Cluster scheduling for
explicitly-speculative tasks

DAVID PETROU
December 2004
CMU-PDL-04-112

Dept. of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis committee

Garth A. Gibson, chair

Gregory R. Ganger

Srinivasan Seshan

Thomas E. Anderson, Univ. of Washington

(© 2004 David Petrou

This research is sponsored by member companies of the Parallel Data Laboratory
Consortium, by a National Science Foundation ITR grant, and by the Army Research
Office (contract DAAD19-02-1-0389). The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions in this document are the author’s and should not
be interpreted as representing the official policies or endorsements, either expressed or
implied, of any supporting organization or the U.S. Government.

ii . Cluster scheduling for explicitly-speculative tasks

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Pro-
cess Management — Scheduling

General Terms: Algorithms, Design, Performance

Keywords: speculative scheduling, optimistic scheduling, cluster comput-
ing, grid computing

Imagine homemade sandwiches.

v e Cluster scheduling for explicitly-speculative tasks

Abstract

A process scheduler on a shared cluster, grid, or supercomputer that is in-
formed which submitted tasks are possibly unneeded speculative tasks can
use this knowledge to better support increasingly prevalent user work habits,
lowering user-visible response time, lowering user costs, and increasing re-
source provider revenue.

Large-scale computing often consists of many speculative tasks (tasks
that may be canceled) to test hypotheses, search for insights, and review
potentially finished products. For example, speculative tasks are issued by
bioinformaticists comparing DNA sequences, computer graphics artists ren-
dering scenes, and computer researchers studying caching. This behavior —
exploratory searches and parameter studies, made more common by the cost-
effectiveness of cluster computing — on existing schedulers without specula-
tive task support results in a mismatch of goals and suboptimal scheduling.
Users wish to reduce their time waiting for needed task output and the
amount they will be charged for unneeded speculation, making it unclear to
the user how many speculative tasks they should submit.

This thesis introduces ‘batchactive’ scheduling (combining batch and
interactive characteristics) to exploit the inherent speculation in common
application scenarios. With a batchactive scheduler, users submit explicitly-
labeled batches of speculative tasks exploring ambitious lines of inquiry,
and users interactively request task outputs when these outputs are found
to be needed. After receiving and considering an output for some time,
a user decides whether to request more outputs, cancel tasks, or disclose
new speculative tasks. Users are encouraged to disclose more computation
because batchactive scheduling intelligently prioritizes among speculative
and non-speculative tasks, providing good wait-time-based metrics, and be-
cause batchactive scheduling employs an incentive pricing mechanism which
charges for only requested task outputs (i.e., unneeded speculative tasks are
not charged), providing better cost-based metrics for users. These aspects
can lead to higher billed server utilization, encouraging batchactive adoption
by resource providers organized as either cost- or profit-centers.

Vi . Cluster scheduling for explicitly-speculative tasks

Not all tasks are equal — only tasks whose outputs users eventually
desire matter — leading me to introduce the ‘visible response time’ metric
which accrues for each task in a batch of potentially speculative tasks when
the user needs its output, not when the entire batch was submitted, and
the batchactive pricing mechanism of charging for only needed tasks, which
encourages users to disclosure future work while remaining resilient to abuse.
I argue that the existence of user think times, user away periods, and server
idle time makes batchactive scheduling applicable to today’s systems.

I study the behavior of speculative and non-speculative scheduling using
a highly-parameterizable discrete-event simulator of user and task behavior
based on important application scenarios. I contribute this simulator to the
community for further scheduling research.

For example, over a broad range of realistic simulated user behavior
and task characteristics, I show that under a batchactive scheduler visible
response time is improved by at least a factor of two for 20% of the sim-
ulations. A batchactive scheduler which favors users who historically have
desired a greater fraction of tasks that they speculatively disclosed pro-
vides additional performance and is resilient to a denial-of-service. Another
result is that visible response time can be improved while increasing the
throughput of tasks whose outputs were desired. Under some situations,
user costs decrease while server revenue increases. A related result is that
more users can be supported and greater server revenue generated while
achieving the same mean visible response time. A comparison against an
impractical batchactive scheduler shows that the easily implementable two-
tiered batchactive schedulers, out of all batchactive schedulers, provide most
of the potential performance gains. Finally, I demonstrate deployment feasi-
bility by describing how to integrate a batchactive scheduler with a popular
clustering system.

I have the fury of my own momentum.
Bob, Fire Walk With Me

Acknowledgements

I thank Garth Gibson, my thesis advisor, for guiding my intellectual develop-
ment with wisdom and patience. Garth taught me to ask the right questions
and have defensible plans for answering them while giving me freedom to
pursue problems interesting to me. Greg Ganger has been a second advi-
sor, providing resources and dispensing advice. Both Garth and Greg have
been supportive when crises caused me to take breaks. Tom Anderson was
my undergraduate advisor at uC Berkeley and my research advisor in the
Berkeley NOow Project. His words of encouragement, many years ago, con-
stantly motivate me. I thank Srini Seshan for being on my thesis committee.
I have been lucky to be advised by good people, in mind and heart.

I thank the members of the Parallel Data Laboratory (PDL), especially
Garth for creating and Greg for further promoting and developing this in-
stitution, with its outstanding intellectual, personal, computational, admin-
istrative, and economic resources. The following current and past members
of the PDL Consortium provided support: 3Com, Compaq, EMC, Hewlett-
Packard, HGST, Hitachi, 1BM, Intel, Ls1 Logic, Microsoft, Network Appli-
ance, Novell, Oracle, Panasas, Quantum, Seagate, StorageTek, Sun, Veritas,
& Wind River. Guests at PDL retreats expressed interest in and offered in-
sights for my research. PDL staff members Joan Digney, Jennifer Landefeld,
Karen Lindenfelser, & Patty Mackiewicz provided a positive work environ-
ment. Other PDL and ECE staff members supported my computing resources.

Sharing 8208 Wean with Jason Flinn, Dushyanth Narayanan, & Sanjay
Rao was often educational and always fun, despite music selection disagree-
ments. Early on, Khalil Amiri was friend, elder gradsperson, and research
collaborator. I profited from communicating with Sonya Allin, Mor Harchol-
Balter, Miron Livny, Andy Myers, Jiri Schindler, & Steve Schlosser. Ex-
changing ideas was a bonus to my friendships with Sourav Ghosh, John Grif-
fin, Dushyanth Narayanan, David Rochberg, Craig Soules, Eno Thereska,
David Tolliver, & Jay Wylie. My time as an EECS undergraduate at UC
Berkeley was pleasantly passed with Will Chow, Daniel (‘danh’) Holliman,

vii

viii . Cluster scheduling for explicitly-speculative tasks

John Milford, Sameer Parekh, & Ali Rahimi. Remzi Arpaci-Dusseau, Doug
Ghormley, Brian Harvey, Carlo Séquin, & Amin Vahdat were inspirations.

My Pittsburgh years have been happy, a time of varied experience and
personal growth. I owe this being close to Dan Baselj, Julie Brick, Ben
Feldman, Mark Lazarev, April Murphy, Dushyanth Narayanan, Hille Marika
Paakkunainen, Jill Penman, Megan Schmidgal, David Tolliver, & Jay Wylie.

Thanks for the existence of the 61C Cafe, where I was found holding
court, courting, coding, writing, composing, and enjoying company. Baristas
of note include Jason Bacasa, Keith Kaboly, Moshe Marvit, Nick Sarno,
& Danielle Skoncey. Crazy Mocha’s Leah Loyd, Deanna Mance, & Dana
Waelde generously hosted me during the final months.

From California, my first best friends and bandmates I acknowledge:
Ean Brown, Brian Gilmore, & Huy Huynh. Highschool friends shape each
other, and I was glad to know Derald Brenneman, Joy(zelle) Davis, Sheila
Salamipour, Kevin Stephenson, (the late) Stuart Tay, & Jason Thibodeau.
My current Pittsburgh bandmates Hille Marika Paakkunainen and Mike
Shanley provide an opportunity to play again. From the Music Department
at Carnegie Mellon University, Nancy Galbraith, Natalie Ozeas, Marilyn
Taft-Thomas, Donald Wilkins, & Colette Wilkins and the Dalcroze Eurhyth-
mics faculty taught me and encouraged my musical aspirations.

Closest to me are my late mom, my dad, sister, brother(-in-law), & niece,
all from whom I receive overwhelming and unconditional love. Nothing in
my life would work without them. My extended Italian and Greek families
are also a source of love and support. I love you all.

And thanks to the Allegheny Cycling Association for providing a conduit
for reoccuring, volcanic bursts of energy, and to Danny Chew for being the
greatest bicycling inspiration.

David Petrou - Pittsburgh, Pennsylvania - December, 2004

Contents

[Abstract]

|Acknowledgements|

[Tables]

(I_Tntroductionl

[2

Opportunities for batchactive scheduling

2.1 Work patterns| 0 0.

[2.2.1 Exploratory searches|,
[2.2.2 Sequential tasks| o000,

[2.2.4 Non-processor-based scenarios|.
[2.2.5 Summary of scenarios|
(2.3 Emnabling behavioral conditions|

[2.4 Common practice and its deficiencies|
[2.5 Related speculative workl.
[2.5.1 Speculation across tasks|o
[2.5.2 Speculation within tasks|.
[2.5.3 Speculation on non-processor resources|.
2.6 Summary|]o

vii

xiii

poel

X o Cluster scheduling for explicitly-speculative tasks

35
3.1 Target application domain|. 35
[3.2 Target architecture] oL 36
13.3 Focus on the processor resource| 38
3.4 Summary| 40

|4 Non-speculative scheduling 41
41 Architecturel.o 42
42 Costmodell 45
4.3 Definitions and metrics.o 48
4.4 Scheduling goals| 0oL 53

4.4.1 Usergoals 53
|4.4.2 Resource provider’'s goals| 55
[4.4.3 Summary of scheduling goals| o7
4.5 Policies in theory| oL 58
|4.5.1 Concerning mean response time|. 59
|4.5.2 Concerning mean slowdown| 60
|4.5.3 Concerning the variance of user resource usage] 61
4.5.4 Concerning load| 61
[4.5.5 Summary of policies in theory|. 63
4.6 Scheduling in practice| 0oL 64
4.6.1 Supercomputer scheduling|. 64
[4.6.2 Cluster scheduling] 66
|4.6.3 Summary of scheduling in practice] 68
|4.7 Predicting task service time|o 69
4.8 Inadequacies when speculative tasks are present|. 74
4.9 Summary| 75

[> Batchactive scheduling] 77

b.1 Batchactive cost modell. 80
b.1.1 Problem with the non-speculative pricing mechanism|. 80
5.1.2 A new pricing mechanism| 81
p.1.3 Consequences| 82
[5.1.4 Dismissed extension for selling completed speculative |

| tasksl . . . oL L 84

[5.1.5 Summary of the batchactive cost model 85

(5.2 DBatchactive definitions and metricsl 85

|5.3 Batchactive scheduling goals|. 92
[5.3.1 Batchactive user goals| 92
[5.3.2 Batchactive resource provider’s goals| 93

Contents . xi

[5.3.3 Summary of batchactive scheduling goalg 94

[.4 General batchactive policies| 95
[5.4.1 Concerning mean visible response time and mean vis- |

| ible slowdownl L 96
[5.4.2 Concerning the variance of user requested resource usage| 98
[5.4.3 Concerning requested load|. 98
[p.4.4 Summary of general batchactive policies| 99

[5.5 Implemented batchactive policies| 99
[5.5.1 Two-tiered schedulingl 100
[5.5.2 Reasonable, not optimal| 103
[5.5.3 Impractical policy| 105
[5.5.4 Summary of implemented batchactive policies|. 105

