
RAID-II: A High-Bandwidth Network File Server

Ann L. Drapeau Ken Shirri� Edward K. Lee
John H. Hartman Ethan L. Miller Srinivasan Seshan

Randy H. Katz Ken Lutz David A. Patterson
University of California

571 Evans Hall
Berkeley, CA 94720

fdrapeau,shirri�,eklee,jhh,elm,ss,randy,lutz,pattrsng@cs.berkeley.edu
Phone: (510) 642-1845,642-9669,642-1845,642-9669,642-8248,642-8248,642-6037,643-7803,642-6037

FAX: (510) 642-5775

Peter M. Chen
Computer Science and Engineering Dept.

University of Michigan
Ann Arbor, MI 48109-2122

Garth A. Gibson
School of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213-3890

garth@cs.cmu.edu
Phone: (412) 268-5890
FAX: (412) 681-5739

Abstract

In 1989, the RAID group at U. C. Berkeley built a prototype disk array called RAID-I. The

bandwidth achieved by RAID-I was severely limited by the memory system bandwidth limitations

of the disk array's host workstation. As a result, most of the bandwidth available from the

disks could not be delivered to clients of the disk array �le server. We designed our second

prototype, RAID-II, to deliver as much of the disk array bandwidth as possible to �le server

clients. A custom-built circuit-board disk array controller, called the XBUS board, connects the

disks and the high-speed network directly, allowing data for large requests to bypass the server

workstation. A single workstation may control several XBUS boards for increased bandwidth.

RAID-II runs the Log-Structured File System (LFS) to optimize the performance of the disk

array for bandwidth-intensive applications.

The RAID-II hardware with a single XBUS controller board delivers 20 megabytes/second

of I/O between the disks and high-speed networks. This performance is an order of magnitude

better than our �rst prototype, but somewhat lower than our performance goals because of

lower-than-expected performance of the commercial disk controller boards and our disk system

interfaces. A preliminary implementation of LFS delivers 13.4 megabytes/second to the clients.

Key words: high-bandwidth network �le service, local area networks, data services, network

storage, mass storage system, RAID.

1



1 Introduction

It is essential for future �le servers to provide high-bandwidth I/O because of a trend toward

bandwidth-intensive applications like multi-media, CAD, object-oriented data bases and scienti�c

visualization. Even in well-established application areas such as scienti�c computing, the size

of data sets is growing rapidly because of reductions in the cost of secondary storage and the

introduction of faster supercomputers. These developments require faster I/O systems to transfer

the increasing volume of data.

High performance �le servers will increasingly incorporate disk arrays to provide greater disk

bandwidth. RAIDs, or Redundant Arrays of Inexpensive Disks [10], replace large, expensive

mainframe-type disks with a collection of small, inexpensive disks to deliver higher performance

and greater reliability from the secondary storage system. RAIDs provide greater disk bandwidth

to a �le by striping or interleaving the data from a single �le across a group of disk drives, allowing

transfers to occur in parallel. RAIDs ensure reliability by calculating error correcting codes across

a group of disks; this redundancy information can be used to reconstruct the data on disks that

fail. In this paper, we examine the e�cient delivery of bandwidth from a �le server that includes

a disk array.

In 1989, the RAID group at U.C. Berkeley built an initial RAID prototype, called RAID-

I [2]. The prototype was constructed using a Sun 4/280 workstation with 128MB of memory, four

dual-string SCSI controllers, 28 5- 1/4 inch SCSI disks and specialized disk striping software. The

purpose of the prototype was to understand how well a disk array constructed of commercially-

available components would perform on two workloads: small, rather random operations typical

of �le servers in a workstation environment, and large transfers typical of bandwidth-intensive

applications.

Experiments with RAID-I show that it performs well when processing small, random I/O's, per-

forming approximately 275 4KB random I/Os per second. However, RAID-I has proven woefully in-

adequate at providing high-bandwidth I/O, sustaining at best 2.3megabytes/second to a user-level

2



application on RAID-I. By comparison, a single disk on RAID-I can sustain 1.3megabytes/second.

Most of the bandwidth available from the 28 disks in the array is e�ectively wasted, because it

cannot be delivered to clients.

There are several reasons why RAID-I is ill-suited for high-bandwidth I/O. The most serious

is the memory contention experienced on the Sun 4/280 server during I/O operations. The copy

operations performed to move data between the kernel DMA bu�ers and bu�ers in user space

saturate the memory system when I/O bandwidth reaches 2.3megabytes/second. Second, because

all I/O on the Sun 4/280 goes through the CPU's virtually addressed cache, data transfers expe-

rience interference from cache 
ushes. Finally, disregarding the workstation's memory bandwidth

limitation, high-bandwidth performance is also limited by the low backplane bandwidth of the

Sun 4/280's VME system bus, which becomes saturated at 9megabytes/second.

The problems RAID-I experienced are typical of many \CPU-centric" workstations that are

designed for good processor performance but fail to support adequate I/O bandwidth. In such

workstations, the memory system is designed so that the CPU has the fastest and highest-bandwidth

path to memory. For busses or backplanes farther away from the CPU, the available memory

bandwidth drops quickly. In general, today's workstations are poorly suited for supporting high-

bandwidth I/O because they achieve high performance using large fast caches, without signi�cantly

improving the performance of the primary memory and I/O systems [5], [9].

The design of our second prototype, RAID-II, was motivated by a desire to preserve as much

bandwidth from the disk array as possible for delivery to the �le server's clients. One way we

preserve disk array bandwidth is to implement separate low- and high-bandwidth data paths.

The high-bandwidth path allows data to be transferred directly between the disks and a high-speed

network, without passing through the memory of the �le server workstation, as occurs in traditional

�le servers and RAID-I. To achieve this we built a custom storage controller board called the XBUS

board. The XBUS board contains a high-speed crossbar, internal memory, and interfaces to the

network and disks. In response to control instructions from the workstation, the XBUS board

manages transfers between the disks and network. The separate low- and high-bandwidth paths

3



make it possible to achieve good utilization of the high-bandwidth path by sending small data

transfers and control operations over the low-bandwidth path. The separate paths also allow

the server to support clients on a local Ethernet as well as across the high-speed network. Each

XBUS board can support approximately 20 megabytes/second of disk activity. To achieve greater

bandwidth, several XBUS boards can be attached to a single workstation.

