed evaluation [Wikipedia, 2004] (related
to lazy evaluation and described in Chapter 1). This tradeoff is found most
often in the context of functional programming and appears in some of
the systems below. Another reoccuring issue is how sometimes unneeded
speculation must be prevented from affecting other state.

2.5.1 Speculation across tasks

Bubenik and Zwaenepoel modeled a cluster of users engaged in software de-
velopment using a modified make tool [Bubenik and Zwaenepoel, 1989]. At
each save of a source code file, their system speculatively runs the compiler
using the build rules encoded in the project’s Makefile. Their seminal work
measured the potential to reduce visible response times from building appli-
cations speculatively. Their simulator modeled one task (rebuild) pending
per user. My model is broader, encompassing users who operate interac-
tively or who submit batches of speculative work for a number of scenarios
(Chapter 2.2), including users behaving speculatively with non-speculative
schedulers (Chapter 2.1). Their work isolates speculative compilations from
the rest of the system. This is not needed in my system which stores spec-
ulative outputs in isolated locations until requested. Beyond their study of
time-based metrics, I also study resource cost as it relates to user charges
and server revenue.

The Xcode integrated software development environment for Apple com-
puter architectures has a predictive compilation [Xcode, 2004] feature which
begins file compilation even while files are being edited. This single machine,
single user speculation does not address scheduling issues. The Xcode doc-
umentation advises turning off predictive compilation on slower machines
when it may interfere with other activity including the editing itself.

2.5 Related speculative work · 31

In the database realm, Polyzotis et al. built a speculator that begins work
on database queries, where each query could be considered a task, during
the user think time in constructing complex queries [Polyzotis and Ioannidis,
2003]. They use machine learning techniques to predict what the user will
need before the query is finished, but they do not consider the scheduling
issues of a competing set of users submitting needed and speculative queries.

Eggert’s research on speculative scheduling examined how idle resources
could be leveraged for background or speculative work [Eggert, 2004]. Due
to preemption costs, he quantifies situations in which it is beneficial for the
scheduler to be non-work-conserving (i.e., to idle when work is ready to
run). This research does not consider the scheduling issues that arise with
speculative chains of tasks or contention from multiple users.

Sun et al. [1999] introduce a ‘parallel world’ in which each set of spec-
ulative tasks receives a private execution environment that is merged into
the real environment when speculative outputs are needed. They address
how to coherently integrate or discard requests to modify file system state
from speculative tasks depending on whether these tasks where eventually
determined to be needed or not, respectively. This work does not explore
the scheduling issues of speculative tasks. My work does not have the need
for private execution environments or encapsulations because the outputs of
scientific tasks or experiments are stored in locations that do not interfere
with the operation of the system. Outputs are provided to the user when
requested, and discarded when not needed.

2.5.2 Speculation within tasks

At the hardware level, speculation is commonly used to improve perfor-
mance when one part of the architecture presents a bottleneck to another.
For example, instructions are executed speculatively when control reaches a
branch and the resolution of the branch depends on data from a slower part
of the memory hierarchy. Without this speculative execution, the processor
would stall until the data became available. Because speculation may be
incorrect, its effects must be isolated until resolution. [Hennessy et al., 2002]

Osborne [1990] describes how Multilisp [Halstead, Jr., 1985], a version
of Scheme [Abelson and Sussman, 1996] with parallelism constructs, can
be used for speculative execution. Their examples include parallel search, a
parallel if statement (which works on both the ‘consequent’ and ‘alternate’
branches), among others. The difference between this work and others within
computer languages is the grain of computation: when small, the concerns
of speculative overhead and isolation are greater; when large, the concerns

32 · Cluster scheduling for explicitly-speculative tasks

shift to the scheduling of multiple tasks from competing users exhibiting a
range of behaviors over larger time scales.

Other work can transform a single executable into speculative pieces,
although sometimes programmer annotations are required [Bubenik and
Zwaenepoel, 1990; Cowan and Lutfiyya, 1995].

The bandwidth-delay product of current and future grids have spurred
speculative approaches to improving the performance of tightly-coupled ap-
plications [Chrisochoides et al., 2003; Lee, 2002]. Such work examines how
to rollback unneeded computation within an application and throttle work
so that speculation does not overly consume resources. Rollbacks for opti-
mistic computing derive from the virtual time concept [Jefferson, 1985]. In
contrast, I speculate among multiple independent (Chapter 3.2) tasks and I
study how to schedule among task sets from multiple users.

2.5.3 Speculation on non-processor resources

Patterson et al. [1995] have shown in the tip system how application perfor-
mance can increase if the application discloses storage reads in advance of
when data is needed. Programmers insert speculative data reads as program
annotations in the hope that the system can use this information to reduce
application I/O latency. My work applies the same concepts and terminol-
ogy to the processor resource at the granularity of tasks. While their work
focused on storage questions, such as how to balance cache space between
prefetches and lru caches, because of the relative size of memory and (po-
tential and known) data demands, I assume that sufficient storage exists to
store speculative task output; if this is not the case, speculative execution
can be throttled or speculative outputs can be dropped, lessening the bene-
fit of batchactive scheduling. As tip uses disclosed reads to exploit storage
parallelism, batchactive scheduling uses disclosed tasks to exploit cluster
parallelism. tip gives priority to demand requests. I introduce a spectrum
of batchactive schedulers, but the implemented policies (Chapter 5.5.1) also
share this property of preferentially scheduling known-needed tasks. When
task speculation costs (e.g., time, space overhead, or monetary costs), I con-
trast a feedback-based technique applicable in my dynamic environment to
the analytic-based technique used by tip (Chapter 5.9.3).

An extension to tip by Chang and Gibson [1999] automatically discloses
I/O accesses by optimistically running sandboxed copies of an executable
and monitoring its accesses.

In the approach of Steere [1997], users disclose sets of data objects called
‘dynamic sets’ that they might need in which the expected order of desire

2.6 Summary · 33

is unknown or irrelevant. Calls to request data may return objects in any
order, giving the I/O system, whether using the disk or network, the flexi-
bility to re-order accesses for better performance. E.g., cached objects may
be returned first while prefetching proceeds for other objects, possibly in
parallel.

Researchers have sought to reduce network delays by discriminating be-
tween speculative and requested network transmissions. Padmanabhan et al.
have shown a tradeoff in visible response time and fractional increase in net-
work usage when varying the depth of their web prefetcher [Padmanabhan
and Mogul, 1996]. (Prefetch candidates are determined by server-inserted
annotations into web pages. An Internet standard for such annotations ex-
ists, rfc 2068, Section 19.6.2.4, enabling stock browsers to optionally act on
these annotations. A web server could predict what pages a person might
request by analyzing past access patterns using, e.g., a technique based on
Markov models [Deshpande and Karypis, 2000].) In the approach of Steere
[1997], people construct sets of web prefetch candidates and the browser
prefetches as much as three such candidates simultaneously until all are
fetched, or until the person initiates new activity. (They argue that candi-
dates should be manually constructed to maximize the potential of a prefetch
being used.) The Mozilla web browser will download candidate documents
(based on server-provided annotations) after the requested page has loaded
and will stop when there is nothing left to prefetch or when the person se-
lects a link [Fisher, 2002]. tcp Nice consists of sender-side changes to tcp
congestion control to enable low-priority network service that could be used
for background or speculative network accesses [Venkataramani et al., 2002].

2.6 Summary

While there are no significant situations in which batchactive scheduling
performs worse than a non-speculative scheduler, there are situations that
are more applicable to batchactive scheduling than others. This chapter
described applications that lend themselves to speculation and related work
on speculative systems.

Users routinely run tasks speculatively. A speculative task is one whose
output is not known to be needed at the time of submission. I showed that
it is common for users to submit speculative task sets, which could vary
between a few and thousands of tasks, and cycle between thinking about
completed task outputs and waiting for task outputs that they come to
know are needed; and that this behavior will become even more common
due to user time costs and resource cost trends. Task sets are usually con-

34 · Cluster scheduling for explicitly-speculative tasks

structed by the user using domain-specific, expert knowledge. Other times
an autonomous agent working on behalf of a user can construct large task
sets automatically; this is easier when the order in which tasks complete is
irrelevant.

I classified speculative work into three categories. Exploratory searches
consist of hand-crafted task sets to answer some scientific hypothesis. The
example I gave was tasks that sequence dna. Sequential tasks consists of
the same task run many times, producing outputs viewed in sequence. Here
I described the rendering of computer-animated films, in which each task
renders a frame. Parameter studies are searches of high-dimensional spaces,
often sampling the space broadly and later focusing on areas of interest.
Computer simulations of a broad variety of phenomena, each run being
a data point-producing task, was the motivating application for this type
of speculative work. The application examples I gave all conform to the
limitations I place on the scope of this thesis (Chapter 3). I also discussed
non-processor-based use of speculation.

The benefits of batchactive scheduling are related to when users need
speculative work and the available server idle time. I discussed the existence
of user think times, user way periods, and server idle time to show that
batchactive scheduling is applicable in today’s clusters and grids. Trends
suggest increasing applicability.

Finally, I discussed problems with the common practice of submitting
speculative work to non-speculative schedulers and I described existing sys-
tems that apply speculation, contrasting their approaches with mine for the
cases where our goals were most similar.

When a man’s tied to a wheel and that wheel
turns, he turns.

Mike Watt, Burstedman

3 Scope

I restrict the scope of my work to avoid issues orthogonal to my thesis
that a speculation-aware scheduler can order tasks to provide, among other
goals, better visible response time at lower resource usage. These restrictions
concern the target application domain, computer architecture, and computer
resource. The scheduling solutions I introduce, even with these restrictions,
supports compelling and wide-ranging real computational scenarios faced
by researchers, scientists, and others with heavy computational demands,
including those described in Chapter 2.2. Further, areas of computation in
which the scheduling solutions I present do not directly apply can often
be supported with straightforward extensions to batchactive scheduling. I
mention such extensions below but I do not explore them.

3.1 Target application domain

For my work to provide an improvement over common schedulers, there must
be speculative tasks. Users, or autonomous agents working on their behalf,
must be able to disclose some potentially needed tasks before requesting
their output. Evidence that people can plan ahead in this manner was de-
scribed in the work patterns and application scenario sections of the previous
chapter (Chapters 2.1 and 2.2). Scientists in national laboratories, academic
institutions, and private research departments can often construct series of
experiments consisting of speculative tasks that could take a wide range of
computing time, sometimes an indefinite amount of time. What remains is
for users to disclose their computational plans, i.e., to identify which tasks
are speculative by first disclosing them and later requesting them. I believe
that this additional work by the user required by my scheduling solutions is
not a large burden, especially when motivated by the improvements in re-
sponse time and resource usage that my results in Chapter 6.2 demonstrate,
and is easier and more effective than the alternative of users independently
throttling the submission of speculative tasks to non-speculative schedulers.

35

36 · Cluster scheduling for explicitly-speculative tasks

I assume that there exists sufficient storage to hold speculative task
outputs; that the cost for a server to hold speculative outputs indefinitely
is insignificant. If this is not a case, speculative execution must be throttled
or speculative outputs must be dropped, lessening the benefit of batchactive
scheduling.

For schedulers that rely on knowing task size, such as those that employ
srpt, task service time (the computational demands of a task in cycles or
processor time) should be predictable with some precision. I have evidence
that they are which I present later (Chapter 4.7). In any case, my batchactive
scheduling solutions, as my results in Chapter 6.2 show, do not depend on
underlying schedulers that require task size. Almost identical performance
improvements are gained by comparing a batchactive policy based on fcfs
with a standard, non-speculative fcfs scheduler, e.g.

I also assume that the execution of a task affects no other tasks or state
other than the output it produces which the system stores in an isolated lo-
cation until delivered to the user. Thus, there is no consequence of running
a disclosed but ultimately unneeded task in the sense of requiring state roll-
back. This property is shared by the processor-bound applications motivat-
ing this research (Chapter 2.2). Other situations [Sun et al., 1999; Chriso-
choides et al., 2003; Chang, 2001], elaborated on in Chapter 2.5, require
rollback mechanisms.

Applications with real-time requirements are outside my scope. None
of the important application scenarios in Chapter 2.2 have real-time re-
quirements. Batchactive schedulers, built on non-real-time or modified non-
real-time schedulers, are best-effort and do not guarantee when tasks will
complete. As a loose analogy, I term the time that a user needs the output of
a previously disclosed speculative task to be the task’s deadline. Taking this
analogy further, one could phrase the visible response time goal of batchac-
tive scheduling as optimizing a soft real-time utility function defined as the
total amount of time these deadlines were overrun. However, in contrast
to real-time work, batchactive schedulers do not need to know when these
deadlines might be, i.e., when a user will need task output (if the user will
need speculative task output at all). More comparisons of my work against
real-time scheduling may be found in Chapter 5.6.5.

3.2 Target architecture

I focus on the cluster (networks of workstations or distributed server sys-
tems), whose form is shown in Figure 1.4, as it is a cost-effective and flexible
architecture for building small computing resources to supercomputers to

3.2 Target architecture · 37

computational grids. For small to medium-sized computing resources, clus-
ters are pervasive. Clusters comprise 60% of the top 500 supercomputers,
with the mpp (massively parallel processor) being the second-most common
architecture [Top500, 2004]. Clusters also form one of the computational
building blocks of grids [Berman et al., 2003; Foster and Kesselman, 2004], a
meta-architecture of potentially heterogeneous and widely distributed com-
putational resources introduced in the mid-1990s. More discussion on the
cluster architecture is found in Chapter 4.1.

Clusters are typically loosely-coupled, in the sense that communication
latencies (and latency variance) among nodes are higher than within one
smp (symmetric multiprocessor) or an mpp which employ specialized net-
working hardware among processing units. Thus, relative to other architec-
tures, applications suited to clusters either do not communicate or do not
communicate at fine-granularity.

In contrast, there exist ‘space-shared,’ parallel applications (spmd or
mpmd) which require reserving a number of nodes toward executing a single
application. They communicate frequently and are more suited to tightly-
coupled architectures. Scheduling goals for resource providers supporting
such tasks are to provide a high load (utilization) of a resource’s proces-
sors without unduly starving any task. For non-speculative tasks, there are
many scheduling approaches for different goals and applications with differ-
ent requirements (such as high preemption costs). One approach is gang-
scheduling (coscheduling) [Black, 1990]. The fewer the application require-
ments, the more orthogonal such solutions are and the easier they can be
combined with my speculative scheduling policies.

Parallel applications are outside my scope. Instead, I focus on non-
communicating, timesharing applications in which each task uses one pro-
cessor. (On my system, a parallel application requiring n nodes could be
considered one large task that would not start until n nodes became avail-
able and would not end until the last node finished its work. The n nodes
would be considered one large processor.) The number of important com-
putational problems that consist of non-communicating tasks is large, as
evidenced by the application scenarios in Chapter 2.2; thus the scheduling
solutions I provide are highly applicable to existing problems even when not
supporting space-shared tasks.

I study both resources that are not directly charged (such as when users
cooperate toward a shared goal in a laboratory setting) and resources that
are charged (such as third-party outsourcing). This difference has implica-
tions on scheduling goals related to user costs and resource owner revenue
and the prevention of resource abuse described in Chapter 4.2.

38 · Cluster scheduling for explicitly-speculative tasks

3.3 Focus on the processor resource

Because the processor is often the primary bottleneck for the important
scenarios listed in Chapter 2.2, this thesis addresses speculative scheduling
for the processor resource only. Scheduling other resources, such as disk,
network, memory, and energy, is outside my scope.

To focus on how speculative tasks should be scheduled differently from
non-speculative tasks, I assume that a task only uses the processor signif-
icantly. Tasks that block on other resources significantly will not benefit
as much from more intelligent processor scheduling. In general, a task may
use multiple resources sequentially or in parallel. For example, a processor-
intensive task might use the disk to load a dataset. But I assume that those
disk accesses are an insignificant part of the task’s work. While some mo-
tivating applications in Chapter 2.2 have large data requirements, I/O is
typically not the bottleneck.

Jim Gray (winner of the 1998 acm Turing Award) refers to such appli-
cations as fitting well in clusters because of the cheap availability of fast
I/O at the scale of the lan [Gray, 2004]. Many solutions exist to address
demanding application I/O requests, including a novel high-performance
architecture developed in the Parallel Data Laboratory at Carnegie Mellon
University called nasd that separates the I/O control and data paths [Gib-
son et al., 1998]. A recent ietf Internet-Draft [Gibson and Corbett, 2004]
culls this and similar technologies for the proposed development of a scalable
file system called pnfs [Hildebrand and Honeyman, 2004]. When needing to
support applications, beyond my scope, in which the cost of moving data
is high, Gray [2004] recently suggested a long-standing idea independently
explored by a colleague, Khalil Amiri, and I for automatically migrating
pieces of computation to the location of the data. Our system is called Aba-
cus [Amiri et al., 2000] (Figure 3.1), and I advocate its approach as an
extension to the batchactive scheduling of this thesis for situations in which
I/O is the bottleneck.

Moreover, a task, whether its processing is speculative or not, may use
other resources speculatively. (Existing work on supporting speculative use
of non-processor resources is listed with related work in Chapter 2.5.3.) My
solution to scheduling speculative tasks on the processor does not preclude
applying solutions for speculative use of other resources to get additional
benefits, although interactions among speculative systems is interesting fu-
ture work. Should a non-speculative disk access of a speculative task have
more or less priority than a speculative disk access of a non-speculative task?

For scheduling policies that preempt tasks, I assume that preemption

3.3 Focus on the processor resource · 39

Console: 0

RAID: 2

Storage: 3

Filter: 1

NETWORK

RAID: 2

Storage Server

Client

B
inding m

anager

B
inding m

anager

Resource
Manager

Request
Resources
(migration)

OK

U

Up

U

M

U

M

Resource
Manager

RAID

St ora age

filter

Console

App

Filesystem

m
igratable portion

(a) (b)ABACUS modules ABACUS components

Figure 3.1: Overview of the Abacus module migration system. This system, which I
co-designed, may help alleviate the I/O bottleneck for data-intensive cluster applica-
tions, putting them in the scope of batchactive scheduling solutions. Data-intensive
applications are partitioned into modules that can independently migrate between
client computers (workstations, consoles) and the storage servers holding the data
they act on. Shown on the right are the principal components of the Abacus system
and on the left is an example application which mines data stored in a striped file.
This application consists of migratable filter and raid modules (console and stor-
age modules are fixed at the client and server). Migrations are intended to improve
the roundtrip latency of a data access beginning at the console module in response
to dynamic conditions such as server load, network load, and filter selectivity (the
amount of data produced per data consumed) — i.e., the system can switch at
the granularity of a module between being function-shipping and data-shipping.
Inter-module calls are transparently redirected by binding managers and statistics
concerning these invocations are monitored by resource managers (indicated by
‘U’). Resource managers across servers cooperatively make migration decisions to
improve global performance, asking binding managers to enact module migrations
(indicated by ‘M’).

40 · Cluster scheduling for explicitly-speculative tasks

costs are low. These policies have not been tailored to tasks with out-of-core
memory requirements, e.g., although I believe that adapting known tech-
niques would be straightforward. Scheduling literature shows how various
techniques such as backfilling and long-quanta preemption1 can meet these
goals [Feitelson and Jette, 1997]. I believe that such techniques would equally
affect standard and speculative processor schedulers, thus I factor out such
interactions in my studies.

Further, I assume no complex interactions or dependencies among tasks,
such as tasks that contend for shared locks. Such interactions, it is my be-
lief, would equally frustrate the batchactive and non-speculative schedulers
under study.

3.4 Summary

This chapter restricted the scope of this thesis, enabling me to focus on
how a scheduler should schedule speculative and non-speculative tasks while
avoiding issues extraneous to this question. The strongest assumption that
I make, and have justified in Chapter 2, is that there exists a domain of
applications consisting of speculative work, and that in this domain, users
or agents can take the effort to disclose their computational plans. I limit
my architecture to the cluster, which is the most important architecture for
high-end computing. I study two prevalent economic relationships between
resource provider and user: a resource provider selling cycles to a user and
a dedicated resource whose usage is not directly charged to the user. Fi-
nally, I focus on the processor resource which is the bottleneck for the many
important scenarios described in Chapter 2.2. I make some additional as-
sumptions on resource usage, such as low preemption cost. For applications
for which these assumptions do not hold, there exist traditional, orthogonal
scheduling solutions for non-speculative tasks, and references were supplied.
While some could be applied to batchactive scheduling, I have not done so.

1Non-preemptive scheduling or scheduling with long (ten minute) quanta are used
because many supercomputer applications take up so much memory that only one can fit
in core at once [Harchol-Balter, 2002].

[N]one of us could get very far in discovering any
part whatever of the Truth if we could not make
trains of reasoning [. . .] as nearly mechanical as
possible.

Philip Jourdain, The Nature of Mathematics

4 Non-speculative scheduling

In this chapter I discuss non-speculative scheduling: traditional, existing
scheduling that does not know which tasks are speculative and thus cannot
treat them differently from non-speculative tasks. Although, from a user’s
perspective, submitted tasks may be speculative whether or not the sched-
uler supports speculative tasks, speculating with non-speculative schedulers
results in a mismatch of scheduling goals. This chapter provides the termi-
nology and background necessary to discuss batchactive scheduling (Chap-
ter 5), developing a foundation to clarify how batchactive scheduling benefits
speculative user behavior.

The organization of the primary entities under discussion is depicted in
Figure 4.1. Self-interested users (or agents working on their behalf) interact
with clustering software. Any number of users request and cancel one or
more tasks. Cancelation occurs when a user had thought that he or she
needed a task result but then reconsidered. This speculation is common on
standard schedulers, and I later show that better scheduling can result from
the batchactive schedulers (Chapter 5) that distinguish between tasks that
are more or less known to be needed. A scheduling policy decides which
and when requested, non-canceled tasks run. The scheduler communicates
decisions to the operating systems running on the cluster resources which
handles the details of running tasks on the servers (such as forking processes)
and provides task statistics (such as resource usage) to the policy. The policy
may use these statistics to try and make better scheduling choices in the
future. After a task executes, its output is supplied to the user that requested
the task.

I begin by describing the target architecture for the scheduling approaches
in this thesis. Then I describe extant pricing mechanisms for this archi-
tecture. Following I concretize the interaction of servers, tasks, and users
with formal definitions and metrics. Building on these metrics, I introduce
scheduling goals, both from the user’s perspective and from the resource
provider’s perspective. With these goals in mind I first describe scheduling

41

42 · Cluster scheduling for explicitly-speculative tasks

Figure 4.1: Interaction between users, non-speculative clustering software, and clus-
ter resources. (Compare to the speculative version depicted in Figure 5.1.)

policies in theory and then in practice. Since some policies require knowl-
edge of task service time (the time it takes for a task to run on an otherwise
unloaded system), I also speak about ways to obtain this value. The fi-
nal section of this chapter describes how non-speculative scheduling poorly
achieves important scheduling goals when speculative tasks exist.

4.1 Architecture

Both the non-speculative scheduling of this chapter and the speculative
scheduling of Chapter 5 apply to the computing architecture described here.

I focus on the cluster as it is a cost-effective and flexible architecture
for building small computing resources to supercomputers to computational
grids (Figure 1.4). The resource1 of concern is processor time (Chapter 3.3).
Clusters are also known as networks of workstations and distributed server
systems. Cluster nodes may be single to several processor machines, such
as an smp. Collections of multiprocessors are common in high-performance
computing [Schroeder and Harchol-Balter, 2000]. Clusters provide numerous
advantages over the mpp architecture, including the effect of volume manu-
facturing on price / performance, scalability, fault-tolerance, and incremen-
tal upgrade. [Anderson et al., 1995; Pfister, 1995] Beowulf clusters, with
their focus on dedicated, homogeneous, inexpensive yet high-performance
commercial, mass-produced commodity hardware and open source software

1A resource is an instrument to create goods or services that is both scarce and useful;
i.e., having a finite supply and non-zero demand [Baumol and Blinder, 1994] [Narayanan,
2002, ch. 2].

4.1 Architecture · 43

have become a common architecture over the last decade for high perfor-
mance computing [Beowulf, 2003].

For small to medium-sized computing resources, clusters are pervasive.
The Parallel Data Laboratory research group, to which I have belonged
during the development of this thesis, has a cluster comprised of tens of
machines, some under the control of the Condor clustering system [Condor,
2003], dedicated as cycle servers for experiments and simulations. Other
groups within the Electrical and Computer Engineering department em-
ploy clusters. The computer architecture group uses Condor to distribute
Simplescalar [2004] microarchitecture simulations across a cluster [Wenisch,
2003]. Two graduate courses within this department also run tasks on this
heavily used cluster. Other departments within Carnegie Mellon University
(such as the physics and computer science departments) have clusters for
other computational purposes. The machine learning group has a cluster of
twelve machines for neuroscience research, analyzing three-dimension grids
of fmri data and training classifiers for brain states; their approach to run-
ning tasks is less sophisticated, with users manually logging into machines
to start tasks [Pereira, 2003]. These application examples are single-node,
non-communicating tasks.

The concept has existed for over a decade at other universities, govern-
mental laboratories, and commercial entities: Scientists share a workstation
farm of thirty machines at the Phylogenomics Group of the University of
California at Berkeley to study biological hypothesis [Holliman, 2003]. Com-
puter graphics artists at Weta Digital use a cluster of 3, 200 processors to
create films such as Lord of the Rings [Hillner, 2003].

Clusters comprise 60% of the top 500 supercomputers, with the mpp
(massively parallel processor) being the second-most common computer ar-
chitecture [Top500, 2004]. Supercomputer centers favor clusters for their
ease of administration, scalability, and price [Schroeder and Harchol-Balter,
2000]. Moreover, scientists try to do as much work as possible on clusters
because the programming environment on a supercomputer is restricting:
there are many assumptions such as on memory usage that makes code non-
portable once designed for a particular supercomputer [Lopez, 2002]. The
Virginia Tech cluster of 1, 100 Apple G5 Power Macs is an example of a
supercomputer built from a cluster [Virginia Tech, 2004].

Clusters also form a computational building block of grids [Berman et al.,
2003; Foster and Kesselman, 2004], a meta-architecture of potentially het-
erogeneous and widely distributed computational resources introduced in
the mid-1990s. The grid problem is the controlled and coordinated resource
sharing and resource use in dynamic, scalable virtual organizations [Foster

44 · Cluster scheduling for explicitly-speculative tasks

et al., 2001]. A grid provider has the infrastructure for accounts, authenti-
cation, code portability, and resource discovery. Grid computing is a vast
commercial and research initiative spanning various computer architectures
and granularities of computation that is predicted to grow increasingly im-
portant in the near future.

Cluster (and grid) resources are provisioned by freely available or com-
mercial clustering software such as Condor, Xgrid, Platform lsf, the Globus
Toolkit, pvm, Legion (Avaki), and the Sun ONE Grid Engine [Condor, 2003;
Xgrid, 2004; Platform, 2003; Globus, 2003; PVM, 2004; Legion, 2004; Sun
Grid, 2003].2 The stock schedulers of these software systems can be replaced
or extended with varying degrees of ease. The scheduling solutions in this
thesis can be deployed by replacing or extending the scheduler in existing
clustering software with a scheduler for speculative tasks as described in
Chapter 7.2.

The restrictions in scope that I made to focus on important cluster-based
software was described in Chapter 3.2. To recapitulate, I focus on single-
node, non-communicating tasks, of which there are numerous, important
examples (such as those listed earlier in this section and in Chapter 2.2).

There are two relations between the resource owner and resource users
that I explore in this dissertation, as depicted in Figure 4.2. These rela-
tions have implications on cost metrics and the prevention of resource abuse
that are described in Chapter 4.2. Both are common and have historical
precedent. In the first, the resource owner and resource user are the same
person, organization, entity, called a cost-center, and computing time is not
directly charged; such as when a laboratory buys a resource and its mem-
bers cooperate in using the resources toward some larger goal. In the second,
computing time is sold to another party; the resource owner is an outsourcer,
it manager, or profit-center with no interest in task output.

Profit-centers are known by many names, such as third-party compute
outsourcing, resource hosting, it (information technology) resource provider,
off-site resource provider, resource virtualization, on-demand computing,
etc. ibm’s service is called Strategic Outsourcing [IBM, 2004]. Weidenham-
mer Systems Corporation, an it firm, provides what they call Outsourc-
ing/Hosting [Weidenhammer, 2004]. eds provides Application Selective Out-
sourcing [EDS, 2004]. Hewlett-Packard’s service was the Utility Data Cen-
ter [Hewlett-Packard, 2004] (decommissioned in the year 2004).

2I helped develop the research clustering software called GLUnix [Ghormley et al.,
1998], one component of the UC Berkeley Network of Workstations (now) Project [An-
derson et al., 1995].

4.2 Cost model · 45

Figure 4.2: Two relations between the resource owner and resource users. On the left
is depicted uncharged resource usage, occurring when users are cooperating toward
a shared goal or taking part in resource ownership; such resources are often accessed
through a local area network. On the right is depicted charged resource usage, when
a number of independent users buy resource time from a usually geographically
distant set of resources over a wide area network.

4.2 Cost model

In this section I describe resource pricing in the context of existing non-
speculative scheduling environments. When describing my batchactive envi-
ronment, I introduce a new pricing mechanism more appropriate for specu-
lative tasks (Chapter 5.1).

The resource pricing mechanism of these services vary based on limita-
tions of accounting, associated application set-up costs, whether resources
are charged on a per-unit or time basis, whether more or less task throughput
is a consideration, etc. Further, the cost to use some amount of a resource
can be constant or variable. Sometimes an intermediate, abstract currency
is used: resource usage might be equated to service units, which themselves
have a monetary price.3

If the same self-interested entity (individual, laboratory, institution) both
owns and uses the resource, then the resource is not directly charged; it is
a cost-center. An example is when a laboratory buys a resource and its
members cooperate in using the resources toward some goal. The resource

3At Georgia Tech, service units are colloquially referred to as bananas; i.e., x bananas
for some mid-sized Unix server usage, y where y > x bananas for some Cray supercomputer
usage, z bananas for some disk space usage, etc.

46 · Cluster scheduling for explicitly-speculative tasks

is payed by some entity, but the users of the resource do not directly pay
for the resources that they use: resource usage is unaccounted and there are
no user quotas on resource use. If computing time is policed or controlled,
it is done so by means other than charging for its use (as discussed further
in Chapter 5.8). ‘Free’4 resource usage has historical precedent: e.g., the
university settings of clusters and the ownership of a cluster by a computer
graphics company that employs graphics artists who use these clusters. To
break even, a cost-center would set the price per resource unit to be its
operational cost per time5 (such as a month) divided by the number of
expected resource units it will sell in that time. Individual decisions by
users to submit tasks may not be directly charged, but eventually money is
moved within an organization to cover the costs of the communal resource.

Assuming that the cost to provide computational resources is largely
elastic (meaning that it costs the resource provider the same to provide no
resources or full utilization of its resource over some time), if the resource
provider is a profit-center and wishes to maximize profit (which is revenue
minus cost), it should set the price to that which maximizes the multiplica-
tive product of price and quantity demanded from a demand schedule. More
detailed economic considerations in setting price or in finding demand curves
is beyond my scope.

Variable pricing, by being more dynamic, might lead to a more effi-
cient pricing mechanism. Hewlett-Packard introduced the ‘computon,’ a
service unit whose price changes with resource supply and demand, often
loosely mentioned in analogy to the pricing mechanism used by electrical
utilities [Hoffman, 2003]. This mechanism applies the economic theory of
congestion or shadow pricing [MacKie-Mason and Varian, 1995] which mea-
sures the extent to which a task’s resource usage takes that resource away
from other tasks.

On a supercomputer, resource time is typically applied for as one of the
rewards of a grant [Lemieux, 2003]. Although the user may not pay for re-
source usage, the organization (often a government) offering the grant did
pay for it when it bought the right to use some resource time from the
resource owner. Because governments often provide grants, fund the build-
ing of supercomputer resources, and pay researcher salaries, and because

4A free good is one in which the supply is at least equal to the demand at zero price;
viz., it is not scarce [Baumol and Blinder, 1994]. An unaccounted resource is not free in
this sense because there is a cost to waiting for the resource to become available if it is
under contention, e.g.

5Operational costs may include paying back a portion of the initial hardware invest-
ment, electricity, hardware / software maintenance, machine room rent, and so on.

4.2 Cost model · 47

Figure 4.3: How load affects server utility and revenue under the pricing mechanism
typical under non-speculative scheduling of charging a constant amount for resource
usage. (Figure 5.2 is the analogous sketch for speculative scheduling.) Load (or
efficiency), the fraction of time a resource is busy, varies between 0 and 1. Server
utility or revenue is tied to the amount of resources a server charges. As load
increases, utility increases equally. Revenue can be calculated directly from load
given a cost per unit resource. Shown at maximum utility (1) is maximum server
revenue (y).

the government has interest in the scientific output from these resources,
supercomputer centers can often be considered cost-centers.

This thesis studies the implications that different schedulers have on
resource costs, both from the user and resource provider’s perspective. In
wake of the listed pricing mechanisms, I assume that a resource provider’s
utility is linearly proportional to the amount of resources used during some
time period. That is, a resource provider is best off if it was busy executing
tasks 100% of the time, and does only half as well if it was busy 50% of
the time. Thus, a resource provider desires high load (where load is the
fraction of busy time, also called utilization or efficiency). If resources go
unused, then those resources did not produce revenue. This linear correlation
between resource usage and the utility of a resource provider is most natural
under constant pricing, which is the most common pricing mechanism. This
relationship between load and server utility is depicted in Figure 4.3.

My simulation results on how scheduling affects user costs and resource
provider utility (Chapter 6.2) tracks the individual and total resource time
consumed across users over some time. With this data of resource usage
under different schedulers, one can apply additional information (such as
price per resource second, the resource provider’s operating overheads for
idle v. busy resources, etc.) to obtain cost, revenue, and profit figures for
users and the resource provider tailored for any particular situation. Because
it is more important for this thesis to study the relative difference among
scheduling approaches, specific values are not discussed.

48 · Cluster scheduling for explicitly-speculative tasks

4.3 Definitions and metrics

First I define the entities in non-speculative scheduling and how they inter-
act. Then I introduce the scheduling metrics needed in Chapter 4.4 to define
scheduling goals. These definitions and metrics are refined in my batchactive
scheduling environment in Chapter 5.2.

There are three sets of entities called servers, users, and tasks. There are
a finite number of elements in each set. Each server can run computational
work in the form of a single task serially. (An actual machine with more
than one processor is logically multiple servers.) The set of servers is called
the computing system or cluster resources. A user is a self-interested person
or agent that arrives, interacts with the computing system, and departs, in
this order. There can be zero, one, or more users interacting with the system
depending on when they arrive and depart.

In this section I refer to the set of tasks as A. A task (also called a job)
a ∈ A represents some work associated with a specific user that can use one
server. A task can be requested, canceled, or executed, exclusively.

An arrived user can request the output of one or more tasks. (A departed
user cannot.) For simplicity, I say interchangeably that a user requests a task
or that a user requests a task’s output. Let tra denote when a was requested.
The set of requested tasks up to time t is denoted by Ar(t).

A user can cancel tasks that he or she had previously requested, but that
not have already been executed or canceled. Also, the system cancels any
requested tasks by departed users. A canceled task remains forever canceled.
The set of canceled tasks up to time t is denoted by Ac(t). A canceled task
becomes no longer requested. That is, a ∈ Ac(t) =⇒ a /∈ Ar(t).

Each task a ∈ A has a corresponding service time (also called size or
resource requirement) Sa which is constant and a resource usage ra(t) at
time t, where Sa > 0 and 0 ≤ ra(t) ≤ S. Service time and resource usage
are reals and the unit for both is time.

Requested and non-running tasks are candidates for the scheduler to
choose. A task runs at time t if and only if the scheduler decided so. The
set of running tasks is denoted by

A?(t) def= {a ∈ Ar(t) | a runs at time t} .

When there is only one server in the computing system, |A?(t)| ≤ 1.
The task’s resource usage is 0 at tra and increases by the amount of time

that it runs. That is, if a task ran for δ amount of time, its resource usage

4.3 Definitions and metrics · 49

Figure 4.4: Task state transitions with a non-speculative scheduler (compare to
Figure 5.5). After the requested task’s resource usage equals its service time, it
becomes executed, and the requesting user receives its output. A requested task
can be canceled before it executes.

increases by δ. Formally,

if a ∈ Ar(tra), then ra(tra) = 0,

if a ∈ A?(t), then r′a(t) = 1,

if a /∈ A?(t), then r′a(t) = 0.

Let tea, where tea > tra, denote the time at which ra grows to equal Sa. (Of
course, a task’s service time may be unknown until a task completes [Turing,
1936].) The task is considered from this time on to be executed. The set of
executed tasks up to time t is denoted by

Ae(t) def= {a ∈ A | ra(t) = Sa} .

When a task becomes executed, the computing system provides the task’s
output to the requesting user, and the scheduler removes the task from the
set of requested tasks. That is, if a ∈ Ae(t), then a /∈ Ar(t).

See Figure 4.4 for a pictorial representation of the states in which a task
can reside in non-speculative scheduling.

Batchactive scheduling is not completely described by these definitions
which do not represent the disclosure of speculative tasks a user might re-
quest in the future.

Now I describe scheduling metrics, which are used to evaluate how well
the scheduler achieves the scheduling goals elaborated upon in Chapter 4.4.

Response time (flow time, sojourn time, time-in-system) is a main schedul-
ing metric. A task a requested at time tra and executed (completed) at time
tea has a corresponding response time denoted by

T resp
a

def= tea − tra.

50 · Cluster scheduling for explicitly-speculative tasks

Figure 4.5: How when a task is requested and executed, along with a task’s service
time, determines its response time and slowdown in the context of non-speculative
scheduling. (Compare to Figure 5.6.) Three single-threaded tasks are shown in on a
single processor model. In this particular scheduling policy, shorter tasks preempt
(indicated by a dotted line) larger tasks.

An executed task with service time Sa also has a corresponding slowdown
(also called stretch) denoted by

T slow
a

def=
T resp

a

Sa
.

Response time and slowdown are depicted in Figure 4.5.
Across all tasks that have executed by some time, mean response time

and mean slowdown are important scheduling metrics.6 Another metric is
the variance of response time.7

In the context of speculative scheduling, in which users are able to sub-
mit possibly tentative computational plans in advance and only need task
outputs later due to think time, a task may execute before requested and
these metrics become insufficient. I introduce mean visible response time
and mean visible slowdown in Chapter 5.2 as a refinement to mean response
time and mean slowdown.

Task throughput is the number of tasks completed during some time pe-
riod. I track a variant of this quantity that ignores speculative tasks that
were eventually found to not be needed (Chapter 6.2) to confirm that im-
proving other metrics (such as response time-based metrics introduced in
Chapter 5.2) does not pathologically cause fewer needed tasks to complete.

6Recall that the mean of a sample set, in this case where each ‘event’ is equally likely,
is simply the arithmetic average of the set: 1

N

PN
i=1 xi.

7Recall that the variance of a sample set is the sum-of-squared differences of ele-
ments from this set and the mean of the set, over the number of elements in the set:
1
N

PN
i=1(xi − x̄)2. This definition is a ‘biased’ estimator of variance, because both the

mean and variance are estimated from the samples simultaneously. To obtain an unbiased
estimator of variance, the following N − 1 correction is made, as explained by Weisstein
[2004g]: 1

N−1

PN
i=1(xi − x̄)2.

4.3 Definitions and metrics · 51

Consider the total resources used by a user. The variance of this value
across users is called the variance of user resource usage. This is another
studied metric that reflects the extent to which users use different amounts
of resources. The lower this variance, the closer users are to using the same
amounts of resources over long time periods.

Although a server can only run one task at a time in this model, the
following metric shows the extent to which requested tasks (i.e., each can-
didate for the scheduler to choose) received different amounts of a server’s
resource at small time intervals. Consider the fraction of a server’s resource
used by a task at a specific time t. Each requested task a ∈ Ar(t) has a
corresponding instantaneous slowdown which is the inverse of this fraction,
i.e.,

lim
δ→0

1
fraction of time a ran during [t, t + δ]

= lim
δ→0

δ

ra(t + δ)− ra(t)
.

The variance of instantaneous slowdown for requested tasks shows the extent
to which resources have been provisioned equally among competing tasks.
That is, the lower this variance, the closer tasks are to equal-share (a type
of fair-share) over short durations.

The ratio of maximum slowdown to mean slowdown reflects the extent
to which ‘starvation’ exists; i.e., whether a few tasks receive considerably
less service than others. This definition is my own. Some look at maximum
slowdown across all tasks [Bender et al., 1998], others bin tasks based on
service time and look at the maximum slowdown for all tasks in a particular
bin [Bansal and Harchol-Balter, 2001].

I measure the billed resources wasted on tasks that were later known to
not be needed (i.e., requested tasks that were canceled after they had con-
sumed some resources). Users who believe that possibly minimizing response
time is worth the cost will submit work speculatively to non-speculative
schedulers. I track such users’ scaled billed resources, the ratio of the billed
resources to the needed resources. For example, if a scheduler charged a user
for ten seconds of resource time but the user only needed five seconds of re-
source time, then the scaled billed resources is 2. Across all users, I measure
the mean scaled billed resources. Anytime a user using a non-speculative
scheduler that charges for all resource use submits a task speculatively that
he or she did not eventually need, the mean scaled billed resources will be
above 1.

52 · Cluster scheduling for explicitly-speculative tasks

metric description
mean response time average time between request and exe-

cution
mean slowdown average response time scaled by task size
task throughput number of completed tasks
variance of response time how response times differ
variance of user resource usage how per-user resource usage differs
variance of instantaneous slowdown a measure of equal-share
maximum over mean slowdown a measure of starvation
mean scaled billed resources average per-user billed over needed re-

sources
load fraction of server busy time
decision count number of scheduling decisions

Table 4.1: Non-speculative scheduling metrics (compare to Table 5.1 for speculative
scheduling metrics).

Again, for a user who never submits a task before needing its result, no
resources are wasted, and thus the user is not billed for any wasted resources.
But when a user who speculates with a non-speculative scheduler does not
need the outputs from all submitted tasks, the user will be charged for the
resources used for unneeded tasks. From the user’s perspective, he or she
was charged needlessly for wasted resources.

For each server in the cluster, I track its load (also known as device
utilization), the fraction of time that the server was busy (running some
task) during some time period. Thus, load on this single processor is a real
between 0 and 1.8 Recall that load is directly proportional to the resource
provider’s utility or revenue (Chapter 4.2).

The number of scheduling decisions made in some time period is its
decision count. It is important that a policy not cause substantially more
decisions to be made than another policy, because each decision leads to
two types of overhead: time overhead in making a scheduling decision and
potentially overhead in switching context between one task and another if
the policy determines that another task should run.

The metrics introduced in this section that are used in other parts of
this dissertation are summarized in Table 4.1.

8In non-formal contexts, task queue length is sometimes called load (such as reported
by the uptime command on Unix). However, I use the queuing-theoretic definition of load
in which a load of 1 means that the server is totally busy, that there is no idle time; and
thus load cannot exceed 1.

4.4 Scheduling goals · 53

4.4 Scheduling goals

Users and resource providers are self-interested entities that have scheduling
goals. The scheduling goals among them differ and sometimes conflict. In
fact, some of the user goals listed below conflict among themselves.

In this section I describe user and resource provider scheduling goals.
When the resource user and owner are the same entity, goals related to
billed resources do not apply (such as a resource provider’s desire for high
server load). The scheduling metrics that I refer to in defining these goals
were formalized in Chapter 4.3.

4.4.1 User goals

In the abstract, users wish to maximize utility: the difference between the
value and cost of a commodity to the user. The commodity is task output.
The user wishes to maximize the most outputs in the best order during
some time period. However, the value of task outputs is hard to define. All
a scheduler can do is return task outputs faster or slower or in some new
order. In general, a scheduler cannot know the value of outputs to a user
to make ideal scheduling decisions, or even know the order in which the
user would prefer to receive outputs. Users themselves have a hard time
estimating value; moreover, the value of any particular task may not be
known for some time. In the context of non-speculative scheduling, a user
requests a number of tasks in some order; the scheduler assumes that each
task is equally important to the user and that the user would prefer outputs
to return in the requested order.

What is known to contribute to the value of a task’s output and what is
universally accepted as an important scheduling metric [Conway et al., 1967,
ch. 8] [Endo et al., 1996] (and what also, fortunately, is easily measurable) is
the time between output being ready for the user and the user requesting the
output — i.e., task response time. Because knowing a task’s value accurately
for all situations is impossible, in this discussion of user goals, a scheduling
goal is to minimize the response time of a task. Across all tasks in some time
period, the primary scheduling goal is to minimize mean response time. Note
that maximizing throughput is not an acceptable substitute for minimizing
mean response time from the user’s perspective. The philippic of Endo et al.
[1996] and my discussion of policies that affect load in Chapter 4.5.4 show
that throughput does not directly correlate with mean response time.

Recent scheduling work [Feitelson and Jette, 1997; Bender et al., 1998;
Harchol-Balter et al., 2002] argues that slowdown is more important to min-

54 · Cluster scheduling for explicitly-speculative tasks

imize than response time for the following two reasons: (1) slowdown ex-
presses the notion that users are willing to wait longer for larger amounts
of work, and (2) mean slowdown better reflects the performance of most
tasks instead of just a few large tasks for the common case [Harchol-Balter
and Downey, 1997] in which the distribution of service time is heavy-tailed
(Chapter 6.1.3). Thus, another goal is to minimize mean slowdown. These
first goals conflict: it is not true that the scheduling order which minimizes
mean response time also minimizes mean slowdown [Harchol-Balter, 2003b].

In the context of speculative scheduling, in which a task may execute
before requested, these goals are insufficient. I advocate minimizing mean
visible response time and minimizing mean visible slowdown in Chapter 5.3.1
as a refinement to these goals.

Utility also concerns cost. When billed, the cost for task output is the
price (the cost expressed in money) the user has to pay for the resources used
to produce the output. The user wishes to minimize what he or she pays over
some time period when resources cost. According to the pricing mechanism
described in Chapter 4.2, resource cost is proportional to resource usage. It
is not a scheduling problem to reduce user costs (to minimize mean scaled
billed resources): the scheduler has no control over what tasks a user requests
and the service times of these tasks. The user had predicted for him- or
herself that the value of the task’s output would be more than the price.
(In the parlance of rational users, this would be that the user had predicted
that his expected utility would be positive in requesting the task.) While
minimizing mean scaled billed resources is not a goal that a scheduling policy
can seek, the metric mean scaled billed resources is reported (Chapter 6.2) to
compare the effect of the differing pricing mechanisms in the non-speculative
(Chapter 4.2) and speculative (Chapter 5.1) scheduling environments.

In environments in which resource usage is not directly charged, the
following goal, while not related to utility, pressures a user to not use sub-
stantially more resources than other users (in other words, to discourage
resource abuse): strive to equalize the resource usage of all users at every
scheduling decision. This goal conflicts with minimizing mean response time
and minimizing mean slowdown. Further, this goal is trivially achieved by
never running any task. Thus, it is better phrased as minimizing the variance
of user resource usage while remaining work-conserving.9 Because there are
situations in which this goal is more important than time-based goals, I also
study speculative and non-speculative schedulers that attempt to achieve it.

I now introduce, for completeness, secondary goals. Because they are less
9Work-conserving: a server will never be idle if there a task is ready to run.

4.4 Scheduling goals · 55

important, no scheduling policies are designed to meet them in this thesis.
Users dislike response time variance, especially on small time scales. It

has been shown that users would prefer some task outputs to be delayed so
that response time variance is smaller [Shneiderman, 1997, ch. 10.5]. This
goal, which conflicts with minimizing mean response time and mean slow-
down is to minimize the variance of response time. Because minimizing re-
sponse time variance is less important at the larger time scales of my target
application domain — the scenarios in Chapter 2.2 include tasks that typi-
cally take minutes and longer, rather than seconds and shorter — I do not
discuss this goal further. The variance of response time, in a different form,
is measured in the results of this thesis (Chapter 6.2) to confirm that it
is not made worse when scheduling with the novel speculative schedulers
introduced in the following chapter (Chapter 5).

Many hold that all tasks that are candidates for running should have
the same instantaneous slowdown at every point in time; that the scheduler
should provide the same fraction of the resource to all candidates regard-
less of their resource usages, service times, etc. This goal is not inherently
worthwhile and may be popular because it is easy to understand and achieve,
requiring no information besides the list of candidates. Perfectly minimizing
the variance of instantaneous slowdown is a definition of equal-share (a type
of fair-share) scheduling. While this goal has been traditionally studied, I
do not address it in this thesis.

Finally, a common user scheduling goal is for no task to ‘starve,’ i.e., tasks
should experience slowdown within some small factor of the mean slowdown.
Thus, a scheduler should bound the ratio of the maximum slowdown to the
mean slowdown. Across a variety of loads and among different schedulers,
starvation has not been a problem in my experiments (Chapter 6.2), thus it
is not explicitly focused on in this thesis. Further, among the fundamental
non-speculative schedulers discussed below (Chapter 4.5), which are also
used as building blocks for batchactive scheduling (Chapter 5.5), only one
(srpt) has the potential for starvation and recent analysis shows that any
concern for starvation by using this policy over another is unfounded [Bansal
and Harchol-Balter, 2001].

4.4.2 Resource provider’s goals

From the resource provider’s perspective, according to the pricing mecha-
nism described in Chapter 4.2, a scheduler should maximize load, the amount
of time that the resources are busy. Every cycle of computation consumed
by a user is billable, whether directly for a profit-center, or indirectly for a

56 · Cluster scheduling for explicitly-speculative tasks

Figure 4.6: How load affects throughput and revenue under non-speculative schedul-
ing. (Compare to Figure 5.7.) As load varies, throughput and revenue vary propor-
tionally. Throughput is load scaled by mean task service time (Utilization Law) and
revenue is load scaled by mean task service time and the cost per unit resource.
Shown at maximum load (1) is maximum throughput (a) and maximum server
revenue (b). This sketch does not depict the effect of task cancelation: tasks which
may have taken some load before being canceled should not increase throughput.

cost-center. When a resource is idle, the provider loses revenue that would
have been used to meet the resource owner’s revenue goal, whether it was
profit maximizing or non-profit (trying to break even). (Resource provider
utility can also improve by lowering costs. It is beyond my scope to address
how a resource provider could reduce its costs in producing outputs, such
as by using equipment that is less costly to maintain.)

Sometimes it is stated that the resource provider’s goal is instead to
maximize task throughput. These goals are interchangeable for the non-
speculative pricing mechanism (Chapter 4.2). From the Utilization Law
(Chapter 4.5.4), load is the multiplicative product of throughput and mean
task service time [Harchol-Balter, 2003b], i.e., load is throughput normalized
by mean service time. It is more natural in comparing server revenue among
schedulers, user behavior, and task characteristics to consider load, which
varies between 0 and 1, than to compare throughput, which can vary widely,
as shown in Figure 4.6. In the next chapter (Chapter 5.2), throughput is re-
fined to a ‘visible throughput’ of the tasks actually needed by users (i.e.,
speculative tasks eventually known to not be needed are omitted), and load
is refined to a ‘requested load’ of tasks actually billed under the batchactive
pricing mechanism (Chapter 5.1).

Maximizing load consists of (1) encouraging users to use the resource
provider’s service over competing services and (2) encouraging users to sub-
mit as much work as quickly as possible.

Encouraging users to use the service is a matter of meeting user goals
to ensure return customers and increase customer base. It is in the resource

4.4 Scheduling goals · 57

with respect to goal
user minimize mean response time
user minimize mean slowdown
user minimize the variance of user resource usage
resource provider maximize load

Table 4.2: Non-speculative scheduling goals. (Compare to the speculative scheduling
goals of Table 5.2.)

provider’s interest to meet user goals. To increase the number of users, a
computing system needs to promote its services and provide value above
competing services. Measuring the success of a resource provider in doing so
is outside the scope of this thesis. However, as discussed along with specu-
lative scheduling goals, (Chapter 5.3), the intended and measured benefits
to user scheduling goals obtained through supporting speculative tasks as
first-class entities provides incentive for a user to select a batchactive system
over a traditional system.

The speed at which users submit work is a function of user think time,
which a scheduling policy cannot control, and a function of how fast task
outputs are supplied to the user, which is determined by scheduling pol-
icy. Both of these considerations are elaborated upon in Chapter 4.5.4 and
measured (by a parameter study of user behavior and by selecting among
different schedulers) in the results of this thesis (Chapter 6.2).

4.4.3 Summary of scheduling goals

I discussed user goals and resource provider goals for non-speculative schedul-
ing. The goals were built on the scheduling metrics listed in Table 4.1. For
both users and a resource provider, I began in the abstract: users wish to
maximize the most outputs in the best order and minimize what they pay
for such outputs over some time period. A resource provider wishes to maxi-
mize its revenue. These abstract goals, along with the pricing mechanism in
Chapter 4.2 lead to the practical goals listed in Table 4.2, as I have argued
and as are generally accepted by scheduling literature.