[5.6 Discordant transtormation of existing schedulingl 106
[5.6.1 Applying Unix scheduling| 107
[5.6.2 Applying priority-class scheduling| 109
[5.6.3 Applying Condor schedulingf. 110
1.6.4 Applying proportional-share schedulingl 111
[5.6.5 Applying real-time scheduling|. 112
15.6.6 Knowing whether a task is desired| 114
[5.6.7 Summary of the discordant transtormation of existing |

| scheduling|. o L. 116
[>.7 Predicting request probability and deadline of speculative tasks[116
[>5.8 Preventing resource abuse] 118
(5.9 Beyond centrally scheduled processing resources|. 122
5.9.1 Web document prefetching| 123
15.9.2 Decentralized speculative task scheduling] 124
15.9.3 Feedback-based approach| 126

[5.10 Summaryl 128
6 Sl il 131
6.1 Simulation modell oo o 132
[6.1.1 Task submission and task output consumption cycle] . 132
|6.1.2 Interactive v. batch v. batchactive usage|. 135
[6.1.3 Simulator parameters| 137
[6.1.4 Determining model and simulator correctness| 144

[6.2 Scheduling policy comparison| 149
6.2.1 Reported metrics|, 150
[6.2.2 Central conclusionsl. 151
6.2.3 Graph formats| L. 158

[6.2.4 Benefits of two-tiered FCFs 159

xii . Cluster scheduling for explicitly-speculative tasks

6.2.5 Determining a better disclosed queue scheduler| 183
16.2.6 Benefits of tavoring the speculative tasks of better |
speculators| L 194

16.2.7 Benefits of two-tiered usage-based scheduling| 202
[6.2.8 Benefits of two-tiered SRPT| 204
16.2.9 Performance of an impractical disclosed queue subpolicy(217

6.3 Simulation detailsl 0000 221
[6.3.1 Omitted warmup period| 221
|6.3.2 Statistical significance of the results| 222
[6.3.3 An accounting of the simulator runs| 223

6.4 Summary| 223
|7 Implementation & proposed deployment| 225
[r.1 The ba sim simulator] 225
[(11 Featured 225
[(1.2 Structure 227
[7.1.3 Coding practices| 228
[(1.4 Overheadl 229

7.2 Cluster scheduling extension|. 229
[7.2.1 Usage of a clustering system|. 230
[7.2.2 Extensibility of existing systems| 230
[7.2.3 Extending the Condor clustering system|. 231

[7.3 Summary| 234
[8__Conclusions 235
8.1 Problem restatementl L. 235
[8.2 Primary contributions| 237
[8.3 Challenges to acceptance|. 242

Bibliograp 245

Figures

1.1 Speculative user behavior.| 2
(1.2 Centralized cluster scheduler) 4
[1.3 The effect of submission aggressiveness on visible response |

[time and user costs 5
(1.4 The target cluster architecture| 7
[1.5 Comparison of the usage of non-speculative and batchactive |
scheduling.| L o 9

[2.1 How visible response time changes when a user discloses work.| 14

[2.2 Speculative tasks could be desired in flat list order or with no

ordering preference.| 16
[2.3 Initial exploration of a two-dimensional parameter space, in- |
dicating regions for further study,|. 17
[2.4 How successive runs of an any-time application can determine |
whether more outputs are fruitful.| 18
[2.5 Sample output from a BLAST query.| 20
[2.6 A completely computer-generated character designed by Weta |
Digital for Lord of the Rings.| 22
[2.7 Sample output from a run of the DiskSim simulator.| 23
[2.8 How knowing away periods gives a batchactive scheduler op- |
portunities to make better decisions.| 28
[3.1 Overview of the Abacus module migration system.| 39
[4.1 Interaction between users, clustering sottware, and cluster re- |
sources) 42

[4.3 How load affects server utility and revenue under non-speculative

scheduling.| o

[4.4 'Task state transitions with a non-speculative scheduler.|

49

Xiv. ot Cluster scheduling for explicitly-speculative tasks

4.5 How when a task is requested and executed, along with a |
| task’s service time, determines its response time and slow- |

| down in the context of non-speculative scheduling.| 50
4.6 How load aftects throughput and revenue under non-speculative |
| scheduling.| 56
4.7 An example of applying regression to predict service time. . . 72
|4.8 How prediction error decreases with more task runs.| 73

[.1 Interaction between users, batchactive clustering software, |

[and the cluster resources) 79
5.2 How requested load affects server utility and revenue under |
| the batchactive pricing mechanism. 82
5.3 A task set composed of a weighed DAG of increasingly specu- |
[lative tagkso 86
5.4 'T'wo typical task set organizations: flat list and unordered. . . 87
(0.5 Batchactive task state transitions) 89

5.6 How when a task is disclosed, requested, and executed, along |
| with a task’s service time, determines its visible response time |
| and visible slowdown in the context of batchactive scheduling.| 90

5.7 How requested load affects visible throughput and revenue |

| under batchactive scheduling.| 94
5.8 Segregating requested and disclosed tasks into two queues.|. . 100
5.9 Queue lengths of a two-tiered batchactive scheduler.| 101
[5.10 Emulating batchactive scheduling on Unix scheduling.| 109
[5.11 The difficulty of mapping utility functions to batchactive schedul- |

| ing goals.| 113
[5.12 Interaction between users, each with a batchactive frontend, |

[and unmodified cluster software and cluster resources. 125
15.13 How feedback affects when the scheduler injects speculative |

L fasks] - o o 127
6.1 Flowchart of the modeled user behavior) 134
6.2 Interactive usage of a non-speculative scheduler| 135
6.3 Batch usage of a non-speculative scheduler.| 136
|6.4 Batchactive usage of a batchactive scheduler.| 138
6.5 How the number of tasks per task set and the task set change |

| probability affect whether a task set will be canceled.|. 140

6.6 Improvement of batchactive usage of FCFS X FCFS over in- |
| teractive and batch usage ot FCFS for mean visible response |

Figures

XV

6.7

Improvement of batchactive usage of FCFS X FCFS over inter-

active and batch usage of FCFS for mean visible slowdown.|. .

6.8

Mean scaled billed resources for batch usage of FCFS.|.

161
162

6.9

Improvement of batchactive usage of FCFS X FCFS over inter-

active and batch usage of FCFS for requested load.|

6.10

The effect of the number of users on batchactive usage of FCFS

X FCFS, interactive usage of FCFS, and batch usage of FCFS

for mean visible response time.| L.

6.11

The effect of the number of users on batchactive usage ot FCFS

X FCFS, Interactive usage ot FCFS, and batch usage of FCFS

for load.

6.12

The effect of the number of users on batchactive usage of FCFS

X FCFS, Interactive usage ot FCFS, and batch usage of FCFS

for requested load.| 0L,

6.13

The effect of the number of users on batchactive usage of FCFS

x FCFS for the requested (billed, charged) and uncharged load.]168

6.14

The effect of the number of users on batchactive usage of FCFS

X FCFS, interactive usage of FCFS, and batch usage of FCFS

for visible task throughput.|

6.15

The relationship on batchactive usage ot FCFS X FCFS, inter-

active usage of FCFS, and batch usage of FCFS between visible

throughput and mean visible response time as the number of

users was varied. Lo

[6.16

The relationship on batchactive usage of FCFS X FCFS, in-

teractive usage of FCFS, and batch usage of FCFS between

requested load and visible response time as the number of

users was varied.o

6.17

The ettect of the task set change probability on batchactive

usage of FCFS X FCFS, interactive usage ot FCFS, and batch

usage ot FCFS for visible response time.|

6.18

The eftect of the task set change probability on batch usage

of FCFS for mean scaled billed resources)

6.19

The effect of the task set change probability on batchactive

usage of FCFS X FCFS, interactive usage of FCFS, and batch

usage of FCFS for requested load.|

174

[6.20

The effect of the number of users on batchactive usage ot FCFS

X FCFS, Interactive usage ot FCFS, and batch usage of FCFS

for mean visible response time when all work is needed.| . . .

174

XVi . Cluster scheduling for explicitly-speculative tasks

|6.21 The effect of the number of users on batchactive usage of FCFS |
| X FCFS, interactive usage of FCFS, and batch usage of FCFS |
| for requested load when all work is needed.| 175
16.22 The effect of the number of tasks per task set on batchactive |
| usage of FCFS X FCFS, interactive usage of FCFS, and batch |

| usage of FCFS for mean visible response time.| 176
16.23 The effect of the number of tasks per task set on batch usage |
[of FCFS for mean scaled billed resources) 177

16.24 The effect of the number of tasks per task set on batchactive |
| usage of FCFS X FCFS, interactive usage of FCFS, and batch |
| usage ot FCFS for requested load.| 178

|6.25 The effect of service time on batchactive usage of FCFS X |
| FCFS, interactive usage of FCFS, and batch usage of FCFS for |
| mean visible response time.| oL 178

16.26 The effect ot service time on batchactive usage of FCFS X |
| FCFS, interactive usage of FCFS, and batch usage of FCFS for |
| requested load.| oo 179

16.27 'The effect of think time on batchactive usage of FCFS X FCFS, |
| interactive usage ot FCFS, and batch usage of FCFS for mean |

| visible response time.|. L. 180
16.28 The effect of think time on batch usage of FCFS for mean |
[scaled billed resources) oL 180

16.29 The effect of think time on batchactive usage of FCFS X FCFS, |
| interactive usage of FCFS, and batch usage of FCFS for re- |
| quested load.| 181

[6.30 The effect of mean think time over mean service time on |
| batchactive usage of FCFS X FCFS, interactive usage of FCFS, |
| and batch usage of FCFS for mean visible response time.| . . . 182

|6.31 The effect of the number of users on batchactive usage of FCFS |
| X FCFS, interactive usage of FCFS, and batch usage ot FCFS |

| for mean visible response time when think time is removed.| . 183
16.32 Improvement of FCFS X HRP and FCFS X HRR over FCFS X |
| FCFS for mean visible response time.| 184
16.33 Improvement of FCFS X HRP and FCFS X HRR over FCFS X |
| FCFS for requested load.| 185

|6.34 The effect of the number of users on batchactive usage of FCFS |
| X HRR, batchactive usage of FCFS X HRP, and batchactive |
| usage of FCFS X FCFS for mean visible response time.| 186

Figures

[6.35 The effect of the number of users on batchactive usage of FCFS

| X HRR, batchactive usage of FCFS X HRP, and batchactive

| usage of FCFS X FCFS for requested load.|

[6.36 The effect of the number of users on batchactive usage of FCFS

| X HRR, batchactive usage of FCFS X HRP, and batchactive

| usage of FCFS X FCFS for uncharged load.|

188

[6.37 The relationship on batchactive usage of FCFS X HRR, batchac-

| tive usage of FCFS X HRP, and batchactive usage of FCFS X

| FCFS between requested load and mean visible response time

[6.38 The relationship on batchactive usage of FCFS X HRR, batchac

| tive usage of FCFS X HRP, and batchactive usage of FCFS X

| FCFS between visible throughput and visible response time as

[the numberofusers was varied.

[6.39 The eftect of the number of tasks per task set on batchactive

| usage of FCFS X HRR, batchactive usage of FCFS X HRP, and

| batchactive usage of FCFS X FCFS for mean visible response

[6.40 The ettect of the number ot tasks per task set on batchactive

| usage of FCFS X HRR, batchactive usage of FCFS X HRP, and

| batchactive usage of FCFS X FCFS for requested load.

192

[6.41 The eftect ot the task set change probability on batchactive

| usage of FCFS X HRR, batchactive usage of FCFS X HRP, and

| batchactive usage of FCFS X FCFS for mean visible response

[6.42 Improvement of batchactive usage of FCFS X HRP over in-

| teractive and batch usage of FCFS for mean visible response

[6.43 Improvement of batchactive usage of FCFS X HRP over inter-

| active and batch usage of FCFS for mean visible slowdown.|. .