E�cient �le server software is also essential in preserving the bandwidth of the disk array.

RAID-II runs LFS [11], the Log-Structured File System, developed by the Sprite operating system

group at Berkeley. LFS is a �le system specially optimized to support high-bandwidth I/O by

treating the disks or disk array as a log, and writing large segments of data sequentially. Small

operations are grouped together to avoid wasting disk bandwidth. This makes LFS especially well-

suited for use with disk arrays. As is well documented [13], small writes to a disk array require

multiple disk accesses to fetch the old data and parity and to write the new data and parity. By

eliminating small write operations, LFS eliminates this most costly mode of access for disk arrays.

Another bene�t of LFS is fast crash recovery. A preliminary implementation of LFS running on

RAID-II with a single XBUS board delivers 13.4 megabytes/second through the XBUS board.

This paper describes the design, implementation and performance of the RAID-II prototype.

Section 2 describes the RAID-II hardware, including the design choices made to preserve bandwidth,

architecture and implementation details, and benchmark performance measurements. Section 3

discusses the implementation and performance of LFS running on RAID-II. Section 4 compares

other high performance I/O systems to RAID-II, and Section 5 discusses future directions. Finally,

we summarize the contributions of the RAID-II prototype.

2 RAID-II Hardware

Figure 1 illustrates the RAID-II storage architecture. The RAID-II �le server spans three racks.

It includes a workstation, also referred to as the host, that controls one or more XBUS controller

boards. This host workstation has an Ethernet connection that allows transfers between the host

4



High Bandiwdth Network
(100 MB/s Ultranet)

Client Workstations

Client WorkstationsHost
Workstation

Ethernet 
(10 Mb/s)

Supercomputer

VME
SCSI

HIPPI

RAID-II File Server

Figure 1: RAID-II File Server Architecture. RAID-II is composed of three racks, including a

host workstation, shown by dotted lines. The host workstation is connected by Ethernet to some

client workstations. The host is also connected to one or more XBUS controller boards (contained

in the center rack of RAID-II) over the VME backplane. Each XBUS controller has a HIPPI

network connection, which connects to the Ultranet high-speed ring network; the Ultranet may have

connections to client workstations and supercomputers. The XBUS boards also have connections

to SCSI disk controller boards.

and clients on the Ethernet network. Each XBUS controller board has a HIPPI connection to a

high-speed Ultranet ring network that may also connect supercomputers and client workstations.

In this section, we discuss the prototype hardware. First, we describe the design decisions that

were made to preserve as much of the disk array bandwidth as possible. Next, we describe the

architecture and implementation, followed by microbenchmark measurements of hardware perfor-

mance.

5



2.1 Design Choices That Preserve Bandwidth

Several important design decisions in the RAID-II architecture re
ect our desire to deliver high

bandwidth from the disks to the clients.

Disk array bandwidth on our �rst prototype was limited by low memory system bandwidth on

the host. To avoid a similar limitation in RAID-II, we bypass the host's memory during large data

transfers. We avoid connecting the disk array, a high-bandwidth secondary storage system, to the

high-bandwidth HIPPI network via the host's low-bandwidth backplane and memory bus. Instead,

our XBUS controller board connects the disk array and HIPPI network directly using a high-

bandwidth crossbar interconnect. The host still controls the movement of data; the XBUS merely

responds to commands sent by the host when transferring data between disks and the network.

The host also manages the �le metadata (data associated with the �le other than its contents);

translates hierarchical, human-readable names to logical device addresses; and maintains a �le

cache of recently-accessed �les in host memory.

Besides the 100megabytes/second HIPPI interface connection to each XBUS board, the host

workstation has a low-latency 10megabytes/second Ethernet interface. Any request can go over

either datapath, but we maximize utilization and performance of the high-bandwidth datapath if

smaller requests use the Ethernet network and larger requests use the HIPPI network.

Thus, there are two modes of data access in RAID-II, which we call standard mode and high-

bandwidth mode. Standard mode is used for smaller data transfers and �le system operations such

as open, close and fstat. During such accesses, data are transferred from the disks through the

XBUS board and host memory before being sent over the Ethernet attached to the host. RAID-

II's standard mode transmits data and control messages together to reduce the number of network

messages and the software overhead.

High-bandwidth mode, by contrast, is optimized to provide a high rate of data transfer for large

�le requests. This mode uses the high-performance data path just described. The XBUS board

bypasses host memory and transfers data from the disks, through the XBUS board's crossbar

6



interconnect and memory, and over the high-performance HIPPI network. In high-bandwidth

mode, the host processes each data request by setting up data transfers directly between the XBUS

controller and client. Implementation details for each data transfer mode are given in Section 3.

A host workstation may control multiple XBUS controller boards. Thus, RAID-II can scale to

provide greater bandwidth by using several XBUS boards. To some extent, adding XBUS boards

is like adding disks to a conventional �le server. An important distinction is that adding an XBUS

board to RAID-II increases the I/O bandwidth available to the network , whereas adding a disk to

a conventional �le server only increases the I/O bandwidth available to that particular �le server.

The latter is less e�ective, since the �le server's memory system and backplane will soon saturate

if it is a typical workstation.

2.2 Architecture and Implementation of RAID-II

Figure 2 illustrates the architecture of the RAID-II �le server. The �le server's backplane consists

of two high-bandwidth (HIPPI) data busses and a low-latency (VME) control bus. The back-

plane interconnects the high-bandwidth network interfaces, several XBUS controllers and a host

workstation operating that controls the operation of the XBUS controller boards. We use the high-

bandwidth HIPPI datapath for large data transfers, and the VME control bus for sending control

information and small data transfers between the host workstation and the XBUS board. Each

XBUS board contains interfaces to the HIPPI backplane and VME control bus, memory, a parity

computation engine and four VME interfaces that connect to disk controller boards. The Ethernet

interface on the host workstation is used for data transfer to client workstations on that Ethernet

network.

