
Proposal for a Common Parallel File System
Programming Interface 1.0

Peter Corbett1, Jean-Pierre Prost1, Chris Demetriou,

Garth Gibson, Erik Riedel, Jim Zelenka, Yuqun Chen2,

Ed Felten2, Kai Li2, John Hartman3, Larry Peterson3,

Brian Bershad4, Alec Wolman4, Ruth Aydt5

October 1996
CMU-CS-96-193

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213-3891

Also appears as Tech. Report CACR-130, Scalable I/O Initiative, Caltech

Center for Advanced Computing Research, Pasadena, CA, November 1996.

1IBM T. J. Watson Research Center 2Department of Computer Science

P. O. Box 218 Princeton University

Yorktown Heights, NY 10598 Princeton, NJ 08544

3Department of Computer Science 4Computer Science & Engineering

The University of Arizona University of Washington

Tucson, AZ 85721 Seattle, WA 98195

5Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

This research is sponsored by DARPA through the Scalable I/O Initiative, and

issued by the US Army at Fort Huachuca under contract DABT63-94-C-0049.

The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the o�cial policies, either expressed

or implied, of any supporting organization or the U.S. Government.

Keywords: Parallel File Systems, Low-Level Interface, Scalable Input/Output,

High-Performance Computing

Abstract

This document proposes an interface to parallel �le systems intended for
use with a variety of parallel computers. This proposal is based on the sepa-

ration of programmer convenience functions from high-performance enabling
functions. We propose that the former be supported above this interface,
possibly in client libraries. The latter, functions that enable high perfor-
mance, are de�ned by this proposed API under the assumption that these
functions are more likely to need system and vendor-speci�c support.

Speci�cally, this proposal includes functions which support reading and

writing with scatter-gather addressing for memory and �le ranges, and asyn-
chronous operations. It also includes mechanisms that permit client control
over client caching, and �le access and layout hints. Finally, it includes a
mechanism by which this API can be extended and extensions for fast �le
copy and batching collective I/O operations.

CONTENTS 1

Contents

1 Introduction 7

1.1 Independent Messaging and

Minimal Synchronization . 8

1.2 No Shared File Pointers . 9

1.3 Scatter-Gather Transfers . 10

1.4 Asynchronous I/O . 10

1.5 I/O Controls . 10

1.6 Client Caching . 11

1.7 File Access Pattern Hints . 12

1.8 Extensions to this API . 12

1.9 Collective I/O . 13

1.10 Checkpoints and File Versioning 13

1.11 File Names and Access Protection 14

1.12 File Labels . 14

2 Document Conventions 15

2.1 Typesetting Conventions . 15

2.2 De�nition of Terms . 15

2.3 How to Read this Document 17

3 The sio fs.h Include File 19

4 Data Types 21

4.1 File Descriptor . 21

4.2 File Name . 21

4.3 Memory Address . 22

4.4 sio async
ags t . 22

4.5 sio async handle t . 22

4.6 sio async status t . 22

4.7 sio caching mode t . 23

4.8 sio control t . 23

4.9 sio control
ags t . 23

4.10 sio control op t . 24

4.11 sio count t . 24

4.12 sio extension id t . 24

2 CONTENTS

4.13 sio �le io list t . 24

4.14 sio hint t . 25

4.15 sio hint class t . 25

4.16 sio hint
ags t . 26

4.17 sio label t . 26

4.18 sio layout t . 26

4.19 sio layout algorithm t . 27

4.20 sio layout
ags t . 28

4.21 sio mem io list t . 28

4.22 sio mode t . 28

4.23 sio o�set t . 29

4.24 sio return t . 29

4.25 sio size t . 30

4.26 sio transfer len t . 30

5 Range Constants 31

5.1 SIO MAX ASYNC OUTSTANDING 31

5.2 SIO MAX COUNT . 31

5.3 SIO MAX LABEL LEN . 31

5.4 SIO MAX NAME LEN . 31

5.5 SIO MAX OFFSET . 32

5.6 SIO MAX OPEN . 32

5.7 SIO MAX SIZE . 32

5.8 SIO MAX TRANSFER LEN 32

6 File Attributes 33

6.1 File Sizes . 33

6.2 File Label . 34

6.3 File Layout . 34

7 Error Reporting 37

7.1 sio error string . 38

8 Basic Operations 39

8.1 sio control . 40

8.2 sio open . 42

8.3 sio close . 45

CONTENTS 3

8.4 sio unlink . 46

8.5 sio test . 47

8.6 sio rename . 50

9 Synchronous File I/O 53

9.1 sio sg read, sio sg write . 55

10 Asynchronous File I/O 59

10.1 sio async sg read, sio async sg write 60

10.2 sio async status any . 63

10.3 sio async cancel all . 66

11 File Access Pattern Hints 69

11.1 Ordered Hints . 71

11.2 Unordered Hints . 73

11.3 sio hint, sio hint by name . 75

12 Client Cache Control 77

13 Control Operations 81

13.1 SIO CTL GetSize, SIO CTL SetSize 82

13.2 SIO CTL GetAllocation . 83

13.3 SIO CTL GetPreallocation, SIO CTL SetPreallocation 84

13.4 SIO CTL GetCachingMode, SIO CTL SetCachingMode 86

13.5 SIO CTL Propagate . 87

13.6 SIO CTL Refresh . 89

13.7 SIO CTL Sync . 90

13.8 SIO CTL GetLayout, SIO CTL SetLayout 91

13.9 SIO CTL GetLabel, SIO CTL SetLabel 92

13.10SIO CTL GetConsistencyUnit 94

14 Extension Support 95

14.1 Static Constants . 96

14.1.1 Extension Support Constants 96

14.1.2 Extension Identi�ers 97

14.2 sio query extension . 98

14.3 Sample Code to Check for Extension Presence 99

4 CONTENTS

15 Extension: Collective I/O 101

15.1 Motivation . 101

15.2 High Level Look . 101

15.3 New Data Types . 103

15.3.1 sio coll handle t . 103

15.3.2 sio coll participant t 103

15.3.3 sio coll iteration t . 103

15.4 New Range Constants . 104

15.4.1 SIO MAX COLL ITERATIONS 104

15.4.2 SIO MAX COLL PARTICIPANTS 104
15.4.3 SIO MAX COLL OUTSTANDING 104

15.5 New Functions . 105
15.5.1 sio coll de�ne . 106
15.5.2 sio coll join . 109

16 Extension: Fast Copy 113

16.1 SIO CTL FastCopy . 114

A Result codes (for sio return t) 119

B Sample Derived Interfaces 123

B.1 Synchronous I/O . 124
B.2 Asynchronous I/O . 126

B.3 Cache Consistency . 128

CONTENTS 5

Context1

This proposal is being developed by the Scalable I/O Initiative (SIO), a con-2

sortium of universities, national laboratories, and industries studying parallel3

and scalable I/O systems for large parallel computers. This proposal is not a4

commitment on the part of any member of SIO to support these interfaces.5

However, it is intended that within the SIO e�ort several implementations6

of parallel �le systems compliant with this interface be produced on several7

di�erent platforms. We do not expect these interfaces to be �nalized until8

implementation and user experience are obtained. SIO will foster such im-9

plementation and application development experience. The ultimate goal of10

this e�ort to produce a common parallel �le system interface is two-fold: to11

support research in the area of parallel I/O, and to eventually recommend12

additions of parallel I/O interfaces to the �/Open and POSIX standards.13

This document contains a basic API plus several extensions. Sections 314

through 14 in this document contain the basic API, which all conforming15

implementations must implement. Sections 15 and 16 contain extensions to16

the API which may optionally be provided by implementations.17

Within the SIO research community, proposals (and counterproposals) for18

future modi�cations to this API are journalled in a separate document called19

\Proposal for a Common Parallel File System Programming Interface; Part20

II: What's in Progress."21

Perhaps unavoidably, this document is more about the description of inter-22

faces than it is about their rationalizations. We apologize in advance for your23

many unanswered questions.24

6 CONTENTS

7

1 Introduction25

The intent of the interfaces presented here is to add to the standard �/Open26

XPG 4.2 interfaces, which were earlier de�ned in IEEE Standard 1003.127

(POSIX). It is widely recognized by vendors of distributed memory parallel28

computers and workstation clusters, such as IBM and Intel, that extensions to29

the �/Open XPG 4.2 and POSIX interfaces to support high performance �le30

I/O for parallel applications are desirable. However, there is little agreement31

about what these extensions should be. This results in part from vendor32

extensions that exclusively emphasize the capabilities of a speci�c machine33

or application class. As a result, it is not currently possible for programmers34

to write application programs using extended �le system interfaces that are35

portable from one parallel computer to another.36

Clearly, there is a need for a new set of standard interfaces, preferably a37

set of extensions to the �/Open XPG 4.2 interfaces, if we wish users and38

third party software vendors to use the extended features of parallel �le39

systems. The SIO community has chosen to divide the �le system interface40

into two levels: a low-level interface which hides machine-dependent details41

and contains only those features needed to provide good performance, and a42

high-level interface which provides features for programmer convenience and43

to support particular application classes.1 This document describes only the44

low-level interface.45

There are portions of this API which provide functionality that is redundant46

with the function provided in the �/Open interfaces. This is to enable some47

SIO members to develop complete experimental �le systems with just this48

API, without the added burden of implementing a complete �/Open com-49

pliant �le systems interface. In the cases of redundant interfaces, the SIO50

functions can simply be implemented as wrappers over the standard func-51

tions. However, these functions should be implemented in such a way as to52

ensure that all libraries written to this API can run properly.53

Our two-level approach arises from the con
icting goals of some aspects of54

di�erent extended interfaces. For example, in a discussion of the commonal-55

ities between IBM's PIOFS and Intel's PFS in February 1995, we identi�ed56

little more than the basic UNIX functions in common. Largely this is be-57

1MPI-IO is an example of such a high-level interface.

8 1 INTRODUCTION

cause IBM had chosen to support the concept of dynamic partitioning and58

sub�les, while Intel supported a set of �le modes to de�ne the semantics of59

parallel access. Our two-level approach moves the implementation of the spe-60

cial character of these parallel �le systems (Intel I/O modes or IBM sub�les)61

to high-level libraries and proposes a low-level interface capable of e�ciently62

supporting both of these and other specialized parallel �le system function63

sets. The approach follows CMU's December 1994 suggestion, in that the64

new interfaces are low level, but are powerful for implementing high-level65

parallel I/O libraries.66

The usage scenario is that I/O libraries can be easily and e�ciently built on67

top of the interfaces provided by this API. Each vendor is free to implement68

whatever libraries they wish on top of these interfaces. Likely libraries include69

MPI-IO, a PIOFS sub�le library, and a library which supports Intel's I/O70

modes.2 It is simpler to implement or share a library at this level than71

to implement the function in the vendor-speci�c �le system itself. Also,72

third party vendors (or groups such as SIO) can produce libraries that could73

compile and run on another vendor's machine. In addition, these interfaces74

could be a compiler target.75

Code written to this low-level API is intended to be portable. By this we76

mean source compatibility. In particular, each implementation of this API is77

free to assign di�erent bit lengths to most types and di�erent bit values to78

all constants, except as noted. Because the size of �elds is implementation79

dependent, the range of some variables may also vary. In some cases this80

may limit source compatibility, so we have tried to require comfortably large81

limits wherever possible.82

1.1 Independent Messaging and83

Minimal Synchronization84

One view of a parallel application is of a set of tasks, typically executing85

on di�erent nodes, communicating among themselves, possibly via shared86

memory. There are a variety of abstractions, toolkits, and mechanisms for87

communicating from which a particular parallel application may choose. One88

principle of this low-level API is to avoid dependence on the application's89

2We do not intend to prescribe the software structure of an implementation of PIOFS or

PFS built with this API. Our expectation is that implementations will be e�cient enough

to allow libraries built entirely on the interfaces in this API to obtain high performance.

For example, an application coded for an SIO-based Intel I/O-mode library should run

e�ciently on an IBM SP2 o�ering these interfaces. Of course, when this application runs

on a Paragon, it is not required to use the I/O-mode library in favor of the native PFS

interfaces.

1.2 No Shared File Pointers 9

chosen method for communication. This means that a low-level parallel �le90

system client implementation may not be aware of application-level messages91

and certainly cannot expect to use the same methods for communicating with92

its peer client agents. Of course, each client agent of the low-level parallel93

�le system must be able to communicate with the parallel �le system servers94

(if any). The method of this communication is implementation speci�c and95

will most likely be unavailable to the application programmer.96

Another guiding principle in the design of this API is to discourage unnec-97

essary synchronization of the client applications or of the client agents of98

the parallel �le system. To this end, this API is designed to admit e�cient99

low-level parallel �le system implementations which restrict internal commu-100

nication to a single client and the parallel �le system server(s) responsible101

for a particular �le. That is, this API does not require that client agents of102

the parallel �le system directly communicate. This means that a compliant103

parallel �le system implementation need not provide coherent distributed104

shared memory, shared �le pointer synchronization, or collective I/O bar-105

rier synchronization. As described below, distributed shared memory may106

be avoided with application-managed weakly consistent caches and collective107

I/O barrier synchronization can be made implicit by requiring the applica-108

tion to distribute an opaque collective I/O handle de�ned by the parallel �le109

system.110

1.2 No Shared File Pointers111

One of the original points of disagreement in the development of the API was112

support for shared �le pointers. Some parallel �le systems exploit shared �le113

pointers extensively while others avoid this implicit synchronization as much114

as possible. The position of this API is similar to the latter: that shared115

�le pointers can require extensive synchronization of the client agents of the116

parallel �le system; that they implicitly synchronize the application's tasks;117

and that they can easily lead to excessive synchronization, slowing the appli-118

cation. Further, we contend that if this level of application synchronization119

is valuable, it should be provided by the higher level parallel �le system li-120

braries which may have access to peer-to-peer messaging systems and can be121

10 1 INTRODUCTION

customized to speci�c applications' needs. For these reasons this API does122

not support shared �le pointers; in fact, it does not support �le pointers at123

all, requiring the o�sets for all I/O operations to be explicitly provided.124

1.3 Scatter-Gather Transfers125

Batching transfers is a powerful strategy for improving performance. A par-126

allel �le system implementation can be expected to try to batch accesses to127

the disk, transfers between machine nodes, and bu�er manipulations. Tra-128

ditional UNIX read-write interfaces transfer contiguous �le regions and con-129

tiguous memory regions, dramatically reducing batching opportunities for ap-130

plications that manipulate large, non-contiguous data regions. Correspond-131

ingly, a principle extension for high-performance �le systems is the compact132

representation of transfers of non-contiguous regions, commonly known as133

scatter-gather. In the core of this API proposal, the expressive power of134

scatter-gather is limited to a list of strided (vector) regions. 3
135

1.4 Asynchronous I/O136

The API provides interfaces for asynchronous reads and writes. Outstanding137

accesses can be polled or waited upon (either singly or as a list of accesses).138

1.5 I/O Controls139

This API allows applications to get and set �le status data (such as �le sizes),140

get and set performance-related information (such as �le caching and layout),141

and perform various operations (such as cache consistency) via a general I/O142

control mechanism. Vendors can de�ne their own control operations, allowing143

the API to be extended easily.144

Some controls, notably data layout and capacity preallocation controls, may145

be performed much more e�ciently as a group and/or at the time a �le is146

created or opened. For this reason, multiple controls may be speci�ed in the147

3Beyond this proposal, some SIO researchers have shown an interest in nested lists of

strided regions.