[6.44 Improvement of batchactive usage of FCFS X HRP over inter-

| active and batch usage of FCFS for requested load.|

[6.45 The effect of the number of users on batchactive usage of FCFS

| X HRP, Interactive usage of FCFS, and batch usage of FCFS

| for mean visible response time.|

[6.46 The relationship on batchactive usage of FCFS X HRP, inter-

| active usage of FCFS, and interactive usage of FCFS between

| visible throughput and visible response time as the number

| of users was varied. Lo

xviii

Cluster scheduling for explicitly-speculative tasks

6.47

The effect of the number of tasks per task set on batchactive

usage of FCFS X HRP, interactive usage of FCFS, and batch

usage of FCFS for mean visible response time.|

[6.48

Improvement of batchactive usage of user-requested-FB X HRP

over batch usage of user-FB for mean visible response time.|

6.49

Improvement of batchactive usage of user-requested-FB X HRP

over batch usage of user-FB for mean visible slowdown.|. . . .

[6.50

The ettect of the number of users on batchactive usage of

user-requested-FB X HRP and batch usage of user-FB for mean

visible response time.|.,

205

651

Improvement of batchactive usage of SRPT X FCFS over in-

teractive and batch usage of SRPT for mean visible response

[6.52

Improvement of batchactive usage of SRPT X FCFS over in-

teractive and batch usage of SRPT for mean visible slowdown.| 207

[6.53

Mean scaled billed resources for batch usage of SRPT.|

. 208

B.54

Improvement of batchactive usage of SRPT X FCFS over in-

teractive and batch usage of SRPT for visible slowdown.| . .

. 209

[6.95

The ettect of the number of users on batchactive usage of

SRPT X FCFS, interactive usage of SRPT, and batch usage of

SRPT for mean visible response time.|

210

6.56

The effect of the number of users on batchactive usage of

SRPT X FCFS, interactive usage of SRPT, and batch usage of

I {il;l l IQI IIls:!‘!Il yifilhlf: ﬂlQ&deﬂIl,l

[6.57

The relationship on batchactive usage of SRPT X FCFS, in-

teractive usage of SRPT, and batch usage of SRPT between

visible throughput and visible response time as the number

ofuserswasvaried.o

6.58

The effect of the number of tasks per task set on batchactive

usage of SRPT X FCFS, interactive usage of SRPT, and batch

usage of SRPT for mean visible slowdown.|

16.59 The effect of the number of tasks per task set on batch usage

[of SRPT for mean scaled billed resources].

[6.60

Improvement of batchactive usage of SRPT X FCFS over in-

teractive and batch usage of SRPT for mean visible response

time using Bound Pareto distributions.|.

215

[6.61

Mean scaled billed resources for batch usage of SRPT using

.62

Improvement of SRPT X RFCFS over SRPT X HRP for mean

visible response time.|.o

217

Figures . Xix

[6.63 The effect of the number of users on batchactive usage of |

SRPT X HRP and batchactive usage of SRPT X RFCFS for mean |

visible response time..o oo 218
[6.64 Improvement of SRPT X RFCFS over FCFS X HRP for mean |
visible response time.|. o000 219

[6.65 The eftect of the number of users on batchactive usage ot |

FCFS X HRP and batchactive usage of SRPT X RFCFS for mean |

visible response time.|.o 220

[6.66 The queue length of requested tasks for an extreme selec- |

tion of simulation parameters stabilizes after approximately |

L 10 hours of simulated time. 221
16.67 Confidence intervals for a small run show that the results are |
significant.|.o o 222

[7.1 Inputs and outputs of the ba_sim simulator.|. 226
(7.2 Structure of the ba_sim simulator) 227
[7.3 The interaction between ba_sim and the tools used to gener- |
ate thesis results (Chapter[6.2)).| 228

7.4 Proposed user intertace batchactive extension to Condor.| . . 232

XX . Cluster scheduling for explicitly-speculative tasks

Tables

[4.1 Non-speculative scheduling metrics.|. 52
[4.2 Non-speculative scheduling goals.|. Y
[4.3 Non-speculative scheduling policies.|. 69
[4.4 Evidence that many tasks have predictable service times.| 71
[>.1 Revised scheduling metrics for speculative scheduling.| 92
[5.2 Speculative scheduling goals.| 94
[5.3 Disclosed queue scheduling subpolicies.|. 106
[6.1 'The parameter ranges used in simulating users and tasks.| . . 143
[6.2 The fixed parameters used in the sensitivity analyses.| . 145
[6.3 Non-speculative verification using operational laws.| 147
[6.4 The number of deadlines met among batch usage of FCFS, |
interactive usage of FCFS, and batchactive usage ot FCFS X |

[FCES]. . . e 164
[6.5 The standard deviation of visible response time among batch |
usage of FCFS, interactive usage of FCFS, and batchactive us- |

age of FCFS X FCFS.| 164

[6.6 'Total number of scheduling decisions over two weeks of sim- |
ulated timelJo 182

[6.7 The number ot deadlines met among batch usage of FCFS, |
interactive usage of FCFS, and batchactive usage of FCFS X |
I v 195
[6.8 The standard deviation of visible response time among batch |
usage of FCFS, interactive usage of FCFS, and batchactive us- |

age of FCFS X HRP.|. 196

[6.9 The standard deviation of user requested resource usage among |

batch usage of user-FB and batchactive usage of user-requested- |

FB X HRP.|. e 203

xXil

Cluster scheduling for explicitly-speculative tasks

[7.1 Total time in milliseconds to perform scheduling decisions

There is nothing more difficult to take in hand,
more perilous to conduct, or more uncertain in
its success, than to take the lead in the
introduction of a new order of things.

Niccolo Machiavelli, The Prince

1 Introduction

A process scheduler on a shared cluster, grid, or supercomputer that is
informed which submitted tasks are possibly unneeded speculative tasks can
use this knowledge to better support increasingly prevalent user work habits,
lowering visible response time (the time between needing and receiving task
output irrespective of when a task was submitted), lowering user costs, and
increasing resource provider revenue.

Large-scale computing often consists of many speculative tasks to test
hypotheses, search for insights, review potentially finished products. Tasks
often sit in queues for a long, unpredictable amount of time. This thesis
addresses how to reduce or eliminate visible response time by prioritizing
work that a user is or will likely soon be waiting on and wasting fewer
resources on speculative tasks quite likely to be canceled.

Imagine a scientist using a shared computing cluster to validate a hy-
pothesis (Figure. She submits chains of tasks that could keep the system
busy for hours or longer. Tasks listed earlier are to answer pressing ques-
tions while those later are more speculative. Early outputs could cause the
scientist to reformulate her line of inquiry; she would then reprioritize tasks,
cancel later tasks, issue new tasks. Moreover, the scientist is not always wait-
ing for tasks to complete; she spends minutes to hours studying the output
of completed tasks, attends meetings and lunches, and stops working as
evening approaches.

On existing schedulers without speculative task support, this behavior
results in a mismatch of goals and suboptimal scheduling. Should a user
who does not know which tasks will bear fruit submit one speculative task,
a few, many, or every conceivably useful task? After all, defining specula-
tive tasks is a time-consuming activity in itself. A user wishes to reduce the
time waiting for needed task output, increasing the rate at which scientific
inquiry is accomplished, and reduce the amount charged for unneeded spec-
ulation. The right amount of speculation depends on considerations difficult
and burdensome or impossible for a user to know, including to what extent

2 . Cluster scheduling for explicitly-speculative tasks

L—‘——] o

=
/4 ‘wts/ %
/
. g E disclose speculation,

ponder output request needed output,
cancel irrelevent tasks

break from work

Figure 1.1: Speculative user behavior. While performing computationally intensive
research, users wish to pipeline the execution of chains of speculative — not known
to be needed — tasks with the consideration of received task outputs and op-
tional periods of rest. This thesis removes the barriers presented by existing cluster
scheduling to exploiting this way of working.

a task is in fact speculative and the behavior of other users. In situations in
which resources are not directly charged or users have the means to pay for
wasted work, users might overwhelm resources with speculative tasks in an
attempt to reduce delay. This thesis addresses these and other concerns with
‘batchactive’ scheduling solutions (combining batch and interactive charac-
teristics) to exploit the inherent and easily disclosed speculation in common
application scenarios.

With a batchactive scheduler, users submit explicitly-labeled chains or
batches of speculative tasks exploring ambitious lines of inquiry, and users
interactively request task outputs when they are found to be needed. Af-
ter receiving output and considering this output for some time, a user
decides whether to request more outputs, cancel tasks, or disclose new
speculative tasks. Users are encouraged to disclose more computation be-
cause batchactive scheduling intelligently prioritizes among speculative and
non-speculative tasks, providing good wait-time-based metrics, and because
batchactive scheduling employs an incentive pricing mechanism that charges
for only requested task outputs (i.e., unneeded speculative tasks are not
charged), providing better cost-based metrics for users. These aspects can
lead to higher billed server utilization, encouraging batchactive adoption by
resource providers organized as either cost- or profit-centers.

1 Introduction . 3

Speculation to improve performance is a pervasive concept in computer
systems found at the level of I/O requests, program blocks, instructions
across all areas of computing including architecture, languages, systems.
In this introduction chapter I begin by examining the ways in which cer-
tain work habits, e.g., conducting semi-interactive exploratory searches, can
provide or already provide speculative tasks, and I discuss the mismatch
between this work and traditional processor scheduling. Following this, I
sketch my approach to scheduling. I then state my thesis and foreshadow
my contributions. Before ending this chapter, I state the organization of the
rest of this dissertation.

Users can often plan ahead, pipelining the consideration of received task
outputs with the execution of speculative tasks whose outputs were not
known to be needed at the time of submission. Important applications con-
sist of speculative tasks and intelligently scheduling these tasks is increas-
ingly important in clusters, grids, and supercomputers.

Scientific disciplines and commercial ventures use shared computer re-
sources to simulate phenomena, evaluate hypotheses, visualize information,
discover invariants. Researchers in high-energy physics, cosmology, seismol-
ogy, weather forecasting, aerodynamics use computing resources specula-
tively. Scientists in national laboratories, academic institutions, private re-
search departments often construct series of experiments in the advancement
of science occupying considerable computing time, in which at the outset it
is unclear which task outputs in such exploratory searches will be useful.

The following are examples of users submitting sets of speculative tasks
when performing exploratory searches or parameter studies. My scheduling
solutions apply to such processor-based, non-parallel examples.

— Bioinformatics comprises the methods for solving nucleotide sequenc-
ing problems such as constructing a genome out of fragments and
determining protein function. Part of solving such problems is compar-
ing new sequences to known sequences. Bioinformaticists share work-
station farms for performing sequencing tasks. A batchactive sched-
uler would enable scientists to explore ambitious biological hypotheses
without fear that resources would be wasted on speculative chains of
work that might be canceled after early outputs were scrutinized.

— Computer animation is increasingly used in motion pictures. Teams of
artists creating a computer-animated film submit scenes for rendering
to clusters. This work is highly speculative. Upon seeing initial frames

4 . Cluster scheduling for explicitly-speculative tasks

centralized
dispatch
: \ scheduler / :

> i

task submission task control

Figure 1.2: Centralized cluster scheduler. Users send task requests and cancelations
to a centralized cluster scheduler. This scheduler orders and distributes work among
multiple cluster nodes. Task outputs are written to a shared store (not shown)
accessible by the submitting user.

(computed by a chain of tasks), an artist may decide that a rendered
object could be in a better location, e.g. With a batchactive scheduler,
artists could prioritize key sections of a scene, those with more action,
e.g., to more quickly decide whether additional frames are worth hav-
ing. If it becomes known that unviewed, possibly uncomputed, frames
will not be needed, artists would cancel the renderings of these frames
to free resources for other rendering tasks.

