
A Transactional Approach to Redundant
Disk Array Implementation

William V. Courtright II

15 May 1997
CMU-CS-97-141

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A Dissertation submitted to the
Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Thesis Committee:
Garth A. Gibson
Martin Francis

Jim Gray
Daniel P. Siewiorek

Jeannette Wing

Copyright © 1997 Courtright

This work was supported in part by Data General, Digital Equipment Corporation, Hewlett-Pack-
ard, International Business Machines, Seagate, Storage Technology, and Symbios Logic. Addi-
tional support was also provided by a Symbios Logic graduate fellowship. Carnegie Mellon’s
Data Storage Systems Center also provided additional funding from the National Science Founda-
tion under grant number ECD-8907068. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of sponsoring companies or the government of the United States of Amer-
ica.



Keywords: disk array, storage, architecture, simulation, directed acyclic graph, software.



Dedicated to the memory of my grandfathers,

Charles Richard Courtright and Jappour Joseph
iii



iv



for-
ng pro-
re is a
t cur-

sis of
or sce-
plete
ause
ced.

s of
n be
 and

ism
od-
epre-
ented

e
t the
on-

xecu-
is
n

ion,
ntical
Abstract

Redundant disk arrays are a popular method of improving the dependability and per
mance of disk storage and an ever-increasing number of array architectures are bei
posed to balance cost, performance, and dependability. Despite their differences, the
great deal of commonality between these architectures; unfortunately, it appears tha
rent implementations are not able to effectively exploit this commonality due to their
ad hoc approach to error recovery. Such techniques rely upon a case-by-case analy
errors, a manual process that is tedious and prone to mistakes. For each distinct err
nario, a unique procedure is implemented to remove the effects of the error and com
the affected operation. Unfortunately, this form of recovery is not easily extended bec
the analysis must be repeated as new array operations and architectures are introdu

Transaction-processing systems utilize logging techniques to mechanize the proces
recovering from errors. However, the expense of guaranteeing that all operations ca
undone from any point in their execution is too expensive to satisfy the performance
resource requirements of redundant disk arrays.

This dissertation describes a novel programming abstraction and execution mechan
based upon transactions that simplifies implementation. Disk array algorithms are m
eled as directed acyclic graphs: the nodes are actions such as “XOR” and the arcs r
sent data and control dependencies between them. Using this abstraction, we implem
eight array architectures in RAIDframe, a framework for prototyping disk arrays. Cod
reuse was consistently above 90%. The additional layers of abstraction did not affec
response time and throughput characteristics of RAIDframe; however, RAIDframe c
sumes 60% more CPU cycles than a hand-crafted non-redundant implementation.

RAIDframe employs roll-away error recovery, a novel scheme for mechanizing the e
tion of disk array algorithms without requiring that all actions be undoable. A barrier 
inserted into each algorithm: failures prior to the barrier result in rollback, relying upo
undo information. Once the barrier is crossed, the algorithm rolls forward to complet
and undo records are unnecessary. Experiments revealed this approach to have ide
performance to that of non-logging schemes.
v
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Chapter 1: Motivation, Problem Statement, and Thesis

The importance of storage systems, historically sidelined as peripheral devices
which supported the processing unit of the computer, has dramatically increased as
puter installations have become data-centric, rather than processor-centric. Custom
no longer purchasing a single computer and building the storage system around it; th
instead designing the computer around the central database.

The importance of data to customers has necessitated a continual search for
improvements in both the performance and the dependability of storage systems. R
dant disk arrays are designed to offer improved performance and, at the same time,
increased dependability. This year, Disk/Trend estimates that world-wide shipments
redundant disk arrays will be $12.3 billion, reaching $18.6 billion by 1999 [Disk96a]. T
outpaces the growth of commodity disk drives, estimated to by $29.7 billion this yea
reaching $45.9 billion in 1999 [Disk96b].

Redundant disk arrays are manufactured by corporations such as Data Genera
ital Equipment, EMC, Hewlett-Packard, IBM, Storage Technology, and Symbios Log
(formerly NCR). Despite the fact that storage systems based upon magnetic disk tec
ogy have been in production for forty years, commodity production of storage system
that employ redundancy to survive disk faults has only recently occurred. Redundan
arrays, commonly referred to using the RAID taxonomy introduced by researchers a
University of California’s Berkeley campus in 1987, began to increase in popularity w
commodity pricing of the small-form-factor disk drives used in personal computers m
redundant disk arrays more affordable, dependable, and higher performing than the
large expensive disks (SLEDs) paradigm [Patterson88].

Since the introduction of the original RAID paper in 1988, research in redunda
disk arrays has flourished in an attempt to provide a broad spectrum of solutions for 
ety of price/performance/dependability trade-offs. Our interest in the work described
this dissertation began with the casual observation that, for reasons of complexity, d
array vendors were limiting the scope of their product offerings to only the most bas
redundant disk array architectures. After examining the properties of current redund
disk array implementations, we came to the conclusion that vendors were employing
design practices that had been used to implement nonredundant disk systems, but w
unsuited for the problem domain of fault-tolerant storage systems.

For example, servicing a user’s request to write data to a redundant disk array
cally requires the execution of a partially-ordered series of actions such as: the alloc
1
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of resources such as locks and buffers, the computation of new redundancy informa
the writing of new user data and newly-computed redundancy information to disk, an
release of resources. If an error is detected during the execution of these actions, th
is required to complete the user’s request, assuming that the fault which caused the 
specified to be tolerated by the array’s fault model.

The process used to recover from the error and complete the request begins w
assessment of the state changes made by actions completed at the time the error w
detected, and the damage caused by the error. Because some of these actions, suc
writing of new data and the computation of new redundancy information, may occur 
parallel, the state space which must be explored may be significant in size. The proc
identifying the state space is often manual, tedious, and prone to mistakes. Furtherm
the state space is architecture specific—as new algorithms are introduced, so are n
cution states.

The second step in this process is to complete the user’s request. Because erro
corrupt (or make unavailable) information which is necessary to complete the opera
the algorithm being used to service the request may need to be altered. The specific
ations to the algorithm are a function of the error and the current execution state—a
execution state space increases, so does the number of alternate algorithms that m
created by the programmer.

This process of mapping current execution state to a carefully prepared model 
entire execution state space and then altering execution to move from the point of e
detection to request completion is known asforward error recovery [Lee9c, Stone89].
From informal conversations with practitioners, I discovered that 60-70% of the code
found in implementations based upon forward error recovery may be devoted to erro
recovery. Friedman reports this number to be as high as 90% [Friedman96].

Because forward error recovery schemes are architecture specific, extending e
ing implementations to support new array architecture can be difficult. This is unfortu
because, as I will demonstrate in Chapter 2, a wide variety of disk array algorithms c
composed from a relatively small set of actions, such asdisk read andXOR. Intuitively, it
stands to reason that a basic library of these actions should be able to support a mu
of architectures.

Finally, verifying the correctness of a design which is built upon case-by-case a
sis is difficult. Not only must the error-free execution of the algorithms be verified, bu
identification and case-by-case treatment of all distinct error scenarios must be verifi
well.

Database systems have long employed transactions, independent units of wor
which guarantee atomic (all-or-nothing) failure semantics without regard for the conte
which the transactions are executing. By logging the state changes that are made b
transaction, errors which cause a transaction to abort (fail prior to completion) can b
recovered automatically by returning the system to the state which existed prior to th
2
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cution of the transaction which failed. This all-or-nothing semantic eliminates the nee
manually identifying and processing errors, instead allowing programmers to simply
design transactions which begin in a state which is free from error—the underlying sy
assumes the responsibility for error recovery. This system also guarantees that the 
tion of each transaction is isolated from that of other transactions, a property commo
known asisolation or serializability.

Redundant disk array operations can be treated as transactions, meaning that
execution of these operations can be mechanized in a general fashion, independen
array architecture and the algorithms that are used to perform array operations. In th
sertation, I argue that forward error recovery schemes, used with arguable success 
redundant disk systems, are unsuited for fault-tolerant disk systems. Employing a no
programming abstraction, which graphically represents disk array operations as dire
acyclic graphs, and specializing error recovery technology found in transaction proce
systems, it is my thesis that by modeling redundant disk array operations as transac

redundant disk array software can be constructed in a fashion that reduces
the need for hand analysis of errors and concurrency, increases the frac-
tion of reusable code by reducing architecture-specific error recovery,
achieves performance comparable to hand-crafted implementations, and
does not consume significant resources.

To this end, I have written this dissertation which describes our experiments and app
to redundant disk array software implementation. Also included in this dissertation is
description ofRAIDframe, a software package for implementing and evaluating redund
disk arrays developed by researchers at Carnegie Mellon’s Parallel Data Laboratory
[Courtright96c, PDLHTTP, RAIDframeHTTP]. RAIDframe employs the programming
abstraction and error recovery technology described in this dissertation and was use
extensively to demonstrate the claims made throughout the dissertation.

I hope that the work described in this dissertation will lead to an avoidance of s
ware faults in production systems; unfortunately, I have no empirical data to support
belief. Rather, I argue that the simplicity of the approach, its demonstration in RAID-
frame, and the ability to formally verify systems using these techniques as correct, a
enough evidence to merit further investigation.

Before proceeding with a description of our approach to implementing redunda
disk array software, the dissertation commences with a study of background materia
Chapter 2 introduces the fundamental terminology used to describe fault-tolerant sy
as well as disk drive and disk array technology. The fault tolerance terminology I use
consistent with that commonly found in the field [Gray93, Siewiorek92, and Lee90c]
Chapter 2 also reviews disk and disk array technology, including a description of the
model used in our experiments. This model is based upon a general array controller
tecture found in commercial products, and the accepted notion that disk arrays fail n
atomically when power failures and crashes are encountered.
3
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Chapter 3 introduces a graphical programming abstraction based upon directe
clic graphs in which the nodes represent actions such asdisk read andXOR and the arcs
represent data and control dependencies. The nodes are designed to be atomic and
making them undoable, a mechanism for executing these graphs, which includes rec
from node failures, is described. Because the mechanism is general (independent o
structure), the need for hand-crafting code to clean up after errors encountered duri
execution of array operations is eliminated.

This graphical programming abstraction, and a modular partitioning of function
such as mapping and algorithm (graph) selection was the basis forRAIDframe, a prototyp-
ing framework I describe in Chapter 4 that permits researchers to quickly implement
array architectures and evaluate them in real computing environments. This chapter
sents an anecdotal history of our efforts as we developed eight disk array architectu
RAIDframe, in which code reuse was consistently above 90%. Also included in this 
ter is an examination of RAIDframe’s efficiency, and a validation of its response-time
throughput performance against expectation. For a nonredundant disk array, RAIDfr
was found to provide results consistent with a non-redundant hand-crafted striping d
but required 60% more CPU cycles. For redundant disk arrays, RAIDframe produce
results consistent with simple models that predict throughput as a function of the am
of disk work in the system [Patterson88].

The study of error recovery is continued in Chapter 5, which begins by examin
the cost of the naive execution mechanism described in Chapter 3. That mechanism
tained enough undo information to permit rollback from the failure of any node in the
graph. Using RAIDframe, I show that the penalty for creating records for undoing dis
writes, which requires a pre-read of the disk sectors to be overwritten, results in a 33
reduction in the small-write throughput of the eight architectures that we studied. Th
degradation motivates the development of aroll-away error recovery, an adaptation of the
two-phase commit protocol found in many transaction monitors. Roll-away error reco
eliminates the need to perform expensive undo logging for actions such as a disk wr
while maintaining the simplicity of a mechanized execution. Each array operation is
divided into two phases, separated by a barrier which requires completion of the firs
phase before execution of the second phase may commence. Undo logs are mainta
actions in the first phase of the operation—if an error is detected during the executio
the first phase, these logs are used to automatically roll the operation back to its begi
failing it atomically. The operations are structured so that once execution of the seco
phase commences, the failure of any single action will not prohibit the remaining act
in the operation from being completed. This property guarantees that the an error de
during the execution of the second phase of the operation will not alter the operation
algorithm, enabling execution to simply roll forward to completion. Roll-away error
recovery was implemented in RAIDframe and Chapter 5 demonstrates that its perfo
mance is identical to those systems which do not employ logging.

I conclude the dissertation with Chapter 6, which reviews the specific contribut
and practicality of this work and presents a list of opportunities for future study. Nota
this list includes a proposal for extending roll-away error recovery, through the use o
4
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durable undo and redo logs, to ensure the atomic survival of power failure and softw
crashes.
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Chapter 2: Fault-Tolerant Disk Storage

Disk storage systems offered forty years ago, such as IBM’s Disk Drive RAMA
350, were designed to tolerate only a minimal set of faults, relying instead upon exte
mechanisms to tolerate failures in the disk system. Over time, disk storage products
simplified the process of integrating them into systems by tolerating a wide variety o
faults without the need for external intervention. Today, customers are able to choos
between a variety of disk storage products, from commodity disk drives such as Sea
Barracuda family which sell for less than 20¢ per MB, to single-fault tolerant disk arr
such as Compaq’s server-based arrays at 25¢ per MB, subsystems such as Symbio
Logic’s MetaStor arrays which sell for 50¢ per MB, and EMC’s Symmetrix arrays wh
employ large (1 GB) caches and sell for almost $2 per MB, to multiple-failure tolerat
disk arrays such as Storage Technology’s Iceberg which sells for $4 per MB. In fact,
1995, 158 vendors collectively supplied 594 disk array products, ranging from softw
and board products for desktop systems to free-standing rack-mounted enclosures 
mainframe systems [Disk96a].

It is my goal that, in addition to serving as compendium of background materia
this dissertation, the material in this chapter will convince the reader that there is a g
deal of commonality in redundant disk arrays which would suggest that there should
great deal of commonality in redundant disk array implementations. Later, in Chapte
demonstrate that exploiting this commonality is a problem and suggest a solution.

This chapter begins with a review of the terminology and metrics used through
the dissertation. Section 2.3 describes well-known procedures for implementing dep
able systems, which can be applied to arbitrary systems, including disk arrays. Disk a
are then introduced by first describing disk drives, the fundamental building block of
arrays, in Section 2.4. Redundant disk arrays, which are capable of tolerating a varie
failures, are then described in Section 2.5. This section includes a review of a variet
architectures which provide cost, performance, and dependability optimizations, the
fault models, and the algorithms they employ for accessing data.
7
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2.1 Terminology

Real systems are not perfect. Regardless of the care taken during design, con
tion, operation, and maintenance, defects will be introduced that result in exceptiona
behavior. In many applications, such as spacecraft navigation systems, the dependa
of computing equipment is critical—even the most minute error can commit a crew t
travel where no man has gone before! Computing equipment used in these and othe
cations must therefore be designed to cope with defects.

