
Operating System Support

for High Performance Parallel I/O Systems

Brian Bershad, University of Washington

David Black, Open Software Foundation Research Institute

David DeWitt, University of Wisconsin

Garth Gibson, Carnegie Mellon University

Kai Li, Princeton University

Larry Peterson, University of Arizona

Marc Snir, IBM Watson Research

Abstract

This document describes the operating system support component in the Scalable I/O

Initiative. Our e�orts cover three critical areas of scalable, parallel I/O for for high-

performance multicomputers: networking, memory management, and �le and object store.

We are leveraging o� on-going research results in these three areas. Our main e�orts in the

scalable I/O initiative will be directed towards hardening, porting, tuning, and deploying

our technology on the target platforms.

1 Introduction

This document describes the operating system component in the Scalable I/O Initiative for

high-performance multicomputers. The operating system component o�ers coverage over three

critical requirements for message-based massively parallel multicomputers:

Networking : Support low-overhead, high-bandwidth, and scalable communication between

processors. This will involve work at two di�erent levels. The �rst, intranetworking,

enables communication between processors that are part of the same multicomputer. The

second, internetworking, enables communication between remote processors connected by

networks such as Ethernet, HIPPI, FDDI and ATM.

Memory Management : Provide
exible memory management, including a large shared vir-

tual memory that enables the use of a shared-memory programming paradigm even on

message passing machines, memory servers that extend the memory hierarchy of mul-

ticomputers by introducing a remote memory server layer between the local physical

memory and fast stable storage such as disks, and a checkpointing facility that ensures

that long-running programs can be restarted and/or migrated in the case of processor or

system failure.

1

File and Object Store : Provide scalable I/O from tera- and peta-byte secondary and ter-

tiary storage. This component will be comprised of three major tasks. The �rst involves

de�ning and implementing a standard applications interface to both the Intel Parallel

File System (PFS) and the IBM Vesta Parallel System. As an alternative, we will explore

whether a parallel, persistent object store that provides transparent access to persistent

objects (e.g. large matrices) on secondary and/or tertiary storage can provide satisfactory

performance to HPF applications. The third component will be to design and evaluate

alternative strategies for prefetching �les and objects from tertiary storage into secondary

storage.

We have already developed technology that adequately demonstrates the feasibility of our ap-

proaches, which are described in the remainder of this section. For this proposal, our main

e�orts will be directed towards hardening, porting, tuning, and deploying our technology on

the target platforms.

2 Related E�orts

The proposed work will all be done in the context of the following systems software, which have

been developed under other ARPA contracts:

� The Mach microkernel from Carnegie Mellon University. Mach supports a small number

of orthogonal abstractions such as threads, memory, and IPC, on top of which high-level

operating system services such as �ling, networking, and process management can be

implemented. Recently, work at CMU, and now at the University of Washington, has

focussed on improving the performance of networking protocols within the context of the

Mach operating system[15, 14, 1].

� OSF/1 AD from the Open Software Foundation[18]. AD extends Mach to provide single-

node semantics for a distributed memory multicomputer such as the Intel Paragon.

� The x-kernel from the University of Arizona [5, 16]. The x-kernel provides a platform-

independent framework for implementing network protocols. It has already been inte-

grated in Mach.

� The shared virtual memory [10, 11], memory server [6], and checkpointing tools [12, 13]

developed at Princeton University. They currently run on iPSC/860 and target to run on

the Intel Paragon.

� The SHORE persistent object manager being developed at the University of Wisconsin [2,

3]. SHORE provides a language-neutral, scalable persistent object store target to run on

a variety of hardware platforms from networks of workstations to large parallel processors

such as the Intel Paragon and the IBM SP2.

Our work will also leverage two particular industrial e�orts: Intel's Parallel File System

(PFS) and IBM's Vesta Parallel File System. In addition, we will be de�ning interfaces that will

2

allow us to access the mass storage systems being designed by the National Storage Laboratory

(NSL). NSL is a joint industry, DOE national laboratory, university collaboration with over

20 participants organized to investigate, demonstrate, and commercialize high performance

hardware and software to remove bottlenecks in the I/O performance and functionality of very

large, hierarchical mass storage systems.