— Computer scientists routinely share clusters to run simulations explor-
ing high dimensional spaces. Parameter studies for feature extraction,
search, or function optimization can continue indefinitely, homing in
on areas for accuracy or randomly sampling points for coverage. Simu-
lations are used to study, among other things, microarchitecture cache
behavior, computer virus propagation, and I/ storage patterns. With
a batchactive scheduler, such chains of simulations could occur in par-
allel with experimenters analyzing desired and completed outputs and
guiding the searches in new directions, canceling branches determined
to not be useful. Speculative simulations would operate in the back-
ground when pressing outputs are needed.

Clustering software provisions the resources of multiple nodes to mul-
tiple users. Users send task requests and task cancelations to a centralized
scheduler employing a policy to distribute work among nodes toward meet-
ing some combination of time and cost goals for users and the resource
provider. This organization is depicted in Figure[1.2

Existing cluster, grid, supercomputer scheduling, which in practice is a

1 Introduction . 5

user-visible
response time

time resource
user costs
Y
o- 40

Y

x
increasing submission aggressiveness

Figure 1.3: A sketch of how submission aggressiveness affects visible response time
and user costs under an existing pricing mechanism in which all resource usage is
charged. The more speculative tasks a user submits, the less visible response time
he or she will experience for any task later deemed to be needed, but the more he or
she will pay for larger numbers of unneeded speculation. With sufficient think time
and deep speculative queues, as shown for submission aggressiveness greater than
x, it is possible to eliminate visible response time. The lowest cost to the user that
achieves this is denoted by y. However, unknown or difficult to predict run-time
considerations prevent a user from making such time / cost tradeoffs. Note that the
two vertical axes are of different units.

variant of decay-usage or first-come-first-serve, does not know which tasks
are speculative and thus cannot schedule them differently from tasks that are
known to be needed. Computing time is either sold to another party (under
names such as ‘third-party compute outsourcing’ and ‘information technol-
ogy resource providers’) or the resource owner and user are the same person,
organization, or entity and computing time is not directly charged. When
sold, all resource consumption, whether or not speculative task outputs are
eventually determined to be needed, is charged.

Should a user exploring a space speculatively submit one task, a few,
many, or the entire ‘computational plan?’ When resources cost, the user is
pressured to only submit a few tasks at once because the user does not wish
to be charged for running tasks whose outputs might be determined to be
unneeded. But doing so leads to poor time-based scheduling metrics, such
as visible response time, because the speculative tasks are not executing
concurrently with the user’s think time of received task outputs as much as
possible. This tradeoff is illustrated in Figure When resources are not

6 . Cluster scheduling for explicitly-speculative tasks

directly charged (such as in a communal cost-center), or if the user is willing
to pay for unneeded tasks, then the user should submit many speculative
tasks so that they might execute before being needed. However, if every user
did this, then resources would be overwhelmed with speculative tasks and
the response time for non-speculative tasks executed after many eventually
useless tasks will increase dramatically.

In small communities, users would like to appear to submit a ‘reasonable’
number of speculative tasks, in hopes of balancing their wasted costs and
response time with the needs of other users. However, even if everyone wished
to cooperate, there is no clear way for a user to determine which and how
many speculative tasks to submit. Meeting individual and collective goals
depends on many unknown factors: the pattern of other task arrivals, task
service time, user think time, and the probabilities that speculative tasks
will be needed.

These problems cannot be overcome without a scheduler that discrimi-
nates between speculative and non-speculative tasks. Batchactive scheduling
assumes this ability.

Batchactive scheduling leverages existing opportunities to better sched-
ule speculative tasks. The existence of think time gives a batchactive sched-
uler the flexibility to defer the execution of non-pressing, speculative tasks
in favor of known needed or likely to be needed tasks. Since speculative
tasks might be canceled, delaying their execution might result in eventually
unneeded tasks being canceled before they consume significant, if any, re-
sources; deferred work can be saved work. Related to think time is a concept
that can be similarly leveraged that I call ‘away periods,’ reflecting when
people become unavailable to consume task output independent of task com-
pletion — e.g., a user leaving at the end of the work day and not being ready
to consider output until the next morning. Moreover, spare computational
resources, which are available in many settings, can be exploited for execut-
ing speculative tasks. Once users have the means provided by batchactive
scheduling to convey to the system which tasks are speculative v. needed,
even more resources will be available to obtain the benefits of batchactive
scheduling.

Batchactive scheduling is intended for shared clusters, the most impor-
tant architecture for high-end computing (Figure . Clusters are cost-
effective and flexible, used for small computing resources, computational
grids, and supercomputers. The positive results of this thesis can have im-
mediate impact by being deployed as extensions to clustering software such
as Condor, Platform LSF, the Globus Toolkit, Legion (Avaki), and the Sun
ONE Grid Engine.

1 Introduction . 7

il
2 Te@anl

cluster grid supercomputer

I
|

\

Figure 1.4: The target cluster architecture. Clusters, a loose to tight collection
of nodes, are a cost-effective and flexible solution for small- to large-scale com-
puting. A grid is a collection of possibly geographically separate clusters accessed
through a wide area network. Traditional supercomputers are tighter aggregations
of a large number of processor nodes. Clustering software, which can be extended
with batchactive policies, manages user workloads in the form of tasks.

In batchactive scheduling as I define it, users judge tasks as either spec-
ulative or needed, and speculative tasks are organized in some structure,
such as a list (chain), directed acyclic graph, or with no ordering constraints.
There are no ‘levels’ or probabilities of speculation, which would be a burden
for users to predict and provide. Users disclose speculative tasks and request
tasks whose outputs they know they need. A user may cancel any task if
received outputs suggest their irrelevance. I call this ‘batchactive’ usage of
the system, because, like batch usage, many tasks are submitted at once,
and, like interactive usage, the user is waiting for the output of (usually)
one identified task. (However, unlike batch usage, the scheduler knows which
tasks are speculative, and unlike interactive usage, entire sets of speculative
tasks belonging to one user are often in the system at once.)

Speculative disclosure is a form of hinting which only reveals user ex-
pectation, enabling the system to globally optimize resource management.
These hints express information independent of system implementation, re-
maining correct if the environment changes. The disclosure interface, being
the same as for requesting non-speculative tasks, should also be easy to use.

Endowing the scheduler with the knowledge of tasks that may be needed
in the future enables servers to get an early start, rather than being idle,
while preventing speculative tasks from overwhelming the system. Further,
knowing about speculative tasks exposes parallelism from a user’s workload

8 . Cluster scheduling for explicitly-speculative tasks

when the execution of these tasks do not depend on outputs from one an-
other. Such speculative tasks can leverage the parallelism of cluster nodes.

The batchactive incentive pricing mechanism diverges from the norm of
charging for all resource usage. Disclosed tasks that were never needed are
not charged. With this mechanism, the user does not need to weigh the es-
timated cost (wasted money) and benefit (better visible response time) of
each disclosure, encouraging the user to freely disclose tasks. Servers that
are either cost-centers (non-profit) or profit-centers, covering most organi-
zations, can be motivated to institute the batchactive pricing mechanism:
in a cost-center, the cost for requested (needed) tasks can be adjusted so
that total billing over some time is the same as in the traditional pricing
mechanism, and, in a profit-center, improved time-based metrics coupled
with no risk for the user to disclose speculation can encourage more users,
the submission of longer chains of tasks, and larger tasks, resulting in higher
billed server utilization.

The traditional response time metric conflates the time a task was sub-
mitted with the time a task’s output was needed. That is, traditionally
systems measure time from submission to completion of a task regardless
of when its user needs its output. I introduce ‘visible response time,” the
time between needing (wanting to begin to use) and receiving task output,
or the time ‘blocked on’ output. Visible response time accrues only after a
user asks for output from a task that may have been submitted much earlier
and thus measures the time that a user actually waits for output, which is
usually less than the time that a speculative task has been in the system.
In particular, a task can and often does have zero visible response time if it
was speculatively disclosed and was completed while its user was examining
the output of some other task. Other metrics, such as visible slowdown, are
derived from visible response time.

Most batchactive schedulers in this dissertation share the property that
requested tasks have absolute priority over speculative tasks. (More complex
but harder to deploy policies are also discussed.) This prioritized two-tiered
approach — having independent queues for requested and disclosed work
and shown in Figure|l.5|in contrast to policies which do not discriminate —
is sufficient most of the time. Two out of five disclosed queue subpolicies are
novel. One favors users who speculate less (i.e., users who submit speculative
tasks that are more often found to be needed), while the other favors users
who have requested (paid for) more work.

Speculative scheduling may be compared to the concept of delayed or
lazy evaluation found in programming languages. In delayed evaluation, only
desired outputs from an unbounded computation (e.g., an infinite list) are

1 Introduction . 9

requests rlr O

interactive usage

requests & Isls O

speculations

batch usage

requests o O priority
. Slsls O use idle
speculations

batchactive usage

Figure 1.5: Comparison of the usage of non-speculative and batchactive scheduling.
The top two queues illustrate two extreme behaviors of users using a non-speculative
scheduler. Needed tasks are requested one at a time (interactive) and needed and
speculative tasks are requested in sets (batch). The bottom queue is a two-tiered
batchactive scheduler which gives priority to non-speculative tasks. Users behaving
in a batchactive manner submit both needed and speculative tasks. In contrast to
batch usage, users label which tasks are speculative so that the scheduler can treat
them differently, to prevent speculative tasks from starving non-speculative tasks.

actually computed. Batchactive scheduling also defers work but often com-
putes outputs not known to be needed. If speculative tasks are executed
only after a user desires their outputs, as in delayed evaluation, then there
is no performance benefit to speculative task disclosure. However, at the
other extreme, if speculative tasks execute with the same priority as non-
speculative tasks, then system resources will be squandered with possibly
unneeded work. How to balance between executing speculative tasks within
a user’s and among users’ tasks (i.e., avoiding self-interference and cross-
interference) is one goal of this thesis; how to execute a speculative task at
the last moment when this moment is unknown.

My thesis is that a multiuser process scheduler informed of which sub-
mitted tasks are speculative can provide better time- and cost-based metrics
for users and resource providers. I provide evidence for the following elabo-
rations throughout this dissertation:

— there exists a class of applications in which work is submitted spec-
ulatively and that this class is important and will become more so

(Chapter [2.2);

10 . Cluster scheduling for explicitly-speculative tasks

— speculative tasks are poorly exploited by existing schedulers (Chap-

ters and [6.2.2));

— speculative task disclosure and the batchactive pricing mechanism
support how people wish to work for many application scenarios, in-
cluding their desire to pipeline think time and task execution (Chap-

ters and ;

— in a single-server simulation, batchactive scheduling can substantially
reduce visible response time (among other time-based metrics), re-
duce user costs, and in some cases improve resource provider revenue

(Chapter ;

— two-tiered batchactive scheduling is effective, deployable, and exhibits

low overhead (Chapters and [7.1.4)).

For the scheduling researcher, speculation requires rethinking metrics
and algorithms: not all tasks are equal — only tasks whose outputs users
eventually desire matter — leading me to introduce the ‘visible response
time’ metric and the batchactive pricing mechanism which is resilient to
abuse. I argue that the existence of user think times, user away periods, and
server idle time makes batchactive scheduling applicable to today’s clusters,
grids, and supercomputers.

I study the behavior of speculative and traditional scheduling through
the simulation of a model of users, tasks, and a single server based on im-
portant application scenarios. I created this highly-parameterizable discrete-
event simulator and contribute it to the community for further scheduling
research.