Fault-tolerant computing, the science of creating dependable systems from im
fect components, is well studied and the brief introduction provided here is by no me
complete. Many excellent texts, such asReliable Computer Systems: Design and Evalu
tion by Siewiorek and Swarz [Siewiorek92],Transaction Processing: Concepts and Tec
niques by Gray and Reuter [Gray93], andFault Tolerance: Principles and Practice by Lee
and Anderson [Lee90c], offer a much broader and deeper introduction to this field th
presented here. The purpose of this section is to introduce the terminology necessa
understand the design goals and failure mechanisms of redundant disk arrays.

2.1.1 Faults, Errors, and Failure

All computing devices, whether constructed from hardware, software, or some 
bination, have a specified operating behavior. That is, all devices are expected to beh
a predictable manner. When the behavior of a device is inconsistent with expectatio
error is said to exist. Erroneous behavior is a direct consequence of the presence of fault,
a defect in the device. The time between the introduction of a fault and detection of 
error it manifests is referred to aserror latency.

Faults can be eitherman-madeor physical. Man-made faults may be introduced
throughout the life of a device and are further subdivided into categories such as:design,
manufacturing, installation, andmaintenance faults. Physical faults are generally the
result of environmental factors such as temperature, vibration, or chemical processe
as corrosion.

Faults are also categorized as a function of their duration.Permanent faults, also
known ashard faults, are a result of defects which are always present and may only b
removed by an explicit repair operation.Transient faults, also known assoft faults, are
temporal and appear to repair themselves over time and disappear. Transient faults
often a result of an environmental anomaly. A recurring transient fault is referred to a
intermittent fault. Intermittent faults are the result of a combination of a permanent de
and an infrequent input pattern or environmental condition.
8
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To better understand the relationship between faults, errors, and failure, consid
accounting system used by a bank to maintain savings accounts. The system may h
design fault (man-made fault) in the algorithm that computes interest, creating a late
error. At the end of the month, when interest is to be paid, the error becomes effectiv
the time when interest is computed incorrectly. The error is detected when the bank
tomers all pay off their loans early. Because the design fault is always present, it is c
fied as a permanent (man-made) fault.

2.1.2 Fault Models and Semantics

Formulating an expectation of the behavior of a system is the first step in chara
izing the dependability of a system. This “expectation” is documented in what is know
a fault model which specifies: the types of faults which are thought likely to occur, the
damage that they cause, their effects upon the behavior of the system, and the frequ
their occurrence.

Each module in a system can often fail in many ways. However, the effects of 
errors manifested by these faults may often be similar, or even identical. Instead of c
with each of these faults in a distinct manner, fault models often group sets of faults w
produce similar or identical errors into what I call afault domain. For example, there are
many distinct faults that can lead to the loss of power within a disk system (e.g., loss
line power, power supply failure, operator error). Because the effect of each of these
is to deprive the system of power, these faults can be treated in a like fashion.

The relative timing of faults in systems is an important part of the fault model. F
example, a redundant disk array may be able to survive either a loss of line power o
loss of a battery without failure; however, if the two faults should be present simulta-
neously, failure (loss of data) will result. Such a model is commonly referred to assingle
fault tolerant, meaning that the system will survive only the failure of a single fault
domain at any instant. Of course, it is possible to createN-fault tolerant systems which
tolerate the simultaneous occurrence of at most (N) faults.

Finally, the fault model must describe the effect of faults upon the behavior of t
system. Users of a system request work, and these requests are performed as a seq
one or moreoperations. The operations are executed with an expected behavior, orseman-
tic, and the fault model specifies the effects, if any, of predictable faults upon this be
ior.
9
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2.2 Metrics

Ultimately, two metrics are used to measure the dependability of computing eq
ment:reliability andavailability [Laprie82]. Reliability is the probability that a device wil
operate without failing for a period of time,t, and is computed as:

(EQ 2-1)

whereh(x) is thefailure-rate or hazard function of the system which specifies the instant
neous failure rate of the device. If a system is known to have a constant failure rate,
failure-rate function becomes constant and is often specified as reciprocal of themean-
time-to-failure (MTTF), the expected time interval between some instant in time and t
failure of the system.

When a system fails, an explicit repair operation is required to restore service.
expected time required to complete a repair operation,mean-time-to-repair (MTTR) is
measured from error detection to completion of the repair. Availability is a prediction
the fraction of time that a device will be able to provide service. Assuming constant fa
and repair rates, expected availability is defined as:

(EQ 2-2)

The denominator of this equation,MTTF + MTTR, represents the total time between fai
ures and is sometimes represented as themean-time-between-failure (MTBF).

Finally, the performance of disk systems, is generally characterized by the met
response time throughput, andcapacity. Response time is total time required to service 
request, measured as the elapsed time from the arrival of a request, read or write, to
pletion. Throughput measures the rate at which operations are completed and is typ
reported as IO/s. Throughput is sometimes used to indicatebandwidth, the rate at which
data is moved in MB/s. In this dissertation, I will use the IO/s metric when discussing
throughput. Capacity is simply the amount of storage, typically measured in gigabyte
the disk system that is available for user data.
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2.3 Improving System Dependability

Creating systems which are less likely to fail (i.e., have a higher MTTF) can be
accomplished by either reducing the likelihood that faults will be introduced or by cre
ing procedures for hiding their effects [Randell78]. The first approach, referred to asfault
intolerance by Avizienis [Avizienis76] and commonly known asfault avoidance, is pow-
erful but ultimately limited in its ability to improve dependability because faults can no
entirely eliminated. Typical approaches to fault avoidance employ quality assurance
tices such as: using fewer, more reliable components; using only established and w
understood design, manufacturing, and maintenance practices; thorough validation;
restricting environmental conditions. STRIFE (Stress Life) testing is a common fault-
detection procedure used by manufacturers. This testing generally exposes a produ
environmental and operational extremes until a failure is detected. The root cause o
failure is analyzed, the fault is eliminated (when possible) and testing resumes. By p
ing the product to failure, even though the failures may occur outside normal operati
parameters, the weak points in the design and implementation are discovered and e
nated.

If the failure rate or time required to repair a failed system is too high, availabili
and reliability will drop below acceptable levels. When this occurs, fault avoidance te
niques must be supplemented with procedures for hiding the effects of faults. Thesefault-
tolerant systems are able to survive faults without manifesting their effects to the outsi
world. This process is typically accomplished through the use of redundancy
[von Neumann56].

2.3.1 Detection, Diagnosis, and Isolation

The first steps taken in achieving fault tolerance are:detection, diagnosis, andisola-
tion. Fault detection discovers the presence of a fault by detecting the errors it creat
good example of this is parity encoding, a popular method used by information syste
detect single faults in binary codewords [Hamming50]. Illustrated in Figure 2-1, parity
single-fault-detection code because detection of all single bit errors is guaranteed.

Because fault detection schemes such as parity do not necessarily determine 
location of the fault, methods for diagnosing the location of faults are necessary. Ma
proven techniques exist for diagnosing permanent faults. Faults in information are g
ally located by using error-correcting codes such as Hamming codes which, unlike p
are able to detect, locate, and repair corrupted data [Hamming50, Arazi88]. Howeve
explained in Figure 2-1, if the location of errors in data are known, the data becomes
erasure channeland n-bit error detecting codes can be used to correct n-bit errors.
11
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Duplicating components is a common method of diagnosing hardware faults. F
example, Triple-Module Redundancy (TMR) requires that three modules (possibly id
cal) compare results [Kuehn69]. A voting module is used to compare the responses
three modules. If a discrepancy is found, the faulty module is assumed to be the min
voter. Similarly, software systems employN-version programming to detect faults associ-
ated with software design and construction [Chen78, Elmendorf72]. In these system
outputs of a number of independently developed program modules (N) are compared for
inconsistencies. Again, a voting module is used to detect errors and locate failed mo

An alternative to diagnosing faults by voting is to use a single component and m
tor its output. This is the basis for a software technique calledrecovery blocks which
detect software faults through the use of an explicit acceptance test [Anderson85,
Horning74]. First proposed by Horning, Lauer, Melliar-Smith, and Randell, recovery
blocks do not concurrently execute multiple software modules but instead monitor th
put of a single primary module. If the acceptance test detects an error, a secondary m
is called upon to replace the primary module and the previously-failed procedure is
retried.

It is possible that malicious sources can introduce faults which are intended to 
detection. These faults are classified by Lamport, Shostak, and Pease asbyzantine
because, like a Byzantine general looking for spies among his commanders, a syste
fault diagnosis system has difficulty discerning their presence [Lamport82].

Figure 2-1 Parity codes detect single errors

Parity codes detect single errors by introducing an extra “parity” bit that forces
the binary sum of all bits, information plus parity, to be either even or odd. In this
example, the codeword uses even parity, meaning the binary sum of all bits is
expected to be zero. Over time, a fault occurs which causes the left-most bit to b
transformed from a zero to a one. The error is detected by noting that the sum of
the bits is no longer even. Note that the location of the error (the left-most bit in
this example) can not be determined from the non-zero summation alone. Howev
if the location of the failed bit was also known, then that bit could be toggled to
correct the error. In general, given the location of a set of detectable errors, an
error detection scheme can be used to correct errors [Hamming50].

parityinformation

0 0 1 1 0 1 0 0 1

parityinformation

1 0 1 1 0 1 0 0 1

Σbits = 0 Σbits ≠ 0 (error!)

fault
12
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Once a fault has been detected and located, its effects can be contained by iso
the faulty module from the system. To minimize the damage caused by a fault, fault 
els commonly assume that modules are able to detect, diagnose, and isolate faults 
expedient manner. This behavior, referred to asfailfast or failstop, requires modules to
stop themselves as soon as an error is detected, thereby preventing the spread of th
For example, instead of a disk drive returning erroneous data which would be passed
applications for processing, it returns a message indicating that the presence of an e
prevents the request from being completed. The time required for detection is assum
be small, hence the term “failfast” [Gray93].

Failfast modules are self-checking, meaning that diagnosing faults in systems 
posed of failfast modules is relatively straightforward. This is the basic premise of re
dant disk arrays which rely upon error-correcting codes and other mechanisms inter
a disk drive to report any faults which may be present within the disk [Patterson88]. 
thermore, failfast modules simplify the task of isolating faults within a system, reduc
the likelihood of their effects spreading to otherwise error-free components.

2.3.2 Recovery, Reconfiguration, and Repair

Once the presence of a fault has been detected and its location is known, the 
cesses oferror recovery, reconfiguration, andrepair may commence. Error recovery
removes the manifestations of the fault, restoring the system to a consistent state w
free from error. With the fault contained and the system in a consistent state, compo
may be reconfigured to restore service; however, until the failed component has bee
repaired, service may be degraded. Additionally, the dependability of the system ma
decline because the fault may have removed a component from service. To restore 
fault tolerance of the system, the failed module must be repaired.

Time-based redundancy allows transient faults, which appear to repair themse
to be survived by simply retrying the operation which failed [Gray93]. Intermittent fau
however, are more difficult to overcome—retry may work, but in some instances the 
rence rate of the fault may be too high, driving the dependability of the system down
unacceptable level. Therefore, a system’s ability to tolerate intermittent faults is often
function of the robustness of the system’s fault-diagnosis mechanisms—if the fault ca
be diagnosed, the system is doomed to fail repeatedly.

The failed module, once removed from service, must be repaired. Because ava
ity is a function of the time to repair a fault (EQ 2-2), many systems provide on-line re
services which are capable of repairing a failed module without taking the system off
For example, redundant disk arrays often include spare drives for use in replacing fa
drives [Gibson93, Symbios95a]. When a drive fails, the array is reconfigured to use 
spare and the data stored on the failed drive is reconstructed onto the spare. The ar
available to service requests throughout the entire repair1 process although, as Holland
demonstrates, the array may offer lower performance during this interval [Holland94
13
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a later time, the failed drive is physically removed from the array and another spare 
is inserted in its place.

2.3.3 A Closer Look at Error Recovery

Methods for removing errors from a system fall into two general classes:forward
error recovery andbackward error recovery. Forward error recovery methods remove th
effects of an error by moving the system to a new, corrected state whereas backwar
recovery returns the system to a previous state [Lee90c, Laprie82].

Perhaps the most popular method of forward correction is simply retrying an o
tion. This method can be used to correct errors due to the failure ofidempotent operations
which are the result of a transient fault. Idempotent operations have the property tha
changes are not a function of the number of times the operation is executed; that is,
repeated execution of an idempotent operation causes no additional state changes 
those associated with its original execution.

Retry is unable to remove hard errors because they will only be repeated, and
ing operations that are not idempotent introduces undesired state changes. When re
not applicable, forward error recovery schemes apply a distinct corrective measure g
the current situation. For example, if the trajectory of a spacecraft is discovered to b
error, the appropriate action would be to fire the rockets in a manner that would guar
that the rocket will safely reach its destination. To determine the corrective rocket fir
the current trajectory, position, intended destination, and other parameters must be k

Systems that employ forward error recovery may construct a dedicated recove
scheme for each possible error scenario (error type and context) and therefore requ
intimate understanding of the system. As the complexity of the system increases, the
ber of recovery schemes which the programmer must create grows with the number
error scenarios. Additionally, the ability to predict all possible error scenarios diminis
The implications of this are two-fold: design faults are likely to be introduced and pro
validation becomes increasingly difficult. Errors overlooked during design are easily 
looked during validation. Also, the number of combinations that must be verified ma
large—this problem is compounded in systems which concurrently execute large num
of independent operations.

Instead of trying to move forward to a new system state, backward error recov
schemes return the system to a previous state, referred to as arecovery point, that is
assumed to be free from error [Randell78, Stone89]. This is generally accomplished
periodically storingrecovery data, information that describes the state of the system, d

1. Holland divides what I call the “repair” process into two distinct phases: “repair” and “reconstruction.” Holland
ied the time to recompute lost information after a drive was replaced and uses the term “repair” to measure the
replace the failed drive and “reconstruction” as the time to initialize it’s contents.
14
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ing normal processing. When an error is detected, the system is returned to the reco
point by reinstating the recovery data. The effects of the error, as well as all work co
pleted since the recovery point, are undone. With the system restored to an error-free
the operation that failed can be retried, either by using the same procedure or, given
presence of a fault in the system, by using a new procedure which does not rely upo
failed module.

Backward error recovery requires that the actions which compose an operation
be undoable. Unlike forward error recovery, backward error recovery techniques do 
rely upon an intimate understanding of all possible error types and the context in wh
they occur; instead, backward error recovery blindly returns the system to a state pr
the detection of an error, irrespective of error type or context.