Figure 3 illustrates the physical packaging of the RAID-II �le server, which is implemented using

three racks. To minimize the design e�ort, we used commercially available components whenever

possible. Thinking Machines Corporation (TMC) provided a board set for the HIPPI interface to

the Ultranet ring network; Interphase Corporation provided VME-based, dual SCSI, Cougar disk

controllers; Sun Microsystems provided the Sun 4/280 �le server; and IBM donated disk drives and

7



Cougar Disk Controller

Cougar Disk Controller

Cougar Disk Controller

HIPPIS 
Interface

HIPPID 
Interface

HIPPI (1 Gb/s) HIPPI (1 Gb/s)

XBUS Disk 
Array Controller

VMEVMEVMEVME

XBUS Disk 
Array Controller

XBUS Disk 
Array Controller

VMEVMEVMEVME

XBUS Disk 
Array Controller

VMEVMEVMEVME

TMC-HIPPIS Bus
(64 bits, 100 MB/s)

TMC-HIPPID Bus
(64 bits, 100 MB/s)

TMC-VME Bus
(32 bits, 40 MB/s)

VMEVMEVMEVME

Cougar Disk Controller

SCSI0

SCSI1

Host Workstation

Ethernet

RAID-II main chassis

Figure 2: Architecture of RAID-II File Server. The host workstation may have several XBUS

controller boards attached to its VME backplane. Each XBUS controller board contains interfaces

to HIPPI network source and destination boards, internal memory, high-bandwidth crossbar, parity

engine, and interfaces to four SCSI disk controller boards.

8



Figure 3: The physical packaging of the RAID-II File Server. Two outer racks contain 144 disks

and their power supplies. The center rack contains three chassis: the top chassis holds VME disk

controller boards; the center chassis contains XBUS controller boards and HIPPI interface boards,

and the bottom VME chassis contains the Sun4/280 workstation.

DRAM. The center rack is composed of three chassis. Above is a VME chassis containing eight

Interphase Cougar disk controllers. The center chassis was provided by TMC and contains the

HIPPI interfaces and our custom XBUS controller boards. The bottom VME chassis contains the

Sun4/280 host workstation. Two outer racks each contain 72 three-and-a-half inch, 320MB IBM

SCSI disks and their power supplies. There are eight shelves of nine disks per rack. RAID-II has

a total capacity of 46GB.

We designed the custom printed-circuit XBUS controller board called the XBUS board. The

9



8 MB 
DRAM

8 MB 
DRAM

8 MB 
DRAM

8 MB 
DRAM

16 word interleave

4 x 8 Crossbar Interconnect
40 MB/s per port

HIPPIS HIPPID XOR
Server
VME

VME0 VME1 VME2 VME3

Figure 4: Structure of XBUS controller board. The board contains four memory modules connected

by a 4x8 crossbar interconnect to eight XBUS ports. Two of these XBUS ports are interfaces to

the HIPPI network. Another is a parity computation engine. One is a VME network interface for

sending control information, and the remaining four are VME interfaces connecting to commercial

SCSI disk controller boards.

main purpose of the XBUS board is to provide a high-bandwidth path between the major sys-

tem components: the HIPPI network interface, four VME interfaces that connect to Cougar disk

controller boards, a parity computation engine, and an interleaved, multiported semiconductor

memory.

Figure 4 is a block diagram of the XBUS disk array controller board. The XBUS board im-

plements a 4x8, 32-bit wide crossbar interconnect, which we call the XBUS. The crossbar connects

four memory modules and eight XBUS ports. All XBUS transfers involve one of the four memory

modules as either the source or the destination of the transfer. Each memory port is designed to

transfer bursts of data at 50 megabytes/second and sustain transfers at 40 megabytes/second, for

a total sustainable memory bandwidth on the XBUS board of 160 megabytes/second.

The XBUS is a synchronous multiplexed (address/data) crossbar-based interconnect that uses a

10



centralized strict priority-based arbitration scheme. Each of the eight 32-bit XBUS ports operates

at a cycle time of 80ns. The memory is interleaved in sixteen-word blocks. The XBUS supports

only two types of bus transactions: reads and writes.

An important concern in the design of the XBUS was contention for memory modules. In

practice, contention is infrequent because most XBUS ports perform large sequential accesses.

When XBUS ports con
ict, the loser of the arbitration ends up following the winner around the

memory modules in a deterministic manner, avoiding further con
icts. Also, each XBUS port can

bu�er at least a kilobyte of data to/from the XBUS to even out 
uctuations caused by memory

con
icts. Measurements of the XBUS under heavy load [1] show that contention is not a problem.

The main advantage of the crossbar-based memory system is that high aggregate memory

bandwidth is made available using relatively inexpensive 32-bit ports. One disadvantage is that

a single port cannot utilize the full 160megabytes/second of memory bandwidth but is limited to

40megabytes/second. In our case, this is not a serious problem since only the HIPPI ports could

have sustained more than 40megabytes/second. Another disadvantage is that, although the ports

are inexpensive, the crossbar itself is expensive. We implemented the crossbar using 192 16-bit

transceivers. Using surface mount packaging we are able to implement the crossbar in 120 square

inches or approximately 20% of the XBUS controller's board area.

Of the eight XBUS ports, two interface to the HIPPI source and destination busses. Each TMC

HIPPI board also interfaces to one of these busses. The XBUS HIPPI ports are unidirectional and

can sustain transfers of up to 40 megabytes/second, with bursts of up to 100 megabytes/second

into 32 KB FIFO interfaces.

Four of the XBUS ports are used to connect the XBUS board to four VME busses, each of

which may connect to one or two dual-string Interphase Cougar disk controllers. In our current

con�guration, we connect three disks to each SCSI string, two strings to each Cougar controller,

and one Cougar controller to each XBUS VME interface for a total of 24 disks per XBUS board.

