
The Scalable I/O Initiative

B. Bershad, A. Chien, A. Choudhary, T. Cormen, E. DeBenedictis, D. DeWitt,

D. Ecklund, W. Gropp, R. Grossman, R. Kendall, K. Kennedy, C. Koelbel,

D. Kotz, K. Li, P. Lyster, D. Marinescu, P. Messina, R. Moore, S. O'Malley,

D. Payne, T. Pratt, D. Reed, J. Saltz, R. Stevens, S. Wallach, R. Williams �

February 23, 1993

1 Introduction

This white paper describes a collaborative project that brings together systems software developers,

computer vendors, and applications teams to develop hardware and software systems to support

scalable I/O for high performance computer systems. The project is organized around the provision

of a full-scale testbed for the development and evaluation of new systems software for scalable I/O.

In addition, research projects will be formed to address the scalable I/O problem from a number

of perspectives, such as languages, compilers, �le systems, networking software, persistent object

stores, and low level system services.

Unlike the current state of parallel operating systems where a commonly available software

platform exists (i.e., Mach), vendors that wish today to provide parallel I/O capabilities for their

MPP systems must largely work from scratch when developing the �le systems and user software

needed to support a scalable I/O system. This problem forces many vendors to duplicate e�ort,

and leads to the provision of conicting solutions to the end users. This project intends to provide a

commonly available set of software modules that can serve as the foundation for the next generation

of parallel I/O systems.

To address this problem, we believe that systems software developers must work closely with

both application developers and system providers to address the important issues. We also believe

that it is critical for a full-scale I/O testbed to be available for development, full-scale debugging,

and full-scale performance analysis and testing with real applications.

The I/O problem can be subdivided into a number of critical elements. First is the architecture

of the I/O systems themselves. In this project we make few assumptions about the physical

con�guration of the system and I/O devices other than that they will be scalable with respect to

the memory and CPU performance of the system. Next is the support for the devices themselves,

provided by or in conjunction with the native operating system. We will develop as part of this

e�ort parallel �le systems that work with the native OS. Layered onto the parallel �le systems

are interfaces that provide access to the parallel I/O system, both for compilers and user code. A

special component of this e�ort is the investigation of paradigms that can be embedded into High

Performance Fortran (HPF) to support parallel I/O. Still higher-level functions will be provided

by persistent object storage managers. Checkpoint and memory server capabilities may also be

�See Appendix A for Author Institutional A�liation.

1

layered onto the parallel �le systems or, in some cases, directly onto the storage devices. Since no

parallel supercomputer is likely to be completely self contained, support for external �le systems

and remote devices via high-speed networks is also an important part of this e�ort. In particular,

mass-storage systems (MSS) are likely to be connected via networks; accessing �les that are stored

in the MSS must not be a bottleneck. Applications projects will be sought out at each stage of

development and testing to ensure the systems address real user needs. Finally, since the e�ort is

organized around a testbed machine, full-scale experimentation can be used to re�ne the concepts

and implementations.

Our goal is to develop and demonstrate an integrated set of tools and software systems that

will provide to the user a scalable I/O facility. This software will be made available to the US

high-performance computing community for productization and for future development.

2 Applications Motivation

Many \Grand Challenge" applications su�er substantial overhead due to the inadequate I/O speeds

of current parallel computers. When these applications have access to teraFLOPS machines with

tera byte memories, the I/O needs will increase dramatically. In some cases, programs that are

not I/O-bound on 10 gigaFLOPS machines will become severely I/O-limited on the teraFLOPS

computers that will be built within a few years unless I/O capabilities increase. A few examples

of the I/O requirements of applications from the CSCC user community illustrate the magnitude

of the problem.

Visualization of Planetary Data MPP systems are currently being used to assist in the un-

derstanding of planetary data obtained from NASA planetary space probes. In particular, terrain

rendering is used to create three-dimensional perspective views of planetary imagery data, allowing

a scientist to study the planet's surface as though he were close to it. Real-time image rendering

of data sets from the Magellan mission which involve 200 MB of data per input frame require an

I/O throughput of 13 GByte/s. The rendering can be done four frames a second even on today's

relatively slow machines like the Intel Touchstone Delta. This requires 800 MByte/s just for the

input stream, which is far in excess of what is currently possible.