Minimizing mean response time and minimizing slowdown sometimes
conflict because the algorithm to achieve one does not achieve the other.
However, the optimal algorithm for minimizing mean response time among
the policies discussed next (Chapter 4.5) does best at minimizing mean slow-
down (Chapters 4.5.1 and 4.5.2). Minimizing the variance of user resource
usage is employed where users should be cooperating with shared resources

58 · Cluster scheduling for explicitly-speculative tasks

whose use is not directly charged to the user but where such cooperation
cannot be assumed. This goal works to prevent users from dominating re-
sources. Maximizing load maximizes resource provider revenue.

I do not address the following secondary goals in this thesis: minimiz-
ing the variance of response time, minimizing the variance of instantaneous
slowdown, and bounding the extent of task starvation.

4.5 Policies in theory

A process scheduler switches among competing demands of a cluster’s pro-
cessor resources. Here I describe how well several fundamental policies meet
the scheduling goals listed in Table 4.2. These are online policies, meaning
that the existence of a task is revealed to the policy only when it arrives,
and thus the policies make decisions without knowing what tasks will arrive
in the future.10

The number of studied online scheduling policies is large even when omit-
ting types of scheduling (like real-time) that are outside my scope (Chap-
ter 3). What I present are typical deployed building blocks. Priority-based
or classed scheduling is covered in the context of batchactive scheduling
(Chapter 5.6.2).

After describing these policies in theory, the following section (Chap-
ter 4.6) shows how they are adapted for use by resource providers.

Consider the following policies:

– First-come-first-serve (fcfs).

The earliest requested task runs until completed.

– Processor-sharing (ps).

All requested tasks run simultaneously.

– Foreground-background (fb).

The requested task with the lowest resource usage (least attained ser-
vice) runs. If several such tasks have the same lowest resource usage,
those tasks run simultaneously.

10Offline policies, which know the entire task arrival sequence in advance, do not apply
to the dynamic, real-world application domains consisting of users that may arrive and
submit work at any time.

4.5 Policies in theory · 59

– Shortest-remaining-processing-time (srpt).

The requested task with the least remaining work runs.11

Other policies, e.g., last-come-first-serve and shortest-job-first, are omit-
ted because their behaviors are either not significantly different or are worse
than the behaviors of the listed policies for the goals under consideration.

All but srpt are non-clairvoyant; they do not make use of task size.
All but fcfs are preemptive; they are not restricted to running tasks to
completion. Because srpt is biased toward tasks with less work remaining
and because it is preemptive, there is the possibility that large tasks will
starve. However, this fear is unfounded [Bansal and Harchol-Balter, 2001].

The conditions (such as service time distribution) under which one policy
is better than another for a particular goal is sometimes an open schedul-
ing question. Definitive statements below assume task arrivals that follow a
Poisson process,12 a general service time distribution, and a single server,
unless otherwise noted.

4.5.1 Concerning mean response time

It has been proven that srpt optimally minimizes mean response time [Con-
way et al., 1967, ch. 8] [Schrage, 1968]. Since response time accrues as soon
as a task is requested, completing a task sooner leads to lower response time
for that task. Doing so overall, by choosing the task with the least remaining
work, leads to lower mean response time compared to other policies. This
intuition is also helpful in understanding the behavior of the other policies.

The service time distribution’s failure rate [Weisstein, 2004b] (also called
hazard rate) determines the best policy for minimizing mean response time
when srpt cannot be employed. The failure rate of a distribution is P (x)

1−D(x) ,
where P (x) is its probability density function and D(x) is its cumulative
distribution function. In this context, x is the amount of resources used by
a task at some point in time. If the failure rate is increasing in x, then the
distribution is said to have an increasing failure rate (ifr); if decreasing
in x, then a decreasing failure rate (dfr); and if independent of x, then a
constant failure rate (cfr and also called the memoryless property). Failure
rates can be understood by analogy. For ifr, the longer a car is driven, the

11In Chapter 4.7 I discuss how task size, which is necessary for knowing the amount of
remaining work, can be predicted.

12A Poisson process [Weisstein, 2004e] with rate λ is a sequence of events such that
the times between events are independently selected from an exponential distribution
(Chapter 6.1.3) with rate λ.

60 · Cluster scheduling for explicitly-speculative tasks

less time it is expected to last. For dfr, the longer a light bulb is on, the
more time it is expected to last. Finally, for cfr, a radioactive atom has the
same probability of decay at any time, regardless of how long it has existed.

When the service time distribution has an increasing failure rate, such as
is found in a uniform distribution, fcfs was proven to achieve a lower mean
response time than ps, and ps was proven to achieve a lower mean response
time than fb. The more resources a task has consumed, the sooner it will
end, and thus it should keep running, which is what fcfs does better than
ps, and what ps does better than fb. When the service time distribution has
a decreasing failure rate, such as is found in a Pareto distribution, fb was
proven to achieve a lower mean response time than ps, and ps was proven to
achieve a lower mean response time than fcfs. The more resources a task
has consumed, the later it will end, and thus it should be avoided, which is
what fb does better than ps, and what ps does better than fcfs. Finally,
when the service time distribution has a constant failure rate, a property
held only by the exponential distribution, fcfs, ps, and fb were proven
to perform the same with respect to mean response time. The resources a
task has consumed is irrelevant to when it will end. [Harchol-Balter, 2003b;
Wierman et al., 2004; Wierman, 2004]13

It has been shown that task service time can be often modeled well
by a Pareto distribution [Harchol-Balter and Downey, 1997]. Since Pareto
distributions have a decreasing failure rate, fb is the best choice among
fcfs, ps, and fcfs.

If the service time distribution’s failure rate is not known but its variance
and mean are known, the following result determines whether ps or fcfs is
better. ps, which optimally minimizes the variance of instantaneous slow-
down at every point in time, was proven to achieve lower mean response time
than fcfs if and only if the squared coefficient of variation [Weisstein, 2004h]
of task service time is greater than 1; i.e., if and only if var(S)/S̄2 > 1, where
var(S) is the variance of task service time and S̄ is the mean task service
time.14 [Harchol-Balter et al., 1997]

4.5.2 Concerning mean slowdown

Optimally minimizing mean slowdown is an open problem (and active re-
search area). Among fcfs, ps, fb, and srpt from Chapter 4.5, srpt per-
forms best [Bender et al., 2002; Bansal and Dhamdhere, 2003]. There are

13The mentioned distributions are detailed in Chapter 6.1.3.
14The squared coefficients of variation of the uniform, exponential, and Pareto distribu-

tions are less than 1, 1, and greater than 1, respectively. [Harchol-Balter, 2003b].

4.5 Policies in theory · 61

better algorithms for minimizing mean slowdown, but how doing so affects
mean response time is not well understood and thus not discussed further.15

4.5.3 Concerning the variance of user resource usage

A modification to fb leads to a policy that optimally minimizes the vari-
ance of user resource usage while remaining work-conserving. Recall that
fb runs the task with the lowest resource usage. Instead of looking at a
task’s resource usage, a user-based fb policy, which I call user-fb, looks at
the total amount of resources consumed by a user. Thus, when a scheduling
decision is to be made, user-fb selects the task from the user that has used
the fewest resources. If several users have the lowest resource usage and have
queued tasks, then the their tasks are run simultaneously (i.e., using ps, al-
though implementations usually approximate this by only making decisions
on events such as a task being submitted or finishing). If a user has more
than one task queued, those tasks are taken in fcfs order from that user
under the assumption that the order of submission reflects the order of need.
This assumption fits the sequential tasks application type (Chapter 2.2.2).

4.5.4 Concerning load

Load on a single server is the multiplicative product of task throughput
and mean task service time according to the Utilization Law and sketched
in Figure 4.6 [Harchol-Balter, 2003b]. I assume that the performance of a
scheduling policy cannot affect mean task service time (a function of how
big the tasks that users submit are, the speed of the server, and whether a
policy is work-conserving), so changing mean service time to affect load is
not discussed in this section.

The extent to which a scheduling policy can influence throughput (and
thus load) depends upon the manner in which people use the computing
system. Queuing theory models systems as either open, in which task ar-
rivals are independent of scheduling, or closed, in which a constant number
of users submit one task at a time, wait for task output, think about the
output for some think time, and repeat. In my target application domain
(Chapter 2.1), how people use computing systems combines aspects of an
open system (users arriving and departing) and a closed system (users need-
ing and thinking about the output of one task before the next task).

15A scheduling theorist confirms the lack of analysis in the literature for how fcfs,
ps, and fb compare with one another with respect to minimizing mean slowdown, but
intuitively believes that the same conclusions in Chapter 4.5.1 concerning their relative
merit for response time also hold for slowdown [Wierman, 2004].

62 · Cluster scheduling for explicitly-speculative tasks

For an open system, a higher mean task arrival rate (which can be re-
alized with more users) means higher throughput and thus higher load, so
long as the system does not go into overload (load > 1). Task throughput
is, in fact, equal to the mean arrival rate for open systems [Harchol-Balter,
2003b] so long as the mean arrival rate is not greater than the mean service
rate, i.e., the rate that tasks complete.16 Observe that any work-conserving
policy exposed to the same task arrival sequence (viz., when tasks arrive
and the sizes of those tasks) on the same speed server leads to the same
load [Harchol-Balter, 2003b]. Because arrivals occur independent of when
tasks complete, the ‘work in system’ is the same. Since the scheduling poli-
cies listed above are work-conserving, the load is the same for them all when
exposed to the same arrival sequence, assuming an open system.

For a closed system, higher throughput can also — up to the point
mentioned below — be obtained with more users. How to encourage more
users to use one resource provider over another (irrespective of whether the
system is open or closed) was discussed in Chapter 4.4.2.

For a closed system, combining the Utilization Law and Little’s Law
shows that two additional considerations beyond the number of users affect
load (and throughput). These laws show that load is inversely proportional
to the sum of mean response time and mean user think time [Harchol-Balter,
2003b]. A scheduling policy cannot affect the amount of time users spend
thinking of task outputs.17 However, mean response time is a property of
scheduling effectiveness. The intuition of how mean response time can affect
load is that, in a given time period, users who receive task outputs faster
submit more work. Thus, a policy which reduces mean response time (or
increases the number of users, as stated above) also increases load (and
server utility or revenue).18 Here, it is not true that every work-conserving

16The Utilization Law states that U = XE[S], where U is load, X is throughput,
and E[S] is the expected (mean) task service time. In an open system, λ = X (tasks
in equals tasks out), where λ is the task arrival rate, so long as λ ≤ µ, where µ is the
mean service rate equivalent to 1/E[S]. Thus, U = λE[S]. Assuming mean task service
time cannot change (i.e., the processor speed cannot change, the tasks do not change size,
and the scheduling policy is work-conserving), load can be increased with a higher task
arrival rate (such as by adding more users). As λ approaches µ, where µ = 1/E[S], load
approaches a maximum of 1.

17As a less significant effect, user think time might be correlated with task response
time. If mean response time was low for a long period of time, the user might become
fatigued and exhibit longer think times. This effect is not considered further in this thesis.

18Again, the Utilization Law states that U = XE[S], where U is load, X is throughput,
and E[S] is the expected (mean) task service time. Little’s Law for a closed system states
that E[R] = N/X − E[Z], where E[R] is the expected (mean) response time, N is the
number of users, and E[Z] is the expected (mean) user think time. Combining both laws

4.5 Policies in theory · 63

policy is equally profitable. Fortunately, minimizing mean response time
does not conflict with the user goals; in fact, it is a major user goal. Above
(Chapter 4.5.1) I discussed how different policies compare toward minimizing
mean response time.

In sum, if users behave more like an open system (with user arrivals
and departures independent of when tasks are serviced), then to increase
load the task arrival rate must increase, which is practically realized by
adding more users to the system. Adding users to increase throughput would
affect load in an open system to the same degree across scheduling policies,
although other metrics, like mean response time, would likely change to
different degrees [Harchol-Balter, 2003b]. If users behave more like a closed
system, then in addition to adding more users to increase load, a scheduling
policy which does well at minimizing response time should be employed.

There are other considerations outside the scope of this thesis when
tasks need more than one processor at once (‘space-shared’ applications).
For example, one approach to improving load is to favor long-running tasks
that require a large number of nodes (to the detriment of response time)
because such tasks would otherwise have difficulty getting the number of
nodes necessary to run [Lemieux, 2003]. More information can be found
within the scope chapter (Chapter 3.2).

4.5.5 Summary of policies in theory

The following approach does well for minimizing mean response time and
maximizing load and does not do badly for minimizing mean slowdown: If
task size is known, apply srpt. If task size is unknown, but the resource
provider will attempt to predict it, use srpt along with one of the procedures
outlined in Chapter 4.7. If predictions will not be employed, then a policy
that does not require knowing task size must be used. Because task size
distribution has the dfr (decreasing failure rate) property [Harchol-Balter
and Downey, 1997], the next best policy among those considered is fb.

If the resource provider needs to discourage users from abusing resources
(when a small subset of users use substantially more resources than others)
then user-fb should be employed to minimize the variance of user resource
usage while remaining work-conserving. Here, the other goals (minimizing
response time and slowdown and maximizing load) become secondary. The
theoretic effect of user-fb on these now secondary goals is unknown to me
but is measured in my results (Chapter 6.2.7).

leads to U = NE[S]
E[R]+E[Z]

. Assuming task service time and user think time cannot change,

load can be improved with more users and with scheduling that lowers E[R].

64 · Cluster scheduling for explicitly-speculative tasks

4.6 Scheduling in practice

Applying the fundamental scheduling policies described above (Chapter 4.5)
to a cluster or supercomputer center involves additional considerations.
Some resistance to direct application is due to prejudice (i.e., srpt starves
large tasks, a belief that has been rebutted [Bansal and Harchol-Balter,
2001]) or lack of information (i.e., srpt needs to know task sizes). But the
resistance is more fundamental: There are additional goals beyond those
derived in Chapter 4.4 from abstract notions of utility; there are realities
in balancing a pricing mechanism, application development (debug) cycles,
tasks with special hardware needs, users with special priority needs, and
imperfect accounting.

Scheduling in practice is a hybrid of the fundamental scheduling policies
that have evolved over time to meet such practical goals. Implemented sched-
ulers often contain heuristics developed through a combination of insights
and trial-and-error that not have been theoretically analyzed or rigorously
evaluated against each other, but that rather have worked well-enough in
practice. Many supercomputer centers modify or replace vendor-supplied
schedulers to meet complex goals [NAS, 2002; Feitelson and Jette, 1997;
Lopez, 2002] concerning peak v. off-peak hours, different priority tasks, and
debugging queues. An example is favoring tasks needing many servers be-
cause they have more difficulty obtaining resources to begin execution.

The literature on computing facilities often only briefly and superficially
discusses scheduling policies. Documentation rarely justifies seemingly ar-
bitrary scheduling policies although they often have a substantial effect on
user experience (users dislike the long and variable times that their tasks
wait in queue [Lopez, 2002]) and server revenue.

I concretize these thoughts by first examining the scheduling at super-
computer centers and then by cluster management software employed by
it resource providers and by first-generation computational grids. I finish
this section with principles gleaned by abstracting away details and aspects
outside of my thesis scope (Chapter 3) from these cases.

4.6.1 Supercomputer scheduling

A supercomputer center balances the following conflicting goals: maximiz-
ing throughput for shorter ‘debugging’ tasks and longer ‘production’ tasks,
preventing any set of users from dominating the system, allowing a single
user to dominate the system if approved by management, and enforcing the
extant pricing mechanism, such as the service units (Chapter 4.2) allocated
as the rewards of grants issued by funding sources. [NAS, 2002]

4.6 Scheduling in practice · 65

Such goals are often addressed with multiple queues corresponding to
ranges of task service times (i.e., separate queues for small, medium, and
large tasks) or task type (debug or production) and specific times of day in
which long-running tasks are vacated to make room for tasks needing many
nodes. The presumptive reason for different queues for different task size
ranges is to reduce queuing delay; it is well known that task size variability
leads to queuing, at least in open systems [Harchol-Balter, 2003b].

Thus users must specify memory and processor time requirements for
queue placement [Feitelson and Jette, 1997]. Submitters often overestimate
requirements because these systems often kill tasks whose estimates are ex-
ceeded. In any case, studies have shown that people are bad at estimating
task size and that statistical techniques do better. Automatic task size esti-
mation, while applicable to both non-speculative and batchactive scheduling,
has not yet been widely deployed, and is discussed in Chapter 4.7.

The smallest queues are generally always available through ps for file
editing, code compilation, and small test runs. For other queues, a more
complex policy, some variant of fcfs or fb, is employed.

For example, at the nasa Advanced Supercomputer Center, tasks are
sorted on priority. The highest priority task runs if resources are available,
and if not, the system is drained for resources. For efficiency, tasks which
can complete before the system is drained are back-filled [Feitelson and
Jette, 1997]. ‘Special’ (as designated by an administrator) tasks are given the
highest priority. Tasks with more parallelism have priority, and the system
might be drained of tasks for them to run. There are several reasons for
this: (1) it is more difficult for them to otherwise obtain resources, (2) they
consume more resources and thus produce more revenue than smaller tasks,
and (3) there is a perception that larger tasks do more important work
(scientifically or otherwise).

Similar to user-fb (Chapter 4.5.3), long-waiting tasks obtain higher pri-
ority, and users that have recently (on the order of days) used a lot of
resources have less priority for their tasks. This policy is a time- instead
of resource-based version of decay-usage scheduling discussed below (Chap-
ter 4.6.2). If a user does not have sufficient service units for running a task,
then the task does not run. Additional heuristics, such as draining all tasks
at the start of the non-primetime period of the day and restricting users
to a certain number of queued tasks further ensure that tasks with high
parallelism do not starve and that no small set of users dominate resources
over others, respectively [NAS, 2002]. These complexities largely concern the
scheduling of parallel tasks and of irregular tasks (such as non-production
or administrator tasks).

66 · Cluster scheduling for explicitly-speculative tasks

There is a single queue used for all tasks on the Lemieux Supercomputer
at the Pittsburgh Supercomputer Center (psc) [Lemieux, 2003]. The task
needing the most nodes runs first if the necessary number of nodes are
available. Ties are broken by fcfs. At 5pm each day the system is drained
of all tasks. Each task has a six hour limit (checkpointing is employed for
those tasks requiring more time) and four queued tasks are allowed per user,
avoiding starvation and resource abuse.

When tasks need only one server, i.e., when there is no task parallelism
(which is a characteristic of the tasks in my thesis scope as described in
Chapter 3.2), the nasa Advanced Supercomputer Center policy is a variant
of fb and the Lemieux Supercomputer policy is a variant of fcfs. On the
Lemieux Supercomputer, the preemption case makes the policy appear to
long-running tasks to be ps with a time slice of six hours, which leads to
better mean response time than strict fcfs, but not as good as fb for service
time distributions with the dfr property (Chapter 4.5.1).

4.6.2 Cluster scheduling

When moving away from tightly-coupled parallel processing and removing
non-production (debug) tasks, the policies at supercomputer centers and it
resource providers converge.

The main difference between cluster scheduling (employed on clusters
and first-generation computational grids) and supercomputer scheduling is
that users do not need to supply task resource requirement estimations (e.g.,
for processor time, memory, etc.) when submitting tasks to the former.

The most widely deployed cluster scheduling policy is decay-usage which
is similar to the user-fb (Chapter 4.5.3) variant used in supercomputer
scheduling (Chapter 4.6.1), except that it is resource- instead of time-based.

As in the supercomputer environment, the non-theoretical literature for
deployed cluster and grid systems focuses on issues beside scheduling, as-
suming that a variant of fcfs or decay-usage will suffice. Recent theoretical
work considers new and interesting approaches beyond these variants but
which still assume that all tasks are non-speculative [Harchol-Balter, 2002].

Much research explores the availability of workstation idle time that
could be harvested as cluster resources (Chapter 2.3.3), or how to support
mixed interactive and parallel workloads on the same cluster [Arpaci et al.,
1995]. The Globus Toolkit [Globus, 2003], a system for managing grids, and
GLUnix [Ghormley et al., 1998], a research system for managing networks
of workstations, focus on the following considerations (which are a subset
of grid computing considerations): creating a single system image for trans-

4.6 Scheduling in practice · 67

parent remote execution (including redirecting I/O and Unix signals among
nodes), managing control and access to cluster resources, ensuring avail-
ability and failure recovery, increasing the speed of starting a large parallel
task and other scalability issues, and enabling users to reserve specific ma-
chines with special devices or local storage when necessary. The scheduling
in GLUnix was straightforward and not a research focus: tasks that were
issued interactively would run on nodes with the fewest tasks recently in
their scheduling queues; tasks that were issued with a batch submission
mechanism would run fcfs as nodes became idle. A research clustering sys-
tem called Sprite ambitiously supported transparent process migration to
rebalance load when warranted by dynamic load conditions [Douglis and
Ousterhout, 1991].

As a typical deployed cluster scheduling policy, Condor [2003], one of the
most popular cluster management systems, strives to provide equal resource
usage among users. The policy looks at the sum of the resource usage of all
the tasks requested by a user and preferentially schedules tasks belonging to
users whose tasks have used fewer resources, preventing a user from obtain-
ing more than his ‘fair’ share by queuing large amounts of work. The amount
of resources used by a user’s tasks are decayed over time and the inverse ra-
tios of these decayed values across users determines the ratios of resources
the users will receive if they queue work, ensuring that tasks belonging to
users whose tasks have used more resources do not starve. By default, re-
source usage is decayed exponentially with a half-life of one day. Moreover,
tasks are preempted when resource usage among users with queued tasks
becomes imbalanced using a one hour preemption granularity to prevent
thrashing. Competing users will converge to an equal share of resources over
time. This policy is known as decay-usage.

In decay-usage [Corbató et al., 1962], like user-fb, the user who has
consumed the fewest resources is favored, but unlike strict user-fb, a user’s
resource usage is decayed over time. As resource usages decay, decay-usage
behaves more like ps. The motivation is to favor interactive users — users
who submit one task at a time and wait for task output before repeating —
while not starving batch users — users who submit many tasks at once and
who come back later to retrieve task outputs (e.g., those who submit tasks
overnight). In other words, users using fewer resources get priority, while
users using more resources are not penalized forever. Intuitively, long-past
experiences should affect scheduling less than recent experiences. Typically
using an exponential decay, resource usage older than some time is effectively

68 · Cluster scheduling for explicitly-speculative tasks

forgotten.19 Decay-usage usually also employs hysteresis to avoid thrashing,
ps-like behavior between tasks of users who have used close to the same
amount of resources.

Decay-usage, by definition, optimally minimizes the variance of (de-
cayed) user resource usage, which is a primary scheduling goal, and as argued
next (Chapter 4.6.3), does reasonably well among non-size-based policies at
meeting the other goals in Table 4.2.

4.6.3 Summary of scheduling in practice

In practice, a variant of fcfs or decay-usage is employed for several rea-
sons. A variant of fcfs might be employed because the user wants a clearly
defined policy (such as ‘fcfs, but preempt if a task runs continuously for
six hours,’ which is employed on the Lemieux Supercomputer) rather than
having scheduling be dependent on resource usage. A user does not want his
or her task to fluctuate in execution rate as the task uses more resources
and as others’ tasks execute. Delay is expected to be a function of queu-
ing and then execution, not a function of other load once execution begins.
Moreover, timesharing (as exhibited by many non-fcfs policies) is avoided
in parallel contexts due to network communication among nodes, an appli-
cation domain out of my scope. Timesharing is also avoided in non-parallel
cases when memory preemption is an issue. These considerations lead to the
use of schedulers like fcfs.

In other settings, such as in the Condor clustering system, users’ batches
are timeshared. Consider the traditional scheduling goals of minimizing
mean response time, minimizing mean slowdown, and maximizing load (Ta-
ble 4.2). The lineage of decay-usage from fb means that it does better, under
the ubiquitous [Harchol-Balter and Downey, 1997] task size distribution with
the dfr (decreasing failure rate) property, than other non-size-based poli-
cies at minimizing mean response time and mean slowdown (Chapters 4.5.1
and 4.5.2, and thus indirectly also does better than other non-size-based
policies at maximizing load (Chapter 4.5.4). Further, when users issue or-
dered task sets, user-fb is likely to select tasks in the order of need across
users. When resource usage is not directly charged, decay-usage is employed

19This is similar to the standard policy on a single Unix workstation elaborated on within
Chapter 5.6.1: the multi-level feedback queue preferentially schedules tasks which wake
after being blocked on other resources or user input over long-running, processor-bound
tasks, while ensuring that those processor-bound tasks eventually run. The difference is
that decay-usage is based up aggregate resources consumed by a user while a Unix multi-
level feedback-queue looks only at the resources consumed by a task.

4.7 Predicting task service time · 69

policy description
fcfs first-come-first-serve
user-fb user who has used the fewest resources
srpt shortest-remaining-processing-time first

Table 4.3: Non-speculative scheduling policies (compare to speculative task policies
in Table 5.3).

to prevent resource abuse. When resource usage is directly charged to the
user, preventing abuse via scheduling is not necessary.

Batchactive scheduling is compatible with both deployed approaches and
the results of this thesis look at speculative extensions to fcfs, user-fb, and
srpt (Chapter 6.2). These policies are summarized in Table 4.3.

4.7 Predicting task service time

Scheduling decisions sometimes require knowing the service time of individ-
ual tasks. Often, the scheduler does not have this information and users can-
not be expected to provide this data reliably. The alternative is for the sched-
uler to automatically estimate task service time. The problem of learning
task resource ‘footprints’ is undergoing strong study by many researchers.

One use of task size information is for applying srpt for non-speculative
scheduling or srpt as a building block of a batchactive scheduler (Chap-
ter 5.5.4). Doing so improves both to the same extent as shown in Chap-
ters 6.2.4 and 6.2.8. Note that predicting task size is not necessary for
batchactive scheduling; it is only to obtain additional performance equally
gained by non-speculative schedulers.

Besides its use for scheduling, service time predictions along with what
percentage of their service time tasks have already consumed can help a
person plan his or her day, and can relieve a person’s anxiety of waiting for
task output.

Across diverse tasks, service time can vary widely; its coefficient of vari-
ation (Chapter 4.7) has been measured to range from four to 70 at several
supercomputer centers [Feitelson et al., 1997]. Moreover, Feitelson and Jette
[1997] observed that people are bad at estimating service time. Smith and
Wong [2002] showed that automated service time prediction is significantly
more accurate than human predictions.20

20Still, many supercomputer centers ask the user for this estimate, both to decide in
what queue a task should be placed and to kill a task that exceeds its limit. [NAS, 2002].

70 · Cluster scheduling for explicitly-speculative tasks

The approaches can be classified as basing predictions on task charac-
teristics or on task sizes of recently executed tasks. (Sometimes a hybrid is
employed [Narayanan et al., 2000].) I detail the former approach in the bulk
of this section and I sketch the latter at the end. In both cases, measurements
of executed task service time are made. Under preemptive scheduling, clock
time is not an accurate measurement of task size; processing (virtual) time
is easy to measure on Unix variants to determine a task’s actual processing
needs.

Service time prediction based on task characteristics depends on the as-
sumption that a task run twice on the same inputs will have the same service
time.21 Task inputs are classified as discrete or continuous parameters; e.g.,
a command-line option that turns on or off some feature or a command-
line option that takes a real value as an argument, respectively. The size
of an input file used by a task is also a continuous parameter. Spring and
Wolski [1998] show that the service time of the complib biological sequenc-
ing library is highly predictable from input size. The service time for the
blast dna similarity searcher is dependent on the sizes of the sequences
under comparison and the search accuracy; the accuracy is determined by
the choice of search algorithm, a discrete parameter. In computer rendering,
once a shot (scene) is being processed, the runtimes of individual tasks are
‘generally predictable’ [Epps, 2004]. Table 4.4 shows how service time is a
function of task parameters from such and other tasks.

Other researchers and I have used curve-fitting to predict service time
from such parameters with high accuracy.

Service time can be predicted after learning the relationship of task pa-
rameters to past service time. A predictor can evaluate polynomials of the
form t = c0 +

∑n
j=1 cjxj , where t is the service time of a task, the xs are

functions of the task’s continuous (knob-like) parameters (like input size),
and the cs are coefficients set by a linear least squares regression [Gauss,
1821] to best fit past observations. Constructing these polynomials involves
trial and error; the number of terms balances expressiveness with overfitting.
For discrete (switch-like) parameters (like the type of algorithm employed
by a dna matching algorithm), additional sets of coefficients, one per each
discrete parameter setting, should be learned. Examples of parameters were
shown in Table 4.4.

I built a service time predictor using the linear least squares regression
code from lapack [Anderson et al., 1999]. To demonstrate the concept, I

21Cross-invocation caching of state, such as cross-invocation dynamic programming,
may violate this assumption.

4.7 Predicting task service time · 71

problem task service time service time factors
find dna sequences seconds to hours source × target dna size;

search algorithm
apply lighting to scenes (ra-
diosity)

minutes number of polygons in a
scene

optimize data placement ≈1 hour number of accesses
find file cache access patterns several hours number of accesses
find file access relationships 30–60 minutes number of accesses
study mems scheduling seconds to hours number of accesses
study microarchitecture 4–24 hours number of instructions
study computer virus propa-
gation

20 seconds to 6
hours

network topology, virus
birth and death rates

evaluate brain state models ≈ 10 hours (unknown)

Table 4.4: Evidence that many tasks have predictable service times. Sources: local
survey, personal communications, anecdotal experience. [ECE, 2002; Pereira, 2003;
Wenisch, 2003; Narayanan et al., 2000; Biowulf, 2004]

looked at the resource usage of a program called Radiator which applies a
radiosity algorithm to static images of three-dimensional scenes. The tech-
nique is applicable to predicting runtime on an otherwise unloaded machine,
a machine with non-preemptive scheduling, or a machine with preemptive
scheduling given an appropriate server model that considers the effects of
preemption, e.g.

Radiator applies radiosity algorithms to make scenes look realistic, and
its runtime is a function of the number of polygons in a scene (a continu-
ous parameter) and the radiosity algorithm employed (a discrete parame-
ter) [Willmott, 2000]. I used 5, 448 test Radiator runs from a 230 MHz Pen-
tium mmx gathered for multi-fidelity research by a colleague [Narayanan
et al., 2000]. My predictor learned how Radiator’s parameters map to the
demand of processing cycles by finding the constants in c0 + c1p log p+ c2p

2,
where p is the number of polygons used in the scene. This polynomial re-
flects the complexity of the radiosity algorithms. Figure 4.7 shows how the
resource demand of the task depends on the input scene and the number
of polygons used in the radiosity computations. It is feasible to apply this
regression online: The time to regress over 5, 528 elements occupying 130 KB
on a 700 MHz Pentium III was 4.564 ms averaged over ten trials with a stan-
dard error of 0.021 ms. This overhead would be even lower if I had used a
lapack library optimized for this architecture.

Ideally, the predictor would not need many samples to make accurate
predictions. After training on i − 1 samples, I had the predictor predict

72 · Cluster scheduling for explicitly-speculative tasks

0 20 40
60 80

100
120

polar
dragon

bunny
sherman
whale
car

eprise.
0

20

40

60

80

Used polygons (K)

Scenes

C
y

cl
e

s
(b

il
li

o
n

s)

Figure 4.7: An example of applying regression to predict service time. A radiosity
task consumes different amounts of processor resources (cycles) for different scene
models and different numbers of polygons for each model. Points indicate samples
of past runs. Curves indicate functions fit to these points; these functions would
be evaluated to predict resource needs for a scene at a specific number of polygons
even if that number has never been run before. Service time can be predicted with
this same concept.

the resource demand of the ith run of a task and then measured the error
(the normalized difference between the prediction and subsequent reality) as
shown in Figure 4.8. Two types of tasks and resources were explored. Because
the polynomials fed to the regression used had three coefficients, I ran three
initializing trials before taking numbers (this is a requirement for linear
regression). The maximum error was about 20% at the start of the radiosity
algorithm, and after that, most error was around 5%. To my knowledge, the
extent to which a scheduling policy, such as srpt, can tolerate service time
prediction error before a non-size-based policy would perform better has not
been studied.

There exists much work detailing successful predictions from task pa-
rameters. Kapadia et al. [1999] use regression to predict the resource re-
quirements of tasks over their parameters. These predictions are used for
allocating resources on a computational grid. Abdelzaher [2000] introduced
a profiling subsystem using regression to predict the demand of an Apache
web server serving both static and dynamic web pages. Narayanan et al.
[2000] use regression to predict the resource demands of mobile applica-
tions. Narayanan [2002, ch. 6] describes prediction techniques in detail. To
estimate the selectivity (related to demand) of a database query, Chen and

4.7 Predicting task service time · 73

1 3 5 7 9 11 13 15
0

5

10

15

20

Trial number

P
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

17

Radiator cycles
sfilter cycles
sfilter net. bytes

Figure 4.8: How prediction error decreases with more task runs. The more service
time data that the regression has, the more accurate its predictions are. The maxi-
mum error was about 20% at the start of Radiator, and after that, most error was
around 5%. Another application called sfilter (described in Petrou [2002]) is also
shown.

Roussopoulos [1994] apply a recursive least squares regression, incorporat-
ing online samples faster and with less memory overhead than a normal
regression.

Turning away from regression, service time prediction based on recently
executed tasks depends on the assumption that recent past is a good pre-
dictor of near future. An effective approach is to take an average of past
task service times and weigh more recently executed tasks more heavily,
a technique known as an exponentially weighted moving average (ewma).
Kim and Noble [2001] note that many past attempts at passively estimating
network bandwidth rely on ewma filters with static factors for weighing the
present over the past, resulting in filters that are either stable (in light of
noise or temporary transients) or agile (in response to new behavior), but
not both. They tested four dynamic filters against two static filters and rec-
ommend one of them, a flip-flop filter, which uses techniques from statistical
process control.

A discussion of other statistical or machine learning techniques for pre-
dicting service time is outside my scope. I chose to present least-squares
regression and ewma because the attention many researchers have given
them attests to their usefulness for this purpose.

74 · Cluster scheduling for explicitly-speculative tasks

4.8 Inadequacies when speculative tasks are present

The theoretical and deployed scheduling policies described in this chapter
were designed with non-speculative tasks in mind; that every submitted task
was equally known to be needed by the users who submit them. However,
there exist important application scenarios (Chapter 2.2) in which this is
false. Problems arise when users speculate with existing schedulers. There
is confusion as to how many tasks a user should submit, resulting in ineffec-
tive scheduling (poor time- and cost-based scheduling metrics). The prob-
lems cannot be overcome without a scheduler that can discriminate between
speculative and non-speculative tasks, i.e., a batchactive scheduler.

Should a user exploring a space speculatively submit one speculative
task, a few, many, or the entire ‘computational plan?’ When resources cost,
the user is pressured to only submit a few tasks at once (at the limit, to be-
have interactively), because the user does not wish to be charged for running
tasks whose outputs are unneeded. But doing so leads to poor time-based
scheduling metrics because the execution of speculative tasks is not fully
pipelined with the user’s think time of completed tasks. When resource us-
age is not directly charged, or if the user is willing to pay for unneeded tasks,
then the user should submit many speculative tasks (at the limit, to behave
in a batch manner) so that the scheduler can execute them before needed.
(See Figures 1.3 and 2.1). However, if every user did this, then resources
would be overwhelmed with speculative tasks and the response times for
non-speculative tasks would increase dramatically. (These implications of
speculative user behavior on non-speculative scheduling policies is detailed
in Chapter 6.2.)

Users are in a double-bind: to appear to be good citizens, users would
like to appear to submit a ‘reasonable’ number of speculative tasks, in hopes
of balancing their wasted costs and visible response time with the visible
response time of other users. However, a user who does not submit swaths of
speculative tasks when resource usage is not directly charged or is affordable
will secretly be regarded as a simpleton by his or her peers for not abusing
the system. The problem is deeper, however. Even if everyone wished to
cooperate, there is no clear way to compute the correct number of speculative
tasks to submit. Whether or not submitting a speculative task that turns out
to be needed will help a user’s visible response time or whether submitting
a speculative task that turns out to not be needed will hurt others’ visible
response time or cost the submitting user significantly depends on many
factors unknown to the user: the task arrival process, task service time, user
think time, and the probabilities that speculative tasks will be needed.

4.9 Summary · 75

As mentioned above (Chapters 4.6.1 and 4.6.2), the scheduling policies
for supercomputers and for clusters have been given short analytic shrift.
Beyond the lack of analysis or detailed justification for the policies, there is
a lack of attention given to scheduling speculative tasks.

As detailed later (Chapter 5), speculative user behavior introduces new
challenges. When a user speculatively issues tasks, there is a notion of
task deadlines; the time that a speculative task might be needed which
occurs later due to user think time (Chapter 2.3.1) and away periods (Chap-
ter 2.3.2). Thus two traditionally separate scheduling worlds converge: re-
sponse time-based and deadline-based. It has been suggested that scheduling
analysis becomes harder when tasks are needed sometime after submission
and that a consideration of this important user behavior is overdue; that
scheduling theory and practice have diverged [Feitelson et al., 1997].

4.9 Summary

This chapter presented the schedulers against which I compare my batchac-
tive schedulers. These schedulers do not treat speculative tasks as first-class
entities; to them, all submitted tasks are equally known to be needed by the
users who submit them.

To provide this scheduling background, I described the architecture un-
der consideration: clusters and computational grids. I argued that this archi-
tecture is prevalent and important. I described how computational resources
may be outsourced or may be used by those who own them or are affiliated
with those who own them. These two relevant relations lead to two situa-
tions under study: one in which resource time is charged to the resource user
(a profit-center) and one in which resource usage is not directly charged (a
cost-center), respectively.

Then I formalized the interaction among users, tasks, and servers which
led to the definition of important scheduling metrics (Table 4.1). In terms
of utility, I derived user and resource provider scheduling goals based on
these metrics, including minimizing mean response time and maximizing
load (Table 4.2).

I described fundamental scheduling policies with respect to how they
achieve such scheduling goals. Then I looked at typical policies employed
in supercomputer and cluster settings and derived their lineage from the
fundamental policies. By ignoring heuristics which favor tasks with a high
degree of parallelism (because such tasks are outside my scope as discussed
in Chapter 3.2), it became apparent that scheduling in practice is either
a variant of fcfs or decay-usage. This finding allows me to have practical

76 · Cluster scheduling for explicitly-speculative tasks

policies to act as baselines against which I quantitatively compare batchac-
tive scheduling (Chapter 6.2). As an aside, I showed how task service time
can be predicted so that better, size-based scheduling, can be employed.

I ended this chapter discussing shortcomings of non-speculative sched-
ulers when presented with speculative workloads. Users cannot know how
deeply to submit speculative tasks, leading to worse scheduling metrics.
By discriminating between speculative and non-speculative tasks, my re-
sults (Chapter 6.2) show that batchactive scheduling (Chapter 5) provides
a better computing experience, in terms of time- and cost-based scheduling
metrics, than common practice.

The ability to see what has to be done and know
the exact last possible minute that it can be done
is a very heavy burden indeed.

Sandra Thompson, Art of Improvisation

5 Batchactive scheduling

I present batchactive scheduling to reduce or eliminate visible response time
(the time a user is ‘blocked on’ task output), among improving other schedul-
ing metrics, across people or autonomous agents executing speculative tasks
— tasks that at the time of submission the submitter does not yet know
if they will be eventually needed [DeGroot, 1990]. I extend the definitions,
metrics, and goals presented in the chapter on non-speculative scheduling
(Chapter 4). Similar aspects between scheduling environments are covered
quickly and differences are elaborated on.

A task could be marked speculative by its submitter and assigned a
probability of eventual need. A user could assign a real between 0 and 1
indicating the probability that he or she thinks at the time of submission
that the task would be needed, possibility to be updated later. Such data,
if accurate and if used correctly, could lead to better scheduling. However,
it is unrealistic for users to provide such probabilities; it is a burden and
accuracy cannot be assumed. Dawes [1979] demonstrated that the more
choices presented to a person, the less likely that he or she would use them
effectively.

Instead, in a batchactive scheduler, as I define it, users tag tasks as either
speculative or needed; there are no ‘levels’ of speculation. Users disclose
tasks whose outputs they are not sure they will need at that time, i.e., the
speculative tasks, and request tasks whose outputs they already know they
need. Later, a user may promote a disclosed task to a requested task, or a
user may cancel any task.1

Task disclosure is a hint. Hinting is a common and longstanding tech-
nique to improve system performance [Patterson III, 1997]. Lampson [1983]
reports the use of hints in operating systems, networking, and languages. His
hinting examples use potentially out-of-date information to short-circuit ex-
pensive computations. Another type of hint expresses policy advice from one

1For reasons of accounting mentioned in Chapter 5.2, a requested task may not be later
classified as disclosed.

77

78 · Cluster scheduling for explicitly-speculative tasks

system component to another, such as an application choosing among file
cache policies [Cao et al., 1994]. The mechanism of conveying that a task is
speculative is a ‘disclosure’ hint in the terminology of Patterson III [1997]
and exists in the context of several I/O systems [Kotz, 1997; Parsons et al.,
1997; Patterson et al., 1995; Steere, 1997]. Disclosure hints differ from hints
which give advice. For example, an advising hint might specify that a spec-
ulative task should have less priority than a needed task. Advice hints uses
one’s knowledge of application behavior, system resources, and system im-
plementation to declare how resources should be managed. They are brittle
and break modularity. Disclosure hints only reveal user knowledge, enabling
the system to globally optimize resource management. Further, they express
information independent of system implementation; viz., they remain correct
when the application execution environment changes. Finally, the disclosure
interface, being the same as for requesting non-speculative tasks, should be
easy to use.

People wish to batch their planning and submission of tasks and pipeline
the consideration of completed tasks with the execution of remaining tasks
(Figure 1.1). Non-speculative schedulers present obstacles to this way of
working (Chapter 4.8). With batchactive schedulers, users are free with a
novel batchactive pricing mechanism to disclose speculative tasks, knowing
that tasks will be ordered intelligently, based in part on whether or not they
are speculative, to improve important scheduling metrics. Most of the time,
this is accomplished by giving requested tasks precedence over disclosed
tasks.

To gain the benefits of batchactive scheduling, the system requires users
to disclose their computational plans; this work makes no attempt to guess
what tasks are more or less useful to the user. The application scenarios in
Chapter 2.2 show that there exist important problems in which tasks can
be categorized as either speculative or needed.

Endowing servers with the knowledge of tasks that may be needed in
the future enables the servers to get an early start rather than being idle.
Further, this knowledge can expose parallelism within a user’s workload that
the scheduler can use to leverage multiple cluster nodes simultaneously when
tasks do not depend on outputs from one another. Such ‘parallel searches’
evaluate a number of alternative execution paths simultaneously as opposed
to those which consist of a linear execution sequence with data dependen-
cies [DeGroot, 1990].

Batchactive scheduling motivates users to distinguish between specula-
tive and needed tasks and to disclose speculative tasks deeply. Users will
observe lower mean time waiting for task output, making them more pro-

5 Batchactive scheduling · 79

Figure 5.1: Interaction between users, the batchactive clustering software, and the
cluster resources. (Compare to the non-speculative scheduling version depicted in
Figure 4.1.)

ductive and less frustrated. The effect on scheduling metrics exhibited by
batchactive scheduling is quantified by the simulation results in Chapter 6.2.

Figure 5.1 depicts user interaction with batchactive clustering software
and the software’s interaction with the cluster resources. Any number of
users disclose, request, and cancel any number of tasks. The scheduling pol-
icy decides which and when disclosed and requested tasks run. If a disclosed
or requested task is canceled, it is no longer a candidate. The scheduler
communicates decisions to the operating systems running on the cluster
resources which handles the details of running tasks on the servers and pro-
vides task statistics to the scheduling policy, such as how long a task took
to run. If a task executes and was requested, then the task’s output is sup-
plied to the requesting user. If a task executes and was disclosed but not
requested, then the task’s output is stored in a location isolated from the
rest of the system until requested or canceled.

The cluster architecture for batchactive scheduling is the same as that
for non-speculative scheduling (Chapter 4.1), and thus is not discussed in
this chapter.

It is well-known that not every I/O is equal: those I/Os that block a pro-
gram’s progress matter more to the user experience than those for prefetch-
ing, e.g. [Ganger and Patt, 1998] Likewise not all tasks are equal. Those tasks
that a user is waiting on are more important than others. How a scheduler
should treat such tasks differently is the subject of this chapter.

First I discuss how the cost model, definitions and metrics, and schedul-
ing goals differ from common practice (Chapters 4.2, 4.3, and 4.4) when the

80 · Cluster scheduling for explicitly-speculative tasks

scheduler is made aware of speculative tasks. Then I describe batchactive
scheduling policies that utilize difficult to obtain information followed by eas-
ier to deploy batchactive policies implemented and studied in simulation. I
discuss ways in which existing schedulers may be transformed to be batchac-
tive. I continue with a discussion of how certain scheduling inputs, when they
are not known, can be predicted for the policies that need them. Following is
a discussion of some ways in which users may attempt (and often ultimately
fail) to abuse the batchactive pricing mechanism and scheduling policies.
Before summarizing this chapter, I consider how speculative scheduling can
operate beyond centrally scheduled processor resources.

5.1 Batchactive cost model

As in the non-speculative scheduling environment (Chapter 4.2), I consider
two relations between resource owner and resource user: that (1) they are
the same self-interested entity (e.g., a laboratory or university cluster) and
resource usage is not directly charged to the user; and (2) they are separate
entities and resource usage is charged. These are the cost- and profit-center
models, respectively. This section details a new pricing mechanism for spec-
ulative tasks. The batchactive pricing mechanism encourages users to dis-
close speculative work deeply, enabling the scheduler to best meet scheduling
goals.

5.1.1 Problem with the non-speculative pricing mechanism

Users might hesitate disclosing tasks if there were a risk they would be
charged needlessly, as they would under the pricing mechanism for non-
speculative scheduling (Chapter 4.2) which charges for all resource usage.
A user would tend to not disclose work that had a small chance of being
needed. This is problematic, because batchactive scheduling policies work
better with more information.

Further, users might hesitate submitting speculative tasks even if there
were a good chance that they would need such tasks. The following digression
elaborates on this characteristic of human behavior.

Kahneman and Tversky [1979] developed prospect theory which seeks
to model the irrationality of human decision-making; i.e., how people form
judgments and make choices. The prevailing assumption, at least to support
analytic tractability, was that beliefs and decisions conformed to logical rules
and that people acted as ‘rational agents’ to increase their utility. These
researchers instead showed that some behavior is systematically illogical.

5.1 Batchactive cost model · 81

Among other findings, Kahneman and Tversky showed that people feel
a reduction in well-being is more acutely than increases, and that people un-
derweigh probable outcomes compared to certain outcomes. This ‘certainty
effect’ explains an observed asymmetry between risk-averse and risk-seeking
behavior.

This irrationality translates to the batchactive environment. Even when
it is probable that a user would gain by disclosing a task (because the user
believes, with say 90% confidence, that he or she will need its output), the
user would tend to avoid the risk in being charged for a task not certain to
be required.

The batchactive pricing mechanism described next (Chapter 5.1.2) takes
the risk out of task disclosure for both unlikely and likely needed tasks. This
change is intended to motivate users to submit speculative work.

5.1.2 A new pricing mechanism

Traditionally, computing centers charge for resource usage irrespective of
whether tasks were needed [Lemieux, 2003]. The batchactive pricing mech-
anism for speculative scheduling diverges from this norm.

Requested (needed) tasks are priced as usual (Chapter 4.2). This includes
tasks originally requested and tasks originally disclosed as speculative but
later learned to be needed by the user.

However, disclosed tasks that were never needed are not charged. No
charge is levied irrespective of whether such a task did not run at all, ran
for part of its service time, or ran to completion. That is, the batchactive
pricing mechanism charges for resources used only by tasks whose outputs
are requested. The resources used by a requested task are charged even if
those resources were consumed before the task was requested; i.e., while
a speculative, disclosed task had not yet been requested. Thus, a resource
provider’s revenue is proportional to the amount of requested work during
some time period. This relationship between requested load and server utility
is depicted in Figure 5.2.

With this mechanism, the user would not need to weigh the cost (wasted
money) and benefit (better response time, which would only be a guess,
based on scheduling policy and server load) of each disclosure, allowing the
user to freely disclose tasks. This small but radical change in pricing mech-
anism has numerous implications as described in the next section (Chap-
ter 5.1.3).

It is important to know whether this pricing mechanism leads to a ratio-
nal user strategy (even if users do not always behave rationally, as mentioned

82 · Cluster scheduling for explicitly-speculative tasks

Figure 5.2: How requested load affects server utility and revenue under the batchac-
tive pricing mechanism. (Compare to Figure 4.3.) Requested load, the fraction of
time a resource is busy with originally or eventually requested tasks (i.e., ignor-
ing speculative tasks eventually known to not be needed) varies between 0 and 1.
Server utility or revenue is tied to the amount of resources a server charges. Under
the batchactive pricing mechanism, only requested tasks are charged. As requested
load increases, utility increases equally. Revenue can be calculated directly from
requested load given a constant cost per unit resource. Shown at maximum utility
(1) is maximum server revenue (y).

in Chapter 5.1.1). Under the non-speculative scheduling pricing mechanism
(Chapter 4.2), the user strategy is simple: At the time that a user deter-
mines that requesting (and paying) for a task will likely increase his or her
utility, then the user should request the task. In the speculative scheduling
pricing mechanism, there is also the option of disclosure. If a user does not
know whether seeing a task’s outputs would increase his or her utility, then
the user should disclose the task. Consider time discretized. At each time
step after disclosure, the user may either request the task or do nothing. At
the time that a user determines that seeing the output of the disclosed task
would increase his or her utility, then the user should request the task. Until
that time, the user may safely wait; he is not charged by indefinite waiting.
(Disclosed tasks may be reordered or canceled if the user determines that
the output from one is more likely to be needed than another.)

5.1.3 Consequences

The batchactive pricing mechanism is beneficial from the user’s perspec-
tive because speculative work can be submitted at no cost. However, it
is not obvious whether a resource owner would prefer this pricing mech-
anism. Compared to the traditional practice of charging for all resource
usage (Chapter 4.2), the resource owner could lose revenue from processing

5.1 Batchactive cost model · 83

time consumed by disclosed tasks that were never requested.2 The improved
visible response time of batchactive scheduling might compensate: as users
spend less time waiting for task output, they submit needed, chargeable
work more quickly. Even if users do not submit needed work more quickly,
the batchactive pricing mechanism may still benefit the resource provider
as discussed next. Note that the apparent additional billed load from the
traditional pricing mechanism may not occur in practice: users with batches
of work would likely resist deep disclosure because they do not wish to be
charged for needless speculation, and even if they were willing to pay, the
resulting visible response times would be poor.

In a cost-center, if the batchactive pricing mechanism results in lower
revenue, the price of requests can be raised to make up the difference. Users
with batches of work will pay less because they are not charged for unneeded
speculation. Users with only a few tasks outstanding at any time will pay
more, as they are paying for the canceled tasks of others. (Recall that,
actually, costs in a cost-center are usually not directly charged to the user,
but to an aggregate part of the organization.) Both kinds of users will receive
better value in the form of lower mean visible response time, as explained
in Chapter 6.2.2, while the billing total remains unchanged.

A profit-center can be motivated to use the batchactive pricing mech-
anism because the significant value provided with batchactive scheduling
could encourage additional users, deeper speculation, and bigger tasks, any
of which would raise server revenue. Results show (Chapter 6.2) that at
any level of billed load, batchactive scheduling provides better mean visible
response time. Latency-sensitive users will not push traditional schedulers
into regions of high billed load because, at those levels of revenue, visible re-
sponse times are too high. The latency threshold for batchactive scheduling,
in contrast, is better. In other words, because of the better scheduling offered
by batchactive policies, more users can be supported with less degradation
of time-based metrics. Users might switch to computing centers that charge
for only requested tasks and provide better visible response time, and thus
the owners of such centers might profit more because of the greater demand.

I study these considerations under the assumption that the marginal cost
for a provider’s resources to do work rather than be idle is insignificant. If
instead a busy server, due to heating costs, current draw, etc., costs sig-
nificantly more to operate than an idle processor, then adjustments can be
made to the results in Chapter 6.2 to determine resource revenue.

These issues are discussed further in Chapters 6.2.2 and 6.2.5.
2I do not advocate charging a reduced amount for unneeded speculative work because

this could dissuade disclosure.

84 · Cluster scheduling for explicitly-speculative tasks

5.1.4 Dismissed extension for selling completed speculative tasks

The batchactive pricing mechanism is simple to understand and lends itself
to a simple task submission strategy. The mechanism can lead to at least
one state, however, in which it seems that additional efficiency (improved
utility for both users and resource providers) can be obtained. I describe
this state and why it is hard to obtain this efficiency with an extension to
the pricing mechanism.