I answer several specific questions: How do the simplest, most easily
deployable batchactive schedulers compare to the simplest commonly used
non-speculative schedulers? Can novel scheduling subpolicies for speculative
tasks leverage historical user patterns to achieve to better performance?
How do such subpolicies compare to each other and to non-speculative
scheduling? How does the improvement of batchactive scheduling over non-
speculative scheduling change when utilizing task size information, which
may be available through prediction? To what extent can an oracular sched-
uler perform even better? Can batchactive scheduling simultaneously lower
user costs on unneeded speculation and increase server revenue by improv-
ing server utilization? At the same user costs, can visible response time be
reduced? At the same visible response time, can user costs be reduced?

1 Introduction . 11

For example, over a broad range of simulated user behavior and task
characteristics, I show that under a batchactive scheduler visible response
time is improved by at least a factor of two for 20% of the simulations us-
ing schedulers based on first-come-first-serve. (For some deployed traditional
batch schedulers based on resource usage, the performance difference is not
as pronounced, but batchactive scheduling still wins.) On a non-speculative
scheduler, there are extreme situations (such as high load) in which users
who submit one task at a time results in better performance than users who
submit batches of tasks at a time. While at other extremes (such as low load),
the opposite is true. But users submitting work to a batchactive scheduler
results in as good or better performance than non-speculative scheduling
for both these extremes and better performance for intermediate situations,
exhibiting adaptability. Another result is that visible response time can be
improved without decreasing the throughput of tasks whose outputs were
desired. Under some situations, user costs decrease while server revenue in-
creases. Related is that more users can be supported and greater server rev-
enue generated at the same mean visible response time. Further, two-tiered
batchactive schedulers that are simple, out of all batchactive schedulers,
provide the bulk of the potential performance gains.

I examine the circumstances regarding task characteristics and user be-
havior in which batchactive scheduling provides the best results versus when
it performs similarly to non-speculative scheduling. Some experiments illu-
minate the non-obvious necessity of user think time to provide speculative
scheduling benefits. Another finding is that my approach applies best when
several to a potentially unbounded number of speculative tasks are sub-
mitted. Considerable performance improvements are found even when the
average length of a user’s speculative tasks is three or four.

I demonstrate deployment feasibility by describing how to integrate a
batchactive scheduler with a popular clustering system called Condor. I also
measure scheduling overhead and show it to be negligible.

I establish these and other aspects and arguments for batchactive schedul-
ing in the following order. Chapter [2] motivates batchactive scheduling by
describing prevalent work patters, important applications, and opportunities
for better scheduling. It also discusses related work in the use of scheduling
speculation across tasks and within tasks. Chapter [3| states what is inside
and outside the scope of my thesis. My scope encompasses important appli-
cation scenarios while avoiding issues orthogonal to how the knowledge of
whether a task is speculative can be used to improve scheduling metrics. In
Chapter [4] I provide non-speculative cluster scheduling background, includ-
ing a description of the target architecture, standard cost models, user and

12 . Cluster scheduling for explicitly-speculative tasks

resource provider goals, and fundamental and commonly-deployed schedul-
ing policies.

Chapter [f]introduces batchactive scheduling, the new batchactive pricing
mechanism, new scheduling metrics based on visible response time, ambi-
tious policies requiring difficult to obtain information, and two-tiered poli-
cies that are deployable. This chapter also discusses speculative scheduling
beyond centrally scheduled processor resources. The simulation results are
in Chapter [6] which details the simulation model, the ranges of simulated
behaviors, and the differences in performance between non-speculative and
batchactive schedulers. Chapter [7] details the design and implementation
of the simulator and describes how to deploy batchactive scheduling to an
existing cluster by extending a popular clustering system.

Finally, Chapter [§| recapitulates the motivation and contributions of
this thesis and discusses non-technical challenges to deploying batchactive
scheduling.

Batchactive schedulers, which recognize speculative tasks as first-class
entities, attempt to maximize human productivity and minimize user re-
source costs by scheduling and charging speculative tasks more effectively.
Ambitious user hypotheses potentially requiring an unbounded amount of
resources can be explored without fear that resources would be wasted on
long-shot speculation. What is required is for users to disclose their specula-
tive plans and then request individual task outputs when it becomes known
that these outputs are needed. Existing policies and pricing mechanisms were
designed for non-speculative tasks; tasks whose outputs were all known to be
needed. However, this is not always true and suboptimal scheduling results
when users engaged in speculative searches use non-speculative schedulers.

The cost of cycles decreases while the cost of human time increases,
making task speculation more common and speculative scheduling more ap-
plicable. The heart of this work is deciding when tasks should run to reduce
or eliminate visible response time across users while not wasting contended
resources on speculative tasks that might be canceled. Novel policies for
speculative tasks reward good science; the better someone is able to specify
needed work, the better the scheduler performs for that person.

Opportunity is missed by most people because it
comes dressed in overalls and looks like work.
Thomas Edison

2 Opportunities for batchactive scheduling

This chapter motivates batchactive scheduling (Chapter . I begin by de-
scribing a prevalent way in which people work. Users can often plan ahead,
submitting a number of potentially needed speculative tasks and pipelin-
ing the consideration of completed task outputs with the execution of tasks
whose outputs are not yet known to be needed. This behavior, in contrast
to not disclosing speculation, is depicted in Figure 2.1

The following sections elaborate on these work patterns showing that
there are opportunities for smarter scheduling to aid speculative work. I
present actual scenarios of users engaged in these work patterns for diverse
applications categorized as exploratory searches, sequential tasks, and pa-
rameter studies.

I cite evidence that speculative work is often not known to be actually
desired until some time (sometimes a long time) after the work is submitted.
I also describe the prevalence of idle computational resources that can be
leveraged for speculation.

I then describe how non-speculative schedulers (Chapter [4)) handle spec-
ulative tasks poorly with respect to time- and cost-based metrics (Chap-
ter . In contrast to batchactive schedulers, they do not embrace the
aforementioned opportunities to provide better performance for speculative
tasks. Before summarizing this chapter, I describe related work in applying
speculation to the scheduling of tasks, scheduling speculative parts of a sin-
gle task, and scheduling speculative activity that uses resources other than
the processor.

2.1 Work patterns

O’Day and Jeffries|[1993] studied how ‘information seekers’ perform searches.
For a number of activities, they found that people tend to conduct a series
of interconnected but diverse searches. They studied the behavior of fifteen
individuals (including a financial analyst, venture capitalist, marketing en-

13

14 . Cluster scheduling for explicitly-speculative tasks

| [[
1 [— 1T ..
visible response

|
|
wait & [I time — 11

think
no disclosure

tasks |

[—
|] visible response

time = 5

single-server disclosure

visible response
time = 3

ﬁiﬂ

cluster disclosure : t1]t2]t3[t4
02 4 6 § 10 1214 16 15 Clwksie 13242
think time| 3| 1] 2| 1

time

Figure 2.1: A sketch of how visible response time changes when a user discloses
work. Shown is the total visible response times for a single user submitting four
tasks and waiting for and thinking about the outputs of these tasks. Visible re-
sponse time is the time between needing and receiving task output irrespective of
when the task was submitted. Three settings are shown. First, the user does not
disclose speculative work; he or she behaves interactively, submitting the next task
after thinking about the output of the previous task. Second, the user discloses all
speculation to a single server. And third, all speculation is disclosed to a cluster
with many nodes, allowing all four tasks to run in parallel. Each setting shows the
execution of the tasks and the user cycling between waiting and thinking (this cy-
cle is depicted abstractly in Figure , over time. In each setting, the user thinks
and the servers are busy the same total amount of time. What differs is the total
visible response time, which improves as the opportunities for pipelining task exe-
cution and think time increases. Due to the limitations of existing schedulers, users
who disclose will either do so and be charged for unneeded work and wait longer
by competing with other users’ speculative work, or behave interactively to avoid
these risks. Batchactive scheduling encourages the behavior depicted in the bottom
two settings with the batchactive pricing mechanism and intelligent scheduling.

2.1 Work patterns . 15

gineer, demographer, consultant, statistician, among others), half of which
worked for one large computer manufacturer while the other half worked
for a variety of other companies. These individuals conducted searches on
financial and business-related topics. O’Day and Jeffries’ conclusions result
from interviews conducted in the offices of these individuals.

The fifteen individuals participated in surveys for each of 66 activities.
After the surveys were conducted, one-third of their activities were catego-
rized as exploratory searches. Outputs from such searches are analyzed for
trends or correlations, compared against different pieces of data sets, scaled
or aggregated, and finally interpreted. One individual reports, ‘What you
want is a thorough and efficient way that will cover first of all the leading
sources and then second of all more localized sources. ... So there is a kind
of a general quick and dirty way to find out what’s out there and then once
you do that then you want to go in more specifically and that is where you
get into more detailed searches. There is like a 30, 000-foot view and then
you go into specific areas.’

These individuals were behaving speculatively and exhibited think time:
analysis of preliminary searches may remove the need to consume outputs
from detailed searches that may be computational processes operating in
the background. Speculative behavior is common on computing systems as
shown next (Chapter and takes the form of users submitting speculative
tasks. A speculative task is some unit of work, usually corresponding to a run
of an application, whose output is not yet known to be required [DeGroot),
1990]. Other applications never terminate; they cycle between performing
work, delivering output, and idling for the next user directive. Here, the task
is the work cycle of the application. The granularity of a task is such that
a person uses its output after receiving it, e.g., to make task submission
or cancelation decisions. If application output must be processed, filtered,
graphed and if such steps can occur without human intervention, it is simpler
to consider the aggregate of these operations as a task.

The trends of rising cost of an average person’s time and decreasing
cost of computational resources make speculative workloads more prevalent.
Economists argue that the rise of inflation-adjusted average wage, which
has been measured over decades, implies that the time of the average per-
son has become more valuable |Becker, [1965; Romer}, 2000; Pashigian et al.,
2003; Walker, 2002]. Chip miniaturization and economies of scale are two
contributing factors to the cheaper and more available computational power
witnessed over decades [Moore, [1965; |Gibbs, 1997; Hennessy et al.l [2002].
These trends are predicted to continue. Either continuation is sufficient to
suggest that users will increasingly risk wasting computational resources to

16 . Cluster scheduling for explicitly-speculative tasks

° []
ordered task set L4

[] o
unordered task set

Figure 2.2: Two simple organizations for speculative tasks include flat list order
and no ordering preference.

save human time. Together, users are compelled more strongly to increas-
ingly speculate.

I call all the speculative tasks associated with a user his or her task set.
Task sets may include tasks from several applications or from one application
run with different parameters. The user may end up wanting one, all, or some
of these tasks. After a task whose output is known to be needed completes,
the user receives this output and considers this output for some duration or
think time. At that point, the user determines whether more output from
the task set is needed. If not, it could mean that the user has sufficient, con-
clusive output. Or it could mean that the task set is not answering the right
questions, in which case tasks (that may or may not have completed) whose
outputs are undesired are canceled, and a new task set exploring a different
line of inquiry is issued. T'wo simple organizations for tasks in a task set are
flat list order or no ordering preference as depicted in Figure Unordered
desire, similar to the ‘dynamic sets’ of Steere| [1997] (Chapter [2.5.3), reflects
users who do not know if any output is more useful than another; any answer
is helpful until more is known. Only applications that require some amount
of user think time (Chapter to determine whether more outputs are
useful are good candidates for batchactive scheduling,

A common example of speculative work is an application run repeatedly
with different arguments to search a large parameter space first in broad
stokes, randomly or at specific parameter intervals (iterative or successive
refinement or improvement), then in detail at areas of interest (Figure [2.3).