Modeling Materials-Processing Plasmas Plasma-assisted materials processing is a key tech-

nology in many industries, particularly in microelectronics fabrication. Studies are currently under-

way on MPP systems directed at the calculation of accurate low-energy electron-molecule collision

cross-sections from quantum-mechanical �rst principles, with an emphasis on small polyatomic

molecules relevant to plasma processing. Promising areas of research which will be undertaken

over the next several years would require an I/O rate approaching 400 MByte/s for a one-electron

basis set � 100 and the number of coupled scattering channels � 40 on a system such as the

Intel Touchstone Delta. The ratio of the I/O time to the compute time scales linearly with the

number of coupled scattering channels, and important applications that are currently proposed to

be undertaken will require � 100 coupled channels. I/O rates of several GByte/s will be necessary

to support these proposed studies.

Global Climate Modeling and Data Assimilation Present day General Circulation Models

(GCMs) of the atmosphere involve on the order of 106 state variables. Observational data are

assimilated into these models and used to force the simulation process to converge to a realistic

2

solution. In principle, if a complete set of error covariances is kept in the assimilation analysis,

the number of variables is squared (i.e., it becomes 1012). In the future, both the number of state

variables, and the amount of observational data are expected to increase. Of order 1012 state

variables is a goal. This becomes the size of �les that need to be checkpointed as well as passed

between modules. NASA's Earth Observing System (EOS) in the coming decade will focus on

global earth observational datasets. Through the EOS DATA and Information System (EOSDIS)

it is expected that up to a terabyte of data per day will be available for data assimilation. Long

term climate studies can involve the simulation of the global atmosphere for 100's to 1000's of years.

3 I/O Characterization and Instrumentation

(Choudhary, Kendall, Pratt, Reed, Saltz)

Depending on the application, I/O can involve the transfer of temporary or persistent data

within the system, between the system and network-connected storage devices, or between the

system and specialized I/O devices. Based on our current understanding of user needs and require-

ments, we recognize three types of I/O:

(1) I/O for (possible) re-use of data. This involves the movement of data within the system.

Examples are communication of data between processors, the writing/reading of checkpoint data,

temporary storage of data during a computation (out-of-core solvers), and \permanent" on-line

storage of data.

(2) Network I/O. This involves the movement of data into or out of the system over networks.

Examples are �le transfers between network-connected systems, data transfer associated with dis-

tributed �le systems (such as AFS or NFS systems), data transfer to network-connected mass

storage devices, and data transfer for distributed computing.

(3) Streaming I/O. This involves the transfer of data to or from \streaming" devices. Examples

are data input from high data-rate instruments (sensors), data transfer to certain tape drives, data

transfer for instrument control, and output to graphics devices (e.g., frame bu�ers).

The studies undertaken in this section will help re�ne this understanding.

Given the input/output requirements of the Grand Challenge problems we believe the �rst step

in developing appropriate designs for scalable parallel input/output systems is a detailed charac-

terization of the input/output behavior of large application codes on conventional supercomputers

and massively parallel systems, particularly codes that are input/output bound for all or part of

their execution (i.e., codes that severely stress the input/output subsystem). The input/output

requirements of such applications determine the overall requirements for input/output subsystem

performance, data storage and transmission volumes, acceptable system con�gurations, and soft-

ware for access to data on secondary and tertiary storage.

The second step is to understand how current input/output systems respond to application

input/output demands by capturing not only dynamic traces of application program input/output

requests but also the dynamic pattern of interaction between operating system, �le system, and

input/output library components. To understand the these interactions, and to provide a spring-

board for parallel input/output research, we propose to instrument the OSF/1 code on the Paragon

to capture detailed, dynamic performance data, with emphasis on the parallel input/output sub-

system.