3 Networking

We propose to design, implement, and evaluate techniques for providing high-performance

networking support of multicomputers. Our e�ort will involve both communication among the

nodes within a distributed memory multiprocessor (intranetworking), and between a particular

multiprocessor and remote machines via a high-speed network such as FDDI, ATM, or HIPPI

(internetworking). Much of the work described in this section will be done in the context of

the x-kernel protocol implementation framework.

3.1 Protocol Framework

We have implemented a protocol framework, called the x-kernel [5, 16], that supports the

rapid implementation of e�cient network protocols. We have integrated the x-kernel protocol

framework into the Mach 3.0 operating system, in a way that allows a protocol graph to run

across multiple protection domains, including the Mach microkernel, a network server, and

application domains. Various protocol suites, including TCP/IP and Mach IPC have been

implemented in the x-kernel [17].

The x-kernel provides protocol implementors with an interface that completely hides the

details of the rest of the system. That is, communications software is decoupled from the ap-

plication programming interface, the host operating system, the underlying architecture, the

details of the network adapter board, the protection/security domain that it runs in, and the

processor it runs on. As the result of this design, the networking subsystem is highly con�g-

urable. System administrators con�gure exactly the suite of network protocols that are needed,

and then place those protocols in di�erent protection domains and on di�erent processors de-

pending on how they are willing to trade performance against trust.

We achieve good performance through the vertical integration of the entire communications

subsystem, from the application interface, through the protocol stack, to the network adapter

board. This implies that all performance critical decisions are made in a coherent fashion,

thereby avoiding the expense of changing abstractions as network packets
ow through the

system. In other words, by implementing all protocols in the context of the x-kernel, we are

able to identify and optimize the critical path.

The x-kernel framework has been demonstrated on workstations connected to high-speed

networks (FDDI and ATM) [4]. We propose to port the x-kernel to OSF/1 AD running on

the Intel Paragon, and to tune/optimize its performance in support of the communications

protocols described throughout this section.

3

3.2 Intranetworking

Intranetworking is concerned with moving data between processors that are connected to the

same logical system. Intranetworking may be within or between parallel programs. For commu-

nication within a parallel program, latency and throughput are the primary metrics of success.

For communication between programs, such as occurs during client/server operating system

interaction, protection and authentication become as important as performance. As two styles

of communication must be accommodated, we propose using two distinct solutions.

Unprotected Communication

For communication within a logical process, we will adapt a set of low-overhead networking

protocols that we have developed for local-area ATM (Asynchronous Transfer Mode) networks

[1]. These protocols have the following important characteristics: they require minimal hard-

ware support from the networking interface, incoming/outgoing data is touched by the CPU

only once as it enters/leaves the network interface, they have extremely modest CPU require-

ments during the common case of reliable/sequenced delivery, and they support
ow-control

and congestion-control with low overhead.

Our protocol architecture yields high performance by eliminating protocol redundancy and

by exploiting common-case communication behavior. With this approach, we can combine

the functionality typically found in four separate layers of the ISO model { data link through

session { in a single pass over the data, delivering high throughput and low latency. Our protocol

architecture requires minimal hardware support from the network interface and switch fabric,

yet e�ciently provides services such as segmentation and reassembly,
ow control, congestion

avoidance, and error recovery. We have implemented our protocol architecture on a switch-

based ATM network consisting of DECstation 5000/200 workstations running the Mach 3.0

operating system. Our implementation achieves latencies and bandwidths close to the physical

limitations imposed by the hardware, yet o�ers applications a high-level reliable transport

interface [1]. Currently, these protocols run over a switch-based ATM network. The task of

adapting them to the Paragon mesh would be a part of this contract.

Protected Communication

For protected communication, such as that employed by client-server interactions, we propose

utilizing technology from the x -kernel's implementation of Mach IPC on loosely-coupled net-

works [17] to improve NORMA IPC for the Paragon and other platforms. Mach IPC is the

communication abstraction of the Mach operating system. It supports a rich semantics: multi-

part, typed messages are delivered reliably and in sequence to ports; tasks hold, and can transfer

to each other, the right to send to, and receive from, ports; and tasks are noti�ed when the

status of ports they hold a right to changes (e.g., the holder of a send right is noti�ed when no

task currently holds a receive right). NORMA IPC is the transparent kernel to kernel extension

of Mach IPC used on Paragon (among other machines). The xkernel's protocols for port right

management in the presence of possible node failure allow NORMA IPC to respond to node

4

failures (e.g., by delivering noti�cations that result from port rights on that node being de-

stroyed). This improves NORMA's current behavior (no resilience to node failures) and allows

higher levels of system software to rely on IPC noti�cations as part of their recovery mecha-

nisms. Components of the xkernel's protocol implementations may also be useful in porting

NORMA IPC to additional hardware platforms such as the SP1.