Because errors can be treated in a general manner, backward error recovery i
nable to mechanization. Two backward error recovery mechanisms found in use tod
checkpointing andaudit trails. Checkpointing systems establish a recovery point, know
as acheckpoint, by saving a subset of the system state, known ascheckpoint data
[Chandy72, Siewiorek92]. When an error is detected, the system returns to the check
in a process calledrollback, by restoring the checkpoint data. By returning to the check
point, all work completed in the system since the checkpoint was first established is
and must later be redone.

An important optimization in backward error recovery systems is reducing theunit
of recovery, or the scope of the rollback operation. The unit of recovery determines th
amount of work that will be undone as a result of rollback. The unit of recovery can b
reduced from a global rollback (restoring the entire system to a previous state) to a 
operation rollback (restoring the state changes made by the operation which failed t
vious values) bylogging the individual state changes of each operation. Logging, also
known in the literature asjournalling or audit trails, is widely used in database systems
[Bjork75, Verhofstad78, Gray81].

2.3.4 Transactions

A special class of operations,transactions, are executed in a manner which guara
tees the semantic properties of:atomicity, consistency, isolation, anddurability. Collec-
tively referred to as “ACID” by Haërder and Reuter, these are the defining properties
transactions [Haërder83, Gray93].

Atomicity requires that each transaction either completes successfully or leave
system unchanged. Atomic transactions eliminate the need for programmers to inte
and correct incomplete state changes and therefore greatly simplify the process of c
with errors [Lomet77, Lynch94]. Consistency implies that each transaction in the sys
is only allowed to introduce valid state changes to the system. For example, a transa
would not be permitted to withdraw $100 from an account with a balance of $50.
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Transactions are frequently used in systems that are characterized by high con
rency and it is important to ensure that independent transactions do not interfere wit
another. Isolation ensures that transactions executing concurrently have no knowled
one another. Because concurrently executing transactions that run in isolation appea
external observer to execute in a serial fashion, the semantic property of isolation is
times referred to asserializability. The property of isolation is important in applications
such as redundant disk arrays in which many transactions concurrently modify shar
information. Durability ensures that when a transaction commits (completes success
the changes that it made to system state will survive subsequent faults such as loss
power and system crash.

Transactions, are an important programming paradigm that have been widely
embraced by developers of complex fault-tolerant systems, such as those used in da
applications [Bernstein87, Gray93, Lynch94]. In addition to guaranteeing ACID sem
tics, systems based upon transactions provide recovery on a per-transaction basis. 
ery is typically accomplished by recording information in a durable log that is used b
recovery managerto either remove the effects of transactions which failed prior to com
mit, or to complete the state transformations of transactions which have committed b
were interrupted prior to completion.

A transaction is said tocommit when it can guarantee success. If a transaction
encounters an error prior to commit, it must undo all visible state changes. Therefor
undo rule requires the recording of enough information to undo all visible state chang
made by the transaction prior to its commit point. These changes are recorded in anundo
log, which is generally required to be durable to ensure survival of system crashes. I
action can not be undone1, the transaction must be designed so that it does not execu
prior to commit. Similarly, if a transaction commits prior to completing all state chang
visible outside the local scope of the transaction, theredo rule requires that these state
changes be recorded in a durableredo log prior to commit.

An important commit protocol is thetwo-phase commit, which is used to coordinate
the atomic commit of a transaction across multiple participants [Bernstein87]. A cen
coordinator asks each participant if they are able to commit. If one or more participa
vote “no,” the transaction aborts and each participant is asked to roll back by undoing
effects. If, however, all participants vote “yes,” the transaction commits and each par
pant rolls forward to completion.

Gray et al describe an instance of the undo/redo approach used in the recover
ager of the System R database manager [Gray81]. Called the DO-UNDO-REDO pro
this approach provides a transactional programming abstraction through the use of 
distinct programs: DO, UNDO, REDO, and COMMIT. Illustrated in Figure 2-2, the D
program performs anaction which composes a transaction. Executing the DO program
results in execution of the specified action, thereby changing the state of the system

1. An action that can not be undone is called areal action by Gray and Reuter [Gray93].
16
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information to later undo or redo the effects of the action.

If the transaction fails, any previously-completed actions composing the transa
must be undone. This is accomplished with the UNDO program which reads the und
in LIFO order, applying the log records and removing the state changes of the failed
action. If a system crash occurs, the system may be restarted by first restoring the m
recent checkpoint and then using the REDO program to redo transactions which com
ted after the checkpoint was taken.

Figure 2-2 The DO-UNDO-REDO protocol

Taken from [Gray81], the transformations of theDO, UNDO, andREDO pro-
grams are illustrated above. TheDO program applies an action that moves the
system to a new state and creates a log entry. TheUNDO program uses the log
entry to undo the effect of theDO action. In the event of a crash, theREDO pro-
gram is used to restore work previously-completed since the last system check-
point.
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2.3.5 Discussion

This section has quickly reviewed the basics of well-known mechanisms for tol
ing failures. Dependable systems can reduce the likelihood of fault occurrence throu
use of established design practices. However, the occurrence of faults can not be av
entirely and therefore systems with higher dependability demands must be designed
erate faults.

Faults manifest themselves as errors which must be dealt with. I described two
damental approaches to error recovery, forward and backward. Forward error recov
approaches are generally ad hoc because they rely upon a case-by-case treatment o
Furthermore, this case-by-case treatment prevents forward error recovery from bein
mechanized. Forward error recovery is necessary when dealing with actions which a
undoable.

Backward error recovery approaches, particularly transactions, offer general m
nisms which better manage complexity. By guaranteeing ACID operation, programm
are freed from the burden of interpreting and correcting the state changes made by 
tially-completed operations. The price of this simplification is the overhead associate
with storing information which enables the system to undo the effects of transaction
which fail. This information is stored during normal processing and will therefore intr
duce some performance degradation as well as resource consumption.

2.4 Disk Drives

Magnetic disk drives are the dominant form of secondary storage used in com
systems. Also known as “hard” or “rigid” disk drives, they can be found in application
from hand-held devices to mainframes. In 1995 alone, an estimated 89.6 million driv
were shipped worldwide [Disk96b]. With an annual growth rate predicted to be 17.5%
shipments in 1998 are expected to exceed 149 million drives.

Disks are packaged and sold both individually and as collections. The technolo
failure mechanisms, and fault model of commodity disk drives are the focus of this s
tion. A discussion of fault-tolerant disk arrays is deferred to Section 2.5.
18
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2.4.1 Disk Technology

General information on disk technology can be found in the textsDigital Storage
Technology Handbook by Digital Equipment [Digital89] andAn Introduction to Direct
Access Storage Devices Sierra [Sierra90]. Recent papers by Wood and Hodges [Wood
and Grochowski and Hoyt [Grochowski96a] explain the driving forces behind current
trends. A recent paper by Ruemmler and Wilkes provides an excellent discussion of
performance modeling [Ruemmler94].

Disk drives use magnetic recording techniques to provide nonvolatile storage. 
is stored on rotatingplatters, usually constructed from aluminum and coated with an ir
oxide compound. Current commodity drives are available with 1.8”, 2.5”, 3.5”, or 5.2
diameter platters. The coating is referred to as themedia. The platters, illustrated in
Figure 2-3, rotate on a spindle at a fixed rate of revolution, typically 5,400 or 7,200 rp
set of magnetic read/write heads is positioned using a voice-coil mechanism called 
actuator. There is one head per media surface and all heads move in unison. The ro

spindle

Figure 2-3 Accessing a sector

A disk drive consists of a set of platters, each possessing a dedicated read/write
head. The platters are rotated by a common spindle and the heads are mounted 
a rotary voice-coil mechanism called an “actuator.” Data is recorded on each plat-
ter in concentric rings which are subdivided into sectors.

A sector is accessed by first selecting the head which is assigned to the platter c
taining the sector. The actuator then positions the head over the correct track in a
process referred to as “seeking.” Once the desired track has been reached, the
head waits for the rotation of the platter to place the desired sector directly under
neath the head.

head

actuator

platter track

sector

}
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of the platters creates an air bearing which, given current technology, separates the
from the media by a distance of less than 2 micro-inches [Grochowski96b].

Data is recorded on the media in concentric circles calledtracks that are further sub-
divided intosectors. A sector is the minimum unit of access offered by the disk. Theareal
density of information which the head/media tribology can support is approaching
1 gigabit per square inch and is increasing at 60% per year. As Figure 2-4 illustrates
sector contains positioning information as well as check data for error detection and
rection during readback. An explicit format operation is used when the drive is install
frame the sectors on the disk.

Sectors are accessed by first enabling the head for the platter surface which co
the sector. This enabling, called ahead switch, typically requires 1 ms. With the proper
head enabled, the actuatorseeks to the track which contains the sector. Seek times vary

Figure 2-4 Typical sector formatting

A “sector” includes the minimal amount of data a drive can transfer as well as the
information used by the drive to locate the data and detect and correct any errors
during readback. The sector format begins with an embedded servo field which i
used for centering the head on the track. A “gap” field is an unrecorded area and
used to isolate the “servo” and “sync” fields. The “sync” field contains a pattern
which synchronizes the drive’s electronics to the information contained in the sub
sequent fields. Each sector is uniquely identified by information stored in the “ID”
field. User data, typically 512 bytes, is stored in the “data” field followed by error
detection and correction codes. The sector is terminated with an inter-sector
“gap” which is used to isolate sectors.

servo gap sync ID data ECC gap
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a function of the diameter of the platter and workload. Today, the average seek time
specified by most manufacturers for a 3.5” disk is just below 10 ms [Disk96b].

With the head positioned over the proper track, then head reads the track as th
ter spins, waiting for the desired sector to move into position under the head. This ti
generally known asrotational latency, is on average one-half of the time required for pl
ter to complete a full rotation. The average rotational latency for a 7,200 rpm disk is 
ms. At this point, the desired operation, the read or write of the sector, occurs.

2.4.2 Fault Model

Because error correcting codes (ECC) used in disk drives are very successful 
detecting errors and because verifying a write cannot be performed without a full rot
of the platter (8.4 ms for a 7,200 rpm drive), writes are not verified and subsequent r
discover bad writes. The primary goal of the check codes contained in the ECC field
detection of all errors in the data—error correction is a desired but secondary priorit
Great care is taken in the design of the check codes to ensure detection of all likely 
types. For example, Quantum’s Atlas family of drives uses a 198-bit Reed-Solomon 
which can detect a single burst error up to 73 bits in length and can correct up to 10
in a sector [Quantum95].

In addition to ECC codes, disk drives use retry and other techniques to recover
read errors. For instance, some IBM drives which encounter a media error in a read
tion invoke a 50-step recovery process to isolate the failure mechanism and recover
data without loss [IBM95]. Ultimately, disks, such as those in Seagate’s Barracuda fa

specify a recovered error rate of less than 10 errors in every 1011 bits transferred
[Seagate95].

When ECC and other recovery measures fail, the disk will mark the sector as “
and fail the read operation. For Barracuda drives, this happens for less than 1 secto

every 1014 bits transferred. Contemporary disk drives maintain a pool of spare sectors
the disk has the capability of automatically performing reconfiguration, replacing the
failed sector with a spare from the pool. This leaves the process of repair, (reconstru
the lost information) to an external client.

Most important of all, the likelihood that a disk drive will return incorrect data is
negligible. For example, Barracuda drives specify a failure rate in error detection of 

than 1 sector in every 1021 bits transferred. Ruemmler and Wilkes recently traced a nu
ber of disks which supported UNIX file systems [Ruemmler93]. The highest read rate
observed for a single disk was just under 5.2 million sectors read in a two month pe
Using a Barracuda disk drive and assuming 512 byte sectors, the Barracuda’s error
tion function would have an expected MTTF of over 7.8 billion years! Methods for tole
ing the failure of a drive to return correct data exist in the form of end-to-end detectio
21



disks

ty or
 oper-

 be

at
 gen-
89,

o-
libra-
ic

 the
ics

ey
a
uffi-
tion,

time
 a

y,
r disk

ip-
f disk
mechanisms. Throughout the remainder of the dissertation, I restrict my analysis to 
which report all errors.

2.4.2.1 Fault Model Used in This Work

I treat single-sector operations as atomic: the sector is either written in its entire
not altered; subsequent reads either complete successfully or fail. Furthermore, disk
ations, regardless of size, are idempotent, meaning that a failed write operation can
retried without ill effects.

Multi-sector disk operations are not atomic. A disk drive does not guarantee th
once begun, a multi-sector operation will complete. Furthermore, individual disks are
erally permitted to reorder a multi-sector request to reduce rotational latency [Digital
ANSI91]. Therefore, any subset of a multi-sector write operation may fail.

Faults in head positioning and recording mechanisms are avoided through aut
mated internal calibrations which occur as frequently as every 10 minutes. These ca
tions compensate for changes in temperature which modify mechanical and electron
operating parameters. Other periodic maintenance include validating the integrity of
drive’s software by recomputing a ROM checksum and sanity checks of the electron
[Seagate95].

Over time, disk drives will eventually fail in a catastrophic manner from which th
can not recover. In his dissertation, Gibson studied exponential, Weibull, and Gamm
models of disk failure distributions and concluded that exponential distributions are s
cient when modeling mature products [Gibson92]. Assuming an exponential distribu
the failure rate becomes constant and reliability is calculated as:

(EQ 2-3)

where MTTF is specified by disk vendors as an estimate of the expected amount of 
that the device will operate from the time it leaves the factory, assuming operation in
controlled environment [Stone90].

It is worth noting that this model, specifying MTTF to indicate a drive’s reliabilit
has come under criticism due to recent quality problems associated with the younge
drive products of several major disk drive vendors. The International Disk Drive Equ
ment and Materials Association (IDEMA) has created a subcommittee, composed o
vendors and customers, to investigate better methods of specifying disk reliability
[IDEMA96].
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Disk drives generally have a warranty or expected operating lifetime of two to fi
years. To achieve this, disk drives such as the Seagate Barracuda drives have an M
800,000 hours (91 years). If these drives are to be used for a lifetime of 2.5 years, th
expected reliability is 97.3%.

(EQ 2-4)

Clearly, Seagate does not have 91 years of data on this product, so how can their M
rating assumed to be credible? The answer is twofold: first, disk vendors base MTTF
dictions on an analysis of the reliability of common disk drive components used in p
ous products. Second, testing is accelerated by subjecting the disk drive to extreme
operational conditions (power, temperature, and activity) which identify the weak po
of the design, enabling vendors to understand the mechanisms which are likely to c
the majority of drive failures.