1.6 Client Caching 11

same operation, and the extended open interface in this API allows a set of148

controls to be executed when a �le is opened. Because of the large amount149

of work that might be done by a set of controls, the API allows failure of I/O150

controls to fail the overall open or control operation immediately, and allows151

implementations to declare that certain controls may not be issued as a part152

of the same operation.153

1.6 Client Caching154

Because parallel �les will experience concurrent read-write sharing, main-155

taining client cache consistency could become quite expensive. An imple-156

mentation of this API may provide no client caching (for example, in some157

parallel systems the latency for fetching a �le block from a server's cache158

may be low enough to not warrant client �le caches). It may also provide159

strong consistency using shared memory mechanisms. However, many paral-160

lel applications will synchronize concurrent sharing at a higher level and can161

explicitly determine when to propagate written data from their local caches162

and when to refresh stale data from their local caches. This API enables these163

applications to improve their client cache performance by requesting weak164

consistency on a particular open �le and to issue the appropriate propagate165

and refresh controls. In the case of weak consistency, an implementation166

may divide the �le address space into �xed sized consistency units (cache167

lines or blocks) which are entirely present in a client cache if at all. Concur-168

rent write sharing of a weakly consistent �le within one consistency unit is169

not guaranteed to have reasonable semantics.170

Note that this API makes no requirement that a low-level parallel �le sys-171

tem implementation control or even detect unintentional read-write sharing,172

that is, read-write sharing by tasks that are parts of multiple uncoordinated173

parallel applications. In situations like this, which are common to many �le174

systems, the atomicity of �le creation can be used by higher level tools to175

provide simple advisory locks by using the existence of a �le to signify a held176

lock.177

12 1 INTRODUCTION

1.7 File Access Pattern Hints178

Allowing an application to provide hints about �le accesses can substantially179

improve performance, particularly when a large amount of data is read non-180

sequentially (but predictably), or when a large number of small �les are read181

one at a time. There are at least two distinct approaches to giving hints: ex-182

plicitly listing an ordered sequence of future accesses (such as \read block 5,183

then block 7), and describing an access pattern with a single identi�er (such184

as \random access,"\sequential access," or \will not access"). Because it is185

not clear how to interpret a set of hints that intermingle these approaches,186

this API provides separate hint classes for each, does not specify how to in-187

terpret combinations containing both, and allows vendors to add new classes188

of hints as needed. To allow applications to provide information to the �le189

system as early as possible, hints can be applied to open �le descriptors or190

to �les that have not yet been opened. In either case, hints apply only to the191

task that issued them, and not other tasks.192

1.8 Extensions to this API193

In discussing earlier low-level API proposals, we found that there are some194

features that are almost universally agreed upon, and a few features that195

have signi�cant constituencies but were not supported by all members of the196

group. We thus chose to de�ne the low-level API as a basic API plus a set197

of optional extensions. An extension is a feature that:198

� has signi�cant research value;199

� impacts performance, at least on some architectures; and200

� is not trivial to implement correctly;201

As a part of the basic API, implementations must provide mechanisms for202

allowing applications to determine which extensions are supported. Those203

mechanisms are detailed in Section 14.204

1.9 Collective I/O 13

1.9 Collective I/O205

As mentioned in Section 1.3, batching is a powerful mechanism for improving206

performance. When multiple client nodes access one �le at the same time,207

batching can again be useful, particularly when each client's access is a com-208

plex pattern but the sum of all client accesses is a large contiguous access209

(e.g. the whole �le). Accesses of this type are known as \collective I/O,"210

and this API includes an extension which provides collective I/O facilities.211

Current collective I/O mechanisms commonly exploit the implementation212

system's task identi�ers or task groups to name the members of a collective213

I/O. In this API we avoid dependence on the systems' task naming mecha-214

nisms by dynamically de�ning an opaque identi�er for a collective I/O that215

is distributed via the application's communication system and presented to216

the parallel �le system by each participant (client involved in the collective217

I/O). With this mechanism we enable at least three types of batching. First,218

the parallel �le system implementation may choose to wait for all partici-219

pants to join the collective I/O before doing any of the work. Second, the220

application can provide a hint describing the total work to be done by the221

collective I/O at the time the collective I/O is de�ned. Third, a collective222

I/O may be de�ned to have multiple iterations, avoiding multiple de�ning223

operations and enabling earlier collective hints.224

1.10 Checkpoints and File Versioning225

Many parallel applications want the ability to create checkpoints of their226

�les. Others want the ability to e�ciently create a series of versions of a227

�le over time. Rather than directly supporting checkpoints or �le versions,228

this API includes an extension which o�ers a generic \fast copy" operation.229

A fast copy might be implemented as duplication of a �le's metadata, with230

shared pointers to all data pages, each of which is marked copy-on-write.231

The tracking of copies is left up to the applications (or higher level parallel232

�le system libraries).233

14 1 INTRODUCTION

1.11 File Names and Access Protection234

When these interfaces are merged with POSIX it is expected that POSIX235

conventions will be adopted for directories and access control. However,236

during SIO research, compliant implementations need not deal with these237

(important) issues.238

This API does not de�ne directories or directory operations. Files may be239

named in a
at name space, though implementations may choose to o�er240

additional name space management. A directory structure is not viewed as241

essential to parallel �le system performance and can be provided by vendor-242

de�ned extensions as needed.243

Similarly, access control checking, permission speci�cations, and user and244

group identi�ers are not speci�ed by this API. Implementations which pro-245

vide access control management are expected to do so via vendor-de�ned246

extensions.247

1.12 File Labels248

An important issue for higher level library systems and application systems249

is interoperability. To support interoperability without inserting header data250

into the �le's actual data, the low-level API was o�ers a small amount of251

application controlled data called a label for each �le. A �le's label is stored252

in its metadata.253

15

2 Document Conventions254

This document describes both the \basic" (or \core") API and extensions255

to the basic API. The basic API is described in Sections 3 through 14, and256

the extensions are described in Sections 15 and 16. Some sections of this257

document refer to \this document," which is meant to indicate the entirety258

of the basic API and the extensions described herein.259

Implementations wishing to conform to this API must provide all of the260

types, de�nitions, and functions speci�ed in the basic API, including those261

necessary to determine whether or not extensions are present.262

2.1 Typesetting Conventions263

Type de�nitions, functions de�nitions, and constants (including control op-264

eration identi�ers) are typeset in the bold font.265

Function names are typeset in the bold font and are followed by parentheses,266

e.g. sio open().267

Variables, structure members, and function arguments are typeset in the268

italic font.269

2.2 De�nition of Terms270

Throughout this document (except where explicitly noted) the phrase \�le271

system" is used to indicate a �le system which provides this API, and \im-272

plementation" is used to refer to the implementation of such a �le system.273

Except where noted, the terms \application" and \higher-level library" are274

used interchangeably, and are meant to indicate the programs or libraries275

which are using this API to access parallel �les.276

Throughout this document, several words or phrases are used to indicate277

how given functionality must be used or implemented. For clarity, they are278

de�ned here:279

16 2 DOCUMENT CONVENTIONS

\will," \shall," or \must"280

When describing functionality provided by �le system implementations,281

these terms indicate that conforming implementations have to imple-282

ment the functionality as described.283

When describing behavior of applications, these terms indicate the be-284

havior of properly-written applications (i.e. applications behaving in285

other ways are considered buggy).286

\should"287

When describing functionality provided by �le system implementations,288

this term suggests that an implementation provide the functionality in289

the manner described, but that doing so is not necessary for confor-290

mance.291

When describing behavior of applications, this term indicates that the292

described behavior is the preferred behavior, but that other behavior293

may be correct.294

\may"295

When describing functionality provided by �le system implementations,296

this term indicates that conforming implementations can implement297

functionality in the manner described, but doing so may not be sug-298

gested.299

When describing behavior of applications, this term indicates that the300

described behavior is allowed, but not necessarily encouraged.301

\unde�ned"302

Unde�ned behavior is not speci�ed by this standard, and is usually a303

result of a programming error or similar problem. Applications must304

avoid invoking unde�ned behavior. File system implementations may305

produce completely arbitrary results when unde�ned behavior is in-306

voked, including producing random data, on disk or in memory bu�ers307

provided, or generating an exception.308

\unspeci�ed"309

Unspeci�ed behavior is not speci�ed by this standard, but is usually the310

result of a correct programming practice. Behavior is left unspeci�ed to311

give �le system implementations freedom to implement functionality in312

2.3 How to Read this Document 17

di�erent ways. Unspeci�ed behavior must not have harmful permanent313

e�ects on the application or its data, and should be documented in in-314

dividual implementations' documentation. Portable applications must315

not rely on unspeci�ed behavior causing the same results on multiple316

�le system implementations.317

2.3 How to Read this Document318

It is recommended that you read sections 6,8,9,10,11,12, and 13 before sec-319

tions 3,4, and 5. The reason for this is that sections 3,4, and 5 provide320

de�nitions which refer to functions explained in later sections.321

18 2 DOCUMENT CONVENTIONS

19

3 The sio fs.h Include File322

File system implementations must provide a C include �le named sio fs.h323

which contains the data type de�nitions, constants, and function declarations324

and/or prototypes for all functions de�ned in this document. Implementa-325

tions which provide extensions not de�ned in this document may require326

additional �les be included to use those extensions. Implementations which327

do so must still de�ne the extension support constants and extension identi-328

�ers (see Section 14.1) for the extensions in sio fs.h.329

Applications or higher-level libraries must include sio fs.h in their source330

�les before referencing any of the types, constants, or functions described in331

this API.332

20 3 THE SIO FS.H INCLUDE FILE

21

4 Data Types333

This section de�nes the data types which are referenced in the basic API, and334

gives brief explanations of the rationale behind them. Types used exclusively335

by extensions are not de�ned here{they are de�ned with the extensions.336

All of the types de�ned in this section must be provided by conforming im-337

plementations. Vendors may provide additional types with names of the form338

sio vend vendorde�nedname t, where vendorde�nedname can be a name of339

the vendor's choosing. All other type names beginning with sio and ending340

with t are reserved for future use by this API.341

Except where otherwise noted, the sizes of all non-structure data types are342

�xed on a per-implementation basis and those data types must be fully copy-343

able (i.e. they must not contain any pointers to other objects).344

4.1 File Descriptor345

All �le descriptors are described as being of type int, primarily for compati-346

bility with other systems (including UNIX) which use ints as �le descriptors.347

A task may have up to SIO MAX OPEN parallel �les open at any given348

time.349

4.2 File Name350

All �le names are character strings terminated by a byte with the value351

zero, and are described being of type const char *. (They must never be352

modi�ed by the system, and thus are const.) File names must not be longer353

than SIO MAX NAME LEN characters, including the terminating zero354

byte.355

22 4 DATA TYPES

4.3 Memory Address356

Memory addresses are described as being of type void *. Each task must357

only access its own or a shared address space. Attempting to access mem-358

ory for which the task does not have access permission produces unde�ned359

results.360

4.4 sio async
ags t361

This is an unsigned integral type used as a set of bits. Currently it can362

contain one of SIO ASYNC BLOCKING or363

SIO ASYNC NONBLOCKING. These
ags indicate whether or not364

sio async status any() will block waiting for an asynchronous I/O to com-365

plete. The use of these
ags is described in Section 10.2.366

4.5 sio async handle t367

This is an opaque type used to identify asynchronous I/Os.368

4.6 sio async status t369

typedef struct f370

sio transfer len t count;371

sio return t status;372

g sio async status t;373

This structure is used to return the status of an asynchronous I/O. For a374

successful operation, count is set to the number of bytes transferred, and375

status is set to SIO SUCCESS. For an unsuccessful operation, status is376

set to a value which indicates the nature of the error, and count is set to377

the number of bytes guaranteed to have been transferred correctly (see Sec-378

tion 10.2).379

4.7 sio caching mode t 23

4.7 sio caching mode t380

This is an unsigned integral type used by the client cache control interfaces,381

and is de�ned in Section 12.382

4.8 sio control t383

typedef struct f384

sio control
ags t
ags;385

sio control op t op code;386

void *op data;387

sio return t result;388

g sio control t;389

This type is used to store the information associated with a control operation390

(see Section 13). Control operations are speci�ed by providing the appro-391

priate operation code in op code, an indication in
ags of what to do if the392

control cannot be performed, and a pointer to a data bu�er (if necessary) in393

op data.394

The result �eld is set by the function performing the control operation to395

indicate success or failure.396

4.9 sio control
ags t397

This is an unsigned integral type used as a set of bits. Cur-398

rently it can contain one of SIO CONTROL MANDATORY or399

SIO CONTROL OPTIONAL. These
ags indicate whether failure of400

this control operation will cause the entire set of control operations to fail,401

with semantics as described in Section 8.1.402

24 4 DATA TYPES

4.10 sio control op t403

This is an unsigned integral type used to indicate a control operation code.404

Control operations codes which are part of the basic API are de�ned in405

Section 13.406

4.11 sio count t407

This is an unsigned integral type with the range [0. . .SIO MAX COUNT].408

It is used to represent a quantity of objects.409

4.12 sio extension id t410

This is an unsigned integral type used to contain extension identi�ers. See411

Section 14.1.2 for more details about its use.412

4.13 sio �le io list t413

typedef struct f414

sio o�set t o�set;415

sio size t size;416

sio size t stride;417

sio count t element cnt;418

g sio �le io list t;419

This structure is used to describe a collection of regions within a �le that420

is involved in a parallel �le system operation. Its purpose is to encapsulate421

the description of many simple transfers into one larger and more complex422

transfer to enable the �le system to be more e�cient in the execution of423

the total transfer. Each sio �le io list t structure describes a sequence of424

equally-sized and evenly-spaced contiguous byte regions within a �le; this is425

4.14 sio hint t 25

sometimes called a \strided" access pattern. Commonmatrix decompositions426

can be described with such data structures.427

The structure describes a set of element cnt contiguous regions, each of size428

size, with the �rst region beginning at o�set o�set from the beginning of the429

�le, and the beginning of each subsequent region starting stride bytes after430

the start of its predecessor. These contiguous byte regions may overlap; see431

Section 9 for details.432

4.14 sio hint t433

typedef struct f434

sio hint
ags t
ag;435

sio �le io list t *io list;436

sio count t list len;437

void *arg;438

sio size t arg len;439

g sio hint t;440

This structure is used to store hint information (see Section 11). The
ag441

�eld describes the access patterns being hinted, and the io list and list len442

�elds describe the regions of the �le to which the hint applies. The arg and443

arg len �elds contain a pointer to a hint-speci�c argument and the (non-444

negative) length of the argument, respectively. These �elds allow di�erent445

types of hints to require di�erent types of arguments, while using the same446

hint interfaces.447

4.15 sio hint class t448

This is an unsigned integral type which contains the class identi�er449

of hints passed with the sio hint() and sio hint by name() functions.450

Each class of hints contains one or more hint types whose interaction451

is speci�ed. Interactions between hint types of di�erent classes are un-452

speci�ed. This document de�nes the SIO HINT CLASS ORDERED453

26 4 DATA TYPES

and SIO HINT CLASS UNORDERED constants to describe manda-454

tory hint classes, and reserves constants whose names begin with with455

SIO HINT CLASS VEND for use by vendors. See Section 11 for more456

details about hints and hint classes.457

4.16 sio hint
ags t458

This is an unsigned integral type used as a set of bits. It is used to describe459

the hint information stored in a sio hint t. See Section 11 for a list of460

possible values for this type and explanations of their use.461

4.17 sio label t462

typedef struct f463

sio size t size;464

void *data;465

g sio label t;466

This type is used to store a �le label, which can contain application-467

managed descriptive information about its associated �le. The data �eld468

points to a memory bu�er size bytes long. The SIO CTL GetLabel and469

SIO CTL SetLabel control operations use this structure in di�erent man-470

ners; see Section 13.9 for more information about this structure's use.471

4.18 sio layout t472

typedef struct f473

sio layout
ags t
ags;474

sio count t stripe width;475

sio size t stripe depth;476

sio layout algorithm t algorithm;477

void * algorithm data;478

4.19 sio layout algorithm t 27

g sio layout t;479

The number of parallel storage devices over which the �le's data are striped480

is contained in the stripe width �eld, while the (non-negative) number of481

contiguous bytes stored on each device (the unit of striping) is contained482

in stripe depth. The stripe width does not include any devices containing483

redundancy information, such as ECC codes or duplicate copies of the data.484

The algorithm �eld indicates the style of layout used for the �le to provide485

guidance in the interpretation of the stripe width and stripe depth �elds. The486

algorithm data �eld is used to store algorithm-speci�c information about the487

layout.488

The
ags �eld indicates which portions of the sio layout t structure are489

being provided to the system or should be �lled in by the system as described490

in Section 13.8.491

4.19 sio layout algorithm t492

This is an unsigned integral type whose value indicates the style of493

layout used for an SIO �le. The layout algorithm describing a sim-494

ple round-robin striping across all storage devices used for a �le is495

SIO LAYOUT ALGORITHM SIMPLE STRIPING. This must be496

de�ned, though not necessarily supported, by all implementations. Imple-497

mentations may choose to support additional layout algorithms that describe498

layouts in more detail or provide for more complex storage system architec-499

tures. The algorithm data �eld in the sio layout t structure can be used to500

store additional information about the layout algorithm.501

Layout algorithm names beginning with502

SIO LAYOUT ALGORITHM VEND are reserved for use by vendors.503

All other names beginning with SIO LAYOUT ALGORITHM are re-504

served for future use by this API.505

28 4 DATA TYPES

4.20 sio layout
ags t506

This is an unsigned integral type used as a set of bits. It may contain507

zero or more of SIO LAYOUT WIDTH, SIO LAYOUT DEPTH, or508

SIO LAYOUT ALGORITHM, bitwise ORed to specify the �elds of an509

sio layout t structure are to be returned or set.510

4.21 sio mem io list t511

typedef struct f512

void *addr;513

sio size t size;514

sio size t stride;515

sio count t element cnt;516

g sio mem io list t;517

This type is similar to sio �le io list t except that it describes a collec-518

tion of regions within one memory space that is involved in a parallel �le519

system operation, rather than a collection of �le regions. Its purpose is to520

encapsulate the description of many simple transfers into one larger and more521

complex transfer in order to enable the �le system to be more e�cient in the522

execution of the total transfer. Each sio mem io list t structure describes523

a sequence of equally-sized and evenly-spaced contiguous byte regions within524

the memory space.525

The structure describes a set of element cnt contiguous regions, each of size526

size, with the �rst region beginning at address addr, and the beginning of527

each subsequent region starting stride bytes after the start of its predecessor.528

These contiguous byte regions may overlap; see Section 9 for details.529

4.22 sio mode t530

This is an unsigned integral type used as a set of bits to specify the mode531

of a �le operation. For example, the mode
ags SIO MODE READ and532

4.23 sio o�set t 29

SIO MODE WRITE can be speci�ed together or separately to open the533

�le for reading and/or writing, or to indicate what operation is being hinted.534

Other
ags are documented in Section 8.2.535

4.23 sio o�set t536

This is a signed integral type whose absolute value is in the range537

[0. . .SIO MAX OFFSET].4 This type is signed to allow an o�set vari-538

able to be decremented in a loop, and have the loop terminate when the539

variable becomes negative.540

4.24 sio return t541

This is an unsigned integral type used by functions in this API to return a542

result code.5 The constant SIO SUCCESS, whose value must be 0, denotes543

success.544

Other values indicate speci�c errors which have been encountered in pro-545

cessing this request (the enumeration of standard error codes is included in546

Appendix A). Error code names beginning with SIO ERR VEND may be547

used by vendors for vendor-speci�c error codes. All other error code names,548

beginning with SIO ERR are reserved for future use by this API. At least549

16384 error codes (including 0, for SIO SUCCESS) must be available for550

use by this API.551

4We do not take advantage of the de�ned behavior of C, which allows the e�ect of neg-

ative signed numbers to be achieved by using large unsigned numbers that are congruent

modulo 2n. 263� 1 is a su�ciently large o�set that the extra factor of 2 possible by using

unsigned o�sets is not expected to be important before machines with 128 bit word sizes

become widely used for high performance computing.
5An earlier version of this document used UNIX-style returns, where 0 indicated suc-

cess, and -1 indicated failure, with speci�c UNIX error codes being set in the global error

register. This was deemed inappropriate for two reasons. One is that the values of UNIX

error numbers vary from platform to platform, as does the speci�c list of errors available.