Consider a user who has submitted a speculative task but who never
requests its output. Suppose that a batchactive scheduling policy runs this
task to completion. For some period of time, the user has not requested this
task, indicating that the user has not determined that paying the advertised
price (the product of task size and a known price per unit resource) for this
task is in his or her interest.

Consider further that the user attaches some non-zero value (but less
than full price) to this task. The resource provider, with the completed task
output, would benefit from selling the output for less than full price. In fact,
the resource provider would benefit from selling for any amount more than
zero.

The problem is determining a price for this task when the resource
provider does not know the value attached to the task by the potential
buyer (a case of asymmetric information). A further complication is that
no other user would be interested in purchasing the submitter’s task out-
put; the resource provider cannot sell to the highest bidder, because in this
degenerate market there is only one potential buyer.

Any mechanism in which the resource provider elicits information from
the user, such as ‘will you buy this completed speculative task’s output for
x dollars, where x is less than the advertised price?’ or ‘please specify a
function conveying the decreased value of older task output’ can be abused.
A user can underreport his or her value of the task.

One way for the resource provider to pressure the user to more accu-
rately bid for such task output exists in an iterative setting: if the user pays
significantly less than the advertised price of a requested task, then the re-
source provider may occasionally refuse to sell a particular task’s output
for some penalty time period. However, how to define how often and under
what circumstances this should occur so that the buyer and seller converge
to mutually beneficial prices is difficult.

I consider this pricing extension for selling unrequested, disclosed tasks
outside my scope. It has parameters difficult to set, may be abused, and does
not lend itself to a simple user strategy. I advocate the mechanism described

5.2 Batchactive definitions and metrics · 85

above (Chapter 5.1.2) knowing that some efficiency is lost: The user pays
for all the resources consumed by requested tasks. The user does not pay
for disclosed, speculative tasks that are never requested.

5.1.5 Summary of the batchactive cost model

This section described the batchactive pricing mechanism.
A user would prefer not being charged for disclosed but never requested

tasks. The more knowledge that the scheduler has of a user’s computational
plan, the better it can order tasks to meet important scheduling goals. To
motivate users to disclose freely and deeply for tasks likely and unlikely to be
needed, only requested resources are billed. The implications that this mech-
anism has on scheduling goals is described in Chapter 6.2.2. A discussion of
how users might attempt to abuse resources under this mechanism in con-
junction with the forthcoming batchactive scheduling policies (Chapter 5.5)
is presented in Chapter 5.8.

5.2 Batchactive definitions and metrics

I extend the non-speculative scheduling definitions and metrics from Chap-
ter 4.3. Analogous definitions and metrics are covered quickly and differ-
ences emphasized. The batchactive definitions express the notion of a user
disclosing ordered or unordered tasks that might be requested in the fu-
ture. With this information, batchactive policies (Chapter 5.4 and 5.5) can
‘prefetch’ task output. New metrics are needed to measure the response time
of tasks that might begin running before being requested. In speculatively
doing work, batchactive policies might run disclosed tasks that are never
requested. To account for these resources, which can affect user costs and
server revenue in light of the batchactive pricing mechanism (Chapter 5.1),
additional metrics are introduced. The metrics in this section are referred
to in Chapter 5.3 to define scheduling goals for a scheduler of speculative
tasks.

There are servers, users, and tasks. Users arrive and depart.
A task can be disclosed, requested, canceled, executed, or finished. The

disclosed and finished states are new. A task cannot simultaneously be in
more than one state, except that a task can be both executed and finished.
As in Chapter 4.3, I refer to the set of all tasks as A.

An arrived user can disclose one or more tasks. The set of disclosed tasks
from all users up to time t is denoted by Ad(t).

86 · Cluster scheduling for explicitly-speculative tasks

Figure 5.3: A task set composed of a weighted dag of tasks in which later work
(toward the right) is often more speculative. Connected components and branches
are assigned numerical priority; equal numbers indicate no ordering preference. Dif-
ferent shades of grey represent different lines of inquiry that the task set submitter
wishes to explore.

The set of disclosed tasks from one user is called the user’s task set. In
general, a user could specify as weighted directed acyclic graphs (dags) the
order in which disclosed tasks should run, as shown in Figure 5.3. The dag’s
connected components and branches within the connected components could
represent subproblems, independent hypotheses, separate lines of inquiry; or
simply the input / output dependencies across tasks. A user may reprioritize
tasks and branches of tasks in his or her task set dag. Clustering software for
conveying dag task execution order exists in the context of non-speculative
scheduling; an example is Condor DAGMan [2004].

Determining and maintaining dag orderings is likely tedious. Besides
arbitrary dags, tasks may be desired in a flat list order or with no ordering
preference, as shown in Figure 5.4. The list represents users who know that
task A should be done before task B, which should be done before task C,
etc., reflecting an any-time or iterative improvement task set (Chapter 2.1)
or sequential tasks (Chapter 2.2.2). Tasks listed later are likely more specu-
lative. Although not shown as a user command for simplicity in Figure 5.1,
a user may reorder tasks in this list. The unordered collection, often used
when randomly sampling a large space, indicates that the user does not
mind which task outputs are returned first; any answer is helpful until more
is known about the space, reflecting parameter studies (Chapter 2.2.3). Un-
ordered tasks in the domain of I/O were called ‘dynamic sets’ by Steere
[1997] (Chapter 2.5.3), and enabled the I/O system to return requests in
the fastest order. I have only studied the simple case of flat list order in my
results (Chapter 6) because the marginal value for complex orderings is not
obvious.

5.2 Batchactive definitions and metrics · 87

Figure 5.4: Two typical task set organizations: flat list and unordered. In the list,
tasks to the right are more speculative.

A scheduling policy needs to know which disclosed tasks are candidates
for execution. These tasks include all disclosed tasks from unordered task
sets and the unexecuted tasks ordered first among all users’ ordered task
sets (i.e., due to dag or list constraints). These tasks are denoted at time t
by Ad̄(t), where Ad̄(t) ⊂ Ad(t).

An arrived user can request one or more tasks. Let tra denote when task
a was requested. The set of requested tasks among all users up to time t
is denoted by Ar(t). A requested task becomes no longer disclosed had it
been already disclosed. That is, if a ∈ Ar(t), then a /∈ Ad(t). A requested
task cannot be made disclosed by a user, whether or not it began as dis-
closed because then it becomes unclear how much the user should be charged
(Chapter 5.1): while requested, according to a batchactive policy it may have
been favorably scheduled with respect to other disclosed work, implying that
it should be charged, yet if it’s output is never requested by the time the
task completes, then its output is never seen, implying that it should not be
charged.

An arrived user can cancel tasks that he or she had previously requested
but that have not executed to completion. Disclosed (but not yet requested)
tasks, whether or not they have executed to completion, may be canceled
because disclosed task outputs are not immediately given to a user when a
task completes, as explained later in this section. Also, the system cancels
tasks associated with departed users. A canceled task remains forever can-
celed. The set of canceled tasks up to time t is denoted by Ac(t). A canceled
task becomes no longer disclosed, requested, or executed, whichever it was
before cancelation. That is, if a ∈ Ac(t), then a /∈ Ad(t), a /∈ Ar(t), and
a /∈ Ae(t). The applications within my scope do not require the rollback
mechanisms found in other work after task cancelation (Chapter 3.1).

Each task a ∈ A has a corresponding service time Sa and resource usage
ra(t).

Disclosed tasks ordered first, unordered disclosed tasks, and requested
tasks are candidates for the scheduler to choose. A task runs at time t if and

88 · Cluster scheduling for explicitly-speculative tasks

only if the scheduler decided so. The set of running tasks is denoted by

A?(t) def=
{
a ∈ Ad̄(t) ∪Ar(t) | a runs at time t

}
.

A task’s resource usage starts at 0 when it enters the system and increases
by the amount of time that it runs.

Let tea denote the time that ra grows to equal Sa. The task is considered
from this time on to be executed. The set of executed tasks up to time t is
denoted by

Ae(t) def= {a ∈ A | ra(t) = Sa} .

The way that the batchactive scheduling environment controls access to
task output differs from the non-speculative environment: If a task becomes
executed at some time t and the task was disclosed, the scheduler removes
the task from the set of disclosed tasks. That is, if a ∈ Ae(t), then a /∈ Ad(t).
At this point, the computing system stores the task’s output in an isolated
location until the task is requested or canceled. If canceled, its output is
removed from the system. If a task is executed and requested, then the task
is considered from the time that both occur and on also to be finished. The
set of finished tasks at time t is denoted by Af (t). When a task becomes
finished, the computing system provides the task’s output to the requesting
user, and the scheduler removes the task from the set of requested tasks.
That is, if a ∈ Af (t), then a /∈ Ar(t).

See Figure 5.5 for a pictorial representation of the states in which a task
can reside in batchactive scheduling.

Now I describe batchactive scheduling metrics which are used to evalu-
ate how well the scheduler achieves the scheduling goals described in Chap-
ter 5.3.

Mean visible response time is the main metric under consideration. A
task with service time Sa is needed by the user at time tn and executes
(completes) at time te. A requested and executed task a has a corresponding
visible response time defined as

V resp
a

def=

{
0 if tn > te,

te − tn if tn ≤ te.

This consideration of when a task was needed, instead of when a task was
requested (by users behaving speculatively with a non-speculative sched-
uler) or disclosed (by users with a speculative scheduler), is novel and more
useful than the well-known definition of response time reviewed in Chap-
ter 4.3 which conflates the time a task was requested with the time a task

5.2 Batchactive definitions and metrics · 89

Figure 5.5: Batchactive task state transitions (compare to Figure 4.4). When a
task’s resource usage equals its service time, the task becomes executed. If a task
is both executed and requested, then the task is considered finished and the task’s
output is supplied to the requesting user. If a task executes and was disclosed but
not requested, then the task’s output is stored in an isolated location until requested
or canceled. If the task is canceled after executing, its output is dropped. Disclosed
and requested tasks may also be canceled.

was needed. I suspect, along with Feitelson et al. [1997], as elaborated in
Chapter 5.4.1, that this overloading has subsisted because of the difficulty
in knowing when speculative task outputs are needed by a user.

This definition of visible response time overestimates when a user was
blocked on task output because it does not consider the away periods (Chap-
ter 2.3.2) that may have occurred between a task being requested and the
task running to completion. The actual time blocked on a task’s output,
V resp

a
′, is

V resp
a

′ def= V resp
a − any contemporaneous away periods of the submitter.

I discuss the difficulty in knowing away periods accurately in Chapter 5.7.
The results and success of this thesis are not contingent upon obtaining and
using away period information. For all scheduling and evaluation purposes,
the definition of V resp

a is used.
In addition to visible response time, I also study mean visible slowdown.

The visible slowdown of one task is

V slow
a

def=
V resp

a

Sa
.

Note the differences between these two metrics and the non-speculative
scheduling’s response time and slowdown from Chapter 4.3. A task’s visible

90 · Cluster scheduling for explicitly-speculative tasks

Figure 5.6: How when a task is disclosed, requested, and executed, along with a
task’s service time, determines its visible response time and visible slowdown in the
context of batchactive scheduling. (Compare to Figure 4.5.) Three tasks are shown.
Requests are indicted by dots. If a request — which indicates task output need
— happens after a task executes, as in task c, then its deadline was met and its
visible response time is 0. In this particular scheduling policy, shorter tasks preempt
(indicated by a dotted line) larger tasks. (This is not a two-tiered batchactive
policy as defined in Chapter 5.5.1 because the disclosed task c executes while other
requested tasks exist.)

response time may be less than its service time. Further, visible slowdown
may be less than 1. These are because if the task had been disclosed, it
may have been chosen to run before being needed. Or, if the task had been
requested before being needed under a non-speculative scheduler, it also
may have been chosen to run before being needed. (Assuming Sa > 0, as
is only reasonable, both visible metrics are non-negative and finite.) Visible
response time and visible slowdown are depicted in Figure 5.6.

The throughput metric is also refined. Visible throughput represents only
the number of needed tasks which completed (whether under a batchactive
or non-speculative scheduler). That is, only the subset of executed tasks
that are known or are eventually known to be needed by the user contribute
to visible throughput. (Visible throughput could be lower than traditional
throughput if the scheduler runs the wrong speculative tasks.) Users using
a speculative scheduler disclose speculative tasks and request needed tasks.
Here, only the requested tasks that execute to completion contribute to
visible throughput, i.e., the finished tasks.

Another metric is the variance of visible response time. Recall that users
desire consistency in the time that they are blocked on task outputs (Chap-
ter 4.4.1). The results of this thesis (Chapter 6.2) tabulate this metric to
ensure that it does not get worse with speculative schedulers.

The number of deadlines met over some time is the number of times that
the visible response time of a task was 0;3 i.e., the number of times that

3‘Deadline’ is used in analogy to its real-time scheduling meaning (Chapter 5.6.5).

5.2 Batchactive definitions and metrics · 91

an eventually needed task executed before being needed. This immediate
turnaround time is impossible unless a user submits a task — a request with
a non-speculative scheduler or a disclosure with a speculative scheduler —
before needing it.

Consider the total requested resources used by a user. The variance of
this value across users is called the variance of user requested resource us-
age. This metric reflects the extent to which users use different amounts of
resources for tasks that began or eventually were determined to be needed.
The lower this variance, the closer users were to using the same amounts of
requested resources over time. This metric differs from the variance of user
resource usage introduced in the non-speculative environment (Chapter 4.3)
because it ignores disclosed tasks that are never requested.

Mean scaled billed resources, with the same definition as in the non-
speculative scheduling environment (Chapter 4.3), is an important metric
in the speculative scheduling environment. It is always optimal (1) under the
batchactive pricing mechanism (Chapter 5.1): no resources are billed for dis-
closed tasks that were never requested. The batchactive pricing mechanism,
by supporting uncharged task disclosure, removes the need for users to make
response time / cost tradeoffs of each task submission. Any task that is not
known to be needed (i.e., any speculative task) is not initially requested,
but disclosed. But under the non-speculative scheduling pricing mechanism
(Chapter 4.2), users who request speculative tasks that they later find they
will not need are charged for the resources these tasks consume.

The batchactive environment tracks three load-related metrics. Load is
the same as in the non-speculative environment: the fraction of time that
the server was doing work during some time period, irrespective of whether
the work was requested or disclosed.

The remaining two load variants concern server revenue. Requested load
tracks the fraction of time that a server was doing work that was eventually
requested during some time period. This metric is needed to compare the
revenue of a server that sells resource time under the batchactive pricing
mechanism (Chapter 5.1) against the pricing mechanism of charging for all
resource use (Chapter 4.2). Another way to understand the implications of
the batchactive pricing mechanism is with uncharged load, which is simply
load minus requested load.

I summarize these metrics in Table 5.1. Two metrics introduced in the
context of non-speculative scheduling (Chapter 4.3) were not covered here
because scheduling goals based on them were later deemed unimportant
or outside of my scope (Chapter 4.4). These were the variance of instan-
taneous slowdown (degree of equal- or fair-share) and the maximum over

92 · Cluster scheduling for explicitly-speculative tasks

metric description
mean visible response time average blocked time
mean visible slowdown average blocked time scaled by task size
visible task throughput number of needed tasks that completed
variance of visible response time how visible response times differ
number of deadlines met number of tasks executed before being

needed
variance of user requested resource
usage

degree of per-user equal requested re-
source usage

mean scaled billed resources average per-user billed over needed re-
sources

load fraction of server busy time
requested load fraction of time taken by requested tasks
uncharged load load minus requested load
decision count number of scheduling decisions

Table 5.1: Revised scheduling metrics when allowing for speculative scheduling.
This list is a generalization over the non-speculative scheduling metrics listed in
Table 4.1. Visible response time and visible slowdown replace response time and
slowdown. Visible task throughput refers to only executed tasks that were also
needed. The variance of visible response time replaces the mean variance of user
response time. The number of deadlines met is a new metric. The variance of user
requested resource usage ignores resources used by disclosed but never requested
tasks. Scaled billed resources is unchanged. Load is refined based on whether tasks
were requested. Finally, decision count is unchanged.

mean slowdown (degree of starvation). All other non-speculative scheduling
metrics have analogous speculative scheduling counterparts.

5.3 Batchactive scheduling goals

There are batchactive user goals and batchactive resource provider goals.
The scheduling metrics that I refer to in defining these goals were formalized
in Chapter 5.2 and summarized in Table 5.1. Goals with analogs in the non-
speculative environment (Chapter 4.4) are covered quickly while differences
are emphasized.

5.3.1 Batchactive user goals

Users wish the minimum time between needing and receiving task output.
This time may be scaled by task size. That is, the scheduler should mini-
mize mean visible response time and minimize mean visible slowdown. These

5.3 Batchactive scheduling goals · 93

are speculation-aware versions of minimizing mean response and minimizing
mean slowdown from Chapter 4.4.1.

Users also wish to reduce the amount they pay for unneeded resources.
As in Chapter 4.4.1, minimizing this cost is not a scheduling problem, and
thus is not considered a scheduling goal. The employed pricing mechanism
impacts what users pay for unneeded tasks, which is reflected by the mean
scaled billed resource metric. Under the batchactive pricing mechanism, this
value is always optimal (1); the results (Chapter 6.2) of this thesis compare
the extent to which non-speculative scheduling produces a mean scaled billed
resources over 1.

When resources are not directly charged (such as in a communal cost-
center), the goal is to minimize the variance of user requested resource us-
age (while remaining work-conserving), because doing so prevents resource
abuse, as in the analogous non-speculative scheduling goal (Chapter 4.4.1).

5.3.2 Batchactive resource provider’s goals

According to the batchactive pricing mechanism (Chapter 5.1.2), the re-
source provider’s revenue is proportional to the amount of resources re-
quested during some time period.

Thus, from the resource provider’s perspective, a scheduler should max-
imize requested load, the amount of time that resources are busy running
tasks that are or will be requested. (This is analogous to the non-speculative
goal of maximizing load in Chapter 4.4.2, since there, every resource usage
is billed.) When a resource is idle, or is running a disclosed task that will not
be requested, the provider loses potential revenue. To focus on this lost rev-
enue (instead of conflating unneeded speculation with idle time), a subgoal
is to minimize uncharged load.

The relationship between requested load and visible task throughput is
depicted in Figure 5.7. Save for the effect of task cancelation, requested load
and visible task throughput are interchangeable under batchactive schedul-
ing in proportion by the mean service time of requested tasks. These are not
interchangeable under non-speculative scheduling: visible task throughput
ignores unneeded tasks speculatively requested.

Requested load can be increased by returning output quickly to users so
that they will submit new work quickly. Uncharged load can be decreased
by executing tasks that have been, or are more likely to be, requested.

94 · Cluster scheduling for explicitly-speculative tasks

Figure 5.7: How requested load affects visible throughput and revenue under
batchactive scheduling. (Figure 4.6 is the analogous sketch for non-speculative
scheduling.) As requested load varies, visible throughput and revenue vary pro-
portionally. Visible throughput is scaled by the mean task service time of requested
tasks and revenue is scaled by the mean task service time of requested tasks and the
price per unit resource. Shown at maximum requested load (1) is maximum visible
throughput (a) and maximum server revenue (b). This sketch does not depict the
effect of task cancelation: tasks which may have taken some requested load before
being canceled should not increase visible throughput.

with respect to goal
user minimize mean visible response time
user minimize mean visible slowdown
user minimize the var. of user requested resource usage
resource provider maximize requested load
resource provider minimize uncharged load

Table 5.2: Speculative scheduling goals. (Compare to the non-speculative scheduling
goals of Table 4.2.)

5.3.3 Summary of batchactive scheduling goals

I discussed user goals and resource provider goals separately for specula-
tive scheduling. They were built on the metrics listed in Table 5.1 and are
summarized in Table 5.2.

Although, as mentioned in Chapter 4.4.3, minimizing mean response
time and mean slowdown sometimes conflict, the best algorithm for min-
imizing mean visible response time among the policies discussed (Chap-
ter 5.5.1) best minimizes mean visible slowdown (Chapter 6.2). To prevent
users from dominating resources, where users should be cooperating with
shared resources but where such cooperation cannot be assumed, minimiz-
ing the variance of user requested resource usage trumps meeting time-based
metrics. Maximizing requested load maximizes resource provider revenue,
and minimizing uncharged load contributes toward this.

5.4 General batchactive policies · 95

5.4 General batchactive policies

A batchactive scheduling policy uses knowledge that some tasks are specu-
lative. There are many such policies. Policies may require information easy
to obtain or uncertain information that must be predicted. There is a quali-
tative tradeoff between performance and information required, although re-
sults suggest that the bulk of the performance gains are possible with little
information (Chapter 6.2.9). This section describes the intuition behind poli-
cies which put much information to use. Presenting these ambitious policies
helps to understand the behavior of the simpler, more easily implementable
policies (Chapter 5.5) that this thesis focuses on.

Toward meeting the goals listed in Table 5.2 with an online scheduler
(Chapter 4.5), a batchactive scheduling policy may have the following in-
formation on candidate tasks (Ar(t) ∪ Ad̄(t)) available on which to base
decisions:

– task service time;

– task deadline, the time that a speculative task will be requested, if the
task turns out to be needed;

– the probability that a speculative task will be requested.

For requested tasks under a speculative scheduler, the deadline and re-
quest time are the same and the probability is moot (i.e., 1). For disclosed
tasks, the deadline is some time after disclosure, and the probability is any-
thing between no chance and absolute certainty.

In batchactive scheduling, two separate scheduling worlds converge: re-
sponse time-based and deadline-based. The response time-based literature
is deadline-agnostic, while the deadline-based literature is concerned with
whether deadlines are satisfiable. Between these are soft-real-time sched-
ulers which aim to maximize utility, a function of when tasks run [Jensen
et al., 1985]. A task’s utility is optimal if it runs before its deadline, after
which utility decreases.4 It is unclear how to define utility (and dynami-
cally redefine utility as conditions change) based on uncertain deadlines and
task cancelation. According to a scheduling theorist, scheduling speculative
tasks to minimize time-based metrics does not have precedent in the litera-
ture [Harchol-Balter, 2003a].

It may take a long time for a user to request or cancel a disclosed task.
A user may neglect to cancel a known-unneeded task (out of forgetfulness,

4More comparisons against real-time scheduling are in Chapter 5.6.5.

96 · Cluster scheduling for explicitly-speculative tasks

sloth, or apathy), leading to a congestion of speculative tasks. One solution
is to consider, for scheduling purposes, disclosed tasks that have not been
requested for two or three factors of time longer than normal to be canceled.
Another solution is to use task request history to more intelligently select
among disclosed tasks, as in the implemented hrp and hrr disclosed queue
subpolicies described in Chapter 5.5.1.

For each scheduling goal (Table 5.2), I describe policies toward meet-
ing them. Most of these policies are novel and most rely on predictions of
deadlines or probabilities of request. Just as it was not certain that task
size would be known in the non-speculative scheduling environment (Chap-
ter 4.7), deadline and probability also might not be known. I discuss how
these quantities could be predicted in Chapter 5.7. The following major
section (Chapter 5.5) describes reduced-information, simpler, more easily
deployable policies that were studied in simulation (Chapter 6.2).

5.4.1 Concerning mean visible response time and mean visible slowdown

It has been suggested [Feitelson et al., 1997] that response time (rather
than visible response time) has been the primary scheduling metric [Con-
way et al., 1967, ch. 8] partly because scheduling analysis becomes harder
when tasks are needed after disclosure. Disclosure adds one or more of the
following difficult considerations: multiple submitted tasks per user, only
some of which the user is waiting for, task cancelations, and away periods.
These difficulties have confounded theory researchers — I am unaware of
results concerning minimizing mean visible response time or visible slow-
down — and, although I present results in simulation that include these
considerations (Chapter 6.2), I have not provided analysis. (However, I ap-
ply operational laws to a non-speculative simulation run to verify aspects of
the simulator which have well-known analytic analogues in Chapter 6.1.4.)

For mean response time — in which there is no disclosure and response
time is tabulated from request to completion, irrespective of when a user
needed a task — srpt, which only requires task size, is optimal (Chap-
ter 4.5.1). srpt is also best among the listed non-speculative scheduling
policies for mean slowdown (Chapter 4.5.2).

In the context of speculative scheduling, task deadline and probability
of a task being needed may also be known. This information can be used
to preferentially schedule probable, soon to be needed tasks and delay the
execution of less likely to be needed tasks. Deferring such work can prevent
running tasks that will later be canceled. It is unclear among size, deadline,
and probability which matters most. The intuition of a scheduling theorist is

5.4 General batchactive policies · 97

that probability and size are more important than deadline [Harchol-Balter,
2003a]. The items in the following non-comprehensive list place different
emphasis on these inputs (all save edf are novel):

– Least probability-scaled remaining time (lprt).

Let Sleft
a denote the remaining service time before completion of task

a. This policy selects the task with the lowest Sleft
a × (1− p)i where p

is the probability of the task being requested, and i is some constant
determined through experiment. This policy uses size and probability
estimates.

– Least probability-scaled remaining time with postponement (lprtp).

This policy is same as lprt except that if the nominated task will not
be requested for a sufficiently long time (which may be determined
through experiment), the task is postponed and the next runner-up
is considered. This policy uses size, probability, and rough deadline
estimates.

– Earliest deadline first (edf) [Stankovic et al., 1995].

This policy selects the task whose deadline is soonest. This policy uses
deadline estimates.

– Earliest scaled deadline first (esdf).

This policy is a new variation on edf which divides deadlines by prob-
abilities and selects the task with the soonest scaled deadline. This
policy uses probability and deadline estimates.

edf and esdf are difficult to implement because of the difficulty in
knowing deadlines (Chapters 5.6.5 and 5.7).

If away periods (Chapter 2.3.2) are also known, the following refinement
can apply: Consider a requested task. If the requesting user enters an away
period, the task is temporarily considered, for the duration of the user’s
away period, to have a deadline of when the away period will finish.

The algorithmic complexity of a scheduling algorithm determines run-
time when there is a sufficiently large number of tasks. The simplest ap-
proach to making a scheduling decision would be to search all tasks organized
in an unordered linked list for the appropriate task (such as the task with
the earliest deadline, for the edf policy), resulting in worst-case O(n) per-
formance where n is the number of tasks. This is not satisfying when there
exists a large number of tasks as expected when users deeply speculate.

98 · Cluster scheduling for explicitly-speculative tasks

A better approach is a priority queue constructed from a heap, which
is common for a wide range of scheduling policies [Cormen et al., 1990].
Extracting the best task and inserting a new task are worst-case O(lg n)
operations using heaps. Each of the above algorithms can use priority queues.
However, in the uncommon (relative to other scheduling operations) case
that the information that a queue is sorted on (like deadline) change (because
better information becomes available), then the heap property needs to be
reinstated, a potentially expensive worst-case O(n lg n) operation. Selecting
the best task in the lprtp policy is likely to be more expensive when many
tasks are postponed; at worst, all tasks are postponed leading to a worst-
case O(n) performance. One possible fix is to keep all tasks with distant
deadlines in another structure and incorporate them in the heap only after
some time has passed.

5.4.2 Concerning the variance of user requested resource usage

Recall that user-fb (Chapter 4.5.3) optimally minimizes the variance of
user resource usage while remaining work conserving. A small modification,
which looks at only the total amount of requested resources consumed by a
user and which I call user-requested-fb, optimally minimizes the variance
of user requested resource usage. When a scheduling decision is to be made,
user-requested-fb selects the task from the user that has used the fewest
requested resources. If a user has more than one task queued, tasks are taken
in fcfs order from that user on the assumption, met by the sequential tasks
application type (Chapter 2.2.2) and any-time task sets (Chapter 2.1), that
the user will need the tasks according to submission order.

Because running a disclosed task does not affect requested resources,
a complete scheduling policy utilizing user-requested-fb must prioritize not
only among requested tasks, but also among disclosed tasks. Such two-tiered
scheduling is introduced in the next major section, Chapter 5.5.

The policy user-requested-fb can be implemented with a priority queue
and thus all operations take O(lg n) time. [Cormen et al., 1990]

5.4.3 Concerning requested load

If people behave similar to an open system, then requested load can be in-
creased by adding more users. If people behave similar to a closed system,
then, in addition to adding more users, requested load can be increased by a
policy that also improves visible response time. Those policies, such as favor-
ing small tasks likely to be requested, were covered above in Chapter 5.4.1.

5.5 Implemented batchactive policies · 99

The arguments for how more users and scheduling policy affect load were
made in the context of non-speculative scheduling (Chapter 4.5.4). In my
target application domain (Chapter 2.1), how people use computing systems
combines aspects of an open system (users arriving and departing) and a
closed system (users needing and thinking about the output of one task
before the next task).

5.4.4 Summary of general batchactive policies

A batchactive scheduling policy uses knowledge that some tasks are not
known to be needed at submission time; that some tasks are speculative.

It is unknown how to optimally minimize mean response time or min-
imizing mean slowdown in the speculative scheduling environment. Intu-
itively, the more information put to use, such as estimates of task deadlines
and the probability of a task being needed, the better these goals can be
achieved; e.g., an srpt variant which scales remaining execution time by 1
minus the probability of request and postpones candidates with late dead-
lines (lprtp). More practical approaches toward minimizing visible response
time and visible slowdown are introduced in the next major section (Chap-
ter 5.5). Approaches which aid these time-based goals also often increase
requested load, the primary resource provider’s goal.

When resources are not directly charged and users may abuse resources,
the goal of minimizing the variance of user requested resource usage trumps
time-based goals and the policy should be user-requested-fb.

Using priority queues, the algorithmic complexity of all scheduling op-
erations for all the policies introduced in this section is O(lg n) in the worst
case.

5.5 Implemented batchactive policies

By not requiring difficult to obtain information, the batchactive policies im-
plemented in this thesis are more easily deployable than some of those dis-
cussed earlier (Chapter 5.4). I later demonstrate substantial performance im-
provements (Chapter 6.2) even when the minimum information (i.e., whether
or not a task is speculative) is available.

I begin by defining the two-tiered nature of the implemented schedulers.
Then I describe policies that I designed and implemented toward meeting
specific scheduling goals. I also show that the two-tiered approach, which
always favors known-needed tasks, is not always correct. Finally, I introduce,
to later gain insight of how worse than optimal the advocated batchactive

100 · Cluster scheduling for explicitly-speculative tasks

Figure 5.8: The implemented batchactive policies segregate requested and disclosed
tasks into different queues in which the requested queue has priority.

schedulers are, an impractical two-tiered scheduler which requires impossible
to obtain information.

5.5.1 Two-tiered scheduling

The implemented batchactive scheduling solutions, under the assumption
that requested work is more important than speculative work, share the
property that requested tasks, Ar(t), have priority. That is, if an idle pro-
cessor and a pending requested task exist, this task runs before any pending
disclosed tasks, Ad̄(t), as illustrated in Figure 5.8. Most of the time, this two-
tiered approach — having independent queues for requested and disclosed
work — is the right choice. (Chapter 5.5.2 offers a counterexample.) Fur-
ther, those deployed schedulers with baroque requirements (debug queues,
administrator queues, ‘special’ queues, etc., described in Chapter 4.6.1) can
be extended with little difficulty to have a disclosed task queue to support
speculative tasks.

The overall policy may employ distinct subpolicies for each queue. I
notate two-tiered batchactive schedulers as requested task subpolicy × dis-
closed task subpolicy. For example, srpt × fcfs indicates a requested queue
subpolicy of srpt and a disclosed queue subpolicy of fcfs.

Figure 5.9 illustrates two-tiered batchactive scheduling by showing the
lengths of such a policy’s requested and disclosed queues. The length of the
requested queue increases when users request tasks and decreases when these
tasks execute or are canceled. The length of the disclosed queue increases
when users disclose tasks and decreases when these tasks execute, are re-
quested, or are canceled. Moreover, disclosed tasks only run when there are
no requested tasks available to run.

What remains is to determine which subpolicies to employ for the re-
quested and disclosed queues.

Once a task is requested (whether it began that way, or was later pro-
moted from being disclosed), the task looks no different than one in a non-
speculative scheduling environment. Thus, a well-studied non-speculative

5.5 Implemented batchactive policies · 101

0 2000 4000 6000 8000 10000
0

5

10

15

time (s)

qu
eu

e
le

ng
th

requests
disclosures

Figure 5.9: Queue lengths of a two-tiered batchactive scheduler over a three-hour
simulation of srpt × fcfs. Running tasks count as being in queue.

policy should be used to schedule requested tasks; the choice of policy based
on the arguments listed in the context of non-speculative scheduling (Chap-
ter 4.5) and summarized here.

Recall that when resources are directly charged, the principal goal is
to minimize time-based metrics (which also works toward maximizing re-
quested load). Once a task is requested, response time accrues and the
best algorithm is srpt (shortest-remaining-processing-time). Existing sys-
tems which do not have service time estimates employ either fcfs (first-
come-first-serve) or fb (foreground-background), even through fb would do
better in light of task size distributions with decreasing failure rates (Chap-
ter 4.5.1).5 When resources are not directly charged, the principal goal is
to prevent resource abuse. The third and final subpolicy for requested tasks
that I study is user-requested-fb, which minimizes the variance of user re-
quested resource usage. srpt and user-requested-fb can be implemented
using priority queues to achieve an algorithmic complexity for all scheduling
operations of O(lg n) [Cormen et al., 1990] in the worst case. fcfs can be
implemented with a doubly-linked list for an algorithmic complexity for all
scheduling operations of Θ(1).

There is little theory regarding the proper scheduling of disclosed, spec-
ulative tasks with respect to minimizing time-based metrics (and indirectly
maximizing requested load). I examine several subpolicies for speculative

5The resource provider’s reasons for sometimes choosing fcfs over a policy which might
do better for minimizing mean response time were described in Chapter 4.6.3.

102 · Cluster scheduling for explicitly-speculative tasks

tasks with respect to the users’ time-based goals (which contribute to meet-
ing the resource provider’s revenue-based goals for a profit-center). Since a
disclosed task subpolicy cannot affect requested resource usage, there are
no disclosed task policies for the goal of minimizing the variance of user
requested resource usage.

Because of its optimality with respect to minimizing response time, srpt
is initially an obvious choice for the disclosed queue. However, deadlines,
which are important for effectively scheduling disclosed tasks, are not con-
sidered by srpt. fcfs is another choice. The motivation for fcfs is to
quickly run tasks that will be requested first under the assumption, met by
the sequential tasks application type (Chapter 2.2.2) and any-time task sets
(Chapter 2.1), that users will request speculative tasks in the order in which
they were disclosed. Thus, applying fcfs to all disclosed tasks is a probably
a good estimate of request order from one user, and a reasonable estimate
across users.

Two novel subpolicies for the disclosed queue leverage the unique features
of speculative tasks. The first is called highest-request-probability (hrp) and
it favors users who have historically been better speculators; i.e., users who
have more often requested tasks that they disclosed. Within a user, tasks are
selected according to the order in which they were disclosed. Ways in which
to track the likelihood of a user to request a disclosed task are covered
in Chapter 5.7. The implemented hrp policy looks at all disclosed tasks
from one user and calculates the percentage of them which were eventually
requested and uses this percentage as the request probability.

The motivation for hrp is that by avoiding executing speculative tasks
that will not be eventually requested, visible response time, visible slowdown,
and requested load should improve. hrp also resists a particular type of
(intentional or not) denial-of-service on the disclosed queue described in
Chapter 5.8. The downside of hrp is that it may cause users to hesitate
in disclosing work: if the user feels it is unlikely that he or she will request
disclosed tasks, then the user may elect to not disclose deeply to avoid having
future speculative tasks deferred.

The second policy is called highest-requested-resources (hrr) and it fa-
vors users who have accrued the most requested resources; i.e., users who
have paid the most in an attempt to improve time-based metrics and re-
quested load. Within a user, tasks are selected in disclosure order. Like hrp,
hrr avoids a denial-of-service on the disclosed queue. Unlike hrp, users
may disclose freely. The intent is for hrp and hrr to reward good science:
the more carefully someone specifies future work, the better the scheduler
performs for that person.

5.5 Implemented batchactive policies · 103

Unexplored variants of hrp and hrr would decay probabilities and re-
quested resource usage over time to support users who change their behav-
iors. Filters for performing this, balancing stability and agility in the face of
changing behavior, were described in Chapter 4.7.

If away periods (Chapter 2.3.2) are also known, the following refinement
can apply: Consider a requested task. If the user who requested the task
enters an away period before the task executes, then the task is considered
disclosed for that duration; i.e., temporarily moved from the requested queue
to the disclosed queue.

hrp and hrr can be implemented with priority queues, leading to worst-
case O(lg n) complexity for all scheduling operations [Cormen et al., 1990].
The complexity of the whole policy (combining both subpolicies) is the com-
plexity of the worst subpolicy, which is O(lg n) in the worst case. Even when
many users and tasks are present, execution overhead in my unoptimized
implementations of two-tiered batchactive schedulers, which use linked lists
instead of heaps, is insignificant (Chapter 7.1.4).

The FreeBSD operating system [FreeBSD, 2004] employs an idle queue
that is serviced only when the regular queue is empty.6 I discuss problems
in using this idle queue to implement two-tiered batchactive scheduling in
Chapter 5.6.2. The Condor clustering system [Condor, 2003] enables users
to prioritize their own tasks. I discuss this interface further when showing
how it may be extended to deploy batchactive scheduling (Chapter 7.2.3).

5.5.2 Reasonable, not optimal

The two-tiered scheduling policies are based on the belief that demand work
is more important than speculative work. This section shows that favoring
requested tasks is not always correct for meeting time-based goals. Depend-
ing on deadlines and request probabilities, it is sometimes better for the
scheduler to run the speculative tasks first. In short, this can occur when
there are small speculative tasks which are likely to be requested competing
against a few large requested tasks.

Consider a task A of size 10 requested at time 0 and a task B of size
1 also disclosed at time 0. Task B has a 0.99 chance of being requested at
time 1 and a 0.01 chance of never being requested.

The first policy runs requested tasks via srpt. If task B is requested at
time 1, the following occurs: Task A will run from time 0 to time 1. Then
task B will run from time 1 (when it is requested) to time 2 (completion).

6Tasks may be placed in this queue using the idprio command.

104 · Cluster scheduling for explicitly-speculative tasks

Finally, task A will run from time 2 to time 11 (completion). The visible
response time for task A is 11−0 = 11 and for task B is 2−1 = 1, resulting
in a mean visible response time of (11 + 1)/2 = 6. If instead task B is
never requested, the mean visible response time is 10 (simply the visible
response time of task A running by itself from time 0 to time 10). Factoring
in the probability of task B being requested, the expected mean would be
6× 0.99 + 10× 0.01 = 6.01.

The competing policy runs speculative tasks first. If task B is requested,
the following occurs: Task B will run from time 0 to time 1 (completion).
Then task A will run from time 1 to time 11 (completion) resulting in a
visible response time of (0+11)/2 = 5.5 (the 0 represents task B completing
before being requested). If instead task B is never requested, the mean visible
response time is 11. Factoring in the probability of task B being requested,
the expected mean would be 5.5 × 0.99 + 11 × 0.01 = 5.555. Recall that
for the first policy the expected mean was 6.01. Since 5.555 < 6.01, for this
scenario, it is better to favor speculative tasks.

Thus, the pervasive claim (stated by Eggert [2004] and DeGroot [1990]
and employed in systems such as Optimistic Make [Bubenik and Zwaenepoel,
1989]) that a scheduling policy should choose requested tasks before dis-
closed but not (yet) requested tasks is false.

Other cases in which disclosed tasks should run first involve locking de-
pendencies among tasks and resource affinities (processor, memory, storage,7

and network overheads in task preemption). Neither of these are concerns
for the communication patterns and granularity of the application scenarios

7One case from Patterson’s work on prefetching data from disks [Patterson III, 1997]
(Chapter 2.5.3) is illustrative [Patterson, 2004]. One tested application was a link stage
in the building of an executable. The linking operation desires data blocks in a non-linear
order. The linker, gnuld, was modified to issue whole-file prefetches (later this was changed
to block-level prefetches). Three cases of a link of a small number of files (making inter-
file access time critical) were tested: prefetching off, prefetching on with priority given
to demand accesses, and prefetching on with priority given to prefetch accesses. With
prefetching off there was a fair number of seeks and the performance was medium. With
prefetching on and priority given to demand accesses, performance was pathologically
worse. This case caused the disk arm to thrash between large offsets. (The main latency
in disk accesses are caused by seeks [Ruemmler and Wilkes, 1994].) The best performance
resulted with prefetching on and priority given to prefetches because entire files would
be read sequentially. In general, it is not known how to strike a balance between I/O
prefetching and demand fetching. Perhaps a system should prefetch only if it is efficient
and pays off, considerations that could be adapted to dynamically. It may help to calculate
whether a prefetch would complete before some predicted disk idle period before issuing the
prefetch [Golding et al., 1995]. In my environment of processor-bound task speculation,
the granularity of tasks (Chapter 2.2) is such that the cost to preempt is insignificant;
switching from a speculative to demand task does not effect performance.

5.5 Implemented batchactive policies · 105

under consideration (Chapter 2.2).
In spite of the non-optimality of two-tiered batchactive scheduling, sig-

nificant improvements on common practice are achieved in this thesis. For
example, fcfs × fcfs performs at least twice as well for about 20% of
the simulated scenarios for mean visible response time (Chapter 6.2.4). The
small number of scenarios in which batchactive policies do worse are par-
tially explained by the counterexample in this section.

5.5.3 Impractical policy

I also study an impractical two-tiered scheduler to gain insight on how much
better performance can be with impossible-to-obtain information.

I implemented a disclosed queue subpolicy called request-first-come-first-
serve (rfcfs) which works like fcfs except that disclosed tasks that will
never be requested are never run. That is, the uncharged load of a batchac-
tive policy using rfcfs is zero.

An omniscient scheduler which also knew task deadlines could result in
an even better policy. However, while the design of my simulator makes
it simple to implement a policy (rfcfs) that knows the probability of a
task request perfectly, it is difficult to know its deadline perfectly, which is
a function of many dynamic considerations elaborated on in Chapter 5.7.
Thus, such a scheduler for comparison purposes is not attempted.

5.5.4 Summary of implemented batchactive policies

The studied batchactive schedulers are all two-tiered schedulers that give
preference to requested tasks, are easily implemented, and are easily de-
ployable as an additional disclosed queue to existing computer systems. The
requested queue subpolicies srpt, fcfs, and user-requested-fb follow the
non-speculative motivation in Chapter 4.6.3. Two disclosed queue subpoli-
cies are novel: hrp, which favors users who speculate less (i.e., users who
submit speculative tasks with high ‘hit rates’), and hrr, which favors users
who have requested more work over time. One disclosed queue subpolicy,
rfcfs, is impractical to implement, but is studied to show how unknown
information might improve performance beyond the capabilities of prac-
tical batchactive schedulers. The disclosed queue subpolicies are listed in
Table 5.3.

I make no claims as to the optimality of the batchactive policies. In fact,
I showed that in some situations, the two-tiered approach is wrong. Instead,
I demonstrate the superiority of several batchactive policies in simulation

106 · Cluster scheduling for explicitly-speculative tasks

policy description
fcfs first-come-first-serve
srpt shortest-remaining-processing-time first
hrp user with the highest-request-probability first
hrr user with the highest-requested-resources first
rfcfs run only tasks to be requested via fcfs

Table 5.3: Disclosed queue scheduling subpolicies. A complete two-tiered batchac-
tive policy is formed by taking a non-speculative subpolicy from Table 4.3, such as
fcfs, and combining it with a disclosed queue subpolicy from this table, such as
hrp, to achieve, e.g., fcfs × hrp.

(Chapter 6.2). By using priority queues, the algorithmic complexity of two-
tiered batchactive policies for all scheduling operations is O(lg n) in the
worst case and overhead measurements in Chapter 7.1.4 confirm that the
policies are tractable.

5.6 Discordant transformation of existing scheduling

Here I examine how to implement batchactive scheduling on existing in-
terfaces with an eye to whether some or all of the performance benefits of
batchactive scheduling can be achieved. I determine that different underly-
ing schedulers can emulate batchactive scheduling to different degrees. The
emulations that come closest present awkward interfaces to the user. Thus,
even with a underlying scheduler capable of emulating batchactive proper-
ties closely, I recommend a batchactive interposition layer between the user
and system so that the user is presented with the batchactive scheduling
interface, which I believe would be easier to use.

Batchactive scheduling introduces an interface which differs from tra-
ditional scheduling because (1) speculative tasks are initially disclosed, (2)
needed tasks are explicitly requested at the time of need, and (3) task output
is isolated until requested. Disclosure enables a scheduler to treat requested
and disclosed tasks differently. Requesting (or ‘pulling’ task output) enables
more efficient policies based on learning user behavior and enables the sys-
tem to provide feedback to the user of the visible response times of his or
her tasks.8 Isolation enables the batchactive pricing mechanism. I argue that
the batchactive pricing mechanism is beneficial because it encourages users
to issue speculative tasks (Chapter 5.1).

8This feedback is useful because it shows the user the benefits of batchactive scheduling.

5.6 Discordant transformation of existing scheduling · 107

For example, a simple batchactive scheduler, like fcfs × fcfs, de-
rives performance improvements by giving disclosures lower priority. Some
batchactive schedulers, like fcfs × hrp, provide additional performance
by learning user behavior. They do so by examining when disclosures are
eventually (or never) needed via explicit task request (or cancelation) com-
mands. Knowing when a task was needed enables the calculation of visible
response time. The batchactive pricing mechanism is enabled by the isola-
tion of task output: if task outputs were not isolated, a user may attempt
to read needed output that was speculatively generated without requesting
and being charged for the output.

Over time, different kinds of schedulers have been developed to address
the needs of different kinds of applications and operating environments. I ex-
amine how interfaces of existing schedulers inhibit or permit task discrimina-
tion, the learning of user behavior, the reporting of visible response time, and
the application of the batchactive pricing mechanism. I map to batchactive
scheduling to the following: standard Unix scheduling using the nice pri-
ority interface or signal delivery, priority-class scheduling (using FreeBSD’s
idle queue scheduler as a specific example), and the Condor clustering sys-
tem’s scheduling. For each example I discuss separately how task disclosure
can be emulated to achieve task discrimination. I also discuss proportional-
share and real-time scheduling. A file system approach to achieving the other
batchactive properties is discussed last and is applicable to all the under-
lying schedulers under consideration. Users would be motivated to use the
mappings I present by the positive results of this thesis (Chapter 6.2).

5.6.1 Applying Unix scheduling

Unix scheduling [McKusick et al., 1996] targets multiple users time-sharing
a single server running quick-response tasks along with long-running tasks.
Unix scheduling strives to improve the response time of users on consoles
interacting with shells, editors, graphical user interfaces, etc., while ensuring
that software builds, scientific computations, etc., do not starve. For the
latter kinds of tasks, slowdown may better reflect user expectations. At
the same time, the scheduler strives to provision resources ‘fairly’ (equal-
share) among tasks. Tasks blocking on other resources are replaced by other
candidates for execution to pipeline the use of multiple resources among
multiple tasks. [Valhalia, 1995; Tanenbaum, 1992]

Unix scheduling is found in FreeBSD [FreeBSD, 2004], System V [Good-
heart and Cox, 1994], Mach [Black, 1991], among other operating systems.
It employs a multi-level feedback queue in which tasks with equal priority

108 · Cluster scheduling for explicitly-speculative tasks

resides on the same queue. The scheduler runs tasks round-robin from the
highest priority non-empty queue. The scheduler favors small tasks by lower-
ing the priority of tasks as they consume processor time and by preempting
tasks before their quanta expire if a higher priority sleeping process wakes
up. The scheduler prevents starvation by periodically raising the priority of
tasks that have not recently run.

Unix scheduling poorly meets time-based user goals (Table 5.2) because
it executes all of a user’s speculative tasks at once instead of in the needed
order and because speculative and non-speculative tasks across users run at
once. Unix scheduling poorly meets the resource-based user goal of mini-
mizing the variance of user requested resource usage because it strives for
fairness among tasks, not among users. Because scheduling does not meet
time-based user goals well, scheduling will fall short of the resource provider
goal of maximizing requested load (Chapter 5.4.3).

There are at least two ways in which one may adapt standard Unix
scheduling to run speculative tasks at lower priority: adjusting task priorities
using the nice interface and stopping (pausing) / resuming tasks using
signals.

Unix scheduling exposes an interface to influence scheduling priority
called nice. A nice value is an integer ranging from −20 to 20, in which
lower numbers indicate higher priority.9 Users would submit speculative
tasks at a nice value of 20 using the nice command. If a user needs a
task’s output and the task has not yet executed, the user would minimize
the task’s nice value. These nice value changes would be easier to accom-
plish through a batchactive translation tool. Given a user’s task set, all but
the first task can be issued by the tool at the maximum nice value. If the
task has not executed by the time of need, the tool can reset the task’s nice
value.

This approach does not match two-tiered batchactive scheduling (Chap-
ter 5.5.1). Speculative tasks will timeshare the processor with needed tasks
as the internal priorities in the Unix scheduler’s multi-level feedback queue
are decayed. The achieved service rates of Unix scheduling combined with
nice priority changes is not standardized or well-defined. For example, it
has been shown that it is difficult to construct systems based on nice to
guarantee a portion of the processor resource. [Hellerstein, 1993; Straathof
et al., 1986].

Unix scheduling supports the delivery of signals [McKusick et al., 1996] to
9Only the superuser can specify nice values less than 0, thus the range is effectively 0

to 20 without a ‘setuid root’ executable that could be part of a batchactive toolkit.

5.6 Discordant transformation of existing scheduling · 109

Figure 5.10: Emulating batchactive scheduling on Unix scheduling. Shown is a user-
level batchactive scheduler issuing stop / resume signals to the Unix scheduler to
control speculative and non-speculative tasks. Only one task will be eligible to
run in the kernel’s multi-level feedback queue (mlfq) at any time. This method
effectively removes scheduling decisions from Unix.

unconditionally stop and resume the execution of a task (using SIGSTOP and
SIGCONT, respectively). A more direct way to emulate two-tiered batchac-
tive scheduling would be to stop the execution of any speculative tasks when
non-speculative tasks are ready to run. This would achieve a variant of fb ×
fb in which resource usage is decayed. It is overly burdensome for a user to
be aware of when non-speculative tasks are ready to run. Thus, a monitoring
tool would determine when such signals should be issued. More control, to
achieve policies such as fcfs× fcfs, e.g., would be possible by this tool stop-
ping even non-speculative tasks (Figure 5.10). Bypassing the decay-usage
prioritization of the kernel’s multi-level feedback queue effectively removes
scheduling decisions from Unix, but is only possible if scheduling decisions
are not frequent, to avoid excessive user-level scheduling and signal delivery
overhead.

5.6.2 Applying priority-class scheduling

Two-tiered batchactive scheduling is a restricted case of priority-based queues
or classed schedulers [Corbató et al., 1962]. Classed schedulers pick from the
highest non-empty class before proceeding to lower classes. Within a class,
tasks may run to completion or processor-share, among other policies. Such
scheduling is employed to pigeonhole users into different classes of service
(i.e., providing ‘differential’ service) by an administrator, based, perhaps, on
advertised prices, service level agreements, importance, or on recent resource
usage such as in the multi-level feedback queue of Unix (Chapter 5.6.1). For
example, the tasks of a principal investigator might rank higher than a grad-

110 · Cluster scheduling for explicitly-speculative tasks

uate student’s, which might rank higher than an undergraduate research
assistant’s. Such rankings are not difficult to create: psychological evidence
suggests that people are good at finding the conditionally monotone rela-
tionships necessary in forming them [Dawes, 1979]. In contrast, batchactive
scheduling employs only two queues or classes and each user has access to
both by choosing to request a needed or disclose a speculative task.

Two-tiered batchactive scheduling can be emulated on a classed sched-
uler with two classes as follows. A user could place speculative tasks in to
the lower priority queue and needed tasks that have not executed into the
higher priority queue.

A batchactive translation tool could abstract away queue details. Given
a user’s task set, the tool would submit all but the first task into the lower-
priority class and the first task into the higher-priority class. When a user
is blocked on task output and the task has not executed, a command to
the tool would move a task from the low priority queue to the high priority
queue.

As mentioned in Chapter 5.5.1, the FreeBSD operating system [FreeBSD,
2004] employs an idle queue that is serviced only when the regular queue
is empty. FreeBSD exposes an interface to place tasks in an idle queue that
only runs when the regular queue is empty using the idprio command.
Speculative tasks may be placed in the idle queue so that they would not
interfere with non-speculative tasks, simulating the two-tiered aspect of two-
tiered batchactive scheduling. Again a batchactive translation tool could
abstract away the details of executing queue changing commands.

Unfortunately, the underlying policies of the classes might not be modifi-
able. Typically, the tasks within a class will be serviced via ps (approximated
by round-robin with a certain quantum size), fcfs, or fb (also approxi-
mated). For FreeBSD, the requested and disclosed queue subpolicies would
be the variant of fb which the multi-level feedback queue implements. Source
code modification of the scheduler would be necessary to install different
policies.