The Intel Paragon XP/S system, with a Mach microkernel and OSF/1 application interface on

individual nodes, virtual memory, parallel disk arrays, and high-speed communication links, is a

rich, unexplored software environment. Although small, inexpensive, high-capacity disks are now

3

widely available, and commercial, massively parallel systems support multiple, redundant arrays

of inexpensive disks (RAIDs), little is known about high-performance parallel input/output in a

multiuser, scienti�c computing environment. More tellingly, it seems unlikely that simple extensions

of sequential �le systems are appropriate for scalable parallel systems. Although the Intel Paragon

system is our intended test platform, the results of this analysis are not limited to Intel hardware,

but will be directly applicable to scalable parallel systems from a wide variety of vendors.

The third step is to build these understandings into a set of templates, benchmarks, evalua-

tion methods, abstract models, and evaluation tools that allow realistic evaluation of alternative

input/output subsystem designs for the Paragon (and, by extension, of other massively parallel

input/output subsystems).

Speci�cally, we propose four basic research thrusts: (1) instrument and analyze the input/output

behavior of a set of realistic application codes, (2) instrument the OSF/1 operating system source

code on the Intel Paragon system to study and understand input/output system software dynam-

ics, (3) use the application and operating system data obtained from instrumentation to develop a

set of input/output templates, abstract models and benchmarks, and (4) use the benchmarks as a

source of input/output subsystem activity that is scalable and repeatable, and, by execution of the

benchmarks on simulators or actual systems, evaluate the capabilities of alternative input/output

subsystem designs.

Our previous and current work in performance instrumentation and input/output data analysis

provide the basis for our belief that analysis of detailed performance data is the key to understanding

the dimensions of the input/output problem. In particular, we have (1) studied the performance

of Intel's previous generation parallel �le system, (2) examined the pattern of accesses to �le

archives at national supercomputer centers, and (3) are now studying application input/output

access patterns at NASA. The common result of all these studies has been the high variation in

resource demands and performance sensitivity to �le access patterns. Understanding and exploiting

this sensitivity is only possible if one can capture and analyze the interaction of operating system

software components that support input/output and their response to application input/output

request patterns.

In short, broad-based, experimental data capture and analysis are the prerequisites for a sys-

tematic attack on the scalable input/output problem. Only by analyzing existing applications and

systems can we identify the important performance limiting factors. Moreover, the performance

data and instrumented software provide a basis for performance comparisons and for further ex-

periments.

Our research goals are driven by the need to capture detailed performance data from the ap-

plication and system software levels. This, in turn, motivates the development of the requisite

performance tools. Our research goals are: First, extend the existing Pablo performance instru-

mentation and data analysis tools to capture application input/output access patterns and related

performance data. Second, instrument the Paragon XP/S OSF/1 operating system to capture

data on the dynamics of current resource management algorithms, with emphasis on those algo-

rithms that a�ect input/output performance. Third, measure the input/output behavior of large

application codes on both current vector machines and, using the newly developed application and

operating system instrumentation, on scalable parallel systems. Fourth, based on the performance

data analysis, build a realistic set of application input/output behavior templates that embody

typical patterns of computation and input/output and use the templates to construct a set of well-

understood synthetic input/output benchmarks. Finally, \close the loop" by studying the e�ects

of application and system software changes by other members of the consortium.

4

4 Compilers, Runtime System and Languages

(Choudhary, Kennedy, Koelbel, Saltz)

In order to achieve good scalability in I/O performance at the application level, appropriate

support from compilers and runtime systems is needed. Furthermore, language extensions and

directives are required that allow I/O parallelism to be explicitly speci�ed, thereby enabling the

compiler and runtime software to further enhance the performance of the I/O systems.

4.1 Compiler Support

In this project a key source of input and output in Fortran programs will be attacked. Even on

massively parallel machines, there is a need to deal with data structures, particularly arrays, that

are too large to �t in the system memory. Such data structures are generally referred to as \out-

of-core" arrays. A signi�cant portion of programmer time can be devoted to managing out-of-core

arrays. Further, on parallel machines the problem is compounded by the need to take advantage

of parallel input and output to achieve acceptable performance.