A catastrophic disk failure implies that the entire contents of a disk drive are pe
nently lost. Catastrophic disk failures are often the result of a head crash or the failu
disk electronics. Recovering from a catastrophic disk failure requires replacing the d
and reconstructing its contents. The catastrophic failure of one disk does not affect t
remaining disks in the system; however, this does not necessarily imply that the fault
lead to catastrophic disk failures are independent. For instance,stiction, the attractive
force between a head which is parked (resting on a non-rotating platter), can be so 
that the drive’s spindle motor is unable to rotate the platters (the drive fails to “spin u
This is a manufacturing defect and can therefore affect many drives from the same p
tion run. If power is lost to a collection of disks with this fault, it is possible that sever
disks may fail due to the same fault when power is restored.

2.4.3 Discussion

Disk drives are commodity devices that provide nonvolatile storage. Lampson 
Sturgis defined what has come to be the classic model of disk failures: write operati
rarely fail and sectors which were written successfully may decay over time [Lampso
Operations which read a sector are expected to tolerate transient failures, but will fa
when a permanent fault is detected. In addition to these sector-level failures, the driv
experience a catastrophic failure (e.g. head crash or the failure of the internal contro
which makes all sectors inaccessible.

The data that I presented in this section supports this model. I treat disk opera
as consistent, serializable, and durable. Single-sector operations are treated as atom
multi-sector operations are not. Finally, disk errors are self-identifying, meaning that 

R 21 915 hours,( ) e
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can be treated as erasure channels. This important property will be used in the follo
section to simplify the redundancy necessary to tolerate disk failures.

Other fault models do exist. One example is the Mime disk architecture which m
tains shadow copies of data to permit a checkpoint-based recovery [Chao92]. When
error is detected during a multi-sector write, Mime uses the checkpoint data to resto
surviving disk sectors to their original state, failing the operation atomically. At the tim
this writing, Mime has not moved beyond simulation studies, and contemporary disk
tems continue to offer non-atomic failure semantics for multi-sector operations.

In addition to disk drives, storage systems are composed of modules such as p
supplies, fans, and cables. I defer a discussion of the failure of these components to
Section 2.5.3 which follows the introduction of disk array controllers. This analysis is
drawn largely from prior work [Chen94, Gibson92, Schulze89].

2.5 Disk Arrays

Disk performance improvements have not matched those in processors, creati
what Pugh refers to as an “access gap” [Pugh71]. This widening disparity in perform
is a consequence of the mechanical constraints faced only by disk drives. Disk head
tioning mechanisms may reach accelerations as high as 50 g and the resulting force
ing on the head can only be decreased by reducing the mass of the disk arm. Simila
rotational speedups are held in check by problems with heat and platter rigidity.

In 1990, 5.25” disk drives were the dominant form factor. These drives exhibite
average seek times of 12 ms and rotational latencies of 5.6 ms (5,400 rpm) [Disk90
Today, the average seek time for high-performance 3.5” drives has dipped below 10
and the fastest drives offer seek times below 7 ms. By increasing the rotational rate 
platters to 7,200 rpm, rotational latency has dropped to 4.2 ms [Disk96b]. Together, 
implies an improvement in disk head positioning of 36% in the last five years.

By comparison, in this same period microprocessors have increased in perform
from a SPECint rating of 25 to 325, an increase of 1,200% [Patterson96]! Microproce
have directly benefited from continued advances in VLSI technology which not only
increase clock rates, but also increase the number of transistor a device can suppor
in conjunction with improved design tools, has enabled the implementation of archite
tural advances which permit the concurrent processing of multiple instructions.
24
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2.5.1 Striping for Performance

Instead of relying upon disk drive technology improvements, disk storage syste
architects have employed concurrency to achieve higher throughput and decreased
response time. By organizing commodity disks intoarrays, architects are able to increas
the overall performance of the disk system by placing data across the drives in a ma
that either enables independent accesses to perform positioning operations concurr
or enables large accesses to transfer data from several drives concurrently [Kim86,
Salem86]. By striping data such that a unit of access spans all drives, the array offe
effective bandwidth equal to the transfer rate of a single disk multiplied by the numb
disks in the array. Because all disks transfer data in parallel, this disk array architect
known as aparallel-access array [RAB95] and is illustrated in Figure 2-5.

Parallel-access arrays are a common method of increasing disk performance i
applications which are dominated by large transfer sizes. A good example of a high-
width system is the Los Alamos High-Performance Data System (HPDS) which is
designed to provide high-speed transfer rates to network-attached storage. The sys
moves approximately 120 gigabytes of data per day and supports data traffic rates u
MB/s [Collins93].

Figure 2-5 Data layouts which enable concurrency in disk storage

In this illustration,Dn represents a unit of user data. In the parallel-access array,
each data unit is distributed across all drives, effectively reducing the time spent
transferring data to/from the media by a factor equal to the number of drives. Sim
ilarly, the independent-access array is designed to reduce head positioning time b
allowing each drive in the array to concurrently service an independent request.
This is possible because, unlike the parallel-access array, each data unit is con-
tained entirely on a single drive [RAB95].

independent-access arrayparallel-access array
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Conversely, many applications are characterized by large numbers of small acc
Database applications, such as those used in banking applications, are an excellent
ple. Updating a customer’s account involves reading a small record, modifying it, and
writing the result back to disk. Contemporary database systems offer transaction rat
which demand up to 10,000 disk operations per second [Gray93]. With an average a
time of 11 ms, the throughput of today’s disks is less than 100 I/Os per second. How
by distributing the records of the database uniformly across an array of disks, the wo
load can be evenly distributed, allowing all actuators in the array to be positioned ind
dently. Such an array is called aindependent-access array or astripe set [RAB95].

2.5.2 Redundant Disk Arrays

Increasing the number of disks and controllers in an array increases the effect
capacity and performance of the array. Unfortunately, this has the simultaneous effe
reducing dependability [Gibson93]. Disk arrays that are designed to tolerate disk fau
without loss of data or interruption of service are increasingly common. This subsec
introduces the most common redundant disk array architectures in production today
Berkeley RAID taxonomy, and presents a number of array architectures which are po
in today’s research literature but have yet to be offered as products.

2.5.2.1 Encoding

Disk failures can be tolerated by creating acodeword, an encoding of user data and
check data, and distributing the codeword across an array of disks such that each d
the array contains at most one symbol (one bit) of the codeword. When a disk fails, 
result is equivalent to the loss of (at most) one symbol in the codeword. Because dis
considered to be erasure channels, simple encodings such as single-copy or parity 
used to reconstruct the symbol which was lost.

The two types of data encoding most common to redundant disk arrays are dup
copies and parity. Copy-based encoding is the most popular of all data encodings u
redundant disk arrays. Array architectures which employ copy-based encodings are
referred to asdisk shadowing or mirroring arrays [Bitton88, Gray90b]. Basic mirroring
systems maintain two copies of user data. By placing each of the two copies on an i
pendent disk, the failure of one disk can be tolerated by using the copy stored on th
viving disk.

Disk arrays that are based on mirroring are easily understood and can be impl
mented without specialized hardware. A significant disadvantage of mirrored arrays i
50% of their total storage capacity is lost to redundant information (the mirror copy).
overcome this problem, disk arrays are also constructed using codewords based up
26
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ity encodings [Gibson92, Lawlor81, Park86, Patterson88]. Parity is computed simply
the XOR of all data symbols in the codeword:

(EQ 2-5)

As illustrated in Figure 2-6, parity-protected arrays reduce the capacity overhead los
redundancy from 50% to:

(EQ 2-6)

In order to increase significantly reduce the 50% capacity overhead lost to a mirror c
parity-protected disk arrays generally need to stripe across four or five drives, result
an overhead of 25% to 20%.

2.5.2.2 Algorithms for Accessing Information

Reading information from a fault-free array that uses either a copy or parity-ba
encoding is accomplished by simply reading the data directly from disk. In the case 
mirroring, because two copies of the data are stored in the array, the read may be d

P0 n– D0 D1 D2 … Dn⊕ ⊕ ⊕ ⊕=

Figure 2-6 Codeword in a parity-protected disk array

As previously described in Figure 2-1 on page 12, parity can be used to correct a
single error if its location is known. In this illustration, seven disks contain user
data and one disk is devoted to parity. Thus, only 12.5% of the array’s capacity is
lost to redundancy, a significant improvement over mirroring systems which
always sacrifice 50%.

D0 D1 D2 D3 D4 D5 D6 P0-6

P0-6 D0 D1 D2 D3 D4 D5 D6⊕ ⊕ ⊕ ⊕ ⊕ ⊕=

Overheadparity
1

Ndisks
---------------=
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to one of two disks. Similarly, as Figure 2-7 illustrates, writing data to a mirrored arra
requires updating both copies.

Writing data to a parity-protected disk array is not as straightforward. In parity-
based arrays, the size of a codeword is constrained only by the number of disks in t
array and the symbols are not duplicate copies of one another. Because some acces
not overwrite all symbols in the codeword, a variety of algorithms are necessary to m
mize the performance degradation due to parity maintenance.

For instance, if an access spans an entire codeword in a parity-protected disk 
the large-write algorithm, illustrated in Figure 2-8, is used. Parity is computed directly
from the data to be written to the array and the entire codeword is overwritten. This 

Figure 2-7 Writing and reading data in a mirrored disk array

A copy of a user data block (D) is stored on each disk in the array. Writes update
both copies and reads may be directed to either copy. In the event that one of th
disks fails, read and write requests are simply directed to the surviving copy.

D0 D0

read

D0 D0

write

D0

XOR

D1 P0123

new data

Figure 2-8 The large-write algorithm

The large-write algorithm is used to overwrite an entire codeword in a fault-free
parity-protected disk array. New parity is computed from the new data to be writ-
ten. New values of data and parity overwrite previous values.

D3D2
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rithm is efficient in that the minimal amount of disk work, one write per symbol (includ
parity) is performed.

If an access overwrites a single symbol in the codeword, parity can be updated
using thesmall-write algorithm which updates parity via a read-modify-write process.
Consider writing the symbolD0new to a codeword which is in the initial (old) state:

(EQ 2-7)

When the write is complete, parity should be altered, such that:

(EQ 2-8)

Reading all of the data symbols in a wide (n is large) array is not efficient when we are
only trying to update a single symbol (D0). Therefore, using the following two properties
of XOR:

(EQ 2-9)

(EQ 2-10)

we can compute parity from the data and parity values that we are about to change:

(EQ 2-11)

Intuitively, this simplification can be understood by thinking of the term
 as representing the change made toD0old which is then applied toPold.

Figure 2-9 provides an illustration of an operation using the small-write algorith
Pre-reading each symbol (data and parity) before their overwrite means that the sm
write algorithm is twice as expensive in terms of the amount of disk work performed 

Pold D0old D1old D2old … Dnold⊕ ⊕ ⊕ ⊕=

Pnew D0new D1old D2old … Dnold⊕ ⊕ ⊕ ⊕=

D0old D0old⊕ 0=

D1old 0⊕ D1old=

Pnew Pold D0old D0new⊕ ⊕=

D0old D0new⊕( )
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sus symbols written when compared to the large-write algorithm. This disparity is of
referred to as thesmall-write problem.

Unlike the large-write algorithm, which can only be used to write an entire code
word, the small-write algorithm can be used to write an arbitrary number of symbols
fault-free codeword. However, because of its expense in terms of disk work, a third a
rithm, the reconstruct write, has been devised. Illustrated in Figure 2-10, thereconstruct-
write algorithm is similar to the large-write algorithm with the difference being that not
data symbols are overwritten. Those that are not overwritten are read, enabling parity
directly computed from all data symbols in the new codeword. The reconstruct-write 
rithm requires one disk access for each symbol in the codeword, regardless of the n
of symbols being written. Therefore, if half or more (but not all) of a codeword is to b
written, the reconstruct-write algorithm is generally used because it requires less dis
work than the small-write algorithm.

Writing data to a codeword in which a fault has removed a symbol isn’t too trick
the disk containing the parity symbol has failed, the write is performed by simply wri
the new data—the update of parity is simply ignored. Similarly, if the entire codewor
being overwritten, the large-write algorithm is used but the write of the disk which ha
failed is eliminated.

If a disk containing a data symbol that is to be overwritten has failed, and the e
codeword is not being written, then thedegraded-write algorithm, illustrated in Figure 2-
11, is used. This algorithm is similar to the reconstruct-write algorithm: the data sym

Figure 2-9 The small-write algorithm

To minimize the amount of disk work required to maintain parity when overwriting
one symbol of a fault-free codeword, the small-write algorithm performs a read-
modify-write of the parity symbol, resulting in a total four disk accesses. In this
example, data is to be written toD0. This requires pre-reading the old value ofD0
and parity (P0123), computing new parity as the XOR of oldD0, newD0, and old
P0123, and writing newD0 and newP0123.

D0

XOR

D1

new data

D3D2

new parityold parity

old data

P0123
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not being overwritten are read from disk and new parity is then computed from all of
data symbols in the new codeword.

Figure 2-10 The reconstruct-write algorithm

The reconstruct-write algorithm is similar to the large-write algorithm in that new
parity is computed from all of the data symbols in the codeword. The data symbo
which are not being overwritten (D3 in this example) are read from disk.

D0

XOR

D1 P0123

new data

D3D2

new parity

Figure 2-11 The degraded-write algorithm

If a disk containing a data symbol can not be overwritten, the simplest and least-
expensive method of updating parity is to use read the data symbols not being
overwritten and then compute parity from the entire set of data symbols. In this
example,D0 andD1 are to be written an array in which the disk containingD0 has
failed. The remaining data symbols,D2 andD3, are read from disk and new parity
P0123 is computed as the XOR of all data symbols. The new values ofP0123 and
D1 is are then written to disk.

D0

XOR

D1 P0123

new data

D3D2

new parity
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Reading a symbol which was stored on a disk that has since failed is accompli
by reconstructing it from the surviving data and parity symbols. This algorithm, com-
monly known as thedegraded-read algorithm, is illustrated in Figure 2-12.

2.5.2.3 The Berkeley RAID Taxonomy

In 1988, researchers at the University of California, Berkeley observed that 5.2
disk drives which were used in personal computers had become commodity devices.
low cost/actuator made them an attractive building block for arrays; however, their M
was predicted to be only 30,000 hours, far below the MTTF of 100,000 hours found i
14” IBM 3380 disk drives of the day. Realizing that disk performance was becoming
increasingly important, Patterson, Gibson, and Katz introduced a taxonomy for redu
disk arrays based upon data layout and encoding [Patterson88, Gibson92]. The taxo
defined five levels of Redundant Arrays of Inexpensive1 Disks (RAID). RAID level 0 was
later introduced by industry to denote a nonredundant disk array.