Up to 96 disks could be connected to an XBUS board using six disks per string, two strings per

Cougar controller, and two controllers per XBUS VME port. The Cougar disk controllers can

11



0 500 1000 1500 2000
0

10

20

30

Request Size (KB)

T
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

System Performance

Disk Array Reads

Disk Array Writes

Figure 5: System Level Read and Write Performance. RAID-II achieves approximately 20

megabytes/second for both reads and writes.

transfer data at 8 megabytes/second, for a total maximum bandwidth to the disk array of 32

megabytes/second in our present con�guration. As will be shown in the next section, the four

XBUS VME ports interfacing to the Cougar disk controllers have the lowest bandwidth of any

of the XBUS ports, about 7 megabytes/second each. This low performance is largely due to the

di�culty of synchronizing the asynchronous VME bus for interaction with the XBUS.

Of the remaining two XBUS ports, one interfaces to a parity computation engine. The last port

is the VME control interface linking the XBUS board to the host workstation. It provides the host

with access to the XBUS board's memory as well as its control registers. This makes it possible for

�le server software running on the host to access network headers and �le metadata in the XBUS

memory.

2.3 Performance

In this section, we present the performance of the RAID-II hardware, running below the level of the

operating system software. In Section 3.4, we show how much of this raw hardware performance is

delivered by the �le system.

12



Figure 5 shows system performance for reads and writes. We refer to these performance mea-

surements as system-level experiments, since they involve all the components of the system from

the disks to the HIPPI network. For these experiments, the disk system is con�gured as a RAID

Level 5 [10] with one parity group of 24 disks. For reads, data are read from the disk array into

the memory on the XBUS board and from there are sent over HIPPI, back to the XBUS board,

and into XBUS memory. For writes, data originate in XBUS memory, are sent over the HIPPI

and then back to the XBUS board to XBUS memory; parity is computed, and then both data and

parity are written to the disk array. For both tests, the system is con�gured with four Interphase

Cougar disk controllers, each with two strings of three disks. For both reads and writes, subsequent

operations are at random locations. Figure 5 shows that, for large requests, system-level read and

write performance reaches about 20 megabytes/second. Writes are slower than reads due to the

increased disk and memory activity associated with computing and writing parity. While an order

of magnitude faster than our previous prototype, RAID-I, this is still well below our target band-

width of 40 megabytes/second. Below, we show that system performance is limited by that of the

commercial disk controller boards and our disk interfaces.

Table 1 shows peak performance of the system when sequential read and write operations are

performed. These measurements were obtained using the four Cougar boards attached to the XBUS

VME interfaces, and in addition, having a �fth Cougar board attached to the XBUS VME control

bus interface. Read performance is 31 megabytes/second, compared to 23 megabytes/second for

writes. There are two reasons why read performance is so much better than write performance.

First, extra accesses are required on writes to calculate and write parity. Second, sequential reads

bene�t from the read-ahead performed into track bu�ers on the disks; writes have no such advan-

tage.

While one of the main goals in the design of RAID-II was to provide better performance than

our �rst prototype on high-bandwidth operations, we also want the �le server to perform well on

small, random operations. Table 2 compares the I/O rates achieved using a test program that

performed random 4 kilobyte reads. In each case, �fteen disks were accessed. The tests used Sprite

13



Peak Performance

Operation (megabytes/second)

Sequential reads 31

Sequential writes 23

Table 1: Peak read and write performance for an XBUS board on sequential operations. Obtained

using the four vme interfaces to disk controllers, plus attaching a disk controller to the VME control

bus interface.

1 disk 15 disks

System I/O Rate (I/Os/sec) I/O Rate (I/Os/sec)

RAID-I 27 274

RAID-II 36 422

Table 2: Peak I/O rates in operations per second for random, 4 kilobyte reads. Performance for

a single disk, and for �fteen disks, with a separate process issuing random I/O operations to each

disk. The IBM 0661 disk drives used in RAID-I have shorter seek and rotation times than the

Seagate Wren IV disks used in RAID-II.

operating system read and write system calls; the RAID-II test did not use LFS. In each case,

a single process issued 4 kilobyte, randomly distributed I/O requests to each active disk in the

system. The performance with a single disk indicates the di�erence between the Seagate Wren IV

disks used in RAID-I and the IBM 0661 disks used in RAID-II. The IBM disk drives have faster

rotation and seek times, making random operations quicker. With �fteen disks active, both systems

perform well. The small, random I/O rates are limited in both cses by the large number of context

switches required on the Sun4/280 workstation.

The remaining performance measurements in this section are for speci�c components of the

XBUS board. Figure 6 shows the performance of the HIPPI network and boards. Data are trans-

ferred from the XBUS memory to the HIPPI source board to the HIPPI destination board and back

to XBUS memory. Because the network is con�gured as a loop, there is minimal network protocol

overhead. This test focuses on the HIPPI network's raw hardware performance; unfortunately, this

level of bandwidth cannot be achieved over the Ultranet network, which limits packet size to 32

kilobytes. In the loopback mode, the overhead of sending a HIPPI packet is about 1.1 ms, mostly

due to setting up the HIPPI and XBUS control registers across the slow VME link (in comparison,

an Ethernet packet takes approximately 0.5 ms to transfer). Due to this control overhead, small

14



1 10 100 1000 10000 100000
0

10

20

30

40

Request Size (KB)

T
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

HIPPI Loopback Performance

Figure 6: HIPPI Loopback Performance. RAID-II achieves 38.5 megabytes/second in each direc-

tion.

requests result in low performance. For large requests, however, the XBUS and HIPPI boards

support 38 megabytes/second in both directions, which is very close to the maximum bandwidth

of each XBUS port. During these large transfers, the XBUS boards are transferring a total of 76

megabytes/second, which is an order of magnitude faster than FDDI and two orders of magnitude

faster than Ethernet. Clearly the HIPPI part of the XBUS is not the limiting factor in determining

system level performance.

Disk performance is responsible for the lower-than-expected system-level performance of RAID-

II. The performance limitations are the Cougar disk controllers, which only support about 3

megabytes/second on each of two SCSI strings, as shown in Figure 7, and our relatively slow,

synchronous VME interface ports, which only support 6.9 megabytes/second on read operations

and 5.9 megabytes/second on write operations.