Any-time algorithms (related to imprecise computing) can generate out-
put after using some amount of resources or after achieving some level of
quality [Musliner et al.,|[1992]. The creation of each intermediate output con-
stitutes the work of one task. Figure[2.4]illustrates a hypothetical simulation
in this spirit whose output changes across runs, until successive runs do not
provide additional information. An actual example is the rendering applica-
tion in Chapter An example from the database community presents
partial outputs and lets the user guide the search when querying diverse
(both in the nature of the content and size), distributed, Internet-based

2.1 Work patterns . 17

I
I
I

-1.25 -1 -0.75 -0.5 -0.25

Figure 2.3: A sketch of an initial exploration of a two-dimensional parameter space,
indicating regions for further study. After scanning in low detail a parameter space,
the user will refine his or her search to the interesting region in the lower-right, can-
celing speculative work that would produce more detailed results in other regions.

databases [Raman and Hellerstein, |2002].

There can be a large to unlimited number of tasks in a task set, poten-
tially requiring an unbounded amount of computing resources. Examples are
scientific ‘grand challenges’ which are fundamental problems in science and
engineering with broad economic and scientific import [Argonne, 2004; (UK
Computing Research Committeel, 2004]. The existence of resource intensive
task sets suggests that the longterm relevance of the scheduling policies for
speculative workloads I present in this thesis will not be diminished by the
speedups in computer hardware predicted by Moore’s law [Moore, 1965].

Defining speculative tasks may be a time-consuming activity for a per-
son to perform. Sometimes an autonomous program agent can work on be-
half of a user in constructing task sets. An agent can choose tasks in an
attempt to anticipate a person’s needs. Tennenhouse argued that effective
computer use, if architectural and task demand trends continue, will neces-
sitate less interaction between people and computers |[Tennenhouse, [2000].
Across computing history, the number of processors per person has gone
up. When moving beyond one computer per person, computing paradigms
must shift from human-centric to human-supervised. People are serializa-
tion points that dampen feedback that could sometimes occur automati-
cally. Tennenhouse’s work in ‘proactive computing’ seeks to remove people
from the control loop. Proactive systems will anticipate user needs: excess

18 . Cluster scheduling for explicitly-speculative tasks

number of tasks

Figure 2.4: A sketch of how successive runs of an any-time application can determine
whether more outputs are fruitful. In this example, the more runs, the less useful
the outputs, as the outputs converge to some value c. Queued tasks for any-time
applications are often speculative: the trend of the output values, which may require
user think time to identify, may cause the user to determine that future outputs
are unneeded.

computation and communication capacity will be harnessed to fetch and ma-
nipulate information, producing answers before they are needed. Examples
where an agent designed for a particular domain can automatically construct
relevant task sets are in Chapter [2.5

Although existing schedulers are not designed for them, users often sub-
mit speculative tasks; i.e., users disclose their computational plans by sub-
mitting tasks whose outputs they do not know whether they need at the time
of submission. For example, users engineer tasks to run overnight [Wenisch)
2003]. They do this to increase the chance that they will have useful task
output and decrease the chance that they must wait for tasks to complete.

The next several sections expand on the above work patterns to motivate
my batchactive scheduling solutions for speculative tasks. I detail scenarios
in which people submit speculative computational work, show the existence
of think times and a related concept I call ‘away periods,” and show that
there exists computational capacity in clusters, grids, and supercomputers
for running speculative work.

2.2 Scenarios

Scientific disciplines and commercial ventures use computer resources to
simulate phenomena, evaluate hypotheses, visualize information, discover in-
variants. Researchers in high-energy physics, cosmology, seismology, weather
forecasting, aerodynamics use computing resources speculatively. Scientists
in national laboratories, academic institutions, private research departments
often construct series of experiments occupying considerable computing time,
in which, at the outset, it is often unclear which task outputs will be useful.

2.2 Scenarios . 19

This section presents real-world processor-bound examples showing that
computing resources are used for speculative work, motivating the specula-
tive scheduling policies (Chapter [5|) central to this thesis. These scenarios
are important, both because of the economic scale of the industries in which
they are found and because of their place in the advancement of science.
They are categorized as exploratory searches, sequential tasks, and parame-
ter studies and concern bioinformatics, computer animation, and computer
simulation, respectively. Although the focus of this thesis is on the proces-
sor resource (Chapter , I also describe non-processor-based scenarios for
completeness. I obtained much of the following corroborations of the above
work patterns through ad hoc surveys and cited personal communications.

2.2.1 Exploratory searches

An exploratory search (speculative search, speculative test [DeGroot, 1990])
is typically a hand-crafted chain of speculative tasks from different applica-
tions (e.g., process dataset A, filter table B, combine them into C ...) whose
outputs increasingly provide evidence to confirm or refute a hypothesis. Ex-
ploratory searches in the area of information retrieval, called ‘berrypicking
techniques,” has received attention [Bates, 1990]. The applications suitable
for batchactive scheduling are those in which one can form the next search
speculatively, before the prior search completes. The scenario for this type
of speculative work that I examine concerns bioinformatics.

Bioinformatics comprises the computing methods for solving problems
concerning nucleotide sequences. One problem is constructing a complete
genome out of fragments. (The gist of the problem is analogous to putting a
puzzle together when a flashlight can only shine on several pieces at a time.)
A large effort recently sequenced a complete human genome [Genome, [2001].
Another problem is determining protein function, which has implications
in measuring susceptibility to and the prevention of disease. (A protein’s
shape determines its function and nucleotide sequences determine a protein’s
shape |King, 1993} [Thomasson, [2004].) An important part of solving both
problems is comparing new sequences to known sequences to find similar
structure, function, and origin.

Several algorithms related to substring matching have been adapted
to comparing nucleotide sequences for similarities [Karp and Rabinl [1987;
Smith and Waterman, 1981]. Sequence similarity is based on biological cri-
teria. Some algorithms are more sensitive to differences in sequences than
others and the more sensitive ones are slower. Moreover, a single algorithm
may have a parameter to control this sensitivity / time tradeoff.

20 . Cluster scheduling for explicitly-speculative tasks

Query = pir|A01243|DXCH 232 Gene X protein - Chicken (fragment)
(232 letters)

Sequences producing High-scoring Segment Pairs: Score P(N) N
sp|P01013|0VAX_CHICK GENE X PROTEIN (OVALBUMIN-RELATED) (... 1191 7.7e-160 1
sp|P01014|0VAY_CHICK GENE Y PROTEIN (OVALBUMIN-RELATED) . 949 T7.0e-127 1
sp|P01012|OVAL_CHICK OVALBUMIN (PLAKALBUMIN). 645 3.4e-100 2
sp|P19104|0VAL_COTJA OVALBUMIN. 626 1.2¢-96 2
sp|P05619| ILEU_HORSE LEUKOCYTE ELASTASE INHIBITOR (LEI). 216 3.7e-71 3

Figure 2.5: Sample output from a BLAST query. Shown are one-line descriptions
of database sequences that match the query, including how closely they matched.
Bioinformaticists identify biologically interesting properties using this tool.

Bioinformaticists explore biological hypotheses, searching among DNA
fragments, using tools like BLAST [Altschul et al., [1990] and FASTA [Pearson
and Lipman, 1988]. The BLAST nucleotide sequence similarity searcher from
the National Center for Biotechnology Information is the most popular tool
for this purpose. Sample execution output is shown in Figure [2.5

Bioinformaticists share workstation farms — such as the dedicated 30
machines in the Phylogenomics Group of the University of California at
Berkeley [Holliman, 2003] — and issue chains of fast, inaccurate searches
to quickly demonstrate almost all non-matches followed by slow, accurate
searches to confirm initial findings. Service time is dependent on the sizes
of the sequences under comparison and how accurate the search is [Spring
and Wolski, [1998]. Less sensitive searches take from tens of seconds to tens
of minutes when matching against human genome sequences, while other
searches can take up to six hours [Biowulf, |2004]. The accuracy v. runtime
tradeoffs of different convergence algorithms can vary over several orders of
magnitude.

A researcher is often able to plan a number of sequencing tasks ahead.
In the extreme, some scientists wish to submit thousands of sequencing
tasks [Biowulf, |2004] because they ‘really do not know what [...] sequences
will work.” |Giddings and Knudson, 2004] Batchactive scheduling (Chap-
ter would enable scientists to explore ambitious biological hypotheses
without fear that resources would be wasted on speculative BLAST sequenc-
ing tasks that might be canceled after early outputs were scrutinized.

2.2.2 Sequential tasks

Another type of speculative work is a set of sequential tasks all from a single
application performing the same function such as an any-time algorithm
providing increasingly detailed outputs or ordered (temporal) outputs. The

2.2 Scenarios . 21

scenario for this type of speculative work concerns computer animation in
which each task renders a movie frame.

Computer animated scenes are increasingly used in major motion pic-
tures. The first full-length animated feature film created entirely by artists
using computer tools and technology was Toy Story (1995) [Toy Storyl
2004]. The films Finding Nemo, Shrek, Matrix [Taub, |2003], and Lord of
the Rings [BBC News, |2004; Maya Association, 2004] have pushed the state
of computer graphics technology. The following description of a computer-
generated film’s production’s speculative nature I learned from speaking
with Doug Epps from Tippett Studio and Tim Lokovic from Pixar Anima-
tion Studios [Epps|, 2004; [Lokovic, [2004].

Teams of hundreds of artists creating a computer-animated film at pro-
duction houses such as Dreamworks or Pixar submit shots (scenes) for ren-
dering, where each shot has roughly 200 frames, to a cluster of hundreds
to thousands of processors. Each frame, which consists of up to 50 indepen-
dent operations (for lighting, shading, animation, etc.) known as ‘layers’ can
take minutes to hours to render. Shots are submitted using clustering tools
like LsF [Platforml| [2003] and proprietary tools like ‘batchomatic.” Besides
such software, Apple Computer, Inc. has recently developed a clustering so-
lution explicitly for different aspects of computer graphics rendering called
Qmaster [Think Secret], 2004].

For example, over a nine month production period, Weta Digital used
3,200 processors to create Lord of the Rings: The Return of the King. This
film had 1, 400 special effects shots, each containing at least 240 frames, and
the average frame took 2 hours to render [Hillner, [2003]. A character from
Lord of the Rings, including two intermediate layers, is shown in Figure [2.6

This work is highly speculative. Artists submit a number of frames, up
to a shot at once, for rendering. Upon seeing initial frames, an artist may
decide that the lighting model is wrong, that a rendered object could be
in a better location, etc. The overwhelming majority of computation never
makes it into the final film [Epps, [2004; Lokovicl 2004]. Artists rarely get a
scene right in one pass. They use rough renderings (successive refinement)
to determine whether to continue or make changes.

The aggregate rendering operations for each frame could be considered
a task, and the tasks to render a single shot could be considered a task set.
The output of speculative tasks would often be desired in the natural order
of the frames because artists often need to see successive frames to appreci-
ate temporal characteristics, such as character motion. With a batchactive
scheduler, aware of which tasks are speculative, the artist could prioritize
key sections of a shot, those with more action, e.g., to more quickly decide

22 . Cluster scheduling for explicitly-speculative tasks

Figure 2.6: A completely computer-generated character (top) and two of its inter-
mediate layers (bottom), designed by Weta Digital for Lord of the Rings. Source:
[Maya Association| [2004].

whether additional frames are worth having. These frames would not only
have priority above more speculative, remaining frames from that artist,
but also from non-critical frames from other artists sharing the cluster. If it
becomes known that unviewed output from speculative renderings will not
be needed, the artist would cancel them so that they will not unusefully
compete against other rendering tasks in the system.

2.2.3 Parameter studies

A parameter study [DeGroot|, 1990 is a set of tasks exploring an often large

parameter space. They usually begin by exploring the space in broad, shallow
strokes, later to be refined to specific areas of interest. The scenarios for this
type of speculative work are computer simulations.

Computer scientists routinely use clusters to submit chains of simulations
exploring high dimensional spaces. Parameter studies for feature extraction,
search, function optimization can continue indefinitely, homing in on areas
for accuracy or randomly sampling points for coverage.