5.6.3 Applying Condor scheduling

The Condor clustering system [Condor, 2003] strives to provide equal re-
source usage among users. The policy looks at the sum of the resource usage
of all the tasks requested by a user and preferentially schedules tasks be-
longing to users whose tasks have used fewer resources, preventing a user
from obtaining more than his ‘fair’ share by queuing large amounts of work.
The amount of resources used by a user’s tasks are decayed over time and

5.6 Discordant transformation of existing scheduling · 111

the inverse ratios of these decayed values across users determines the ratios
of resources the users will receive if they queue work, ensuring that tasks
belonging to users whose tasks have used more resources do not starve.

Condor enables users to order their own tasks using a rank characteristic
associated with each submission. However, this characteristic only orders
task execution within each user. There is no mechanism to specify that
some tasks of one user (the requests) should have a higher priority than
some tasks of another user (the disclosures). A proposed solution, involving,
in part, submitting tasks from multiple users as if the tasks came from the
same user, is described in Chapter 7.2.3.

5.6.4 Applying proportional-share scheduling

A proportional-share scheduler aims to give externally defined fractions of
processing time to competing tasks. A user running several processor-bound
tasks, such as those found in scientific environments, could control the share
of processor time that each task receives, and an administrator could control
the relative rates at which different users could use the processor, obtaining
load insulation.

Waldspurger et al. introduced a ticket abstraction for flexible resource
allocation using novel proportional-share algorithms. In lottery schedul-
ing [Waldspurger and Weihl, 1994], each task holds a number of tickets. The
scheduler selects which task to run by picking a ticket from the runnable
tasks at random and choosing the task that holds this winning ticket. Stride
scheduling [Waldspurger and Weihl, 1995] is a deterministic version of this
policy. Cooperating tasks can transfer tickets among each other and ‘curren-
cies’ enable isolation among users, groups, and subgroups of tasks. Cross-
node ticket distribution for enabling proportional-share on a cluster was
discussed by Arpaci-Dusseau and Culler [1997]. My extensions to lottery
scheduling enabled the coexistence of tasks that demand low dispatch la-
tency and tasks that are processor-bound [Petrou et al., 1999]. Additional
proportional-share goals can be achieved with the ticket abstraction [Wald-
spurger and Weihl, 1996], but they are not relevant to the speculative tasks
(Chapter 2.2) under consideration.

With fewer theoretical guarantees, schedulers have been introduced to
achieve long-term resource shares among competing users [Larmouth, 1978;
Essick, 1990]. In network scheduling, which has the additional challenge
of controlling poorly behaving sources which could swamp intermediate
routers, deficit round-robin [Shreedhar and Varghese, 1996], built on the
‘fair queuing’ concepts in Demers et al. [1989], efficiently and with tight

112 · Cluster scheduling for explicitly-speculative tasks

bounds proportionally shares network resources.
Proportional-share scheduling is not intended to minimize mean visible

response time or minimize mean visible slowdown, the batchactive time-
based goals. If each task is given an equal portion, scheduling devolves to
ps, and under the common task service time distributions which have de-
creasing failure rates (Chapter 4.5.1), ps achieves a lower mean response time
compared to fcfs but a higher mean response time compared to fb (Chap-
ter 4.5.1). That time-based goals are not achieved prevents the achievement
of the resource provider’s goal of maximizing requested load (Chapter 5.4.3).
Even meeting the resource-based goal of minimizing the variance of user re-
quested resource usage is difficult. Assigning users equal tickets that fund the
tickets of the users’ tasks does not work because scheduling decisions look
at current ticket holdings without knowledge of past resource consumption.

The segregation of speculative and non-speculative tasks to emulate two-
tiered batchactive scheduling could be achieved with a proportional-share
scheduler by placing each kind of task in a different currency. When a non-
speculative task exists, the execution of speculative tasks can be prevented
by removing their backing currency. However, the scheduling within each
kind of task remains primitive unless tickets are adjusted at every scheduling
decision.

5.6.5 Applying real-time scheduling

Real-time scheduling is the catch-all for time-critical demands, providing
predictable scheduling with guaranteed or statistically bounded metrics re-
lated to whether task-specific deadlines are met usually with resource reser-
vations (resource requirement specifications and admission control) unsuit-
able to the dynamic application domain of this thesis (Chapter 2.2). Unix
scheduling, because it lacks admission control, cannot provide such guaran-
tees, even if it had an interface with which to express deadlines [Valhalia,
1995]. Mercer [1992] is an introduction to real-time scheduling.

The characteristic of a soft-real-time system is that the completion of
a task (or an operation within a task) has a value to the user that can be
expressed as a function of time [Jensen et al., 1985]. An example application
has deadlines every 33ms by which a video frame must be displayed. Missing
these deadlines results in decreased, but non-zero, value, or utility to the
user.

The Rialto scheduler [Jones et al., 1997] is an example of a modern
real-time scheduler. The smart scheduler [Nieh and Lam, 1997] is another,
and during overload, it notifies applications when their deadlines cannot

5.6 Discordant transformation of existing scheduling · 113

Figure 5.11: The difficulty of mapping utility functions to batchactive scheduling
goals. Shown is the utility of a task as a function of when it completes. If it completes
before the deadline d, which is determined partially by previous task service time
and current think time and away periods, its utility is maximum (1). After this,
visible response time accrues and its utility decreases to 0 at time x. Real-time
schedulers can use such utility functions to schedule multiple tasks in an attempt
to maximize global utility. However, in my environment, deadlines are difficult to
predict and tasks may be canceled. Further, it is unclear how utility should degrade
(the shape of the curve between times d and x, and the location of x) after the
deadline.

be met, allowing adaptive applications to adjust their demand. A simple
and well-studied real-time policy is earliest deadline first [Stankovic et al.,
1995]. In Chapter 5.4.1 I discussed it and a variant in the context of general
batchactive schedulers.

Time-based goals can be attempted by ensuring that tasks finish before
their deadlines or quickly after deadlines elapse, thus also meeting the re-
source provider’s goal of maximizing requested load (Chapter 5.4.3). Yet,
soft-real-time scheduling is hard to apply because their utility functions are
hard to create as depicted in Figure 5.11. The work patterns (Chapter 2.1) of
the users of the applications under consideration (Chapter 2.2) are dynamic:
deadlines change, think time and away periods are uncertain, tasks are can-
celed, disclosed tasks may never be requested. While service time, which
partially determines deadlines, may be predicted (Chapter 4.7), I argue in
Chapter 5.7 that other aspects make it hard to predict deadlines, making
real-time scheduling unsuitable even if it could support dynamic deadline
changes. If reasonable utility functions can be determined, then scheduling
becomes an optimization problem to maximize aggregate utility. Similarly,
a utility function mapping resource usage to utility can be computed for the
resource-based goal.

114 · Cluster scheduling for explicitly-speculative tasks

5.6.6 Knowing whether a task is desired

I described ways in which different kinds of scheduling interfaces may be
extended so that the scheduler favors needed tasks over speculative tasks.
In addition, mechanisms are needed to enable smarter scheduling that learns
from user behavior, to provide visible response time feedback, and to support
the batchactive pricing mechanism (Chapter 5.1).

Consider the hrp disclosed queue subpolicy. Among the studied policies,
it provides the best batchactive performance as shown in the results of this
thesis. Further, it is robust to a disclosed queue denial-of-service described
in Chapter 5.8 that is possible under the batchactive pricing mechanism.
hrp requires knowledge of what tasks, out of all disclosed, are eventually
needed.

Assume that the underlying scheduler can be modified to support learn-
ing subpolicies like hrp.10 Existing interfaces, unfortunately, do not provide
enough information to support such policies. Many task requests and can-
celations, which represent whether or not a user desires a task’s output, will
not be seen by the system. If a needed task executes before the user needs
its output, the user will likely directly consume the task output (which is of-
ten stored on a distributed file system). If an unneeded task executes before
the user knows that its output is unneeded, the user has no motivation to
cancel the task.11 In fact, under hrp, a user does not wish to appear to not
need tasks, because hrp favors the users who speculate less. Further, not
knowing task request time prevents policies (not simulated in the results of
this thesis) which rely on think time estimates, like edf (Chapter 5.4.1).

If the time of task need is presented to the scheduler via explicit re-
quest, then the user can be provided with visible response time statistics, so
that the user can appreciate the benefits provided by batchactive schedul-
ing. Visible response time for a task would be the time of task execution
minus the time of task request, or 0 if the request happened after execution
(Chapter 5.2).

Finally, the traditional interface of not isolating output until needed
makes the batchactive pricing mechanism impossible, for without isolating
output a user may never request (and pay) for needed output.

10Supporting different scheduling, such as fcfs × hrp, would requires source code
modification for many systems.

11In batchactive scheduling, there is motivation to cancel unneeded tasks. Because task
output is isolated, the user does not know if the task has completed. The user will wish to
cancel unneeded work so that it would not compete with future tasks that the user might
need.

5.6 Discordant transformation of existing scheduling · 115

What is required is an emulation of a pull interface for needed tasks
and motivation for unneeded tasks to be canceled. The Xgrid clustering
system [Xgrid, 2004] is one system that presents a pull interface for task
output. Because it is not popular, and because it provides no mechanism for
task prioritization needed to emulate two-tiered batchactive scheduling, it is
not discussed further. Note that the translation tools described above could
support the delivery of task outputs to users, blocking if a needed task is
not finished, or returning immediately if so. However, unless this is the only
way for a user to receive task output, users might bypass such as tool to
directly access the file system to retrieve outputs.

Whether and when a user needs a task’s output can be determined out-
side of an existing scheduler’s interface by using file system techniques. One
technique relies on file systems that enable hooks to be triggered on certain
operations. Another technique relies on monitoring a distributed file system.

dmapi (data management application programming interface) [The Open
Group, 1997] is a file system interface standard that supports the triggering
of hooks on specified file system operations. It is commonly used in hsm (hi-
erarchical storage management) systems that adaptively move data based
on frequency of use between cheaper / slower and costlier / faster storage
layers. An interface to enable interposed layers in the file system that also
can trace file system activity was explored by Heidemann and Popek [1994].

nfs [Shepler et al., 2000] monitoring, which may [Blaze, 1992] or may
not [Aranya et al., 2004] be passive, is another technique to trace file system
operations.

With such techniques, the attempt to read output from a task can be
assumed to represent that the user desires the output. The time that the
user initiates the read can be assumed to be when the output is desired.
These attempted reads (which may yield no data if the task has not com-
pleted) would trigger upcalls that supply the statistics necessary for learning
policies, calculating visible response time, and charging the user under the
batchactive pricing mechanism.

To encourage task cancelation when the user determines that a task is not
needed, the user should not be able to find out whether a task has completed.
For example, the completion of the task should be hidden by controlling
access to administrative commands that display executing commands, such
as ps. This way, whether or not the task has executed, the user will wish
to cancel it so that it would not compete with his or her other tasks. If the
task’s output consumes accounted storage space, then the user deleting a
task’s output (which may be an empty file is the task has not executed)
before reading it could be considered cancelation.

116 · Cluster scheduling for explicitly-speculative tasks

While useful for the reasons shown, file system-level techniques require
a fair bit of mechanism that is not always available.

5.6.7 Summary of the discordant transformation of existing scheduling

In summary, I have shown that existing interfaces do not need to change
to get most of the benefits of batchactive scheduling. However, increasingly
accurate batchactive emulation requires increasingly arcane techniques and
present increasingly awkward interfaces to the user.

The existence of ways to emulate batchactive characteristics simplifies
deployment. I recommend that users interact with a batchactive layer, dis-
closing and requesting, instead of the underlying system, for ease of use.

5.7 Predicting request probability and deadline of speculative tasks

I describe techniques to predict information that some batchactive sched-
ulers require. The techniques for predicting the probability of a speculative
task being eventually needed are straightforward. However, it is difficult to
predict the deadline of a speculative task (i.e., when it will be requested),
suggesting that batchactive policies needing this information are impractical.
The prediction of task service time, also needed by some batchactive policies,
was covered in Chapter 4.7. Away period prediction is also discussed. Note
that batchactive policies needing none of this information, such as fcfs ×
fcfs, still perform better in many cases than their non-speculative coun-
terparts (Chapter 6.2.4) for the scenarios that I examined. The information
that the predictive techniques of this section may provide are intended to
aid in obtaining additional performance improvements.

The probability of a disclosed task being needed can be estimated using
the same techniques for predicting task service time (Chapter 4.7). There
are two types of techniques: predictions based on task characteristics and
predictions based on recent user behavior. The former learns relationships
between discrete or continuous task parameters and the probability of task
request by fitting polynomials. The polynomials can then be evaluated to
make probability predictions based on possibly unseen parameters of dis-
closed tasks that have not yet been requested. The latter looks at the tasks
that a user has disclosed and counts which have been eventually requested
to determine a ratio or ‘hit-rate’ modeling how well the user tends to spec-
ulate. This technique should employ an ewma or ‘flip-flop’ filter to favor
recent behavior.

5.7 Predicting request probability and deadline of speculative tasks · 117

The deadline of a speculative task is difficult to predict. One can assume
that a user will request a needed speculative task some time after he or
she has received the output of a previously requested task and has ‘thought
about’ that output; i.e., the time of the previously needed task complet-
ing plus the user’s think time. Knowing when the previously needed task
completed is intractable as it depends on task arrivals, load, scheduling pol-
icy, and other dynamic considerations. A simplification, which introduces
considerable inaccuracy whose performance implications are unknown, is to
assume that the deadline is infinite until the previous task’s output is de-
livered to the user, at which point the deadline becomes the user’s think
time.

Per-user think time can be predicted by taking the average of the elapsed
time between a user receiving task output and requesting the next task’s
output. This average should be weighed to favor recent information more
heavily using the filters discussed in Chapter 4.7.

Another approach is to assume that think time follows a distribution,
enabling the system to predict whether the think time associated with one
task will exceed that of another task, and thus, to predict whether one
deadline will occur before another. Crovella and Bestavros [1995] found that
web think times conform to a heavy-tailed distribution. In particular, web
client think time is Pareto distributed (Chapter 6.1.3) with an α parameter
of 1.5. It is reasonable to assume that think time for non-web browsing tasks
is also Pareto distributed.

Away periods (Chapter 2.3.2) are the most ambitious quantities to pre-
dict. Deadline predictions should be delayed when a user enters an away
period (Chapter 5.4.1). The studied two-tiered policies, which do not make
use of deadline predictions, could use away period information to temporar-
ily move tasks from the requested queue to the disclosed queue, favoring
users who are not in away periods (Chapter 5.5.1).

Away periods can be explicitly indicated. Users, especially in corporate
settings, may maintain calendars or schedules of their activities, indicating,
among other responsibilities, lunches, meetings, and presentations. It may
be assumed that during such times the user is unavailable to consume task
output, i.e., that the user is ‘away.’ The downside of relying on this informa-
tion is that calendars, if available at all, are often merely hints as to what
a user would do. Further, there is no pressure for a user to comprehensively
report his or her away periods, since if the user overreports, his or her tasks
suffer.

A scheduler may assume that the user is in an away period if he or
she is not in the office. Within an organization, it has been suggested that

118 · Cluster scheduling for explicitly-speculative tasks

users wear badges indicating their location [Want et al., 1992]. However, it is
difficult and questionable to force people to wear devices that would reveal,
e.g., that they were out to lunch when they had claimed they were waiting
for their tasks to complete.

Instead, away periods could be estimated by tracking when a user’s work-
station is idle. Systems that track workstation idleness for remote task ex-
ecution differ in how they define idleness (e.g., low load, console inactiv-
ity for a certain number of minutes, no resident foreign tasks [Douglis and
Ousterhout, 1991]). As in predicting think time, away period predictions
can be done by analyzing the recent past or by assuming that the peri-
ods fit a distribution. Recent workstation idle periods can be averaged and
filtered using the techniques in Chapter 4.7. Acharya et al. [1997] found,
among other useful statistics, that on average, a workstation that has been
idle for five minutes can be expected to be idle for another 40–90 minutes.
Other research, however, suggests good predictive power with more complex
schemes incorporating more information, such as weekly patterns [Wyckoff
et al., 1998; Petrou et al., 1996].

5.8 Preventing resource abuse

Finite computing resources will be overloaded if one is able to run tasks
whenever one pleases. As shown by Hardin [1968] using the example of over-
population, the goal of ‘the greatest good for the greatest number’ [Bentham,
1823] is impossible in that it tries to maximize two variables, population and
happiness, that are in conflict: increasing the population (number of tasks)
requires reducing the calories each consumes (increasing visible response
time).

The employed pricing mechanism and scheduling policy determine or
restrict the ways in which users may intentionally or unintentionally abuse
resources.12 Loosely, resource abuse is the use of resources against the spirit
of the system, such as a small number of users consuming an ‘unfair’ amount
of resources. This definition is clarified by the examples of resource abuse
below.

Under the batchactive pricing mechanism, either all resource usage is
12Unix-like scheduling allows one to create an unbounded number of processes, unfairly

swamping the system. Processor-bound tasks receive lower priority, but tasks that interact
with users receive higher priority. An old loophole [Tanenbaum, 1992], not present on
modern Unix schedulers, was to make processor-bound tasks appear to interact with users
(perhaps by having a thread consume otherwise useless user input) to achieve a greater
share of the resource.

5.8 Preventing resource abuse · 119

not directly charged to the user or only requested resources are charged
(Chapter 5.1).

An example of abuse is a user requesting instead of disclosing tasks that
are speculative. This causes the two-tiered scheduling policies to give those
speculative tasks as much priority as requested tasks, which will result in
higher mean visible response times; a ‘tragedy of the commons.’ [Hardin,
1968] When requested resources are charged to the user, this abuse is not
possible. If a user attempts to gain scheduling priority by requesting instead
of disclosing speculative tasks, then the user will be charged for the resources
that those speculative tasks consume.

When resource usage is not directly charged (such as in a communal
cost-center), there is no technical solution13 to the kind of resource abuse in
which a user requests tasks that are actually speculative. The best approach
is to set the requested queue subpolicy to user-requested-fb to prevent users
from consuming more requested resources than other users when other work
is available to run (Chapter 5.5.1). This is the same strategy used by non-
speculative schedulers to prevent unfair resource usage. Still, if most users
tagged speculative work as needed, then the performance of batchactive
scheduling would diminish to that of a non-speculative scheduler.

One might assume that users would act honestly in settings where re-
sources are not directly charged and users work toward a shared goal; such
as an in-house cluster used by computer animators. However, cluster usage
is not directly charged in university settings, yet the users (e.g., graduate
students) may or may not collect into larger aggregates with a shared goal;
often they compete for resources among one another.

Adam Smith popularized ‘the invisible hand’ in which an individual who
‘intends only his gain’ is ‘led by an invisible hand to promote [. . .] the
public interest.’ [Smith, 1776] Yet experience and analysis have shown the
opposite consequence from selfish actions. Consider the following example
from Hardin [1968]: in a common pasture, it is in a herdsman interest to
add an extra animal, even though doing so contributes to the dissipation of
resources because the costs of over-grazing are shared among all herdsmen.
In a computing environment, laissez-faire policies result in a user adding
more work; it is in one’s interest to request work even under contention,
when this would decrease responsiveness for all.

Users must be pressured to request only known-needed tasks. One way is
to establish social norms. With a scoreboard showing the computational re-

13A technical solution may be defined as one that requires a change of scheduling policy
only, demanding no change in user morality or intelligence.

120 · Cluster scheduling for explicitly-speculative tasks

sources each person received for requested tasks, abusers can be confronted
by peers or privately by it managers. Such norms have been shown to work
well in small groups, but they have not been shown to scale to larger com-
munities [Burger and Gochfeld, 1998]. Also, this appeal to conscience leads
to a double-bind: if one does not behave acceptably, he or she is condemned,
but if one complies, he or she is secretly condemned for being a simpleton
who does not take advantage of the system.

A restrictive and impractical solution is to privatize computing resources
so that they are no longer shared. While avoiding resource abuse since each
resource is used by only one self-interested entity, this would lead to poor
resource utilization. Splitting a resource into portions belonging to individ-
uals, despite the technical and maintenance impracticalities, would result in
the inability to support bursts of user activity greater than the portion that
he or she controls.

The solution that works is for users to be penalized (charged, taxed)
for requested resource usage. Besides the batchactive pricing mechanism
(Chapter 5.1.2) which charges a constant amount for requested resources,
another possibility suggested by MacKie-Mason and Varian [1995] is for
people to be charged to the extent they take computer resources from others;
what is called congestion or shadow pricing.

Consider another resource abuse scenario consisting of gaming. Gaming
can be defined as the behavior of an individual which increases his utility by
using the system contrary to its intended use. It is against the spirit of the
system for a user to disclose work he knows he will never request. A user
is free to do so in batchactive scheduling, because, under the batchactive
pricing mechanism when resources cost, the user is not penalized for need-
less speculation. The question is whether this behavior increases a user’s
utility, and if so, whether and how such behavior could be countered using
a scheduling mechanism. In this situation, one may define an increase in
utility to be a decrease in the user’s mean visible response time.

First I determine that this gaming attempt does not result in gaming;
a user does not benefit from this behavior. Then I consider the effects of
such behavior on the system and on other users, as might be caused by
a well-meaning but unintelligent user, a user making a poor attempt at
gaming, or by a user wishing to cause harm (viz., deny service). I argue that
a batchactive scheduler using hrp or hrr as the disclosed queue subpolicy
works to counter this errant or abusive behavior.

There is no advantage for a user to add tasks that will never be requested
to any part of his or her task set. For such task sets to benefit a user,
they would have to cause tasks that the user will actually request to be

5.8 Preventing resource abuse · 121

preferentially scheduled. Consider a scheduling policy which favored users
who have disclosed more work to the system. Under this scheduler, a user can
game the system by adding needless speculation. However, no batchactive
scheduler in this thesis does this. The closest analogy is hrr, which favors the
users who have submitted the most requested (charged) work. In traditional,
non-speculative scheduling, common policies favor users who have submitted
less work, such as user-fb. To my knowledge, there is no reasonable policy,
deployed or theoretical, that has some advantageous characteristics but that
succumbs to this form of gaming. For example, neither fcfs, user-fb, nor
srpt as disclosed queue subpolicies would prefer the needed tasks of users
who submit unneeded tasks.

One might ask whether the batchactive pricing mechanism could allow
a non-thinking or abusive user to behave in such a way as to lower server
revenue or to increase the mean visible response times of others. These are
undesirable outcomes that should be countered by better scheduling.

Consider a scenario in which all users except one never disclose work they
know they will never request. The remaining user instead has a maximum
task set change probability, high tasks per task set, high service time, and
high think time. In a batchactive scheduler, unless an appropriate disclosed
queue subpolicy is employed, the work from the abusive user will compete
with other disclosed work, lessening the benefits of batchactive scheduling
until it is on par with traditional scheduling. Without the ability to pipeline
disclosed work with think time, the non-abusive users’ visible response times
will increase (i.e., get worse). Further, users will submit work more slowly
to the system, resulting is worse requested load (server revenue).

Thus, a malicious or poorly-speculating user could deny the service of
other users’ speculative tasks by disclosing deeply but never or rarely re-
questing. These never-to-be requested tasks would compete with speculative
tasks that will more likely be requested. Although its benefits are reduced
when this occurs, this behavior would not cause batchactive scheduling to
do worse than non-speculative scheduling.

Some disclosed queue subpolicies, such as fcfs, srpt, and user-fb, can-
not prevent these negative consequences. What is needed is a policy that
considers the amount of disclosed work that is eventually needed.

A solution to this abuse is for the scheduler to favor the disclosed tasks
of historically better speculators or higher payers, which is how the hrp and
hrr disclosed queue subpolicy operate, respectively. They both are intended
to work in the resource provider’s interest, who wishes to profit from run-
ning tasks that will be requested, and in the interest of other users, whose
speculative tasks would suffer from an artificially large disclosed queue. Us-

122 · Cluster scheduling for explicitly-speculative tasks

ing hrp or hrr for the disclosed queue subpolicy removes these negative
effects. The abusive user’s disclosed tasks will not be run before other user’s
disclosed tasks. Another solution is to consider, for scheduling purposes and
when competing disclosed tasks exist, disclosed tasks from users who typi-
cally make requests two or three factors of time longer than normal to be
canceled.

Note that the described denial-of-service is not critical because it is not
anonymous. An observant administrator will take measures against the abu-
sive user. If such abuse occurs often, the described automatic scheduling
methods are appropriate, relieving administrator burden.

Besides the protection of abuse, hrp is a valuable disclosed queue subpol-
icy because it provides better mean visible response time (across all users)
compared to fcfs as the disclosed queue subpolicy, especially when there
is a lot of variability in how speculatively users behave, as my results show
(Chapter 6.2).

In summary, when requested resources are charged, I am unaware of ways
in which users can abuse resources. A denial-of-service under the batchactive
pricing mechanism can be avoided with the hrp and hrr disclosed queue
subpolicies. When resources are not directly charged, performance may be
driven down to the level of a non-speculative scheduler by users who request
speculative work.

5.9 Beyond centrally scheduled processing resources

This section discusses how speculative work besides computation on cen-
trally scheduled clusters might be better scheduled, illustrating that the
space of speculative scheduling extends beyond the focus of this thesis.

The following are considerations when devising a speculative scheduler:
The pricing mechanism can either not charge for any resource usage, charge
for the resources used, charge over some duration regardless of use, etc. The
granularity of speculative work may range from small to large; something
that can complete in a fraction of a second to hours, affecting the benefit
of performing the operation speculatively and the cost that the operation
would have on other work (such as context- and tlb-switch overheads).
Scheduling decisions may be centralized or decentralized (laissez-faire), in
which there might be background load unknown to or unaccounted by the
schedulers. Speculative work may modify state visible to the user and if
such work is determined to not be needed rollbacks need to restore state,
adding complexity and time overhead. More generally, these considerations

5.9 Beyond centrally scheduled processing resources · 123

can form a cost / benefit analysis to predict whether speculative work should
be done at all (i.e., the ‘throttling’ notion of DeGroot [1990]).

The application scenarios of this thesis (Chapter 2.2) discussed specu-
lative computations of large enough granularities that plateaus of human
perception [Nielsen, 1994, ch. 5] and task switching overheads were irrele-
vant on architectures with centralized scheduling (Chapter 4.1) employing
existing and batchactive pricing mechanisms (Chapters 4.2 and 5.1). No roll-
backs were required because all speculative state was isolated (‘sandboxed’)
in an output store for future user retrieval.

I first discuss speculation in the context of web page prefetching and
then in the context of task scheduling when the centralized scheduler cannot
be modified and does not present an interface that could be leveraged to
emulate batchactive scheduling as discussed in Chapter 5.6. These diverse
environments can be addressed with a similar feedback-based solution, which
is described last.

5.9.1 Web document prefetching

Web document prefetching has the strong potential to improve the experi-
ence of those browsing the web, as argued in Chapter 2.2.4. A prefetching
agent could construct a task set of prefetch candidates, perhaps by looking
at the links on the currently displayed page and recursively for the links
on prefetched pages or by heeding server-inserted annotations developed
through access log analysis [Padmanabhan and Mogul, 1996]. A prefetch
scheduler sitting as a proxy between an unmodified browser and the net-
work could determine how many such prefetch tasks to issue.14 A person
selecting a link is equivalent to requesting task output. The time during
which a person reads a web page is equivalent to his or her think time.
The scheduler could attempt to balance the visible response time that the
person experiences with the fractional increase in network usage caused by
prefetching.15 I assume that no kernel modification or router support exists
to understand which accesses are speculative.

Network usage is typically charged by time (such as monthly payments)
irrespective of usage. There is no incentive to throttle network speculation
to be a good ‘netizen.’ However, a user performing many simultaneous net-
work transfers would wish that speculative work have less priority than

14Whether prefetches would be issued in parallel or sequentially is a function of available
bandwidth.

15The disk space used to store prefetched data is not considered; given the large size of
disks and the small size of web documents, any storage used is usually insignificant.

124 · Cluster scheduling for explicitly-speculative tasks

other flows, meaning that there is a cost to performing ineffective prefetches.
Scheduling decisions are decentralized: each user’s agent independently de-
cides whether to inject speculative requests into the network, and there exists
background network load between web clients and servers unaccounted by
the scheduler. Rollbacks are unnecessary because unneeded web accesses are
never shown; they are simply discarded.

The granularity of a web page transfer can be small, and thus human
perception models should be accounted in a non-linear benefit function. If
visible response time is below 100 ms, it is known that the scheduler need
not try harder: the user will not notice [Nielsen, 1994, ch. 5]. Other rough
boundaries later in time (1, 10, 100 seconds) were found through psycho-
logical tests and user studies [Newell, 1990, ch. 3] [Nielsen, 1994, ch. 5]. An
application that has a range of acceptable visible response time is called
‘elastic.’ [Neugebauer, 1999]

In this environment, given a set of prefetch candidates, which, if any,
should the scheduler issue to maximize some function of visible response
time and fractional increase in network usage?

5.9.2 Decentralized speculative task scheduling

I propose a way for the advantages of batchactive scheduling to be obtained
when the underlying cluster scheduler cannot be modified to understand
the presence of speculative tasks. That is, the scheduler is opaque and does
not present an interface that could be leveraged to emulate batchactive
scheduling as discussed in Chapter 5.6.

Each user’s machine (console, local workstation) issues speculative tasks
independently. To the centralized, unmodified cluster scheduler, such tasks
appear indistinguishable from non-speculative tasks. The independent user
schedulers, or batchactive frontends, seek to minimize visible response time
on behalf of their users. Doing so requires reducing interference among non-
speculative tasks from the same user. At the same time, the frontends should
throttle task speculation to ‘play nicely’ with respect to other users’ tasks.
If resources are directly charged, frontends should also seek to minimize
charges for unneeded speculation. The frontends may base decisions on the
recent visible response time experienced by their users, the queue length of
the centralized scheduler, and some per-user function of time v. money.16

16As a starting point, Professor of Economics Ian Walker proposes [Walker, 2002] that
the value of someone’s hour, vh, is

vh
def
=

wh(1− t)

C
,

5.9 Beyond centrally scheduled processing resources · 125

Figure 5.12: Interaction between users, each with a batchactive frontend, and un-
modified cluster software and cluster resources. Compare this organization to Fig-
ure 5.1, the focus of this thesis, which depicts speculative scheduling when cluster
software can be modified.

The choice of the number of speculative tasks to submit that these frontends
make is the same burdensome choice that users make when speculating
with non-speculative schedulers, one motivator for batchactive scheduling
(Chapters 2.4 and 4.8).

Figure 5.12 depicts how users with batchactive frontends interact with
the clustering software and resources. Each batchactive frontend indepen-
dently decides which and when disclosed and requested tasks from a single
user pass on to the clustering software’s non-speculative policy. The non-
speculative policy decides which and when tasks submitted by the frontends
run, employing decay-usage or a variant of fcfs (Chapter 4.6.3). This policy
communicates with the operating systems running on the cluster resources
which handles the details of running tasks on the servers (such as forking
processes) and provides task statistics (such as resource usage and load) to
the policy. The output from an executed task is delivered to the appropriate
frontend’s output store and further delivered to the user if and when the
task is requested.

Decentralizing speculative decisions at the frontends impacts perfor-
mance and ease of deployment. The central coordination advocated in this
thesis and illustrated in Figure 5.1 should do better at meeting the batchac-
tive goals listed in Table 5.2 than the laissez-faire approach of the indepen-

where wh is that person’s hourly wage, t is the tax rate, and C is the local cost of living
index; an advancement over the advice from Benjamin Franklin to a young tradesman in
1748 that ‘time is money.’

126 · Cluster scheduling for explicitly-speculative tasks

dent frontends because the single batchactive policy has more information
(it receives all user interaction) and has more control (it determines all load).

The frontends are easier to deploy. If a central batchactive policy cannot
be installed, then each user who wants some of the benefit of batchactive
scheduling can install his or her own batchactive frontend as a library-based
batchactive scheduling solution. It is unclear how many users would need to
do so for benefits to be significant.

In this environment, given a set of speculative tasks belonging to a user,
statistics of the unmodified centralized scheduler such as queue length, and
a mapping of time and money for each user, which speculative tasks, if
any, should a frontend issue to maximally benefit its user while not overly
interfering with the progress of other users’ tasks?

5.9.3 Feedback-based approach

Control feedback can support both web document prefetching and decentral-
ized speculative task scheduling. This solution is suited to the decentralized
nature of these diverse environments which includes background load un-
known or beyond the control of the scheduler. Here, speculation has a price:
once a speculative task is injected, it competes against non-speculative tasks
both from the same user and other users because the rest of the system can-
not treat speculative tasks differently.

A feedback controller for each user could adjust scheduling aggressiveness
(whether or not to inject speculative tasks) toward finding the sweet spot
maximizing net benefit. Inputs to the controller, such as the recent visible
response time of a user or recent server load can be estimated with an ewma
or flip-flop filter (Chapter 4.7). The desired feedback between speculative
task output production and needed output consumption is illustrated in
Figure 5.13. Interestingly, based on how well a user’s visible response time is
predicted to be and based on speculation cost, a batchactive frontend may
elect to not issue a speculative task (akin to the ‘prefetch horizon’ in disk
prefetching from the work of Patterson et al. [1995]), which may result in
the system temporarily becoming non-work-conserving.

Control theory has been applied by systems researchers. Parekh et al.
[2001] show how an autoregressive, moving average (arma) controller can
maintain a given queue length for a Lotus Notes groupware server by se-
lectively rejecting new requests. Abeni et al. [2000] present a controller to
find the best processor allocation for an mpeg decoder. Steere et al. [1999]
present a controller that adjusts the portion and period of processor time
allocated to applications based on the progress that they make. In building

5.9 Beyond centrally scheduled processing resources · 127

Figure 5.13: How feedback affects when the scheduler injects speculative tasks. After
a user receives task output, the left side of a per-user spring moves to the next
speculative task whose output has not been requested. After a task executes, the
right side moves to the next unexecuted task. If the sides touch and the user requests
task output, the user experiences visible response time. If the spring stretches too
far, tasks stop being injected and resources go to other users. Across all users,
the independent feedback loops dynamically determine to what extent such springs
resist compression and stretching.

128 · Cluster scheduling for explicitly-speculative tasks

a scalable Internet service, Welsh et al. [2001] use a controller that, based on
observed performance, adjusts the number of executing threads and lengths
of event queues.

An alternative to control feedback could compute costs and benefits to
determine whether a speculative task should enter the system. This analytic
approach succeeded for prefetching disk requests [Patterson et al., 1995]
(Chapter 2.5.3). However, building, validating, verifying, and maintaining
this model is harder in the more dynamic settings under consideration: e.g.,
some disclosures are never needed; think time can be complex (for the web
prefetching application, it is bimodal because often either one reads through
a web page in its entirety or quickly decides that the page is not of interest);
load is dependent on work issued outside of the independent schedulers’
control (such as network conditions); and service time is highly variable.
These uncertainties make it difficult to predict a speculative task’s deadline
and response time which this approach would need to make decisions.

5.10 Summary

This chapter introduced batchactive scheduling. People wish to batch their
planning and submission of tasks and pipeline the consideration of needed
task outputs with the execution of remaining tasks. Non-speculative sched-
ulers present obstacles to this way of working, motivating my solutions.
Using the knowledge that speculative tasks might be unneeded, batchactive
schedulers intelligently order tasks toward maximizing human productiv-
ity, minimizing user resource costs, and promoting efficient use of server
resources.

I began by defining a speculative task as one that the submitter does
not know is required at the time of submission. While any task may be more
or less speculative than another, the user only discriminates between spec-
ulative or not when submitting a task. For important application scenarios,
users already know which of their tasks are speculative (Chapter 2.2).

Speculative tasks may be ordered as a list or unordered (meaning that
execution order is irrelevant). General orders specified by a directed acyclic
graph are possible but considered unlikely. The outputs of executed disclosed
tasks are stored in an isolated location until they are requested by the user
or canceled. No architectural changes to the non-speculative environment of
the last chapter (Chapter 4.1) are needed.

I introduced the batchactive pricing mechanism which motivates users to
disclose speculative work freely and deeply so that the scheduling policies can
best meet user and resource provider performance and cost goals. Resources

5.10 Summary · 129

used by requested tasks — tasks whose outputs are known to be needed
— are charged. Unrequested speculative tasks, which may have consumed
resources, are not charged. In environments where resource usage is not
directly charged to the user, performance may be driven down to the level
of a non-speculative scheduler by abusive users who mark speculative work
as demand work.

I defined visible response time which tracks the time that a user is wait-
ing for a task’s output. A task’s visible response time may be less than
its service time, because if the task had been disclosed it may have been
chosen to run before being requested. The primary user scheduling goal is
to minimize mean visible response time. In cases where resource usage is
not directly charged, the goal is instead to minimize the variance of user
requested resource usage. In comparing user costs between the batchactive
and non-speculative pricing mechanisms, I track the ratio of resources used
for needed tasks to all resources consumed by a user’s speculative and non-
speculative tasks. In comparing server revenue between pricing mechanisms,
I measure requested load.

All batchactive policies use the knowledge that some tasks are specula-
tive. Some may use estimates on whether and when a speculative task will
be requested. I discussed techniques for predicting this information and de-
termined that predicting task deadlines is impractical. An optimal algorithm
for minimizing visible response time even with such information is unknown.

The implemented batchactive policies are two-tiered, consisting of a sub-
policy for requested tasks and a subpolicy for disclosed tasks. The requested
queue subpolicies are srpt, fcfs, and user-requested-fb. The disclosed
queue subpolicies include these and the following two novel ones: hrp, which
favors users who are better speculators, and hrr, which favors users who
have requested more work. I showed that emulating two-tiered batchactive
scheduling by manipulating several existing types of schedulers is tedious.

I ended this chapter with a look at speculative scenarios beyond centrally
scheduled processing resources which can be addressed using a feedback-
based approach to adjust the rate at which speculative tasks are injected.

130 · Cluster scheduling for explicitly-speculative tasks

Quantus tremor est futurus,
Quando judex est venturus,
Cuncta stricte discussurus!
(author unknown), Dies Irae, Missa pro defunctis

6 Simulation results

Batchactive schedulers (Chapter 5) utilize their knowledge of which tasks
are speculative to achieve better time- and cost-based scheduling metrics
for both users and their resource provider (Table 5.1) than non-speculative
schedulers (Chapter 4).

I measure speculative and non-speculative scheduling behavior with a
discrete event simulator [Ball, 2004] that I wrote called ba sim and that
I describe in Chapter 7.1. Simulations tabulate metrics under a model of
synthetic user behavior and task workloads and a single server.

I have not developed an analytic model to support simulation results.
User behavior (Chapter 2.1) includes aspects (e.g., multiple tasks disclosed
per user and tasks possibly being canceled) motivated by my target applica-
tion scenarios (Chapter 2.2) which are difficult (Chapter 5.4.1) to faithfully
analyze. Moreover, scheduling policies (Tables 4.3 and 5.3) have complexi-
ties (e.g., the learning aspect of hrp) also difficult to analyze. I discuss the
methods I employed to increase the confidence in my simulator’s correct-
ness and I apply operational laws to a non-speculative simulation run to
verify aspects of the simulator which have well-known analytic analogues in
Chapter 6.1.4.

The results demonstrate improved metrics when users use batchactive
schedulers compared to users who submit one needed task at a time or
batches of speculative tasks to non-speculative schedulers. For example,
fcfs × fcfs performs at least twice as well for about 20% of the wide-
ranging simulated scenarios for mean visible response time relative to its
non-speculative counterpart. (Recall that I notate two-tiered batchactive
schedulers as requested task subpolicy × disclosed task subpolicy.) Moreover,
visible response time can be improved without lowering visible task through-
put and sometimes without lowering server revenue. Related, more users can
be supported at the same mean visible response time.

I show that existing solutions to scheduling the important scenarios in
Chapter 2.2 fall short and that batchactive solutions work well. First I de-

131

132 · Cluster scheduling for explicitly-speculative tasks

scribe the simulated model. I justify simulation parameters with reference to
real tasks and studies of user behavior and discuss why I believe my simula-
tor models reality sufficiently well for the scheduling comparisons I present
and why I believe my simulator functions correctly. Following I present re-
sults comparing batchactive scheduling to non-speculative scheduling. The
simplest compared policies are two-tiered fcfs and non-speculative fcfs. I
proceed to novel disclosed queue policies, usage-based scheduling, and size-
based scheduling. Before summarizing, I cover simulation details.

6.1 Simulation model

The simulator models users who cycle between submitting tasks to a single
server, waiting for task output, and thinking about task output. On non-
speculative schedulers, users may submit tasks belonging to their task sets
one at a time or all at once, which I call interactive and batch usage of the
system, respectively. (Intermediate levels of submission are not modeled. I
justify these modeling extremes in Chapter 6.1.2.) On batchactive sched-
ulers, users disclose all tasks belonging to their task sets at once, which I
call batchactive usage of the system.

The simulated server runs tasks according to the scheduling policy un-
der test. A task, which may be preempted according to the policy, com-
pletes when the simulated time that it ran meets its service time. Because
most tasks under consideration (Chapter 2.2) are expected to last at least
a minute, the simulated server assumes zero preemption overhead. (Pre-
emption overhead in a real system may be caused by context switches or
translation lookaside buffer flushes. These are orders of magnitude shorter
than a minute.) Even if most tasks lasted only a few seconds, this overhead
would only be an issue if batchactive scheduling caused more preemptions,
which is not the case as shown in Table 6.6.

Parameterized simulations explore (Chapter 6.2) a variety of load, user
behavior, and task characteristics. The following sections detail the simula-
tion model and establish confidence in its operation.

6.1.1 Task submission and task output consumption cycle

Simulated users interact with the system in a way motivated by the work
patterns described in Chapter 2.1. A number of users enter the system at
the start of the simulation and plan speculative work as task sets,1 which

1Real users may explore more than one hypothesis, submitting more than one task set
at once. This ‘branching’ is not modeled, but I suspect it would provide a better advantage

6.1 Simulation model · 133

are organized as lists2 of a finite number of tasks (Chapter 5.2). List or-
der reflects an any-time or iterative improvement task set (Chapter 2.1) or
sequential tasks (Chapter 2.2.2).

With a non-speculative scheduler, simulated users request these tasks
either as needed (i.e., one at a time) or all at once as described next in
Chapter 6.1.2. With a speculative scheduler, users disclose these tasks and
request them only when the users need their outputs. A simulated user re-
ceives task output after a requested task completes and considers the output
for some think time.3 Then the user may need the next task output, cancel
remaining tasks and submit a new task set, or submit a new task set if the
end of the current task set has been reached (i.e., users never depart). I do
not simulate users who cancel only parts of their remaining task sets. Whole
task set cancelation is performed because I believe it is simplest for the user,
it restricts the number of simulation parameters, and it fits some application
scenarios (Chapter 2.2). This task submission and task output consumption
cycle, illustrated in Figure 6.1, determines the deadlines of speculative tasks
whose outputs are eventually determined to be needed.

In queuing theory, an open system’s tasks arrive independently (e.g.,
according to a Poisson process). A closed system has a constant number of
users who each submit one task at a time and only submit the next task after
the previous completes and an optional think time elapses. My simulation
model can be considered a closed system with modification. Like a closed
system, the simulator models a constant number of users. However, unlike
a standard closed system, task arrivals can occur independently of server
performance: speculating users each submit multiple speculative tasks, some
of which may be canceled independent of the amount of service they receive,
causing new task sets to be disclosed. I model users this way, instead of
as a traditional closed system, because it better reflects how people work
according to my findings (Chapter 2.1). It is likely that standard closed
system operational laws can be enlarged to model these properties.

Generated user behavior ignores scheduling performance. In reality, lower
mean visible response time might cause longer think time if more time spent
considering task output instead of waiting for task output increases user

to batchactive scheduling: load would increase, hurting non-speculative schedulers that do
not discriminate between needed and speculative work, and the user would be sated from
output from any of his or her disclosed task sets.

2dag ordered and unordered task sets (Chapter 5.2) are not simulated.
3Away periods are not simulated (Chapter 2.3.2). I believe they would provide a better

advantage to batchactive scheduling than non-speculative scheduling because they would
provide a greater opportunity for needed work to be prioritized over speculative work.

134 · Cluster scheduling for explicitly-speculative tasks

Figure 6.1: Flowchart of the model of user behavior. The circle is the start state,
boxes are actions, and rounded boxes pose choices. Three types of users are modeled
(Chapter 6.1.2): interactive, batch, and batchactive. Interactive and batch users use
non-speculative schedulers while batchactive users use batchactive schedulers that
allow task disclosure. In the following description, simulation parameters (Chap-
ter 6.1.3) are italicized. This flowchart is replicated by a number of users which
arrive at the start of a simulation and never depart. A user plans a task set with a
number of tasks per task set. The user waits for a task based on the task’s service
time and queuing delays that result from the scheduler’s policy. The user may wait
less than the service time if the user was batch or batchactive and was able to
submit the task before its output was needed. The user thinks for some think time,
after which the user may decide to start a new task set based on his or her task
set change probability. This flowchart is simplified for the different user types in
Figures 6.2, 6.3, and 6.4 for interactive, batch, and batchactive users, respectively.

6.1 Simulation model · 135

Figure 6.2: Interactive usage of a non-speculative scheduler. At the start of a simu-
lation, a number of users arrive and never depart. Each follows the depicted state
transitions. First, a user plans a task set made up of a number of tasks per task set.
Then the user requests the first task, waits for its output based on the task’s service
time and queuing delays that result from the scheduler’s policy. At this point, the
user thinks about the task’s output for some think time. If the task set is finished,
the user plans the next task set. If not, the user decides, based on a task set change
probability, whether to plan a new task set or request the next task in the task set.
Simulation parameters (Chapter 6.1.3) were italicized.

fatigue, e.g. Yet my simulator would not change the user’s think time in
response to changing visible response time. A real world test (which is out-
side my scope) could answer whether this simplification significantly affects
scheduling results.

6.1.2 Interactive v. batch v. batchactive usage

A cost-aware user would submit only one task at a time to a non-speculative
scheduler to ensure being charged minimally. I call these users interactive
in reference to the traditional definition in which one submits a task, waits
for its output, then submits a new task based on the output as illustrated
in Figure 6.2.

A user who is confident of needing all speculative tasks immediately,
has abundant economic resources to pay for unneeded speculation, or is
not directly charged for resource usage would instead submit entire sets of

136 · Cluster scheduling for explicitly-speculative tasks

Figure 6.3: Batch usage of a non-speculative scheduler. At the start of a simulation,
a number of users arrive and never depart. Each follows the depicted state transi-
tions. First, a user requests all the tasks in a new task set made up of a number of
tasks per task set. Then the user waits for the output of the first task based on the
task’s service time and queuing delays that result from the scheduler’s policy. At
this point, the user thinks about its output for some think time. If the task set is
finished, the user requests a new task set. If not, the user decides, based on a task
set change probability, whether to cancel the current task set and request a new task
set or wait for the next task based on its service time and queuing delays. Here, the
user may wait less than the service time if some of the user’s think time occurred
in parallel with the task’s execution. Simulation parameters (Chapter 6.1.3) were
italicized.

speculative tasks to a non-speculative scheduler. I call these users batch in
reference to the traditional definition in which one submits multiple tasks
at once as illustrated in Figure 6.3.

Between these extremes, a user using a non-speculative scheduler could
submit a portion of his or her task set to meet a personal goal concerning the
expected visible response times of tasks eventually determined to be needed
v. the expected cost of consuming resources for tasks eventually determined
not to be needed. However, it is difficult to define this goal and determine
how many tasks to submit to meet it (Chapter 5.1). The utility of each task
submission is determined by load, service time, think time, the probability of
needing its output, and the value of time spent waiting for the output, and
many of these considerations can be only predicted with uncertain accuracy.

I explore the simple case, the implications of behavioral extremes: my

6.1 Simulation model · 137

simulator models users using non-speculative schedulers who behave either
interactively or in a batch manner; i.e., either submitting one task at a
time or submitting entire task sets at a time.4 Aspects of human psychol-
ogy (Chapter 5.1.1) suggest that, when resource usage is directly charged,
users would more likely be interactive. Each simulation of non-speculative
scheduling involve users all of one type; i.e., all interactive or all batch.

When using a batchactive scheduler, users behave in a batchactive man-
ner. Like batch users, batchactive users submit entire task sets at once; users
would do so because the batchactive pricing mechanism does not penalize for
unneeded speculation (Chapter 5.1.5). Like an interactive user, one task of a
user’s task set is requested, identifying to the scheduler the non-speculative
task whose output the user is waiting for. Batchactive usage is illustrated in
Figure 6.4.

Both batch and batchactive users will cancel task sets when received
outputs indicate no need for additional outputs from those task sets. Since
interactive users only submit tasks they need, they never cancel tasks.

6.1.3 Simulator parameters

The following simulation parameters realize the task submission and task
output consumption cycle (Chapter 6.1.2): number of users, task set change
probability, number of tasks per task set, service time, and think time. The
choices of the task set change probability and the number of tasks per task
set are made independently for each user to simulate users with different
characteristics. After detailing the parameters, I justify the ranges of these
parameters explored by the simulations (Chapter 6.2).

A constant number of users concurrently interact with a single server.
Actual clusters have many nodes, some faster than others. The relative ben-
efits of batchactive scheduling from my single server simulations should per-
sist with multiple nodes. The number of users is varied across simulations.
All users enter the system at the start of the simulation and never depart.

The task set change probability is the probability that, after considering
a task’s output, a user will cancel his or her current task set and submit a
new task set. (If there are no more outstanding tasks in the task set, the
user automatically submits a new task set after some think time.) Each user
is assigned a task set change probability from a distribution. By assigning
randomly chosen probabilities to each user, instead of having all users share
the same probability, the simulator models users who are more or less certain

4I considered how partial task set submission to a non-speculative scheduler could be
automated with a frontend that throttles speculative task submissions in Chapter 5.9.2.

138 · Cluster scheduling for explicitly-speculative tasks

Figure 6.4: Batchactive usage of a batchactive scheduler. At the start of a simula-
tion, a number of users arrive and never depart. Each follows the depicted state
transitions. First, a user discloses all the tasks in a new task set made up of a
number of tasks per task set. Then the user requests the first task, waits for the
output of the task based on its service time and queuing delays that result from
the scheduler’s policy. At this point, the user thinks about its output for some
think time. If the task set is finished, the user discloses a new task set. If not, the
user decides, based on a task set change probability, whether to cancel the current
task set and request a new task set or wait for the next task based on its service
time and queuing delays. Here, the user may wait less that the service time if some
of the user’s think time occurred in parallel with the task’s execution. Simulation
parameters (Chapter 6.1.3) were italicized.

6.1 Simulation model · 139

about whether they will need their speculative work. Values are chosen from
a continuous uniform distribution5 whose lower bound is always 0 and whose
upper bound is varied across simulations. A small upper bound simulates
users who disclose speculative tasks they almost certainly need. A large
upper bound simulates a wider range of users, including those who frequently
cancel task sets. For example, if the upper bound is set to 0.2, then users
will be created with task set change probabilities ranging between 0 and 0.2.
If a specific user is created with a task set change probability of 0.1, then
after thinking about the output of each needed task, 10% of the time the
user will cancel and issue a new task set.

The number of tasks per task set dictates how many speculative tasks
make up task sets submitted by users at the start and throughout a simu-
lation. Like the task set change probability, each user is assigned a random
number of tasks per task set from a distribution so that the simulator is
able to model users with unique characteristics; here, users who speculate
to varying depths. Values are chosen from a continuous uniform distribution
whose lower bound is always 1, reflecting no disclosure, and whose upper
bound is varied across simulations. A small upper bound simulates users who
disclose shallowly; scientists planning up to five or so experiments ahead. A
large upper bound simulates a wider range of users, including those dis-
closing hundreds of tasks deep, reflecting an automated process working on
behalf of a user searching high-dimensional spaces. For example, if the upper
bound is set to 20, then users will be created with numbers of tasks per task
set ranging between 1 and 20. If a specific user is created with a number
of tasks per task set of 10, then all his or her task sets will consist of 10
speculative tasks.

One way to reason about speculation is to consider the probability that a
task set is canceled before all its tasks are needed. This degree of speculation
can be calculated as a function of a task set change probability, p, and a
number of tasks per task set, n. Because each user needs the first task in

5A continuous uniform distribution [Weisstein, 2004f] has constant probability over
some range. The probability density function and cumulative distribution function of a
continuous uniform distribution on the interval [a, b] are

P (x)
def
=

8><>:
0 for x < a,

1
b−a

for a ≤ x ≤ b,

0 for x > b, and

D(x)
def
=

8><>:
0 for x < a,
x−a
b−a

for a ≤ x ≤ b,

1 for x > b.