Another more serious problem is that it is di�cult for multi-threaded applications to ex-

press di�erent errors to di�erent callers using a single global error register. Some systems,

such as pthreads, provide a thread-speci�c error register for this reason. This was also

deemed unacceptable, because it would require the parallel �le system to be aware of the

threading mechanism.

30 4 DATA TYPES

4.25 sio size t552

This type is used to describe sizes of �le and memory regions. It is a signed553

integral type whose absolute value is in the range [0. . .SIO MAX SIZE].554

It is signed to allow expression of reverse strides for operations such as555

sio sg read().556

4.26 sio transfer len t557

This is an unsigned integral type in558

the range [0. . .SIO MAX TRANSFER LEN]. It is used to count the559

total number of bytes transferred in I/O operations. This type di�ers from560

sio size t in that a single I/O operation may transfer many bu�ers whose561

length is represented by sio size t, hence sio transfer len t is needed.562

31

5 Range Constants563

This section describes the constants used in this basic API to specify the564

ranges of data types. These constants are implementation-speci�c. However,565

for each of them, both a minimumvalue and a recommended value are given.566

5.1 SIO MAX ASYNC OUTSTANDING567

This constant speci�es the maximum number of outstanding asynchronous568

I/O requests that one task can have at one time. The minimum value is 1,569

and the recommended value is 512.570

5.2 SIO MAX COUNT571

This constant speci�es the maximum number of items that can be de�ned572

by an sio count t. The minimum value is 216 � 1, and the recommended573

value is 232 � 1.574

5.3 SIO MAX LABEL LEN575

This constant speci�es the maximum length of a �le label. The minimum576

value is SIO MAX NAME LEN (whose minimum value is 256 bytes).577

The recommended value is the maximum of 1024 and the implementation's578

value of SIO MAX NAME LEN.579

5.4 SIO MAX NAME LEN580

This constant speci�es the maximum length of a �le name. The minimum581

value is 256, and the recommended value is 1024.582

32 5 RANGE CONSTANTS

5.5 SIO MAX OFFSET583

This constant speci�es the maximum value for a �le o�set. The minimum584

value is 263 � 1, and the recommended value is 263 � 1.585

5.6 SIO MAX OPEN586

This constant speci�es the maximum number of open �les that a task can587

have at one time. The minimum value is 256, and the recommended value is588

512. Note that a task may still fail to open a �le before reaching this number589

because of system resource exhaustion.590

5.7 SIO MAX SIZE591

This constant speci�es the maximum size in bytes of a variety of objects592

in the API. The minimum value is 231 � 1, and the recommended value is593

263 � 1.594

5.8 SIO MAX TRANSFER LEN595

This constant speci�es the maximumnumber of bytes that can be transferred596

by a single I/O operation. The minimumvalue is SIO MAX SIZE, and the597

recommended value is 263 � 1. Since several components of a scatter-gather598

I/O list can be transferred at once, SIO MAX TRANSFER LEN must599

be greater than or equal to SIO MAX SIZE.600

33

6 File Attributes601

This section describes the attributes associated with an SIO �le. The �le602

attributes are unique to each SIO �le and visible to all tasks opening the603

�le. These attributes include the logical, physical, and preallocation sizes of604

the �le, �le label, and �le layout information. Extended controls may de�ne605

additional �le attributes.606

6.1 File Sizes607

The logical size of an SIO �le is the number of bytes from the begin-608

ning of the �le (o�set zero) to the end of the �le (the largest o�set from609

which data can be read successfully). The �le may contain regions which610

have not yet been written (referred to as \holes"), which are read as ze-611

ros. The logical size can be increased or decreased with the control oper-612

ation SIO CTL SetSize (see Section 13). Decreasing the logical size via613

SIO CTL SetSize corresponds to truncating the �le, and increasing it cre-614

ates a hole extending from the previous end of �le to the new end of �le. A615

�le's logical size can also be increased by writing data past the current end616

of �le.617

The physical size of an SIO �le is the amount of physical storage in bytes618

allocated to store the �le data (excluding metadata). It may be di�erent619

from the logical size of the �le because of �xed size allocation blocks and be-620

cause each implementation has the freedom to store data in any appropriate621

manner, including not storing the content of holes and the use of data com-622

pression techniques. The user has no direct control over the �le's physical623

size.624

The preallocation size of an open SIO �le is the minimum logical size625

to which the �le system guarantees the �le may grow without running out626

of space. When a �le is opened (created), its preallocation size defaults627

to its physical size (zero) unless a SIO CTL SetPreallocation control628

operation (see Section 13) is speci�ed in the sio open() call. Prealloca-629

tion size is not a�ected by any operation de�ned by this API other than630

34 6 FILE ATTRIBUTES

SIO CTL SetPreallocation control operation and sio close().631

6.2 File Label632

The �le label of an SIO �le is a part of the �le's metadata that is acces-633

sible to the user for storing descriptive information about the �le without634

keeping a header in the �le itself. Labels are intended to support interop-635

erability by associating information about a �le's representation (including636

�le type, version, writing application, etc) with the �le itself. Labels are not637

necessarily the same length in all implementations, but must always be long638

enough to record a maximum length �le name for that implementation. This639

allows representation information too large to �t in a �le label to be stored640

in a separate �le named in the �le label. The size of a label is given in the641

sio label t containing the label. This size is at least as large as an im-642

plementation's longest name which must be at least 256 bytes. The maxi-643

mum size of a label in any speci�c implementation is given by the constant644

SIO MAX LABEL LENGTH and is recommended to be at least 1024645

bytes.646

6.3 File Layout647

The �le layout of an SIO �le expresses the placement of the �le bytes on648

the parallel storage devices. Some implementations may allow the user to649

specify the �le layout when the �le is created with the SIO CTL SetLayout650

control operation. Other implementations may allow the user to query the651

�le layout parameters with the SIO CTL GetLayout control operation,652

but not to set the layout. Still others may choose not to reveal anything653

about the underlying �le layout and will support neither of the layout control654

operations.655

A given �le layout consists of the number of parallel storage devices over656

which the �le data are striped, the number of contiguous bytes constituting657

each striping unit, and the algorithm which speci�es the striping pattern of658

the striping units. For example, a simple striping pattern on four storage659

6.3 File Layout 35

devices using a striping unit of 1024 bytes would look like the following (the660

starting byte number of each striping unit is shown):661

Storage Storage Storage Storage

Unit 0 Unit 1 Unit 2 Unit 3

0 1024 2048 3072

4096 5120 6144 7168
8192 9216 10240 11264
12288 13312 14336 15360

16384 17408 18432 19456
20480 21504 22528 23552
24576 25600 26624 27648

28672 29696 30720 31744
...

...
...

...

662

Note to implementor: The underlying implementation may employ advanced663

redundancy encodings or dynamic data representation (compressed and un-664

compressed or mirrored and parity protected). In cases like these, these665

layout parameters may be insu�cient. In these cases the width of a stripe666

should be interpreted as the parallelism of accesses of at most an aligned667

striping unit.668

36 6 FILE ATTRIBUTES

37

7 Error Reporting669

To make it easier for applications to deal with SIO error codes, the function670

sio error string() is provided. This function takes a sio return t value671

and returns a const char *. The sio error string function maps error codes672

to meaningful error strings. When passed an error code that is not de�ned673

by the implementation, sio error string() must return a string indicating674

the error number and noting that the error code is unrecognized.675

38 7 ERROR REPORTING

7.1 sio error string676

Purpose677

Translate a sio return t into a string.678

Syntax679

#include <sio fs.h>680

const char *sio error string(sio return t Result);681

Parameters682

Result The return code to translate.683

Description684

This function translates a return code to a string. The string pointed685

to must not be modi�ed by the program, and may be overwritten by686

subsequent calls to sio error string(). If the implementation supports687

NLS (the suite of internationalization functions mandated by �/Open688

XPG 4.2), the contents of the returned error message string should be689

determined by the setting of the LC MESSAGES category in the690

locale.691

39

8 Basic Operations692

This section de�nes the basic operations that can be performed on parallel693

�les. Interfaces are provided to open and close parallel �les, to remove �les694

from a parallel �le system, and to perform control operations on parallel �les.695

This section de�nes some operations that appear to be similar to functions696

already supported in the POSIX standard. These operations exist so that697

implementations of this interface can be written without having to imple-698

ment the entire POSIX interface. Implementations that do support complete699

POSIX interfaces must still support the functions in this section, although700

their implementation may use the POSIX functions.701

Three of the functions de�ned in this section, sio open(), sio control(),702

and sio test(), allow the application to specify a set of controls to be applied703