The Berkeley RAID levels are limited to single fault-tolerant array architectures
RAID level 1 is used to denote mirrored disk arrays. RAID level 2 is reserved for arra
which employ Hamming codes. The remaining RAID levels, 3 through 5, employ pari
protect data from the failure of a single disk. Parallel-access arrays are categorized 
RAID level 3 and independent-access arrays are categorized as either RAID level 4
RAID level 5. As illustrated in Figure 2-13, RAID levels 4 and 5 are distinguished by 

1. The RAID Advisory Board defines “RAID” as Redundant Arrays of Independent Disks.

Figure 2-12 The degraded-read algorithm

In this example, a request is made to readD0, a symbol which is stored on a disk
that has failed. Using the XOR function, theD0 is recomputed from the surviving
symbols in the codeword which are read from disk.

D0

XOR

D1 P0123D3D2

D0
32



e

k-
ite
t of
e.
d
tal

lec-
gle disk
d and
y
 com-
t

-

placement of parity: RAID level 4 arrays place all parity on a single “parity” disk whil
RAID level 5 arrays evenly distribute parity across the array.

Any write to a RAID level 4 disk array will involve the disk containing parity, ma
ing it a bottleneck in small-write intensive workloads which require a read-modify-wr
of the parity disk for each user I/O. In small-write-intensive workloads, the throughpu
a RAID level 4 disk array will be equal to one-half of the throughput of the parity driv
RAID level 5 arrays, on the other hand, evenly distribute the parity and data workloa
across the array, and achieve an aggregate throughput equal to one-fourth of the to
throughput of the combined disks in the array [Lee90b].

2.5.3 Fault Model

The internal workings of disk arrays (e.g. mapping, encoding, and algorithm se
tion) are abstracted from users by an interface that makes the array appear as a sin
with higher performance, capacity, and dependability. It is natural to assume that rea
write operations should have the same semantics exhibited by disk drives, previousl
described in Section 2.4.2. This subsection briefly describes the failure mechanisms
monly found in disk array products, the likelihood of their occurrence, and their effec
upon operation as perceived by the user. Detailed studies of disk array reliability are

RAID Level 4 RAID Level 5

D4

D8

D0

P9AB

Figure 2-13 Parity placement in RAID levels 4 and 5

This figure compares the data layout and redundancy organizations for RAID lev
els 4 and 5 for an array of four disks. Data units represent the unit of data access
supported by the array. Parity units represent redundancy information generated
from the bit-wise exclusive-or (parity) of a collection of data units. The redun-
dancy group formed by a parity unit and the data units it protects is commonly
known as a parity group.
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widely available in research literature [Chen94, Ganger94, Gibson92, Gibson93, Ng
Patterson88, Schulze89, Savage96].

Recall that disk drives are assumed to be failstop devices. The same can be s
disk arrays, if they are either constructed from failstop devices, or employ sufficient r
dancy to enable the failure of a non-failstop device to be detected in an expedient fa
In addition to disk drives, disk arrays require power, cooling, cabling. Additionally, th
array requires a control mechanism which is responsible for mapping, encoding, and
rithm selection and execution is sometimes implemented in specialized hardware. T
disk array controller may be implemented entirely in either software or in some comb
tion of software and dedicated hardware.

Representative MTTF values of each of these components are summarized in
Table 2-1. With the exception of array control software, the data in this table was tak
from a commercially available disk array manufactured by Symbios Logic [Symbios9
and is consistent with the guidelines outlined by the United States Department of De
[DOD81]. The reliability of array control software was estimated based on a limited s
vey of unpublished field return data and conversations with practitioners.

The power system can be treated as a failstop device because of the condition
normally present in supplies which isolates potentially-damaging line voltage surges
disk array equipment. Array cooling is provided by assemblies which contain two fan
Control electronics are included to adjust fan speed and detect and report fan failure

The backpanel provides all electrical communication in the subsystem. Backpa
faults can result in the loss of power, cooling, and the loss (or corruption) of commun
tion between the controller and the disk drives and are a single point of failure. Backp
have no self-checking mechanisms and therefore can not be treated as failstop devi
Instead, devices communicating across backpanels (or cables) must employ some f

Table 2-1 Disk array component reliability

Component MTTF (hours)

MTTFback (backpanel failure) 4,566,004

MTTFcbl-pwr (power cable failure) 10,000,000

MTTFcbl-scsi (SCSI cable failure) 1,718,200

MTTFcool-asy (cooling assembly failure) 60,000

MTTFctrl-hw (array controller hardware failure) 81,000

MTTFctrl-sw (array controller software failure) 40,000

MTTFdisk-cat (catastrophic disk failure) 800,000

MTTFpwr-supply (power supply failure) 65,000
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end-to-end error detection mechanism, such as those used in SCSI and Fibre Chan
[ANSI91, ANSI94] which can be used to identify and isolate backpanel faults.

Hardware-assisted array controllers off-load tasks such as I/O management an
ity computation from a host CPU and may also isolate some data transfer operations
the primary system bus. Similar to disk drive controllers, hardware-assisted disk arra
controllers periodically perform a variety of sanity tests to provide failstop service
[Symbios95b]. For instance, it is unlikely that a “brain-dead” array controller will be c
ble of correctly forming valid messages which impart bad information. When a contr
does fail, all local volatile state is lost.

Many array products contain redundant controllers which give the array the ab
to survive a controller fault without loss of service. For example, Figure 2-14 illustrat
dual-controller array. The failure of the array control mechanism should not result in a
of the data from previously-completed write operations. In fact, I assume that the arr
controller should survive simultaneous failure of the array control mechanism and a 
When a controller does fail, all work in progress in that controller is interrupted and a
volatile state is lost. Generally, nonvolatile state that is required for controller failover

Figure 2-14 Disk array with redundant controllers

This figure illustrates a dual-controller disk array which provides storage to a
dual-server cluster. If either controller fails, both servers are assured access to
storage via the surviving controller.

server A server B

controller Bcontroller A

LAN

I/O channel
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must be stored in a shared area which is accessible by the surviving controller(s). T
could be either a reserved area of a disk or mirrored memory regions which reside o
array controllers.

Because disk arrays do not assume atomic failure of in-flight operations with re
to faults which result in the failure of the array control mechanism, redundant disk ar
implementors only need to worry about the side effects that can lead to the corruptio
codewords. That is, if a user write fails due to a crash, the user can make no expect
(new data, old data, unknown data) about the region being written. However, the use
should expect that the remaining data in the array is unaffected. This latter expectatio
be difficult to maintain in the event of simultaneous power and disk failures.

Consider as an example the small-write operation illustrated in Figure 2-15, wh
writes data to an array in which a disk has failed. The operation begins by computing
parity and writing new data. Sometime between the writes of new data and new parit
array controller crashes (power or software fault). This leaves the codeword in an inc

Figure 2-15 The write hole

In this example, the small-write algorithm, previously described in Figure 2-9, is
being used to write data to diskD2 in a parity-protected disk array in which disk
D0 has previously failed. Before the operation begins, the value of the symbol
stored on diskD0 is “0” and can be computed as the XOR of the remaining data
and parity disks.

The write operation is interrupted at a point in which new information has been
written toD2 but the parity disk has not been updated. When the controller is
restarted, the value ofD0 is computed as “1.” This problem is called the “write
hole.” Unless measures are taken to complete (or remove the effects of) the write
operation which was interrupted, data corruption of unrelated data (D0) has
occurred.

0 1 010
initial state:

final state:

D0 D1 D2 D3 P

D0 = 0

0 1 011D0 = 1
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tent state and the original value of the failed disk can no longer be reconstructed, a 
lem commonly known as thewrite hole [RAB96]. Avoiding the “write hole” requires that
array control mechanisms record sufficient information in non-volatile memory so tha
interrupted write operations can be completed after the crash.

Predicting the failure rate of array control software is more of an art than predic
hardware reliability. This is because software reliability is a function of many subject
measurements (schedule pressure, experience, code history, development environm
test strategy, etc.). Unfortunately, the literature has almost entirely ignored the reliab
of array control software [Patterson88, Schulze89, Ganger94, Gibson93, Ng94,
Savage96]. In a recent paper, Chen et al modeled the effects of failures which interru
array control mechanism [Chen94]. In this study, they define a crash as: “any event s
a power failure, operator error, hardware breakdown, or software crash that can inte
an I/O operation on a disk array.” A value of MTTFcrash of 17,523 hours (1 month) was
assumed; however, this value did specifically include array control software. In fact, 
reliability calculations for implementations with hardware-assisted array control, sys
crashes were entirely ignored.

I found the task of determining the defect rates of array control software from fi
data to be a difficult one. First, many software faults are intermittent, appearing infre
quently and when detected, are difficult to reproduce and isolate. Second, when a c
tomer experiences a failure, the first thing that a vendor is likely to do is request that
customer upgrade to the most recent software—this usually eliminates the failure w
isolating the fault. Finally, when a controller is returned to the factory for failure analy
(FA), a likely first step that a technician will take is to upgrade the software to its late
revision (no point in debugging software that’s known to have bugs). Unfortunately, F
technicians are able to repeat only 15% of failures after upgrading controller softwar
Collectively, these problems suggest an under-reporting of software faults—failures 
are not repeatable by a manufacturer are not categorized as software faults.

Informal conversations with development organizations and the minimal field-re
data I have seen suggest a softwareMTTFctrl-sw of 40,000 hours, which implies that soft-
ware is the single weakest single component of a redundant disk array. I can not pro
empirical data to confirm this; however, this finding is consistent with the general find
in the field of fault tolerant systems which report software faults as the leading contri
to failures in “fault-tolerant” systems [Gray90a].

2.5.4 Beyond the RAID Taxonomy

The Berkeley RAID taxonomy was immediately adopted as a de facto standard
an industry consortium, the RAID Advisory Board, was created to standardize the ap
tion of the RAID taxonomy to products [RAB95]. The demand for RAID systems
exploded, exceeding $9.7 billion in 1995, and estimated to exceed $18.6 billion by 1
[Disk96a]. This demand is driven by a broad spectrum of capacity, dependability, cos
37
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performance requirements. Researchers have generated a variety of architectures i
attempt to cover this spectrum. A continued growth in new, specialized array architec
is undermining the completeness of the RAID taxonomy. Summarizing all array arch
tures proposed in the last five years is well beyond the scope of this discussion. The
pose of this subsection is to demonstrate that by simply changing data placement, d
encoding, and the algorithms used to access data, a wide variety of architectures is
developed.

2.5.4.1 Improving Dependability

To begin, consider that as the number of disks (or any component) used in sin
fault tolerant disk arrays increases, reliability will suffer. Burkhard and Menon sugge
that by the year 2000, user capacity demands will require a large enough number of
in the array that the dependability of single fault-tolerant disk arrays will be inadequa
[Burkhard93]. A number of architectures have been designed to allow arrays to surviv
simultaneous failure of two disk drives without loss of data. Most notable are two-dim
sional parity [Gibson92] and EVENODD [Blaum95] which employ parity encodings, a
RAID level 6 [ATC90, STC94] which employs a Reed-Solomon encoding.

In single-fault tolerant schemes such as RAID level 5, each bit of user data is a
bol in only a single codeword. Intwo-dimensional parity schemes [Gibson89], each block
of data is a member of two independent codewords. As illustrated in Figure 2-16, the
codewords are arranged orthogonally so that any two codewords have at most one 
mon symbol. If two failures occur in a codeword, the missing data can be constructed
the orthogonal codewords.

Intuitively, accessing information in an array protected by two-dimensional pari
occurs in much the same was as for a RAID level 5 disk array. Writes affect two cod
words, requiring additional parity computation and disk accesses. Also, additional al
rithms are necessary in order to provide operation in the face of two disk failures. In
Chapter 3, I introduce a novel programming abstraction for disk array operations an
Appendix A I describe fifteen algorithms that can be used to access information stor
disk arrays protected by two-dimensional parity.

Two-dimensional parity increases the amount of storage capacity lost to redund
and the additional disk work required to maintain the second parity disk reduces the
throughput of the array. Minimal redundancy overhead occurs if the number of data 
umns is equal to the number of data rows. In this case, the amount of capacity lost to

information is: . If the data disks in a two-dimensional array are not org

nized in a square array, the fraction of capacity lost to parity information will increase

Blaum, Brady, Bruck, and Menon introducedEVENODD, a parity-based redun-
dancy scheme similar to two-dimensional parity, but with a different mapping of infor
tion that guarantees a minimal capacity overhead regardless of the array organizatio

2 NDataDisks
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array does not need to be physically square). Similar to two-dimensional parity, each
symbol is a member of two distinct parity-based codewords. However, the codeword
distributed in a fashion that results in a constant (minimal) redundancy overhead of

. The name “EVENODD” is derived from the fact that while one set of

codewords is always based upon even parity, the parity of the remaining codewords
allowed to dynamically change from even to odd.

By employing two check symbols, a parity and a non-binary code, a codeword
be constructed that tolerates two symbol (disk) failures. This approach, known asRAID
level 6, is used in Storage Technology’s Iceberg product line [STC94]. The non-binar
code, a Reed-Solomon derivative, is typically computed using either large lookup tab
an iterative process involving linear feedback shift registers—a relatively complex op
tion which requires specialized hardware.

2.5.4.2 Improving Performance

Counter to Burkard and Menon’s prediction, Savage and Wilkes proposeAFRAID—
A Frequently Redundant Array of Independent Disks, an array architecture that trad
dependability for performance [Savage96]. Attempting to compensate for the small-
problem found in RAID level 5 arrays, parity stripes in AFRAID are allowed to becom
inconsistent for brief periods of time. When writing data to the array, if the parity driv
busy, they defer its update to a later point in time. They predict that a 23% reduction 

Figure 2-16 Two-dimensional parity

Two-dimensional parity protects data from any two disk faults by placing each
block of data in two independent codewords. For example,D4 is protected byP147
andP345.

P036 P147 P258

P012D2D1D0

D3 D4 D5 P345

P678D8D7D6
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array’s mean time to data loss can increase performance by as much as 97%. AFRA
changes the fault model of single-fault tolerant disk arrays because codewords whic
not have up-to-date parity are susceptible to a disk failure.

Instead of sacrificing dependability to achieve higher performance, it is possibl
increase performance through more traditional means, such as caching. Recognizin
disk traffic is bursty [Ousterhout85, Ruemmler92], a write-back cache can be used to
updates until the array is idle [Golding95, Menon93a, Symbios95a]. By making the c
nonvolatile, the semantic that completed write operations are durable is preserved. A
tionally, deferring write operations allows small sequential operations to be coalesce
larger, more efficient disk operations [Menon93a, Rosenblum92].