In the Electrical and Computer Engineering Department at Carnegie
Mellon University, clusters are used by computer systems and computer
architecture researchers for, among other things, studying microarchitecture
cache behavior, computer virus propagation, and storage patterns related
to I/O caching and file access relationships 2002]. Many of these
are discrete event simulations (sometimes trace-driven) which observe time-

2.2 Scenarios . 23

Overall I/0 System Total Requests handled: 10000

Overall I/0 System Requests per second: 100.148471

Overall I/0 System Completely idle time: 0.000000 0.000000
Overall I/0 System Response time average: 49.917614

Overall I/0 System Response time std.dev.: 8.392918

Overall I/0 System Response time maximum: 81.359552

Figure 2.7: Sample output from a run of the DiskSim simulator. Shown are overall
statistics from trace-driven I/0O accesses to a simulated disk drive.

based behavior [Ball, [2004]. The service times for these tasks range from
seconds to hours and are detailed in Table 4.4

Simulation applications used by colleagues for parameter studies in-
clude SimpleScalar, DiskSim, and NS for researching microarchitecture, disk
performance characteristics, and network performance, respectively [Sim-
plescalar] 2004; DiskSiml 2004; NS, 2004]. The simulation results in this dis-
sertation (Chapter were created by extensive parameter studies (Chap-
ter using a simulator I wrote called ba_sim (Chapter in which each
hypothesis I explored consisted of tens to thousands of speculative ba_sim
tasks per task set. In trying novel schedulers, simulations were canceled when
the schedulers showed no significant difference in a random sampling of pa-
rameters. Sample output from the widely-used, accuracy-validated DiskSim
tool is shown in Figure 2.7]

The Xfeed tool included in the Xgrid clustering software [Xgrid}, [2004]
from Apple Computer, Inc. explicitly supports parameter studies. One spec-
ifies a range of arguments (or a random sampling) to pass to a command.
Xfeed generates task specifications for each possible combination of argu-
ments and submits them; an example sweep would be through two dimen-
sions of parameters in increments of 10 and 20, respectively.

With a batchactive scheduler, such simulations could occur in parallel
with the experimenter analyzing desired and completed outputs and guiding
the search in new directions, with speculative work — which will be canceled
if determined to not be needed — operating in the background when pressing
outputs from tasks among other users are needed.

2.2.4 Non-processor-based scenarios

While I focus on the processor resource (Chapter , for completeness 1
present examples of speculative tasks using the network and disk exten-
sively. The network example can fit in an extended batchactive framework.
Scheduling solutions for the disk cases take different approaches which I cite.

24 . Cluster scheduling for explicitly-speculative tasks

Web document prefetching has the strong potential to improve the ex-
perience of web browsing, a kind of exploratory search. Web cache hit rates
are by their nature low (30-40% even with unlimited cache sizes), and thus
web caches cannot by themselves eliminate web latency [Steerel 1997]. (Web
page popularity follows the Zipf distribution:E] while a small number of pages
are exceedingly popular, the bulk see little reuse [Arlitt and Williamson),
1996].) A prefetching agent could construct a task set of prefetch candidates
(perhaps by examining the links of the currently displayed web page). Web
prefetches are speculative because they may or may not succeed in retriev-
ing pages that the user is interested in viewing. User action (selecting links)
may cause the prefetching agent to cancel prefetches and issue new ones. A
batchactive scheduling policy would determine how many such prefetch tasks
(network accesses) to issue which would be in moto while the user reads the
previously desired web page (i.e., during the user’s think time). The time to
retrieve a page and think time for a user browsing the web are both Pareto
distributed |[Crovella and Bestavros, 1995] with expected values under ten
seconds. The scheduler would attempt to balance the response time that the
person experiences with the fractional increase in network usage caused by
prefetching. It is in the user’s interest to control network usage because the
network might also be used for demand-driven work and because network
usage might cost on a per-byte basis (e.g., some low-bandwidth wireless
connections). A more detailed discussion of scheduling speculative network
requests is presented in Chapter [5.9

Data mining is often an exploratory search, with the relevance of fu-
ture queries dependent on recent outputs. The size and prevalence of data
processing workloads has grown enormously |[Fayyad), 1998|, making such
mining expensive in time and cost. Increasingly, content is not bound by
particular choices of data organization and the delivery of information is
in forms that go beyond traditional list management and database report
methods [Sculley}, |1989]. The Diamond system searches ‘loosely-structured
data’ (AutoCAD drawings, USGS maps, CAT scans, etc.) more efficiently by
quickly discarding unneeded information at the data source [Huston et al.,
2003], a type of task cancellation called ‘throttling’ in |DeGroot| [1990].

Disk I/O often limits application performance. To the extent that an
application knows its future data needs, its performance can improve by
disclosing these accesses before the application stalls for unread data. These

!The Zipf distribution |Zipf, [1932] is related [Crovella, [2000] to the Pareto distribution
(Chapter, sharing its heavy-tailed property. George Zipf discovered that the proba-
bility of encountering the rth most common word in a corpus is roughly P(r) = 0.1/r for
r up to about 1000 [Weisstein, [2004i].

2.2 Scenarios . 25

disclosures are speculative because the data within early reads may deter-
mine which future reads are actually needed. This is the concept behind the
TIP system [Patterson et al., 1995] in which programmers manually disclose
future data needs, covered in more detail below (Chapter [2.5.3).

2.2.5 Summary of scenarios

Speculative work and speculative scenarios cover broad areas, are impor-
tant, and are becoming more common; the speculative work patterns of
Chapter occur across many types of users executing many types of appli-
cations. Scientists, researchers, private individuals at commercial ventures,
academic institutions, research laboratories simulate phenomena and evalu-
ate hypotheses by issuing tasks speculatively.

I described three types of speculative work in this section. An exploratory
search is a hand-crafted, based on domain-specific expertise, collection of
tasks to confirm or refute a hypothesis. I cited the usage of BLAST in the
field of bioinformatics as an important scenario. Sequential tasks perform a
single function in which the order that outputs are desired is well-defined.
The important scenario for this type of speculation is rendering the frames of
a computer-animated film. Parameter studies begin as broad, shallow explo-
rations of a high-dimensional space that are refined to areas of interest. The
important scenario here includes any type of parameterized computer simu-
lation. I also discussed non-processor-based speculative scenarios, including
data mining and web prefetching.

Users submit work they know they need and work they do not know
they need (speculative work) and traditional schedulers do not have the
knowledge to treat these types of tasks differently. The batchactive approach
to scheduling speculative tasks (Chapter [5)) improves time- and cost-based
metrics for these scenarios by intelligently prioritizing among needed and
speculative tasks between one user and among all users sharing a computa-
tional resource. Ambitious hypotheses potentially requiring an unbounded
amount of resources can be explored without fear that resources would be
wasted on long-shot speculation. All that is required is for users to disclose
their speculative plans as task sets and then request individual task outputs
when it becomes known that they are needed. I do not believe the cost for
users to generate speculative task sets in the above scenarios is large.

26 . Cluster scheduling for explicitly-speculative tasks

2.3 Enabling behavioral conditions

Besides the behavior of users and the kinds of application they run described
above (Chapters and , there exist several user behavioral conditions
suited to batchactive scheduling.

Speculative work is often desired some time after the work is submitted.
This occurs for two reasons. The first is that a user needs time to think
about (viz., the ‘think time’) the most recently received task output before
being ready to consume the subsequent task output. The second is that
a user may become temporarily unavailable to process new task output
independent of the nature or availability of previous task output, such as
when the user leaves the office for the day and will not resume work until the
next morning. I also describe the prevalence of idle computational resources
that can be leveraged for speculation and argue that even apparently busy
servers can fruitfully engage in speculation.

2.3.1 Existence of think times

The speculative systems covered in related work (Chapter share the
property that think times exist and that think times are leveraged to im-
prove performance. However, the notion of think time — one element of a
system not being ready to consume output from another part — is not always
given this name, and does not necessarily involve a human. For example, in
the TIP prefetching system [Patterson et al., [1995], an instruction stream
consumes prefetched data. The time that the processor is executing instruc-
tions (i.e., not stalled on data) is effectively its think time during which
the (potentially speculative) data prefetching can be pipelined. In hardware
instruction speculation |[Hennessy et al., 2002, the delays incurred by the
memory subsystem is effectively think time during which the speculative
execution of instructions can be pipelined.

The existence of user think times provides the opportunity for a specu-
lative scheduler to choose a task ordering that better (Chapter meets
user and resource provider scheduling goals (Chapters and because
a user does not need the outputs of every speculative task at once; the user
is either ‘blocked on’ one task’s output or ‘thinking about’ the output of the
previously received task output (Figure . Think time gives a batchactive
scheduler the flexibility to delay the execution of non-pressing, speculative
tasks in deference to known or more likely to be needed tasks. Since spec-
ulative tasks might be canceled, delaying their execution might even result
in eventually unneeded tasks being canceled before they consume signifi-

2.3 Enabling behavioral conditions . 27

cant, if any, resources. This section cites situations in which think times
were measured. The non-obvious dependence on think time for batchactive
improvements is confirmed in experiment (Chapter .

Bubenik and Zwaenepoel| [1989] built a system to optimistically build
(compile and link) software applications before the developer explicitly asks
to do so (Chapter [2.5.1]). Part of their work measured the time between a
build being needed and the last time a source file that is part of the build
was modified. This ‘out-of-date time’ is a conservative estimate of think time
because there was additional time that the developer spent modifying source
files not included. ‘Out-of-date’ time is important to them because source
files need to be saved before builds can proceed speculatively.

They observed that most build targets are requested soon after a change
to source files but that these rebuilds usually consist of compiling one source
file; a developer testing a small change, e.g. However, sometimes users wait
a long time between source modification and executing a build request, and
these builds are more likely to involve more computational work. Specifically,
the median out-of-date time was 32 seconds while the mean was 378 seconds.

In the domain of web browsing, think time also exists. Many web prefetch-
ing schemes rely on think time to reduce browsing response time [Steere,
1997; [Padmanabhan and Mogull, (1996} Bestavros, [1996; Fisher, 2002]. Crov-
ella and Bestavros [1995] found that web think times (also called ‘off-times’)
are Pareto distributed, a discovery used in their accurate web workload gen-
eration tool called Surge [Barford and Crovella) 1998§].

2.3.2 Existence of away periods

This section describes a related concept to think time that further aids
batchactive scheduling. A user can have away periods during which the user
does not wait for task output. People routinely become unavailable to con-
sume task output and knowing when this occurs enables a scheduler to bet-
ter order work, especially if the scheduler knows which tasks are speculative.
Away periods can be thought of as the creation of think time independent of
task completion — e.g., a user leaving at the end of the work day and not be-
ing ready for output until the next morning (Figure [1.1]). (The prediction of
away periods was used in other work to decide when to restore the memory
state of cluster desktop workstations harnessed for remote execution [Petrou
et al.l 1996].)

To help see the flexibility provided by knowing away periods, consider
the following example taken from |Feitelson et al|[1997] and illustrated in
Figure ‘Assume that a task needs 3 hours of computation time. If the

28 . Cluster scheduling for explicitly-speculative tasks

arrive at the office
request a 3-hour task

8am
9am
starting an —m | 10am

hour after the 1lam
request is fine |noon

take a lunch break

1pm
2pm
starting at night 3pm
or starting here — |4pm
is the same 5pm leave the office

Figure 2.8: How knowing away periods gives a batchactive scheduler opportunities
to delay some speculative tasks so that more pressing tasks can run.

user submits the task at 9am, he may expect to receive the results after
lunch. It does not matter to him whether the task is started immediately
or delayed as long as it is done by 1pm. Any delay beyond 1pm will reduce
user satisfaction. However, if the task is not completed before 5pm, it may
be sufficient if the user gets his or her results early next morning.” Further,
because my application scenarios are speculative, tasks delayed because the
submitting user was in an away period that were later determined to not be
needed would not have competed for potentially scarce resources.