to a �le. Because sio control() provides the simplest introduction to the704

use of controls, it is described �rst.705

40 8 BASIC OPERATIONS

8.1 sio control706

Purpose707

Perform a set of control operations on a given �le.708

Syntax709

#include <sio fs.h>710

sio return t sio control(int FileDescriptor, sio control t *Ops,711

sio count t OpCount);712

Parameters713

FileDescriptor The �le descriptor of the open parallel �le on which to714

perform the control operations.715

Ops An array of control operations to be performed.716

OpCount The number of control operations in the array referenced by717

Ops.718

Description719

This function performs the set of control operations speci�ed by the720

Ops argument on the open �le speci�ed by the FileDescriptor argu-721

ment. Each control operation is either mandatory or optional, de-722

pending on the bits set in its
ags �eld. If any of the mandatory723

operations would fail, the sio control() operation fails and returns724

SIO ERR CONTROL FAILED. In contrast, the failure of an op-725

tional control does not cause sio control() to fail. The status of the726

individual controls can be checked after sio control() returns, via the727

result �eld in the sio control t structures.728

The application must not assume any ordering on the execution of the729

controls in Ops; the implementation is free to examine and/or execute730

the Ops in any order. Those control operations that succeed may take731

e�ect in any order.732

If the sio control() operation succeeds, then all of the mandatory733

controls take e�ect and have their result codes set to SIO SUCCESS.734

With regard to the optional controls, one of two situations can occur:735

8.1 sio control 41

� all of the optional controls take e�ect and have their result codes736

set to SIO SUCCESS; or737

� at least one of the optional controls fails and has its result code738

set to a control-speci�c error value. The remainder of the optional739

controls may individually 1) fail and have their result code set to a740

control-speci�c error value, 2) take e�ect and have their result code741

set to SIO SUCCESS, 3) not be attempted and have their result742

code set to SIO ERR CONTROL NOT ATTEMPTED.743

If the sio control() operation fails for any reason, then all of the744

control operations in Ops are annulled, that is, they have no per-745

manent e�ect on the �le system. If sio control() fails, none of746

the controls will have their result �eld set to SIO SUCCESS. In747

this case, the implementation may set the result �eld of a partic-748

ular control to a control-speci�c error code if that control would749

have failed or if the control caused the sio control() to fail, or to750

SIO ERR CONTROL WOULD HAVE SUCCEEDED if that751

control would have succeeded had the sio control() operation not752

failed, or to SIO ERR CONTROL NOT ATTEMPTED if the753

sio control() failed before the implementation checked whether or not754

that control would have succeeded.755

Section 13 de�nes the control operations included in the basic API.756

Return Values757

SIO SUCCESS758

All mandatory control operations succeeded.759

SIO ERR CONTROL FAILED760

At least one of the mandatory control operations failed.761

SIO ERR CONTROLS CLASH762

Some of the mandatory control operations are incompatible with763

each other and cannot be performed together by this implementa-764

tion. If a control operation fails with this error, then at least two765

of the individual control operations must also have their result766

�elds set to SIO ERR CONTROLS CLASH.767

SIO ERR INVALID DESCRIPTOR768

The FileDescriptor parameter is not a valid �le descriptor.769

42 8 BASIC OPERATIONS

8.2 sio open770

Purpose771

Open a �le for reading and/or writing.772

Syntax773

#include <sio fs.h>774

sio return t sio open(int *FileDescriptorPtr, const char *Name,775

sio mode t Mode,776

sio control t *ControlOps,777

sio count t ControlOpCount);778

Parameters779

FileDescriptorPtr On success, this will contain the �le descriptor of the780

newly opened �le.781

Name The name of the �le to open. The name must be at most782

SIO MAX NAME LEN characters in length.783

Mode The mode used to open the �le. Must include at least one784

of SIO MODE READ and SIO MODE WRITE, or both785

ORed together. May also include SIO MODE CREATE.786

ControlOps An array of control operations to be performed on the �le787

during the open.788

ControlOpCount The number of operations in the array speci�ed by789

ControlOps.790

Description791

This function takes a logical �le name, and produces a �le de-792

scriptor which supports reading and/or writing, depending on the793

value of Mode. If the named �le does not exist and Mode has the794

SIO MODE CREATE bit set, then the �le will be created; if795

the bit is not set then SIO ERR FILE NOT FOUND will be re-796

turned. If SIO MODE CREATE is set and the �le already exists,797

SIO ERR ALREADY EXISTS will be returned.798

8.2 sio open 43

As part of the operation of opening the �le, sio open() performs the799

control operations described by ControlOps and ControlOpCount. The800

control operations have the same meaning and are treated in the same801

way as in the sio control() function.802

If the sio open() operation fails for any reason, then all of the control803

operations are annulled and have their result codes set in the same way804

sio control() sets the result codes when it fails.805

Note that the semantics of sio open() do not require any permission or806

security checks. Implementations not embedded in a POSIX �le system807

that wish to provide �le permissions can check those permissions on808

open and can allow those permissions to be set via implementation-809

speci�c control operations.810

Return Codes811

SIO SUCCESS812

The open succeeded.813

SIO ERR ALREADY EXISTS814

SIO MODE CREATE was speci�ed and the �le already exists.815

SIO ERR CONTROL FAILED816

At least one of the mandatory control operations would have817

failed.818

SIO ERR CONTROLS CLASH819

Some of the mandatory control operations speci�ed are incompat-820

ible with each other and cannot be performed together by this821

implementation.822

SIO ERR FILE NOT FOUND823

The �le did not exist and SIO MODE CREATE was not spec-824

i�ed.825

SIO ERR INVALID FILENAME826

The Name parameter is not a legal �le name.827

SIO ERR IO FAILED828

A physical I/O error caused the open to fail.829

44 8 BASIC OPERATIONS

SIO ERR MAX OPEN EXCEEDED830

Opening the �le would result in the task having more than831

SIO MAX OPEN open �le descriptors.832

8.3 sio close 45

8.3 sio close833

Purpose834

Close a previously opened �le.835

Syntax836

#include <sio fs.h>837

sio return t sio close(int FileDescriptor);838

Parameters839

FileDescriptor The �le descriptor of the open parallel �le to close.840

Description841

This function closes an open �le. All resources associated with having842

the �le open will be deallocated. Cached pending writes are made843

visible to other nodes before sio close() returns (see Section 12 for844

details). The results of any asynchronous I/Os in progress at the time845

sio close() is called are unspeci�ed, and the handles for those I/Os846

may be invalidated by the system. Applications may ensure that all847

asynchronous I/Os are complete by calling sio async status any()848

prior to calling sio close() (see Section 10.2). Pre-allocated space,849

unnecessary for the physical �le associated with the open �le, may be850

released.851

Note to implementors: Implementations should close all of a task's852

open parallel �le descriptors when the task terminates.853

Return Codes854

SIO SUCCESS855

The close succeeded.856

SIO ERR INVALID DESCRIPTOR857

The FileDescriptor parameter does not refer to a valid �le descrip-858

tor previously returned by sio open().859

SIO ERR IO FAILED860

A physical I/O error caused the close to fail.861

46 8 BASIC OPERATIONS

8.4 sio unlink862

Purpose863

Remove a �le from the parallel �le system.864

Syntax865

#include <sio fs.h>866

sio return t sio unlink(const char *Name);867

Parameters868

Name The name of the �le to remove.869

Description870

This function removes a �le from the parallel �le system, deallocating871

any space that was allocated for the �le. The semantics of unlinking an872

open �le are implementation-speci�c; possibilities include (but are not873

limited to) allowing tasks which have this �le open to continue to use874

their open �le descriptors, allowing subsequent I/O operations on the875

�le to fail, and allowing sio unlink() itself to fail if the �le is open.876

Return Codes877

SIO SUCCESS878

The unlink succeeded.879

SIO ERR FILE NOT FOUND880

The �le did not exist.881

SIO ERR FILE OPEN882

The �le Name is open and the implementation does not allow open883

�les to be unlinked.884

SIO ERR INVALID FILENAME885

The Name parameter is not a legal �le name.886

SIO ERR IO FAILED887

A physical I/O error caused the unlink to fail.888

8.5 sio test 47

8.5 sio test889

Purpose890

Use mode and control operations to determine attributes of a �le by891

name, without opening the �le.892

Syntax893

#include <sio fs.h>894

sio return t sio test(const char *Name, sio mode t Mode,895

sio control t *ControlOps,896

sio count t ControlOpCount);897

Parameters898

Name The name of the target �le.899

Mode The access mode to be tested. May include one or900

more of SIO MODE READ, SIO MODE WRITE, and901

SIO MODE CREATE, ORed together.902

ControlOps An array of control operations to be performed on the �le.903

ControlOpCount The number of operations in the array speci�ed by904

ControlOps.905

Description906

This function allows an application to test for the existence of a �le or907

test whether a �le can be created, and get the attributes of the �le,908

without opening or creating the �le.909

This function is similar to sio open(), except for two di�erences:910

� It does not actually open or create the speci�ed �le.911

� It is not allowed to perform any control operations that change912

the permanent state of the �le system.913

This function may only use controls that do not change the914

permanent state of the �le system. Of the controls de-915

�ned in this document, only the following may be performed916

by sio test(): SIO CTL GetSize SIO CTL GetAllocation917

48 8 BASIC OPERATIONS

SIO CTL GetPreallocation SIO CTL GetLayout918

SIO CTL GetLabel SIO CTL GetConsistencyUnit.919

Controls that change920

�le state will return SIO ERR CONTROL NOT ON TEST. If921

implementation-speci�c controls are de�ned, the implementation must922

specify whether or not each additional control modi�es �le state.923

Provided a disallowed control is not speci�ed, this function succeeds if924

a call to sio open() with the same parameters would have succeeded.925

If this function fails for any reason, then the result codes of the indi-926

vidual Ops are set in the same manner that sio open() sets the result927

codes of its Ops.928

Return Codes929

SIO SUCCESS930

The test succeeded.931

SIO ERR ALREADY EXISTS932

SIO MODE CREATE was speci�ed and the �le already exists.933

SIO ERR CONTROL FAILED934

At least one of the mandatory control operations would have935

failed.936

SIO ERR CONTROL NOT ON TEST937

At least one of the control operations changes the �le state and938

may not be used with sio test().939

SIO ERR CONTROLS CLASH940

Some of the mandatory control operations speci�ed are incompat-941

ible with each other and cannot be performed together by this942

implementation.943

SIO ERR FILE NOT FOUND944

The �le did not exist and SIO MODE CREATE was not spec-945

i�ed.946

SIO ERR INVALID FILENAME947

The Name parameter is not a legal �le name.948

8.5 sio test 49

SIO ERR IO FAILED949

A physical I/O error caused the function to fail.950

SIO ERR MAX OPEN EXCEEDED951

Opening the �le would result in the task having more than952

SIO MAX OPEN open �le descriptors.953

50 8 BASIC OPERATIONS

8.6 sio rename954

Purpose955

Rename a �le.956

Syntax957

#include <sio fs.h>958

sio return t sio rename(const char *OldName,959

const char *NewName);960

Parameters961

OldName The current name of the �le.962

NewName The new name of the �le.963

Description964

This function changes the name of the �le OldName to NewName.965

The semantics of renaming an open �le are implementation-speci�c;966

possibilities include (but are not limited to) allowing tasks which have967

this �le open to continue to use their open �le descriptors, allowing968

subsequent I/O operations on the �le to fail, and allowing the rename969

itself to fail if the �le is open.970

Return Codes971

SIO SUCCESS972

The rename succeeded.973

SIO ERR ALREADY EXISTS974

NewName already exists.975

SIO ERR FILE NOT FOUND976

OldName did not exist.977

SIO ERR FILE OPEN978

The �le OldName is open and the implementation does not allow979

open �les to be renamed.980

SIO ERR INVALID FILENAME981

One of the �le names is not a valid name for a �le.982

8.6 sio rename 51

SIO ERR IO FAILED983

A physical I/O error caused the function to fail.984

52 8 BASIC OPERATIONS

53

9 Synchronous File I/O985

This section introduces new functions for �le read and write operations.986

These provide �le system functions previously unavailable in UNIX systems,987

as they allow strided scatter and gather of data in memory and also in a �le.988

One of the primary performance-limiting problems for �le systems and paral-989

lel programs arises when the data-moving interfaces are restricted to moving990

single contiguous regions of bytes. This restriction causes applications to ask991

too frequently for small amounts of work and it denies the system the ability992

to obtain performance bene�ts from grouping (batching, scheduling, coalesc-993

ing). Our �rst step toward removing this limitation is to o�er interfaces that994

allow the transfer of multiple ranges in a �le to or from multiple ranges in995

memory. We call this capability scatter-gather.996

The read and write operations introduced in this section are not like tradi-997

tional read/write operations. Rather than describing �le and memory ad-998

dresses as linear bu�ers, these calls describe them as lists of strided accesses.999

Each element of the list speci�es a single strided access, consisting of a start-1000

ing address (o�set), size of each contiguous region, stride between the con-1001

tiguous regions, and the total number of regions in the strided access (see1002

Section 4 for the formats of these elements). Data are copied from the source1003

bu�er to the destination in canonical order. The canonical order of an indi-1004

vidual strided access is the sequence of contiguous byte regions speci�ed by1005

the access. The canonical order for a list of strided accesses is simply the1006

concatenation of the canonical orders for the strided accesses. Intuitively, all1007

byte regions speci�ed by the canonical ordering in a �le are concatenated into1008

a contiguous zero-address based virtual window. The byte regions speci�ed1009

in memory are also concatenated in canonical order into this virtual window.1010

Each byte of the virtual window corresponds to one byte of the �le and also1011

to one byte of memory. The number of bytes speci�ed in the two lists must1012

be equal.1013

We place no restrictions on the values of addresses occurring in the canonical1014

ordering of the data structure from the �le or memory. This mapping may1015

be increasing, decreasing or non-monotonic in the �le or memory, and may1016

cover a given byte more than once.1017

54 9 SYNCHRONOUS FILE I/O

Note that the �le system need not access the �le or memory in canonical1018

order. Data can be accessed in the �le or memory in any sequence as preferred1019

by the �le system to optimize performance. The canonical sequence of �le1020

regions is used only to compute the association of the �le data with memory1021

regions.1022

If the source list (i.e. the memory bu�er during a write or the �le bu�er1023

during a read) contains the same region more than once then its data will1024

be copied into the destination bu�er multiple times. If the destination list1025

contains the same region more than once then the resulting contents of the1026

duplicated region are unde�ned.61027

Applications must not access an I/O operation's memory bu�er while the1028

operation is in progress. For example, a thread in a multi-threaded appli-1029

cation must not read or write a bu�er while another thread has an I/O in1030

progress using the same bu�er. Failure to avoid such accesses may corrupt1031

the task and/or �le in unde�ned ways, including leaving the contents of the1032

�le corrupted or causing the task to fault. Applications that wish to share1033

I/O bu�ers between threads must explicitly synchronize the threads' accesses1034

to those bu�ers.1035

It is expected that many users of this API will desire simpler interfaces to1036

this functionality. In addition to the basic POSIX interfaces, the interfaces in1037

Appendix B are easily built on the interfaces provided in this API. These, or1038

similar simpli�ed interfaces, could easily be provided by a high-level library,1039

and are not de�ned by this API.1040

6No function to check for duplicate regions in the destination list is provided. However,

such a function could be implemented as part of a higher-level library built on top of this

API.

9.1 sio sg read, sio sg write 55

9.1 sio sg read, sio sg write1041

Purpose1042

Transfer data between a �le and memory.1043

Syntax1044

#include <sio fs.h>1045

sio return t sio sg read(int FileDescriptor,1046

const sio �le io list t *FileList,1047

sio count t FileListLength,1048

const sio mem io list t *MemoryList,1049

sio count t MemoryListLength,1050

sio transfer len t *TotalTransferred);1051

sio return t sio sg write(int FileDescriptor,1052

const sio �le io list t *FileList,1053

sio count t FileListLength,1054

const sio mem io list t *MemoryList,1055

sio count t MemoryListLength,1056

sio transfer len t *TotalTransferred);1057

Parameters1058

FileDescriptor The �le descriptor of an open �le.1059

FileList Speci�cation of �le data to be read or written.1060

FileListLength Number of elements in FileList.1061

MemoryList Speci�cation of the memory bu�er containing data to be1062

read or written.1063

MemoryListLength Number of elements in MemoryList.1064

TotalTransferred Used to return the total number of bytes read or writ-1065

ten.1066

Description1067

These functions move data between a list of �le locations and a list1068

of memory locations. All I/O must be done to a single �le, in the1069

FileDescriptor argument.1070

56 9 SYNCHRONOUS FILE I/O

The mapping between the collection of �le regions speci�ed by FileList1071

and the collection of memory byte regions speci�ed by MemoryList1072

is in matching indices in the canonical ordering of the corresponding1073

sio �le io list t and sio mem io list t.1074

If the total transfer cannot be completed because a �le address is not1075

valid (i.e. reading beyond the end of the �le), these interfaces will1076

complete successfully, and return in TotalTransferred the index of the1077

�rst byte in the canonical ordering that could not be transferred (fol-1078

lowing the UNIX example); bytes preceding this index in the canonical1079

ordering have been transferred successfully and bytes following (and1080

including) it may or may not have been transferred successfully.1081

Implementations may return a value less than the actual amount trans-1082

ferred if the operation was not successful; in particular, an implemen-1083

tation may indicate that zero bytes were transferred successfully on all1084

failures.1085

Return Codes1086

SIO SUCCESS1087

The function succeeded.1088

SIO ERR INCORRECT MODE1089

The mode of the �le descriptor does not permit the I/O.1090

SIO ERR INVALID DESCRIPTOR1091

FileDescriptor does not refer to a valid �le descriptor.1092

SIO ERR INVALID FILE LIST1093

The �le regions described by FileList are invalid, e.g. they contain1094

illegal addresses.1095

SIO ERR INVALID MEMORY LIST1096

The memory regions described by MemoryList are invalid, e.g.1097

they contain illegal addresses.1098

SIO ERR IO FAILED1099

A physical I/O error caused the function to fail.1100

SIO ERR NO SPACE1101

The �le system ran out of space while trying to extend the �le.1102

9.1 sio sg read, sio sg write 57

SIO ERR UNEQUAL LISTS1103

The number of bytes in MemoryList and FileList are not equal.1104

58 9 SYNCHRONOUS FILE I/O

59

10 Asynchronous File I/O1105

Asynchronous I/O allows a single-threaded task to issue concur-1106

rent I/O requests. The parallel �le system supports up to1107

SIO MAX ASYNC OUTSTANDING (see Section 5.1) asynchronous1108

I/Os at a time for each task. Asynchronous I/O functions merely initiate an1109

I/O, returning to the task a handle that may be used by the task to wait for1110

the I/O to complete, to check its status of the I/O, or to cancel the I/O.1111

These handles are of type sio async handle t, which is an opaque type1112

de�ned by the system. Only the task that issued the asynchronous I/O is1113

able to use the sio async handle t associated with the I/O to retrieve the1114

status of or cancel the I/O. Other tasks that wish to retrieve the status of or1115