Alternatively, a variety of architectures have been proposed for trading capacit
performance. These include deferring updates in a disk log [Bhide92, Stodolsky94] 
various schemes for modifying the logical to physical mapping of data that allow mo
efficient array operations to be utilized [Menon93b, Mogi94, Solworth91].

Stodolsky, Holland, Courtright, and Gibson proposedparity logging, an approach to
avoiding the small write problem by using disks more efficiently. Parity logging defer
updates to parity in RAID level 5 arrays by storing them in a FIFO log that is maintai
partially in controller memory and partially on disk. Using the rule of thumb that full tra
accesses are ten times more efficient than sector accesses, parity logging collects l
amounts of parity updates and then applies them en mass at track rates.

Figure 2-17 illustrates two algorithms for writing data to a fault-free array. The fi
algorithm replaces the small-write algorithm used in RAID level 5 disk arrays. Instea
immediately performing the read-modify-write update of parity for each write operati
an update record, reflecting the changes made to user data, is appended to the FIF
Similarly, a large-write operation appends a parity overwrite record to the log. When
log becomes full, it is emptied by reading its contents and that of the parity disk at tr
rates, applying the records, and then writing the parity, again at track rates. To prese
consistency, the log is processed in the same FIFO order that it was written.

A power failure that results in the loss of the portion of the parity log that is store
controller memory can be recovered from by simply reconstructing parity, assuming
there are no disk failures. If the array is required to survive simultaneous disk and po
failures, then the parity log must be durable.

Instead of deferring work, Menon, Roche, and Kasson proposefloating data and
parity which allows the physical location of disk blocks to be remapped [Menon93b].
Spare sectors are allocated in each disk cylinder—to reduce rotational latency, map
of data and parity are swapped to these spare locations as needed. Unlike the archit
discussed to this point, the location of data and parity can not be statically determine
survive power failures, the data and parity mapping tables must be stored in nonvola
memory. Loss of mapping information results in the loss of all data in the array.
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Mogi and Masaru propose a logical remapping calledvirtual striping that is essen-
tially a marriage of the floating data and parity architecture, and the write-back cach
techniques previously discussed which coalesce small-write operations into more-effi
large-write operations [Mogi94]. To survive power failures, the data and parity mapp
tables, as well as the write-back cache, must be stored in nonvolatile memory. To su
controller failures, this information must be mirrored elsewhere in the array.

Still other directions exist. Seagate has introduced hardware support for RAID 
ations into their SCSI and Fibre Channel disk drives by providing XOR and third-par
(disk-to-disk) transfer capabilities that collectively reduce the amount of data traffic
between a central array controller and the disks in some RAID level 5 operations
[Seagate94]. These improvements, which effectively distribute portions of the array 

Figure 2-17 Fault-free write operations in a parity logging disk array

These two algorithms are used to write data to a parity-logging disk array. The
uppermost algorithm is a variation of the small-write algorithm, previously
described in Figure 2-9, and the lower algorithm is a variant of the large-write
algorithm of Figure 2-8. In both cases, the fundamental difference is that parity
changes are stored in an append-only log rather than being written to disk. In the
case of a small write, a record containing changes which must be applied to parit
is placed in the log. In the case of a large write, in which a new value of parity has
been computed, an overwrite record is placed in the log.

D

XOR

D D P

small write
new data

old data

Log

update record

D

XOR

D D P

large write

Log

overwrite record
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trol mechanism to the disk drives, lead to a fundamental break with the architectures
described to this point: array control mechanisms are not distributed. Inherent prope
of the SCSI and Fibre Channel standards that weaken the disk array’s fault model h
limited the adoption of this technology. For example, a reset of the SCSI bus require
devices, including disk drives, to erase all buffers [ANSI91]. Because bus resets are 
dictable, this may result in the destruction of state information necessary to complet
operation.

Finally, Cao, Lim, Venkataraman, and Wilkes propose another distributed contr
architecture,TickerTAIP, designed specifically for RAID level 5 applications [Cao94].
User requests are received byoriginator nodes, centralized control mechanisms that sele
the appropriate algorithm to be used and then dispatch disk and parity (XOR) work t
worker nodes. Each worker node manages a subset of the disks in the array. Similar 
Seagate model, worker nodes are relied upon to transfer information directly betwee
themselves, bypassing the originator node. TickerTAIP did not address the aforeme
tioned problems with SCSI.

The failure of a worker node leaves the disks it manages inaccessible. Therefo
survive the failure of a worker node, codewords must be arranged so that each sym
stored on a disk managed by an independent worker node. To survive the failure of 
originator node, which manages the progress of the worker nodes involved in servic
each user request, its state information is mirrored on other originator nodes. By ens
that enough information is duplicated across nodes, TickerTAIP is able to atomically
vive the failure of any node or disk. Power failures are not survived atomically, and t
array therefore suffers from the “write hole” problem that was described in Figure 2-

Because there are multiple originator nodes, TickerTAIP does not guarantee is
tion (serializability) of user requests. TickerTAIP does permit users to specify an exp
ordering of requests; however, because users have no notion of the alignment of the
requests to codeword boundaries, this does not avoid the problem of maintaining th
sistency of parity in codewords that are simultaneously updated by independent use
requests.

2.5.5 Discussion

Disk drive performance is limited by mechanical devices and its rate of perform
increase does not match that of processors. This section began by introducing the c
of striping user data across an array of disks to improve performance for a variety of
cation workloads. Relying upon the fact that disks can be treated as erasure channe
described two well-known methods of tolerating disk failures through the use of redun
data. The first, normally called mirroring, relied upon two copies of data. The second
method, based upon parity, reduced the amount of disk capacity required for redund
but required more algorithms for accessing information. I then described RAID, an in
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mal taxonomy of redundant disk arrays, which is based upon the striping and encod
user data.

I defined a fault model for disk arrays that requires that array operations are se
able, and durable. I described various techniques for implementing RAID systems w
adhere to this model and assumed that the components used to construct disk array
either inherently failstop, or easily made to behave as failstop devices. I concluded th
tion by reviewing a variety of disk array architectures that have recently been introdu
to optimize for performance, dependability, and cost.

Throughout this section, I have provided examples of the algorithms used to ac
information stored in a disk array. An important observation is that despite the fact th
number of algorithms necessary to properly implement all of the architectures I discu
may be large, they were composed from a relatively small set of actions, such as disk
disk write and XOR. Intuitively, it would seem that given a working disk array, altering
architecture should simply require changes to mapping and algorithm selection as w
creating new algorithms from an existing library of actions. Occasionally, as new dev
(write-back cache, parity log, etc.) and encodings (Reed-Solomon) are introduced, p
grammers must additionally create the actions that operate upon them.

Another important point, which was only briefly examined here, is the potential
ficulty of guaranteeing that disk arrays maintain the desired operating semantics. Th
example I used was the “write hole,” in which the failure of a write operation results i
unexpected loss of data. An interesting problem that I will later study at length is the
method(s) for correctly sequencing algorithms to ensure appropriate recoverability w
leads to correct operational behavior.

2.6 Conclusions

This chapter was written for three reasons. First, it was intended to educate th
reader on the fundamentals of general fault-tolerant systems and, to this end, the te
ogy, metrics, and procedures necessary to improve the dependability of an arbitrary
tem were described. Second, the chapter reviewed fault-tolerant disk systems, descr
variety of disk array organizations that are able to tolerate a variety of faults, includin
loss of a disk, without loss of availability. Third, and most importantly, this chapter pr
vided insight into a variety of array architectures, describing their expected behavior
their commonality with other array architectures.

This third and final point is the springboard into the remainder of the dissertatio
Section 2.5.4, I demonstrated that by making simple changes to mapping and encod
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significant changes to the dependability, performance, and cost of a disk array are m
As these changes are introduced, new algorithms are required for accessing informa
the array. Observing that these algorithms are constructed from a small set of action
access the storage devices (disk, cache) and compute check information (parity, Re
Solomon), it is reasonable to conclude that it is possible to construct disk arrays in a
ner which exploits this commonality, allowing programmers to only worry about the n
mapping, encoding, algorithm specification, and algorithm selection.

In Chapter 3, I investigate the validity of this hypothesis by examining methods
executing array operations and recovering from the errors encountered during this e
tion. I demonstrate that not all of the techniques described in Section 2.3 are well su
for use in redundant disk arrays, burdening the programmer with far more complexity
is necessary.
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Chapter 3: Mechanizing the Execution of Array Operations

Chapter 2 demonstrated that array architectures are distinguished by mapping
encodings, and the algorithms that are used to access information stored in the arra
These algorithms are composed from actions, such as disk read, which are common
many array architectures. This leads to the layered model of disk array software illus
in Figure 3-1 and the casual observation that the well-known practice of modular de
should lead to greater software reuse.

This chapter concentrates upon the problems of specifying and executing array
rithms. The chapter begins with a study of the goals that simplify the design and pro
ming of disk array software. Section 3.2 examines the actions which are the building
blocks of array algorithms and defines a consistent interface for all actions. Section
introduces a novel method of specifying array algorithms as directed graphs in whic
actions are represented by the nodes of the graph and the dependencies between t
actions by its arcs.

The remainder of this chapter concentrates upon the execution of these graphs
miss ad hoc techniques of execution which rely upon forward error recovery as unre
able, because they do not effectively exploit the commonality between array
architectures—they require that new methods of recovery from errors must be define
implemented for each algorithm and array architecture. Instead, I embrace methods
execution that are rooted in the design of dependable systems which employ transa
[Bernstein87, Gray93, Lynch94]. Because transactions guarantee programmers ato
behavior in the face of errors, a general execution mechanism which executes array
rithms without regard for their function or the architecture that they support can be c
ated. Furthermore, the approach lends itself to the application of known techniques 
correctness verification and deadlock detection. This execution mechanism, describ
detail in Section 3.5, employs classic undo/no-redo recovery principles to guarantee
atomic operation and a fine-grain (single operation) unit of recovery in a single-contr
architecture. Chapter 4 describes an implementation based upon this execution mec
nism. Later, in Chapter 5, this mechanism is revised to accommodate a structured m
for reducing the amount of undo logging, without sacrificing these benefits. Multiple 
troller architectures, and the redo logging necessary to support controller failover, ar
implemented.
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3.1 Goals of an Ideal Approach

Chapter 2 concluded with the observation that disk array architectures are diffe
ated by the mappings used to locate data and check information, the devices used t
this information, the algorithms used to access data, and the criteria for selecting an
rithm. Furthermore, after examining a variety of architectures optimized for either pe
mance, reliability, or capacity, it became evident that the number of actions necessa
construct array algorithms for these architectures was quite small. Intuitively, it woul
seem that because almost all array architectures are implemented from a common s
actions such as accessing symbols (e.g. disk read and write), computing check inform

Figure 3-1 A layered software architecture

This diagram illustrates a basic partitioning of array software. The internal work-
ings of the array (boxes below the bold line) are hidden from the user who is pre-
sented with a simple read/write abstraction, similar to the one presented by
contemporary disk drives. The array software is represented by two layers: the
upper layer represents the configuration management, data mapping and algo-
rithms which distinguish array architectures. The lower layer represents the
actions, common to array architectures, which are used to compose new algo-
rithms.

This layered approach is common to software RAID systems such as those pro-
vided by NT which uses a layered driver architecture [Custer93]. Disk mirroring is
implemented as a layer above the low-level disk drivers, isolating the array algo-
rithms from the physical disk interface.
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(e.g. XOR, Reed-Solomon), and manipulating resources (e.g. allocate), it would be 
ble to create an infrastructure for implementing array architectures which:

• limits the amount of code changes required to extend existing code to sup-
port a new array architecture

• simplifies error recovery by creating a process which guarantees that code-
words are updated atomically, reducing the need for hand analysis

• does not introduce overhead which results in either significant resource
consumption or performance degradation

• enables verification, early in the development cycle, of the ability of array
algorithms to correctly tolerate faults

The remainder of this dissertation is devoted to the pursuit of these four ideals
Chapter 2 demonstrated the need to extend array architectures to explore distinct co
formance, and dependability solutions. Minimizing the amount of code changes requ
to perform these extensions has a significant impact on production costs and the ba
width of the development organization. Amortizing the cost of writing code for use in
redundant array controllers across an entire development group (designers, coders,
testers), a typical programmer can develop 9,300 lines of code (LOC) per year at a c
$18.50 per LOC [Potochnik96]. It is not uncommon for a fully-featured array controll
which supports multiple RAID levels to have 250,000 lines of code. Rewriting just 30%
conservative estimate) of these lines would require over eight man-years at a cost o
$1,387,500.

Simply reducing the cost of extending code to support new array architectures
incomplete goal. As described in Section 2.5.3, programmers must ensure that write
ations which fail will contain their damage to the data symbols being written. When a
write operation fails in the middle of execution, the programmer must therefore ensu
that the integrity of the codeword is maintained. Failure to do this results in the prob
commonly known as thewrite hole, in which data in the codeword, which was not a pa
of the write operation, is permanently lost. This problem was discussed in detail in
Figure 2-15. The burden of maintaining codeword integrity can be greatly simplified 
system can be devised to ensure atomic codeword updates. This would eliminate th
of predicting and processing all incomplete codeword updates.

The cost of this system must be held in check. Performance is generally impor
and the resources used to construct arrays are often precious. Software arrays, whi
vide little more than tolerance of disk failures, are generally not permitted to increas
cost over today’s 20¢ per MB cost of commodity disk drives. The cost of array subsys
that tolerate controller, fan, cabling, and power failures has fallen below $1 per MB a
expected to reach 11¢ per MB by the end of the decade for some applications [IDC9
Nonvolatile memory devices, which are capable of surviving loss of power without co
rupting data, currently cost as much as $20 for an 32KB part. Exotic solutions which
47



 be
ll as

es
lier
d time.
ctness
ca-

es
re

 this
ifically,
cution
 inter-

ariety
ions

et of
 man-
ons.
f
thms

 from
apper,
ich

-

employ large amounts of expensive resources such as nonvolatile memory may not
practical. Therefore, a general solution must be sensitive to both performance as we
resource consumption.

Finally, the process of verifying code as correct, regardless of the number of lin
involved, is an important function. As with any type of development process, the ear
design defects are detected, the cheaper they are to repair, both in terms of cost an
Therefore, an ideal approach to developing array software will be amenable to corre
verification during the early phases of implementation, rather than deferring all verifi
tion to the lab-testing of prototypes.