In Fortran D and High Performance Fortran, it is possible to specify the distribution of arrays

across the processors of the parallel system. The language compiler then generates the code to

send and receive o�-processor data when it is required. We propose to extend the Fortran D/HPF

mechanism to out-of-core arrays. The user would declare an out-of-core array in the same way as

a normal array, except for adding the keyword \out-of-core" to the declaration. The programmer

would specify distributions for out-of-core arrays, in the same manner as normal arrays, but the

compiler would now be responsible for generating the input and output needed to move data to the

point of usage along with any required communication. The user would simply use an out-of-core

array like any other array.

In addition, various compiler optimizations are necessary for enhancing I/O performance in

parallel programs, e.g., for recognition and parallelization of I/O operations. This will involve

developing compiler techniques and transformations to schedule and perform I/O operations in

parallel for various types of �les and data formats. Speci�cally, I/O operations for HPF will be

investigated. Compiler optimizations are necessary to support the overlapping of computation of

one stage of the program with the I/O of another. Finally, compiler optimizations are necessary

to support the e�cient mapping of data between the I/O systems and the data distribution on

the compute nodes. If this mapping can be determined at compile time, this information can

help generate e�cient schedules for parallel I/O. The same information can be used to generate

schedules for e�cient checkpointing.

4.2 Runtime Support

Runtime support for scalable I/O will be studied in several areas. One area of research is the

development of methods for anticipating I/O access patterns in an e�ort to reduce the performance

impact of I/O latencies. The approach will be to develop algorithms and software that use runtime

information to prefetch data from the I/O system. Also, runtime information will be employed to

partition arrays dynamically.

Another area of research interest is the development of runtime support and primitives to

perform e�cient collective I/O. We will develop techniques that use system parameters such as

number of I/O nodes, stripe size, data distribution on the compute nodes and I/O nodes, number

of compute processors, etc., to determine a good strategy for performing I/O, and then dynamically

5

redistribute data as required by the data decomposition on the compute nodes. This will also require

maintaining a map between data distribution on I/O nodes and compute nodes.

We also propose to employ runtime characterizations of data access patterns to prefetch data

to hide latencies, map data to I/O devices to reduce latencies, and reorganize I/O requests so

that each processor can issue particularly advantageous patterns of I/O requests. Reordering I/O

requests should be able to reduce I/O latencies by increasing the amount of disk data that can be

cached on processor, and reducing the disk seek time by rearranging I/O requests to take advantage

of knowledge about how data is stored on disk.

4.3 Language Support

It will be necessary to provide extensions to and directives for current programming languages

to support parallel I/O. This will be accomplished by enabling a user to explicitly specify the

parallelism associated with data structures in the program and their distribution across the parallel

system, �les accessed by the application and their distribution on the I/O devices, and the access

methods for controlling the movement of data between the two. Explicit speci�cation of I/O

parallelism will enable compilers and runtime system software to further enhance the performance

of the I/O systems.

We propose to develop directives that provide information about data distribution and align-

ment within application programs. Additionally, we propose to study language extensions, es-

pecially for HPF, to specify parallel I/O operations. Primitives will be developed that can be

used from \node + message-passing" programs and from parallel languages, like HPF, to perform

parallel I/O operations.

5 Scalable Persistent Object Stores

Providing scalable I/O from tera and peta byte secondary and tertiary storage to teraops of

computing is part of the solution to grand challenge problems. The scalable I/O solution includes

new paradigms of referencing and naming data (e.g. metadata), incorporating these reference

models into �le-access systems that provides data access and data archiving, and �nally delivery

of the data to the application via the fastest and user productive means possible. This is part of a

system architecture that includes 1000's of processors, 100's of gigabytes of physical memory, and

an external hierarchical non-volatile disk and tape subsystems.

A major task of this initiative is to design, develop and implement a balanced, scalable, and

modular persistent object store to assist in the scienti�c computing tasks of the Scalable I/O

Laboratory.

5.1 Tightly-Coupled Stores

We propose to pursue a radically di�erent approach for providing scalable I/O to scienti�c and

engineering computations. As the underlying hardware architecture, we assume that an important

component of the mass storage hierarchy will consist of disks that are tightly coupled with each

processor rather than being a segregated component of the system. This is the approach used by

all parallel database systems including Teradata whose largest con�gurations contain over 300 pro-

cessors and 600 disk drives. This consensus architecture scales inde�nitely. Furthermore, over the

next �ve years as as standard disk drives shrink from a 3.5 inches to 1 inch, it will become possible

to mount several disk drives directly on the processor cards. A suitable system for implementing

and experimenting with this approach will be created as part of this scalable I/O initiative.