cancel an I/O must contact the task that initiated the I/O.1116

60 10 ASYNCHRONOUS FILE I/O

10.1 sio async sg read, sio async sg write1117

Purpose1118

Asynchronously transfer data between a �le and memory.1119

Syntax1120

#include <sio fs.h>1121

sio return t sio async sg read(int FileDescriptor,1122

const sio �le io list t *FileList,1123

sio count t FileListLength,1124

const sio mem io list t *MemoryList,1125

sio count t MemoryListLength,1126

sio async handle t *Handle);1127

sio return t sio async sg write(int FileDescriptor,1128

const sio �le io list t *FileList,1129

sio count t FileListLength,1130

const sio mem io list t *MemoryList,1131

sio count t MemoryListLength,1132

sio async handle t *Handle);1133

Parameters1134

FileDescriptor The �le descriptor of an open �le.1135

FileList Speci�cation of �le data to be read or written.1136

FileListLength Number of elements in FileList.1137

MemoryList Speci�cation of the memory bu�er containing data to be1138

read or written.1139

MemoryListLength Number of elements in MemoryList.1140

Handle Handle returned by the operation, which can be used later to1141

determine the status of the I/O, to wait for its completion, or to1142

cancel it.1143

Description1144

10.1 sio async sg read, sio async sg write 61

These functions behave similarly to sio sg read() and sio sg write().1145

A successful return, however, indicates only that the I/O has been1146

queued for processing by the parallel �le system.1147

Handle is a task-speci�c value which may be used to poll for comple-1148

tion, block until the I/O completes, or cancel the I/O. The handle re-1149

mains valid until either the task completes, or sio async status any()1150

indicates that the I/O transfer associated with Handle is no longer1151

in progress. While a handle is valid it counts towards the1152

SIO MAX ASYNC OUTSTANDING asynchronous I/Os that a1153

task may have.1154

As in synchronous I/O, applications must neither access nor modify the1155

contents of a memory bu�er while an asynchronous I/O is in progress1156

on that bu�er. Doing so may leave the bu�er and/or the �le in an1157

unde�ned state, and may cause the task to fault. See Section 9 for1158

details.1159

Return Codes1160

SIO SUCCESS1161

The function succeeded.1162

SIO ERR INCORRECT MODE1163

The mode of the �le descriptor does not allow the I/O.1164

SIO ERR INVALID DESCRIPTOR1165

FileDescriptor does not refer to a valid �le descriptor.1166

SIO ERR INVALID FILE LIST1167

The �le regions described by FileList are invalid, e.g. they contain1168

illegal addresses. Implementations may defer returning this error1169

until sio async status any() is invoked on the I/O.1170

SIO ERR INVALID MEMORY LIST1171

The memory regions described by MemoryList are invalid, e.g.1172

they contain illegal addresses. Implementations may defer return-1173

ing this error until sio async status any() is invoked on the1174

I/O.1175

SIO ERR IO FAILED1176

A physical I/O error caused the function to fail.1177

62 10 ASYNCHRONOUS FILE I/O

SIO ERR MAX ASYNC OUTSTANDING EXCEEDED1178

The I/O request could not be initiated because doing so would1179

cause the calling task's number of outstanding asynchronous I/Os1180

to exceed the limit.1181

SIO ERR NO SPACE1182

The �le system ran out of space while trying to extend the1183

�le. Implementations may defer returning this error until1184

sio async status any() is invoked on the I/O.1185

SIO ERR UNEQUAL LISTS1186

The number of bytes in MemoryList and FileList are not1187

equal. Implementations may defer returning this error until1188

sio async status any() is invoked on the I/O.1189

10.2 sio async status any 63

10.2 sio async status any1190

Purpose1191

Get the status of asynchronous I/Os.1192

Syntax1193

#include <sio fs.h>1194

sio return t sio async status any(1195

sio async handle t *HandleList,1196

sio count t HandleListLength,1197

sio count t *Index,1198

sio async status t *Status,1199

sio async
ags t Flags);1200

Parameters1201

HandleList An array of sio async handle ts identifying the asyn-1202

chronous I/Os for which status is desired.1203

HandleListLength The number of elements in HandleList.1204

Index Used to return the index of handle within HandleList for which1205

status is returned.1206

Status Pointer to an sio async status t to be �lled in.1207

Flags Determines whether or not the operation blocks or returns im-1208

mediately.1209

Description1210

This function retrieves the status of one of the asynchronous I/Os spec-1211

i�ed by HandleList. The index of the handle within HandleList for1212

which the status is returned is stored in Index. The system may return1213

the status for any of the handles, provided that if any of the I/Os are1214

complete or canceled, then the status for one of these I/Os is returned1215

and not the status of an I/O that is still in progress.1216

It is important to note that once the status for an I/O indi-1217

cates that the I/O is no longer in progress (i.e. it completed1218

or was canceled) the handle for the I/O is no longer valid. If1219

64 10 ASYNCHRONOUS FILE I/O

it is subsequently passed to sio async status any() the value1220

SIO ERR INVALID HANDLE will be returned if the handle is1221

still invalid, otherwise the status of the new asynchronous I/O will be1222

returned if the handle has been reused.1223

The task may place a dummy handle in the HandleList by setting the1224

entry to SIO ASYNC DUMMY HANDLE. The system ignores a1225

handle with this value, allowing the task to retrieve the status for a set1226

of handles using the same HandleList array, by replacing the handle for1227

the I/O just �nished with the dummy value.1228

If the Flags parameter includes SIO ASYNC BLOCKING, this1229

function will not return until at least one of the I/Os has completed. If1230

it includes SIO ASYNC NONBLOCKING, this function returns1231

immediately, regardless of whether or not one of the I/Os has com-1232

pleted.1233

Note to implementors: When an I/O is canceled the count �eld in Status1234

will contain the number of bytes guaranteed to have been transferred1235

prior to the cancellation. Implementations may always set this value1236

to zero, indicating that none of the bytes are guaranteed to have been1237

transferred.1238

Status Results1239

The following values are returned in the result �eld of the Status struc-1240

ture, indicating the status of the I/O:1241

SIO SUCCESS1242

The I/O has completed or been canceled. The count �eld contains1243

the number of bytes transferred.1244

SIO ERR INVALID FILE LIST1245

The �le regions described by the FileList parameter passed to the1246

function that initiated the I/O are invalid, e.g. they contain illegal1247

addresses.1248

SIO ERR INVALID MEMORY LIST1249

The memory regions described by the MemoryList parameter1250

passed to the function that initiated the I/O are invalid, e.g. they1251

contain illegal addresses.1252

10.2 sio async status any 65

SIO ERR IO CANCELED1253

The I/O was canceled without completing. The count �eld con-1254

tains the number of bytes guaranteed to have been transferred1255

successfully prior to the cancellation. Implementations may set1256

count to zero.1257

SIO ERR IO FAILED1258

A physical I/O error caused the function to fail.1259

SIO ERR IO IN PROGRESS1260

The I/O is still in progress.1261

SIO ERR MIXED COLL AND ASYNC1262

The implementation does not support mixing of asynchronous and1263

collective I/O handles, and a mix of handle types was supplied.1264

SIO ERR NO SPACE1265

The �le system ran out of space while trying to extend the �le.1266

SIO ERR UNEQUAL LISTS1267

The size of the memory bu�er doesn't match size of the �le regions1268

to be accessed.1269

Return Values1270

SIO SUCCESS1271

An I/O has completed or been canceled, the index and result of1272

which are stored in Index and Status, respectively.1273

SIO ERR INVALID HANDLE1274

At least one of the elements of HandleList is neither a valid handle1275

for an asynchronous I/O nor a dummy handle. Index will contain1276

the index of one of the invalid handles.1277

SIO ERR IO IN PROGRESS1278

All I/Os are still in progress.1279

66 10 ASYNCHRONOUS FILE I/O

10.3 sio async cancel all1280

Purpose1281

Request that a collection of asynchronous I/Os be canceled.1282

Syntax1283

#include <sio fs.h>1284

sio return t sio async cancel all(1285

sio async handle t *HandleList,1286

sio count t HandleListLength);1287

Parameters1288

HandleList An array of sio async handle ts identifying the asyn-1289

chronous I/Os to be canceled.1290

HandleListLength The number of elements in HandleList.1291

Description1292

This function is used to request that asynchronous I/Os be canceled.1293

It is not guaranteed that the I/O will not complete in full or in part;1294

an implementation may ignore cancel requests. A canceled read leaves1295

the contents of the I/O's memory bu�er unde�ned. Likewise, if a write1296

is canceled, the contents of the regions of the �le regions being written1297

are unde�ned.1298

The status of a canceled request remains available until an1299

sio async status any() reports its completion. An application1300

should test for this status or its maximum outstanding asynchronous1301

I/Os will appear to diminish.1302

Note to implementors:1303

An implementation may ignore cancellation requests altogether. In this1304

case a call to sio async status any() on an I/O that whose cancel-1305

lation was requested should return the normal, uncanceled completion1306

status of the I/O.1307

Note to implementors: Implementations are encouraged to avoid1308

reusing the same handles for di�erent asynchronous I/Os within the1309

10.3 sio async cancel all 67

same task. A handle becomes invalid once the I/O is no longer in1310

progress and its status has been retrieved, but bugs may cause a task1311

to use such an invalid handle. If the system has reassigned the handle1312

to a new I/O the task will end up a�ecting the new I/O, instead of1313

getting an invalid handle error. Although this behavior is caused by1314

a bug in the application, avoiding reuse of handles will help track the1315

problem.1316

Return Values1317

SIO SUCCESS1318

The request for cancellation was accepted. This does not mean1319

that the I/Os were actually canceled.1320

SIO ERR INVALID HANDLE1321

One of the elements in HandleList is not a valid handle for an1322

asynchronous I/O.1323

68 10 ASYNCHRONOUS FILE I/O

69

11 File Access Pattern Hints1324

File access pattern hints provide a useful mechanism for users and libraries1325

to disclose the intended use of �le regions to the �le system. The hints,1326

if properly given, allow �le systems to implement signi�cant performance1327

optimizations. Many parallel scienti�c programs, for example, have access1328

patterns that are anathemic to some �le system architectures. These appli-1329

cations could bene�t if the �le system accepted access hints that protected1330

the application from the performance consequences of the default �le system1331

behavior. For example, access hints can be used by the �le system to choose1332

caching and pre-fetching policies.1333

Hints are issued with the sio hint() and sio hint by name() interfaces1334

described in Section 11.3. These interfaces indicate a �le, a hint class, and1335

a list of hints. Hints apply only to the future accesses of the task passing1336

in the hints, they are not associated with the accesses of other tasks. There1337

are two hint classes speci�ed in this API: ordered and unordered. Vendors1338

are encouraged to extend this API with vendor-de�ned hint classes, which1339

must have names beginning with SIO HINT CLASS VEND . Within1340

any class of hints, the interaction of all hint types must be speci�ed, but1341

the interaction of hint types from di�erent classes need not be speci�ed. In1342

particular, two calls issuing hints with di�erent hint classes for the same1343

open �le may not be meaningful to an implementation. However, since the1344

information in these hints are not commands, the �le system implementation1345

has broad freedom not to act where hint combinations are not meaningful.1346

The intent of hints is to allow the application to precisely specify what its1347

future access patterns will be. The hint interface does not provide speci�c1348

guarantees of how implementations will interpret these hints. Di�erent im-1349

plementations are free to choose di�erent strategies for responding to hints1350

(including ignoring them completely), but the application's description of its1351

future accesses must conform to this interface.1352

System performance may be degraded due to inaccurate hints. Implementa-1353

tions should attempt to protect against such performance degradation, but1354

are not required to. Similarly, applications should not assume that the �le1355

system can always limit the performance impacts of inaccurate hints (ac-1356

70 11 FILE ACCESS PATTERN HINTS

cesses that have been hinted, but will not actually be performed) and should1357

make use of the cancel options to minimize these e�ects.1358

11.1 Ordered Hints 71

11.1 Ordered Hints1359

In a set of ordered hints, each hint indicates a particular future access to1360

be issued by the calling task, and the sequence of issued hints indicates the1361

order of these future accesses. The total order of future accesses expressed1362

by multiple invocations of the hint interfaces is determined by logically con-1363

catenating the hint array in each invocation onto the end of the hint array1364

built by previously issued hints. This allows access to di�erent �les to be1365

ordered. The accesses to di�erent �les predicted by one hint are expected to1366

occur after the accesses predicted by all hints preceding it in the total order,1367

and before the accesses predicted by all hints following it in the total order.1368

The
ag �eld of each sio hint t in the class of ordered hints can contain the1369

following
ags that can be ORed with each other:1370

SIO HINT READ or SIO HINT WRITE1371

SIO HINT READ indicates the hint describes a read access.1372

SIO HINT WRITE indicates the hint describes a write access.1373

Exactly one of these
ags must be speci�ed for each hint. When used1374

to cancel a hint the
ags in the cancel request must match the hint's1375

ags.1376

SIO HINT CANCEL ALL or SIO HINT CANCEL NEXT1377

Regardless of the �le speci�ed by the hint interface call and the1378

regions speci�ed by the io list �elds in the sio hint t structures,1379

SIO HINT CANCEL ALL indicates that all previously issued hints1380

should be ignored.1381

SIO HINT CANCEL NEXT indicates that the previously is-1382

sued hint matching the �le and region speci�ed with this1383

SIO HINT CANCEL NEXT whose predicted access is next to oc-1384

cur should be ignored. A hint is considered \outstanding" if the data1385

transfer request predicted by the hint has not yet occurred. It is ex-1386

pected the data transfer requests will take place in the sequence given1387

by the total ordered list of hints for the task, with the possibility that1388

not all transfer requests will have corresponding hints. The \next out-1389

standing hint" will be the �rst matching hint in the set of ordered hints1390

72 11 FILE ACCESS PATTERN HINTS

previously issued by this task for which no corresponding for transfer1391

request has occurred.1392

A previously issued hint's pro�le \matches" the current hint's pro-1393

�le if the hints pertain to the same �le, and the regions speci�ed by1394

the io list entry in the sio hint t structures are the same and the1395

SIO HINT READ or SIO HINT WRITE
ag matches.1396

No more than one of these
ags may be speci�ed for each hint.1397

Note to implementors: Implementations are not required to keep track1398

of \outstanding" hints. The concept of \outstanding" only describes1399

the application's intent in issuing the hint, and does not describe the1400

implementation's behavior. In implementations that do not keep track1401

of \outstanding" hints the SIO HINT CANCEL NEXT hint may1402

not be useful.1403

11.2 Unordered Hints 73

11.2 Unordered Hints1404

In an unordered set of hints, each hint independently speci�es information1405

about some set of future accesses. There is no explicit ordering among the1406

accesses predicted by unordered hints. These predictions remain in e�ect1407

until explicitly canceled.1408

The
ag �eld of each sio hint t in the class of unordered hints can contain1409

the following
ags:1410

SIO HINT READ and/or SIO HINT WRITE1411

SIO HINT READ indicates that the hint describes read accesses.1412

SIO HINT WRITE indicates that the hint describes write accesses.1413

If SIO HINT READ and SIO HINT WRITE are given together,1414

they indicate that the hint describes a read-write access.1415

At least one of these
ags must be speci�ed for each hint.1416

SIO HINT CANCEL ALL or SIO HINT CANCEL MATCHING1417

SIO HINT CANCEL ALL suggests that the �le system ig-1418

nore all previously issued unordered hints from this task, re-1419

gardless of the �le and �le regions given in any of these hints.1420

SIO HINT CANCEL MATCHING suggests that the �le system1421

ignore all previously issued unordered hints from this task which match1422

the given sio hint t.1423

No more than one of these
ags may be speci�ed for each hint.1424

SIO HINT SEQUENTIAL, SIO HINT REVERSE,1425

SIO HINT RANDOM PARTIAL,1426

SIO HINT RANDOM COMPLETE,1427

SIO HINT NO FURTHER USE, or SIO HINT WILL USE1428

Each hint expresses an access pattern predicted for the �le region given1429

by the hint. When changing a predicted access pattern on a region, a1430

SIO HINT CANCEL MATCHING hint should be issued to can-1431

cel the old hint before the new access hint is issued. The interpretation1432

of multiple predicted access patterns on the same region or partial1433

(overlapping) region is unspeci�ed. These patterns are:1434

74 11 FILE ACCESS PATTERN HINTS

SIO HINT SEQUENTIAL1435

The entire region will be accessed in non-overlapping blocks whose1436

starting o�sets increase monotonically.1437

SIO HINT REVERSE1438

The entire region will be accessed in non-overlapping blocks whose1439

starting o�sets decrease monotonically.1440

SIO HINT RANDOM COMPLETE1441

Accesses in the region will have starting addresses and sizes that1442

vary without pattern but the entire region will be accessed.1443

SIO HINT RANDOM PARTIAL1444

Accesses in the region will have starting addresses and sizes that1445

vary without pattern and the entire region may not be accessed.1446

SIO HINT NO FURTHER USE1447

No further accesses are expected in the region.1448

SIO HINT WILL USE1449

All data in the region will be accessed although no explicit pattern1450

can be predicted or excluded.71451

Exactly one of these
ags must be speci�ed for each hint.1452

7This pattern should be used in cases where SIO HINT RANDOM COMPLETE

cannot because the access pattern might not be random.

11.3 sio hint, sio hint by name 75

11.3 sio hint, sio hint by name1453

Purpose1454

Issue a set of predictions about the future accesses of this task.1455

Syntax1456

#include <sio fs.h>1457

sio return t sio hint(int FileDescriptor,1458

sio hint class t HintClass,1459

const sio hint t *Hints,1460

sio count t HintCount);1461

sio return t sio hint by name(const char *FileName,1462

sio hint class t HintClass,1463

const sio hint t *Hints,1464

sio count t HintCount);1465

Parameters1466

FileDescriptor The �le descriptor of an open �le to which these hints1467

apply.1468

FileName The name of a �le, not necessarily an open �le, to which1469

these hints apply.1470

HintClass The class of the hints being issued.1471

Hints An array of �le access pattern hints.1472

HintCount The number of entries in the Hints array.1473

Description1474

This function reports the application's knowledge of future access pat-1475

terns to the �le system. The purpose of issuing this information is to1476

enable optimizations in the dynamic behavior of the parallel �le sys-1477

tem. This knowledge is expressed as a set of hints, all from the same1478

hint class. The interpretation of mixtures of hint types from di�er-1479

ent hint classes is unspeci�ed. Hints can be applied to an open �le1480

using sio hint(), or to a named �le (which may not be open) using1481

76 11 FILE ACCESS PATTERN HINTS

sio hint by name(). Each sio hint t structure in the Hints array1482

describes a hint type applied to a list of �le regions and optionally1483

hint-speci�c arguments.1484

If the size, stride, and element cnt �elds for a particular1485

sio �le io list t in a hint are all zero, then the region being speci�ed1486

begins at the o�set given by the o�set �eld of that sio �le io list t1487

and continues until the end of the �le. The entire contents of a �le are1488

speci�ed as the region whenever an sio �le io list t contains zero in1489

the four �elds: o�set, size, stride and element cnt.1490

The implementation may not act on any speci�c hint or on any hints1491

at all.1492

Return Codes1493

SIO SUCCESS1494

The function succeeded.1495

SIO ERR FILE NOT FOUND1496

The speci�ed �le did not exist.1497

SIO ERR HINT TYPES CLASH1498

The class of this hint di�ers from the class of another hint previ-1499

ously issued for the same �le region.81500

SIO ERR INVALID CLASS1501

The hint class given in HintClass is not a valid hint class.1502

SIO ERR INVALID DESCRIPTOR1503

FileDescriptor does not refer to a valid �le descriptor created by1504

sio open().1505

SIO ERR INVALID FILENAME1506

The name given by FileName is invalid.1507

8As mentioned above, the e�ects of mixing hints of di�erent classes for the same �le

region are unde�ned. This error code is provided for implementations that attempt to

resolve hints from di�erent classes.

77

12 Client Cache Control1508

The basic API includes facilities to control caching of data in client memory.1509

The caching interfaces are speci�ed such that it is a valid implementation1510

strategy to simply ignore all cache control calls. The only requirement of1511

an implementation that ignores these calls is that it must provide strongly1512

consistent semantics.1513

The client caching mode of an SIO �le may be speci�ed by including the1514

SIO CTL SetCachingMode control operation when making sio open()1515

or sio control() calls.1516

This API speci�es client caching modes with the type sio caching mode t,1517

which can have the following values:1518

SIO CACHING NONE1519

Completely disable client caching.1520

SIO CACHING STRONG1521

Allow strongly-consistent client caching. The �le system may choose1522

to provide caching with strong sequential consistency, or provide no1523

caching at all.1524

SIO CACHING WEAK1525

Allow weakly-consistent client caching. The �le systemmay provide no1526

client caching, strongly-consistent client caching, or weakly-consistent1527

client caching.1528

Caching mode names beginning with SIO CACHING are reserved for1529

future use by this API. Vendors may de�ne their own caching modes by1530

naming them with the pre�x SIO CACHING VEND .1531

An SIO parallel �le system implementation's default client caching1532

mode must provide sequential consistency. That is, it must be either1533

SIO CACHING NONE, SIO CACHING STRONG, or a vendor-1534

de�ned mode that provides strong sequential consistency.1535

78 12 CLIENT CACHE CONTROL

If client caching is not disabled by using a caching mode of1536

SIO CACHING NONE, the �le system on a client node is free to main-1537

tain local copies of �le data for both read and write operations.1538

In a system with strongly-consistent caching, every write forces the client1539

node to immediately make the �le system aware that the �le has changed.1540

This also requires that client nodes either check the validity of cached data1541

before providing them to applications to satisfy a read, or be noti�ed when-1542

ever cached or potentially cached data have changed.1543

On the other hand, weakly-consistent client caching allows the �le system to1544

avoid the messaging and bookkeeping which a sequentially consistent caching1545

mode mandates, while providing the application with the bene�ts of caching.1546

With this form of caching, client nodes may defer exposing all or part of a set1547

of changes to a �le until instructed otherwise by the application. Likewise,1548

a client node need not con�rm the validity of cached data with the server1549

unless explicitly instructed to do so by the application.1550

An application informs the �le system that data written on a �le descriptor1551

should become visible to other readers via the SIO CTL Propagate control1552

operation. If the changed data have not already been exposed to the rest1553

of the �le system, this is done so immediately. Note that all, none, or part1554

of this changed data may already have been exposed to the rest of the �le1555

system.1556

Likewise, an application informs the �le system that locally cached data may1557

be stale using the SIO CTL Refresh control operation. Reads of refreshed1558

regions of a �le are guaranteed to yield either the most current available data,1559

or data that were not stale at the time of the most recent refresh operation.1560

That is to say, if the data returned by the read are stale, it was made so after1561

the refresh.1562

It is assumed that applications using weakly-consistent client caching either1563

do not share data between nodes, or provide their own internal synchroniza-1564

tion to coordinate when nodes must propagate and refresh data.1565

Thus, the way in which a node A would write data which are then read by1566

a node B is:1567

79

A writes data to region R1568

A propagates data in region R1569

(Implicit:) A and B synchronize; B becomes aware that new data in region1570

R are available1571

B refreshes data in region R1572

B reads data in region R1573

The granularity of caching is known as the consistency unit. This de�nes both1574

the size and the alignment of the blocks of data within the �le for which the1575

�le system insures that all non-con
icting writes are merged into the �le.1576

Tasks on di�erent nodes cannot use weak consistency and achieve consis-1577

tent parallel updates within a single consistency unit. Any con
icting writes1578

within a single consistency unit will be resolved by an arbitrary selection1579

of a winning writer when the data arrive at a server. The size of the con-1580

sistency unit is implementation speci�c, and is represented by the constant1581

SIO CACHE CONSISTENCY UNIT. Additionally, the control oper-1582

ation SIO CTL GetConsistencyUnit can be used to retrieve the consis-1583

tency unit for a �le descriptor.9 Applications should not make any assump-1584

tions about the size of the consistency unit; it may vary between individual1585

bytes, cache lines, pages, and �le blocks depending upon the implementation1586

of the �le system.1587

The motivation for providing weakly-consistent client caching as an option1588

within the parallel �le system is to allow parallel applications that could ben-1589

e�t from a decrease in the total amount of data being transferred between1590

clients and servers to exercise relatively �ne-grained control over the consis-1591

tency of their local caches. SIO CTL Propagate and SIO CTL Refresh1592

operations can be piggy-backed onto synchronization steps that already ex-1593

ist in parallel applications. These primitives allow application programmers1594

and toolkit developers the mechanisms necessary to ensure consistency of the1595

local parallel �le system cache, without requiring the parallel �le system to1596

enforce any consistency model itself.1597

This implementation of weakly-consistent caching is only intended to cope1598

with sharing among the tasks of a parallel application. To avoid unintended1599

9Currently, this should always yield SIO CACHE CONSISTENCY UNIT. This

is intended to allow for future extensions, which may provide di�erent consistency units

within the same implementation.