15



0 1 2 3 4 5
0

1

2

3

4

5

6

Number of Disks

T
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

Varying Disks Per String

Figure 7: Disk Read Performance for varying number of Disks on a Single SCSI string. Cougar

string bandwidth is limited to about 3 megabytes/second, less than that of three disks. Dashed

line indicates the performance if bandwidth scaled linearly.

3 The RAID-II File System

Although some applications can use RAID-II as a large raw disk, most applications will require

a �le system with abstractions such as directories and �les. The �le system should deliver to

applications as much of the bandwidth of the RAID-II disk array hardware as possible. RAID-

II's �le system is a modi�ed version of the Sprite Log Structured File System (LFS) [11]. LFS

is particularly well-suited for use with disk arrays because it writes data in large segments to an

append-only disk log. This eliminates ine�cient small write accesses to the disk array. Changes to

the original LFS implementation were required to manage two features of RAID-II: the separate

low- and high-bandwidth datapaths, and the separate �le system caches on the host computer and

XBUS board. Currently the RAID-II �le system can provide 13.4 megabytes/second of data for

large read requests.

16



In this section, we �rst describe the Log Structured File System and its suitability for disk

arrays. Second, we describe the unique features of RAID-II that require special attention in the

LFS implementation. Next, we illustrate how RAID-II processes typical read requests from a client.

Finally, we discuss the measured performance and implementation status of LFS on RAID-II.

3.1 The Log Structured File System

LFS [11] is a disk storage manager that writes all �le data and metadata to a sequential append-

only log; �les are not assigned �xed blocks on disk. In LFS, there are no small write operations to

disk; data for small writes are bu�ered in main memory, and are written to disk asynchronously

when a log segment �lls. This is in contrast to traditional �le systems, which assign �les to �xed

blocks on disk. In traditional �le systems, a sequence of random �le writes results in ine�cient

small, random disk accesses.

Because it eliminates small write operations, the Log Structured File System is better suited

to achieving high bandwidth from a disk array than traditional �le systems. This is because small

write operations in a Level 5 RAID are ine�cient, requiring four disk accesses: reads of the old

data and parity blocks, and writes of the new data and parity blocks. Large accesses to the disk

array are much more e�cient, because they don't require reading old data or parity. A traditional

�le system running on a RAID would perform ine�cient small write operations, but LFS eliminates

them, grouping small operations into e�cient large, sequential write operations.

A secondary bene�t of LFS is that crash recovery is very quick. To recover from a �le system

crash, the LFS server need only read the log from the position of the last checkpoint. By contrast,

a UNIX �le system consistency checker traverses the entire directory structure in search of lost

data. Because a RAID has a very large storage capacity, a standard UNIX-style consistency check

on boot would be unacceptably slow. For a 1GB �le system, it takes less than a second to perform

an LFS �le system check, compared with approximately 20minutes to check the consistency of a

typical UNIX �le system of comparable size.

17



3.2 LFS on RAID-II

An implementation of LFS for RAID-II must e�ciently handle two architectural features of the

disk array: the separate low- and high-bandwidth datapaths, and the separate memories on the

host workstation and the XBUS board.

Because of the existence of the two datapaths, we changed the original Sprite LFS software

to separate the handling of data and metadata (information associated with a �le other than its

contents, such as inodes and directories). We use the high-bandwidth datapath to transfer data

between the disks and the HIPPI network, without passing through host workstation memory. The

relatively low-bandwidth VME connection between the XBUS memory and the host workstation is

needed to send metadata to the host; the host uses metadata to look up �le names and locate data

on disk. The low-bandwidth path also transfers data to the host to service small requests made

by clients connected to the host's Ethernet network. Small requests are handled with this slower

datapath to allow e�cient use of the high-bandwidth datapath for larger requests.

LFS on RAID-II also must manage separate memories on the host workstation and the XBUS

board. The host memory cache contains metadata as well as �les that have been read into work-

station memory for transfer over the Ethernet. The cache is managed with a simple Least Recently

Used replacement policy. Memory on the XBUS board is used for prefetch bu�ers, HIPPI network

bu�ers, and as write bu�ers for LFS segments. The �le system keeps the two caches consistent,

and copies data between them as required.

To hide some of the latency required to service large requests, LFS performs prefetching into

XBUS memory bu�ers. LFS on RAID-II uses several prefetch processes that request data in parallel

to increase the total bandwidth available to the application. Latency is also minimized by pipelining

network and disk operations.

From the user's perspective, the RAID-II �le system looks like a standard �le system to clients

using the slow path, but requires relinking of applications for clients to use the fast path. To access

data over the Ethernet, clients just use NFS or the Sprite RPC mechanism. The fast datapath

18



across the Ultranet uses a special library of �le system operations for RAID �les: open, read, write,

etc. The library converts �le operations to operations on an Ultranet socket between the client and

the RAID-II server. The advantage of this approach is that it doesn't require changes to the client

operating system. Alternatively, these operations could be moved into the kernel on the client and

would be transparent to the user-level application.

3.3 Typical Large and Small Requests

This section explains how the RAID-II �le system handles typical open and read request from a

client over the fast Ultranetwork and over the slow Ethernet network attached to the host work-

station.

In the �rst example, the client is connected to RAID-II across the high-bandwidth Ultranet

network. The client application is linked with a small library which converts raid �le operations

into operations on an Ultranet socket connection.

First, the application running on the client performs an open operation by calling the library

routine raid_open. This call is transformed by the library into socket operations. The library

opens a socket between the client and the RAID-II �le server. Then the client sends an open

command. Finally, the RAID-II �le server opens the �le and informs the client.

Now the application can perform read and write operations on the �le. Suppose the application

does a large read using the library routine raid_read. As before, the library converts this read

operation into socket operations, sending RAID-II a read command that includes �le position and

request length.