3.2 Isolating Action-Specific Recovery

The obvious and best-known method for minimizing the amount of code chang
required to extend software is to create modular code which isolates functions that a
known to change orthogonally [Parnas72]. In Figure 3-1, I described the boundaries
between the modules which are changed to produce new disk array architectures. In
section, I focus upon the actions which are used to compose array operations. Spec
I define a general interface which isolates recoverable errors detected during the exe
of these actions from the layer responsible for executing array algorithms, hiding the
nal details of the actions from the array architect. By requiring that all action-specific
recovery be performed by the actions themselves, an infrastructure which allows a v
of array architectures to be implemented without regard for the manner in which act
are implemented becomes possible.

3.2.1 Creating Pass/Fail Actions

Irrespective of the type of an action, it is possible (and necessary) to define a s
rules by which all actions must abide. By knowing that actions behave in a common
ner, the programmer can generalize the infrastructure used to execute array operati
The first such rule is designed to isolate action-specific recovery from the process o
recovering from failed array algorithms, enabling programmers to create array algori
from a library of actions, without regard for the internal details of the actions. This is
accomplished by abstracting actions with a wrapper that is responsible for recovering
all recoverable errors encountered during the execution of an action. With such a wr
these actions can be viewed by the array architect as pass/fail building blocks in wh
“pass” implies successful completion and “fail” implies that the action can not be com
pleted and the failed components have been removed from service [Courtright94,
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Courtright96a]. Actions are assumed to exhaust all known methods of recovering fro
errors and therefore actions that fail are not retried.

Recall from Section 2.3 that the process of tolerating faults requires six steps: 
tion, diagnosis, isolation, recovery, reconfiguration, and repair. For all errors, actions
required to detect, diagnose, and isolate all faults because these steps require infor
which is local to the device. Additionally, for all recoverable errors, actions are require
perform recovery, reconfiguration, and repair.

Because actions which fail remove devices from service, and because invariant
exist across multiple devices to provide fault tolerance, actions must maintain the ind
dence of faults within a system. For instance, if an action is defined to update two sym
in a codeword and one of the symbols fails, the action should not arbitrarily fail the se
symbol.

Actions may also (and often do) operate upon symbols in multiple codewords, 
must continue to preserve the independence of faults—if a symbol in one codeword i
the action should not arbitrarily fail the symbols in the other codewords it is operatin
upon. For example, if the failure of a single sector is detected during a multi-sector d
read, the action performing the read should only mark the failed sector as “bad.”

One of the four ideals described in Section 3.1 was the elimination of coping w
incomplete codeword updates by creating a process for executing array algorithms a
cally. If array algorithms are to atomically modify codewords, the actions from which t
are constructed must be known to execute atomically. This follows from the same no
used in atomic commit protocols in transaction systems: transactions can be made t
ate atomically if the actions from which they are composed are themselves atomic
[Bernstein87, Lynch94].

To summarize, there are four rules for creating actions:

1. Actions are responsible for detection, diagnosis, and isolation of all faults
encountered during their execution.

2. Actions are responsible for recovery, reconfiguration, and repair of all tolera
faults detected during their execution.

3. Actions preserve the independence of faults within an array.

4. Actions are atomic.
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3.2.2 Actions Commonly Used in Redundant Disk Array Algorithms

Four fundamental types of actions are necessary to implement the disk array a
rithms described in Chapter 2: symbol access, resource manipulation, computation,
predicates. Table 3-1 presents examples of specific actions for each of these four ty
This table is not meant to be a comprehensive list of all actions required to impleme
known array algorithms. Furthermore, because the study of array architectures is on
it is likely that new actions will be developed in the future. For instance, new actions
necessary when new encodings (e.g. the Reed-Solomon encoding used in RAID lev
are employed to protect data. Similarly, new actions are required if a new device type
the append-only log used in parity logging) is added to store symbols. Because the 
presented in Section 3.2.1 apply equally to all instances and types of actions, the fa
this table is incomplete is unimportant.

The remainder of this section describes the four basic types of actions. Each of
types is distinguished by data dependencies and state transformations. The data de
cies represent a dependence upon input parameters that are necessary for the actio
begin execution. The state invariants represent the transformation the actions make
system. Later, in discussions of the execution of array algorithms composed from th
types of actions, this information will be used to establish constraints for the constru
of array algorithms as well as to reason about the correctness of the error recovery 
dures in mechanisms that execute these graphs.

Table 3-1 Actions common to most disk array algorithms

Type Name Function

symbol access Rd copy data from disk to buffer

symbol access Wr copy data from buffer to disk

symbol access LogUpd append a “parity update” record

symbol access LogOvr append a “parity overwrite” record

rsrc. manipulation MemA acquire a buffer

rsrc. manipulation MemD release a buffer

rsrc. manipulation Lock acquire a lock

rsrc. manipulation Unlock release a lock

computation XOR EVENODD decode (XOR variant)

computation EO EVENODD encode (XOR variant)

computation EO EVENODD decode (XOR variant)

computation Q Reed-Solomon encode

computation Q Reed-Solomon decode

predicate Probe if hit, return shared lock and pointer
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3.2.2.1 Symbol Access

Actions are necessary to load and store symbols between memory and device
as disk drives, append-only logs, and caches. Actions that read symbols are assum
copy them from the device to an uninitialized buffer. Conversely, actions that write sy
bols copy them from an initialized buffer to a storage device. More formally, these ac
can be defined in terms of the state invariants which exist prior to, during, and after 
execution. For example, prior to the execution of a read action the following invarian
must be true:

• The region of the storage device (e.g., an offset/length pair) to be accessed
must be valid.

• A buffer must be supplied whose length is greater than or equal to the
length of the extent to be read.

• The contents of the extent to be read are presumed to contain information
from the previous write action to that extent.

• The contents of the buffer are assumed to be unknown.

Therefore, read actions have a dependence upon a valid address and buffer. Any alg
that uses read actions must ensure that these dependencies have been satisfied pri
cuting the read action.

During the execution of the read action, the contents of the storage device are
unchanged and the contents of the buffer may be in either the original (uninitialized) 
a new (same as the extent of the storage device being read) state, or some arbitrary
nation of these two. Read actions that fail will leave the buffer in one of these three s
but without an indication of which one—therefore, it is only safe to assume that read
actions that fail will leave the buffer in an uninitialized state. Once a read action com
pletes, the extent being read is left unchanged and the contents of the buffer are ide
to the extent being read from the storage device. This behavior is consistent with tra
tional disk semantics and the atomicity requirement of Section 3.2.1.

Write actions have similar dependencies and invariants. Prior to execution, wri
actions are dependent upon a valid device address and an initialized buffer. The amo
data in the buffer that is to be written must be of equal length to the extent to be writt
the storage device. Once execution begins, the write action begins to copy informati
from the buffer to the storage device. The order that the information is copied is arbi
however, the information is copied in units of a predetermined length, such as a disk
tor. If a write action fails, the buffer it is copying data from is left unchanged. Each un
the storage device being modified is left in one of three states: unchanged, identical
corresponding unit of the buffer, or inaccessible. Once a unit becomes inaccessible,
not be returned to service without an explicit repair operation. Because storage devic
assumed to offer atomic operation on a predefined unit of access, write actions to th
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devices can be made atomic—if an action fails, it is conceivable that recovery code 
be created to transition all of the previously-written units to their original states.

If the write action completes successfully, each unit of the storage device being
ten is identical to the corresponding unit in the buffer and the buffer is unchanged fro
original value.

3.2.2.2 Resource Manipulation

Resource managers, whether they control locks, buffers, or some other resour
provide two basic actions: allocation and deallocation. Actions that perform some for
allocation must either return the requested resource or fail. Immediate return from a
action is not necessary, so it is permissible to wait for a resource to become availab

As with actions that access symbols, actions that manipulate resources can be
acterized by their dependencies and state invariants. Prior to execution of an action
allocates a resource, a valid resource (one that is known to exist in the system) mus
known and the resource in question must be in either an “acquired” or “available” sta
During execution, the allocation action waits for the resource to enter an “available” s
When the action completes, the resource is marked as “acquired” with the owner bei
process that invoked the action.

Actions that perform a release begin with a valid resource that has been acquir
the process which invoked the release action. During execution, the action atomical
modifies the state of the resource from “acquired” to “available.” At the conclusion of
release action, the state of the resource is marked as “available.”

3.2.2.3 Computation

Actions that perform computation require one or more buffers which contain th
information to be operated upon, a buffer in which to place the result in (may be the 
as one of the input buffers), and optionally, a parameter that specifies the type of com
tion to be performed. The initial states of the buffers are a function of the type of com
tion to be performed—generally, the buffers that contain the information to be opera
upon are assumed to be initialized and the output buffer is assumed to be uninitializ
the computation completes successfully, the output buffer will be initialized to its inten
value and the input buffers may be in either their original or some predetermined stat
example, the computation may be designed to overwrite the result into one of the in
buffers.

Similar to actions that write symbols, actions that perform computations are pe
ted to generate results in an arbitrary order, but are assumed to atomically perform t
computation on units of information of a predetermined size. Therefore, computation
fail will leave each unit of the result buffer in either its original or final state.
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3.2.2.4 Predicates

Unlike the actions previously described which modify the value of information
(buffer contents, storage device contents, or resource states), predicate actions prod
result that is used to determine the flow of execution in the algorithm of which they a
part of. To do this, predicate actions begin with a set of information that is used to m
decision, the type of which is specific to each type of predicate action (e.g., two inte
for use in an equivalence test). The predicate also requires a register, assumed to b
tialized, to record the result of its decision. When the predicate completes execution
inputs are left unchanged and the result register is in one of two or more predetermi
states. Predicate actions are required to execute atomically.

3.3 Representing Array Operations as Flow Graphs

Creating storage operations from a library of functions is a technique which ha
been in use for more than twenty years. The best-known example of this is thechannel
program approach used in the IBM System/370 architecture [Brown72]. At the time o
introduction, much of the internal workings of a disk drive were exposed to the syste
requiring external control of arm positioning, sector searching, and data transfer. Us
linear sequence of commands, channel programs isolated these details from users 
viding an abstract interface which was closer to that found in today’s SCSI drives
[ANSI91].

Similar methods for abstracting the details of disk array operations were recen
proposed in the distributed redundant disk array architecture called TickerTAIP [Cao
In TickerTAIP, the work required to maintain valid data encodings is performed bywork-
ers which are distributed throughout the array. To simplify the management of simult
neous actions occurring across the array, TickerTAIP uses a centralized table in whi
each entry contains a list of actions for a worker to execute. Once an array operation
tiated, each worker is responsible for sequencing its own activities.

3.3.1 Flow Graphs

Instead of using a table to represent an array operation, I propose the use offlow
graphs which provide a system with enough information to correctly sequence instru
tions without requiring an understanding of their collective effect [Aho88, Courtright9
As Figure 3-2 illustrates, flow graphs are traditionally used to illustrate program cont
flow betweenbasic blocks, sequences of statements which are: single entry, single ex
53
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and unconditional in their execution. The nodes of a flow graph are the basic blocks
program and the arcs represent the flow of control through the program. In this exam
control flows conditionally from blockB1 to blockB2. BlockB4 is executed when either
B2 or B3 completes.

When using flow graphs to model RAID operations, the actions described in
Table 3-1 are represented as distinct nodes of a graph. Figure 3-3 illustrates a smal
algorithm represented as a flow graph. Because each action is represented by a sin
node, the properties of a node (e.g. atomic failure) are inherited from the defining pr
ties of the actions.

Notice that the nodes in the graph of Figure 3-3 do not convey the context (e.g. 
old parity”) of each action. This is because the context is known only by the designe
the graph. Section 3.5.4 capitalizes upon this independence of context to permit the
struction of a general execution mechanism which is independent of array architectu

The execution of actions within an array operation is constrained by the presen
dependencies (control and data) which are represented by the directed arcs that co
the nodes of the flow graph. An arc is drawn from a parent node to a child node if ex
tion of the child is dependent upon the parent node. Because the type of dependenc
sented by the arcs will not be used to control execution, the arcs are left unlabeled.
Furthermore, a single arc may represent the presence of one or more data or contro
dependencies.

Figure 3-2 Flow graphs model program control flow

In this illustration, arcs connect the basic blocks (B1-B4) of a program which fol-
low each other in some execution sequence. In this example, whenB1 completes,
eitherB2 or B3 will be executed.

a = 2 * i
if a > x goto B3

x = x - a

y = h[2 * a]
z = h[a]

t = x
x = a
a = t

B1

B3B2

B4

else goto B2
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A control dependence exists between two actions when enabling the execution o
the child is conditional upon the completion of the parent. For example, the arc betw
theLock andMemA nodes in Figure 3-3 represents a control dependence from the lo
ing hierarchy which requires that parity locks be acquired prior to the acquisition of b
ers. Adata dependence exists between actions which share data in some way. Atrue data
dependence, also called aread-after-write (RAW) dependence, exists when an action pr
duces (writes) a value consumed (read) by another. The arcs from theRd nodes to the
XOR node are all true data dependencies. Conversely, ananti data dependence, also
called awrite-after-read (WAR) dependence, exists when an action overwrites a value

Figure 3-3 RAID level 4/5 small-write graph

This illustration presents the small-write operation, first described in Figure 2-9
and now represented as a flow graph. The nodes of the graph are pass/fail action
and the arcs represent the presence of control or data dependencies.

In this graph, theRd-XOR-Wr chain on the far right performs the read-modify-
write of parity. TheRd-Wr chains represent the reading of old data and the over-
writing of new data. The fact that parity is computed from the old data is repre-
sented by the presence of theRd-XOR arcs (true data dependencies). TheRd-Wr
arcs represent anti (read after write) data dependencies. TheLock andUnlock
nodes ensure that the operation runs in isolation.

Lock

MemA

Rd

Wr

Wr

MemD

Unlock

RdRd

XORWr ● ● ●

● ● ●
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viously used (read) by an independent action. The arcs from theRd to theWr actions are
examples of anti dependencies. Finally,output dependencies, also calledwrite-after-write
(WAW) dependencies, occur between actions that overwrite the same object. The pre
of the output dependence guarantees a predictable ordering of the overwrite actions

Unlike table-based representations, the visual information supplied in this repr
tation provides an immediate understanding of the internal sequencing of actions wh
compose an operation. Appendix A presents the flow graphs for algorithms required
support RAID levels 0, 1, 3, 4, 5, and 6 as well as parity declustering, chained declu
ing, interleaved declustering, two-dimensional parity, and EVENODD architectures.
Included in this discussion is a description of each graph’s structure as well as when
graph should be used.