6

Given this basic architecture, it is straightforward to construct a parallel-�le system that dis-

tributes the blocks of the �le system across an appropriate number of disk drives; small �les across

a subset of the disk, large �les, or those for which maximum I/O bandwidth is required, across

all drives. A prototype of such a �le system for a 64 processor/64 disk Paragon is already under

development at the University of Wisconsin.

While this approach will indeed provide a scalable �le system, we propose a much more radical

approach. It is our contention that scienti�c applications should NOT deal with the �le system in

terms of physical blocks of data (e.g. read the next 512 bytes). As an example, consider a very large

2D array. Today the programmer is responsible for mapping pieces of the array to the �le system.

This is tedious and very inexible. If the application is moved to a di�erent parallel processor with

a di�erent I/O architecture, large pieces of the application may need to be rewritten. Instead, we

feel that applications should deal with mass storage at a higher semantic level. In particular, we

propose to replace the conventional �le system with a parallel persistent object store. There are a

number of reasons why we advocate such an approach:

(1) The languages for such systems allow programmers to manipulate both transient and persis-

tent data (e.g. a matrix or a complex data structure) in the same way, freeing the programmer from

having to do explicit �le I/O. The CAD/CAM community has already begun to realize signi�cant

gains in programmer productivity through the use of such persistent programming languages. This

community has also demanding performance requirements and they have found that this increase

in productivity does not imply a corresponding loss in performance. The High Performance Fortran

language has features that should mesh well with this approach.

(2) Too much important information is lost when data is stored \Unix-like" byte-stream �les.

A scalable I/O system based on the concept of typed persistent objects will provide a higher

level semantics for the data as the application programmer will be provided a full type system for

describing his/her persistent data. In addition, since the type descriptor for each persistent object

is itself a persistent object, the meta information about the actual data will never be accidentally

displaced.

(3) Very large objects can be transparently partitioned across multiple disk drives. As an

example, assume the existence of a 2D persistent matrix class. Associated with the class will be

a set of prede�ned methods for storing and manipulating instances of the class. As an example

consider the create method (i.e. new() in C++). As parameters, this method might accept both the

number of disks used to store the object and the declustering strategy for mapping the elements of

the matrix to mass storage. For example, a \row-wise" declarative would distributed the elements

of each row across the speci�ed number of drives.

In such an approach, the actual computation (e.g., an eigensolver) would itself be a method

accessing the matrix as if it were memory resident (regardless of its size). By suitably rede�ning

the subscripting operator (i.e. []) to incorporate the declustering factor and strategy, access to

elements of the matrix can occur transparently, regardless of what disk actually holds the desired

data. Such an approach avoids having the declustering factor or strategy from being \wired" into

the application, allowing the user to tune the application by modifying each without having to

rewrite the application itself (only the data will have to be reorganized). We plan on developing a

full set of such classes for use in numerical applications.

5.2 Network-Connected Stores

We also intend to examine whether the strategies described above can be extended to handle objects

on tertiary storage by having the �rst reference to an object cause the object to be staged from

7

tertiary to secondary storage.

As the basis for this system we will use the Shore persistent object manager that is currently

under development at the University of Wisconsin. Shore has been designed to provide type

persistent objects in both client-server and parallel computing environments. Shore's type system

is based on ODL, an industry standard for de�ning persistent objects.

Additional approaches that will be pursued include a modular storage system for controlling

the persistent store that adheres to standard interfaces. Speci�cally, we would implement storage

system software that is designed in compliance with the IEEE Storage System Reference Model.

This would ease and enable the transition to new physical media and storage devices within the

storage system.

We will also investigate developing a reference model for a persistent object store to encourage

alternate implementations of essential components.