RAID-II handles a read request by pipelining disk reads and network sends. First, the �le

system code allocates a bu�er in XBUS memory, determines the position of the data on disk, and

calls the RAID driver code to read the �rst block of data into XBUS memory. When the read

has completed, the �le system calls the network code to send the data from XBUS memory to the

client. Meanwhile, the �le system allocates another XBUS bu�er and reads the next block of data.

Network sends and disk reads continue in parallel until the transfer is complete. LFS may have

19



several prefetch processes issuing read requests, allowing disk reads to get ahead of network send

operations for e�cient network transfers.

On the client side, the network data blocks are received and read into the application memory

using socket read operations. When all the data blocks have been received, the library returns from

the raid_read call to the application.

In the second example, we illustrate how the �le server handles a read request sent over the

relatively slow Ethernet. A client sends standard �le system open and read calls to the host

workstation across its Ethernet connection. The host sends the read commands over the VME link

to the XBUS board. The XBUS board responds by reading the data from disk into XBUS memory,

and transferring the data to the host workstation. Finally, the host workstation packages the data

into Ethernet packets and sends the packets to the client.

3.4 Performance and Status

The �le system for RAID-II is still under development and is being used to research various de-

sign parameters. It currently handles creation, reads, and writes of �les. LFS cleaning (garbage

collection of free disk space in the log) has not yet been implemented.

Currently, the LFS �le system implementation provides about 67% of the 20 megabytes/second

total bandwidth of RAID-II with a single XBUS board. With 24 disks active in the array, the

�le system delivers 13.4 megabytes/second for a workload of large read requests. This experiment

involves a single application process issuing 30 megabyte read requests. LFS breaks down these

requests, so that requests to the disk array are approximately 650 kilobytes. The raw hardware

performance for 650 kilobyte requests is 14 megabytes/second, so the LFS implementation on

RAID-II delivers 96% of the array bandwidth for this workload. During this experiment, LFS uses

three processes for e�cient data prefetching. Data are striped in the array in units of 16 kilobytes.

In this experiment, data read from the disks are not sent across the HIPPI network; we currently

do not have a client capable of receiving 13.4 megabytes/second of data. The data rate reported

here is the rate at which data are read from the disk array and written to HIPPI network bu�ers

20



in the XBUS board's memory.

LFS performance is fairly poor across the host workstation's Ethernet path. Data read and

write rates are about 350 kilobytes/second. The low bandwidth is due to the �le system, which

breaks Ethernet requests into 4 kilobyte blocks; RAID-II has low performance on these small blocks.

The Ethernet path performance would increase dramatically with a larger block size. Due to time

constraints, we have not yet tuned the Ethernet datapath.

We are exploring several design issues with the RAID-II �le system, including the best use of

XBUS memory for caching or prefetching, the best size of data blocks for e�cient transfers, and

the performance of the �le system under high loads.

4 RAID-II and Existing File Server Architectures

RAID-II is not the only system o�ering high I/O performance. In this section, we highlight some

important characteristics of several existing high-performance I/O systems, and explain how they

relate to the design of RAID-II.

4.1 Auspex NS5000

The Auspex NS5000 [8] is a �le server designed to support a large number of client workstations

using NFS [12], the most common network �le system protocol for workstation-based computing

environments. The design of the Auspex NS5000 was motivated by the lack of scalability of conven-

tional workstation �le servers. Each NFS packet processed by a �le server requires an approximately

constant CPU overhead to process device interrupts and manage the network protocol. In a con-

ventional network �le server, a single processor performs all these functions; a large number of

clients generate many small NFS packets, causing the �le server processor to become a bottleneck.

The NS5000 supports more clients than conventional �le servers by dividing the functions normally

performed by a single CPU over several processors. This functional multiprocessing design uses

dedicated processors to perform network processing, �le system management and disk control. As

21



a result, the NS5000 performs better than a comparably con�gured Sun 4/490 server by a ratio

ranging from 1.4, when both are con�gured with a single disk and single Ethernet, to 10.0, when

both have two Ethernets and four disks [6]. RAID-II utilizes a similar degree of functional mul-

tiprocessing, with the host workstation handling metadata, name translation, and small accesses

over the local Ethernet network; the XBUS board responsible for storage and retrieval of disk data;

and an AMD29000 on the TMC HIPPI boards as well as the Ultranet hardware handling most of

the HIPPI protocol handling.

Although the NS5000 is good at supporting small, low-latency NFS requests, it does not per-

form as well for high-bandwidth applications. Currently, the system contains eight Ethernet net-

works, limiting aggregate bandwidth to around 8 megabytes/second. Also, the current version of

NFS limits packet size to 8 kilobytes, limiting the bandwidth available to individual users. Once

the packet size limit is removed in future versions of NFS, �le server performance may reach 25

megabytes/second. Bandwidth is constrained by the 55 megabytes/second VME bus connecting

networks and disks.

4.2 Supercomputer File Systems

Supercomputers have long used high performance I/O systems. These systems fall into two cate-

gories | high-speed disks attached directly to the supercomputer, and mainframe-managed storage

connected to the supercomputer via a network.

The �rst type of supercomputer �le system, consisting of many fast parallel transfer disks

directly attached to a supercomputer's I/O channels, is used primarily to hold data being actively

used by the supercomputer. This �le system is usually composed of forty or more high-speed disks,

each capable of transferring up to 10 megabytes/second. Data are often striped across these disks,

although no parity is computed. A typical system might stripe data across eight disks and transfer

a single �le at tens of megabytes per second. The local �le system on the Cray Y/MP at the

San Diego Supercomputer Center (SDSC), for example, averages 19 megabytes/second sustained

over the course of a day, and allows individual transfers at a higher rate [7]. While these �le

22



systems can transfer data at very high speeds to their host supercomputer, they are not designed

to service a large number of small �le requests, and are rarely used as primary storage systems for

a large number of client workstations. Instead, �les for a particular application are copied onto the

high-speed disks from the mass storage system before the application is run.