The expected value of this distribution is 1
2
(a + b) and its variance is 1

12
(b − a)2. This

distribution exhibits an increasing failure rate; the longer a phenomenon has existed, the
more likely it will terminate.

140 · Cluster scheduling for explicitly-speculative tasks

Figure 6.5: A contour plot showing how the number of tasks per task set and the
task set change probability affect whether a user will cancel his or her current task
set. Speculating and non-speculating users will tend toward the upper-right and
lower-left of the space, respectively.

his or her task set, the probability that the user will cancel the task set is
1−(1−p)n−1. Assuming that users either practice speculation, with a degree
of speculation exceeding perhaps 0.9, or do not practice speculation, with
a degree less than 0.1, then the combinations of number of tasks per task
set and task set change probabilities for each user will not be in the middle
region of the space depicted in Figure 6.5.

Service time dictates the sizes of tasks. Each task is assigned a random
service time from a distribution regardless of which user submitted the task.
Values for most experiments are chosen from an exponential distribution6

whose mean (the inverse of the distribution’s rate parameter λ) is varied
6An exponential distribution [Weisstein, 2004a] has a tail that drops by a constant

factor at constant intervals. The probability density function and cumulative distribution
function of an exponential distribution given rate λ > 0 and x ≥ 0 are

P (x)
def
= λe−λx and

D(x)
def
= 1− e−λx.

The expected value of this distribution is 1
λ

and its variance is 1
λ2 .

The exponential distribution is memoryless, also known as a constant failure rate (Chap-
ter 4.5.1), meaning that P (X > s + t | X > s) = P (X > t) for any s and t ≥ 0. That is to
say, the probability that a task runs for at least t more seconds before terminating given
that the task has already run for s seconds is the same as the probability that the task
runs at least t seconds independent of s — history does not matter.

6.1 Simulation model · 141

across simulations. For example, if the mean is set to 1000, then the mean
service time for all tasks in a simulation will tend toward 1000.

The pervasiveness of the exponential distribution in the literature (in-
cluding for modeling task sizes in a gang scheduling simulator from Feitel-
son and Jette [1997]) — due to the analytic tractability of its memoryless
property and the (diminishing) belief that important phenomena are dis-
tributed according to it (whereas increasing evidence shows that the Pareto
distribution, described next, fits better) — motivates its use in most of my
simulations, enabling the broadest understanding of the results I present,
especially compared to distributions with parameters whose settings may
be hard to justify.

For some runs, service time is chosen from a Pareto distribution.7 Pareto
distributions with low α are found to model closely many phenomena within
and beyond computing [Harchol-Balter, 1999; Crovella, 2000]. Harchol-Balter
and Downey [1997] have shown that a Pareto distribution with 0.8 < α < 1.2
models Unix task sizes well, leading to their rule of thumb of setting α = 1
for modeling task service time.

Pareto distributions whose α parameters are less than or equal to 2
are observed often. Such a Pareto distribution is called heavy-tailed, mean-
ing that its tail follows a power law with low exponent. These heavy-tailed
distributions more strongly exhibit decreasing failure rates (Chapter 4.5.1)
than non-heavy-tailed Pareto distributions. Moreover, the majority of mass
is concentrated in a small subset of observations. For service time, these
properties imply that the longer a task has run, the longer it can be ex-

7A Pareto distribution [Weisstein, 2004d] has a tail that drops according to a power law.
The probability density function and cumulative distribution function of a Pareto distri-
bution (also known as a power-law, hyperbolic, or double-exponential distribution [Paxson
and Floyd, 1994]) are defined for x ≥ b and α > 0 as αbα

xα+1 and 1− (b
x
)α, respectively. For

convenience, b is set to 1. Thus, for x ≥ 1,

P (x)
def
=

α

xα+1
and

D(x)
def
= 1−

“ 1

x

”α

.

To ensure that sufficiently small events can be represented, given the restriction on x, a
small unit such as seconds can be employed.

The expected value of a Pareto distribution for 0 ≤ α ≤ 1 is infinite. When α > 1, the
expected value is α

α−1
. The variance of a Pareto distribution for 0 ≤ α ≤ 2 is infinite.

When α > 2, the variance is α
(α−1)2(α−2)

. This distribution exhibits a decreasing failure

rate; the longer a phenomenon has existed, the less likely it will terminate. Put another
way, if a phenomena is Pareto distributed with an α parameter of 1, then there is a 50%
probability that an instance existing for x seconds will exist for another x seconds.

142 · Cluster scheduling for explicitly-speculative tasks

pected to run, and that most tasks are small, but most service time is taken
by a small number of large tasks. [Crovella, 2000] As α tends toward 0, these
heavy-tailed properties are more pronounced and vice-versa as α tends to-
ward 2 [Harchol-Balter, 2003b].

These properties of heavy-tailed Pareto distributions complicate simula-
tion and analysis. When sampling random variables from a heavy-tailed
Pareto distribution, very large observations occasionally occur, a conse-
quence of the infinite moments [Weisstein, 2004c] of this distribution. A
large number of samples from the distribution must be made — so that
very large observations on the tail are represented — before a simulation
reaches steady state. Further, the infinite moments prevent the application
of useful formulas such as the Pollaczek-Khinchin formula which shows that
the expected time-in-queue for a task taken from a general service time dis-
tribution with Poisson interarrival times on a single server employing the
fcfs policy is ρ

1−ρ ·
E[S2]
2E[S] , where ρ is load and E[S] is the expected service

time. [Crovella and Lipsky, 1997]
A truncated version of the Pareto distribution which reflects that mea-

sured data has minimum and maximum observations (e.g., task sizes) is
the Bounded Pareto Distribution.8 This distribution has finite moments,
simplifying simulation and analysis.

Think time dictates the time that users consider task outputs. Each time
a task’s output is delivered to a user, a think time value is chosen randomly
from a distribution regardless of which user received the output. Values for
most experiments are chosen from an exponential distribution whose mean
is varied across simulations. Values for some experiments are chosen from a
Pareto distribution.

The parameter ranges listed in Table 6.1, unless otherwise specified, were
8A bounded Pareto distribution [Crovella et al., 1997; Harchol-Balter, 2003b] is a Pareto

distribution with minimum and maximum observations. Its tail drops according to a power
law in the range of observations. The probability density function and cumulative distri-
bution function of a Bounded Pareto distribution are defined for k ≤ x ≤ p where k is the
minimum observation, p is the maximum observation, and α > 0 as

P (x)
def
=

αkα

1− (k/p)α
x−α−1 and

D(x)
def
=

1− (k/x)α

1− (k/p)α
.

The jth moment of this distribution (which enables one to compute its expected value

and variance) for α 6= j is αkα(kj−α−pj−α)
(α−j)(1−(k/p)α)

. Although the upper bound gives this distri-
bution an increasing failure rate, when k � p many properties of the Pareto distribution,
such as high variability, are maintained.

6.1 Simulation model · 143

parameter range inc. samples
number of users 1 to 16 3 6
task set change prob. 0.0 to 0.0–0.4 (uni.) 0.1 5
of tasks per task set 1 to 1–21 (uni.) 5 5
service time (s) 20 to 3, 620 (exp.) 720 6
think time (s) 20 to 18, 020 (exp.) 3600 6

Table 6.1: The parameter ranges used in simulating users and tasks for the batchac-
tive improvement results reported in Chapter 6.2. These ranges were motivated by
the speculative scenarios in Chapter 2.2. A uniform distribution (uni.) is described
by ‘lower bound (a) to upper bound (b),’ where the upper bound is specified by
a range varied across runs. An exponential distribution (exp.) is described by its
mean (1/λ), where the mean is specified by a range varied across runs. An increment
(inc.) determines the distance between each sample in the range of its parameter.

used for the batchactive improvement results reported in Chapter 6.2. (‘Im-
provement’ is formalized in Chapter 6.2.3.) For each parameter, I sampled
several points in its range. All told, each user behavior and scheduler com-
bination was evaluated against 5, 400 selections of parameters, the product
of the number of samples for each parameter.

The choice of simulation parameter values is key to arguing for batchac-
tive scheduling. I can make batchactive scheduling look arbitrarily bet-
ter than common practice by selecting parameter values that highlight its
strengths. However, this would not be a convincing argument. Instead, I
have chosen parameter ranges that not only include what I believe to be
reasonable uses of speculation for the target applications (Chapter 2.2), but
also ranges that include little or no speculation:

– The range of the number of users was chosen, based on the other pa-
rameter choices, to provide minimal resource contention among users
at the lower bound and to consume all of the simulated single server’s
resources at the upper bound.

– The upper bound of the task set change probability ranges from mod-
eling a user who always needs his or her speculative tasks (0%) to one
who cancels his or her task sets 40% of the time after considering a sin-
gle task’s output. Bubenik and Zwaenepoel [1989] found that 39% of
speculative application rebuilds were canceled (Chapter 2.3.1).9 Along
with the following parameter, the range of task set change probabil-

9Because these rebuilds were started by an automatic process, I consider this figure to
be an upper bound for the cancelation of user-initiated task sets.

144 · Cluster scheduling for explicitly-speculative tasks

ities cover the regions of small and large degrees of speculation from
Figure 6.5.

– The upper bound of the number of tasks per task set ranges from
no disclosure (1), modeling a user who cannot plan ahead, to a lit-
tle over twenty disclosures, modeling a user who uses domain-specific
knowledge to make small to medium-sized computational plans. If the
number of tasks per task set is too large, the user will be constantly in-
terrupted with new task outputs. If too small, there is no opportunity
to pipeline task execution with user think time. These considerations
motivate the range of task set sizes I explore.

– Mean service time, which varies from one third of a minute to about
one hour, is based on blast dna similarity searches [Giddings and
Knudson, 2004; Biowulf, 2004], film frame rendering [Hillner, 2003;
Epps, 2004; Lokovic, 2004], and the wide-ranging exploratory searches
and parameter studies detailed in Table 4.4.

– Mean think time, which varies from one third of a minute to roughly
five hours, reflects a user who can make a quick decision about a task’s
output to one who needs to graph, ponder, or discuss output with
colleagues. Evidence of think time in actual workloads was cited in
Chapter 2.3.1.

Besides the improvement results, I also present results from simulations
exploring the range of one parameter at a time. These sensitivity analyses,
which look at slices of the simulator’s parameter space, determine to what
extent each parameter affects results and help identify best- and worst-case
environments for batchactive scheduling. For these results, all parameters
except for the single varying parameter were fixed at the values in Table 6.2
unless otherwise noted.

6.1.4 Determining model and simulator correctness

The conclusions of this thesis come from my interpretation of results gen-
erated by my ba sim simulator. My interpretation (Chapter 6.2.2) can be
evaluated by the reader. The correctness of my (or any) simulation results
can be argued through model validation and verification. Model validation
is the ‘substantiation that a computerized model within its domain of ap-
plicability possesses a satisfactory range of accuracy consistent with the
intended application of the model,’ and model verification is ‘ensuring that

6.1 Simulation model · 145

parameter setting
number of users 8
task set change probability 0.0 to 0.2 (uniform)
number of tasks per task set 1 to 15 (uniform)
service time (s) 600 (exponential)
think time (s) 6, 000 (exponential)

Table 6.2: The fixed parameters used in the sensitivity analyses in Chapter 6.2.
These values fall within the ranges in Table 6.1 used for the summarizing improve-
ment results. For each sensitivity analysis, all but one parameter were held constant
at these values. The range, increment, and number of samples for the varied pa-
rameter is evident in the horizontal axes of the parameter study figures. A uniform
distribution is described by ‘lower bound (a) to upper bound (b).’ An exponential
distribution is described by its mean (1/λ).

the computer program of the computerized model and its implementation
are correct.’ [Schlesinger and others, 1979]

The validation of the simulation model follows some recommendations
of Sargent [1999]. Most importantly, I asked people knowledgeable about
scheduling whether my model was reasonable, a technique known as face va-
lidity. Related are historical methods, which is using assumptions that most
hold, such as exponential and Pareto task size distributions. I also used op-
erational graphics to visualize that various performance measures over time
appeared reasonable (such as Figures 6.66 and 5.9). I created degenerate
tests to confirm that certain parameters led to expected pathological be-
havior. Extreme condition tests showed that the output was plausible for
unlikely combinations of parameters (Figures 6.20 and 6.31). I made sev-
eral runs of the simulation with the same parameters but different random
number seeds for generating random variables to confirm that the variability
was sufficiently small to make the results dependable, a technique known as
internal validity, as shown in Chapter 6.3.2.

Model verification is concerned with determining that the simulation
was implemented correctly [Sargent, 1999]. Model verification for simulators
written in general-purpose computer programming languages (as opposed
to simulation languages), such as mine, involves the use of the software
engineering techniques discussed in Chapter 7.1.3.

Further, I verify some simulation data using analytic techniques. Little’s
Law and the Utilization Law (well-known ‘operational laws’ which make no

146 · Cluster scheduling for explicitly-speculative tasks

assumption on service orders or service time distributions10) were derived for
standard open and closed systems and thus do not apply to my simulation
model which is an extended closed system that includes multiple submitted
tasks per user which have the chance of being canceled (Chapter 6.1.1).
However, they apply to a special case in which task sets consist of only one
task and the task set change probability for each user is always 0, i.e., tasks
are not speculative. When running ba sim in this manner, the closed system
operational laws apply directly and verify the integrity of the simulation.
Little’s Law for a closed system states that E[R] = N/X − E[Z], where
E[R] is the expected (mean) response time, N is the number of users, and
E[Z] is the expected (mean) user think time. The Utilization Law states
that U = XE[S], where U is load and E[S] is the expected (mean) task
service time. [Harchol-Balter, 2003b]

I ran ba sim for a two-week simulation (with two warmup days removed)
of eight users issuing non-speculative task sets with only one task per task
set, with task service time exponentially distributed with mean 300 s and
user think time exponentially distributed with mean 1, 600 s. The differ-
ences between the theoretical and simulated metrics11 were less than one
percent and are presented in Table 6.3. This test shows accurate results
when exercising the simulator with parameter selections simulating task set
sizes of 1 and tasks with a 0% probability of task set cancelation, providing
confidence in the simulator’s operation when parameter selections expand
to larger task sets made up of tasks which might be canceled.

Finally, I show a sample ba sim run with no warmup period of pertinent
user, task, resource, and scheduler events followed by metrics calculated
by the simulator. This is a 12-hour simulation of two users behaving in a
batchactive manner on the fcfs × fcfs two-tiered batchactive scheduler.
The reader may verify that the metrics are correct, providing confidence
that the metrics output in Chapter 6.2 are also correct. Task identifiers are
with respect to the submitting user. Identifiers are numbered from 0. The

10Operational laws apply for any ergodic system. An ergodic system is positive recurrent
(i.e., the system probabilistically restarts itself, such as by having the possibility of being
emptied of tasks), aperiodic (i.e., the system state, such as the number of tasks in the
system, does not depend on time step), and irreducible (i.e., it is possible to get from any
state, where the state could be the number of tasks in the system, to any other state,
meaning that the initial state is irrelevant).

11These metrics may be reproduced by running ba sim with the command-line ar-
guments ‘-v 1382400 -n 8 -b uniform:0,0 -c uniform:1,1 -d exponential:300 -e

exponential:1600’. For use by the operational laws, the reported throughput must be
scaled to tasks per second by dividing the throughput by the number of seconds in two
weeks (1, 209, 600).

6.1 Simulation model · 147

theoretical simulation
mean resp. time 1026.710 1012.618

load 0.918618 0.917004

Table 6.3: Non-speculative verification using operational laws. I compare the metrics
output by ba sim with theoretical metrics (from Little’s Law and the Utilization
Law) for a simulation of task sets made up of one non-speculative task each. (Thus
the non-speculative metrics and batchactive metrics are equivalent; specifically,
mean visible response time and mean response time are equal and requested load
and load are equal.) I found less than one percent difference for mean response time
and less than one tenth of one percent difference for load.

abbreviation ‘st’ means ‘service time,’ while ‘req q’ means ‘requested queue,’
and ‘dis q’ means ‘disclosed queue.’12

user 0 created at time 0.000

user 1 created at time 0.000

user 0 planned a task set of 5 task(s) at time 0.000

user 0 disclosed task 0 (st: 5279.514) at time 0.000

user 0 disclosed task 1 (st: 8314.654) at time 0.000

user 0 disclosed task 2 (st: 2982.928) at time 0.000

user 0 disclosed task 3 (st: 4426.236) at time 0.000

user 0 disclosed task 4 (st: 2656.431) at time 0.000

user 1 planned a task set of 2 task(s) at time 0.000

user 1 disclosed task 0 (st: 4506.721) at time 0.000

user 1 disclosed task 1 (st: 17292.122) at time 0.000

user 0 needed (requested) task 0 (remain: 5279.514) at time 0.000

user 1 needed (requested) task 0 (remain: 4506.721) at time 0.000

sched chose user 0’s task 0 (remain: 5279.514) from req q at time 0.000

resource running user 0’s task 0 for at most 5279.514 at time 0.000

resource going idle after running user 0’s task 0 at time 5279.514

user 0’s task 0 executed at time 5279.514

user 0 started thinking about task 0 for 8602.712 at time 5279.514

sched chose user 1’s task 0 (remain: 4506.721) from req q at time 5279.514

resource running user 1’s task 0 for at most 4506.721 at time 5279.514

resource going idle after running user 1’s task 0 at time 9786.234

user 1’s task 0 executed at time 9786.234

user 1 started thinking about task 0 for 33219.854 at time 9786.234

sched chose user 0’s task 1 (remain: 8314.654) from dis q at time 9786.234

resource running user 0’s task 1 for at most 8314.654 at time 9786.234

user 0 needed (requested) task 1 (remain: 8314.654) at time 13882.226

resource going idle after running user 0’s task 1 at time 13882.226

sched chose user 0’s task 1 (remain: 4218.663) from req q at time 13882.226

resource running user 0’s task 1 for at most 4218.663 at time 13882.226

resource going idle after running user 0’s task 1 at time 18100.889

user 0’s task 1 executed at time 18100.889

12This output may be reproduced by compiling ba sim with the BA SIM INSPECT

macro in ba sim.h set to 1 and running ba sim with the command-line ar-
guments ‘-x -r 2742755273 -v 43200 -n 2 -c uniform:2,5 -d exponential:7200 -e

exponential:10800’.

148 · Cluster scheduling for explicitly-speculative tasks

user 0 started thinking about task 1 for 108.268 at time 18100.889

sched chose user 0’s task 2 (remain: 2982.928) from dis q at time 18100.889

resource running user 0’s task 2 for at most 2982.928 at time 18100.889

user 0 needed (requested) task 2 (remain: 2982.928) at time 18209.157

resource going idle after running user 0’s task 2 at time 18209.157

sched chose user 0’s task 2 (remain: 2874.659) from req q at time 18209.157

resource running user 0’s task 2 for at most 2874.659 at time 18209.157

resource going idle after running user 0’s task 2 at time 21083.816

user 0’s task 2 executed at time 21083.816

user 0 started thinking about task 2 for 5911.972 at time 21083.816

sched chose user 0’s task 3 (remain: 4426.236) from dis q at time 21083.816

resource running user 0’s task 3 for at most 4426.236 at time 21083.816

resource going idle after running user 0’s task 3 at time 25510.052

user 0’s task 3 executed at time 25510.052

sched chose user 0’s task 4 (remain: 2656.431) from dis q at time 25510.052

resource running user 0’s task 4 for at most 2656.431 at time 25510.052

user 0 needed (requested) task 3 (remain: 0.000) at time 26995.789

user 0 started thinking about task 3 for 4378.416 at time 26995.789

resource going idle after running user 0’s task 4 at time 28166.483

user 0’s task 4 executed at time 28166.483

sched chose user 1’s task 1 (remain: 17292.122) from dis q at time 28166.483

resource running user 1’s task 1 for at most 17292.122 at time 28166.483

user 0 needed (requested) task 4 (remain: -0.000) at time 31374.205

user 0 started thinking about task 4 for 8632.173 at time 31374.205

user 0 planned a task set of 5 task(s) at time 40006.378

user 0 disclosed task 5 (st: 3410.037) at time 40006.378

user 0 disclosed task 6 (st: 4025.403) at time 40006.378

user 0 disclosed task 7 (st: 4874.664) at time 40006.378

user 0 disclosed task 8 (st: 6677.045) at time 40006.378

user 0 disclosed task 9 (st: 14983.982) at time 40006.378

user 0 needed (requested) task 5 (remain: 3410.037) at time 40006.378

resource going idle after running user 1’s task 1 at time 40006.378

sched chose user 0’s task 5 (remain: 3410.037) from req q at time 40006.378

resource running user 0’s task 5 for at most 3410.037 at time 40006.378

user 1 planned a task set of 2 task(s) at time 43006.088

user 1 canceled task 1 (remaining: 5452.227) at time 43006.088

user 1 disclosed task 2 (st: 21129.885) at time 43006.088

user 1 disclosed task 3 (st: 1182.141) at time 43006.088

user 1 needed (requested) task 2 (remain: 21129.885) at time 43006.088

resource going idle after running user 0’s task 5 at time 43006.088

sched chose user 0’s task 5 (remain: 410.328) from req q at time 43006.088

resource running user 0’s task 5 for at most 410.328 at time 43006.088

resource going idle after running user 0’s task 5 at time 43200.000

mean visible response time: 3693.178

mean visible slowdown: 0.774

visible task throughput: 6

number of deadlines met: 2

load: 1.000

requested load: 0.726

The design of my simulated model was chosen as the simplest model
(with the fewest parameters needed to be justified) to reflect the speculative
behavior in actual application scenarios (Chapter 2.2). The only unimpeach-
able test to determine batchactive benefits would be a deployment on real

6.2 Scheduling policy comparison · 149

systems with actual users, serving as validation of the ideas and simula-
tion model and verification of the simulator implementation. After enough
use, one could survey users to obtain a comparative reaction against a non-
speculative cluster scheduler. Doing so is outside my scope.

6.2 Scheduling policy comparison

I compare the performance of the non-speculative schedulers fcfs, user-fb,
and srpt (Table 4.3) against two-tiered batchactive schedulers. The two-
tiered batchactive schedulers’ requested queues are serviced by fcfs, user-
requested-fb, and srpt and their disclosed queues are serviced by fcfs,
srpt, hrp, hrr, and rfcfs (Table 5.3). Not every combination of requested
and disclosed queue subpolicies address clear scheduling goals, and thus not
every combination is evaluated. The choices of scheduling subpolicies in the
following simulations were made to answer the following questions:

– How does the simplest, most easily deployable two-tiered batchactive
scheduler, fcfs × fcfs, compare to the simplest size-agnostic non-
speculative scheduler fcfs? (Chapter 6.2.4.)

– Can the novel disclosed queue subpolicies, hrp and hrr, which dis-
cover and employ historical user patterns, better schedule speculative
tasks? (Chapter 6.2.5.)

– How does a batchactive scheduler with the best disclosed queue sub-
policy discovered in the previous experiment compare against non-
speculative fcfs? (Chapter 6.2.6.)

– When usage-based policies are employed, to what extent does batchac-
tive scheduling outperform non-speculative scheduling? (Chapter 6.2.7.)

– How does size-aware scheduling based on srpt affect the comparison
of batchactive and non-speculative scheduling? (Chapter 6.2.8.)

– What is the potential performance improvement for using the imprac-
tical rfcfs disclosed queue subpolicy in a batchactive scheduler com-
pared to the best performing practical batchactive scheduler? (Chap-
ter 6.2.9.)

First I review the reported metrics. Then I list the central conclusions
from the results. Following I explain the graph formats and present the
simulation data.

150 · Cluster scheduling for explicitly-speculative tasks

6.2.1 Reported metrics

The tabulated metrics include mean visible response time, mean visible
slowdown, visible task throughput, variance of visible response time, the
number of deadlines met, variance of user requested resource usage, mean
scaled billed resources, (total) load, requested load, and uncharged load (Ta-
ble 5.1).13 For each run, these metrics were tabulated over two weeks of
simulated time (making this a terminating or finite-horizon simulation) af-
ter two warmup days were ignored (Chapter 6.3.1). The task service time
and user think time parameters are given in seconds (Tables 6.1 and 6.2).
For consistency, metrics based on the time that a user was waiting for task
output and metrics based on the resource time consumed by a task are also
given in seconds.

Mean visible response time and mean visible slowdown are the main time-
based metrics. Visible task throughput and variance of visible response time
are reported to confirm that they are not worsened when other metrics im-
prove with batchactive scheduling. The number of deadlines met is reported
to see how often users receive task outputs immediately upon needing them.
When resources are not directly charged, scheduling policies sometimes seek
to limit resource abuse by lowering the variance of user requested resource
usage in lieu of reducing time-based metrics.

Mean scaled billed resources and requested load are the cost-based met-
rics. The first shows how much the average user is charged for consuming un-
needed resources. Before taking the average, the amount of billed resources
for each user is scaled by the user’s needed tasks’ resource requirements.
The quantity is always minimum (i.e., 1) under batchactive scheduling be-
cause users will disclose (not request) speculative tasks. The quantity is also
minimum when users do not speculate, and thus comparisons against a set
of only interactive users are not made. However, a speculating user using

13Although these metrics were defined in the chapter on batchactive scheduling (Chap-
ter 5.2), they are also applicable to non-speculative scheduling by analogy to non-
speculative metrics (Table 4.1). Mean visible response time and mean visible slowdown
are the average time between a user needing a task and its completion and the average
of each visible response time scaled by its corresponding task size, respectively. Visible
task throughput counts the only the needed tasks that have completed. (A requested
task under a speculative scheduler is always counted and a requested task under a non-
speculative scheduler is counted only if the requesting user eventually needed its output.)
Variance of visible response time reflects the differences in visible response times. The
number of deadlines met is always 0 for interactive users because these users never submit
tasks before needing their outputs (viz., these users never request speculative tasks). In
non-speculative scheduling, because a task only runs when requested, the variance of user
resource usage is the variance of user requested resource usage and load is requested load.

6.2 Scheduling policy comparison · 151

a non-speculative scheduler — the example user and batch user described
in Chapters 2.1 and 6.1.2, respectively — is charged for all resource usage.
Therefore, I only present mean scaled billed resources for simulations in-
volving batch users. A resource provider’s revenue is proportional to billed
(requested) load (Chapters 4.2 and 5.1). In a batchactive scheduler, some
load may be made up of disclosed tasks, leading to two additional metrics
reported to better understand batchactive behavior: (total) load and un-
charged load, the load taken by speculative tasks eventually known to not
be needed.

6.2.2 Central conclusions

Here I list the conclusions I have drawn from the simulation results shown
next.

– Batch usage delivers better time-based metrics than interactive usage
in some cases and interactive usage does better than batch usage in
other cases. This holds when varying nearly every simulation parame-
ter. But batchactive does at least as well for time-based metrics, often
better, than both uses of non-speculative scheduling in every case,
including the ‘cross-over’ cases where interactive and batch usage per-
form the same. (Considerations of cost are discussed below.)

Thus, with a batchactive system, users do not need to decide how ag-
gressively to submit speculative work: they may disclose all work not
known to be needed to obtain these time-based improvements. (Fig-
ures 6.10, 6.17, 6.22, 6.45, 6.47, 6.50, 6.55, 6.56, and 6.58.)

Batch usage of a non-speculative scheduler is suited to few users be-
cause execution time and think time are pipelined and load is suffi-
ciently low that one’s speculative but unneeded tasks do not overly
interfere with needed tasks. Interactive usage of a non-speculative
scheduler is suited to many users because the server is always busy
with requested tasks.

Batchactive scheduling is better than batch usage of a non-speculative
scheduler under many users because requested tasks never wait for
speculative tasks; it is better than interactive non-speculative schedul-
ing under few users because it fills idle time with speculative tasks.

The degree of speculation (a function of the task set change proba-
bility and the number of tasks per task set) does not affect the time-
and cost-based metrics of interactive users as these users do not submit

152 · Cluster scheduling for explicitly-speculative tasks

speculative tasks. There is a greater dependence on the degree of spec-
ulation with batch users compared to batchactive users for time-based
metrics because batchactive schedulers avoid speculative tasks when
requested work exists. (Figures 6.17, 6.19, 6.22, 6.24, 6.47, and 6.58.)

For any given run, batchactive scheduling simultaneously provides
better mean visible response time and visible throughput compared
to non-speculative scheduling. Batchactive scheduling also simultane-
ously provides better mean visible response time and requested load
(as described below, there are more cases in which batch usage of
non-speculative scheduling provides better requested load, but those
cases offer dismal mean visible response time). Latency-sensitive users
will not push traditional schedulers into regions of high billed load be-
cause, at those levels of revenue, visible response times are too high.
The latency threshold for batchactive scheduling, in contrast, is better.
(Figures 6.15, 6.16, 6.46, and 6.57.)

Batchactive usage of a speculative scheduler adapts across a range
of task and user characteristics, often beating any usage of a non-
speculative scheduler. The more constrained resources are (i.e., if there
are many users or many tasks per user), the more important it is to
give priority to requested work. The less work, the more important it
is to pipeline work with a user’s think time. Batchactive scheduling
accomplishes both.

– Batchactive scheduling provides better performance compared to both
fcfs- and usage-based batch scheduling. Some comparisons of batchac-
tive scheduling are against batch usage of fcfs and batch usage of
user-fb. Recall that user-fb (Chapter 4.5.3), a variant of decay usage,
looks at the total amount of resources consumed by a user. When a
scheduling decision is to be made, user-fb selects the task from the
user that has used the fewest resources at the time the decision is
made.14 See Chapter 4.6.3 for the reasons why either fcfs or user-fb
are used in practice.

Among non-speculative scheduling, results show that batch users on
user-fb obtain better mean visible response time than batch users
on fcfs, which is expected from the characteristics of these schedulers

14This common policy is an approximation to a suggested policy which selects tasks
in a round-robin fashion across task sets (rrts) whose motivation is to execute tasks in
the order in which users will need task outputs. Because user-fb approximates the rrts
scheduling order, rrts is not discussed further.

6.2 Scheduling policy comparison · 153

described in Chapter 4.6.3. (Figures 6.10 and 6.50, which have different
vertical axis scales.)

Still, batchactive scheduling, such as user-requested-fb × hrp or fcfs
× hrp, performs better than batch usage of user-fb (Figures 6.50
and 6.45, which have different vertical axis scales). The batchactive
configuration performs better because it executes known-needed tasks
first. The user-fb policy will execute disclosed tasks that will be can-
celed even when known-needed tasks exist. For this reason, I believe
that the performance improvement of fcfs × hrp over batch usage
of user-fb would be even greater as the degrees of speculation of the
users increase.

– Batchactive scheduling applies best when several to many speculative
tasks are submitted and early task outputs are acted on while uncom-
pleted tasks remain.

Think time is needed to obtain time-based batchactive benefits (Fig-
ures 6.27 and 6.31). The difference in time between a user disclos-
ing speculative work and needing a task’s output, which comes from
think time, motivates my ‘visible’ scheduling metrics (Chapter 5.2) and
batchactive scheduling policies (Chapters 5.4 and 5.5). Think time is
not exposed to non-speculative scheduling, and thus remains unex-
ploited in that domain.

When all task sets have only one task, all cases provide the same time-
and cost-based metrics. Disclosing task sets as small as several tasks
provides good time-based improvement over interactive usage. Batch
usage and batchactive usage initially improve with more tasks per
task set for time-based metrics because there is think time that can be
leveraged to run disclosed tasks; soon batch usage becomes unusable
as its single queue is overwhelmed with speculative tasks. Over the
range of task set sizes, batchactive usage of a batchactive scheduler is
always best for time-based metrics and mean scaled billed resources,
and batchactive scheduling’s requested load is better than interactive
but worse than batch usage of a non-speculative scheduler. See below
for requested load commentary. (Figures 6.22, 6.23, 6.24, 6.47, 6.58,
and 6.59.)

Even when all tasks in a task sets are needed (viz., the task sets were
not strictly speculative), batchactive scheduling provides better time-
and cost-based metrics than common practice, though not as much

154 · Cluster scheduling for explicitly-speculative tasks

benefit for time-based metrics as when task sets are speculative. (Fig-
ures 6.20 and 6.21.)

– hrp schedules disclosed tasks well, even as well as the impractical
rfcfs algorithm (Figures 6.62 and 6.63). The hrr disclosed queue
subpolicy has the advantage over hrp of not penalizing users who
disclose deeply but rarely request. However, its time- and cost-based
performance is poorer than hrp and very similar to fcfs. I have not
found an advantage to employing a subpolicy that favors the specu-
lative tasks of users who have historically requested more work. hrr
spends too much time on unneeded long-shot speculation from users
who have at some point requested large tasks. (Figures 6.32, 6.33,
6.34.)

The disclosed queue must be scheduled carefully to avoid a diminishing
returns of batchactive improvement as the disclosed queue fills with
tasks less likely to be requested. This is why fcfs × hrp does much
better than fcfs × fcfs for time-based metrics (and marginally bet-
ter for requested load) when varying the number of tasks in a task
set (Figures 6.39, 6.40, and 6.47). When disclosed queues are not very
deep, the simplest batchactive policy, fcfs × fcfs, provides the bulk
of the performance improvements (Figure 6.45). Promising non-two-
tiered batchactive schedulers which might schedule disclosed tasks bet-
ter than hrp were presented in Chapter 5.4. It remains future work to
study and devise practical ways to deploy them.

The batchactive interface which separates disclosure from requests en-
ables the benefits offered by fcfs × hrp, resulting in the better cited
metrics. The proposed interface changes to support such scheduling
and to encourage speculation, and whether existing interfaces can sup-
port these properties, were discussed in Chapter 5.6.

– Service time and think time affect batchactive improvement in nearly
opposite ways. As service time increases, the time-based performance of
interactive usage of a non-speculative scheduler and batchactive usage
of a batchactive scheduler converge. As a limiting case, when a server
is always running requested work, batchactive scheduling does not im-
prove performance over interactive non-speculative scheduling. Like-
wise, the time-based performance of batch usage of a non-speculative
scheduler and batchactive usage of a batchactive scheduler converge
when service time decreases as there is less needed work to perform.
(Figure 6.25.)

6.2 Scheduling policy comparison · 155

Batchactive usage of a batchactive scheduler and batch usage of a non-
speculative scheduler would converge once there is enough think time
for the batch configuration to execute every task from every user’s cur-
rent task set. Batchactive scheduling will always outperform interac-
tive usage of a non-speculative scheduler as think time grows because
the interactive configuration exposes no speculation to the system.
(Figure 6.27.)

– Batchactive improvements hold for both non-size-based (fcfs v. fcfs
× fcfs) and size-based (srpt v. srpt × fcfs) policies to the same
extent, which is useful because size cannot always be obtained or pre-
dicted. (Figures 6.6, 6.51, 6.7, 6.52, 6.8, 6.53, 6.9, and 6.54.)

Further, the non-size-based batchactive policy fcfs × fcfs outper-
forms the size-based non-speculative cases, implying that the avail-
ability of a task size oracle will not diminish the value of batchactive
scheduling. (Figures 6.10 and 6.55.)

– A batchactive scheduler consumes additional load for disclosed, spec-
ulative work, and to a lesser extent, for needed tasks from users who
receive outputs faster and thus request tasks faster. As the load of
batchactive scheduling and interactive usage of a non-speculative sched-
uler approach 1, their visible response times converge. The tradeoff
for batchactive schedulers improving visible response time relative
to interactive usage of a non-speculative scheduler is increased load.
Compared to batch usage of a non-speculative scheduler, however, the
batchactive case induces little extra load while delivering significantly
better visible response time. (Figures 6.10, 6.14, and 6.11.)

– Batch users on non-speculative schedulers pay for unneeded specula-
tion, as reflected by mean scaled billed resources over 1. By not charg-
ing users for speculative tasks, batchactive scheduling should motivate
users to disclose deeply. (Figures 6.8, 6.53, and 6.61.)

– Interactive usage of a non-speculative scheduler will earn the resource
provider the least revenue because these users only request one task
at time, the tasks they need to continue. When the system is not
saturated, so that resources are going idle anyway, batchactive us-
age of a batchactive scheduler delivers significantly reduced visible
response time relative to interactive usage of a non-speculative sched-
uler; charging only for requested tasks delivers better use of unutilized

156 · Cluster scheduling for explicitly-speculative tasks

cycles against the interactive case (Figures 6.10 and 6.11). A batchac-
tive scheduler often provides more total billed resources over the same
time period (higher requested load) compared to interactive usage of a
non-speculative policy, because, although in both situations only re-
quested resources are charged, the batchactive case provides better
visible task throughput as explained in Chapter 4.5.4. (Figures 6.14
and 6.12.)

On the other hand, batch usage of a non-speculative scheduler will
earn the resource provider the most revenue because users are request-
ing speculative work and all executed work, whether needed or not,
is charged. (In batchactive scheduling, some computing resources are
consumed without being billed; these are the disclosed tasks that are
never requested, as shown in Figure 6.13.) Under low to medium load,
batchactive scheduling delivers worse server revenue compared to batch
usage of a non-speculative scheduler (Figure 6.12). This is more of a
boundary case than a negative result: It is not realistic for all users to
behave in a batch manner when using a non-speculative scheduler. All
users would have to be either highly confident of needing all specula-
tive tasks immediately or have abundant resources to pay for unneeded
speculative tasks. When the system approaches saturation from needed
tasks, so that both schemes charge the same amount, batch usage of a
non-speculative scheduler delivers worse throughput and mean visible
response time. As mentioned above, latency-sensitive users will not
push non-speculative scheduling into high requested loads. I suspect
that the significant value provided with batchactive scheduling with re-
spect to time-based metrics could encourage additional users, deeper
speculation, and bigger tasks, any of which would raise batchactive
server revenue. (Figures 6.14, 6.10, and 6.12.)

Ignoring the potential for users to change their behavior based on
scheduling performance, in the worst case (all users behaving in a
batch manner), experiments show that the resource provider could
price requested resources roughly 5% more to meet the revenue of a
non-speculative pricing mechanism for the task and user characteris-
tics I evaluated.15 (Figures 6.9, 6.44, and 6.54.) This may be a bargain
for the user who would experience significantly lower visible response
times, lower visible slowdowns, higher visible task throughputs, and

15An alternative to raising the price for requested resources is to charge a reduced
amount of unneeded speculation. I dismiss this approach because it could dissuade users
from disclosing speculation.

6.2 Scheduling policy comparison · 157

lower variances of visible response time. (Figures 6.10, 6.56, and 6.14
and Table 6.5.) In fact, batchactive users might still pay less with
higher prices compared to a non-speculative pricing mechanism which
charges for needless speculation. (Figures 6.8, 6.18, 6.23, and 6.28.)
When interactive users are present, higher prices would entail paying
more relative to the non-speculative scheduling pricing mechanism.
However, the more interactive users, the less the resource provider
would have to increase prices to match traditional revenue. At an ex-
treme of all interactive users, batchactive scheduling provides better
server revenue (Figures 6.9, 6.44, and 6.54). Thus, at a certain ratio
of batch and interactive usage, no price change would be required and
resource providers would profit more, users would pay less, and users
would experience better time-based metrics.

In a deployed system, the resource provider would evaluate, given ac-
tual loads and actual user behaviors, how to set resource price to meet
revenue goals, retain customers, and encourage more customers. When
operating a busy resource is more expensive than an idle resource, re-
source price would also be set to cover losses from the uncharged load
such as exhibited in Figure 6.36.

– For a small percentage of runs, batchactive usage of a batchactive
scheduler did worse compared to common practice for mean visible
response time and mean visible slowdown (performing worse than re-
quested load was discussed in the previous point). This was apparent
in the inverse cumulative improvement graphs as the areas above the
curves to the left of improvement equal to 1. Some of these cases do not
represent an actual performance drop but instead represent error in-
troduced by variations in visible task throughput: different schedulers
complete different numbers of needed tasks during the same simulated
time. Thus metrics among two schedulers running with the same pa-
rameters are tallied from a different number of needed tasks that com-
pleted. A small subset of runs shown in Chapter 6.3.2 suggest that
for the cases in which a batchactive scheduler’s metric was worse, the
difference was small enough to be insignificant (i.e., that the 95% con-
fidence intervals overlap between the metric of a batchactive scheduler
and to what it was being compared). The remaining cases of worse
performance may result from the counterexample to the notion that a
two-tiered batchactive scheduler can never perform worse than batch
usage of a non-speculative scheduler (Chapter 5.5.2).

158 · Cluster scheduling for explicitly-speculative tasks

6.2.3 Graph formats

In the graphs below, simulations are identified by the scheduling policy and
user behavior. Non-speculative policies consist of a single name, like ‘fcfs,’
while speculative policies are notated by the subpolicies servicing their re-
quested and disclosed queues, like ‘fcfs × fcfs.’ The type of user is stated
following the policy when a non-speculative policy is used, while batchactive
users are implied when a batchactive policy is used. Batch users are labeled
‘batch’ and interactive users ‘interactive’ (often shortened to ‘inter.’). Com-
plete examples are ‘srpt, batch’ and ‘fcfs × hrp.’

Summarizing results report factors of improvement between proposed
user behaviors and scheduling policies and comparison behaviors and poli-
cies. For example, if a metric is better when lower and if a comparison
configuration gave 50 as the metric and a proposed configuration gave 25,
then the improvement is 2. Improvement results are presented as inverse
cumulative distribution graphs that show the fraction of runs in which the
performance of a proposed configuration was at least a certain factor better
than one or more comparison configurations. The horizontal axes are im-
provements and the vertical axes are the fractions of runs. For example, in
Figure 6.6, the solid line intersection with the horizontal axis at 3 indicates
that in about 10% of the runs, the improvement of mean visible response
time for batchactive users using fcfs × fcfs compared to interactive users
using fcfs was at least 3. Inverse cumulative graphs are also used to present
the mean scaled billed resources of batch users on non-speculative schedulers
(e.g., Figure 6.8). For those graphs, the vertical axis indicates the fraction of
runs in which this metric was at least the value indicated on the horizontal
axis. The simulation parameters used for these graphs cover the ranges in
Table 6.1 unless otherwise noted.

Besides reporting improvement over many varying parameters, I also
analyze the effect of varying parameters one at a time using bar and line
graphs. For each of these graphs, the horizontal axis represents the var-
ied parameter and the vertical axis represents the dependent metric. Each
selection of parameters corresponds to a set of values, one value per user
behavior and simulated scheduler. The fixed parameters for these experi-
ments are listed in Table 6.2 unless otherwise noted. A sample graph of this
format is depicted in Figure 6.10. The graph compares three configurations
with respect to mean visible response time as the number of users is varied
while the other parameters are fixed. Some graphs place metrics on both
axes to show the relationship between them as a parameter is varied; e.g.,
Figure 6.15.

6.2 Scheduling policy comparison · 159

6.2.4 Benefits of two-tiered fcfs

The first experiment compares batch usage of fcfs, interactive usage of
fcfs, and batchactive usage of fcfs × fcfs; the simplest non-speculative
scheduling v. the simplest two-tiered batchactive scheduling. Task size is not
needed by these schedulers.

Concerning time-based metrics, the improvement factors of mean visi-
ble response time and mean visible slowdown are shown in Figures 6.6 and
6.7, respectively. Recall that the parameters were swept through the ranges
in Table 6.1 for these summarizing graphs. For half of the cases, batchac-
tive scheduling provides better mean visible response time and mean visi-
ble slowdown than non-speculative scheduling. The mean visible slowdown
improvements emphasize the differences in the mean visible response time
improvements: there are more extreme cases in which batchactive scheduling
does both better and worse than non-speculative scheduling. The reasons for
batchactive improvements are examined in the per-parameter investigations
below.

Concerning cost-based metrics, the charges for unneeded speculation in-
curred by batch users of a non-speculative scheduler are shown in Figure 6.8
and the improvement factors of requested load (reflecting server revenue) are
shown in Figure 6.9. Again, parameters were taken from Table 6.1. Batchac-
tive users always pay less than users submitting batches of work to non-
speculative schedulers. (The mean scaled billed resources of a batchactive
system is always 1.) A batchactive system often generates slightly more rev-
enue than a non-speculative system populated by users who never submit
unneeded work (viz., the interactive users). A batchactive system usually
generates less revenue than a non-speculative system populated by those
users who pay more by submitting batches of work, some of which will not
be needed (viz., the batch users). It is unlikely that users will behave in a
batch manner: it assumes that all users are highly confident of needing all
speculative tasks immediately or that all users have the resources to pay for
unneeded speculation. Further, these users would experience significantly
worse mean visible response time at the higher levels of server revenue. Be-
low I vary individual parameters to show the conditions under which the
cost-based metrics differ most.

Note that Figures 6.6, 6.7, 6.8, and 6.9 do not include simulations of
large task sets which are covered in the per-parameter investigations below.
Large task sets favor batchactive scheduling, and thus these improvement
factors are conservative.

For the runs covered in the above experiments, Table 6.4 reports the

160 · Cluster scheduling for explicitly-speculative tasks

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 6.6: Improvement of batchactive usage of fcfs × fcfs over interactive and
batch usage of fcfs for mean visible response time. A task’s visible response time
is the time between a user needing and receiving the task’s output. The horizontal
axis shows improvement factors; e.g., 2 if batchactive visible response time was half
of the non-speculative visible response time for a particular set of parameters which
describe user and task characteristics. Improvement values less than 1 indicate that
batchactive scheduling did worse. The vertical axis indicates the fraction of the
runs exploring 5, 400 sets of parameters in which the improvement was at least as
much indicated on the horizontal axis. In these graphs, batchactive performance
is measured by the area under the curves for horizontal axis values greater than 1
minus area above the curves for horizontal axis values between 0 and 1. Thus, fcfs
× fcfs performs at least twice as well for about 15% and 25% of the simulated
behaviors of batch fcfs and interactive fcfs, respectively. The arithmetic mean
improvement of fcfs × fcfs is 1.648 over interactive fcfs and 1.469 over batch
fcfs. The geometric mean improvement of fcfs × fcfs is 1.432 over interactive
fcfs and 1.308 over batch fcfs.

6.2 Scheduling policy comparison · 161

0 2 4 6
0

0.2

0.4

0.6

0.8

1

improvement of visible slowdown (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 6.7: Improvement of batchactive usage of fcfs × fcfs over interactive and
batch usage of fcfs for mean visible slowdown. A task’s visible slowdown is its
visible response time (the time a user is blocked waiting for its output) divided by
the task’s size. The horizontal axis shows improvement factors while the vertical
axis indicates the fraction of runs in which the improvement was at least as much
indicated on the horizontal axis. More area under the curves for horizontal axis
values greater than 1 indicates better batchactive performance. Data along the
line where the horizontal axis equals 1 indicates equal performance among the
scheduling alternatives for particular user and task characteristics. fcfs × fcfs
performs at least twice as well for about 25% and 30% of the simulated behaviors
of batch fcfs and interactive fcfs, respectively. However, there are more cases
where fcfs × fcfs performs worse for visible slowdown than visible response time
in Figure 6.6, indicated by the area above the curves for improvement values less
than 1. The arithmetic mean improvement is 2.252 over interactive fcfs and 2.892
over batch fcfs. The tail of the improvement over batch fcfs curve is heavier,
resulting in its higher mean improvement.

162 · Cluster scheduling for explicitly-speculative tasks

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

scaled billed resources (µ)

fr
ac

tio
n

w
he

re
 v

al
ue

 >
 x

Figure 6.8: Mean scaled billed resources for batch usage of fcfs. For one user,
scaled billed resources is the amount of resources charged over resources needed.
Users who behave in a batch manner often pay for more resources than they need,
as speculative tasks are billed and the user later determines that their outputs are
unneeded. fcfs × fcfs (not shown) charges less because disclosed tasks are not
charged according to the batchactive pricing mechanism. The horizontal axis shows
mean scaled billed resources while the vertical axis indicates the fraction of runs
in which the mean scaled billed resources was at least as much indicated on the
horizontal axis. More area under the curve indicates higher costs for batch users.
The average batch user using fcfs pays at least 30% more than necessary for 20%
of the runs. Over all 5, 400 runs, the average mean scaled billed resources is 1.182.

6.2 Scheduling policy comparison · 163

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

improvement of requested load

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 6.9: Improvement of batchactive usage of fcfs × fcfs over interactive
and batch usage of fcfs for requested load. Requested load reflects the fraction of
billable resource time. Requested load is equivalent to load for interactive and batch
usage because non-speculative scheduling does not distinguish between disclosed
and requested tasks. Further, for batchactive usage, requested load reflects only
the resources used by tasks whose outputs users have asked for. The horizontal
axis shows improvement factors of fcfs × fcfs while the vertical axis shows the
fraction of the runs in which the improvement was at least as much indicated on the
horizontal axis. Better batchactive performance is reflected by the area under the
curves for improvement values greater than 1, while worse batchactive performance
is reflected by the area above the curves for improvement values less than 1. Data
along the line where improvement equals 1 reflects equal performance for some user
and task characteristics. fcfs × fcfs provides better requested load than interactive
fcfs and worse requested load than batch fcfs. Doing worse against batch fcfs is
expected and was explained in Chapter 6.2.2. The arithmetic mean improvement
is 1.029 over interactive fcfs and 0.952 over batch fcfs. (A mean improvement
factor less than 1 is overall worse performance.)

164 · Cluster scheduling for explicitly-speculative tasks

fcfs, batch fcfs, interactive fcfs × fcfs
791.610 (99.690) 0.000 (0.000) 197.464 (20.538)

Table 6.4: The number of deadlines met among batch usage of fcfs, interactive
usage of fcfs, and batchactive usage of fcfs × fcfs. A deadline for a task is met if
it has executed before the user needs its output. Therefore, a higher deadlines met
is better. The mean of all runs for each scheduler is presented. The 95% confidence
interval of each mean is the mean plus and minus the value in parenthesis. fcfs ×
fcfs performs better than interactive fcfs and worse than batch fcfs. Interactive
fcfs never runs a task before needed (its ‘deadline’). Batch fcfs continually aids
tasks until they complete.

fcfs, batch fcfs, interactive fcfs × fcfs
20,182.380 (755.277) 4,542.007 (101.280) 4,407.839 (103.401)

Table 6.5: The standard deviation of visible response time among batch usage of
fcfs, interactive usage of fcfs, and batchactive usage of fcfs × fcfs. This met-
ric reflects how different visible response times are. Users dislike variability; lower
standard deviations are better. The mean of all runs for each scheduler is presented.
The 95% confidence interval of each mean is the mean plus and minus the value in
parenthesis. Batchactive scheduling improves the variance of visible response time.

number of deadlines met. Interactive fcfs cannot meet deadlines because
tasks are requested only after needed. Batch fcfs surprisingly meets more
deadlines than fcfs × fcfs. This is because fcfs × fcfs shifts attention
to requested tasks in an attempt to minimize visible response time while
batch fcfs continually aids tasks until they complete.

Table 6.5 confirms that the variance of visible response time for the runs
covered in the experiments above does not become worse for fcfs × fcfs
batchactive scheduling. In fact, it improves under batchactive scheduling as
tasks that are not known to be needed are deferred when known-needed
work is present and lower visible response times are achieved.

I now show the effects of varying individual parameters. I start with
varying the number of users while holding other parameters constant at the
values in Table 6.2.

Figure 6.10 shows how the number of users affects mean visible response
time. Nearly always, batchactive fcfs × fcfs performs best, exhibiting
adaptability. Batchactive fcfs × fcfs is better than batch fcfs under many
users because requested tasks never wait for speculative tasks; it is better
than interactive fcfs under few users because it fills idle time with specu-
lative tasks. At the busiest part, interactive fcfs and batchactive fcfs ×
fcfs begin to converge because the requested task queue of the batchactive
scheduler is never empty (Figure 6.12).

6.2 Scheduling policy comparison · 165

5 10 15
0

1000

2000

3000

4000

5000

6000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.10: The effect of the number of users on batchactive usage of fcfs ×
fcfs, interactive usage of fcfs, and batch usage of fcfs for mean visible response
time. Each set of three scheduling configurations was run with a different number
of users simultaneously competing for the shared resource while other user and task
characteristics were held constant. Visible response time for a task is the time a user
was blocked on its output. The different configurations are represented by bars of
different shades, with the right-most bar being the batchactive configuration. Since
lower visible response time is better, bars of less height indicate better performance.
With few users, batch fcfs is better than interactive fcfs; with many, interactive
fcfs is better than batch fcfs. fcfs × fcfs adapts and always performs best.

166 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

lo
ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.11: The effect of the number of users on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for load. Load is the fraction
of time that the resource was busy. High load is not necessarily good or bad; it is
presented to facilitate the understanding of server capacity. Instead, a server wishes
to maximize requested load, which is different for the batchactive case, as shown
in Figure 6.12. fcfs × fcfs uses more load than interactive and batch fcfs. This
additional load is used for disclosed tasks and for requested tasks from users who
are receiving greater throughput and thus request tasks more quickly. Batch fcfs
induces more load than interactive fcfs, because, in the latter case, only one task
per user is in the system at any time.