Because of the difficulties in knowing away periods (Chapter , the
policies, results, and conclusions of this thesis do not rely on predicting or
obtaining away periods. I consider away periods an additional opportunity
beyond think time for a batchactive scheduler to more effectively execute
potentially needed work for even better performance.

2.3.3 Existence of server idle time

Batchactive schedulers leverage spare computational resources for executing
speculative tasks. A batchactive scheduler that improves performance often
increases load with speculative tasks as a side-effect (Chapter .

Cluster workstations are available 60-80% of the time [Mutka and Livny),
1987} Douglis and Ousterhoutl, [1991; |Arpaci et al., [1995; |Acharya et al.,
1997]. Arpaci et al. [1995] state that, ‘although the set of idle machines
changes over time, the total number of idle machines stays relatively con-
stant [...] even during the busiest time[s].” Many additional citations stating
similar statistics can be found within the above studies. Even the highly de-
sired resources at the Pittsburgh Supercomputer Center (PSc) are idle 10%
of the time [Harchol-Balter] 2003a).

2.4 Common practice and its deficiencies . 29

Note, however, that such idle time statistics are a conservative estimate
of the resources available for speculation. While, anecdotally, some report
that during ‘crunch times,” resources are saturated [Epps, 2004; Lokovic,
2004], what is important for improving (Chapter scheduling metrics
(Chapter is the load made up of needed tasks; i.e., the total load minus
the load made up of speculative tasks. This is because such speculative load
can be delayed until needed or canceled. When an interface exists for and is
used by the user to distinguish among needed and speculative tasks, it may
become apparent that much of the total load comprises speculative work
that can be scheduling more effectively with a batchactive scheduler.

2.4 Common practice and its deficiencies

Non-speculative schedulers (Chapter were not designed for and poorly
support speculative workloads. Yet users regularly submit batches of specu-
lative tasks as shown by the scenarios above (Chapter . These task sets
mix with known needed tasks (Chapter , confusing the scheduling pol-
icy’s attempt to meet scheduling goals. Further, because speculative tasks
look like needed tasks, when resources are charged, they are charged regard-
less of whether their computations were eventually needed (Chapter .

Should a user with speculative tasks submit one speculative task, a few,
many, or the entire task set? The user wishes to reduce the time he or she
waits for needed task output and the user wishes to reduce how much he or
she will be charged for unneeded speculation. There is confusion as to how
many tasks a user should submit, resulting in ineffective scheduling; i.e., poor
time- and cost-based scheduling metrics (Chapter . When resources are
not directly charged (such as in a communal cost-center) or if all the users
have the economic resources to pay for wasted work, then the resources will
be overwhelmed, making the system unusable.

Further, traditional metrics are insufficient when users behave specula-
tively and have think times and away periods. According to |[Feitelson et al.
[1997], ‘The use of metrics such as throughput and response time [...] may
be due to the simplicity of the evaluation, or it may be a sign of some non-
obvious influence from theory.” What is more important is the response time
experienced by the user, the wvisible response time of needed, no longer or
never initially speculative tasks, which accrues outside of think time and
away periods, introduced in Chapter Relevant metrics (Chapter , a
new pricing mechanism (Chapter , and new speculative policies (Chap-
ters and overcome (Chapter the deficiencies of existing cluster
scheduling.

30 . Cluster scheduling for explicitly-speculative tasks

2.5 Related speculative work

Speculation to improve performance is found at the level of I/O requests,
program blocks, and instructions across all areas of computing including
architecture, languages, and systems. I discuss related work for schedul-
ing across speculative tasks such as those scenarios discussed above (Chap-
ter , scheduling speculative parts of a single task, and scheduling specu-
lative activity that uses resources other than the processor. The latter two
types of speculation, which are outside my scope (Chapter , are covered
because they inform my terminology and solutions (Chapter and they
place my solutions in context.

When speculation has time or space overheads, one tradeoff is between
unbounded speculation and delayed evaluation [Wikipedial 2004] (related
to lazy evaluation and described in Chapter . This tradeoff is found most
often in the context of functional programming and appears in some of
the systems below. Another reoccuring issue is how sometimes unneeded
speculation must be prevented from affecting other state.

2.5.1 Speculation across tasks

Bubenik and Zwaenepoel modeled a cluster of users engaged in software de-
velopment using a modified make tool [Bubenik and Zwaenepoel, [1989]. At
each save of a source code file, their system speculatively runs the compiler
using the build rules encoded in the project’s Makefile. Their seminal work
measured the potential to reduce visible response times from building appli-
cations speculatively. Their simulator modeled one task (rebuild) pending
per user. My model is broader, encompassing users who operate interac-
tively or who submit batches of speculative work for a number of scenarios
(Chapter , including users behaving speculatively with non-speculative
schedulers (Chapter . Their work isolates speculative compilations from
the rest of the system. This is not needed in my system which stores spec-
ulative outputs in isolated locations until requested. Beyond their study of
time-based metrics, I also study resource cost as it relates to user charges
and server revenue.

The Xcode integrated software development environment for Apple com-
puter architectures has a predictive compilation [Xcode, [2004] feature which
begins file compilation even while files are being edited. This single machine,
single user speculation does not address scheduling issues. The Xcode doc-
umentation advises turning off predictive compilation on slower machines
when it may interfere with other activity including the editing itself.

2.5 Related speculative work . 31

In the database realm, Polyzotis et al. built a speculator that begins work
on database queries, where each query could be considered a task, during
the user think time in constructing complex queries [Polyzotis and Ioannidis),
2003|. They use machine learning techniques to predict what the user will
need before the query is finished, but they do not consider the scheduling
issues of a competing set of users submitting needed and speculative queries.

Eggert’s research on speculative scheduling examined how idle resources
could be leveraged for background or speculative work [Eggert|, [2004]. Due
to preemption costs, he quantifies situations in which it is beneficial for the
scheduler to be non-work-conserving (i.e., to idle when work is ready to
run). This research does not consider the scheduling issues that arise with
speculative chains of tasks or contention from multiple users.

Sun et al.| [1999] introduce a ‘parallel world’ in which each set of spec-
ulative tasks receives a private execution environment that is merged into
the real environment when speculative outputs are needed. They address
how to coherently integrate or discard requests to modify file system state
from speculative tasks depending on whether these tasks where eventually
determined to be needed or not, respectively. This work does not explore
the scheduling issues of speculative tasks. My work does not have the need
for private execution environments or encapsulations because the outputs of
scientific tasks or experiments are stored in locations that do not interfere
with the operation of the system. Outputs are provided to the user when
requested, and discarded when not needed.

2.5.2 Speculation within tasks

At the hardware level, speculation is commonly used to improve perfor-
mance when one part of the architecture presents a bottleneck to another.
For example, instructions are executed speculatively when control reaches a
branch and the resolution of the branch depends on data from a slower part
of the memory hierarchy. Without this speculative execution, the processor
would stall until the data became available. Because speculation may be
incorrect, its effects must be isolated until resolution. [Hennessy et al., 2002]

Osborne| [1990] describes how Multilisp |[Halstead, Jr., [1985], a version
of Scheme |Abelson and Sussman) 1996] with parallelism constructs, can
be used for speculative execution. Their examples include parallel search, a
parallel if statement (which works on both the ‘consequent’ and ‘alternate’
branches), among others. The difference between this work and others within
computer languages is the grain of computation: when small, the concerns
of speculative overhead and isolation are greater; when large, the concerns

32 . Cluster scheduling for explicitly-speculative tasks

shift to the scheduling of multiple tasks from competing users exhibiting a
range of behaviors over larger time scales.

Other work can transform a single executable into speculative pieces,
although sometimes programmer annotations are required [Bubenik and
Zwaenepoel, [1990; Cowan and Lutfiyyal [1995].

The bandwidth-delay product of current and future grids have spurred
speculative approaches to improving the performance of tightly-coupled ap-
plications [Chrisochoides et al.l [2003; |Lee, 2002]. Such work examines how
to rollback unneeded computation within an application and throttle work
so that speculation does not overly consume resources. Rollbacks for opti-
mistic computing derive from the virtual time concept |Jefferson, |1985]. In
contrast, I speculate among multiple independent (Chapter tasks and I
study how to schedule among task sets from multiple users.

2.5.3 Speculation on non-processor resources

Patterson et al.||1995] have shown in the TIP system how application perfor-
mance can increase if the application discloses storage reads in advance of
when data is needed. Programmers insert speculative data reads as program
annotations in the hope that the system can use this information to reduce
application I/O latency. My work applies the same concepts and terminol-
ogy to the processor resource at the granularity of tasks. While their work
focused on storage questions, such as how to balance cache space between
prefetches and LRU caches, because of the relative size of memory and (po-
tential and known) data demands, I assume that sufficient storage exists to
store speculative task output; if this is not the case, speculative execution
can be throttled or speculative outputs can be dropped, lessening the bene-
fit of batchactive scheduling. As TIP uses disclosed reads to exploit storage
parallelism, batchactive scheduling uses disclosed tasks to exploit cluster
parallelism. TIP gives priority to demand requests. I introduce a spectrum
of batchactive schedulers, but the implemented policies (Chapter also
share this property of preferentially scheduling known-needed tasks. When
task speculation costs (e.g., time, space overhead, or monetary costs), I con-
trast a feedback-based technique applicable in my dynamic environment to
the analytic-based technique used by Tip (Chapter .

An extension to TIP by Chang and Gibson|[1999] automatically discloses
I/O accesses by optimistically running sandboxed copies of an executable
and monitoring its accesses.

In the approach of |Steere [1997], users disclose sets of data objects called
‘dynamic sets’ that they might need in which the expected order of desire

2.6 Summary . 33

is unknown or irrelevant. Calls to request data may return objects in any
order, giving the I/O system, whether using the disk or network, the flexi-
bility to re-order accesses for better performance. E.g., cached objects may
be returned first while prefetching proceeds for other objects, possibly in
parallel.

Researchers have sought to reduce network delays by discriminating be-
tween speculative and requested network transmissions. Padmanabhan et al.
have shown a tradeoff in visible response time and fractional increase in net-
work usage when varying the depth of their web prefetcher [Padmanabhan
and Mogul, [1996]. (Prefetch candidates are determined by server-inserted
annotations into web pages. An Internet standard for such annotations ex-
ists, RFC 2068, Section 19.6.2.4, enabling stock browsers to optionally act on
these annotations. A web server could predict what pages a person might
request by analyzing past access patterns using, e.g., a technique based on
Markov models [Deshpande and Karypis, |2000].) In the approach of Steere
[1997], people construct sets of web prefetch candidates and the browser
prefetches as much as three such candidates simultaneously until all are
fetched, or until the person initiates new activity. (They argue that candi-
dates should be manually constructed to maximize the potential of a prefetch
being used.) The Mozilla web browser will download candidate documents
(based on server-provided annotations) after the requested page has loaded
and will stop when there is nothing left to prefetch or when the person se-
lects a link [Fisher, |2002]. TCP Nice consists of sender-side changes to TCP
congestion control to enable low-priority network service that could be used
for background or speculative network accesses [Venkataramani et al., 2002].

2.6 Summary

While there are no significant situations in which batchactive scheduling
performs worse than a non-speculative scheduler, there are situations that
are more applicable to batchactive scheduling than others. This chapter
described applications that lend themselves to speculation and related work
on speculative systems.

Users routinely run tasks speculatively. A speculative task is one whose
output is not known to be needed at the time of submission. I showed that
it is common for users to submit speculative task sets, which could vary
between a few and thousands of tasks, an