6 System Services

We propose three major thrusts in system services. The �rst involves development of checkpointing

and memory hierarchy management techniques in scalable parallel I/O framework. The second

involves the development of the fundamental I/O system software { interface, algorithms, and

implementation to support both compiler controlled and explicit MIMD I/O. The third involves

networking, an essential element of I/O with the advent of networked secondary and tertiary store.

6.1 Checkpointing and Memory Hierarchy Management

(Li)

Checkpointing and memory hierarchy management such as memory servers, shared virtual

memory and persistent shared virtual memory are necessary support for grand challenge applica-

tions and will enhance the usability of massively-parallel machines. Concurrent checkpointing and

logging utilities allow long running jobs to save state from time to time so that programs can be

restarted from their saved states on stable storage, tolerating hardware and software errors, net-

work disconnect situations, dedicated system time interruptions and unexpected system crashes.

Checkpointing performance is particularly important in grand challenge applications because they

have enormous memory images and long running times. Important challenges include developing

message synchronization techniques to provide a consistent snapshot of the machine state, and

concurrent checkpointing techniques that e�ectively use parallel I/O resources, to achieve high

performance and eventually, real-time checkpointing and restart.

Memory hierarchy management techniques for massively parallel multicomputers include mem-

ory servers, shared virtual memory and persistent shared virtual memory. Research in memory

servers is the �rst step towards utilizing the entire physical memory in a multicomputer. The

memory server model extends the memory hierarchy of multicomputers by introducing a remote

memory server layer between the local physical memory and fast stable storage such as disks.

The memory server model takes advantage of both fast routing networks and available memory

resources in multicomputers to reduce page transfer time by three orders of magnitude.

Shared virtual memory allows applications to exploit all of the memory capacity on existing

multicomputer systems by providing a large coherent shared virtual memory space. Challenges in

the memory hierarchy management include scalability, which is the current focus of designing and

implementing memory servers and shared virtual memory systems for massively parallel multicom-

puters. The system data structures designed for these systems for small-scale multicomputes are

8

no longer appropriate. For this kind of research, it is essential to perform experiments at scale.

The persistent shared virtual memory research supports shared, persistent storage systems and

is based upon shared virtual memory and parallel backing storage I/O. Persistent shared virtual

memory keeps certain pages persistent across both program invocations and machine crashes, pro-

viding a highly concurrent persistent object base that allows its persistent mapping to take full

advantage of concurrent I/O bandwidth, while supporting multiple threads of program execution.

It is an integration of our previous research e�orts in shared virtual memory, concurrent real-time

checkpointing, concurrent pipelined logging, and concurrent real-time garbage collection.

6.2 Operating Systems and File Systems

(Chien, Reed, Cormen, Kotz, DeBenedictis)

The rapid increase in processing power available due to the advent of scalable parallel machines

is reducing the ratio of input/output bandwidth to computing power, increasing the importance

of input/output software to achieving high performance. Without major advances in software

technology, the relative input/output performance of the new generation of scalable parallel systems

will decrease tenfold, and a substantial fraction of all high-performance applications will become

input/output limited.

We propose to investigate high-performance input/output software techniques for distributed

memory, massively parallel systems, with emphasis on the Paragon XP/S system, that will achieve

high-performance input/output through e�ective management of the parallel storage hierarchy and

aggressive locality exploitation, based on observed, predicted, and algorithmically scheduled �le ac-

cess patterns. The design and performance of the software will be driven by previous and ongoing

(see I/O Characterization and Instrumentation section) analyses of application input/output de-

mands and a detailed performance instrumentation of the Paragon operating system software. The

underlying hardware model is a secondary storage system with input/output nodes that each sup-

port one or more secondary or tertiary storage devices (i.e., disks, disk arrays, or �le archives).

Parallel applications that execute on compute nodes request �le services by sending messages

through the interconnection network to the input/output nodes.

This work will require development of new input/output libraries, modi�ed �le systems, and

modi�cations to the existing OSF/1 operating system code on the Paragon XP/S system. The

resulting software will be distributed as a series of releases to members of the Scalable Input/Output

initiative and, through the Intel Supercomputer Systems Division, to its commercial customers.