Comparing Figure 6.10 with Figure 6.11 shows how (total) load is af-
fected by varying the number of users. The load under batch fcfs and fcfs
× fcfs are similar. As their loads increase, fcfs × fcfs provides better vis-
ible response time than batch fcfs because fcfs × fcfs favors requested
tasks. fcfs × fcfs provides better visible response time than interactive
fcfs because fcfs × fcfs pipelines disclosed tasks with user think time.
When fcfs × fcfs’s load is higher than interactive fcfs, it still performs
better than interactive fcfs. This additional load reflects tasks that have
been or may be requested. As the loads of fcfs × fcfs and interactive fcfs
approach 1, their visible response times converge.

Not all of this additional load, which consists of tasks that have been or
may be requested, is charged. Resource provider revenue is instead a func-
tion of requested load, shown in Figure 6.12 as the number of users is varied.
fcfs × fcfs provides better requested load than interactive fcfs because,
by providing better mean visible response time, users submit needed work
more quickly. fcfs × fcfs is roughly 10% better than interactive fcfs un-

6.2 Scheduling policy comparison · 167

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

re
qu

es
te

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.12: The effect of the number of users on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for requested load. Requested
load is the load that is charged. Since higher requested load is better for the server,
bars of greater height indicate better server utility. Compared to interactive fcfs,
fcfs × fcfs provides better requested load. fcfs × fcfs can only match batch
fcfs’s request load at a high number of users.

til saturated. fcfs × fcfs cannot meet the requested load of batch fcfs,
in which users request their entire computational plans and are billed for
whatever fraction of these plans had executed before being needed or can-
celed. The uncharged load of the fcfs × fcfs case is shown in Figure 6.13.
Batch fcfs assumes a willingness for users to pay for potentially unneeded
speculation, even in the face of dismal mean visible response time. This issue
was discussed in Chapter 6.2.2.

Figure 6.14 shows how the number of users affects visible task through-
put. Batchactive fcfs× fcfs achieves a higher visible task throughput while
providing the better mean visible response time as shown in Figure 6.10.

Almost always, batchactive scheduling provides better mean visible re-
sponse time and better visible throughput. It is useful to see for specific runs
the relation between these better quantities. I show that a higher number
of needed tasks get through the system at an acceptable mean visible re-
sponse time by graphing visible throughput on the horizontal axis and mean
visible response time on the vertical axis in Figure 6.15. These two depen-
dent variables are a function of changing the number of users (not shown)
while holding other parameters constant. This graph shows that batchactive
scheduling’s combination of mean visible response time and visible through-

168 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

lo
ad

billed

uncharged

Figure 6.13: The effect of the number of users on batchactive usage of fcfs × fcfs
for the requested (billed, charged) and uncharged load. The uncharged load is used
server time that is not charged to any user under the batchactive pricing mechanism.
This figure provides the uncharged load information for the batchactive case of
Figure 6.12. At medium load, the server loses potential revenue from instituting the
batchactive pricing mechanism. This revenue loss is unlikely in practice, as discussed
in Chapter 6.2.2.

put is always better (sometimes much better) than interactive and batch
usage of non-speculative scheduling.

Almost always, batchactive scheduling provides better mean visible re-
sponse time. Often, batchactive scheduling provides worse requested load
(server revenue) compared to batch usage of a non-speculative system. The
following graph shows the relation of these quantities for specific runs by
varying the number of users while holding other parameters constant. Al-
though there are more cases in which batch usage of fcfs provides optimal
(1) requested load, this comes at a price of mean visible response time. I
show that there is more billable time at an acceptable mean visible response
time by graphing requested load on the horizontal axis and mean visible
response time on the vertical axis in Figure 6.16.

Together, Figures 6.15 and 6.16 show that the threshold of overload is
better with a batchactive scheduler; i.e., the non-speculative schedulers’ vis-
ible mean visible response times increase faster at lower visible throughputs
and requested loads.

Now I vary the upper bound of the task set change probability, holding
the other parameters constant.

6.2 Scheduling policy comparison · 169

5 10 15
0

500

1000

1500

2000

number of users

vi
si

bl
e

ta
sk

 th
ro

ug
hp

ut

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.14: The effect of the number of users on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for visible task throughput.
Visible task throughput is the number of needed tasks that have executed; i.e., the
number of tasks whose outputs were needed which were delivered to their submitting
users. Higher visible task throughput is better. Visible throughput is shown to
illustrate that it does not worsen as metrics such as mean visible response time
improve. Improving visible throughput is not a goal in itself. A server is concerned
with billable resources, which includes resources used by needed and unneeded tasks
(and fractions thereof) under the non-speculative pricing mechanism. fcfs × fcfs
provides the best visible task throughput.

170 · Cluster scheduling for explicitly-speculative tasks

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

visible task throughput

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.15: The relationship on batchactive usage of fcfs × fcfs, interactive
usage of fcfs, and batch usage of fcfs between visible throughput and mean
visible response time as the number of users was varied from 1 to 16. Both axes
are dependent axes; the horizontal axis indicates visible task throughput while
the vertical axis indicates mean visible response time. The number of users was
varied while other parameters were held constant. The more the batchactive curve
is below and to the right of the other curves, the better its performance, as that
indicates better visible throughput at better mean visible response time. fcfs ×
fcfs always provides better pairs of visible throughput and mean visible response
time. At a visible throughput of 1, 500, the visible response time of fcfs × fcfs is
over 3 times better than interactive fcfs and over 6 times better than batch fcfs.
Note that this particular improvement was achieved with a different number of users
for the different scheduling configurations. That is, for any visible task throughput
or any visible response time, it is likely that a different number of users resulted
in that performance for the different scheduling configurations. The setting of this
independent variable may be found by examining Figures 6.10 and 6.14 for number
of users v. mean visible response time and v. visible throughput, respectively.

6.2 Scheduling policy comparison · 171

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

requested load

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.16: The relationship on batchactive usage of fcfs× fcfs, interactive usage
of fcfs, and batch usage of fcfs between requested load and visible response time
as the number of users was varied from 1 to 16. Both axes are dependent axes;
the horizontal axis indicates requested load and the vertical axis represents mean
visible response time. The number of users was varied while other parameters were
held constant. The more the batchactive curve is below and to the right of the
other curves, the better its performance, as that indicates better requested load
at better mean visible response time. fcfs × fcfs always provides better pairs of
requested load and mean visible response time. The setting of the number of users
independent variable, for any achieved requested load or mean visible response time,
may be found by examining Figures 6.10 and 6.12.

172 · Cluster scheduling for explicitly-speculative tasks

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000

task set change prob. (midpoint of uni. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.17: The effect of the task set change probability on batchactive usage of
fcfs × fcfs, interactive usage of fcfs, and batch usage of fcfs for visible response
time. Each set of three configurations was run with a different upper bound on
the uniform probability that determined the likelihood that users would cancel
unviewed task outputs after thinking about received outputs. Other parameters
were held constant. The probability is a uniform random variable and shown on the
horizontal axis is the average of its lower (always 0) and upper bounds. Interactive
fcfs is unaffected while batchactive fcfs × fcfs is affected less than batch fcfs
and outperforms both.

In Figure 6.17, I vary the upper bound of the task set change probability
from 0.0–0.4 and plot mean visible response time. This parameter does not
affect interactive fcfs as these users do not submit disclosed tasks. There is
a greater dependence on this parameter with batch fcfs compared to fcfs
× fcfs because fcfs × fcfs avoids speculative tasks when requested work
exists.

I varied the task set change probability to show its effect on mean scaled
billed resources in Figure 6.18. Batch users waste increasing money on un-
needed speculation as their task sets become more speculative. This extra
money is spent as mean visible response times worsen as shown in Fig-
ure 6.17.

I varied the task set change probability to show its effect on requested
load in Figure 6.19. As batch users waste more money (Figure 6.18), the
resource provider earns more revenue. Requested load is not a function of
how often users cancel task sets for interactive use of fcfs and batchactive
use of fcfs × fcfs. Requested load is higher for the batchactive case relative
to interactive fcfs because the better mean visible response times achieved

6.2 Scheduling policy comparison · 173

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

task set change prob. (midpoint of uni. dist.)

sc
al

ed
 b

ill
ed

 r
es

ou
rc

es
 (

µ)

Figure 6.18: The effect of the task set change probability on batch usage of fcfs
for mean scaled billed resources. As task sets become increasingly speculative, batch
users spend increasingly needlessly.

by the former (Figure 6.17) cause users to submit needed work more quickly.
I show that there is still benefit to batchactive scheduling when users

plan ahead task sets in which there is no speculation; i.e., when all tasks in
one’s task set will eventually be requested and never canceled. I do this by
fixing the upper bound of the task set change probability to 0. Figure 6.20
shows that the benefit for mean visible response time exists but is not as
great as when there is speculation (Figure 6.10), as the number of users
is varied while other parameters are held constant. The mean scaled billed
resources for batch fcfs (not shown) is always 1 since no disclosed work is
wasted.

I repeat this non-speculative experiment but instead show requested
load. The requested load shows an interesting phenomenon in Figure 6.21
as the number of users is varied while other parameters are held constant:
requested load for the fcfs × fcfs case is sometimes higher than batch
fcfs. While requested load was frequently higher than the interactive case
because users receive outputs faster and submit more needed work faster
(Chapter 4.5.4), this phenomenon also occurs against the batch case because
here all disclosed work is eventually determined by the simulated users to
be needed.

I now vary the upper bound of the number of tasks per task set while
holding other parameters constant.

174 · Cluster scheduling for explicitly-speculative tasks

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

task set change prob. (midpoint of uni. dist.)

re
qu

es
te

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.19: The effect of the task set change probability on batchactive usage of
fcfs × fcfs, interactive usage of fcfs, and batch usage of fcfs for requested
load. The task set change probability affects only the batch case: a greater chance of
cancelation increases server revenue. But while fcfs batch gets more billed work
accomplished, it has very poor visible response time (Figure 6.17).

5 10 15
0

1000

2000

3000

4000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.20: The effect of the number of users on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for mean visible response time
when all work is needed. Lower bars indicate better performance as the number of
users was varied while other parameters were held constant among each scheduling
configuration. There is still benefit to batchactive scheduling when task sets are not
speculative.

6.2 Scheduling policy comparison · 175

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

re
qu

es
te

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.21: The effect of the number of users on batchactive usage of fcfs ×
fcfs, interactive usage of fcfs, and batch usage of fcfs for requested load when
all work is needed. Batchactive requested load consistently beats even the batch case
when tasks are never canceled.

I show large task sets reflecting users searching high-dimensional spaces.
These runs were not included in the summarizing inverse cumulative graphs
above (Figures 6.6, 6.7, 6.8, and 6.9). I varied the upper bound of the number
of tasks per task set uniform distribution from 1–1, 024 in multiples of 2. Its
effect on mean visible response time is shown in Figure 6.22. When all task
sets have only one task, all cases provide the same mean visible response
time. Disclosing task sets as small as several tasks — easily realizable by
users performing exploratory searches — provides good improvement over
interactive fcfs. Batch fcfs and fcfs × fcfs initially improve with more
tasks per task set because there is think time that can be leveraged to
run disclosed tasks. Soon batch fcfs becomes unusable as its single queue
is overwhelmed with speculative tasks. Interactive fcfs is immune to the
number of tasks per task set because these users will have submitted at
most one task from their task sets. Batchactive fcfs × fcfs is always best.
Compared to itself, its performance worsens as the number of tasks per task
set increases because there is more competition among speculative tasks,
some of which run but are never needed.

I varied the number of tasks per task set to show the effect on mean
scaled billed resources in Figure 6.23. As task set sizes increase, batch users
pay greatly for unneeded speculation. This extra cost does not help their
mean visible response times, as shown in Figure 6.22.

176 · Cluster scheduling for explicitly-speculative tasks

10
0

10
1

10
2

0

500

1000

1500

2000

2500

tasks per task set (midpoint of uni. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.22: The effect of the number of tasks per task set on batchactive usage of
fcfs × fcfs, interactive usage of fcfs, and batch usage of fcfs for mean visible
response time. Each set of three configurations was run with a different upper bound
on the uniform distribution determining the number of tasks per task set for each
user; the lower bound was always held at 1. Other parameters were held constant.
The number of tasks per task set is a uniform random variable and shown on the
horizontal axis is the average of its lower and upper bounds. The saddle point for
fcfs × fcfs at the horizontal axis value of 128 is within confidence intervals (not
shown). fcfs × fcfs always wins and batch fcfs quickly becomes unusable. At a
number of tasks per task set with an upper bound of 64, the mean visible response
time of the batch case is 7, 270. (This graph is log-linear.)

6.2 Scheduling policy comparison · 177

10
0

10
1

10
2

0

2

4

6

8

10

12

tasks per task set (midpoint of uni. dist.)

sc
al

ed
 b

ill
ed

 r
es

ou
rc

es
 (

µ)

Figure 6.23: The effect of the number of tasks per task set on batch usage of fcfs
for mean scaled billed resources. As task sets become larger, batch users waste more
money on unneeded speculation.

I varied the number of tasks per task set to show the effect on requested
load in Figure 6.24. With every task set consisting of one needed task, all
configurations result in the same revenue. Maximum revenue for the batch
case, which occurs when the upper bound on the number of tasks per task set
is at least 60, results in unacceptable mean visible response time and mean
scaled billed resources (Figures 6.22 and 6.23). Interactive and batchactive
usage are most different when the upper bound of the number of tasks
per task set is between 12 and 18, the points at which the difference of
the mean visible response times between the two configurations is greatest
(Figure 6.22).

Now I vary mean service time while holding other parameters constant.
Figure 6.25 shows how mean service time affects mean visible response

time. As mean service time increases, the performance of interactive fcfs
and batchactive fcfs × fcfs converge. As a limiting case, when a server is
always running requested work, fcfs × fcfs does not improve performance
over interactive fcfs.

There is no significant effect of mean service time on mean scaled billed
resources, thus no data is presented.

I varied service time to show its effect on requested load in Figure 6.26.
At a mean service time of approximately 1, 200 s and above, batchactive
scheduling provides equal server revenue as batch usage of fcfs while pro-
viding much better mean visible response time as shown in Figure 6.25.

178 · Cluster scheduling for explicitly-speculative tasks

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

tasks per task set (midpoint of uni. dist.)

re
qu

es
te

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.24: The effect of the number of tasks per task set on batchactive usage of
fcfs × fcfs, interactive usage of fcfs, and batch usage of fcfs for requested
(charged) load. A sweet spot shows an improvement of server revenue for the
batchactive case over the interactive case. Batch usage of non-speculative scheduling
produces the best revenue at the expense of unacceptable mean visible response time
(Figure 6.22).

200 600 1000 1400 1800 2200
0

5000

10000

15000

service time (µ of exp. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.25: The effect of service time on batchactive usage of fcfs × fcfs, in-
teractive usage of fcfs, and batch usage of fcfs for mean visible response time.
Each set of three configurations was run with a different mean for the exponential
distribution determining task service time. Other parameters were held constant.
At the low end, there is more opportunity for batchactive scheduling to improve
performance.

6.2 Scheduling policy comparison · 179

200 600 1000 1400 1800 2200
0

0.2

0.4

0.6

0.8

1

service time (µ of exp. dist.)

re
qu

es
te

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.26: The effect of service time on batchactive usage of fcfs × fcfs, inter-
active usage of fcfs, and batch usage of fcfs for requested (charged) load. When
mean service time is sufficiently high, batchactive and batch usage achieve equal
server revenue.

Finally, I vary think time while holding the other parameters constant.
Think time works inversely to service time: the more think time, the more

opportunity for batchactive scheduling to reduce visible response time, as
shown in Figure 6.27. All three configurations provide the same performance
with little think time and improve with more think time. However, fcfs ×
fcfs outperforms both batch and interactive fcfs with more think time in
the range shown. Eventually fcfs × fcfs and batch fcfs would converge
once there is enough think time for batch fcfs to execute every task from
every user’s current task set. fcfs × fcfs will always outperform interac-
tive fcfs as mean think time increases because interactive fcfs exposes no
speculation to the system.

I varied think time to show its effect on mean scaled billed resources in
Figure 6.28. The more think time, the more likely the server will get ahead
of the user, executing speculative tasks that will turn out to not be needed,
resulting in charging for unneeded speculation.

I varied think time to show its effect on requested load in Figure 6.29.
With little think time, server revenue is maximum across configurations. As
think time increases, server revenue decreases: there are times in which users
are thinking and not needing work. Batch revenue is highest because specu-
lative work is charged. Interactive revenue is lowest because speculative work
is never submitted. Batchactive revenue is between the two: unneeded spec-

180 · Cluster scheduling for explicitly-speculative tasks

200 2360 4520 6680 8840 11000
0

1000

2000

3000

4000

5000

think time (µ of exp. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.27: The effect of think time on batchactive usage of fcfs × fcfs, interac-
tive usage of fcfs, and batch usage of fcfs for mean visible response time. Each
set of three configurations was run with a different mean for the exponential dis-
tribution determining user think time. At the high end, there is more opportunity
for batchactive scheduling to improve performance.

200 2360 4520 6680 8840 11000
0

0.5

1

1.5

2

think time (µ of exp. dist.)

sc
al

ed
 b

ill
ed

 r
es

ou
rc

es
 (

µ)

Figure 6.28: The effect of think time on batch usage of fcfs for mean scaled billed
resources. Greater think time results in more wasted money on unneeded speculation.

6.2 Scheduling policy comparison · 181

200 2360 4520 6680 8840 11000
0

0.2

0.4

0.6

0.8

1

think time (µ of exp. dist.)

re
qu

es
te

d
lo

ad

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.29: The effect of think time on batchactive usage of fcfs × fcfs, interac-
tive usage of fcfs, and batch usage of fcfs for requested load. Requested load is
proportional to server revenue. Greater think time negatively affects server revenue.

ulation is not charged, but since users receive outputs faster, they request
needed work more quickly.

I show that the ratio of user think time to task service time is correlated
to visible response time in Figure 6.30. A wide range of mean think time
(200–11, 000 s in 1, 080 s increments) and mean service time (200–2, 000 s
in 200 s increments) were used while other parameters were held constant.
While a trend is evident, with batchactive visible response time always the
lowest (best), this graph shows that performance is not a simple function
of the ratio of think time and service time. When one value is substantially
different from the other, it dominates in ways hard to appreciate from the
ratio. From Figures 6.25 and 6.27, it is evident that changes in service time
have a greater effect than changes in think time with respect to absolute
visible response time, and that changes in think time have a greater effect
in the relative difference between schedulers.

I confirm that there is no benefit to batchactive scheduling when users do
not exhibit any think time, as discussed in Chapter 2.3.1. All three config-
urations result in the same performance as shown in Figure 6.31. (Further,
but not shown, mean scaled billed resources is always 1 for batch fcfs, and
requested load for all three configurations is 1.)

The number of scheduling decisions is shown in Table 6.6. Two-tiered
fcfs-based batchactive scheduling does not cause more scheduling decisions
to be made than non-speculative scheduling.

182 · Cluster scheduling for explicitly-speculative tasks

0 2 4 6 8 10
0

0.5

1

1.5

2
x 10

4

think time (µ) over service time (µ)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)
FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.30: The effect of mean think time over mean service time on batchactive
usage of fcfs × fcfs, interactive usage of fcfs, and batch usage of fcfs for mean
visible response time. The horizontal axis indicates ratios of the means used in the
exponential distributions to generate think and service times. Other parameters
were held constant. Lower mean visible response time is better, so lower curves
indicate better performance. The chaotic nature of this data is explained as follows:
Two values visually next to each other might be comprised of very different service
and think times, such as 11, 000:2, 000 (5.5) and 5, 600:1, 000 (5.6). These selections
will exhibit very different mean visible response times because the effect of one
parameter (service time) dominates the effect of the other (think time) as shown in
Figures 6.25 and 6.27. Still, at every point batchactive fcfs × fcfs is better.

fcfs, batch fcfs, interactive fcfs × fcfs

count 2,059.7 (23.9) 2,657.6 (19.6) 2,543.3 (40.7)
scaled count 1.616 (0.045) 2.001 (0.000) 1.695 (0.032)

Table 6.6: Total number (averaged over 35 runs started with different random seeds)
of scheduling decisions over two weeks of simulated time. The scaled count is the
count divided by the number of finished (needed) tasks. The 95% confidence interval
of each mean is the mean plus and minus the value in parenthesis. The number of
scheduling decisions for fcfs × fcfs is between that for interactive and batch usage
of fcfs. The time overhead of these decisions is presented in Table 7.1.

6.2 Scheduling policy comparison · 183

5 10 15
0

2000

4000

6000

8000

10000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x FCFS

Figure 6.31: The effect of the number of users on batchactive usage of fcfs × fcfs,
interactive usage of fcfs, and batch usage of fcfs for mean visible response time
when think time is removed. The number of users was varied while other parameters
were held constant. For each scheduling configuration, performance is the same
within error, showing that think time is necessary for batchactive scheduling benefits.

This section covered the principal benefits of batchactive scheduling for
the most-easily deployable two-tiered batchactive scheduler which does not
rely on predictions of user behavior or knowledge of task size. Except re-
quested load relative to batch users, every time- and cost-based metric im-
proved over a wide range of scenarios.

6.2.5 Determining a better disclosed queue scheduler

Here I explore the performance of different task size-agnostic disclosed queue
subpolicies. I compare the batchactive scheduler fcfs × fcfs from the pre-
vious section (Chapter 6.2.4) against fcfs × hrp and fcfs × hrr. Both
hrp and hrr are novel disclosed queue subpolicies (Chapter 5.5.1). Highest-
request-probability (hrp) favors disclosed tasks from users who have histor-
ically requested a greater percentage of their speculative tasks. Highest-
requested-resources (hrr) favors disclosed tasks from users who have re-
quested more resources since entering the system.16

Comparisons involving the mean scaled billed resources metric are not
shown because this metric is always optimal (1) under the batchactive pric-
ing mechanism introduced in Chapter 5.1.

16All users enter the system at the start of the simulation (Chapter 6.1.1).

184 · Cluster scheduling for explicitly-speculative tasks

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

of FCFS x HRP

of FCFS x HRR

Figure 6.32: Improvement of fcfs × hrp and fcfs × hrr over fcfs × fcfs
for mean visible response time. The horizontal axis indicates improvement values
while the vertical axis indicates the fraction of the sets of parameters under test
in which the improvement was at least as much indicated on the horizontal axis.
Area under the curves for improvements greater than 1 indicate that the proposed
disclosed queue subpolicies did better than fcfs × fcfs. Area above the curves
for improvements less than 1 indicate that fcfs × fcfs did better. Data along
improvement equal to 1 indicate equal performance. fcfs × hrp provides the best
mean visible response time. The arithmetic mean improvement of fcfs × hrp is
1.033 and of fcfs × hrr is 1.001, indicating little change over the range of task
and user characteristics tested. Below I vary individual parameters to show the
conditions under which disclosed queue subpolicies have the most effect.

The improvement factors of the time-based metric mean visible response
time is shown in Figure 6.32. fcfs × hrp provides better mean visible
response times than fcfs × fcfs. Surprisingly, the performance of fcfs ×
hrr is, on average, nearly the same as fcfs × fcfs, as shown by the nearly
equal areas below and to the right and above and to the left of improvement
equal to 1. A breakdown of the cases where better and worse performance
occurs is presented below when parameters are varied individually.

The cost-based metric, requested load, is shown in Figure 6.33. Both
fcfs × hrp and fcfs × hrr provide better server revenue than fcfs ×
fcfs. At the outset, I had expected hrr to provide better server revenue
than hrp because it favors users who had requested more work historically.
Instead hrr spends too much time on unneeded long-shot speculation from
users who have early on requested large tasks. More detail is found in the
per-parameter investigations below.

6.2 Scheduling policy comparison · 185

0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

improvement of requested load

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

of FCFS x HRP

of FCFS x HRR

Figure 6.33: Improvement of fcfs × hrp and fcfs × hrr over fcfs × fcfs
for requested (charged) load. fcfs × hrp provides the best requested load. The
arithmetic mean improvement of fcfs × hrp is 1.003 and of fcfs × hrr is 1.000.
Over the 5, 400 sets of user and task behaviors there is little difference with respect
to requested load for these three batchactive schedulers. Areas of difference are
examined by varying individual parameters below.

Note that Figures 6.32 and 6.33 do not include simulations of large task
sets which are covered in the per-parameter investigations below. Large task
sets favor more intelligent disclosed queue subpolicies, and thus these im-
provement factors are conservative.

I now show the effects of varying individual parameters. I start with
varying the number of users while holding other parameters constant. This
parameter had the least effect but is shown for completeness. The following
parameters, the number of tasks per task set and the task set change prob-
ability, better illuminate differences among the disclosed queue subpolicies.

I varied the number of users to show its effect on mean visible response
time in Figure 6.34. fcfs × hrr does worse than the alternatives. It favors
users who have requested more work, but in doing so, will eventually run
their speculative tasks that will not be needed. (In effect, the spring from
Figure 5.13 stretches too far.) fcfs × hrp does best by favoring users who
have historically needed more of their speculative work.

Figures 6.35 and 6.36 show the effect of the number of users on requested
load (charged load) and uncharged load (total load minus requested load),
respectively. When the number of users is low, there is little or no com-
petition for server resources. There is no difference among the schedulers

186 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

1000

2000

3000

4000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.34: The effect of the number of users on batchactive usage of fcfs × hrr,
batchactive usage of fcfs × hrp, and batchactive usage of fcfs × fcfs for mean
visible response time. Each set of three scheduling configurations was run with a
different number of users simultaneously competing for the shared resource while
other parameters were held constant. Since lower visible response time is better,
bars of less height indicate better performance. The differences are slight, but still,
fcfs × hrr provides worse mean visible response time while fcfs × hrp provides
better mean visible response time.

6.2 Scheduling policy comparison · 187

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

re
qu

es
te

d
lo

ad

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.35: The effect of the number of users on batchactive usage of fcfs ×
hrr, batchactive usage of fcfs × hrp, and batchactive usage of fcfs × fcfs
for requested load. Since higher requested load is better, bars of greater height
indicate better performance. As the number of users increases, the hrp disclosed
queue subpolicy begins providing slightly more requested load (server revenue).
Charged load between fcfs × fcfs and fcfs × hrr is nearly the same with fcfs
× hrp outperforming both.

because there are too few users available to choose from. The little induced
uncharged load is from running slightly more work than these few numbers
of users will eventually need. As the number of users increases, fcfs × hrp
provides better requested load in the same region as it provided better mean
visible response time (Figure 6.34). Favoring the right users enables the users
to submit needed work more quickly, improving server revenue. It is in this
region that fcfs × hrp achieves its greatest performance improvement for
uncharged load. As the number of users increases further, there is always
needed work to run and for all three configurations requested load converges
to maximum and uncharged load converges to minimum.

Recall that it might not always be the case that it costs the resource
provider the same for a server to be idle compared to a server to be busy
(Chapter 5.1.3). The uncharged load, only present with batchactive schedul-
ing due to the batchactive pricing mechanism, reflects the fraction of server
busy time that goes uncharged. As shown in Figure 6.36, most of the time the
uncharged load is small. In the worst case, it is roughly 20%. This frequency
and degree of uncharged load was also found when varying other parame-
ters (not shown) besides the number of users. Based on the increased cost

188 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

0.2

0.4

0.6

0.8

1

number of users

un
ch

ar
ge

d
lo

ad

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.36: The effect of the number of users on batchactive usage of fcfs ×
hrr, batchactive usage of fcfs × hrp, and batchactive usage of fcfs × fcfs
for uncharged load. Uncharged load is (total) load minus requested load. Since
lower uncharged load is better, bars of less height indicate better performance. The
middle range of users shows the greatest difference for this metric. Here, fcfs ×
hrp performs best. (The vertical axis ranges up to 1 since this is the maximum
value uncharged load may take. This visually diminishes the maximum percentage
difference between the schedulers which is approximately a factor of 2 at 11 users.)

to operate a busy as opposed to idle server, a resource provider may wish
to increase the price for requested resources. (I do not advocate charging
a reduced amount for unneeded speculative work because this would dis-
suade users from disclosing speculative tasks.) The effect of increased price
on server revenue and user costs was discussed in Chapter 6.2.2.

I show the relation between requested load and mean visible response
time by graphing both on the horizontal and vertical axes, respectively, in
Figure 6.37. fcfs × hrp provides better values for these metrics in pairs
than fcfs × fcfs. Further, fcfs × fcfs performs better than fcfs × hrr.

I show the relation between visible throughput and mean visible response
time by graphing both on the horizontal and vertical axes, respectively, in
Figure 6.38. Again, fcfs × hrp simultaneously provides the best visible
throughput and mean visible response time.

Now I vary the upper bound of the number of tasks per task set, holding
the other parameters constant.

I varied the number of tasks per task set to show its effect on mean
visible response time in Figure 6.39. When all task sets consist of one task,

6.2 Scheduling policy comparison · 189

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

requested load

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.37: The relationship on batchactive usage of fcfs × hrr, batchactive
usage of fcfs × hrp, and batchactive usage of fcfs × fcfs between requested
load and mean visible response time as the number of users was varied from 1 to 16.
Both axes are dependent axes; the horizontal axis indicates requested load while the
vertical axis indicates mean visible response time. The number of users was varied
while other parameters were held constant. The more a proposed configuration is
below and to the right of fcfs × fcfs, the better its performance, as that indicates
better requested load at better mean visible response time. fcfs × hrp performs
better for pairs of requested load and mean visible response time. The setting of the
independent variable, the number of users, may be found by examining Figures 6.34
and 6.35.

190 · Cluster scheduling for explicitly-speculative tasks

0 500 1000 1500 2000
0

1000

2000

3000

4000

visible task throughput

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.38: The relationship on batchactive usage of fcfs × hrr, batchactive us-
age of fcfs × hrp, and batchactive usage of fcfs × fcfs between visible through-
put and visible response time as the number of users was varied from 1 to 16 and
other parameters were held constant. Both axes are dependent axes; the horizon-
tal axis indicates visible throughput while the vertical axis indicates mean visible
response time. fcfs × hrp provides better visible task throughput while simultane-
ously providing better mean visible response time.

performance is identical across schedulers. As task set size increases, there
is the opportunity to run disclosed work during user think time. The per-
formance of all three schedulers improves. When the average task set size
is too big, the returns diminish: the two-tiered batchactive schedulers’ dis-
closed queues become swamped with unneeded work, lessening their benefits.
However, fcfs × hrp is significantly less affected by task set sizes in the
middle region of this graph, indicating that it is more robust.

I varied the number of tasks per task set to show its effect on requested
load in Figure 6.40. Server revenue is surprisingly constant through a large
range of task set sizes while a great difference in mean visible response time
was presented in Figure 6.39. The region in which fcfs × hrp provided
much better mean visible response time is the region in which it provides
slightly better requested load, indicating that users are submitting needed
work more quickly.

Now I vary the upper bound of the task set change probability, holding
the other parameters constant.

I varied the task set change probability to show its effect on mean visible
response time in Figure 6.41. The mean visible response of all three config-

6.2 Scheduling policy comparison · 191

10
0

10
1

10
2

0

500

1000

1500

tasks per task set (midpoint of uni. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.39: The effect of the number of tasks per task set on batchactive usage of
fcfs × hrr, batchactive usage of fcfs × hrp, and batchactive usage of fcfs ×
fcfs for mean visible response time. Each set of three configurations was run with a
different upper bound on the uniform distribution determining the number of tasks
per task set for each user; the lower bound was held constant at 1. Other parameters
were held constant. The number of tasks per task set is a uniform random variable
and shown on the horizontal axis is the average of its lower and upper bounds. The
saddle points at the horizontal axis value of 128 is within confidence intervals (not
shown). fcfs × hrp performs significantly better in the middle region of this graph,
exhibiting greater robustness. (This graph is log-linear.)

192 · Cluster scheduling for explicitly-speculative tasks

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

tasks per task set (midpoint of uni. dist.)

re
qu

es
te

d
lo

ad

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.40: The effect of the number of tasks per task set on batchactive usage
of fcfs × hrr, batchactive usage of fcfs × hrp, and batchactive usage of fcfs
× fcfs for requested load. There is little difference in server revenue among the
candidates for batchactive scheduling as task set sizes vary greatly. The region in
which fcfs × hrp performs slightly better is the region in which it provides the
much better mean visible response time in Figure 6.39.

urations worsens as users become more speculative. The relative difference
between them (with fcfs × hrp better than fcfs × fcfs and fcfs × fcfs
better than fcfs × hrr) remains unchanged.

The effect of the task set change probability on requested load and un-
charged load also maintains the same ratio of performance differences be-
tween the candidate batchactive schedulers, thus the data is omitted. fcfs
× hrp was better than fcfs × fcfs and fcfs × fcfs was better than fcfs
× hrr.

This section showed the benefits of fcfs × hrp. fcfs × hrp learns user
behavior; specifically, the likelihood of task request. The user model does
not change how speculative users are, while in reality, users may be more
or less certain of needing tasks at different times. More elaborate filters to
learn behavior (such as the flip-flop filter discussed in Chapter 4.7) may
perform well for such users. In any case, when predictions cannot be made,
the batchactive system may fall back on fcfs × fcfs which still provides
substantial benefits over non-speculative scheduling.

6.2 Scheduling policy comparison · 193

0 0.05 0.1 0.15 0.2
0

200

400

600

800

task set change prob. (midpoint of uni. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS x HRR

FCFS x HRP

FCFS x FCFS

Figure 6.41: The effect of the task set change probability on batchactive usage of
fcfs × hrr, batchactive usage of fcfs × hrp, and batchactive usage of fcfs ×
fcfs for mean visible response time. Each set of three configurations was run with
a different upper bound on the uniform probability that determined the likelihood
that users would cancel unviewed task outputs after thinking about received out-
puts. Other parameters were held constant. The probability is a uniform random
variable and shown on the horizontal axis is the average of its lower (always 0)
and upper bounds. Again, fcfs × hrp is the best scheduler. Favoring the user
who has requested the most disclosed tasks does best over different task set change
probabilities.

194 · Cluster scheduling for explicitly-speculative tasks

6.2.6 Benefits of favoring the speculative tasks of better speculators

This section compares non-speculative fcfs against batchactive fcfs ×
hrp, which was shown to perform better than fcfs × fcfs in the previ-
ous section (Chapter 6.2.5). I demonstrate the improvement of size-agnostic
two-tiered batchactive scheduling using the novel disclosed queue subpolicy
hrp over non-speculative fcfs.

Data on mean scaled billed resources, which is only applicable to batch
usage of a non-speculative scheduler, can be found in Chapter 6.2.4.

Concerning time-based metrics, the improvement factors of mean vis-
ible response time and mean visible slowdown are shown in Figures 6.42
and 6.43. The general shape of these curves are very similar to Figures 6.6
and 6.7, but there is slightly more area under these curves, indicating that
the improvement of fcfs × hrp over batch and interactive usage of fcfs
is better than the improvement of fcfs × fcfs. More detail is found in the
per-parameter investigations below.

Concerning the cost-based metric, the improvement factors of requested
load are shown in Figure 6.44. Requested load is usually better for batch
users on a non-speculative scheduler. That is, a resource provider would
earn more when all users speculate by requesting task sets and all users
are charged for any resource usage. This is an unlikely scenario, however; it
assumes that all users are highly confident of needing all speculative tasks
immediately or that all users have abundant resources to pay for unneeded
speculative tasks. Further, these users would experience significantly worse
mean visible response time at the higher levels of server revenue. More detail
is found in the per-parameter investigations below.

Again, because Figures 6.42, 6.43, and 6.44 do not include simulations
of large task sets, which favor batchactive scheduling, and which are covered
below, these summarizing graphs are conservative.

For the runs covered in the above experiments, Table 6.7 reports the
number of deadlines met. Interactive fcfs cannot meet deadlines because
tasks are requested only after needed. Batch fcfs surprisingly meets more
deadlines than fcfs × hrp. This is because fcfs × hrp shifts attention to
requested tasks in an attempt to minimize visible response time while batch
fcfs continually aids tasks until they complete.

Table 6.8 confirms that the variance of visible response time for the runs
covered in the experiments above does not become worse for fcfs × hrp
batchactive scheduling. In fact, it improves under batchactive scheduling as
tasks that are not known to be needed are deferred when known-needed
work is present and lower visible response times are achieved.

6.2 Scheduling policy comparison · 195

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 6.42: Improvement of batchactive usage of fcfs × hrp over interactive and
batch usage of fcfs for mean visible response time. A task’s visible response time is
the time between a user needing and receiving the task’s output. The vertical axis
indicates the fraction of the runs exploring 5, 400 sets of parameters in which the
improvement was at least as much indicated on the horizontal axis. Batchactive
performance is measured by the area under the curves for horizontal axis values
greater than 1 minus the area above the curves for horizontal axis values between
0 and 1. Thus, fcfs × hrp performs at least twice as well for about 17% and 30%
of the simulated behaviors of batch fcfs and interactive fcfs, respectively. The
arithmetic mean improvement is 1.731 over interactive fcfs and 1.583 over batch
fcfs.

fcfs, batch fcfs, interactive fcfs × hrp
791.610 (99.690) 0.000 (0.000) 206.553 (20.590)

Table 6.7: The number of deadlines met among batch usage of fcfs, interactive
usage of fcfs, and batchactive usage of fcfs × hrp. A deadline for a task is met if
it has executed before the user needs its output. Therefore, a higher deadlines met
is better. The mean of all runs for each scheduler is presented. The 95% confidence
interval of each mean is the mean plus and minus the value in parenthesis. fcfs ×
hrp performs better than interactive fcfs and worse than batch fcfs. Interactive
fcfs never runs a task before needed (its ‘deadline’). Batch fcfs continually aids
tasks until they complete. fcfs × hrp performs better than fcfs × fcfs from
Table 6.4.

196 · Cluster scheduling for explicitly-speculative tasks

0 2 4 6
0

0.2

0.4

0.6

0.8

1

improvement of visible slowdown (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 6.43: Improvement of batchactive usage of fcfs × hrp over interactive and
batch usage of fcfs for mean visible slowdown. A task’s visible slowdown is its vis-
ible response time scaled by task size. Thus, fcfs × hrp performs at least twice as
well for about 25% and 30% of the simulated behaviors of batch fcfs and interac-
tive fcfs, respectively. The arithmetic mean improvement is 2.547 over interactive
fcfs and 3.625 over batch fcfs. The mean improvement is higher against batch
fcfs because of its heavier tail.

fcfs, batch fcfs, interactive fcfs × hrp
20,182.380 (755.277) 4,542.007 (101.280) 4,382.339 (103.666)

Table 6.8: The standard deviation of visible response time among batch usage of
fcfs, interactive usage of fcfs, and batchactive usage of fcfs × hrp. This met-
ric reflects how different visible response times are. Users dislike variability; lower
standard deviations are better. The mean of all runs for each scheduler is presented.
The 95% confidence interval of each mean is the mean plus and minus the value in
parenthesis. Batchactive scheduling improves the variance of visible response time.

6.2 Scheduling policy comparison · 197

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

improvement of requested load

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over FCFS, batch

over FCFS, inter.

Figure 6.44: Improvement of batchactive usage of fcfs × hrp over interactive
and batch usage of fcfs for requested load. Requested load is load for the non-
speculative configurations. For fcfs × hrp, requested load is the load actually
charged. The area under the curves for improvement greater than 1 reflects better
batchactive performance, while the area above the curves for improvement less
than 1 reflects worse performance. fcfs × hrp provides better requested load than
interactive fcfs and worse requested load than batch fcfs. As was explained in
Chapter 6.2.2, it is expected that batchactive scheduling does worse than batch
usage of fcfs for requested load. The arithmetic mean improvement is 1.033 over
interactive fcfs and 0.955 over batch fcfs. (A mean improvement factor less than
1 is overall worse performance.)

198 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

1000

2000

3000

4000

5000

6000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x HRP

Figure 6.45: The effect of the number of users on batchactive usage of fcfs × hrp,
interactive usage of fcfs, and batch usage of fcfs for mean visible response time.
Each set of three scheduling configurations was run with a different number of users
simultaneously competing for the shared resource while other user and task charac-
teristics were held constant. The different configurations are represented by bars of
different shades, with the right-most bar being the batchactive configuration. Since
lower visible response time is better, bars of less height indicate better performance.
fcfs × hrp adapts over the range of users and always performs best.

I now show the effects of varying individual parameters. I start with
varying the number of users while holding other parameters constant.

I varied the number of users to show its effect on mean visible response
time in Figure 6.45. The description of fcfs × fcfs performance in Fig-
ure 6.10 applies here as well. The only difference is that batchactive im-
provements are slighter better because fcfs × hrp is better than fcfs ×
fcfs.

I show that a higher number of needed tasks get through the system
at an acceptable visible response time by graphing visible throughput on
the horizontal axis and mean visible response time on the vertical axis in
Figure 6.46. The greater distance below and to the right that the batchactive
curve for fcfs × hrp has in this graph compared to the distance that fcfs
× fcfs had in Figure 6.15 shows the advantage of hrp as the disclosed
queue subpolicy.

The demonstration of more billable time at given mean visible response
times by graphing requested load on the horizontal and mean visible response
time on the vertical axis is similar to Figure 6.16 and is thus omitted.

6.2 Scheduling policy comparison · 199

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

visible task throughput

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x HRP

Figure 6.46: The relationship on batchactive usage of fcfs × hrp, interactive
usage of fcfs, and interactive usage of fcfs between visible throughput and visible
response time as the number of users was varied from 1 to 16. Both axes are
dependent axes; the horizontal axis indicates visible task throughput while the
vertical axis indicates mean visible response time. fcfs × hrp always provides
better pairs of visible throughput and mean visible response time. At a mean visible
response time of 1, 000, the needed tasks that finished for fcfs × hrp was about
60% higher against both alternatives. The number of users was varied while other
parameters were held constant. The more the batchactive curve is below and to the
right of the other curves, the better its performance, as that indicates better visible
throughput at better mean visible response time.

200 · Cluster scheduling for explicitly-speculative tasks

The improvements and description of how the number of users affects
load, requested load, and visible throughput are also similar to those for
Figures 6.11, 6.12, and 6.14, and thus data and discussion are omitted.

To follow the form of the previous sections, I would now vary the up-
per bound of the task set change probability, holding the other parameters
constant. However, again, the improvements and description of how this pa-
rameter affects metrics such as mean visible response time and requested
load mirror those in Figures 6.17 and 6.19, and thus data and discussion are
omitted.

I now vary the upper bound of the number of tasks per task set, holding
the other parameters constant.

I varied the number of tasks per task set to show its effect on visible
response time in Figure 6.47. When all task sets have only one task, all cases
provide the same mean visible response time. Interactive fcfs is immune to
the number of tasks per task set because these users will have submitted at
most one task from their task sets. Batch fcfs and fcfs × hrp initially
improve with speculative work that may be performed while users are in their
think times. Soon batch fcfs becomes unusable as its single queue becomes
overwhelmed. fcfs × hrp is resilient to large task sets. Not only does it
perform significantly better than batch fcfs, but it also performs better
than batchactive fcfs × fcfs from Figure 6.22. Eventually its benefits
decline as the disclosed queue becomes swamped with unneeded tasks.

fcfs × hrp also provides advantages over fcfs × fcfs for requested
load, but the differences are minor, and thus I do not present data showing
how task set size affects requested load.

To follow the form of the previous sections, I would vary the mean service
time, holding other parameters constant and then vary the mean think time,
holding other parameters constant. However, the improvements and descrip-
tion of how these parameters affect metrics such as mean visible response
time and requested load mirror those in Figures 6.25, 6.26, 6.27, and 6.29,
and thus data and discussion are omitted.

This section repeated some of the experiments from the first section that
demonstrated batchactive superiority (Chapter 6.2.4) with the better dis-
closed queue subpolicy, hrp, studied in the previous section (Chapter 6.2.5).
fcfs × hrp was shown to have better resiliency for large task sets, pro-
vide better mean visible response time and slightly better requested load,
among other metrics. Further, no performance downside to fcfs × hrp
(compared to fcfs × fcfs’s performance against non-speculative schedul-
ing) was found.

6.2 Scheduling policy comparison · 201

10
0

10
1

10
2

0

500

1000

1500

2000

2500

tasks per task set (midpoint of uni. dist.)

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS, batch

FCFS, inter.

FCFS x HRP

Figure 6.47: The effect of the number of tasks per task set on batchactive usage
of fcfs × hrp, interactive usage of fcfs, and batch usage of fcfs for mean visi-
ble response time. Each set of three configurations was run with a different upper
bound on the uniform distribution determining the number of tasks per task set
for each user; the lower bound was always held at 1. Other parameters were held
constant. The number of tasks per task set is a uniform random variable and shown
on the horizontal axis is the average of its lower and upper bounds. The better per-
formance of fcfs × hrp in this graph compared to fcfs × fcfs from Figure 6.22
demonstrates the benefit of hrp as the disclosed queue subpolicy for large task sets.
(This graph is log-linear.)

202 · Cluster scheduling for explicitly-speculative tasks

6.2.7 Benefits of two-tiered usage-based scheduling

In this section I compare non-speculative user-fb against batchactive user-
requested-fb × hrp. Interactive user-fb is not explored because usage-based
scheduling is usually employed when users are not directly charged for re-
source usage (such as in communal cost-centers), and thus users have no
motivation to throttle their speculation. I suspect that the relative perfor-
mance improvement of batchactive user-requested-fb × hrp over interac-
tive user-fb would be similar to the improvement of batchactive fcfs ×
hrp over interactive fcfs × fcfs (Figure 6.42). Moreover, mean scaled
billed resources and requested load are omitted, again because usage-based
scheduling is usually employed when resources are not directly charged.

The improvement factors of mean visible response time and mean visible
slowdown are shown in Figures 6.48 and 6.49, respectively. Batchactive im-
provements on mean visible response time are not as pronounced when the
requested queue scheduling policy is usage-based compared to using fcfs
for the requested queue in Figure 6.6. However, the improvements on mean
visible slowdown are still significant. Slowdown reflects the performance of
the majority of smaller tasks better than response time. More detail is found
in the per-parameter results below.

Again, because Figures 6.48 and 6.49 do not include simulations of large
task sets, which favor batchactive scheduling, these summarizing graphs are
conservative.

Some users, such as those with bigger task sets, will use more resources
than others when there is low contention (since all the schedulers under con-
sideration are work-conserving). Still, it is important to show that batchac-
tive scheduling will not worsen the variance of user requested resource us-
age when usage-based scheduling is employed compared to non-speculative
scheduling. If it did, then it would not correctly police resource usage when
resources are not directly charged, which is one motivation for usage-based
scheduling. Table 6.9 confirms this; in fact, users use a more equal amount
of requested resources under batchactive scheduling.

I now show the effects of varying the number of users while holding other
parameters constant. Varying other parameters (not shown) did not provide
insights.

I varied the number of users to show its effect on mean visible response
time in Figure 6.50. Interestingly, while batchactive performance for user-
requested-fb × hrp is similar to fcfs × fcfs from Figure 6.10, batch
user-fb is much better than batch fcfs from that figure. This is because
favoring users who have requested less helps defer the long-shot speculation

6.2 Scheduling policy comparison · 203

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

Figure 6.48: Improvement of batchactive usage of user-requested-fb × hrp over
batch usage of user-fb for mean visible response time. A task’s visible response
time is the time between a user needing and receiving the task’s output. The hor-
izontal axis shows improvement factors while the vertical axis shows the fraction
of the runs in which the improvement was at least as much indicated on the hori-
zontal axis. Batchactive performance is measured by the area under the curve for
improvement values greater than 1 minus the area above the curve for improve-
ment values between 0 and 1. For 10% of the runs, batchactive user-requested-fb
× hrp performs at least 1.5 times better. The improvements are not as dramatic
as when fcfs is used for the requested queue (Figure 6.6). The arithmetic mean
improvement is 1.121.

user-fb, batch user-requested-fb × hrp
6,814.556 (383.948) 4,203.379 (133.723)

Table 6.9: The standard deviation of user requested resource usage among batch
usage of user-fb and batchactive usage of user-requested-fb × hrp. This metric
reflects how close users come to using an equal amount of resources, a goal when
resource usage is not directly charged to prevent resource abuse. This table shows
that batchactive scheduling does not make the variance of user requested resource
usage worse while improving metrics such as mean visible response time. In fact,
batchactive scheduling improves the variance of user requested resource usage. The
mean of all runs for each scheduler is presented. The 95% confidence interval of
each mean is the mean plus and minus the value in parenthesis.

204 · Cluster scheduling for explicitly-speculative tasks

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

improvement of visible slowdown (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

Figure 6.49: Improvement of batchactive usage of user-requested-fb × hrp over
batch usage of user-fb for mean visible slowdown. A task’s visible slowdown is its
visible response time scaled by task size. Many hold that slowdown is more impor-
tant than response time because it better reflects the performance of the majority
of small tasks, and because it reflects the expectation that larger tasks should take
longer to run (Chapter 4.4.1). For 20% of the runs, batchactive user-requested-fb ×
hrp performs at least 1.5 times better. The arithmetic mean improvement is 1.715.

deep in someone’s task set in favor of the needed tasks at the top of the
task sets of other users. Still, although batch usage benefits from a usage-
based non-speculative scheduling, it is still worse than batchactive usage of
a batchactive scheduler.

This section showed the applicability of batchactive scheduling to en-
vironments in which usage-based scheduling is employed. Performance im-
provements still occur when the requested queue is serviced by user-requested-
fb.

6.2.8 Benefits of two-tiered srpt

Here I examine the performance of size-aware policies based on srpt. Tech-
niques for predicting task size when unknown were discussed in Chapter 4.7.
Specifically, I compare non-speculative srpt v. batchactive srpt × fcfs.
These results are similar to those in Chapter 6.2.4 comparing fcfs × fcfs
against fcfs, which does not rely on task size knowledge.

Concerning time-based metrics, the improvement factors of mean vis-
ible response time and mean visible slowdown are shown in Figures 6.51
and 6.52, respectively. Batchactive scheduling provides better mean visible

6.2 Scheduling policy comparison · 205

5 10 15
0

1000

2000

3000

4000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

UFB, batch

URFB x HRP

Figure 6.50: The effect of the number of users on batchactive usage of user-
requested-fb × hrp and batch usage of user-fb for mean visible response time.
Mean visible response time is the average time users are blocked waiting for needed
task output. The number of users simultaneously competing for the shared resource
was varied while other parameters were held constant. The policy user-requested-fb
× hrp improves with more users. Batch usage of user-fb is always worse but better
than the batch case when using fcfs in Figure 6.10.

response time and mean visible slowdown on average than non-speculative
scheduling. The mean visible response time improvements are similar to
those shown with non-size-based scheduling in Figure 6.6, while the im-
provements for mean visible slowdown are not as pronounced as compared
to those in Figure 6.7. The reasons for batchactive improvements are exam-
ined in the per-parameter investigations below.

Concerning cost-based metrics, the charges for unneeded speculation in-
curred by batch users of the non-speculative scheduler are shown in Fig-
ure 6.53 and the improvement factors of requested load (reflecting server
revenue) are shown in Figure 6.54. Batchactive users always pay less than
uses submitting batches of work to non-speculative schedulers. Interestingly,
batch users pay even more for unneeded speculation here than under the
non-size-based scheduler in Figure 6.8: the better the scheduling, the more
needless work completed. A batchactive system often generates slightly more
revenue than a non-speculative system populated by users who never submit
unneeded work (viz., the interactive users). A batchactive system usually
generates less revenue than a non-speculative system populated by those
users who pay more by submitting batches of work, some of which will not

206 · Cluster scheduling for explicitly-speculative tasks

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over SRPT, batch

over SRPT, inter.

Figure 6.51: Improvement of batchactive usage of srpt × fcfs over interactive and
batch usage of srpt for mean visible response time. A task’s visible response time
is the time between a user needing and receiving the task’s output. The horizontal
axis shows improvement factors, while the vertical axis indicates the fraction of
the runs in which the improvement was at least as much indicated on the horizon-
tal axis. Cases in which improvements occurred are shown by the area under the
curves for horizontal axis values greater than 1, whereas cases in which batchactive
scheduling did worse are shown by the area above the curves for horizontal axis
values between 0 and 1. Performance was at least 1.5 times better than both batch
and interactive srpt for 35% of the runs. The arithmetic mean improvement is
1.579 over interactive srpt and 1.522 over batch srpt.

6.2 Scheduling policy comparison · 207

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

improvement of visible slowdown (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over SRPT, batch

over SRPT, inter.

Figure 6.52: Improvement of batchactive usage of srpt × fcfs over interactive
and batch usage of srpt for mean visible slowdown. A task’s visible slowdown is
its visible response time divided by its size, reflecting the expectation that bigger
tasks should take longer to run. The horizontal axis shows improvement factors,
while the vertical axis shows the fraction of runs in which the improvement was at
least as much indicated on the horizontal axis. Performance was at least 1.5 times
better than batch srpt for 20% of the runs and also at least 1.5 times better than
interactive srpt for 35% of the runs. The arithmetic mean improvement is 1.590
over interactive srpt and 1.252 over batch srpt.