3.3 Internetworking

This component provides scalable,
exible internetworking (e.g., TCP/IP) technology, where

networking performance is limited only by the path from the application to the network inter-

face hardware. Operating system interference is kept to a minimum because we eliminate the

operating system on critical send and receive operations.

The key insight behind our work is that an application's interface to the network is dis-

tinct and separable from its interface to the operating system. By separating the interfaces, we

can provide a fast path between the application and the raw network media while maintaining

the semantics of operating system abstractions speci�ed by standard application programming

interfaces. Speci�cally, code in the application address space implements the network proto-

cols and transfers data to and from the network, while an operating system server manages

the heavyweight abstractions that applications use when manipulating the network through

operations other than send and receive. We achieve high performance by avoiding protection

boundary crossings, data copying, and unnecessary software layers in the important common

case of send and receive. We provide
exibility because the user-level networking software may

be developed, con�gured, and specialized independently from the rest of the operating system.

Our approach is scalable to thousands of processors because each processor can maintain its

own copy of the network protocol stack and protocol endpoint data structures. Thus, logically

distinct protocol endpoints are also structurally distinct, and can therefore run in parallel.

Our approach of separating the protocol implementation into two pieces, one fast that

resides in the application's address space and provides network connectivity, and one complete

that resides in an operating system server and that provides full interface compatibility, has

resulted in substantial performance improvements relative to a server-based implementation for

uniprocessor implementations based on the Mach operating system. More importantly, our user-

level protocol libraries achieve performance (both throughput and latency) that is comparable,

and in some cases superior, to well-tuned kernel-based implementations. Furthermore, this

approach is well suited for loosely-coupled environments since each application has a private

copy of the network protocol stack which means network data transfer requires no interaction

with an operating be system server. Thus, networking performance is limited only by the path

between the application and the network interface hardware.

The internetworking protocols themselves will be implemented using the x-kernel. Currently,

our distributed protocol implementation relies on the Berkeley UNIX protocol suite, although

this is incidental and not fundamental to our mechanisms which are primarily concerned with

interfaces between the protocols and the operating system, as opposed to within the protocols

themselves. Consequently, we do not expect that retargeting our implementation to the x-

5

kernel will be a signi�cant problem.

4 Memory Management

The goal of this component is to incorporate new techniques for memory management that

are necessary for the current and next generations of massively parallel multicomputers. The

techniques include shared virtual memory, remote memory servers, and checkpointing.

4.1 Shared Virtual Memory

Shared virtual memory [10, 11] implements coherent shared memory on a multicomputer with-

out physically shared memory. The shared virtual memory system presents all processors with

a large coherent shared memory address space. Any processor can access any memory location

at any time. The shared memory address space can be as large as the memory address space

provided by the MMU of the processor. The address space is coherent at all times, that is,

the value returned by a read operation is always the same as the value written by the most

recent write operation to the same address. In conjunction with the memory servers, the shared

virtual memory provides users with large shared virtual memory spaces.

4.2 Memory Servers

Memory servers [6] for multicomputers allow sequential programs, message-passing programs,

and shared virtual memory programs to use the entire physical memory resources e�ectively.

The memory server model extends the memory hierarchy of multicomputers by introducing a

remote memory layer whose latency lies somewhere between local memory and disk. A memory

server is a multicomputer node whose memory is used for fast backing storage and logically

lies between the local physical memory and fast stable storage such as disks. The memory

server model takes advantage of both fast routing networks and available memory resources

in multicomputers. A page transfer on the state-of-the-art multicomputer is three orders of

magnitude faster than a page transfer between memory and disk. The performance advantage

of the memory server mechanism over the traditional virtual memory management will become

even more signi�cant as the performance gap between routing networks and secondary storage

widens.