80 12 CLIENT CACHE CONTROL

sharing among independent applications, traditional methods based on de-1600

tecting con
icts at open time and disabling caching or resorting to strongly-1601

consistent caching may be used.1602

Some implementations may choose not to provide weak client cache consis-1603

tency by ignoring a SIO CTL SetCachingMode operation that speci�es1604

the SIO CACHING WEAK mode, as well as the SIO CTL Propagate1605

and SIO CTL Refresh1606

operations. In this case, the SIO CTL GetCachingMode should re-1607

turn a value of SIO CACHING NONE, SIO CACHING STRONG,1608

or a sequentially-consistent vendor-de�ned caching mode as appropriate, and1609

SIO CTL Propagate and SIO CTL Refresh should always return suc-1610

cess. (This way, an application which can tolerate weakly-consistent caching1611

will not see extraneous errors in its absence.101612

Note that client caching is controlled on a per-�le descriptor basis, so it1613

is possible to have a �le opened with one client caching mode on one �le1614

descriptor and with a di�erent mode on another �le descriptor.1615

Descriptions of the SIO CTL GetCachingMode,1616

SIO CTL SetCachingMode, SIO CTL Propagate,1617

SIO CTL Refresh, and SIO CTL GetConsistencyUnit control oper-1618

ations are given in Section 13.1619

Note to implementors: The routine sio close() implicitly performs a1620

SIO CTL Propagate on the �le descriptor. This causes all cached writes1621

to be exposed to the �le system at the time the �le is closed, if they have1622

not been already.1623

10Since weak caching mode can be implemented using strong caching, it is possible that

an application running on one node may see data modi�cations that have not yet been

propagated on a remote node. This is normal, since a weakly-consistent caching policy

may expose the results of writes soon after or immediately as they occur.

81

13 Control Operations1624

This section describes the �le control operations that can be performed using1625

the functions sio control(), sio open(), sio test().1626

These control operations allow properties of �les, �le descriptors, and the �le1627

system to be set and retrieved.1628

Control operations are performed by invoking sio open(), sio control(), or1629

sio test() with the list of operations to be performed. Each operation de-1630

scription, an sio control t, includes the code of the operation to be per-1631

formed, a pointer to the data to be manipulated by that operation, and1632

space for a result code. In the following sections, information is provided1633

about the various operation codes that must be implemented by �le systems1634

that conform to this API.1635

Operation names beginning with SIO CTL are reserved for use by this1636

API. Operation names beginning with SIO CTL VEND may be used by1637

vendors to de�ne vendor-speci�c operations.1638

82 13 CONTROL OPERATIONS

13.1 SIO CTL GetSize, SIO CTL SetSize1639

Purpose1640

Get or set the �le's logical size.1641

A�ects1642

Open �le1643

Parameter Type1644

Pointer to a sio o�set t.1645

Description1646

Applications may query and adjust the logical size (see Section 6.1)1647

of a �le using these control operations. The SIO CTL SetSize op-1648

eration causes the logical size of the �le to be set to the value in the1649

sio o�set t pointed to by the op data �eld of the sio control t. Set-1650

ting a �le's logical size may change the amount of storage that the �le1651

uses, but is not guaranteed to do so. An application wishing to preal-1652

locate storage for a �le should use the SIO CTL SetPreallocation1653

control operation.1654

The SIO CTL GetSize operation causes the logical size of the �le1655

being operated on to be placed in the sio o�set t pointed to by the1656

op data member of the sio control t.1657

Result Values1658

SIO SUCCESS1659

The operation succeeded.1660

SIO ERR INCORRECT MODE1661

The mode of the �le descriptor does not permit the operation.1662

SIO ERR IO FAILED1663

A physical I/O error caused the operation to fail.1664

SIO ERR NO SPACE1665

The system needs to increase the amount of storage used by the1666

�le but cannot.1667

13.2 SIO CTL GetAllocation 83

13.2 SIO CTL GetAllocation1668

Purpose1669

Get the �le's physical size.1670

A�ects1671

Underlying �le.1672

Parameter Type1673

Pointer to a sio o�set t.1674

Description1675

The SIO CTL GetAllocation operation causes �le's physical size1676

(see Section 6.1) to be placed in the sio o�set t pointed to by the1677

op data �eld of the sio control t.1678

Result Values1679

SIO SUCCESS1680

The operation succeeded.1681

SIO ERR INCORRECT MODE1682

The mode of the �le descriptor does not permit the operation.1683

SIO ERR IO FAILED1684

A physical I/O error caused the operation to fail.1685

84 13 CONTROL OPERATIONS

13.3 SIO CTL GetPreallocation,1686

SIO CTL SetPreallocation1687

Purpose1688

Get or set amount of space preallocated for the �le.1689

A�ects1690

Underlying �le.1691

Parameter Type1692

Pointer to a sio o�set t.1693

Description1694

The SIO CTL GetPreallocation operation causes the amount of1695

space preallocated (see Section 6.1) for the �le being operated on to1696

be placed in the sio o�set t pointed to by the op data �eld of the1697

sio control t.1698

The SIO CTL SetPreallocation operation causes the amount of1699

space preallocated for the �le being operated on to be set to the value1700

in the sio o�set t pointed to by the op data �eld of the sio control t.1701

A preallocation applies to an open �le and will be reset to zero when1702

the �le is closed. While open, writes by other tasks that extend the1703

physical size of the �le may reduce the unconsumed preallocation.1704

If either the SIO CTL GetPreallocation operation or the1705

SIO CTL SetPreallocation operation is supported, both must be1706

supported.1707

Result Values1708

SIO SUCCESS1709

The operation succeeded.1710

SIO ERR INCORRECT MODE1711

The mode of the �le descriptor does not permit the operation.1712

SIO ERR IO FAILED1713

A physical I/O error caused the operation to fail.1714

13.3 SIO CTL GetPreallocation, SIO CTL SetPreallocation 85

SIO ERR NO SPACE1715

There isn't enough free space in the system to satisfy the request.1716

SIO ERR OP UNSUPPORTED1717

The operation is not supported by the system.1718

86 13 CONTROL OPERATIONS

13.4 SIO CTL GetCachingMode,1719

SIO CTL SetCachingMode1720

Purpose1721

Get or set the �le's caching mode.1722

A�ects1723

File descriptor.1724

Parameter Type1725

Pointer to a sio caching mode t.1726

Description1727

The SIO CTL GetCachingMode operation causes the caching1728

mode of the �le descriptor to be placed in the sio caching mode t1729

pointed to by the op data �eld of the sio control t.1730

The SIO CTL SetCachingMode operation causes the caching mode1731

of the �le descriptor to be set to the value of the sio caching mode t1732

pointed to by the op data �eld of the sio control t. SIO implementa-1733

tions which provide support for multiple caching modes may elect not1734

to provide support for changing the caching mode of an open �le.1735

Result Values1736

SIO SUCCESS1737

The operation succeeded.1738

SIO ERR INCORRECT MODE1739

The mode of the �le descriptor does not permit the operation.1740

SIO ERR ONLY AT OPEN1741

The system does not allow the caching mode of an open �le to1742

be changed. Caching modes can only be changed as part of1743

sio open().1744

SIO ERR OP UNSUPPORTED1745

The system does not support SIO CTL SetCachingMode.1746

13.5 SIO CTL Propagate 87

13.5 SIO CTL Propagate1747

Purpose1748

Force locally cached writes to be made visible to other nodes.1749

A�ects1750

Cached writes associated with �le descriptor.1751

Parameter Type1752

Pointer to a sio �le io list t.1753

Description1754

This operation allows a task to force the parallel �le system to make1755

any data associated with a particular set of byte ranges visible to other1756

nodes in the system (see Section 12 for information about why this1757

might be necessary), as speci�ed by the sio �le io list t pointed to1758

by the op data �eld of the control request. If op data is NULL, the1759

propagation will apply to all bytes in the �le. If the size, stride , and1760

element cnt �elds of the sio �le io list t pointed to by the op data1761

�eld are all zero, then the set of bytes to be propagated begins at the1762

o�set speci�ed in the o�set �eld of the sio �le io list t and continues1763

until the end of the �le.1764

This operation only a�ects those bytes written via the given �le descrip-1765

tor; if an application writes to a �le using more than one �le descriptor,1766

it must perform a propagate operation on each of them to guarantee1767

the dirty data become visible to other nodes. While it is guaranteed1768

after a propagate operation completes that all locally cached writes for1769

the speci�ed �le regions have been exposed to the rest of the �le sys-1770

tem, it is not guaranteed that some or all the changed data was not1771

visible to the rest of the �le system prior to the propagate. That is,1772

weakly-consistent client caching implies only that cached writes will be1773

exposed to the rest of the �le system no later than the completion of1774

the propagate operation.1775

Result Values1776

88 13 CONTROL OPERATIONS

SIO SUCCESS1777

The results of all writes on this �le descriptor in the speci�ed1778

region(s) have been exposed to the rest of the �le system.1779

SIO ERR INVALID FILE LIST1780

op data is not NULL nor a pointer to a valid sio �le io list t.1781

13.6 SIO CTL Refresh 89

13.6 SIO CTL Refresh1782

Purpose1783

Inform the �le system that locally cached data may be invalid.1784

A�ects1785

Blocks in client's cache containing data for this �le.1786

Parameter Type1787

Pointer to a sio �le io list t.1788

Description1789

This operation informs the parallel �le system that data cached for1790

a �le may be stale, that is, superseded by more recent writes (see1791

Section 12 for information about why this might be necessary). Future1792

reads to the speci�ed client region(s) are guaranteed to not yield data1793

that were stale at the time the refresh operation began.11 File region(s)1794

are speci�ed by the sio �le io list t pointed to by the op data �eld1795

of the control request. If op data is NULL, the operation will apply1796

to all bytes in the �le. If the size, stride, and element cnt �elds of the1797

sio �le io list t pointed to by the op data �eld are all zero then the1798

operation applies to the set of bytes beginning at the o�set speci�ed1799

in the o�set �eld of the sio �le io list t and ending at the end of the1800

�le.1801

Result Values1802

SIO SUCCESS1803

The regions have been refreshed.1804

SIO ERR INVALID FILE LIST1805

op data is not NULL or a pointer to a valid sio �le io list t.1806

11The �le system may satisfy this requirement by explicitly validating all cached data in

the speci�ed region(s) with the server, or by ejecting the speci�ed blocks from the cache

entirely.

90 13 CONTROL OPERATIONS

13.7 SIO CTL Sync1807

Purpose1808

Force dirty data to stable storage.1809

A�ects1810

Blocks written via the �le descriptor.1811

Parameter Type1812

None1813

Description1814

This operation causes all dirty blocks associated with the �le descriptor1815

to be written to stable storage. The meaning of \stable storage" is1816

implementation speci�c { it may be the disk, non-volatile memory, or1817

another mechanism that provides greater reliability than the volatile1818

memory in the node caching the blocks. SIO CTL Sync performs a1819

superset the operations performed by SIO CTL Propagate.1820

Result Values1821

SIO SUCCESS1822

The operation succeeded.1823

SIO ERR IO FAILED1824

A physical I/O error caused the operation to fail.1825

13.8 SIO CTL GetLayout, SIO CTL SetLayout 91

13.8 SIO CTL GetLayout, SIO CTL SetLayout1826

Purpose1827

Get or set the layout of the �le data on the storage system.1828

A�ects1829

Underlying �le.1830

Parameter Type1831

Pointer to a sio layout t.1832

Description1833

These operations allow the layout of a �le's data on the underlying1834

storage system to be queried and modi�ed.1835

The control SIO CTL GetLayout will return the layout for the un-1836

derlying �le, while SIO CTL SetLayout will set the layout, if pos-1837

sible. Implementations may choose to ignore SIO CTL SetLayout1838

entirely, returning SIO ERR OP UNSUPPORTED.1839

Result Values1840

SIO SUCCESS1841

The operation succeeded.1842

SIO ERR OP ONLY AT CREATE1843

The implementation only supports SIO CTL SetLayout when1844

a �le is being created.1845

SIO ERR INCORRECT MODE1846

The mode of the �le descriptor does not permit the operation.1847

SIO ERR OP UNSUPPORTED1848

The operation is not supported by the system.1849

92 13 CONTROL OPERATIONS

13.9 SIO CTL GetLabel, SIO CTL SetLabel1850

Purpose1851

Get or set the �le's label.1852

A�ects1853

Underlying �le.1854

Parameter Type1855

Pointer to a sio label t.1856

Description1857

These operations allow the label associated with a �le to be set and1858

retrieved. A �le's label is not interpreted by the �le system. The intent1859

is for applications to store descriptive information about a �le in the a1860

�le's label, rather than in the �le itself. That removes the need for �le1861

headers and the ine�ciencies that go with them.1862

The maximum size of a �le's label is SIO MAX LABEL LEN, the1863

value of which is implementation-speci�c. It is guaranteed, however,1864

to be at least as big as SIO MAX NAME LEN, allowing any legal1865

�le name to �t in a label. This allows descriptive information that is1866

too large to �t in a label to be stored in an auxiliary �le whose name1867

can be stored in the label of the �le being described.1868

For descriptive labels to be portable across implementations1869

they must be no larger than the minimum allowed value for1870

SIO MAX LABEL LEN.1871

When performing SIO CTL SetLabel, the data �eld of the1872

sio label t must contain a pointer to a bu�er, the length �eld must1873

contain the length of that bu�er. If the length given is greater than1874

SIO MAX LABEL LEN, SIO ERR INVALID LABEL will be1875

returned and the operation will fail. After a SIO CTL SetLabel op-1876

eration successfully completes, the length of the �le's label will be equal1877

to length, and the �le's label data will be the same as the contents of1878

the bu�er.1879

13.9 SIO CTL GetLabel, SIO CTL SetLabel 93

When performing SIO CTL GetLabel, the data �eld of the1880

sio label t must contain a pointer to a bu�er to be �lled in with1881

the �le's current label data, and the length �eld must contain the size1882

of that bu�er. If the bu�er is too small to contain the label, the1883

SIO ERR INVALID LABEL error code will be returned, length1884

will be set to the actual length of the label, and the contents of the1885

data bu�er will be unspeci�ed. If the bu�er is at least as large as1886

the current �le label, SIO SUCCESS will be returned, length will1887

be set to the actual length of the label (as set by a previous call to1888

SIO CTL SetLabel, or to zero if the �le's label has never been set),1889

and the data bu�er will be �lled with that many bytes of label data.1890

If the bu�er is larger than the label, the contents of the bytes in the1891

bu�er following the label are unspeci�ed.1892

Result Values1893

SIO SUCCESS1894

The operation succeeded.1895

SIO ERR INCORRECT MODE1896

The mode of the �le descriptor does not permit the operation.1897

SIO ERR INVALID LABEL1898

The length of the new label being set exceeds1899

SIO MAX LABEL LEN, or the length of the label being re-1900

trieved exceeds the size of the application-provided bu�er.1901

SIO ERR IO FAILED1902

A physical I/O error caused the operation to fail.1903

SIO ERR NO SPACE1904

The system needs to increase the amount of storage used by the1905

�le but cannot.1906

94 13 CONTROL OPERATIONS

13.10 SIO CTL GetConsistencyUnit1907

Purpose1908

Get the size of the cache consistency unit.1909

A�ects1910

File system.1911

Parameter Type1912

Pointer to a sio size t.1913

Description1914

This operation returns the size of the cache consistency unit. The1915

consistency unit de�nes the granularity of cache consistency under weak1916

caching, as described in Section 12.1917

Result Values1918

SIO SUCCESS1919

The operation succeeded.1920

95

14 Extension Support1921

Support for querying the presence of extensions is part of the basic API,1922

and must be implemented by all conforming implementations, even if no1923

extensions are supported by an implementation. Applications may deter-1924

mine either statically (described in Section 14.1.1) or dynamically (via the1925

sio query extension() function, described in Section 14.2) whether or not1926

an extension is supported by the implementation of the API. Sample code1927

indicating the proper way to check for the presence of extensions is included1928

in Section14.3.1929

96 14 EXTENSION SUPPORT

14.1 Static Constants1930

14.1.1 Extension Support Constants1931

Applications may statically determine via constants which extensions are1932

supported by a given implementation. For each extension that an implemen-1933

tation is capable of supporting, the implementation should de�ne a constant1934

which indicates that the extension is supported, that it is not, or that the1935

support status cannot be determined during compilation. These constants1936

are of the form SIO EXT NAME SUPPORTED, where NAME is the1937

name of the extension. Each of these constants must be set to one of the1938

following values:1939

SIO EXT ABSENT (equal to 0) The extension is not supported.1940

SIO EXT PRESENT The extension is supported.1941

SIO EXT MAYBE The extension might be supported. A dynamic check1942

must be used to make a �nal determination.1943

The SIO EXT ABSENT constant must be zero so that existence of exten-1944

sions which the implementation is completely unaware of can be checked.121945

The values of the other constants are unspeci�ed.1946

If the static constant for an extension is equal to SIO EXT ABSENT,1947

then the application cannot depend on any of the functions or de�nitions1948

that are a part of the extension (including the extension ID) being present.1949

If the static constant is SIO EXT PRESENT or SIO EXT MAYBE,1950

then the functions and de�nitions that are a part of the extension will be1951

present. In the case of SIO EXT MAYBE, the functions and de�nitions1952

may be usable only if the extension is determined to be available at run-time.1953

The de�nition of SIO EXT ABSENT allows for implementations to con-1954

form to this API without requiring updates for any new extensions which may1955

be added in the future. The SIO EXT MAYBE value allows for binary1956

compatibility across di�erent versions of an implementation that support1957

di�erent sets of extensions.1958

12The C preprocessor will expand an unknown de�nition as zero when used in pre-

processor directives, and this allows unde�ned extension support macros to match

SIO EXT ABSENT.