208 · Cluster scheduling for explicitly-speculative tasks

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

scaled billed resources (µ)

fr
ac

tio
n

w
he

re
 v

al
ue

 >
 x

Figure 6.53: Mean scaled billed resources for batch usage of srpt. For one user,
scaled billed resources is the amount of resources charged over resources needed.
Batch users often pay for more resources than they need. The horizontal axis shows
mean scaled billed resources while the vertical axis indicates the fraction of runs
in which the mean scaled billed resources was at least as much indicated on the
horizontal axis. More area under the curve indicates higher costs for batch users.
The average batch user using srpt pays at least 40% more than necessary for 20%
of the runs. Over all runs, the average mean scaled billed resources is 1.261.

be needed (viz., the batch users). These improvements are very similar to
those for the non-size-based scheduling in Figure 6.9. Again, it is unlikely
that users will behave in a batch manner: it assumes that all users are highly
confident of needing all speculative tasks immediately or that all users have
the resources to pay for unneeded speculation. Further, these users would
experience significantly worse mean visible response time at the higher levels
of server revenue. Below I vary individual parameters to show the conditions
under cost-based metrics differ most.

Again, because Figures 6.51, 6.52, 6.53, and 6.54 do not include simula-
tions of large task sets, which favor batchactive scheduling, and which are
covered below, these summarizing graphs are conservative.

I now show the effects of varying individual parameters. I kept the ver-
tical axis ranges the same with some of the graphs in Chapter 6.2.4 to
illustrate that srpt-based schedulers provide better absolute performance
than fcfs-based schedulers. Still the relative difference between batchactive
and non-speculative schedulers based on fcfs or srpt is similar, as shown
by the improvement graphs above.

6.2 Scheduling policy comparison · 209

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

improvement of requested load

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over SRPT, batch

over SRPT, inter.

Figure 6.54: Improvement of batchactive usage of srpt × fcfs over interactive
and batch usage of srpt for requested load. Requested load is the server busy
time charged to the user. The horizontal axis shows improvement factors while the
vertical axis indicates the fraction of the runs in which the improvement was at least
as much indicated on the horizontal axis. Better batchactive performance is reflected
by the area under the curves for improvement values greater than 1, while worse
batchactive performance is reflected by the area above the curves for improvement
values less than 1. Data along the line where improvement equals 1 reflects equal
performance for some user and task characteristics. srpt × fcfs provides better
requested load than interactive srpt and worse requested load than batch srpt.
Doing worse against batch fcfs is expected and was explained in Chapter 6.2.2.
The arithmetic mean improvement is 1.020 over interactive srpt and 0.956 over
batch srpt. (A mean improvement factor less than 1 is overall worse performance.)

210 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

1000

2000

3000

4000

5000

6000

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

SRPT, batch

SRPT, inter.

SRPT x FCFS

Figure 6.55: The effect of the number of users on batchactive usage of srpt ×
fcfs, interactive usage of srpt, and batch usage of srpt for mean visible response
time. Each set of three scheduling configurations was run with a different number
of users simultaneously competing for the shared resource while other user and task
characteristics were held constant. Visible response time for a task is the time a user
was blocked on its output. The different configurations are represented by bars of
different shades, with the right-most bar being the batchactive configuration. Since
lower visible response time is better, bars of less height indicate better performance.
Batchactive scheduling adapts to different numbers of users, always providing the
best mean visible response time.

I start with varying the number of users while holding other parameters
constant.

I varied the number of users to show its effect on mean visible response
time in Figure 6.55. Nearly always, batchactive srpt × fcfs performs best,
exhibiting adaptability across the range of the numbers of users, while batch
and interactive usage of srpt trade off where they are best suited. The de-
scription follows that for non-size-based scheduling for Figure 6.10. The only
difference is that overall mean visible response time is less for all configu-
rations, as expected when using srpt as the underlying scheduler (Chap-
ter 4.5.1). Comparing Figures 6.10 and 6.55 shows that fcfs × fcfs even
beats the non-speculative versions of srpt, thus the availability of a task
size oracle will not diminish the value of batchactive scheduling.

I varied the number of users to show its effect on mean visible slowdown
in Figure 6.56. Batch srpt is suited to few users as it pipelines speculative
tasks with think time. Batchactive scheduling always achieves the best mean
visible slowdown. With many users, the visible slowdowns of batch srpt and

6.2 Scheduling policy comparison · 211

5 10 15
0

0.5

1

1.5

2

2.5

number of users

vi
si

bl
e

sl
ow

do
w

n
(µ

)

SRPT, batch

SRPT, inter.

SRPT x FCFS

Figure 6.56: The effect of the number of users on batchactive usage of srpt × fcfs,
interactive usage of srpt, and batch usage of srpt for mean visible slowdown. Vis-
ible slowdown for a task is its visible response time scaled by its service time. Since
lower visible slowdown is better, bars of less height indicate better performance.
Batchactive scheduling never performs worse than the alternatives for mean visible
slowdown; its greatest improvement occurs with low to medium numbers of users.
(Recall from Chapter 5.2 that visible slowdown can be less than one.)

interactive srpt converge, in contrast to the mean visible response time
graph in Figure 6.55. This occurs because the visible response times of the
large tasks affect visible slowdown less.

Mean scaled billed resources is not affected by varying the number of
users, so this data is not presented.

The induced (total) load, requested load, and visible throughput when
using size-based scheduling compared to fcfs-based scheduling (Figures 6.11,
6.12, and 6.14) is nearly the same, thus this data is omitted. The description
presented earlier (Chapter 6.2.4) holds.

Almost always, batchactive scheduling provides better mean visible re-
sponse time and better visible throughput. I now show the relation between
these metrics for different runs for the three scheduling configurations. I
show that a higher number of needed tasks get through the system at an
acceptable visible response time by graphing visible throughput on the hori-
zontal axis and mean visible response time on the vertical axis in Figure 6.57.
While batchactive scheduling is able to simultaneously provide better values
for these two metrics, the differences using srpt-based scheduling is not as
pronounced as using fcfs-based scheduling (Figure 6.15). This same phe-

212 · Cluster scheduling for explicitly-speculative tasks

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

visible task throughput

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

SRPT, batch

SRPT, inter.

SRPT x FCFS

Figure 6.57: The relationship on batchactive usage of srpt × fcfs, interactive
usage of srpt, and batch usage of srpt between visible throughput and visible
response time as the number of users was varied from 1 to 16. Both axes are
dependent axes; the horizontal axis indicates visible task throughput while the
vertical axis indicates mean visible response time. The number of users was varied
while other parameters were held constant. The more the batchactive curve is below
and to the right of the other curves, the better its performance, as that indicates
better visible throughput at better mean visible response time. srpt × fcfs always
provides better pairs of visible throughput and mean visible response time. At a
visible throughput of 1, 500, the visible response time of srpt × fcfs is over 2
times better than interactive srpt and over 4 times better than batch srpt. The
differences between batchactive and non-speculative scheduling in simultaneously
providing better mean visible response time and mean visible throughput for srpt-
based scheduling is not as pronounced as for fcfs-based scheduling (Figure 6.15).

nomena holds for pairs of mean visible response time and requested load
(not shown).

To follow the form of the previous sections, I would now vary the other
parameters and present their affects on each metric. However, most results
follow the form and description of non-size-based scheduling (Chapter 6.2.4),
except that the absolute mean visible response times are lower using srpt-
based scheduling. The remaining graphs present interesting differences or
reinforce central points.

I varied the number of tasks per task set to show its effect on mean
visible slowdown in Figure 6.58. Mean visible slowdown begins to improve
for batchactive srpt × fcfs and batch srpt as there becomes available
speculative work with which to pipeline user think time. Quickly, the sin-

6.2 Scheduling policy comparison · 213

10
0

10
1

10
2

0

1

2

3

4

5

tasks per task set (midpoint of uni. dist.)

vi
si

bl
e

sl
ow

do
w

n
(µ

)

SRPT, batch

SRPT, inter.

SRPT x FCFS

Figure 6.58: The effect of the number of tasks per task set on batchactive usage of
srpt × fcfs, interactive usage of srpt, and batch usage of srpt for mean visible
slowdown. The number of tasks per task set is a uniform random variable and shown
on the horizontal axis is the average of its lower and upper bounds. As the number
of tasks per task set increases, both batch fcfs and fcfs × fcfs provide visible
slowdowns less than one. Soon, batch fcfs’s visible slowdown increases rapidly and
is over 165 when the upper bound for the number of tasks per task set is 1, 024.
srpt × fcfs always wins. (This graph is log-linear.)

gle, requested queue of the non-speculative scheduler with batch users be-
comes overwhelmed and mean visible slowdown grows rapidly. Batchactive
scheduling always provides the best mean visible slowdown. Eventually, it
would converge to the performance of interactive srpt as its disclosed queue
becomes swamped with unneeded speculation.

I varied the number of tasks per task set to show its effect on mean scaled
billed resources in Figure 6.59. Interestingly, by comparing the ranges of the
vertical axes, one sees that the better scheduling of srpt causes users to
waste more money on unneeded speculation in contrast to the batch fcfs
users in Figure 6.23.

To show that batchactive scheduling improves performance under distri-
butions other than exponential distributions, I experimented with the Pareto
distribution. Service time was taken from a Bounded Pareto with minimum
observation 5 s, maximum observation 1, 000, 000 s, and an α value of 1.0.
Think time was taken from a Bounded Pareto with minimum observation
60 s, maximum observation 1, 000, 000 s, and an α value of 1.0. These selec-
tions result in a theoretic mean service time of approximately 61 s and mean

214 · Cluster scheduling for explicitly-speculative tasks

10
0

10
1

10
2

0

5

10

15

20

tasks per task set (midpoint of uni. dist.)

sc
al

ed
 b

ill
ed

 r
es

ou
rc

es
 (

µ)

Figure 6.59: The effect of the number of tasks per task set on batch usage of srpt
for mean scaled billed resources. Batch users spend more with the better scheduling
provided by srpt than fcfs (Figure 6.23). (This graph is log-linear.)

think time of approximately 583 s, within the range of expected usage.
Using these Bounded Pareto distributions, the improvement factors of

mean visible response time are shown in Figure 6.60 and the charges for un-
needed speculation incurred by batch users of the non-speculative scheduler
are shown in Figure 6.61. The differences between batchactive and non-
speculative scheduling performance is not as pronounced; a parameter-by-
parameter investigation of performance differences (not shown), especially
for large task sets, would illuminate where the greatest benefits of batchac-
tive scheduling are for Pareto-distributed service and think times.

This section showed that batchactive scheduling provides similar im-
provements when srpt size-based scheduling is employed. The benefits of
srpt depend on the quality of task size prediction. I believe that inaccurate
predictions would affect batchactive and non-speculative scheduling to the
same extent. Gibbons [1997] demonstrates in simulation an up to 75% ben-
efit of using predicted values of task service time in a scheduling policy that
makes use of task service time compared to using actual service time. If pre-
dictions are not trusted, an alternative would be fb-based scheduling, which
favors the task that has run the least amount of time. fb-based schedulers,
which do not need task size, would give time-based performance between
that of fcfs- and srpt-based schedulers (Chapter 4.5.1).

6.2 Scheduling policy comparison · 215

1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

over SRPT, batch

over SRPT, inter.

Figure 6.60: Improvement of batchactive usage of srpt × fcfs over interactive
and batch usage of srpt for mean visible response time using Bounded Pareto
distributions for task service time and user think time. The horizontal axis shows
improvement factors, while the vertical axis indicates the fraction of the runs in
which the improvement was at least as much indicated on the horizontal axis. Per-
formance was at least 25% better than both batch and interactive srpt for 20% of
the runs. The arithmetic mean improvement of srpt × fcfs is 1.151 over interac-
tive srpt and 1.116 over batch srpt.

216 · Cluster scheduling for explicitly-speculative tasks

1 1.5 2
0

0.2

0.4

0.6

0.8

1

scaled billed resources (µ)

fr
ac

tio
n

w
he

re
 v

al
ue

 >
 x

Figure 6.61: Mean scaled billed resources for batch usage of srpt using Bounded
Pareto distributions for task size and think time. For one user, scaled billed resources
is the amount of resources charged over resources needed. Users who behave in a
batch manner often pay for more resources than they need, as speculative tasks
are billed and the user later determines their outputs are unneeded. srpt × fcfs
charges less (not shown) because disclosed tasks are not charged according to the
batchactive pricing mechanism. The average batch user using srpt pays at least
25% more than necessary for 18% of the runs. Over all runs, the average mean
scaled billed resources is 1.107.

6.2 Scheduling policy comparison · 217

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

Figure 6.62: Improvement of srpt × rfcfs over srpt × hrp for mean visible
response time. A task’s visible response time is the time between a user needing
and receiving the task’s output. The horizontal axis shows improvement factors
while the vertical axis indicates the fraction of the runs in which the improvement
was at least as much indicated on the horizontal axis. The similar areas below the
curve for improvements greater than 1 and above the curve for improvements less
than 1 suggest no significant difference. In fact, the arithmetic mean improvement
is 1.002.

6.2.9 Performance of an impractical disclosed queue subpolicy

This section shows that hrp performs well in the space of disclosed queue
subpolicies for two-tiered batchactive scheduling; the relative performance of
an impractical disclosed queue subpolicy, rfcfs, is nearly the same. rfcfs
knows perfectly whether a speculative task will ever be needed, and avoids
executing speculative tasks that will never be requested. Specifically, this
section compares srpt × hrp against srpt × rfcfs. In addition, this sec-
tion compares the non-size-based batchactive policy fcfs × hrp against
srpt × rfcfs. Mean scaled billed resources is omitted because it is always
1 for batchactive usage of a batchactive scheduler.

The improvement factors of mean visible response time is shown in
Figure 6.62. Similar ‘s’-shaped improvements, which indicate no significant
difference, were found for mean visible slowdown and requested load (not
shown). Varying a single parameter below provides some justification for
this result.

I varied the number of users, holding other parameters constant, to show
its effect on visible response time in Figure 6.63. At a medium number of

218 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

500

1000

1500

2000

2500

3000

3500

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

SRPT x HRP

SRPT x RFCFS

Figure 6.63: The effect of the number of users on batchactive usage of srpt × hrp
and batchactive usage of srpt × rfcfs for mean visible response time. Each set of
scheduling configurations was run with a different number of users simultaneously
competing for the shared resource while other user and task characteristics were
held constant. Since lower visible response time is better, bars of less height indicate
better performance. srpt × rfcfs provides slightly better performance at a medium
number of users.

users, srpt × rfcfs provides slightly better mean visible response time
by ignoring disclosed tasks that will never be requested. At the extremes
of numbers of users, performance is the same — either there is not enough
disclosed work for the disclosed queue subpolicy to make a difference (low
numbers of users), or there is so much needed work that the disclosed queue
is never serviced (high numbers of users).

Other metrics and varying other parameters did not show significant
differences between the policies. Only extremely speculative task sets (not
shown and not included in the inverse cumulative improvement data in Fig-
ure 6.62) display a marked benefit for srpt × rfcfs.

In addition, I compared the implementable batchactive policy that does
not require size information, fcfs × hrp, against the oracle batchactive
policy, srpt × rfcfs. The improvement factors of mean visible response
time is shown in Figure 6.64. The srpt × rfcfs policy, which is impracti-
cal on its reliance of knowing task size and avoiding unneeded speculation,
performs better than fcfs × hrp. Favoring small requested tasks affects
visible response time to a greater extent than the choice of disclosed queue
subpolicy.

6.2 Scheduling policy comparison · 219

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

improvement of visible response time (µ)

fr
ac

tio
n

w
he

re
 im

pr
ov

em
en

t >
 x

Figure 6.64: Improvement of srpt × rfcfs over fcfs × hrp for mean visible
response time. A task’s visible response time is the time between a user needing
and receiving the task’s output. The horizontal axis shows improvement factors
while the vertical axis indicates the fraction of the runs in which the improvement
was at least as much indicated on the horizontal axis. The area below the curve
for improvements greater than 1 show that srpt × rfcfs performs better than
fcfs × hrp. The arithmetic mean improvement is 1.284 and the geometric mean
improvement is 1.244.

220 · Cluster scheduling for explicitly-speculative tasks

5 10 15
0

500

1000

1500

2000

2500

3000

3500

number of users

vi
si

bl
e

re
sp

on
se

 ti
m

e
(µ

)

FCFS x HRP

SRPT x RFCFS

Figure 6.65: The effect of the number of users on batchactive usage of fcfs × hrp
and batchactive usage of srpt × rfcfs for mean visible response time. Each set of
scheduling configurations was run with a different number of users simultaneously
competing for the shared resource while other user and task characteristics were
held constant. Since lower visible response time is better, bars of less height indicate
better performance. srpt × rfcfs provides slightly better performance at a medium
number of users.

I varied the number of users, holding other parameters constant, to show
its effect on visible response time in Figure 6.65. This data does not show
much difference between srpt × rfcfs and fcfs × hrp. The difference
between these two schedulers is not illuminated by varying the number of
users. Instead, the performance difference in Figure 6.64 results from srpt
handling larger tasks better than fcfs for requested tasks. This could be
shown by varying the service time parameter.

This section showed that hrp as the disclosed queue subpolicy is com-
petitive with an impractical disclosed queue subpolicy. Further, this section
showed that size-unaware batchactive scheduling using an implementable
disclosed queue subpolicy performs worse than the oracle batchactive pol-
icy. However, the limit of batchactive performance is unknown; srpt ×
rfcfs does not take into account task size for speculative tasks nor does
it know when a task will be requested, i.e., task deadlines. As discussed
(Chapter 5.5.3), predicting deadlines, even in simulation, is difficult.

6.3 Simulation details · 221

0 2 4 6 8

x 10
4

0

10

20

30

40

50

time

qu
eu

e
le

ng
th

Figure 6.66: The queue length of requested tasks for an extreme selection of simu-
lation parameters stabilizes after approximately 10 hours of simulated time. (The
numbers on the horizontal axis are seconds times 104.) For this reason, all reported
metrics avoid including such warm up data by conservatively dropping the first two
days of simulated time.

6.3 Simulation details

Here I state several simulation details. First I describe how the simulation
was run to eliminate non-steady-state behavior. Then I present some confi-
dence interval data to show that the differences in metrics across compared
runs are significant. Finally, I describe some aspects of the simulator runs
including the kinds of machines used, how many simulations were needed
for this research, and how long they took to run.

6.3.1 Omitted warmup period

When the simulation starts, all users begin submitting tasks. Only after task
outputs are received do users enter their think times. Thus the queue lengths
near the start of the simulation are not representative of the behavior of the
system at steady state. The most extreme example that I found is illustrated
in Figure 6.66. I avoid including such warmup data (also called ramp-up or
run-in data) in the reported metrics by conservatively dropping all data in
the first two days of simulation time. Dropping warmup data to focus on
steady-state behavior is common in discrete event simulations [Ball, 2004].
By dropping two warm up days from 16 day simulations, the presented
metrics reflect two weeks at steady state.

222 · Cluster scheduling for explicitly-speculative tasks

380 1190 2000 2810 3620
0

2000

4000

6000

8000

10000

12000

service time (µ of exp.)

vi
si

bl
e

re
sp

. t
im

e
(µ

)

Figure 6.67: Confidence intervals for a small run show that the results are signifi-
cant. Plotted is the mean visible response time across ten service times. The 95%
confidence intervals were from 40 runs using different random seeds at each service
time.

6.3.2 Statistical significance of the results

The experiments in Chapter 6.2 show that the simulation parameters effect
scheduling metrics. To reinforce this observation, I took confidence intervals
of a small run to measure the significance of the tabulated metrics. This
aspect of model validation (Chapter 6.1.4) is called internal validity [Sargent,
1999].

Figure 6.67 shows the mean visible response time for a small interactive
srpt run in which service time was varied in six minute increments while
other parameters were held constant. Each reported visible response time
mean and confidence interval was the result of 40 simulations that were
started with different random seeds. Out of all selections of service times,
only one pair of 95% confidence intervals overlapped, and all confidence in-
tervals were less than 5% of their respective mean visible response times.
A normal probability plot (not shown) of the response times for each ser-
vice time revealed that they were sufficiently normally distributed for the
confidence intervals to be reliable. Thus the simulation results, which are a
function of simulation parameter selections, are statistically significant.

6.4 Summary · 223

6.3.3 An accounting of the simulator runs

Roughly 100, 000 runs were performed on a Condor [2003] cluster of ten
2.4 GHz Pentium IV machines each with 1GB of memory shared with other
graduate students. Most runs took less than ten seconds and less than
100 MB of memory to simulate 16 days of simulated time of which data
from the initial two warmup days were not included in the presented results
(Chapter 6.3.1). A small percentage of runs with parameters causing many
more tasks to be created took roughly ten minutes to run.

I desired a batchactive scheduler while exploring the simulator’s large
parameter space. The service and think time of this research were ideal
for batchactive scheduling and fit the parameter study application scenario
described in Chapter 2.2.3.

6.4 Summary

This chapter presented the quantitative results of this thesis showing that
better time- and cost-based scheduling metrics are achievable with batchac-
tive schedulers compared to non-speculative schedulers.

The results were obtained through two-week simulations. The simulator
realizes a model of user behavior, task characteristics, and a single server.
When using a non-speculative scheduler, simulated users either behaved in-
teractively or in a batch manner. The simulations of non-speculative sched-
ulers had all interactive or all batch users. When using a batchactive sched-
uler, simulated users behaved in a batchactive manner, disclosing specula-
tive tasks. The simulated model, motivated by real application scenarios,
determined the deadlines of speculative tasks. Validation and verification
techniques were applied to provide confidence in the simulation results.

A number of parameters were needed to realize this model. The simulator
can vary the number of users, the probability that a task set will be canceled
after a user considers the last output received, the number of tasks per task
set, the service time distribution, and the think time distribution.

The experiments began with a comparison of the simplest non-speculative
and speculative schedulers: fcfs and fcfs × fcfs. Other experiments ex-
amined novel disclosed queue subpolicies (including an impractical disclosed
queue subpolicy), usage-based scheduling, and size-based scheduling. The
main metrics tabulated were mean visible response time, mean visible slow-
down, mean scaled billed resources, and requested load. The first two are
time-based and the last two are cost-based.

Under a variety of user and task behavior, batchactive usage of a batchac-

224 · Cluster scheduling for explicitly-speculative tasks

tive scheduler nearly always does better than convention, in which tasks
are requested one at a time (interactively) or requested in batches to non-
speculative schedulers which cannot discriminate between speculative and
non-speculative tasks. With a batchactive system, users do not need to de-
cide how aggressively to submit speculative work.

Batchactive scheduling is adaptive: it is at least as good as interactive or
batch usage of non-speculative policies as the number of users varies between
extremes, and in the middle ranges it is better than both. The batchactive
approach applies best when several to many speculative tasks are submitted
and early task outputs are acted on while uncompleted tasks remain.

The disclosed queue must be scheduled carefully to avoid a diminishing
returns when users disclose a large amount of unneeded work. A disclosed
queue subpolicy which learns from past user behavior, hrp, schedules dis-
closed tasks well, comparably to an impractical disclosed queue subpolicy.

Latency-sensitive users will not push traditional schedulers into regions
of high billed load because, at those levels of revenue, visible response times
are too high. The significant value provided with batchactive scheduling
with respect to time-based metrics could encourage additional users, deeper
speculation, and bigger tasks, any of which would raise batchactive server
revenue.

I ended this chapter with some details of the simulation including the
omission of warmup periods, the statistical significance of results, and an
accounting of several aspects of the simulation runs.

Look upon my works, ye Mighty, and despair!
Percy Bysshe Shelley, Ozymandias

7 Implementation & proposed deployment

This chapter details the simulator’s features, structure, coding practices,
and scheduling overhead and describes how batchactive scheduling may be
deployed as an extension to existing clustering software.

7.1 The ba sim simulator

The largest artifact I created in this work is the ba sim discrete event simu-
lator used to test my thesis. A discrete event simulation is a common way to
implement models to observe time-based (dynamic) behavior [Ball, 2004].
Results from ba sim were presented in Chapter 6.2. I contribute ba sim to
the research community. It may be downloaded from http://www.pdl.cmu.
edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz. The file named README in
this archive describes how to use the simulator. This section describes the
features, structure, coding practices, and scheduling overhead of ba sim.

7.1.1 Features

The ba sim simulator implements the user, task, and server model described
in Chapter 6.1. The inputs and outputs to the simulator are depicted in
Figure 7.1.

There are two modes in which users may arrive in ba sim. In one, users
arrive according to a Poisson process and depart after one task set is ex-
hausted or canceled. Paxson and Floyd [1994] show that while some activity
should not be modeled by a Poisson process, like the packets in an ftp trans-
fer, user-initiated events, like making a telnet connection, or in my case, a
user arriving, can indeed be modeled well by a Poisson process. Results from
this thesis do not come from runs in which users arrive and depart; instead,
ba sim was in a mode in which a constant number of users arrive at the start
of a run and never depart, issuing new task sets when needed. Small runs of
ba sim in the mode in which users may arrive and depart show batchactive

225

http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz
http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz

226 · Cluster scheduling for explicitly-speculative tasks

Figure 7.1: Inputs (from left) and outputs (to right) of the ba sim simulator.
Scheduling policy, user characteristics, and task characteristics determine schedul-
ing metrics. The policies can be speculative or non-speculative (e.g., fcfs × fcfs
or fcfs, respectively). User and task characteristics include whether the users are
batch, interactive, or batchactive in the way they submit task sets, the number of
users simulated, the task set change probability, the number of tasks per task set,
task service time, and user think time. Submit behavior was described in Chap-
ter 6.1.2 and task characteristics and other user characteristics were described in
Chapter 6.1.3. Output metrics include visible response time, visible slowdown, vis-
ible task throughput, the number of deadlines met, user requested resource usage,
scaled billed resources, load, requested load, and the number of scheduler decisions.
Metrics were described in Chapter 5.2.

improvements under the same situations discussed in Chapter 6.2.2.
The ba sim simulator can also take some inputs from traces instead of

from random variables, such as when users arrive and the service times
of tasks. This trace mode was not used to generate results because of the
difficulty in arguing for representative traces and because the community
generally accepts the random variables that I used to model user and task
characteristics.

Besides terminating a simulation after a certain amount of simulated
time, ba sim may also be instructed to terminate after a certain number
of users arrive (in the mode in which users arrive according to a Poisson
process) or after a certain number of tasks finish. All results in this thesis
are from runs which terminate after a certain number of time to simplify
the comparison of metrics between configurations. The downside to this
approach is that statistics from one configuration, such as mean visible re-
sponse time, may be computed from a different number of samples than
another configuration.

7.1 The ba sim simulator · 227

Figure 7.2: Structure of the ba sim simulator. Scheduling policy, user parameters,
and task parameters are input to each run of the simulator. Scheduling metrics are
output. The simulator consists of an event handler to track discrete events such as
a preemption or a user’s think time elapsing. The scheduling module implements
scheduling policies. The user, server, task and task set modules implement the
model described in Chapter 6.1. Helper modules generate random variables and
track statistics. Minor helper modules are omitted from this representation.

7.1.2 Structure

I wrote ba sim in C for the Darwin (Mac OS X) and Linux platforms. The
build system uses automake and autoconf to simplify building and porting.
The ba sim simulator consists of modules that simulate user, task, and server
behavior as shown in Figure 7.2.

The simulation runs were handled by helper scripts. One Perl script
called harness executes large numbers of instantiations of ba sim to ex-
plore its parameter space and stores simulation output in a MySQL rela-
tional database. I use Condor [2003] to distribute copies of harness across a
cluster. Database accesses check the existence of specific completed runs so
that many harness copies can cooperatively run ba sim configurations with
little wasted work. Output metrics are atomically inserted into the database
to ensure no corruption if two or more harness copies try to insert data
from the same ba sim configuration.

The improvement Perl script calculates factors of improvement among
scheduling configurations. The present Perl script uses improvements and
raw ba sim metrics to generate graph files and summary output. Graph files
are delivered to the matlab technical computing system for visualization.

228 · Cluster scheduling for explicitly-speculative tasks

Figure 7.3: The interaction between ba sim and the tools used to generate the-
sis results (Chapter 6.2). The harness script is distributed to a cluster using
the Condor [2003] clustering system. Each copy of harness executes numbers of
ba sim instances, collects ba sim output, and inserts them into a MySQL database.
The improvement script calculates improvement factors among configurations by
querying ba sim outputs from the database and inserting improvements into the
database. Raw metrics and improvements are requested from the present script to
generate graph files delivered to matlab to produce figures and summary statis-
tics used in tables and figure captions. Some scripts are not shown (such as to
administer the database and produce some statistics).

This toolchain around the ba sim simulator is depicted in Figure 7.3.
The number of lines of code (including comments) for ba sim is 14, 542.

The number of lines of code for Perl scripts and Perl modules shared by
some scripts is 9, 115. There are also Condor description files for distributing
copies of harness totaling 1, 329 lines and bash shell scripts for automating
the executing of the improvement and present scripts totaling 6, 602 lines.

7.1.3 Coding practices

I applied well-known software engineering techniques to give me confidence
that the results conform to my model of users, tasks, and one server; that
the results generated by ba sim are accurate (Chapter 6.1).

The ba sim simulator code contains over 500 checks (‘assertions’) which
increase confidence in the integrity of simulation results. I calculate schedul-
ing metrics in several ways when possible and ensure their results match.
When I am aware of an invariant, I verify it; e.g., if the summation of some
metrics cannot exceed a value, I assert that this is the case.

7.2 Cluster scheduling extension · 229

fcfs, batch fcfs, interactive fcfs × fcfs
2.524 (0.468) 1.055 (0.024) 2.246 (0.197)

Table 7.1: Total time in milliseconds averaged over 35 runs started with different
random seeds to perform scheduling decisions over two weeks of simulated time.
The 95% confidence interval of each mean is the mean plus and minus the value in
parenthesis. 3ms over two weeks is insignificant and the overhead for fcfs × fcfs
decisions is between that for interaction and batch usage of fcfs. The number of
finished tasks for all three configurations ranged from 1, 200 to 1, 500. The number
of scheduler decisions for all ranged from 2, 000 to 2, 700 (see Table 6.6).

I carefully monitored debugging output, conducted redundant detailed
and high-level statistical comparisons, hand-inspected degenerate cases, and
hand-inspected specific cases. Moreover, constants were used for various in-
put parameters so that I could check some results by hand.

These practices for simulator verification (Chapter 6.1.4) are an impor-
tant subset of those advocated by Sargent [1999]. More verification would
be possible in a real world test, which is outside my scope.

7.1.4 Overhead

I measure scheduling time overhead in ba sim because it is important for a
scheduler to not lose efficiency with excessive or costly decisions. The ba sim
simulator uses non-optimal data structures (cleverness took a backseat to
correctness): the list data structures from the glib library of general data
structures instead of priority queues which would reduce most scheduling
operations from most policies from O(n) to O(lg n) [Cormen et al., 1990].
Even with lists, I determine the overhead to be negligible.

Scheduling time is summarized in Table 7.1. These numbers were taken
on a 1.25 GHz PowerPC G4 processor. The system was near idle, but un-
doubtedly background load occasionally inflated some timings. Most time
in my simulation concerns the accounting used to generate the metrics used
in comparing scheduling policies and to verify their correctness. This ac-
counting would not be activated in a real implementation, and thus is not
tracked.

7.2 Cluster scheduling extension

Batchactive scheduling may be deployed as an extension to a clustering sys-
tem. Many tasks from the same user can execute in parallel on a cluster
(Figure 2.1) if only those tasks were known to the scheduler. Speculative

230 · Cluster scheduling for explicitly-speculative tasks

disclosure is discouraged on existing systems because no interface exists for
informing the scheduler which tasks are speculative. If a user were to spec-
ulate, non-speculative tasks would starve behind speculative tasks. Further,
speculative disclosure is discouraged on existing systems when resource us-
age is charged because users seek to avoid being charged for unneeded work
(Chapter 5.1.5).

I first discuss user interface and coding considerations on clustering sys-
tems before discussing the extensibility of existing clustering systems. I con-
centrate on the extensibility of Condor [2003].

7.2.1 Usage of a clustering system

User interface considerations have been addressed in the context of non-
speculative scheduling. Task control (requesting, disclosing, canceling) and
task querying (tracking what is running, resource consumption, searching
for tasks, etc.) can be done at the command-line [Condor, 2003] or through
the web [NEOS, 2004]. Existing systems can notify the user of finished tasks
by e-mail [Condor, 2003]. Task inputs and outputs may be located on a
shared file system [Condor, 2003] or transmitted through the web [NEOS,
2004]. Dependencies among tasks can be specified using directed acyclic
graphs [Condor DAGMan, 2004]. Coding guidelines and libraries for enabling
tasks to migrate among nodes exist [Condor, 2003].

7.2.2 Extensibility of existing systems

Extending a clustering solution to support batchactive scheduling requires
adding the ability for users to disclose tasks, modifying the scheduling policy,
and isolating speculative task outputs until requested. Task output isolation
was discussed in Chapter 5.6.6 and is not discussed further. A frontend
that enables users to disclose or request tasks, instead of only request tasks,
could reside between the user and any clustering system. This frontend could
tag task type (request or disclosure) so that a modified scheduling policy
can treat different types differently. Some systems enable library or module
replacement of their stock schedulers. Others are extensible through pa-
rameters affecting scheduling decisions. Finally, some systems can only be
extended through source code modification. For these, when source is not
available, one could start with the ideas concerning non-invasive frontends
described in Chapter 5.9.2.

Parsons and Sevcik [1997] discuss extensions to the lsf clustering sys-
tem [Platform, 2003]. They found that building on this commercial sys-

7.2 Cluster scheduling extension · 231

tem was straightforward. lsf provides an application-programming interface
(api) enabling many scheduling aspects to be controlled, obviating the need
to modify source code. I do not explore lsf further because its commercial
nature makes it difficult for many to obtain.

Xgrid [2004] from Apple Computer, Inc. is proprietary, closed-source, and
non-extensible. Its scheduling algorithm is simple: tasks are run on nodes
in the order in which they are received, with individual tasks assigned to
the fastest nodes first [Prabhakar, 2004]. The best approach to implement-
ing batchactive scheduling on Xgrid might be with non-invasive frontends
(Chapter 5.9.2).

7.2.3 Extending the Condor clustering system

The Condor [2003] clustering system simplifies the use of cluster resources
by hiding the details of remote execution and providing task checkpointing
facilities. Condor is believed to be the most popular clustering system. I
describe how it can be extended, as alluded to in Chapter 5.6.3. These ideas
were formed in consultation with the principal investigator of the Condor
Project [Livny, 2004] who considers batchactive scheduling novel and a po-
tential batchactive scheduling Condor extension useful.

I describe how to add the ability for users to disclose tasks and how to
modify the Condor scheduling policy.

Task requests are specified in a ClassAd format which specifies task
requirements as a set of extensible characteristics. For non-speculative tasks,
the user may use the existing condor submit command to request tasks.

To disclose tasks, the Condor DAGMan [2004] tool can be harnessed
to execute a user’s task set along with a Condor-specific batchactive user
interface which manages the transition of a task from being disclosed to re-
quested and the storage and delivery of task outputs to the user (Figure 7.4).
Consider, for simplicity, list-ordered task sets. The batchactive interface fol-
lows this list, providing a prompt for the user to request the next task in
the task set and holding outputs until needed. The user may request the
next task output at any time. If the task has not executed, its priority is
elevated to ‘needed.’ If the task has executed, its output is supplied to the
user. Using Condor DAGMan provides a way to let task execution get ar-
bitrarily ahead of user task output desire, while enabling a channel for the
batchactive interface to track of task progress.1

1Note that DAGMan is employed to present the batchactive user interface; not neces-
sarily to enable general task set orderings, although that would additionally be possible.

232 · Cluster scheduling for explicitly-speculative tasks

Figure 7.4: Proposed user interface batchactive extension to Condor [2003]. The
vertical column of tasks on the right represents a single user’s list-ordered task
set. The left part of this directed acyclic graph is a Condor-specific batchactive
interface which asks the user if the user needs particular task outputs and waits
for outputs to be produced if not yet available. The arrows in the dag represent
dependencies: the user will not be prompted for tasks out of order. The current
prompt appears immediately, before the task has begun executing, enabling a user
to elevate a disclosed task to requested at any time. Since there are no dependencies
in the other direction, from user interaction to tasks, task execution is permitted
to get arbitrarily ahead of user interaction.

7.2 Cluster scheduling extension · 233

The priority of a task, a function of whether the task is speculative or
needed, is controlled by the batchactive interface modifying an attribute
in the task’s ClassAd. The ClassAd attribute is examined by the scheduler
(described below) to determine execution order. If a task has already begun,
then to have the ClassAd honored for scheduling, the task will need to be
stopped and restarted.2

Condor’s scheduling strives for fair, decayed resource usage among users
over long time periods (Chapter 4.6.2). This is accomplished with two types
of priorities: user priorities and task (‘job’) priorities. The number of ma-
chines assigned to a user is inversely related to the ratio of user priorities
among users; e.g., a user with priority 10 will get twice as many machines
as a user with priority 20. Each user specifies task priorities for his or her
own tasks. These priorities specify an absolute ranking among a user’s tasks
on the machines assigned to the user. Forty task priorities are available,
limiting the prioritization that can occur among submitted tasks. Condor’s
scheduling policy is not extensible without modifying source. Although Con-
dor is open-source, its source code has not been released by the time of this
writing.

Condor scheduling is handled by several daemons, the negotiator (also
called ‘matchmaker’) and schedd. Task requests go to each local schedd
which places tasks into a queue. The negotiator matches task requests
to machines, discovering queued tasks by querying schedd and heeding
ClassAd requirements. The negotiator is responsible for enforcing user pri-
orities (inter-user scheduling) and schedd is responsible for enforcing task
priorities (intra-user scheduling).

The first-level user and second-level task scheduling of the negotiator
and schedd, respectively, frustrates the ability to implement new, global
scheduling policies. One way to circumvent Condor’s decayed user-based
resource usage scheduling is to submit all tasks from a single ‘user’ and
leverage the ClassAd rank floating-point attribute. The task with the higher
rank receives a machine before one with a lower rank.

The two-tiered batchactive scheduling fcfs × fcfs may be implemented
with the following rank settings: all disclosed tasks are assigned a rank of
0.timestamp and requested tasks are assigned a rank of 1.timestamp, where
‘timestamp’ is the time that the task was either requested or disclosed. srpt
may be implemented by setting the rank to the inverse remaining service

2The benefit of such restarting should outweigh the overhead cost. One part of the
overhead is whether completed work needs to be recomputed. With checkpointing (a
feature of Condor) in effect, completed work would be preserved.

234 · Cluster scheduling for explicitly-speculative tasks

time. Two-tiered scheduling based on srpt may be accomplished by multi-
plying requested tasks by a sufficiently large constant. Less efficiently, any
scheduling order (including hrp and hrr) may be determined by calculat-
ing a monotonically increasing numerical ranking for each task and then
writing the ClassAd for every task when the ranking changes (which may
occur frequently).

Although the feasibility of this description has been vetted by a Condor
expert, a prototype would likely uncover inaccuracies in details and illumi-
nate needed revisions.

7.3 Summary

I detailed the ba sim simulator used for my thesis results, listing its features,
describing its structure, arguing that employed coding practices provide con-
fidence in its results, and showing that scheduling overhead in its unopti-
mized implementation is negligible. I showed how batchactive scheduling can
be deployed as an extension to popular clustering software. Existing cluster
interfaces do not prevent deploying batchactive scheduling, but some systems
are easier to extend than others. I described a way to deploy batchactive
scheduling on the Condor clustering system.

From Rusticus I received the impression that my
character required improvement and discipline;
and from him I learned not to be led astray to
sophistic emulation, nor to writing on speculative
matters [. . .].

Marcus Aurelius, The Meditations

8 Conclusions

I presented a scheduler for clusters, grids, and supercomputers to assist users
speculatively searching for interesting task outputs. Batchactive scheduling
harnesses and bounds searches to maximize human productivity while mini-
mizing unnecessary resource consumption, exploiting the trend that the cost
of human time increases while the cost of computing time decreases.

In this chapter I restate the addressed problem and my primary contri-
butions. I end with thoughts on overcoming non-technical challenges for the
widespread acceptance of batchactive scheduling.

8.1 Problem restatement

Scientific disciplines and commercial ventures use computer resources to
simulate phenomena, evaluate hypotheses, visualize information, discover
invariants. Individuals often construct series of experiments occupying con-
siderable computing time, in which, at the outset, it is often unclear which
task outputs will be useful. This speculative behavior motivates my thesis.

A speculative task is some unit of work, usually corresponding to a run
of an application, whose output is not yet known to be required. I call all
the speculative tasks associated with a user his or her task set. Exploratory
searches, sequential tasks, and parameter studies are common types of spec-
ulation formed of task sets. An exploratory search is typically a hand-crafted
chain of speculative tasks from different applications whose outputs increas-
ingly provide evidence to confirm or refute a hypothesis. A search comprised
of sequential tasks is one in which all tasks are from a single application such
as an any-time algorithm providing increasingly detailed output or ordered,
temporal outputs. A parameter study is a set of tasks exploring a large pa-
rameter space, usually beginning by exploring the space in broad, shallow
strokes, later to be refined to specific areas of interest. Examples for each
are issued by bioinformaticists comparing dna sequences, computer graphics
artists rendering scenes, and computer researchers studying cache behavior,

235

236 · Cluster scheduling for explicitly-speculative tasks

respectively. These examples are important both in the economic sense and
in the advancement of science.

Users often plan ahead, wishing to pipeline the consideration of received
task outputs with the execution of speculative tasks whose outputs were
not known to be needed at the time of submission. Ideally, a cluster task
scheduler would run speculative tasks while users were analyzing completed
tasks, minimizing the users’ waiting time. The catch is that speculative tasks
will take contended resources from users who are waiting for known-needed,
non-speculative tasks unless the two types of tasks can be discriminated.
Being too far ahead takes contended resources away from others. This is
particularly inefficient when outputs from early experiments would render
the execution of the long-range, speculative experiments unnecessary.

Existing cluster scheduling and pricing mechanisms are not designed
with speculative tasks in mind. This causes confusion on the user’s part and
suboptimal scheduling. Should a user exploring a space speculatively submit
one speculative task, a few, many, or the entire ‘computational plan?’ A cost-
aware user will submit a few or no speculative tasks to avoid being charged
for unnecessary speculation. Such a user will experience poor visible response
time because there is no opportunity for the system to execute potentially
needed tasks while the user considers received task output. A user with the
means to pay for speculation or using resources that are not directly charged
will speculate maximally in an attempt to minimize visible response time.
When many behave this way, resources are swamped by deep speculation
and needed tasks are starved behind many tasks that will turn out to not
be needed. Further, not enough information is available to each user, even
if he or she was willing to take the burden, to decide an optimal number
of speculative tasks to submit. The right number would depend on other
task arrivals, task service time, user think time, and the probabilities that
speculative tasks will be needed.

Non-speculative schedulers are unaware of which tasks are speculative
and thus do not treat speculative tasks differently from non-speculative
tasks. When a user speculatively issues tasks, there is a notion of task dead-
lines; the time that a speculative task might be needed which occurs later
due to user think time. Think time is not exploited by traditional schedulers
to favor more pressing tasks. Further, the interface presented by traditional
schedulers makes it difficult to expose user think time to the scheduler. Fi-
nally, non-speculative schedulers are unaware which speculative tasks have
turned out to be needed, or which users speculative less than others, and
thus non-speculative schedulers are not able to favor tasks that are more
likely to be needed.

8.2 Primary contributions · 237

The existence of speculation uncovers new questions for scheduling the-
ory and practice: how should a policy order speculative, abortable tasks to
minimize the time users are blocked on task output, minimize user costs,
and maximize server revenue, and what interface should a scheduler present
to the user to accomplish these goals?

8.2 Primary contributions

I introduced batchactive scheduling to alleviate the problems presented by
traditional, non-speculative scheduling. The solution I promote exploits the
inherent speculation in common application-level searches. I focused on non-
parallel applications, leaving the speculative scheduling of parallel applica-
tions, which require coscheduling and the prediction of multiple resource
availability, to future work.

Batchactive scheduling consists of several ideas: speculative tasks are
treated differently from non-speculative tasks; the time-based metric that is
minimized is visible response time; and users are encouraged to speculative
deeply with the batchactive pricing mechanism. These ideas are enabled by
a batchactive interface.

With batchactive schedulers, users disclose speculative tasks and request
tasks whose outputs they know they need. (With a non-speculative sched-
uler, a user would have to throttle his or her own speculation, which is
difficult and burdensome, in an attempt to meet time and cost goals.) A
user may cancel any task if received outputs suggest their irrelevance. I call
this ‘batchactive’ usage of the system, because, like batch usage, many tasks
are submitted at once, and, like interactive usage, the user is waiting for the
output of (usually) one identified task.

Disclosure enables the scheduler to get an early start, fulfilling user de-
sire to pipeline think time and task execution. Further, disclosure exposes
parallelism within a user’s workload, enabling the scheduler to exploit the
parallelism of cluster nodes.

I observe that not all tasks are equal — only tasks blocking users matter
— leading me to introduce the visible response time metric which measures
the time between needing and receiving task output, independent of when it
was speculatively disclosed. With the request and disclose batchactive inter-
face commands, visible response time is exposed to the system. Traditional
response time, the time-based scheduling metric most often employed, con-
flates the time of task submission with the time of task desire. When a user
is able to plan ahead, and when a user undergoes think times each time he

238 · Cluster scheduling for explicitly-speculative tasks

or she receives task output, the time of task submission and desire are often
not the same.

A user would prefer not being charged for disclosed but never requested
tasks. Moreover, the more knowledge that the scheduler has of a user’s com-
putational plan, the better it can order tasks to meet important schedul-
ing goals. To motivate users to disclose freely and deeply for tasks likely
and unlikely to be needed, only requested resources are billed. This is the
batchactive pricing mechanism. Disclosed tasks that were never needed are
not charged. The billing system is able to implement this pricing mechanism
in part because the batchactive interface provides separate request and dis-
close commands.

The batchactive interface also employs an isolated output store. If a
task executes and was disclosed but not requested, then the task’s output
is stored in a location isolated from the rest of the system until requested
or canceled. If canceled, its output is removed from the system. When the
task is requested, the batchactive system provides the task’s output to the
requesting user.

This output isolation supports two aspects of batchactive scheduling:
Output isolation enables the batchactive pricing mechanism, for without it,
a user may attempt to read needed output that was speculatively generated
without requesting and being charged for the output.

Moreover, output isolation forces the user to request needed task output
and to cancel unneeded task output. Doing so provides useful information
to the scheduler. Ambitious policies that learn from historical user patterns
become possible. The traditional scheduling interface, without output isola-
tion, will miss task requests or cancelations if a task executed while a user
was still in his or her think time, because, in this case, there is no motivation
for the user to explicitly request or cancel the task.

In simulation, I demonstrated my thesis that a multiuser process sched-
uler informed of which submitted tasks are speculative can provide better
time- and cost-based metrics for users and resource providers. Simulation
runs compare batchactive scheduling to interactive and batch usage of a
non-speculative scheduler in which users request needed tasks one at a time
or in non-speculative batches, respectively. The simulator I created for these
experiments is called ba sim and is available at http://www.pdl.cmu.edu/
PDL-FTP/Scheduling/ba_sim-0.1.tar.gz for further research by others.

The simulated batchactive schedulers give requested tasks precedence
over disclosed tasks. I call these ‘two-tiered batchactive schedulers.’ Defer-
ring the execution of speculative tasks can save work when such tasks are
later canceled; i.e., deferred work is often saved work. Simulated requested

http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz
http://www.pdl.cmu.edu/PDL-FTP/Scheduling/ba_sim-0.1.tar.gz

8.2 Primary contributions · 239

queue subpolicies included first-come-first-serve (fcfs), shortest-remaining-
processing-time (srpt), and a policy which selects the user who has used
the least requested resources (user-requested-fb). Simulated disclosed queue
subpolicies included fcfs, srpt, and two novel subpolicies: highest-request-
probability (hrp), which favors users who have historically requested a
greater fraction of disclosed tasks, and highest-requested-resources (hrr),
which favors users who have requested the most resources. Both hrp and
hrr would not have been possible without output isolation to force users
to indicate task output desire. In addition, I explored the performance of
an impractical, oracular disclosed queue subpolicy which runs only disclosed
tasks that will eventually be requested (rfcfs). I notate two-tiered batchac-
tive schedulers as ‘requested task subpolicy’ × ‘disclosed task subpolicy.’
The simulated non-speculative schedulers included fcfs, srpt, and a policy
which selects the user who has used the least resources (user-fb).

For each scheduling comparison, the simulator was run thousands of
times with different parameters describing user behavior and task charac-
teristics. I chose parameter ranges that not only included reasonable uses of
speculation for my target applications, but also ranges that included little
or no speculation and little think time, regions where little or no batchactive
improvement was expected.

The time- and cost-based scheduling metrics output by the simulation
runs support batchactive scheduling. Over a wide variety of runs, for mean
visible response time, fcfs × fcfs performed at least twice as well for about
15% and 25% of the simulated behaviors of batch usage of fcfs and inter-
active usage of fcfs, respectively. When looking at mean visible slowdown
(recall that visible slowdown is visible response time scaled by task size),
fcfs × fcfs performed at least twice as well for about 25% and 30% of the
simulated behaviors of batch fcfs and interactive fcfs, respectively. Size-
based schedulers based on srpt provided comparable relative batchactive
improvement. Further, fcfs × fcfs performed better than size-based non-
speculative scheduling. Thus the availability of a task size oracle will not
diminish the value of batchactive scheduling. In all of these results, visible
throughput (the throughput of needed tasks) was at least as good and often
better under batchactive scheduling.

Batchactive usage of a speculative scheduler adapts across a range of
task and user characteristics, often beating any usage of a non-speculative
scheduler. For example, batch usage of a non-speculative scheduler is suited
to few users because execution time and think time are pipelined and load
is sufficiently low that one’s speculative but unneeded tasks do not overly
interfere with needed tasks. Interactive usage of a non-speculative scheduler

240 · Cluster scheduling for explicitly-speculative tasks

is suited to many users because the server is always busy with requested
tasks. Batchactive scheduling is better than batch usage of a non-speculative
scheduler under many users because requested tasks never wait for specula-
tive tasks; it is better than interactive non-speculative scheduling under few
users because it fills idle time with speculative tasks.

In practice, besides fcfs, a variant of decay-usage is sometimes em-
ployed. Batchactive scheduling, such as user-requested-fb × hrp or fcfs
× hrp, performed better than batch usage of user-fb. As the number of
users are increased (which increases load), the batchactive configuration per-
formed roughly 20% better. This is because the batchactive case executes
known-needed tasks first while the user-fb policy might execute disclosed
tasks that will be canceled even when known-needed tasks exist.

By varying task set size, the likelihood that a task output will cause a
user to cancel remaining tasks, and user think time, I showed that batchac-
tive scheduling applies best when several to many speculative tasks are sub-
mitted and early task outputs are acted on while uncompleted tasks remain.
Think time is needed to obtain time-based benefits; without it, all schedul-
ing configurations perform the same. With think time, the greater the de-
gree of speculation, the better batchactive scheduling performs relative to
non-speculative scheduling. As the number of tasks in the average task set
increases beyond 10, the mean visible response time of batch usage of fcfs
became unusable. Throughout a range of average tasks per task set from 10
to 512, the improvement of batchactive fcfs × hrp over interactive fcfs
was between a factor of 1.5 and 3. As the cancelation probability for the av-
erage task set increased from no speculation to 0.2, batchactive improvement
over batch ranged between a factor of 2 and 6.

The hrp disclosed queue subpolicy was shown to be better than us-
ing fcfs for the disclosed queue as the number of tasks per task set was
increased. When the average task set had roughly 50 tasks, mean visible
response time under fcfs × hrp was roughly half than under fcfs × fcfs.
Thus, the disclosed queue must be scheduled carefully to avoid a diminishing
returns of batchactive improvement as the disclosed queue fills with tasks
less likely to be requested. The hrp subpolicy also avoids a denial-of-service
of the disclosed queue from users who disclose but never request tasks.

Regarding cost, simulations showed that batch users on non-speculative
schedulers sometimes pay greatly for unneeded speculation. The average per-
user billed over needed resources for batch fcfs rose to 12 as the average task
set sizes increased. Interestingly, with better scheduling, this phenomenon
became worse. Under batch srpt, this mean scaled billed resources rose
to 20. The potential fear of paying for unneeded speculation motivates the

8.2 Primary contributions · 241

batchactive pricing mechanism. With this mechanism, the mean scaled billed
resources is always 1 because unneeded speculation is not charged.