4.3 Checkpointing

The goal of this component is to support low-overhead (space and time) checkpointing and

restarting for programs running on a massively parallel multicomputer. Checkpointing allows

long running jobs to save their state from time to time so that they can be restarted in case of

failures, or in case of job swapping due to resource allocation. A checkpointing mechanism must

be both space and time e�cient. Existing checkpointing systems for MPPs checkpoint the entire

6

memory state of a program. The space requirements for such an approach is proportional to

twice the size of the data structures in a program (the previous checkpoint must be preserved

during a checkpoint operation). Similarly, existing checkpointing systems work by halting

the entire application during the construction of the checkpoint. This stoppage can have a

substantial negative impact on the total execution time.

Our research in the area of checkpointing has resulted in a set of algorithms for generating

compact, low-latency checkpoints[12]. Checkpoints are compact because only the data changed

since the previous checkpoint must be written to stable store (as opposed to the entire image).

Checkpoints have low-latency because they are generated concurrently during the program's

execution.

Our techniques are applicable to multicomputers that do not have explicit hardware support

for message synchronization. Distinct memory address spaces on MPPs make it di�cult to stop

a program in a consistent state, because there may be asynchronous messages still in transit

through the network while the snapshot is being taken. The synchronization methods developed

at Princeton and the University of Wisconsin [13] require a minimal number of synchronization

messages and loggings for MMPs based on static wormhole routing networks.

5 File and Object Stores

This component is comprised of three major tasks including including de�ning and implement-

ing a standard applications interface to both the Intel Parallel File System (PFS) and the IBM

Vesta Parallel System, exploring the viability of a parallel, persistent object store that provides

transparent access to persistent objects on secondary and/or tertiary storage, and techniques

for prefetching �les and objects from tertiary storage into secondary storage.

5.1 Parallel File Systems Support

Our e�orts in the parallel �le system area will be consist of four major thrusts:

� Develop a comprehensive benchmark suite for parallel �le systems.

� Design a common interface for the Intel PFS and IBM Vesta parallel �le systems.

� Integrate resulting secondary storage �le system with standard tertiary storage systems

� Enhance performance of OSF1/AD �le system.

Parallel File System Benchmark Suite

Together with the project component responsible for characterizing I/O characteristics of paral-

lel applications, we will on developing a comprehensive benchmark suite for parallel �le systems.

7

While a limited evaluation of the Intel Parallel File System (PFS) has been conducted[8], no

common, comprehensive benchmark for parallel �le system performance exists. We propose

to develop such a benchmark. Experience in the database system area has proven that such

benchmarks are invaluable to obtaining the maximum performance out of a system.

Such a benchmark will serve several functions. First it will be used to understand the

performance characteristics of the current Intel Parallel File System (PFS) and the IBM Vesta

parallel �le system. The results we obtain from speedup and scalability testing of both �le

systems will be used to locate performance bottlenecks, to explore the e�ectiveness of alternative

design choices, and to guide future development of both �le systems.

A Common Interface for the Vesta and PFS File Systems

One of the major reasons that Unix has been such a commercial success is that all implemen-

tations supported a standard �le system interface. This is not true in the area of parallel �le

systems. For example, Intel's PFS tries to preserve the Unix-�le system interface. Five di�erent

access modes are provided[7], ranging in complexity from having each compute node maintain

its own �le pointer to a very centralized mode in which a single compute node reads the �le and

then distributes what it reads to the other compute nodes. Three of the �ve I/O modes requires

a centralized coordinator. This coordinator is likely to become a bottleneck as the system is

scaled. Files in PFS may be striped across multiple storage units (a single disk or a RAID

device) but all �les in the same �le system must span the same storage units and must have the

same striping factor (the number of logically contiguous blocks stored on a single storage unit

before proceeding to the next storage unit). Files can only be striped in a round-robin fashion.

The functionality provided by Vesta is signi�cantly di�erent from PFS. First, Vesta does

not attempt to preserve the standard Unix �le system interface. Files are created via an explicit

create call instead of by overloading the write system call. When a �le is created, the physical

layout of the �le is speci�ed. The layout information includes the starting storage unit, the

number of storage units to use, and the striping factor for the �le. Each �le in a �le system may

be striped di�erently. No centralized catalog is used to keep track of the layout information.

Instead, the �le name is hashed to storage unit to locate the meta �le containing the layout

information for the �le.