14.1 Static Constants 97

14.1.2 Extension Identi�ers1959

Extension identi�ers are constants of the form SIO EXT NAME, where1960

NAME is the name of the extension. Extension identi�ers with names of1961

the form SIO EXT VEND NAME are reserved for use by vendors, and all1962

other extension names are reserved for future use by this API.1963

An implementation must de�ne an extension identi�er for each extension1964

which is supported or may be supported by that implementation as deter-1965

mined by the value of the extension's SIO EXT NAME SUPPORTED1966

constant described in Section 14.1.1. Extension identi�ers can be given to1967

sio query extension() to check whether or not the extensions in question1968

are actually available. 13
1969

13It is not necessary to call sio query extension() for extensions whose exten-

sion support constants indicate that they are present, but it is safe to do so and

sio query extension()must indicate that those extensions are supported.

98 14 EXTENSION SUPPORT

14.2 sio query extension1970

Purpose1971

Determine whether or not an extension is supported.1972

Syntax1973

#include <sio fs.h>1974

sio return t sio query extension(sio extension id t ExtID);1975

Parameters1976

ExtID Extension identi�er of extension being queried.1977

Description1978

This function takes an extension identi�er and returns1979

SIO SUCCESS if the extension is supported by this implementa-1980

tion, or SIO ERR INVALID EXTENSION if the extension is not1981

supported, or if the identi�er is not recognized as valid.1982

Return Codes1983

SIO SUCCESS1984

The extension is supported by the implementation.1985

SIO ERR INVALID EXTENSION1986

ExtID contains an invalid or unsupported extension ID.1987

14.3 Sample Code to Check for Extension Presence 99

14.3 Sample Code to Check for Extension Presence1988

A code fragment which queries the presence of an extension might look like:1989

int fooext_is_present;1990

sio_return_t rc;1991

1992

#if SIO_EXT_FOO_SUPPORTED == SIO_EXT_ABSENT1993

fooext_is_present = 0;1994

#elif SIO_EXT_FOO_SUPPORTED == SIO_EXT_PRESENT1995

fooext_is_present = 1;1996

#else /* SIO_EXT_FOO_SUPPORTED == SIO_EXT_MAYBE */1997

rc = sio_query_extension(SIO_EXT_FOO);1998

switch(rc) {1999

case SIO_SUCCESS:2000

fooext_is_present = 1;2001

break;2002

case SIO_ERR_INVALID_EXTENSION:2003

fooext_is_present = 0;2004

break;2005

default:2006

fooext_is_present = 0;2007

printf("can't determine if extension foo is present (%s)\n",2008

sio_error_string(rc));2009

}2010

#endif /* SIO_EXT_FOO_SUPPORTED == SIO_EXT_ABSENT */2011

100 14 EXTENSION SUPPORT

101

15 Extension: Collective I/O2012

Static Constant: SIO EXT COLLECTIVE SUPPORTED2013

Extension ID: SIO EXT COLLECTIVE2014

15.1 Motivation2015

As demonstrated by Kotz et al., collective I/O allows for a distributed batch-2016

ing process which can greatly enhance I/O performance in a parallel �le sys-2017

tem. Semantically, by declaring an I/O or set of I/Os to be part of a single,2018

collective I/O, an application is indicating to the �le system that the relative2019

ordering of the components of the collective I/O is irrelevant, since no por-2020

tion of the application awaiting a component of the collective I/O can make2021

any progress until the entirety of the collective I/O completes. File systems2022

can take advantage of this to drastically reorder I/O components to reduce2023

overall latency, at the potential cost of increasing the latency of component2024

I/Os (the constraint which prevents this optimization from occurring in the2025

standard case).2026

15.2 High Level Look2027

To initiate a collective I/O one task of the application requests that a new2028

collective I/O handle be created. This is what we refer to as \de�ning" the2029

collective I/O. At this time, the application indicates the number of partic-2030

ipants, whether the collective I/O is a read or write operation (we do not2031

allow collective mixed read/writes), the number of iterations of the collective2032

I/O, and optionally indicates what portions of the �le will be operated on.2033

Speci�cation of �le regions at de�ne time provides (ordered) �le access hints2034

which, if properly given, allow the �le system to implement performance2035

optimizations.2036

Each participant \joins" an iteration of the collective I/O by providing the2037

handle created by the de�ne operation, the �le descriptor, the portions of2038

102 15 EXTENSION: COLLECTIVE I/O

the �le they wish to read or write, the source/destination memory locations,2039

their participant identi�er, and a sequence number indicating which iteration2040

of the collective I/O they are joining.2041

Note that the application will generally need to pass the handle from the2042

task that de�ned the collective I/O to any other tasks that participate in the2043

I/O. A single task may participate multiple times in a given collective I/O2044

iteration by joining that iteration multiple times using di�erent participant2045

numbers. Prior to joining a collective I/O operation, a task must open the2046

�le being accessed so a �le descriptor for the �le is available for use with the2047

join call.2048

15.3 New Data Types 103

15.3 New Data Types2049

15.3.1 sio coll handle t2050

This is a 64-bit integral type used as an abstract handle to represent a col-2051

lective I/O. We explicitly de�ne the format and size of this datatype because2052

applications will need to use their own communications mechanisms to pass2053

these among tasks on di�erent nodes, and therefore need to be aware of size2054

and network ordering issues.2055

15.3.2 sio coll participant t2056

This is an unsigned integral type with the range2057

[0. . .SIO MAX COLL PARTICIPANTS] which is used in the de�nition2058

of a collective I/O operation to specify the number of participants, and in2059

the collective I/O join to identify the participant joining the collective I/O2060

iteration.2061

These values have no meaning or permanence beyond the collective I/O in2062

which they are used.2063

15.3.3 sio coll iteration t2064

This is an unsigned integral type with the range2065

[0. . .SIO MAX COLL ITERATIONS] which is used in the de�nition of2066

a collective I/O operation to specify the number of iterations, and in the2067

collective I/O join to identify the iteration being joined.2068

104 15 EXTENSION: COLLECTIVE I/O

15.4 New Range Constants2069

15.4.1 SIO MAX COLL ITERATIONS2070

This constant speci�es the maximum number of iterations that a collective2071

I/O can describe. The minimum value is 1, and the recommended value is2072

128.2073

15.4.2 SIO MAX COLL PARTICIPANTS2074

This constant speci�es the maximum number of participants that can take2075

part in a collective I/O. The minimum value is 16, but the recommended2076

value is at least 256.2077

15.4.3 SIO MAX COLL OUTSTANDING2078

This constant speci�es the maximum number of outstanding collective I/O2079

requests that one task can have at any given time. The minimum value is 1,2080

and the recommended value is at least 512.2081

15.5 New Functions 105

15.5 New Functions2082

Two new functions are added by the collective I/O extension:2083

sio coll de�ne() and sio coll join(), which are described in Sections 15.5.12084

and 15.5.2, respectively.2085

106 15 EXTENSION: COLLECTIVE I/O

15.5.1 sio coll de�ne2086

Purpose2087

De�ne a new collective I/O and get a handle to refer to it.2088

Syntax2089

#include <sio fs.h>2090

sio return t sio coll de�ne(int FileDescriptor,2091

sio coll iteration t NumIterations,2092

const sio �le io list t *FileList,2093

sio count t FileListLength,2094

sio size t IterationStride,2095

sio mode t ReadWrite,2096

sio coll participant t NumParticipants,2097

sio coll handle t *Handle);2098

Parameters2099

FileDescriptor The �le descriptor of an open �le.2100

NumIterations The number of times the collective I/O will be repeated.2101

FileList Speci�cation of �le data to be read or written.2102

FileListLength Number of elements in FileList. This may be zero.2103

IterationStride A value that modi�es the location of the �le data to be2104

read or written as speci�ed in FileList based on the iteration in2105

progress.2106

ReadWrite One of SIO MODE READ or SIO MODE WRITE.2107

NumParticipants The number of participants in each iteration of the2108

collective I/O.2109

Handle On success, returns the handle of the newly-de�ned collective2110

I/O.2111

Description2112

This interface creates a new handle for a collective I/O, and returns it in2113

Handle. The NumIterations parameter indicates the number of times2114

15.5 New Functions 107

the collective I/O will be performed. The application programmer may2115

choose to disclose the portions of the �le which will be a�ected in2116

FileList, or FileListLength may be zero in which case the �le system2117

must wait for a participant to call sio coll join() before its workload2118

is known.2119

In cases where the collective I/O will be performed more than once and2120

the application programmer indicates what portions of the �le will be2121

operated on, it is often true that the access patterns for each iteration2122

are identical except for their o�sets from the beginning of the �le,2123

and that the o�sets are based on the iteration being performed. The2124

IterationStride parameter lets the programmer express these common2125

cases without having to separate them into individual collective I/O2126

operations. If i is the iteration number (starting at iteration 0), the2127

o�set �eld in each sio �le io list t structure of the FileList parameter2128

would have the value:2129

o�set
i
= o�set

0
+ (i� IterationStride)

2130

For example, if FileList has two entries with the values (o�set=0,2131

size=2, stride=3, element cnt=4) and (o�set=100, size=5, stride=0,2132

element cnt=1), the programmer is hinting that the �rst iteration will2133

access bytes (0, 1, 3, 4, 6, 7, 9, 10, 100, 101, 103, 104, 105) in the2134

�le. If IterationStride is zero, the second iteration will access the same2135

bytes. However, if IterationStride is 50, the second iteration will access2136

bytes (50, 51, 53, 54, 56, 57, 59, 60, 150, 151, 153, 154, 155) { the2137

o�set components of the FileList structures are adjusted based on the2138

iteration (1) and the IterationStride (50).2139

Note that sio coll join() must always be called by each participant2140

and must provide a FileList for that participant's portion of the col-2141

lective I/O, whether or not FileListLength is zero in sio coll de�ne().2142

Providing a description of the entire operation in FileList simply pro-2143

vides a way for the �le system to optimize scheduling of the transfer.2144

Return Codes2145

SIO SUCCESS2146

The function succeeded.2147

108 15 EXTENSION: COLLECTIVE I/O

SIO ERR INCORRECT MODE2148

The mode of the �le descriptor does not permit the I/O.2149

SIO ERR INVALID DESCRIPTOR2150

FileDescriptor does not refer to a valid �le descriptor created by2151

sio open().2152

SIO ERR INVALID FILE LIST2153

The �le regions described by FileList are invalid, e.g. they contain2154

illegal o�sets.2155

SIO ERR MAX COLL ITERATIONS EXCEEDED2156

The number of iterations described2157

by NumIterations exceeds the maximum allowed as de�ned by2158

SIO MAX COLL ITERATIONS.2159

SIO ERR MAX COLL PARTICIPANTS EXCEEDED2160

The number of participants described2161

by NumParticipants exceeds the maximum allowed as de�ned by2162

SIO MAX COLL PARTICIPANTS.2163

15.5 New Functions 109

15.5.2 sio coll join2164

Purpose2165

Initiate an asynchronous transfer as part of a collective I/O.2166

Syntax2167

#include <sio fs.h>2168

sio return t sio coll join(int FileDescriptor,2169

sio coll handle t Handle,2170

sio coll participant t Participant,2171

sio coll iteration t Iteration,2172

const sio �le io list t *FileList,2173

sio count t FileListLength,2174

const sio mem io list t *MemoryList,2175

sio count t MemoryListLength,2176

sio async handle t *AsyncHandle);2177

Parameters2178

FileDescriptor The �le descriptor of the open �le where the collective2179

I/O is being performed.2180

Handle The handle provided by sio coll de�ne() for this collective2181

operation.2182

Participant The identi�er for this participant. This is a number in the2183

range [0. . . (NumParticipants� 1)], where NumParticipants is the2184

number of participants that was provided to sio coll de�ne().2185

Iteration Which iteration of the collective I/O the participant is joining.2186

FileList Speci�cation of �le data to be read or written by this partici-2187

pant.2188

FileListLength Number of elements in FileList.2189

MemoryList Memory locations read or written by this I/O component.2190

MemoryListLength Number of elements in MemoryList.2191

AsyncHandle Handle returned by the operation, which can be used2192

later to determine the status of the I/O, to wait for its completion,2193

or to cancel it.2194

110 15 EXTENSION: COLLECTIVE I/O

Description2195

This interface initiates a component of a collective I/O. At this point,2196

the �le system may immediately begin transferring data to or from2197

these memory locations, or it may choose to wait for other participants2198

to join the collective I/O. The number of participants in each itera-2199

tion of the collective I/O must equal the NumParticipants speci�ed to2200

sio coll de�ne(), i.e. sio coll join()must be called NumParticipants2201

times for each iteration. sio coll join() returns immediately and2202

sio async status any() or sio async cancel all() must be called2203

with the AsyncHandle to complete or cancel the operation.2204

Note that calls to sio async status any() or sio async cancel all()2205

re
ect only this participant's portion of this iteration of the collec-2206

tive I/O, as identi�ed by the value of AsyncHandle. Also, calls to2207

the sio async status any() and sio async cancel all() may con-2208

tain multiple AsyncHandles, but the AsyncHandles returned by the2209

sio coll join() may not be mixed with AsyncHandles returned by2210

sio async sg read() or sio async sg write() functions in the same2211

call.2212

To clarify some of the parameters a bit further, the FileDescriptor2213

parameter must refer to the same �le as was speci�ed by the2214

FileDescriptor in the sio coll de�ne() for this collective operation.2215

However, the actual FileDescriptor value may di�er from the one in the2216

sio coll de�ne() because the task making the join call may be di�er-2217

ent from the task that de�ned the collective operation.2218

If the sio coll de�ne() for this collective operation contained infor-2219

mation about the bytes that would be accessed in its FileList param-2220

eter, then to realize performance gains the FileList parameter in this2221

sio coll join() call should contain bytes that appeared in the original2222

sio coll de�ne() FileList parameter. If this is not the case, or if the2223

sio coll de�ne() did not contain �le region information, the bytes2224

speci�ed in the sio coll join() FileList parameter will still be read or2225

written, but potentially with poorer performance.2226

Finally, note that there is no parameter in the sio coll join() call2227

corresponding to the sio coll de�ne() parameter IterationStride. In2228

the join, it is the responsibility of the application programmer to adjust2229

15.5 New Functions 111

the FileList o�set values as appropriate for the iteration being joined.2230

Return Codes2231

SIO SUCCESS2232

The function succeeded.2233

SIO ERR INCORRECT MODE2234

The mode of the �le descriptor does not permit the I/O.2235

SIO ERR INVALID DESCRIPTOR2236

FileDescriptor does not refer to a valid �le descriptor cre-2237

ated by sio open(), or does not refer to the �le speci�ed to2238

sio call de�ne() when the collective I/O was created.2239

SIO ERR INVALID FILE LIST2240

The �le regions described by FileList are invalid, e.g. they contain2241

illegal o�sets. Implementations may defer returning this error2242

until sio async status any() is invoked on the I/O.2243

SIO ERR INVALID HANDLE2244

Handle is not the handle for a collective I/O.2245

SIO ERR INVALID ITERATION2246

Iteration is not valid, either because it is greater than the num-2247

ber of iterations speci�ed when the collective I/O was created or2248

between the task already joined that iteration of the I/O.2249

SIO ERR INVALID MEMORY LIST2250

The memory regions described by MemoryList are invalid, e.g.2251

they contain illegal addresses. Implementations may defer return-2252

ing this error until sio async status any() is invoked on the2253

I/O.2254

SIO ERR INVALID PARTICIPANT2255

Participant is not valid because it is greater than the number of2256

participants speci�ed when the collective I/O was created.2257

SIO ERR MAX ASYNC OUTSTANDING EXCEEDED2258

The I/O request could not be initiated because doing so would2259

cause the calling task's number of outstanding asynchronous I/Os2260

to exceed the limit.2261

112 15 EXTENSION: COLLECTIVE I/O

SIO ERR UNEQUAL LISTS2262

The number of bytes in MemoryList and FileList are not2263

equal. Implementations may defer returning this error until2264

sio async status any() is invoked on the I/O.2265

113

16 Extension: Fast Copy2266

Static Constant: SIO EXT FAST COPY SUPPORTED2267

Extension ID: SIO EXT FAST COPY2268

This extension provides a low-level versioning mechanism by allowing an2269

e�cient \snapshot" of a �le's current contents to be created. This is done2270

via the sio control() operation SIO CTL FastCopy.2271

The SIO CTL FastCopy control operation creates snapshots by replacing2272

the contents of a parallel �le (created and opened with sio open()), with2273

the contents of the �le being duplicated. Since snapshots are normal parallel2274