The batchactive pricing mechanism is beneficial from the user’s perspec-
tive because speculative work can be submitted at no cost. It can even work
for the resource provider. Interactive usage of a non-speculative scheduler
was shown to earn the resource provider the least revenue because these
users only request one task at time. A batchactive scheduler often provided
more total billed resources over the same time period in comparison, be-
cause, although in both situations only requested resources are charged, the
batchactive case provided better visible task throughput. For example, at
medium load, the batchactive case provided roughly 10% more billed load.

On the other hand, batch usage of a non-speculative scheduler was shown
to earn the resource provider the most revenue because users requested spec-
ulative work and all executed work, whether needed or not, was charged. At
a low to medium number of users, the difference between the two was also
roughly 10%. When varying all parameters (including those describing the
degree of speculation), the resource provider on a batchactive system would
need to price requested resources roughly 5% more to meet the revenue of a
non-speculative scheduler used by batch users. Note that the apparent ad-
ditional billed load from the traditional pricing mechanism for batch users
may not occur in practice: batch users would likely resist deep disclosure
because they do not wish to be charged for needless speculation, and even if
they were willing to pay, the resulting visible response times would be poor.
Latency-sensitive users will not push traditional schedulers into regions of
high billed load because, at those levels of revenue, visible response times are
too high. The latency threshold for batchactive scheduling, in contrast, is
better. For example, at a mean visible response time of 1000 s, the requested
(billed) load of the batchactive fcfs × fcfs case is 0.92 (out of a maximum
of 1) while the requested load of the batch fcfs case is only 0.75.

In a cost-center, if the batchactive pricing mechanism results in lower
revenue, the price of requests can be raised to make up the difference. Both
interactive and batch users would receive better value in the form of the lower
mean visible response times described above while the billing total would
remain unchanged. A profit-center can be motivated to use the batchactive
pricing mechanism because the significant value provided with batchactive
scheduling could encourage additional users, deeper speculation, and bigger
tasks, any of which would raise server revenue.

242 · Cluster scheduling for explicitly-speculative tasks

8.3 Challenges to acceptance

I demonstrated that, compared to non-speculative scheduling, batchactive
schedulers reduce visible response time and increase the fraction of time that
cluster resources spend on needed work. Speculative task disclosure and the
batchactive pricing mechanism support how people wish to work for the
target application scenarios. I determined batchactive scheduling overhead
to be negligible and I described how batchactive scheduling can be deployed
by extending the popular clustering software system called Condor.

Given the benefits of batchactive scheduling I have presented, one may
wonder why something similar is not already widely deployed. I believe that
the enabling technologies have only recently been in place and that there is
an initial learning curve to be surmounted. First, the benefits of speculation
require that not all resources are consumed by requested tasks; this is in-
creasingly true in cluster and grid environments. Second, users must be able
to anticipate, with a minimum degree of accuracy, tasks that they might
need. These points are related: the better users separate disclosures from
requests, the more resources are available to a batchactive scheduler.

Although effort is involved, I believe it is possible for users to convey
speculation by first disclosing tasks. For my example applications, listing
speculative tasks is nearly automatic: the consecutive frames in a scene to
be rendered, the evenly-spaced data points in a high-dimension parameter
space. A user who underreports potentially needed work will not realize
the best performance, but will not hurt the performance of others. A user
who overreports speculative work can only improve his or her own metrics
(so long as unneeded work is canceled). With a suitable disclosed queue
subpolicy such as hrp, the performance of others will not suffer from such
overreporting.

Specifying useful task granularities is also important. Consider an ap-
plication whose output must be processed with a tool before the output is
useful. If the application and tool are considered separate tasks, then the
user will have to disclose and request them independently. At best, this is
burdensome. At worst, the user forgets to request the tool’s output until
after the application finishes, wasting time. Moreover, the user would be
alerted by the completion of the application, which is distracting when only
the tool’s output can be used. On the other hand, if a task consists of both
speculative and non-speculative work, then its granularity is too big, result-
ing in worse cost-based metrics for the user who does not eventually need
all the task’s output and worse time-based metrics for others whose needed
tasks are queued behind this large task.

8.3 Challenges to acceptance · 243

In the surveys that I conducted to learn how people use computers spec-
ulatively, I asked whether a batchactive scheduler would be useful to them.
Answers were positive but cautious: because people do not have the ability
to express speculation to existing clustering software, they do not have the
mindset of deeply disclosing their computational plans. Doing so with ex-
isting systems is not free in the economic and latency sense: users would be
charged more and be delayed by speculation issued by others. Surveyed users
restrict their speculation in practice due to those costs. Only real world test-
ing can determine whether users would exploit a task disclosure interface,
even one as syntactically similar to the existing request interface, to obtain
the benefits demonstrated by this thesis from better scheduling increasingly
important, expensive searches in the advancement of science.

· · ·

244 · Cluster scheduling for explicitly-speculative tasks

Bibliography

Abdelzaher, T. F. 2000. An automated profiling subsystem for QoS-
aware services. In Proceedings of the 6th IEEE Real-Time Technology and
Applications Symposium (RTAS ’00). Washington D.C. 72

Abelson, H. and Sussman, G. J. 1996. Structure and Interpretation of
Computer Programs, 2nd ed. The MIT Press. 31

Abeni, L., Palopoli, L., and Buttazzo, G. 2000. On adaptive control
techniques in real-time resource allocation. In Proceedings of the 12th
IEEE Euromicro Conference on Real-Time Systems. Stockholm, Sweden.
126

Acharya, A., Edjlali, G., and Saltz, J. 1997. The utility of exploiting
idle workstations for parallel computation. In Proceedings of ACM Inter-
national Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’97). Seattle, WA. 28, 118

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. 1990.
Basic local alignment search tool. Journal of Molecular Biology 215, 403–
10. 20

Amiri, K., Petrou, D., Ganger, G. R., and Gibson, G. A. 2000. Dy-
namic function placement for data-intensive cluster computing. In Pro-
ceedings of the USENIX 2000 Annual Technical Conference. San Diego,
CA, 307–322. 38

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-
garra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKen-
ney, A., and Sorensen, D. 1999. lapack Users’ Guide, 3rd ed. Society
for Industrial and Applied Mathematics. 70

246 · Cluster scheduling for explicitly-speculative tasks

Anderson, T. E., Culler, D. E., Patterson, D. A., and the now
team. 1995. A case for now (networks of workstations). IEEE Micro 15, 1
(Feb.), 54–64. 42, 44

Aranya, A., Wright, C. P., and Zadok, E. 2004. Tracefs: A file system
to trace them all. In Proceedings of the 3rd USENIX Conference on File
and Storage Technologies (FAST ’04). San Francisco, CA. 115

Argonne 2004. Grand challenge applications — Argonne National Labora-
tories. http://www-fp.mcs.anl.gov/grand-challenges/. 17

Arlitt, M. and Williamson, C. 1996. Web server workload characteriza-
tion: The search for invariants. In Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS ’96). Philadelphia, PA, 126–137. 24

Arpaci, R. H., Dusseau, A. C., Vahdat, A. M., Liu, L. T., Anderson,
T. E., and Patterson, D. A. 1995. The interaction of parallel and
sequential workloads on a Network of Workstations. In Proceedings of the
ACM Joint International Conference on Measurement and Modeling of
Computer Systems (Sigmetrics ’95 / Performance ’95). Ottawa, Canada.
28, 66

Arpaci-Dusseau, A. C. and Culler, D. E. 1997. Extending
proportional-share scheduling to a network of workstations. In Proceed-
ings of the International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA ’97). 111

Ball, P. 2004. Introduction to discrete event simulation. http://www.
dmem.strath.ac.uk/~pball/simulation/simulate.html. 23, 131, 221,
225

Bansal, N. and Dhamdhere, K. 2003. Minimizing weighted flow time. In
Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms.
Baltimore, Maryland, 508–516. 60

Bansal, N. and Harchol-Balter, M. 2001. Analysis of srpt schedul-
ing: Investigating unfairness. In Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS ’01). 51, 55, 59, 64

Barford, P. and Crovella, M. 1998. Generating representative web
workloads for network and server performance evaluation. In Proceedings

http://www-fp.mcs.anl.gov/grand-challenges/
http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html
http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html

Bibliography · 247

of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’98). Madison, WI, 151–160. 27

Bates, M. J. 1990. The berry-picking search: User interface design.
Addison-Wesley. Edited by Harold Thimbleby. 19

Baumol, W. J. and Blinder, A. S. 1994. Economics: Principles and
Policy , 6th ed. The Dryden Press — Harcourt, Brace & Company, Fort
Worth, TX. 42, 46

BBC News 2004. When hi-tech meets high fantasy — BBC News. http:
//news.bbc.co.uk/2/hi/technology/3672887.stm. 21

Becker, G. 1965. A theory of the allocation of time. Economic Jour-
nal 75, 299 (Sept.), 493–517. 15

Bender, M. A., Chakrabarti, S., and Muthukrishnan, S. 1998. Flow
and stretch metrics for scheduling continuous job streams. In Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (DA
’98). San Francisco, CA, 270–279. 51, 53

Bender, M. A., Muthukrishnan, S., and Rajaraman, R. 2002. Im-
proved algorithms for stretch scheduling. In Proceedings of the 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms. 60

Bentham, J. 1823. An introduction to the principles of morals and legisla-
tion, corrected ed. W. Pickering, London. 118

Beowulf 2003. Beowulf.Org — The Beowulf Cluster Site. http://www.
beowulf.org/. 43

Berman, F., Fox, G., and Hey, T. 2003. Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons. 37, 43

Bestavros, A. 1996. Speculative data dissemination and service. In Pro-
ceedings of the International Conference on Data Engineering (ICDE ’96).
New Orleans, LA. 27

Biowulf 2004. Using blast on biowulf. http://biowulf.nih.gov/apps/
blast/index.html. 20, 71, 144

Black, D. 1991. Processors, priority, and policy: Mach scheduling for new
environments. In Proceedings of the USENIX 1991 Winter Conference.
1–12. 107

http://news.bbc.co.uk/2/hi/technology/3672887.stm
http://news.bbc.co.uk/2/hi/technology/3672887.stm
http://www.beowulf.org/
http://www.beowulf.org/
http://biowulf.nih.gov/apps/blast/index.html
http://biowulf.nih.gov/apps/blast/index.html

248 · Cluster scheduling for explicitly-speculative tasks

Black, D. L. 1990. Scheduling support for concurrency and parallelism in
the Mach operating system. IEEE Computer 23, 5 (May), 35–43. 37

Blaze, M. 1992. nfs tracing by passive network monitoring. In Proceedings
of the 1992 USENIX Winter Conference. San Francisco, CA. 115

Bubenik, R. and Zwaenepoel, W. 1989. Performance of optimistic make.
In Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’89). Berkeley, CA, 39–48.
27, 30, 104, 143

Bubenik, R. and Zwaenepoel, W. 1990. Semantics of optimistic com-
putation. In Proceedings of the 10th IEEE International Conference on
Distributed Computing Systems (ICDCS ’90). Paris, France. 32

Burger, J. and Gochfeld, M. 1998. The tragedy of the commons. En-
vironment 40, 10 (Dec.), 4–13; 26–27. 120

Cao, P., Felten, E., and Li, K. 1994. Application-controlled file caching
policies. In Proceedings of the Summer 1994 USENIX Conference. Boston,
MA, 171–182. 78

Chang, F. and Gibson, G. A. 1999. Automatic I/O hint generation
through speculative execution. In Proceedings of the 3rd USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’99). New
Orleans, LA, 1–14. 32

Chang, F. W. 2001. Using speculative execution to automatically hide
I/O latency. Ph.D. thesis, School of Computer Science, Carnegie Mellon
University. Available as the technical report cmu-cs-01-172. 36

Chen, C. M. and Roussopoulos, N. 1994. Adaptive selectivity estima-
tion using query feedback. In Proceedings of the 1994 ACM International
Conference on Management of Data (SIGMOD ’94). Minneapolis, MN,
161–172. 72

Chrisochoides, N., Fedorov, A., Lowekamp, B. B., Zangrilli, M.,
and Lee, C. 2003. A case study of optimistic computing on the grid:
Parallel mesh generation. In Proceedings of the Next Generation Systems
Program Workshop of the International Parallel and Distributed Process-
ing Symposium (NGS / IPDPS ’03). Nice, France. 32, 36

Condor 2003. Condor project homepage. http://www.cs.wisc.edu/
condor/. 43, 44, 67, 103, 110, 223, 227, 228, 230, 231, 232

http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/

Bibliography · 249

Condor DAGMan 2004. Condor DAGMan. http://www.cs.wisc.edu/
condor/dagman/. 86, 230, 231

Conway, R. W., Maxwell, W. L., and Miller, L. W. 1967. Theory
of Scheduling. Addison-Wesley Publishing Company, Reading, MA. 53,
59, 96

Corbató, F. J., Merwin-Daggett, M., and Daley, R. C. 1962. An
experimental time-sharing system. In Proceedings of the 1962 Spring Joint
Computer Conference of the American Federation of Information Process-
ing Societies (AFIPS). 335–344. 67, 109

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction
to Algorithms. McGraw-Hill Book Company. 98, 101, 103, 229

Cowan, C. and Lutfiyya, H. 1995. Formal semantics for expressing
optimism: The meaning of hope. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing (PODC ’95). Ottawa,
Ontario, Canada, 164–173. 32

Crovella, M. E. 2000. Performance evaluation with heavy tailed distri-
butions. Lecture Notes in Computer Science 1786, 1–9. 24, 141, 142

Crovella, M. E. and Bestavros, A. 1995. Explaining world wide web
traffic self-similarity. Tech. Rep. bucs-tr-1995-015, Department of Com-
puter Science, Boston University. Oct. 24, 27, 117

Crovella, M. E., Harchol-Balter, M., and Murta, C. D. 1997. Task
assignment in a distributed system: Improving performance by unbalanc-
ing load. Tech. Rep. bucs-tr-1997-018, Department of Computer Science,
Boston University. Oct. 142

Crovella, M. E. and Lipsky, L. 1997. Long-lasting transient conditions
in simulations with heavy-tailed workloads. In Proceedings of the 29th
Winter Simulation Conference. Atlanta, GA, 1005–1012. 142

Dawes, R. M. 1979. The robust beauty of improper linear models in de-
cision making. American Psychologist 34, 7 (July), 571–582. Possibly
influenced Yo La Tengo — Chris Stamey & Kirk Ross [1995]. 77, 110

DeGroot, D. 1990. Throttling and speculating on parallel architectures.
In Proceedings of Parbase ’90. Abstract of keynote speech. 15, 19, 22,
24, 77, 78, 104, 123

http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/dagman/

250 · Cluster scheduling for explicitly-speculative tasks

Demers, A., Keshav, S., and Shenker, S. 1989. Analysis and simula-
tion of a fair queueing algorithm. In Proceedings of the Symposium on
Communications, Architectures, and Protocols (SIGCOMM ’89). Austin,
Texas, 1–12. 111

Deshpande, M. and Karypis, G. 2000. Selective Markov models for
predicting web-page accesses. Tech. Rep. 00-056, Department of Computer
Science / Army hpc Research Center, University of Minnesota. Oct. 33

DiskSim 2004. The DiskSim simulation environment. http://www.pdl.
cmu.edu/DiskSim/. 23

Douglis, F. and Ousterhout, J. 1991. Transparent process migration:
Design alternatives and the Sprite implementation. Software—Practice &
Experience 21, 8 (Aug.), 757–785. 28, 67, 118

ECE 2002. Survey of twelve graduate students in the Electrical and Com-
puter Engineering Department at Carnegie Mellon University. Personal
communication. 22, 71

EDS 2004. Application selective outsourcing from eds. http://www.eds.
com/services_offerings/so_appsvs_outsourcing.shtml. 44

Eggert, L. R. 2004. Background use of idle resource capacity. Ph.D.
thesis, University of Southern California. 31, 104

Endo, Y., Wang, Z., Chen, J. B., and Seltzer, M. 1996. Using latency
to evaluate interactive system performance. In Proceedings of the 2rd
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’96). Seattle, WA, 185–199. 53

Epps, D. 2004. Personal communication. R&D director at Tippett Studio
since 1992. 21, 29, 70, 144

Essick, R. B. 1990. An event-based fair share scheduler. In Proceedings of
the Winter 1990 USENIX Conference. 147–162. 111

Fayyad, U. 1998. Taming the giants and the monsters: Mining large
databases for nuggets of knowledge. Database Programming and De-
sign 11, 3 (Mar.). 24

Feitelson, D. G. and Jette, M. A. 1997. Improved utilization and
responsiveness with gang scheduling. In Proceedings of the 3rd Workshop
on Job Scheduling Strategies for Parallel Processing (IPPS / SPDP ’97).

http://www.pdl.cmu.edu/DiskSim/
http://www.pdl.cmu.edu/DiskSim/
http://www.eds.com/services_offerings/so_appsvs_outsourcing.shtml
http://www.eds.com/services_offerings/so_appsvs_outsourcing.shtml

Bibliography · 251

Geneva, Switzerland, 238–261. Lecture Notes in Computer Science, vol.
1291, Springer-Verlag. 40, 53, 64, 65, 69, 141

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik, K. C.,
and Wong, P. 1997. Theory and practice in parallel job scheduling. In
Proceedings of the 3rd Workshop on Job Scheduling Strategies for Parallel
Processing (IPPS / SPDP ’97). Geneva, Switzerland, 1–34. Lecture Notes
in Computer Science, vol. 1291, Springer-Verlag. 27, 29, 69, 75, 89, 96

Fisher, D. 2002. Mozilla: Link prefetching FAQ. http://mozilla.org/
projects/netlib/Link_Prefetching_FAQ.html. 27, 33

Foster, I. and Kesselman, C. 2004. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann. 37, 43

Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy of the
Grid: Enabling scalable virtual organizations. International Journal of
High Performance Computing Applications. 43

FreeBSD 2004. The FreeBSD project. http://www.freebsd.org/. 103,
107, 110

Ganger, G. R. and Patt, Y. N. 1998. Using system-level models to
evaluate I/O subsystem designs. IEEE Transactions on Computers, 667–
678. 79

Gauss, C. F. 1821. Theoria combinationis observationum erroribus minu-
mum obnoxiae. Royal Society of Göttingen. Reprinted by siam Classics
in Applied Mathematics, 1995, with English translation by G.W. Stewart.
70

Genome. 2001. Initial sequencing and analysis of the human genome. Na-
ture 409, 860–921. The Genome International Sequencing Consortium.
19

Ghormley, D. P., Petrou, D., Rodrigues, S. H., Vahdat, A. M.,
and Anderson, T. E. 1998. GLUnix: A global layer Unix for a network
of workstations. Software—Practice & Experience 28, 9 (July), 929–961.
44, 66

Gibbons, R. 1997. A historical application profiler for use by parallel sched-
ulers. In Proceedings of the 3rd Workshop on Job Scheduling Strategies
for Parallel Processing (IPPS / SPDP ’97). Geneva, Switzerland. Lecture
Notes in Computer Science, vol. 1291, Springer-Verlag. 214

http://mozilla.org/projects/netlib/Link_Prefetching_FAQ.html
http://mozilla.org/projects/netlib/Link_Prefetching_FAQ.html
http://www.freebsd.org/

252 · Cluster scheduling for explicitly-speculative tasks

Gibbs, W. W. 1997. Gordon E. Moore — Part 2. Scientific
American.com. See http://www.sciam.com/article.cfm?articleID=
000C8D8B-7E63-1CDA-B4A8809EC588EEDF. 15

Gibson, G. and Corbett, P. 2004. pnfs problem statement. Internet-
Draft Version 01, IETF. July. 38

Gibson, G., Nagle, D., Amiri, K., Butler, J., Chang, F., Gobioff,
H., Hardin, C., Riedel, E., Rochberg, D., and Zelenka, J. 1998.
A cost-effective, high-bandwidth storage architecture. In Proceedings of
the 8th Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’98). San Jose, CA. 38

Giddings, M. and Knudson, D. 2004. Xgrid-users email list. Subjects
‘differing resources’ and ‘What’s on your Xgrid’ at http://lists.apple.
com/mailman/listinfo/xgrid-users. 20, 144

Globus 2003. The Globus toolkit. http://www-unix.globus.org/
toolkit/. 44, 66

Golding, R., Bosch, P., Staelin, C., Sullivan, T., and Wilkes, J.
1995. Idleness is not sloth. In Proceedings of the Winter 1995 USENIX
Conference. New Orleans, 201–212. 104

Goodheart, B. and Cox, J. 1994. The Magic Garden Explained: The In-
ternals of UNIX System V Release 4, an Open Systems Design. Prentice-
Hall. 107

Gray, J. 2004. Distributed computing economics. http://www.
clustercomputing.org/content/tfcc-5-1-gray.html. 38

Halstead, Jr., R. H. 1985. Multilisp: a language for concurrent sym-
bolic computation. ACM Transactions on Programming Languages and
Systems (TOPLAS ’85) 7, 4 (Oct.), 501–538. 31

Harchol-Balter, M. 1999. The effect of heavy-tailed job size distribu-
tions on computer system design. In Proceedings of the ASA-IMS Con-
ference on Applications of Heavy-tailed Distributions in Economics, En-
gineering and Statistics. Washington, DC. 141

Harchol-Balter, M. 2002. Task assignment with unknown duration.
Journal of the ACM (JACM ’02) 49, 2 (Mar.), 260–288. 40, 66

http://www.sciam.com/article.cfm?articleID=000C8D8B-7E63-1CDA-B4A8809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000C8D8B-7E63-1CDA-B4A8809EC588EEDF
http://lists.apple.com/mailman/listinfo/xgrid-users
http://lists.apple.com/mailman/listinfo/xgrid-users
http://www-unix.globus.org/toolkit/
http://www-unix.globus.org/toolkit/
http://www.clustercomputing.org/content/tfcc-5-1-gray.html
http://www.clustercomputing.org/content/tfcc-5-1-gray.html

Bibliography · 253

Harchol-Balter, M. 2003a. Personal communication. Scheduling the-
ory professor in the Computer Science Department at Carnegie Mellon
University. 28, 95, 97

Harchol-Balter, M. 2003b. Class notes for 15-849b, Theory of per-
formance modeling. http://www.cs.cmu.edu/~harchol/Perfclass/
class.html. Several well-known queuing theory results are stated and
proved in these notes; seminal cites are also included. 54, 56, 60, 61, 62,
63, 65, 142, 146

Harchol-Balter, M., Crovella, M. E., and Murta, C. D. 1997. To
queue or not to queue: When queuing is better than timesharing in a dis-
tributed system. Tech. Rep. bucs-tr-1997-017, Department of Computer
Science, Boston University. Oct. 60

Harchol-Balter, M. and Downey, A. B. 1997. Exploiting process
lifetime distributions for dynamic load balancing. ACM Transactions on
Computer Systems (TOCS ’97) 15, 3 (Aug.), 253–285. 54, 60, 63, 68, 141

Harchol-Balter, M., Sigman, K., and Wierman, A. 2002. Asymptotic
convergence of scheduling policies with respect to slowdown. In IFIP WG
7.3 International Symposium on Computer Modeling, Measurement and
Evaluation (Performance ’02). Rome, Italy. 53

Hardin, G. 1968. The tragedy of the commons. Science 162, 1243–48.
118, 119

Heidemann, J. S. and Popek, G. J. 1994. File-system development with
stackable layers. ACM Transactions on Computer Systems 12, 1 (Feb.),
58–89. 115

Hellerstein, J. L. 1993. Achieving service rate objectives with decay us-
age scheduling. IEEE Transactions on Software Engineering 19, 8 (Aug.),
813–825. 108

Hennessy, J. L., Patterson, D. A., and Goldberg, D. 2002. Computer
Architecture: A Quantitative Approach, 3rd ed. Morgan Kaufmann. 15,
26, 31

Hewlett-Packard 2004. Virtualization services — hp services. http://www.
hp.com/hps/spotlight/index_virtualization.html. 44

http://www.cs.cmu.edu/~harchol/Perfclass/class.html
http://www.cs.cmu.edu/~harchol/Perfclass/class.html
http://www.hp.com/hps/spotlight/index_virtualization.html
http://www.hp.com/hps/spotlight/index_virtualization.html

254 · Cluster scheduling for explicitly-speculative tasks

Hildebrand, D. and Honeyman, P. 2004. nfsv4 and high performance
file systems: Positioning to scale. Tech. Rep. citi-04-02, Center for Infor-
mation Technology Integration, University of Michigan. Sept. 38

Hillner, J. 2003. The wall of fame. Wired Magazine 11, 12. 21, 43, 144

Hoffman, T. 2003. HP takes new pricing path for utility-based
computing. Computerworld, http://www.computerworld.com/
managementtopics/management/itspending/story/0,10801,81522,
00.html?nas=AM-81522. 46

Holliman, D. 2003. Personal communication. Former system administrator
for the Berkeley Phylogenomics Group. 20, 43

Huston, L., Sukthankar, R., Wickremesinghe, R., Satya-
narayanan, M., Ganger, G., Riedel, E., and Ailamaki, A. 2003.
Diamond: A storage architecture for early discard in interactive search.
Tech. Rep. irp-tr-03-09, Intel Research Pittsburgh. Oct. 24

IBM 2004. ibm global services — Outsourcing / Hosting. http://www-1.
ibm.com/services/us/index.wss/it/so/a1000414. 44

Jefferson, D. R. 1985. Virtual time. ACM Transactions on Programming
Languages and Systems (TOPLAS ’85) 7, 3 (July), 404–425. 32

Jensen, E. D., Locke, C. D., and Tokuda, H. 1985. A time-driven
scheduling model for real-time operating systems. In Proceedings of the
6th IEEE Real-Time Systems Symposium (RTSS ’85). 112–122. 95, 112

Jones, M. B., Roşu, D., and Roşu, M.-C. 1997. cpu reservations and
time constraints: Efficient, predictable scheduling of independent activi-
ties. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97). Saint Malo, France. 112

Kahneman, D. and Tversky, A. 1979. Prospect theory: An analysis of
decision under risk. Econometrica 47, 2 (Mar.), 263–292. 80

Kapadia, N. H., Fortes, J. A. B., and Brodley, C. E. 1999. Predictive
application-performance modeling in a computational grid environment.
In Proceedings of the 8th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC ’99). Redondo Beach, CA, 47–54.
72

http://www.computerworld.com/managementtopics/management/itspending/story/0,10801,81522,00.html?nas=AM-81522
http://www.computerworld.com/managementtopics/management/itspending/story/0,10801,81522,00.html?nas=AM-81522
http://www.computerworld.com/managementtopics/management/itspending/story/0,10801,81522,00.html?nas=AM-81522
http://www-1.ibm.com/services/us/index.wss/it/so/a1000414
http://www-1.ibm.com/services/us/index.wss/it/so/a1000414

Bibliography · 255

Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development 31, 2
(Mar.), 249–260. 19

Kim, M. and Noble, B. 2001. Mobile network estimation. In Proceedings
of the ACM Conference on Mobile Computing and Networking. Rome,
Italy. 73

King, J. 1993. The unfolding puzzle of protein folding. Technology Re-
view 96, 4 (May/June), 54–61. 19

Kotz, D. 1997. Disk-directed I/O for mimd multiprocessors. ACM Trans-
actions on Computer Systems (TOCS ’97) 15, 1 (Feb.), 41–74. 78

Lampson, B. 1983. Hints for computer system design. In Proceedings of
the 9th ACM Symposium on Operating Systems Principles (SOSP ’83).
Bretton Woods, NH, 33–48. 77

Larmouth, J. 1978. Scheduling for immediate turnaround. Software—
Practice & Experience 8, 5 (Sept.), 559–578. 111

Lee, C. A. 2002. Optimistic grid computing. Talk given at the Per-
formance Analysis and Distributed Computing Workshop (PADC ’02),
Schloss Dagstuhl, Wadern, Germany. 32

Legion 2004. Legion: A worldwide virtual computer. http://www.cs.
virginia.edu/~legion/. 44

Lemieux 2003. The Lemieux Supercomputer. http://www.psc.edu/
machines/tcs/lemieux.html. 46, 63, 66, 81

Livny, M. 2004. Personal communication. Principal investigator of the
Condor Project. 231

Lokovic, T. 2004. Personal communication. Graphics software engineer at
Pixar Animation Studios since 1998. 21, 29, 144

Lopez, J. C. 2002. Personal communication. Graduate student in the Elec-
trical and Computer Engineering Department at Carnegie Mellon Univer-
sity. 43, 64

MacKie-Mason, J. K. and Varian, H. R. 1995. Pricing congestible
network resources. IEEE Journal on Selected Areas in Communications
(J-SAC ’95) 13, 7 (Sept.), 1141–1149. 46, 120

http://www.cs.virginia.edu/~legion/
http://www.cs.virginia.edu/~legion/
http://www.psc.edu/machines/tcs/lemieux.html
http://www.psc.edu/machines/tcs/lemieux.html

256 · Cluster scheduling for explicitly-speculative tasks

Maya Association 2004. The lord of the rings — Maya Association. http:
//www.mayaassociation.fsbusiness.co.uk/mov-lor.htm. 21, 22

McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S.
1996. The Design and Implementation of the 4.4BSD Operating System.
Addison-Wesley Publishing Company, Inc. 107, 108

Mercer, C. W. 1992. An introduction to real-time operating systems:
Scheduling theory. http://www.cs.cmu.edu/afs/cs/project/rtmach/
public/papers/sur1.review.ps. 112

Moore, G. E. 1965. Cramming more components onto integrated circuits.
Electronics 38, 8 (Apr.). 15, 17

Musliner, D. J., Durfee, E. H., and Shin, K. G. 1992. Any-dimension
algorithms. In Proceedings of the 9th IEEE Workshop on Real-Time Op-
erating Systems and Software (RTOSS ’92). Charlottesville, VA, 78–81.
16

Mutka, M. W. and Livny, M. 1987. Profiling workstations’ available
capacity for remote execution. In Proceedings of the 12th IFIP WG 7.3
International Symposium on Computer Performance Modelling, Measure-
ment, and Evaluation (Performance ’87). Brussels, Belgium, 529–544. 28

Narayanan, D. 2002. Operating system support for mobile interactive
applications. Ph.D. thesis, School of Computer Science, Computer Science
Department, Carnegie Mellon University. Available as the technical report
cmu-cs-02-168. 42, 72

Narayanan, D., Flinn, J., and Satyanarayanan, M. 2000. Using his-
tory to improve mobile application adaptation. In Proceedings of the 3rd
IEEE Workshop on Mobile Computing Systems and Applications (WM-
CSA ’00). Monterey, CA. 70, 71, 72

NAS 2002. nas system documentation. http://www.nas.nasa.gov/User/
Systemsdocs/systemsdocs.html. Contains links to the scheduling and
usage policies of the computers at the nasa Advanced Supercomputer
Center. 64, 65, 69

NEOS 2004. Neos server for optimization. http://www-neos.mcs.anl.
gov/neos/. 230

http://www.mayaassociation.fsbusiness.co.uk/mov-lor.htm
http://www.mayaassociation.fsbusiness.co.uk/mov-lor.htm
http://www.cs.cmu.edu/afs/cs/project/rtmach/public/papers/sur1.review.ps
http://www.cs.cmu.edu/afs/cs/project/rtmach/public/papers/sur1.review.ps
http://www.nas.nasa.gov/User/Systemsdocs/systemsdocs.html
http://www.nas.nasa.gov/User/Systemsdocs/systemsdocs.html
http://www-neos.mcs.anl.gov/neos/
http://www-neos.mcs.anl.gov/neos/

Bibliography · 257

Neugebauer, R. 1999. How elastic are real applications? In Proceedings
of the 9th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’99). Basking Ridge,
NJ, 197–200. Position paper. 124

Newell, A. 1990. Unified Theories of Cognition. Harvard University Press,
Cambridge, MA. 124

Nieh, J. and Lam, M. S. 1997. The design, implementation and evaluation
of smart: A scheduler for multimedia applications. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP ’97). Saint
Malo, France. 112

Nielsen, J. 1994. Usability Engineering. Morgan Kaufmann, San Francisco,
CA. 123, 124

NS 2004. The network simulator — ns-2. http://www.isi.edu/nsnam/ns/.
23

O’Day, V. L. and Jeffries, R. 1993. Orienteering in an information
landscape: How information seekers get from here to there. In Proceed-
ings of the 1993 Conference on Human Factors in Computing Systems
(InterCHI). Amsterdam, Holland, The Netherlands, 438–445. 13

Osborne, R. B. 1990. Speculative computation in Multilisp. In Proceedings
of the 1990 ACM Conference on LISP and Functional Programming. Nice,
France, 198–208. 31

Padmanabhan, V. N. and Mogul, J. C. 1996. Using predictive prefetch-
ing to improve world wide web latency. ACM SIGCOMM Computer Com-
munication Review (CCR ’96) 26, 3 (July), 22–36. 27, 33, 123

Parekh, S., Gandhi, N., Hellerstein, J., Tilbury, D., Jayram, T. S.,
and Bigus, J. 2001. Using control theory to achieve service level ob-
jectives in performance management. In Proceedings of the Real-Time
Systems Journal. 126

Parsons, E. W. and Sevcik, K. C. 1997. Implementing multiproces-
sor scheduling disciplines. In Proceedings of the 3rd Workshop on Job
Scheduling Strategies for Parallel Processing (IPPS / SPDP ’97). Geneva,
Switzerland, 166–192. Lecture Notes in Computer Science, vol. 1291,
Springer-Verlag. 230

http://www.isi.edu/nsnam/ns/

258 · Cluster scheduling for explicitly-speculative tasks

Parsons, I., Unrau, R., Schaeffer, J., and Szafron, D. 1997. PI/OT,
Parallel I/O templates. Parallel Computing 23, 4–5 (June), 543–570. 78

Pashigian, B. P., Peltzman, S., and Sun, J.-M. 2003. Firm responses
to income inequality and the cost of time. Review of Industrial Organiza-
tion 22, 4 (June), 253–272. 15

Patterson, R. H. 2004. Personal communication. Author of the disserta-
tion entitled Informed prefetching and caching [Patterson III, 1997]. 104

Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and
Zelenka, J. 1995. Informed prefetching and caching. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (SOSP ’95).
Copper Mountain Resort, CO, 79–95. 25, 26, 32, 78, 126, 128

Patterson III, R. H. 1997. Informed prefetching and caching. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University. Available
as the technical report cmu-cs-97-204. 77, 78, 104, 258

Paxson, V. and Floyd, S. 1994. Wide-area traffic: the failure of Poisson
modeling. In Proceedings of the Symposium on Communications, Archi-
tectures, and Protocols (SIGCOMM ’89). London, UK, 257–268. 141,
225

Pearson, W. and Lipman, D. 1988. Improved tools for biological sequence
comparison. In Proceedings of the National Academy of Sciences of the
USA. Vol. 85. 2444–2448. 20

Pereira, F. 2003. Personal communication. Graduate student in the Com-
puter Science Department at Carnegie Mellon University. 43, 71

Petrou, D. 2002. Matching resource supply and resource demand. Thesis
proposal, Department of Electrical and Computer Engineering, Carnegie
Mellon University. 73

Petrou, D., Ghormley, D. P., and Anderson, T. E. 1996. Predictive
state restoration in desktop workstation clusters. Tech. Rep. csd-96-921,
Computer Science Department, University of California, Berkeley. Nov.
27, 118

Petrou, D., Milford, J. W., and Gibson, G. A. 1999. Implementing
lottery scheduling: Matching the specializations in traditional schedulers.
In Proceedings of the USENIX 1999 Annual Technical Conference. Mon-
terey, California. 111

Bibliography · 259

Pfister, G. F. 1995. In Search of Clusters. Prentice Hall, Upper Saddle
River, NJ. 42

Platform 2003. Platform Computing — Products — Platform lsf. http:
//www.platform.com/products/LSF/. 21, 44, 230

Polyzotis, N. and Ioannidis, Y. 2003. Speculative query processing. In
Proceedings of the 1st Biennial Conference on Innovative Data Systems
Research (CIDR ’03). Asilomar, CA. 31

Prabhakar, E. 2004. Personal communication. Employee of Apple Com-
puter, Corp. 231

PVM 2004. pvm: Parallel virtual machine. http://www.csm.ornl.gov/
pvm/pvm_home.html. 44

Raman, V. and Hellerstein, J. M. 2002. Partial results for online query
processing. In Proceedings of the 2002 ACM International Conference on
Management of Data (SIGMOD ’02). Madison, WI, 275–286. 17

Romer, P. 2000. Time: It really is money. InformationWeek . See http:
//www.informationweek.com/803/romer.htm. 15

Ruemmler, C. and Wilkes, J. 1994. An introduction to disk drive mod-
eling. Computer 27, 3 (Mar.), 17–28. 104

Sargent, R. G. 1999. Validation and verification of simulation models.
In Proceedings of the 1999 Winter Simulation Conference. Phoenix, AZ.
145, 222, 229

Schlesinger, S. and others. 1979. Terminology for model credibility.
Simulation 32, 3 (Jan.), 103–104. 145

Schrage, L. E. 1968. A proof of the optimality of the shortest remaining
processing time discipline. Operations Research 16, 678–690. 59

Schroeder, B. and Harchol-Balter, M. 2000. Evaluation of task as-
signment policies for supercomputing servers: The case for load unbal-
ancing and fairness. In Proceedings of the 9th IEEE Symposium on High
Performance Distributed Computing (HPDC ’00). Pittsburgh, PA, 211–
220. 42, 43

Sculley, J. 1989. The relationship between business and higher education:
a perspective on the 21st century. Communications of the ACM (CACM
’89) 32, 9 (Sept.), 1056–1061. 24

http://www.platform.com/products/LSF/
http://www.platform.com/products/LSF/
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.informationweek.com/803/romer.htm
http://www.informationweek.com/803/romer.htm

260 · Cluster scheduling for explicitly-speculative tasks

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C.,
Eisler, M., and Noveck, D. 2000. nfs version 4 protocol. RFC 3010,
IETF. December. 115

Shneiderman, B. 1997. Designing the User Interface: Strategies for Ef-
fective Human-Computer Interaction, 3rd ed. Addison-Wesley Publishing
Company. 55

Shreedhar, M. and Varghese, G. 1996. Efficient fair queueing using
deficit round-robin. IEEE/ACM Transactions on Networking 4, 3 (June),
375–385. 111

Simplescalar 2004. SimpleScalar llc. http://www.simplescalar.com/.
23, 43

Smith, A. 1776. An inquiry into the nature and causes of the wealth of
nations. Whitestone, Dublin. 119

Smith, T. and Waterman, M. 1981. Identification of common molecular
subsequences. Journal of Molecular Biology 147, 1 (Mar.), 195–197. 19

Smith, W. and Wong, P. 2002. Resource selection using execution and
queue wait time predictions. Tech. Rep. nas-02-003, Computer Sciences
Corporation, nasa Ames Research Center. July. 69

Spring, N. and Wolski, R. 1998. Application level scheduling of gene
sequence comparison on metacomputers. In Proceedings of the 12th ACM
International Conference on Supercomputing (SC ’98). Melbourne, Aus-
tralia, 141–148. 20, 70

Stankovic, J. A., Spuri, M., Natale, M. D., and Buttazzo, G. C.
1995. Implications of classical scheduling results for real-time systems.
IEEE Computer 28, 6. 97, 113

Steere, D. C. 1997. Exploiting the non-determinism and asynchrony of
set iterators to reduce aggregate file I/O latency. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP ’97). Saint
Malo, France. 16, 24, 27, 32, 33, 78, 86

Steere, D. C., Goel, A., Gruenberg, J., McNamee, D., Pu, C., and
Walpole, J. 1999. A feedback-driven proportion allocator for real-rate
scheduling. In Proceedings of the 3rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’99). New Orleans, LA, 145–
158. 126

http://www.simplescalar.com/

Bibliography · 261

Straathof, J. H., Thareja, A. K., and Agrawala, A. K. 1986. UNIX
scheduling for large systems. In Proceedings of the USENIX 1986 Winter
Conference. 111–139. 108

Sun, J., Shinjo, Y., and Itano, K. 1999. The implementation of a dis-
tributed file system supporting the parallel world model. In Proceedings
of the 3rd International Workshop on Advanced Parallel Processing Tech-
nologies. Changsha, China, 43–47. 31, 36

Sun Grid 2003. Sun ONE Grid Engine Software. http://wwws.sun.com/
software/gridware/. 44

Tanenbaum, A. S. 1992. Modern Operating Systems. Prentice Hall, New
Jersey. 107, 118

Taub, E. A. June 3, 2003. The ‘Matrix’ invented: A world of special effects.
The New York Times, Late Edition — Final, Section C, Page 1. 21

Tennenhouse, D. 2000. Proactive computing. Communications of the
ACM 43, 5 (May), 43–50. 17

The Open Group 1997. Systems management: Data storage manement
(XDSM) API. http://www.opengroup.org/onlinepubs/9695979099/
toc.pdf. 115

Think Secret 2004. Apple to bring cluster rendering to full line of video
apps. http://www.thinksecret.com/news/prorendering.html. 21

Thomasson, W. A. 2004. Unraveling the mystery of protein folding. http:
//www.faseb.org/opar/protfold/protein.html. 19

Top500 2004. Top500 supercomputer sites. http://www.top500.org. 37,
43

Toy Story 2004. Toy story. http://www.pixar.com/featurefilms/ts/.
21

Turing, A. M. 1936. On computable numbers, with an application to the
entscheidungsproblem. London Mathematical Society 2, 42, 230–265. 49

UK Computing Research Committee 2004. Grand challenges for computing
research — UK Computing Research Committee. http://www.nesc.ac.
uk/esi/events/Grand_Challenges/index.html. 17

http://wwws.sun.com/software/gridware/
http://wwws.sun.com/software/gridware/
http://www.opengroup.org/onlinepubs/9695979099/toc.pdf
http://www.opengroup.org/onlinepubs/9695979099/toc.pdf
http://www.thinksecret.com/news/prorendering.html
http://www.faseb.org/opar/protfold/protein.html
http://www.faseb.org/opar/protfold/protein.html
http://www.top500.org
http://www.pixar.com/featurefilms/ts/
http://www.nesc.ac.uk/esi/events/Grand_Challenges/index.html
http://www.nesc.ac.uk/esi/events/Grand_Challenges/index.html

262 · Cluster scheduling for explicitly-speculative tasks

Valhalia, U. 1995. UNIX Internals: The New Frontiers. Prentice Hall.
107, 112

Venkataramani, A., Kokku, R., and Dahlin, M. 2002. tcp Nice: A
mechanism for background transfers. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’02). Boston, MA. 33

Virginia Tech 2004. Terascale cluster — Research computing. http://
computing.vt.edu/research_computing/terascale/. 43

Waldspurger, C. A. and Weihl, W. E. 1994. Lottery scheduling: Flex-
ible proportional-share resource management. In Proceedings of the 1st
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’94). 1–11. 111

Waldspurger, C. A. and Weihl, W. E. 1995. Stride scheduling:
Deterministic proportional-share resource management. Tech. Rep.
mit/lcs/tm-528, MIT Laboratory for Computer Science, Massachusetts
Institute of Technology. June. 111

Waldspurger, C. A. and Weihl, W. E. 1996. An object-oriented frame-
work for modular resource management. In Proceedings of the 5th Inter-
national Workshop on Object Orientation in Operating Systems (IWOOS
’96). Seattle, WA, 138–143. 111

Walker, I. 2002. Who can afford to ‘stand and stare’. Unpublished
manuscript from the University of Warwick. 15, 124

Want, R., Hopper, A., Falcāo, V., and Gibbons, J. 1992. The ac-
tive badge location system. ACM Transactions on Information Systems
(TOIS) 10, 1 (Jan.), 91–102. 118

Weidenhammer 2004. Outsourcing / Hosting from Weidenhammer. http:
//www.hammer.net/. 44

Weisstein, E. W. 2004a. Exponential distribution. http://mathworld.
wolfram.com/ExponentialDistribution.html. From MathWorld — A
Wolfram Web Resource. 140

Weisstein, E. W. 2004b. Hazard function. http://mathworld.wolfram.
com/HazardFunction.html. From MathWorld — A Wolfram Web Re-
source. 59

http://computing.vt.edu/research_computing/terascale/
http://computing.vt.edu/research_computing/terascale/
http://www.hammer.net/
http://www.hammer.net/
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/HazardFunction.html
http://mathworld.wolfram.com/HazardFunction.html

Bibliography · 263

Weisstein, E. W. 2004c. Moment. http://mathworld.wolfram.com/
Moment.html. From MathWorld — A Wolfram Web Resource. 142

Weisstein, E. W. 2004d. Pareto distribution. http://mathworld.
wolfram.com/ParetoDistribution.html. From MathWorld — A Wol-
fram Web Resource. 141

Weisstein, E. W. 2004e. Poisson process. http://mathworld.wolfram.
com/PoissonProcess.html. From MathWorld — A Wolfram Web Re-
source. 59

Weisstein, E. W. 2004f. Uniform distribution. http://mathworld.
wolfram.com/UniformDistribution.html. From MathWorld — A Wol-
fram Web Resource. 139

Weisstein, E. W. 2004g. Variance. http://mathworld.wolfram.com/
Variance.html. From MathWorld — A Wolfram Web Resource. 50

Weisstein, E. W. 2004h. Variation coefficient. http://mathworld.
wolfram.com/VariationCoefficient.html. From MathWorld — A
Wolfram Web Resource. 60

Weisstein, E. W. 2004i. Zipf’s law. http://mathworld.wolfram.com/
ZipfsLaw.html. From MathWorld — A Wolfram Web Resource. 24

Welsh, M., Culler, D., and Brewer, E. 2001. seda: An architecture
for well-conditioned, scalable Internet services. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP ’01). Chateau
Lake Louise, Banff, Canada. 128

Wenisch, T. 2003. Personal communication. Graduate student in the Elec-
tical and Computer Engineering Department at Carnegie Mellon Univer-
sity. 18, 43, 71

Wierman, A. 2004. Personal communication. Scheduling theory gradu-
ate student researcher in the Computer Science Department at Carnegie
Mellon University. 60, 61

Wierman, A., Bansal, N., and Harchol-Balter, M. 2004. A note
on comparing response times in M/GI/1/FB and M/GI/1/PS queues.
Operations Research Letters 32, 1 (Jan.), 73–76. 60

Wikipedia 2004. Lazy evaluation. http://en.wikipedia.org/wiki/Lazy_
evaluation. 30

http://mathworld.wolfram.com/Moment.html
http://mathworld.wolfram.com/Moment.html
http://mathworld.wolfram.com/ParetoDistribution.html
http://mathworld.wolfram.com/ParetoDistribution.html
http://mathworld.wolfram.com/PoissonProcess.html
http://mathworld.wolfram.com/PoissonProcess.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/VariationCoefficient.html
http://mathworld.wolfram.com/VariationCoefficient.html
http://mathworld.wolfram.com/ZipfsLaw.html
http://mathworld.wolfram.com/ZipfsLaw.html
http://en.wikipedia.org/wiki/Lazy_evaluation
http://en.wikipedia.org/wiki/Lazy_evaluation

264 · Cluster scheduling for explicitly-speculative tasks

Willmott, A. J. 2000. Hierarchical radiosity with multiresolution meshes.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University.
Available as the technical report cmu-cs-00-166. 71

Wyckoff, P., Johnson, T., and Jeong, K. 1998. Finding idle periods
on networks of workstations. Tech. Rep. 761, NYU Computer Science
Department. Mar. 118

Xcode 2004. Xcode. http://developer.apple.com/tools/xcode/. 30

Xgrid 2004. Apple — ACG — Xgrid. http://www.apple.com/acg/xgrid/.
23, 44, 115, 231

Yo La Tengo — Chris Stamey & Kirk Ross. 1995. The robust beauty
of improper linear models in decision making. Compact disc, cd esd 1995.
See http://www.sunsquashed.com/net/Discog/robust.html. 249

Zipf, G. 1932. Selective studies and the principle of relative frequency in
language. Harvard University Press, Cambridge, MA. 24

http://developer.apple.com/tools/xcode/
http://www.apple.com/acg/xgrid/
http://www.sunsquashed.com/net/Discog/robust.html

	Title
	Abstract
	Acknowledgements
	Contents
	Figures
	Tables
	1 Introduction
	Motivation
	Solution
	Thesis statement
	Contributions and key results
	Overview
	Launching point

	2 Opportunities for batchactive scheduling
	2.1 Work patterns
	2.2 Scenarios
	2.2.1 Exploratory searches
	2.2.2 Sequential tasks
	2.2.3 Parameter studies
	2.2.4 Non-processor-based scenarios
	2.2.5 Summary of scenarios

	2.3 Enabling behavioral conditions
	2.3.1 Existence of think times
	2.3.2 Existence of away periods
	2.3.3 Existence of server idle time

	2.4 Common practice and its deficiencies
	2.5 Related speculative work
	2.5.1 Speculation across tasks
	2.5.2 Speculation within tasks
	2.5.3 Speculation on non-processor resources

	2.6 Summary

	3 Scope
	3.1 Target application domain
	3.2 Target architecture
	3.3 Focus on the processor resource
	3.4 Summary

	4 Non-speculative scheduling
	4.1 Architecture
	4.2 Cost model
	4.3 Definitions and metrics
	4.4 Scheduling goals
	4.4.1 User goals
	4.4.2 Resource provider's goals
	4.4.3 Summary of scheduling goals

	4.5 Policies in theory
	4.5.1 Concerning mean response time
	4.5.2 Concerning mean slowdown
	4.5.3 Concerning the variance of user resource usage
	4.5.4 Concerning load
	4.5.5 Summary of policies in theory

	4.6 Scheduling in practice
	4.6.1 Supercomputer scheduling
	4.6.2 Cluster scheduling
	4.6.3 Summary of scheduling in practice

	4.7 Predicting task service time
	4.8 Inadequacies when speculative tasks are present
	4.9 Summary

	5 Batchactive scheduling
	5.1 Batchactive cost model
	5.1.1 Problem with the non-speculative pricing mechanism
	5.1.2 A new pricing mechanism
	5.1.3 Consequences
	5.1.4 Dismissed extension for selling completed speculative tasks
	5.1.5 Summary of the batchactive cost model

	5.2 Batchactive definitions and metrics
	5.3 Batchactive scheduling goals
	5.3.1 Batchactive user goals
	5.3.2 Batchactive resource provider's goals
	5.3.3 Summary of batchactive scheduling goals

	5.4 General batchactive policies
	5.4.1 Concerning mean visible response time and mean visible slowdown
	5.4.2 Concerning the variance of user requested resource usage
	5.4.3 Concerning requested load
	5.4.4 Summary of general batchactive policies

	5.5 Implemented batchactive policies
	5.5.1 Two-tiered scheduling
	5.5.2 Reasonable, not optimal
	5.5.3 Impractical policy
	5.5.4 Summary of implemented batchactive policies

	5.6 Discordant transformation of existing scheduling
	5.6.1 Applying Unix scheduling
	5.6.2 Applying priority-class scheduling
	5.6.3 Applying Condor scheduling
	5.6.4 Applying proportional-share scheduling
	5.6.5 Applying real-time scheduling
	5.6.6 Knowing whether a task is desired
	5.6.7 Summary of the discordant transformation of existing scheduling

	5.7 Predicting request probability and deadline of speculative tasks
	5.8 Preventing resource abuse
	5.9 Beyond centrally scheduled processing resources
	5.9.1 Web document prefetching
	5.9.2 Decentralized speculative task scheduling
	5.9.3 Feedback-based approach

	5.10 Summary

	6 Simulation results
	6.1 Simulation model
	6.1.1 Task submission and task output consumption cycle
	6.1.2 Interactive v. batch v. batchactive usage
	6.1.3 Simulator parameters
	6.1.4 Determining model and simulator correctness

	6.2 Scheduling policy comparison
	6.2.1 Reported metrics
	6.2.2 Central conclusions
	6.2.3 Graph formats
	6.2.4 Benefits of two-tiered FCFS
	6.2.5 Determining a better disclosed queue scheduler
	6.2.6 Benefits of favoring the speculative tasks of better speculators
	6.2.7 Benefits of two-tiered usage-based scheduling
	6.2.8 Benefits of two-tiered SRPT
	6.2.9 Performance of an impractical disclosed queue subpolicy

	6.3 Simulation details
	6.3.1 Omitted warmup period
	6.3.2 Statistical significance of the results
	6.3.3 An accounting of the simulator runs

	6.4 Summary

	7 Implementation & proposed deployment
	7.1 The ba_sim simulator
	7.1.1 Features
	7.1.2 Structure
	7.1.3 Coding practices
	7.1.4 Overhead

	7.2 Cluster scheduling extension
	7.2.1 Usage of a clustering system
	7.2.2 Extensibility of existing systems
	7.2.3 Extending the Condor clustering system

	7.3 Summary

	8 Conclusions
	8.1 Problem restatement
	8.2 Primary contributions
	8.3 Challenges to acceptance

	Bibliography