A second unique feature of Vesta is that when a �le is opened, the application can specify

what logical partitioning is desired. Basically the logical partitioning provides a view for the

application to use when accessing the �le. By setting the parameters to the open call appro-

priately, a variety of useful views are possible including row, column, block and block cyclic

decompositions of two dimensional matrices. The application operates on the �le through its

logical view of the �le. The underlying software takes care of mapping the logical view to the

physical layout of the �le - all without the use of a centralized coordinator. Another unique

feature of Vesta is that �les can be checkpointed, enabling updates to be rolled back in case an

application fails.

In collaboration with the language/compiler community, we will develop a common interface

to Intel's PFS and the IBM's Vesta. A common interface is critical to achieving portability

8

of applications between the two systems. We will begin by studying and benchmarking both

systems as well as examining the needs of various �le system clients such as extensions to HPF

to support "out-of-core" arrays. It is too early to state exactly what this common interface will

look like. One alternative might be to implement a PFS-compatible interface on top of Vesta.

On the other hand, since Vesta has signi�cantly more functionality than PFS, implementing a

Vesta-compatible �le system (including checkpointing) for the Paragon might make more sense.

Support for Tertiary Storage

We also intend to investigate strategies to integrate local parallel �le systems and persistent

object stores with large scale tertiary storage. Our approach will be to work closely with the

National Storage Laboratory's (NSL's) High Performance Storage System (HPSS) project to

assure the appropriate mass storage interface and other functionality to meet the Scalable I/O

project's application and other prototype system requirements. HPSS will be integrated into

the two Scalable I/O testbeds at Argonne and Cal Tech beginning in 1995.

OSF1/AD File System Enhancements

We intend to also develop a
exible framework to support the implementation of high perfor-

mance parallel �le systems. This should increase the ease of experimentation and interchange

of results. The
exibility in this framework will include:

� Caching policy. We will extend the AD �le system to support read-ahead, write-behind,

and eviction. We will provide interfaces to accept caching information from the applica-

tion, including the language runtime system.

� Server residency. We will investigate alternatives for providing high performance �le

access to applications while minimizing the �le system code that must reside on nodes

performing computations.

� Decomposition. The framework will support the decomposition of a �le system into

modular components, enhancing con�gurability, and encouraging reuse. Among the �le

system components amenable to modularization are single system image support for a

multicomputer, and caching based on techniques described in the Memory Management

section.

Our pahis area has produced techniques for the coexistence of multiple access methodologies

(direct access fast path, mapped �les, bu�er cache) and a framework for supporting a parallel �le

system independent of the underlying (disk managing) �le system. We intend to incorporate

this functionality into the proposed framework. In designing this framework, past work on

stackable vnode architectures will be carefully examined and used as a basis for the framework

if it can provide a reasonable match to supercomputer I/O requirements.

9

In the area of infrastructure, we expect to implement support for extent-like behavior on

large transfers for the existing UFS-based implementation of AD's �le system. This support will

be based on techniques such as larger block sizes (including the use of fragments for meta-data),

and coalescing of blocks to avoid performing multiple device operations for I/O requests that

involve multiple �le system blocks. Such suppted optimizations provide further improvements

to the performance of the fast path for the large transfers expected in a supercomputer.

5.2 A Parallel, Persistent Object Store Alterative

As an alternative to a conventional parallel �le system, we also propose to pursue a much more

radical approach. It is our contention that scienti�c applications should NOT deal with the

�le system in terms of physical blocks of data (e.g. read the next 512 bytes). As an example,

consider a very large 2D array. Today the programmer is responsible for mapping pieces of the

array to the �le system. In the case of Intel's PFS this process is tedious, error-prone, and very

in
exible. While Vesta's higher-level interface makes this mapping much simpler, we feel that

applications should deal with mass storage at even a higher semantic level. In particular, we

propose to replace the conventional �le system with a parallel persistent object store such as

the one being developed as part of the ARPA-funded SHORE project[2]. There are a number

of reasons why we advocate such an approach.

First,the languages for such systems allow programmers to manipulate both transient and

persistent data (e.g. a matrix or a complex data structure) in the same way, freeing the pro-

grammer from having to do explicit �le I/O. The CAD/CAM community has already begun to

realize signi�cant gains in programmer productivity through the use of such persistent program-

ming languages. This community has also demanding performance requirements and they have

found that this increase in productivity does not imply a corresponding loss in performance.

The High Performance Fortran language has features that should mesh well with this approach.