Mainframe-managed mass storage, on the other hand, provides large amounts of storage to both

supercomputers and workstations. A typical system, such as the NASA Ames mass storage system

MSS-II [14], provides both disk and tertiary storage to clients over a network. MSS-II uses an

Amdahl 5880 as a �le server, and distributes data across its disks using a scheme based on RAID

level 5. Data from these disks may be transferred over one of several network channels. Like the

supercomputer �le system, however, MSS-II is not designed to service many small requests; rather,

it is best suited for transferring entire �les to and from its clients. Additionally, its bandwidth is

lower than that of the �le system managing high-speed disks; the goal for MSS-II was to provide

10 megabytes/second for individual �les.

In RAID-II, we take advantage of recent technological developments that make it possible to

build network �le servers that can provide high bandwidth without the use of mainframes or expen-

sive high-speed disks. Instead, we can use workstations, disk arrays, and standard interconnects

and networks such as HIPPI and FDDI to build high performance network �le servers at much

lower cost. Like previous mainframe-based �le servers for supercomputers, RAID-II provides high

performance for large �les. However, it can also service a large number of small �le requests, and

serve as a primary �le server for client workstations.

The Los Alamos National Laboratory's High-Performance Data System (HPDS) [3] is an ex-

perimental prototype similar in design philosophy to RAID-II. Like RAID-II, it attempts to pro-

vide low latency on small transfers and control operations, as well as high bandwidth on large

transfers. HPDS directly connects an IBM RAID Level 3 disk array to a HIPPI network and con-

trols the data movement remotely (over an Ethernet) from an IBM RISC/6000. Los Alamos has

demonstrated data rates close to the maximum data rate of the IBM disk array, approximately

60 megabytes/second. The main di�erence between LANL's High-Performance Data System and

23



RAID-II is that HPDS uses a bit-striped, or RAID Level 3, disk array, whereas RAID-II uses a


exible, crossbar interconnect that can support many di�erent RAID architectures. In particular,

RAID-II supports RAID Level 5, which supports many independent I/Os in parallel. RAID Level

3, on the other hand, supports only one I/O at a time, which will hurt the performance of small

operations.

5 Future Directions

5.1 Planned Use of RAID-II

We plan to use RAID-II as a storage system for two new research projects at Berkeley. As a part

of the Gigabit Test Bed project being conducted by the U.C. Berkeley Computer Science Division

and Lawrence Berkeley Laboratory (LBL), RAID-II will act as a high-bandwidth video storage and

playback server. Located at the LBL is an electron microscope with an attached video digitizer.

The digitizer has a HIPPI interface that is connected into a switched HIPPI network. This network

spans the two sites via �ber based HIPPI extenders. On this network along with RAID-II are Sun

workstations and a MASPAR multiprocessor. We will capture the video stream from the microscope

and store it on RAID-II. The image sequence can be enhanced on the MASPAR, stored again on

RAID-II, and then played back from the disk array for frame by frame analysis of the molecular

motion being studied.

The InfoPad project at U.C. Berkeley will use the RAID-II disk array as an information server.

In conjunction with the real time protocols developed by Prof. Domenico Ferrari's research group,

we will provide video storage and play back from the disk array to a network of base stations.

These base stations in turn drive the radio transceivers of a pico-cellular network to which hand-

held display devices, called InfoPads, will connect. The disk array will need to serve simultaneous

streams to a number of users. Typical bandwidth per user is 1 megabyte/second over the radio

link, and more over the backbone network.

24



5.2 Striping Across File Servers: The Zebra File System

The scalable nature of RAID-II's disk array allows the prototype's performance to be easily im-

proved by increasing the number of disks in the array across which data are striped. There is a limit

to the bene�t of wider striping, however, since the XBUS board limits the rate at which data can

be transferred between the network and the disk array. It is also possible to scale performance by

adding more XBUS boards to the server, but doing so will not necessarily improve the performance

of individual I/O requests. This is because each XBUS board has its own disk array and may have

a separate HIPPI network interface. Clients must be careful to access data on a particular disk

array via its corresponding network interface. Thus, a single RAID-II server with multiple XBUS

boards appears to its clients as multiple independent servers, each with its own network address

and storage system. Striping across XBUS boards implies that the clients are aware of the internal

con�guration of the RAID-II server and use the appropriate network interfaces to access data.

A storage architecture whose bandwidth for individual requests would be incrementally scalable

is highly desirable because of the trend toward higher bandwidth workloads. Zebra [4] is a network

�le system designed to provide high-bandwidth �le access by striping �les across multiple �le servers.

Its use with RAID-II would provide a mechanism for striping high-bandwidth �le accesses over

multiple network connections, and therefore across multiple XBUS boards. Zebra incorporates ideas

from both RAID and LFS: from RAID, the ideas of combining many relatively low-performance

devices into a single high-performance logical device, and using parity to survive device failures;

and from LFS the concept of treating the storage system as a log, so that small writes and parity

updates are avoided.

There are two aspects of Zebra that make it particularly well-suited for use with RAID-II. First,

the servers in Zebra perform very simple operations, merely storing blocks of the logical log of �les

without examining the content of the blocks. Little communication is needed between the XBUS

board and the host CPU, allowing data to 
ow between the network and the disk array e�ciently.

The second bene�t of using Zebra on RAID-II is that the log-structured nature of Zebra allows a

25



client to write to the servers in large transfers, even if the application programs are doing small

writes. Thus, Zebra avoids costly small writes to the disk array, allowing the disk array to be used

e�ciently without any extra e�ort on the part of the server.

6 Summary and Conclusions

Our �rst disk array prototype, RAID-I, performed well for small, random I/O operations. However,

it was unable to deliver much of the available bandwidth from the disk array on large transfers

because of limited memory bandwidth on the host workstation. We designed our second prototype

with the goal of delivering much more of the available disk array bandwidth to �le server clients.

RAID-II shares several features with existing high performance I/O systems. Like the Auspex

NS5000, RAID-II divides functionality between the host workstation, XBUS board, and other

boards like the TMC HIPPI interfaces. Data bypass the �le server on large transfers and are

transferred via a high-performance data path directly between the disk array and clients, as in

the Los Alamos HPDS system. Also like HPDS, RAID-II separates data and control messages for

high-bandwidth data accesses, sending control over a slow network, and data over a fast one.