Thus, it will serve not only as a production �le system, but also as a testbed for the design of

future �le systems. Though our studies use the Intel Paragon XP/S as an experimental vehicle,

our objective is to resolve the key issues in scalable input/output for all massively parallel systems.

We anticipate having access to other systems in the future on which we will validate the portability

and e�ciency of the software for diverse platforms.

The data management algorithms that form the heart of our input/output software will be based

on the analysis of parallel input/output traces from both application programs and synthetic �le

access workloads; techniques for acquiring this data are the subject of research by other members

of the consortium. An instrumentation of the OSF/1 operating system software for the Paragon

XP/S will allow us to study the dynamics of existing �le system components and understand the

underlying reasons for observed performance, both with the extant OSF/1 �le system software and

our modi�cations. In both cases, the DARPA-sponsored Pablo performance analysis software will

provide the requisite performance instrumentation and data reduction tools.

In high-performance computing systems, the input/output subsystem often represents a sub-

9

stantial fraction of the system cost. Consequently, determining how to balance con�gurations

for particular workloads is an important practical problem. We will develop performance models

which accurately characterize (predict) the obtainable input/output performance of a workload

with respect to a particular input/output con�guration.

The distribution of data across multiple disks increases vulnerability to disk or input/output

processor failures. Since redundancy techniques such as RAID are designed for uniprocessor ma-

chines, new techniques are required for multiprocessors with distributed disks. We will develop

methods to provide �le availability even in the face of disk or input/output-node failure to deter-

mine the best methods for the multiprocessor environment, and the impact of these methods on

performance.

Implementing �le data management algorithms via libraries and user-level �le servers is attrac-

tive because it allows the parallel input/output system to be developed atop the existing OSF/1

software. When possible, working above the operating system interface signi�cantly reduces the

complexity of experimentation. In addition, such a separation insulates the parallel input/output

software from the underlying operating system software and input/output devices, increasing the

portability both over machine con�gurations and software releases and across massively parallel

machines from di�erent vendors.

6.3 Networking for E�cient Scalable I/O

(Bershad, O'Malley)

The networking/communications architecture of a host has two distinct impacts on the search

for a solution to the scalable I/O problem. First, networking teraop machines together is a scal-

able I/O problem of the �rst order. Second, all I/O performance will be critically a�ected by the

performance of the communications architecture. Many I/O devices will only exist on a subset of

the nodes of the machine and hence I/O operations to those devices will require internode commu-

nication. Work is needed in both intra-host and intra-node network, if the performance goals of

the scalable I/O initiative are to be met. More importantly the work in both areas is inter-related

and must be coordinated on a system wide basis.

Layer Integration Recent work in the design of e�cient network software has demonstrated

the criticality of integrating of program communications strategies across a variety of system layers.

Layer integration achieves two fundamental goals: e�ciency and transparency. Layer integration

allows strategies to be coordinated across levels. For example, failing to integrate bu�ering strate-

gies across layers can require copying every time data crosses a layer boundary, seriously degrading

system performance. Transparency without e�ciency is irrelevant in high performance systems {

transparent mechanisms which give inferior performance have historically been bypassed in high

performance applications. Thus, each level of an integrated communications subsystem must per-

form as well as the best non-integrated mechanism.

Layer integration leads to a variety of optimizations which are critical to the I/O performance

of teraop class machines. Some combination of optimizations such as application level framing

(allowing the application to specify the smallest unit of data dealt with independently reducing

sequencing constraints), integrated bu�er management (using the the same bu�er management

abstractions across all layers of the communication subsystem reducing copying), and layer bypass

(removing unnecessary intermediate layers). Note that in some sense layer bypass and integrated

bu�er management are competing optimizations which both have the same goal.

10

Striping The purpose of striping is to increase I/O performance by spreading a single logical

I/O operation over a parallel collection of I/O devices. The critical feature of network striping is

that it allows a single application to transparently use multiple physical network links to achieve

very high bandwidths. Such striping can multiply the communication rates achievable through

parallelism and may even have cost advantages. At a minimum, implementing network striping

requires new network protocols to drive multiple networks and new parallel communications which

allow programmers to specify highly parallel network I/O operations in a network and machine

architecture independent fashion.