Second, too much important information is lost when data is stored Unix-like byte-stream

�les. A scalable I/O system based on the concept of typed persistent objects will provide a

higher level semantics for the data as the application programmer will be provided a full type

system for describing his/her persistent data. In addition, since the type descriptor for each

persistent object is itself a persistent object, the meta information about the actual data will

never be accidentally displaced.

Third, very large objects can be transparently partitioned across multiple disk drives. As

an example, assume the existence of a 2D persistent matrix class. Associated with the class

will be a set of prede�ned methods for storing and manipulating instances of the class. As an

example consider the create method (i.e. new() in C++). As parameters, this method might

accept both the number of disks used to store the object and the declustering strategy for

mapping the elements of the matrix to mass storage. For example, a \row-wise" declarative

would distributed the elements of each row across the speci�ed number of drives.

In such an approach, the actual computation (e.g., an eigensolver) would itself be a method

accessing the matrix as if it were memory resident (regardless of its size). By suitably rede�ning

the subscripting operator (i.e. []) to incorporate the declustering factor and strategy, access

10

to elements of the matrix can occur transparently, regardless of what disk actually holds the

desired data. Such an approach avoids having the declustering factor or strategy from being

\wired" into the application, allowing the user to tune the application by modifying each

without having to rewrite the application itself (only the data will have to be reorganized). We

plan on developing a full set of such classes for use in numerical applications.

We will use software being developed as part of the SHORE (Scalable Heterogeneous Object

REpository) project[2] as the basis for this component of the project. The goal of the SHORE is

to develop a persistent object system capable of satisfying both object-oriented database system

applications (e.g. CAD) as well as traditional legacy applications (e.g. compilers, editors,

...) that currently depend on the Unix �le system. SHORE uses a symmetric, peer-to-peer

distributed architecture which eliminates the distinction between client and server processes.

In SHORE, every participating processor (whether or not the processor has database volumes

attached) runs a SHORE server. This makes the software scalable. It can run on a single

processor, a network of workstations, or a large parallel processor such as the Intel Paragon or

IBM SP2.

SHORE's type system is based on ODL, a language-neutral, object de�nition language for

persistent object systems that has been de�ned by the vendor consortium ODMG [3]. Typing

persistent objects simpli�es the task of supporting heterogeneous hardware environments and

makes it feasible to support access to persistent objects from multiple programming languages.

Currently support for C++ and Ada are planned. As part of this e�ort, we design and im-

plement a language binding for HPF. Furthermore, in conjunction with the language/compiler

team, we will extend the current SHORE mechanisms so that out-of-core arrays in HPF can

be e�ciently supported by SHORE. In order to make the integration with HPF as transparent

as possible, we will study the use of shared-virtual memory as an implementation strategy.

The use of virtual memory faulting techniques has proven very successful in the implementa-

tion of object-oriented database systems[9]. These techniques make accessing persistent data

transparent to the programmer. Using a combination of memory faulting techniques and the

shared-virtual memory mechanisms discussed above should enable us to provide transparent

access to "out-of-core" HPF arrays that have been striped across multiple storage units.

6 Interactions With Applications

We will have close interactions with the application researchers in designing application inter-

faces and developing parallel I/O benchmark suites. Such interactions will be iterated through-

out the Scalable I/O initiative e�ort.

Our �rst step is to work with application scientists in the Scalable I/O initiative to compose

a suite of parallel I/O benchmarks using traditional �le system interfaces. Although using the

traditional Unix �le system interface may not be the ultimate interface for the parallel I/O

requirements in the Grand Challenge applications, these parallel I/O applications can serve as

an initial quantitative measurement benchmark suite. We can use it to measure and improve our

interface designs and enhance the implementation of our systems e�ort in networking, memory

hierarchy management, shared virtual memory, and persistent object store.

11

As the interaction among the operating system group, application group, language group

and performance measurement group proceed, we will iteratively develop the parallel I/O bench-

mark suites based on newly developed and improved interfaces to networks, memory hierarchy

management, �le systems, and persistent object storage. We will use the newly developed

benchmark suites to validate and test our systems on the hardware platforms at scale.

7 Plan and Schedule

We will be porting most of our systems software as soon as the project starts:

� Debugging support for Paragon, including CMU's TTD, from OSF after 3 months.

� Port of x-kernel to OSF/1 AD from Arizona after 9 months.

� Port of user-level TCP/IP to x-kernel running in Unix Server from Washington after 9

months.

� Port of memory servers to Intel Paragon, 12 months from start.