The architectural features of the RAID-II Storage Architecture that allow it to perform well on

high-bandwidth applications are:

� RAID-II uses a custom-built XBUS controller board to connect the disks and high-bandwidth

network directly, unlike conventional network �le servers that connect disks, memory and

network through the host workstation's backplane and low-bandwidth memory bus. This

allows RAID-II to scale in performance as network performance scales.

� RAID-II has two network attachments, and thus, two modes of access: standard mode, which

sends data through the host workstation memory and over the Ethernet network, and high-

bandwidth mode, which uses the XBUS board to bypass host memory and send data over the

HIPPI network.

26



� The host workstation continues to control all data transfers, handles �le metadata, translates

human-readable �le names to logical device addresses, and maintains a �le cache in host

memory.

� The host may control several XBUS disk array controller boards, so that bandwidth is not

limited to that of a single controller board.

The distinctive implementation features of RAID-II are:

� RAID-II runs LFS, the Log-Structured File System, which lays out �les in large contiguous

segments to provide high-bandwidth access to large �les, groups small write requests into large

write requests to avoid wasting disk bandwidth, and provides fast crash recovery.

� The RAID-II �le server uses two high-bandwidth HIPPI busses for data large transfers and a

low-latency VME bus for small data transfers and control.

� The XBUS controller uses a 4 � 8 crossbar-based interconnect with a peak bandwidth of

160megabytes/second. The crossbar connects four memory modules and eight XBUS ports,

including two interfaces to the HIPPI network, four interaces to disk controller boards, a

parity computation engine, and a VME control bus used to send commands between the host

workstation and the XBUS board.

The main performance results are:

� RAID-II using a single XBUS controller board achieves about 20 megabytes/second for read

and write operations using all the components of the hardware. This performance is an

order of magnitude improvement compared to our �rst prototype, but disappointing compared

to our performance goal of 40 megabytes/second. The performance is limited by the SCSI

disk controller boards and by the bandwidth capabilities of our disk interface ports. Other

components of the system achieve their bandwidth goal of 40 megabytes/second, including

the HIPPI interfaces, memory modules and parity engine.

27



� A preliminary implementation of LFS achieves 13.4 megabytes/second from RAID-II con�g-

ured with a single XBUS board into HIPPI network bu�ers on the XBUS board.

The RAID-II disk array prototype succeeds in delivering much higher bandwidth than its pre-

decessor, RAID-I. We accomplish this using hardware and software speci�cally designed to preserve

the bandwidth available from the disks. Until workstation memory bandwidth improves consid-

erably, we believe that future workstation-based �le servers designed to provide high bandwidth

I/O over networks should include a separate high-bandwidth access path like the XBUS board to

connect the disks and the network directly. The use of LFS also optimizes the performance of the

disk array for bandwidth-intensive applications.

7 Acknowledgments

We would like to thank the other members of the RAID and Sprite groups at Berkeley for their con-

tributions to RAID-II. In particular we would like to thank John Ousterhout, Mendel Rosenblum,

Rob P�le, Rob Quiros, Richard Drewes and Mani Varadarajan.

This research was supported by Array Technologies, DARPA/NASA (NAG2-591), DEC, Hewlett-

Packard, IBM, Intel Scienti�c Computers, California MICRO, NSF (MIP 8715235), Seagate, Stor-

age Tek, Sun Microsystems and Thinking Machines Corporation.

References

[1] Peter M. Chen, Edward K. Lee, Ann L. Drapeau, Ken Lutz, Ethan L. Miller, Srinivasan Seshan,

Ken Shirri�, David A. Patterson, and Randy H. Katz. Performance and Design Evaluation of

the RAID-II Storage Server. International Parallel Processing Symposium Workshop on I/O

in Parallel Computer Systems, April 1993. invited for submission to the Journal of Distributed

and Parallel Databases.

[2] Ann L. Chervenak and Randy H. Katz. Perfomance of a disk array prototype. In Proceedings

SIGMETRICS, May 1991.

[3] Bill Collins. High-performance data systems. In Proc. IEEE Symposium on Mass Storage

Systems, October 1991.

28



[4] John H. Hartman and John K. Ousterhout. The zebra striped network �le system. In to appear

in Proceedings of the 14th ACM Symposium on Operating System Principles, December 1993.

[5] John L. Hennessy and Norman P. Jouppi. Computer technology and architecture: An evolving

interaction. IEEE Computer, 24:18{29, September 1991.

[6] William A. Horton and Bruce Nelson. The Auspex NS 5000 and the SUN SPARCserver 490 in

One and Two Ethernet NFS Performance Comparisons. Technical Report Auspex Performance

Report 2, Auspex, May 1990.

[7] Reagan W. Moore. File servers, networking, and supercomputers. Technical Report GA-

A20574, San Diego Supercomputer Center, July 1991.

[8] Bruce Nelson. An overview of functional multiprocessing for NFS network servers. Technical

Report 1, Auspex Engineering, 1990.

[9] John K. Ousterhout. Why aren't operating systems getting faster as fast as hardware. In

Proceedings USENIX Technical Conference, June 1990.

[10] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of

inexpensive disks (RAID). In Proceedings ACM SIGMOD, pages 109{116, June 1988.

[11] Mendel Rosenblum and John Ousterhout. The design and implementation of a log-structured

�le system. In Proc. ACM Symposium on Operating Systems Principles, pages 1{15, October

1991.

[12] Russel Sandberg, David Goldbert, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and

Implementation of the Sun Network Filesystem. In Summer 1985 Usenix Conference, 1985.

[13] Daniel Stodolsky, Garth Gibson, and Mark Holland. Parity logging overcoming the small

write problem in redundant disk arrays. In Proc. International Symposium on Computer

Architecture, pages 64{75, May 1993.

[14] David Tweten. Hiding mass storage under Unix: NASA's MSS-II architecture. In Proc. IEEE

Symposium on Mass Storage Systems, pages 140{145, May 1990.

29