Application level striping is an attempt to improve the performance of I/O in large scale multi-

computers by integrating striping policies for the entire machine. A single system wide striping

policy is used by all subsystems, and this policy is visible to the application writer. The goal is

to perform each expensive operation (for example error detection/correction) once for the entire

transaction and to avoid stalling the communications pipeline while waiting for out-of-order or

dropped packets.

Support for scalable high speed I/O requires the careful integration of layers along the entire

path from the application to the I/O devices. In addition, a system wide striping policy, integrated

with the application level framing, is required. While the exact features of such an integrated

policy are a critical area of research, any system which uses a collection of uncoordinated policies

cannot hope to perform e�ciently.

7 Scalable I/O Laboratory

Essential to the scalable I/O project is the development of prototype systems. The most important

and unique resource is a large, easily recon�gurable system to look at large-scale e�ects and to run

real applications. The system should be big enough to support Grand Challenge-like applications

The Intel Paragon that the Concurrent Supercomputing Consortium is getting is an excellent

candidate because of its fast internal communications speed and its modularity. In addition, it will

be useful to have a few small, exible, crashable systems for small-scale studies of hardware and

software. Both types of system must run in a standard Unix environment. Both will also require

periodic (two-year) upgrading as devices, channels, and processors improve.

To serve as a scalable I/O laboratory, the con�guration of the large system will be augmented

with several hundred node-connected disk drives, a large number of large memory nodes (128 MB

instead of 32 MB), and 16 or more HIPPI interfaces. A network-connected mass storage system

capable of supporting several HIPPI interfaces will be important for investigating the entire life-

cycle of data.

It will be possible to carry out experiments with high-speed wide-area networks by using the

CASA gigabit testbed project that will connect Caltech to Jet Propulsion Laboratory, San Diego

Supercomputer Center, and Los Alamos National Laboratory. The link to JPL is already opera-

tional at 800 megabits/sec.

11

Appendix A: Author Institutional A�liation

Brian Bershad, Carnegie Mellon University, bershad@ernst.mach.cs.cmu.edu

Andrew Chien, University of Illinois at Urbana-Champaign, achien@cs.uiuc.edu

Alok Choudhary, Syracuse University, choudhar@cat.syr.edu

Tom Cormen, Dartmouth College, thc@cs.dartmouth.edu

Eric DeBenedictis, Scalable Computing, 0005039494@mcimail.com

David DeWitt, University of Wisconsin, dewitt@cs.wisc.edu

Denise Ecklund, Intel Supercomputer Systems Division, denisee@ssd.intel.com

William Gropp, Argonne National Laboratory, gropp@mcs.anl.gov

Robert Grossman, University of Illinois at Chicago, grossman@eecs.uic.edu

Rick Kendall, Paci�c Northwest Laboratory, d3e129@pnlg.pnl.gov

Ken Kennedy, Rice University, ken@rice.edu

Chuck Koelbel, Rice University, chk@rice.edu

David Kotz, Dartmouth College, dfk@wildcat.dartmouth.edu

Kai Li, Princeton University, li@cs.princeton.edu

Peter Lyster, Jet Propulsion Laboratory, lys@hyper-sun9.jpl.nasa.gov

Dan Marinescu, Purdue University, dcm@cs.purdue.edu

Paul Messina, California Institute of Technology, messina@ccsf.caltech.edu

Reagan Moore, San Diego Supercomputer Center, moore@sds.sdsc.edu

Sean O'Malley, University of Arizona, sean@cs.arizona.edu

David Payne, Intel Supercomputer Systems Division, payne@ssd.intel.com

Terry Pratt, National Aeronautics and Space Administration, pratt@cesdis1.gsfc.nasa.gov

Dan Reed, University of Illinois at Urbana-Champaign, reed@cs.uiuc.edu

Joel Saltz, University of Maryland, saltz@cs.umd.edu

Rick Stevens, Argonne National Laboratory, stevens@mcs.anl.gov

Steve Wallach, Convex Computer Corporation, wallach@concave.convex.com

Roy Williams, California Institute of Technology, roy@ccsf.caltech.edu

12