� Initial version of a checkpointing tool that allows users to specify checkpointed data

completes 12 months from start.

� Port of shared virtual memory to Intel Paragon, 24 months from start.

� An initial version of OSF/1 AD that includes the x-kernel, user-level TCP/IP, and an

initial set of �le system enhancements will be released by OSF after 1 year. Subsequent

releases every 12 months.

� Port of SHORE persistent object repository to Intel Paragon, 6 months from start.

� Develop a comprehensive benchmark suite for parallel �le systems, 9 months from start.

� Design a common interface for the Intel PFS and IBM Vesta parallel �le systems, 12

months from start.

� Enhance performance of OSF1/AD �le system, 18 months from start.

After initial porting e�ort of various systems software, we will work together with applica-

tion, lanaugage, performance measurement groups to iteratively derive interfaces and enhance

systems performance for applications.

References

[1] Jose Brustoloni and Brian N. Bershad. Protocol Processing for High-bandwidth Low-

latency Networks. Available as a CMU-CS Technical report CMU-CS-93-132. April 1993.

12

[2] Michael Carey et. al. Shoring Up Persistent Applications. Submitted to the 1994 ACM

SIGMOD Conference, December 1993.

[3] R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann, San Mateo,

CA, 1993.

[4] Peter Druschel and Larry L. Peterson, Fbufs: A High-Bandwidth Cross-Domain Trans-

fer Facility. In Proceedings of the 14th Symposium on Operating Systems Principles,

pages189{202, December 1993.

[5] Norman C. Hutchinson and Larry L. Peterson, The x-kernel: An Architecture for Imple-

menting Network Protocols. IEEE Transactions on Software Engineering, 17(1):64{76,

January 1991.

[6] Liviu Iftode, Kai Li and Karin Petersen. Memory Servers for Multicomputers. In IEEE

COMPCON Spring '93, pages 538{547, February 1993.

[7] Intel Supercomputer Systems Division, Using Parallel File I/O. In Chapter 5, Paragon

User Guide, November 1993.

[8] , Intel Supercomputer Systems Division, Parallel File System Performance. In Chapter

4, Paragon System Software Release 1.1 Release Notes for the Paragon XP/S System,

November 1993.

[9] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system.

Communications of the ACM, 34(10), October 1991.

[10] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM

Transaction on Computer Systems, 7(4):321{359, November 1989.

[11] Kai Li and Richard Schaefer. A Hypercube Shared Virtual Memory System. In Pro-

ceedings of the 1989 International Conference on Parallel Processing, volume I, pages

125{132, August 1989.

[12] Kai Li, Je�rey F. Naughton, and James S. Plank. A Real-Time, Concurrent Checkpoint

and Recovery Algorithm For Parallel Programs. In Proceedings of the 1990 ACM Sym-

posium on Principles and Practice of Parallel Programming, Seattle, Washington, March

1990.

[13] Kai Li, Je�rey F. Naughton, and James S. Plank. An E�cient Checkpointing Method for

Multicomputers with Wormhole Routing. In International Journal of Parallel Program-

ming, 20(3):159{180, June 1991.

[14] Chris Maeda and Brian N. Bershad. Networking Performance for Microkernels. In Pro-

ceedings of the Third Workshop on Workstation Operating Systems, Pages 154{159, April

1992.

[15] Chris Maeda and Brian N. Bershad. Protocol Service Decomposition for High-

Performance Networking. In Proceedings of the 14th ACM Symposium on Operating

System Principles., Pages 244{255, December 1993.

13

[16] Sean W. O'Malley and Larry L. Peterson. A Dynamic Network Architecture. In ACM

Transactions on Computer Systems, 10(2):110{143, May 1992.

[17] Hilarie Orman and Ed Menze and Sean O'Malley and Larry Peterson, A Fast and Gen-

eral Implementation of Mach IPC on a Network. In Proceedings of the Mach Usenix

Symposium, February 1993.

[18] Roman Zajcew, Paul Roy, David Black, Chris Peak, Paulo Guedes, Bradford Kemp,

John LoVerso, Michael Leibensperger, Michael Barnett, Faramarz Rabii, and Durriya

Netterwala. An OSF/1 Unix for Massively Parallel Multicomputers. In Proceedings of

Winter 1993 Usenix Technical Conference, San Diego, Pages 449-468, January 1993.

14