�les, they can be accessed in all of the ways that parallel �les can be accessed.2275

That is, snapshots created by SIO CTL FastCopy can be read, written,2276

operated on by controls, etc.2277

If a higher-level �le system library is using SIO CTL FastCopy to pro-2278

vide versioning support, that library is responsible for managing the2279

translation between its notion of versions and that provided by the2280

SIO CTL FastCopy mechanism. For instance, the higher-level library2281

must translate between the �le name and version number that the appli-2282

cation supplies and the actual parallel name for that snapshot. The higher-2283

level library must also enforce its own version reference semantics (perhaps2284

preventing write access to old versions of the �le, or taking other actions as2285

necessary).2286

114 16 EXTENSION: FAST COPY

16.1 SIO CTL FastCopy2287

Purpose2288

E�ciently copy the contents of one �le into another.2289

A�ects2290

Underlying �le.2291

Parameter Type2292

Pointer to an int which is a �le descriptor for the open parallel �le to2293

be used as the source of the e�cient copy operation.2294

Description2295

This operation performs an e�cient copy of the contents of one par-2296

allel �le into another. The source �le descriptor is speci�ed by the2297

int pointed to by the op data member of the sio control t. The desti-2298

nation �le is speci�ed by the Name argument to sio open() or by the2299

FileDescriptor argument to sio control().2300

The implementation of the e�cient copy operation performed by this2301

function is intended to use copy-on-write or similar techniques to min-2302

imize data duplication.2303

If the SIO CTL FastCopy operation fails or is not supported, an2304

error will be returned and the source and destination �les will be un-2305

modi�ed.2306

E�ects of Successful Operation on the Source File2307

The source �le's data are unmodi�ed by the SIO CTL FastCopy2308

operation.2309

The source �le's physical size at the conclusion of the2310

SIO CTL FastCopy operation is unspeci�ed.2311

None of the source �le's other �le or �le descriptor attributes (as de�ned2312

by this API) are modi�ed by the SIO CTL FastCopy operation.2313

If vendors de�ne new attributes, the e�ect of SIO CTL FastCopy on2314

the source �le with respect to those attributes should be speci�ed.2315

16.1 SIO CTL FastCopy 115

Hints about expected use of the source �le are unmodi�ed by the2316

SIO CTL FastCopy operation.2317

E�ects of Successful Operation on the Destination File2318

The destination �le's logical size is set to the source �le's logical2319

size, and the destination �le's contents are made to appear identical2320

(e.g. if accessed with sio sg read()) to those of the source �le. If2321

SIO CTL SetSize is speci�ed in the same set of control operations as2322

SIO CTL FastCopy, the resulting size of the destination �le is un-2323

de�ned.2324

The destination �le's physical size at the conclusion of the2325

SIO CTL FastCopy operation is unspeci�ed.2326

The destination �le's label is made identical to the source �le's label.2327

The destination �le's other �le attributes (preallocation and layout) are2328

not a�ected.2329

None of the destination's �le descriptor attributes (caching mode and2330

consistency unit) are a�ected. Note that if a weak client caching mode2331

is in use on the destination �le, the destination �le's new contents may2332

need to be propagated (with SIO CTL Propagate) before they can2333

be used by other clients.2334

If vendors de�ne new attributes, the e�ect of SIO CTL FastCopy on2335

the destination �le with respect to those attributes should be speci�ed.2336

The e�ect of the SIO CTL FastCopy operation on hints about ex-2337

pected use of the destination �le is unspeci�ed. Portable applications2338

or libraries that wish to hint about future accesses to the destination2339

�le should cancel all outstanding hints on the destination �le after per-2340

forming a SIO CTL FastCopy operation and then reissue hints as2341

appropriate.2342

Result Values2343

SIO SUCCESS2344

The function succeeded.2345

SIO ERR INVALID DESCRIPTOR2346

The �le descriptor for the source �le is invalid.2347

116 16 EXTENSION: FAST COPY

SIO ERR NO SPACE2348

There isn't enough free space to perform a fast copy.2349

SIO ERR OP UNSUPPORTED2350

Fast copy is not supported by the implementation for �les with2351

the attributes of the source �le and/or destination �le.2352

16.1 SIO CTL FastCopy 117

Acknowledgments2353

Many of the ideas presented in the 0.1 draft were developed in discussions2354

with many di�erent people. Among these are Dror Feitelson, Yarsun Hsu,2355

and Marc Snir of IBM Research, Bob Curran, Joe Kavaky, and Je� Lucash2356

of IBM Power Parallel Division, and Daniel Stodolsky of Carnegie Mellon,2357

David Kotz of Dartmouth, and David Payne and Brad Rullman of Intel2358

SSD. Also contributing were members of the SIO community as a whole who2359

participated in the discussions we had in the �rst half of 1995.2360

The second draft, version 0.2, re
ected comments made by Dror Feitelson,2361

Marc Snir, Je� Lucash, and Bob Curran of IBM.2362

The third draft, version 0.3, incorporating asynchronous and return-by-2363

reference interface variants and client caching control, re
ects comments from2364

Adam Beguelin, Dave O'Hallaron, Jaspal Subhlok, and Thomas Stricker of2365

Carnegie Mellon, December 1995.2366

The fourth draft, version 0.41, was presented to the SIO Operating Systems2367

Working Group at Princeton on 8 February 1996.2368

The �fth draft, version 0.52, was presented to the SIO technical committee2369

meeting at Chicago on 2 April 1996. It incorporates comments and results2370

of discussion from the Princeton workshop and speci�c detailed comments2371

from Tom Cormen of Dartmouth.2372

The sixth draft, version 0.54, was presented at the SIO technical meeting2373

held at Argonne National Laboratory on 13-14 May 1996.2374

The seventh draft, version 0.60, was presented at the meeting of the SIO2375

Operating Systems Working Group, held at Carnegie Mellon University on2376

2 July 1996.2377

The eighth and ninth drafts, 0.62 and 0.63 were presented and discussed2378

at the meeting of the SIO Operating Systems Working Group at Princeton2379

University on 8-9 August 1996.2380

Version 0.66 was reviewed by e-mail, 21-31 August 1996.2381

118 16 EXTENSION: FAST COPY

Members of the SIO Performance Evaluation working group at UIUC re-2382

viewed and commented on the API beginning with the �fth draft. In par-2383

ticular, Andrew Chien, Chris Elford, Tara Madhyastha, Dan Reed, Huseyin2384

Simitci, and Evgenia Smirni contributed to the discussions and suggestions2385

put forth by the Illinois group.2386

Version 1.0 was released to the parallel computing community for comment2387

on 1 October 1996.2388

119

A Result codes (for sio return t)2389

This appendix describes some error and return codes that the parallel �le2390

system may wish to return. As discussed in the Data Types section, imple-2391

mentors should feel free to add whatever additional codes they see �t, and2392

should make sio error string() aware of them.2393

SIO SUCCESS2394

The operation completed successfully. The value of SIO SUCCESS2395

must always be 0.2396

SIO ERR ALREADY EXISTS2397

The �le name to be created already exists.2398

SIO ERR CONTROL FAILED2399

One or more of the control operations requested by sio control(),2400

sio open(), or sio test() was unsuccessful.2401

SIO ERR CONTROL NOT ATTEMPTED2402

A control operation requested by sio control(), sio open(), or2403

sio test() was not attempted.2404

SIO ERR CONTROL NOT ON TEST2405

The control operation cannot be used with sio test().2406

SIO ERR CONTROL WOULD HAVE SUCCEEDED2407

The control operation would have succeeded but the function perform-2408

ing the control failed.2409

SIO ERR CONTROLS CLASH2410

The list of controls contains combinations of operations that are in-2411

compatible.2412

SIO ERR FILE NOT FOUND2413

The speci�ed �le did not exist.2414

SIO ERR FILE OPEN2415

The operation failed because the �le was open.2416

120 A RESULT CODES (FOR SIO RETURN T)

SIO ERR INCORRECT MODE2417

The mode of the �le descriptor does not permit the operation or func-2418

tion.2419

SIO ERR INVALID CLASS2420

The hint class is not valid.2421

SIO ERR INVALID DESCRIPTOR2422

A �le descriptor argument was not a valid parallel �le descriptor.2423

SIO ERR INVALID EXTENSION2424

An invalid extension identi�er was given, or the indicated extension is2425

not supported.2426

SIO ERR INVALID FILE LIST2427

The �le list argument is invalid (e.g contains illegal o�sets).2428

SIO ERR INVALID FILENAME2429

A �le name argument did not contain a legal �le name (e.g. it was too2430

long).2431

SIO ERR INVALID HANDLE2432

A handle argument does not contain a valid handle.2433

SIO ERR INVALID ITERATION2434

The iteration argument is invalid.2435

SIO ERR INVALID MEMORY LIST2436

The memory list argument is invalid (e.g. contains an illegal address).2437

SIO ERR INVALID PARTICIPANT2438

The participant number provided is not valid because it is greater than2439

the number of participants speci�ed when the collective I/O was cre-2440

ated.2441

SIO ERR IO CANCELED2442

An asynchronous I/O did not complete because it was canceled while2443

in progress.2444

SIO ERR IO FAILED2445

A physical I/O error occurred.2446

121

SIO ERR IO IN PROGRESS2447

An asynchronous I/O has not yet completed.2448

SIO ERR MAX ASYNC OUTSTANDING EXCEEDED2449

The I/O request could not be initiated because doing so would cause2450

the calling task's number of outstanding asynchronous I/Os to exceed2451

the limit.2452

SIO ERR MAX COLL ITERATIONS EXCEEDED2453

The number of iterations speci�ed for a collective I/O exceeds the limit.2454

SIO ERR MAX COLL OUTSTANDING EXCEEDED2455

The I/O request could not be initiated because doing so would cause2456

the calling task's number of outstanding collective I/O's to exceed the2457

limit.2458

SIO ERR MAX COLL PARTICIPANTS EXCEEDED2459

The number of participants speci�ed for a collective I/O exceeds the2460

limit.2461

SIO ERR MAX OPEN EXCEEDED2462

The �le could not be opened because doing so would cause the calling2463

task's number of open �les to exceed the limit.2464

SIO ERR MIXED COLL AND ASYNC2465

The implementation does allow asynchronous I/O handles created by2466

sio coll de�ne() to be passed to functions in the same list as handles2467

from sio async sg read() and sio async sg write().2468

SIO ERR NO SPACE2469

An operation that would allocate more storage to a �le failed because2470

no storage could be allocated.2471

SIO ERR ONLY AT CREATE2472

The control operation may only be speci�ed during a call to sio open()2473

which is creating a �le.2474

SIO ERR ONLY AT OPEN2475

The control operation may only be speci�ed during a call to2476

sio open().2477

122 A RESULT CODES (FOR SIO RETURN T)

SIO ERR OP UNSUPPORTED2478

The parallel �le system has elected to not support this interface. Note2479

that some interfaces may not be supported, but implementations can2480

choose to return SIO SUCCESS for all cases instead.2481

SIO ERR UNEQUAL LISTS2482

The number of bytes in the memory and �le lists arguments to an I/O2483

operation are not the same.2484

123

B Sample Derived Interfaces2485

This section describes some simple interfaces which could easily be created2486

using the interfaces provided by this API. These derived interfaces are not a2487

part of this API, and are intended only as examples of interfaces which could2488

be provided by high level libraries.2489

If a high level library provides interfaces similar (or identical) to the sample2490

interfaces presented here, those interfaces should be named in accordance2491

with the rest of the interfaces provided by that library. In other words, use2492

of the names given here is strongly discouraged.2493

124 B SAMPLE DERIVED INTERFACES

B.1 Synchronous I/O2494

Routines2495

sio return t sample read(int FileDescriptor,2496

sio addr t Bu�erPointer,2497

sio o�set t O�set, sio size t Count,2498

sio transfer len t *BytesRead);2499

sio return t sample write(int FileDescriptor,2500

sio addr t Bu�erPointer,2501

sio o�set t O�set, sio size t Count,2502

sio transfer len t *BytesWritten);2503

sio return t sample read io list(int FileDescriptor,2504

sio addr t Bu�erPointer,2505

sio �le io list t *FileList,2506

sio count t FileListLength,2507

sio transfer len t *BytesRead);2508

sio return t sample write io list(int FileDescriptor,2509

sio addr t Bu�erPointer,2510

sio �le io list t *FileList,2511

sio count t FileListLength,2512

sio transfer len t *BytesWritten);2513

sio return t sample read mem list(int FileDescriptor,2514

sio mem io list t *MemoryList,2515

sio count t MemoryListLength2516

sio o�set t O�set,2517

sio transfer len t *BytesRead);2518

sio return t sample write mem list(int FileDescriptor,2519

sio mem io list t *MemoryList,2520

sio count t MemoryListLength2521

sio o�set t O�set,2522

sio transfer len t *BytesWritten);2523

Parameters2524

FileDescriptor The �le descriptor of an open parallel �le.2525

B.1 Synchronous I/O 125

Bu�erPointer Memory address of contiguous bu�er containing data to2526

be written or to contain data being read.2527

O�set Starting �le o�set from which to read or at which to write.2528

Count Number of bytes to read or write.2529

BytesRead Number of bytes actually read.2530

BytesWritten Number of bytes actually written.2531

FileList Description of strided regions within the �le.2532

FileListLength Number of valid elements to use in FileList.2533

MemoryList Description of strided regions within the memory bu�er.2534

MemoryListLength Number of valid elements to use in MemoryList.2535

Description2536

These functions would provide a simpli�ed synchronous I/O interface.2537

They may be implemented as wrappers which would convert the given2538

arguments into sio mem io list t and sio �le io list t structures (as2539

necessary) and invoke sio sg read() or sio sg write().2540

The functions sample read() and sample write() would transfer2541

data between a single contiguous memory bu�er and a single con-2542

tiguous region of the �le. The functions sample read io list()2543

and sample write io list() would use a single contiguous mem-2544

ory bu�er, but a strided region within the �le. Similarly,2545

sample read mem list() and sample write mem list() would use2546

a contiguous �le region, but a strided region within the memory bu�er.2547

126 B SAMPLE DERIVED INTERFACES

B.2 Asynchronous I/O2548

Routines2549

sio return t sample async read(int FileDescriptor,2550

sio addr t Bu�erPointer,2551

sio o�set t O�set,2552

sio size t Count,2553

sio async handle t *Handle);2554

sio return t sample async write(int FileDescriptor,2555

sio addr t Bu�erPointer,2556

sio o�set t O�set,2557

sio size t Count,2558

sio async handle t *Handle);2559

sio return t sample async read io list(int FileDescriptor,2560

sio addr t Bu�erPointer,2561

sio �le io list t *FileList,2562

sio count t FileListLength2563

sio async handle t *Handle);2564

sio return t sample async write io list(int FileDescriptor,2565

sio addr t Bu�erPointer,2566

sio �le io list t *FileList,2567

sio count t FileListLength2568

sio async handle t *Handle);2569

sio return t sample async read mem list(int FileDescriptor,2570

sio mem io list t *MemoryList,2571

sio count t MemoryListLength2572

sio o�set t O�set,2573

sio async handle t *Handle);2574

sio return t sample async write mem list(int FileDescriptor,2575

sio mem io list t *MemoryList,2576

sio count t MemoryListLength2577

sio o�set t O�set,2578

sio async handle t *Handle);2579

B.2 Asynchronous I/O 127

Parameters2580

FileDescriptor The �le descriptor of an open parallel �le.2581

Bu�erPointer Memory address of contiguous bu�er containing data to2582

be written or to contain data being read.2583

O�set Starting �le o�set from which to read or at which to write.2584

Count Number of bytes to read or write.2585

BytesRead Number of bytes actually read.2586

BytesWritten Number of bytes actually written.2587

FileList Description of strided regions within the �le.2588

FileListLength Number of valid elements to use in FileList.2589

MemoryList Description of strided regions within the memory bu�er.2590

MemoryListLength Number of valid elements to use in MemoryList.2591

Handle Handle for asynchronous I/O that can later be used to test its2592

status.2593

Description2594

These routines would provide a simpli�ed asynchronous I/O interface.2595

They may be implemented as wrappers which would convert the given2596

arguments into sio mem io list t and sio �le io list t structures (as2597

necessary) and invoke sio async sg read() or sio async sg write().2598

These functions would take arguments similar to those given to the2599

simpli�ed synchronous functions, and perform similar actions.2600

128 B SAMPLE DERIVED INTERFACES

B.3 Cache Consistency2601

Functions2602

sio return t sample propagate(int FileDescriptor,2603

sio o�set t O�set,2604

sio size t Length);2605

sio return t sample refresh(int FileDescriptor,2606

sio o�set t O�set,2607

sio size t Length);2608

Parameters2609

FileDescriptor File descriptor to which cache consistency action ap-2610

plies.2611

O�set Starting �le o�set a�ected by consistency action.2612

Length Number of bytes a�ected by consistency action.2613

Description2614

These functions would perform cache consistency actions on the speci-2615

�ed region of the �le associated with the given �le descriptor. It may2616

be implemented as wrappers which would invoke sio control() to per-2617

form the appropriate SIO CTL Propagate or SIO CTL Refresh2618

operation.2619