3.3.2 Predicate Nodes

Normally, all nodes in a graph are executed as soon as their parents complete
ever, it is possible to create a graph in which some nodes are never executed. This 
accomplished through the use of predicate nodes. Apredicate node has two or more chil-
dren and, after completion, selectively enables one or more of the children for execu

The only additional structural constraint required to insert a predicate node into
graph is that any node which is a child of a predicate node may have no other paren
the predicate node. Also, the arcs which connect the predicate node to its children a
labeled to indicate which branch will be taken given the result of the predicate.

3.3.3 Simplifying Constraints

To simplify execution, I require that the graphs be acyclic. I believe this is a rea
able requirement because I am aware of no array algorithms which require loops. E
nating cycles does not eliminate predicate nodes and conditional execution. In the e
that the array controller receives a request which is too large to process as a single 
tion, the request can be decomposed and implemented as a collection of smaller op
tions.

Additionally, I require that all graphs arerooted graphs, meaning that all graphs
begin with a singleroot or source node. The source node has the property that it has no
parents. Similarly, I require the presence of a singlesink node, a node which has no chil-
dren. If a graph does not contain a single source or sink node, aNOP (no operation) node
can be inserted to create one. Adding an extraNOP (no operation) node to create a singl
source or sink has no effect upon the array algorithm represented by the graph.
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3.3.4 Graph Optimization

With the exception of arcs which connect a predicate node to its children, the ty
dependence represented by each arc is unimportant to the execution of the graph. T
fore, arcs which have the same source and sink nodes are considered to be redund
can be represented as a single arc. Furthermore, as Figure 3-4 illustrates, any contr
equivalent arc whose source and sink nodes are identical to those of a sequence of
nected arcs may also be removed.

Finally, function-preserving transformations used by compilers to eliminatedead
code andcommon subexpressions can be employed to optimize a flow graph [Aho88].
Common subexpressions, such as redundant store actions, may appear if multiple g
have been merged to form a single graph. Eliminating common subexpressions can
duce dead code, a chain of nodes which is not connected to the sink node of the gra
Figure 3-5 demonstrates the removal of a common subexpression and resulting dea
Dead code is eliminated by starting at the last node in the branch that has no childre
walking toward the source node, removing all nodes which have no true data depend
to their children.

Figure 3-4 Eliminating redundant arcs

Arcs represent the presence of dependencies (control or data) and are used to c
strain execution. If the arcs connect control-equivalent sequences of nodes, the
arcs are treated equally, implying that redundant arcs can be eliminated. In this
example, arcA-E is eliminated because of chainsA-B-D-E andA-C-E. However,
if node A was a predicate that enabled eitherA-B-D-E, A-C-E, or A-E, then this
optimization would not be possible.

A

B C

D

E

A

B C

D

E
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Figure 3-5 Function-preserving transformations

This example demonstrates the removal of a common subexpression (redundant
stores) and the subsequent elimination of the resulting dead code. Figure 3-5(a)
shows a code fragment which containsWr(4). For reasons of space and simplicity,
the dashed arcs represent dependencies to nodes not represented in this illustra
tion. In Figure 3-5(b), the duplicateWr(4) action has been eliminated, creating
dead code in the pathNOP-RD(4)-XOR which has no children. In Figure 3-5(c),
the dead code has been eliminated.

NOP

Rd(1) Rd(4)

Wr(1)

Wr(4)

XOR

Wr(4)

NOP

Rd(1) Rd(4)

Wr(1) XORXOR

Wr(4)

XOR

Figure 3-5(a): Original Flow Graph Figure 3-5(b): Common Subexpressio
Removed

Figure 3-5(c): Dead Code Eliminated

XOR

NOP

Wr(1)

Wr(4)

XORXOR
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3.3.5 Automating Correctness Verification

Flow graphs naturally model array operations in a form which is amenable to a
mated correctness verification. For example, Vaziri, Lynch, and Wing have usedmodel
checking to validate the correctness of some of the graphs presented in Appendix A
[Vaziri96]. This technique models an algorithm as a finite state machine and then exe
all possible orderings of the machine, verifying that the program invariants are satisfi
each step [Clarke82, Clarke94]. Correctness verification of flow graphs therefore req
the definition of the system invariants (e.g. even-parity codewords), the state change
imposed by each action in an operation, and the rules which govern graph execution

During the course of their study, error in the design of a RAID level 6 small-wri
algorithm (taken from [Gibson95]) was uncovered. This error (a write hole) would ha
led to data corruption in specific execution sequences.

3.3.6 Discussion

This section described the rules for modeling array algorithms as flow graphs g
a set of actions and their interdependencies. Included in this description were the m
tory structural constraints as well as some suggestions for simplifying the structure o
graphs and reducing the amount of work within a graph. Additionally, the design of fl
graphs can be exhaustively tested during the design phase, which should lead to re
development costs.

Given a small library of actions which access symbols, manipulate resources, 
pute check information, and implement basic predicates, flow graphs can be used to
struct arbitrary array algorithms. As a demonstration, Appendix A presented twenty 
distinct flow graphs which are used in twelve disk array architectures.

In the remainder of this chapter, I describe the process of executing graphs. Th
process includes recovery from node (action) failures. In Section 3.4, I dismiss exec
based upon forward error recovery because the constraints necessary to design gra
are known to be recoverable are not obvious and a significant amount of architectur
cific error-recovery code is required. In Section 3.5, I describe a mechanism for exec
graphs which guarantees that each graph is executed atomically and imposes no str
constraints upon the graphs. This guarantee is made by requiring that the effects of
action may be undone at any point prior to the completion of the algorithm. Later, in
Chapter 5, I relax this requirement by inserting a barrier into each graph and only re
that actions executed prior to the barrier be undoable.
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3.4 Execution Based Upon Forward Error Recovery is Unreasonable

Based upon conversations with representatives of six vendors who in 1995 we
lectively responsible for over one-half of the world-wide disk array revenue [Disk96a
is my suspicion that the majority of the code used to implement redundant disk array
trol mechanisms is currently based upon some form of forward error recovery. These
sources inform me that 50-60% of the software in disk array control mechanisms is
devoted to error recovery. In a recent article inComputer, Friedman reports this fraction to
be as high as 90% [Friedman96]. The unexpectedly-large size of this fraction is a di
consequence of the fact that any system which employs forward error recovery is req
to provide a unique recovery procedure for each distinct error scenario.

In this section, I demonstrate that the burden of this approach upon the program
who is required to have an intimate understanding of an array architecture in order to
antee correct operation, is significant. For instance, array operations may need to be
strained in non-obvious ways to avoid thewrite hole, a failure which results in the
unexpected loss of user data. This leads to the secondary problem of validating arra
ware as correct—exhaustive testing is necessary to ensure that each error scenario
been identified and a correct recovery procedure has been implemented.

When an error is encountered during the execution of an operation in a disk ar
based upon forward error recovery, the array control mechanism will attempt to com
the operation by altering the algorithm currently being executed. As an example,
Figure 3-6 illustrates a write operation which is initially implemented using the small

Figure 3-6 Forward error recovery

In this example, the small-write algorithm is scheduled to perform a write opera-
tion. The operation begins by allocating a buffer and scheduling reads of old data
and old parity. When the read of old data fails, the read-modify-write of parity can
not be performed because it relies upon the old value of data. Therefore, the arra
controller allocates additional memory, reads the remaining data symbols, and
computes new parity as the XOR of the data symbols.

allocate memory
read old parity
read old data
XOR: new data, old data, parity
write new data
write new parity
deallocate resources

mark disk as “failed”
discard old parity
allocate additional memory
read remaining data symbols
XOR: new data, remaining data
write new parity
deallocate resources

error induces algorithm change
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write algorithm. When the operation begins, all disks in the array are presumed to be
out fault. As the operation attempts to read the old values of data and parity, the dis
taining old data is discovered to be bad, resulting in the failure of the read of old dat
the subsequent inability to compute new parity. Parity is computed by altering the al
rithm: the remaining data symbols in the codeword are read and new parity is compu
the XOR of all data symbols in the codeword.

Clearly, the corrective procedure necessary to recover from an error is a functi
the type of error and the context in which it occurred. For instance, in the example o
Figure 3-6, if the read of old parity (instead of old data) had failed, the algorithm woul
changed to simply write the new data to disk and ignore parity.

3.4.1 Correct Design is Not Obvious

Providing recovery from all error scenarios is not as trivial as the example of
Figure 3-6. In some instances, it is possible to construct algorithms which generate 
codewords but leave the array in a state from which it can not recover if execution is
rupted at certain points in time. That is, array algorithms may need to be constrained
non-obvious ways to avoid the write hole.

As an example, consider an operation using the reconstruct-write algorithm. In
example, illustrated in Figure 3-7, user dataD0, D1, andD2 are to be written to an array in
which the disks are initially presumed to be free from faults. New parity is computed
readingD3 and XOR’ing its contents with the new values ofD0, D1, andD2. This algo-
rithm clearly must complete the read ofD3 and compute new parity before a new value 
P can be written to disk. What is not obvious is that the read ofD3 must be completed
before the writes ofD0, D1, andD2 may commence.

3.4.2 Exhaustive Testing is Required

Figure 3-7 provides a classic example of the subtle way in which operations wh
appear to be implemented correctly can lead to data corruption. In fact, in our early i
mentations of array software, we initially overlooked this very example. In addition to
being non-obvious, it was difficult to detect during testing, even when the test was
designed specifically to exercise this algorithm. The unconstrained algorithm behave
rectly in fault-free as well as many degraded tests. Only after repeated testing was t
ing just right so that the scenario described in Figure 3-7 was reached. Despite the fa
the error was rare, it resulted in the unexpected loss of data.

Verifying code constructed in this fashion requires exhaustive testing—knowing
the actions which compose an array algorithm are implemented correctly is not enou
61
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ensure that the algorithm itself is implemented correctly. Relying upon finding bugs la
the development cycle, rather than at design time, is expensive. Boehm, in his bookSoft-
ware Engineering Economics, estimates the cost of finding a bug during the test phase
a project to be four to ten times the cost of finding it during the design phase [Boehm

3.4.3 Recovery Code is Architecture-Specific

In the beginning of this section, I presented estimates which indicated that the
majority of the array control software is devoted to error recovery procedures. This i
likely due to the fact that implementations based upon forward error recovery require
case-by-case treatment of each error. Unfortunately, extending an existing implemen
by adding new array algorithms will require the addition of new error recovery code
because existing error recovery code can not be reused.

Figure 3-7 Constraining execution to ensure forward recovery

In this example, new data (0, 1, 1) is to be written to disks containing the symbols
D0, D1, andD2. The symbolD3, whose value is currently “1,” should not be
affected by this operation. Because all of the disks in the array are presumed to b
without fault and over one-half of the symbols in the codeword are to be modified
the reconstruct-write algorithm of Figure 2-10 is selected to carry-out the write
operation. In this example,D0, D1, andD2 have been written to disk and the read
of D3 has failed due to a catastrophic disk failure, meaning thatP can not be
updated. The value ofD3 has been corrupted because the current value ofP does
not reflect the changes inD0, D1, andD2. Because the old values ofD0, D1, and
D2 are not known, the codeword can not be restored to its original state and the
corruption is therefore permanent.

0 1 010
initial state:

final state:

D0 D1 D2 D3 P

D3 = 1

0 1 011D3 = 0!
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3.5 Simplifying Execution Through Mechanization

Once action-specific error recovery is removed from the structure of the graph,
possible to define and implement a general execution mechanism which automates
ery from errors due to failed actions [Courtright94, Courtright96b]. This mechanism,
together with a library of actions, will allow rapid implementation of array operations

This section introduces such a mechanism which employs an undo/no-redo rec
scheme, similar to the approach used in the System R recovery manager [Gray81]. 
approach, if an action fails at any time during the execution of a graph, the execution
mechanism will automatically undo the effects of all previously completed actions. T
information necessary to perform the undo is stored in a log as the graph is execute
deleted from the log when the graph completes execution.

To guarantee correct operation, the approach described in this section assume
all actions are both atomic and undoable. These requirements are later relaxed in
Chapter 5, allowing elimination of much of the performance and storage overhead
required to achieve undoable actions. Finally, to tolerate crashes or other faults whic
interrupt execution, the undo functions must be idempotent. Crash recovery is descri
Section 3.6.2.

3.5.1 Undoing Completed Actions

Removing the effects of failed graphs requires the ability to undo previously co
pleted actions. This is accomplished using the undo log, previously described in
Section 2.3.3. By guaranteeing that enough information exists to undo all completed
actions in an graph, the system is capable of providing recovery without knowledge o
context in which the actions were used.

The information necessary to perform this recovery is recorded in the undo log
eitherlogical (e.g. “computed new parity”) orphysical (e.g. “wrote the following informa-
tion to disk: 011001...2”) values. Generally, logical logging consumes less space and m
even require less work than creating and recording physical log entries.

The actions described in this section, the actions used to undo them, and the d
stored in the undo log, are summarized in Table 3-2. The remaining subsections brie
explain how common array actions can be undone.
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3.5.1.1 Symbol Access

Assuming non-destructive read actions, undoing a read action is trivial: do noth
This simple procedure is effective because the buffer that symbols are copied into b
actions is presumed to be uninitialized and there is no initial value to be restored.

Undoing a disk write is equally straightforward, but more expensive in terms of
formance. A disk write is undone by restoring the sectors which were overwritten wi
their original data. Therefore, a copy of this data must be placed in the undo log. Un
nately, to generate the copy, the original data must first be read from disk. This minim
requires an additional full disk rotation (8.4 ms on a 7200 rpm drive). Because disk u
tion is a precious resource in the array, it is important to use the disks in an efficient
ner. Therefore, it is desirable to eliminate the requirement that disk writes are undoa
something I examine in Chapter 5.

Parity logging algorithms require two actions:append parity update andappend
parity overwrite. Because the log is defined to be append only, undoing an append req
appending a record which undoes the previously appended record at a later time wh
log is processed in FIFO order.

Undoing the parity update can be undone by simply appending another copy o
same record. This second record will cancel the first record in the same manner des
in EQ 3-2 (transition logging). Undoing a parity overwrite is a bit trickier. The presenc
a parity overwrite record in the parity log causes all previous parity information, whe
it be stored on disk or in the parity log, to be ignored. Undoing a parity overwrite rec
could be performed by appending an additional parity overwrite record which contain

Table 3-2 Methods for undoing actions

Action Undone By Log Data

Rd Copy none

Wr Wr previous disk contents

MemA MemD buffer pointer and size

MemD MemA buffer size

Lock Unlock lock name

Unlock Lock lock name

XOR XOR none

Q Q none

Q Q none

LogUpd LogUpd buffer contents or buffer pointer, parity address

LogOvr LogInv parity address
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original value of parity. Because this previous value of parity is not known without sc
ning the entire parity log, creating an undo record is prohibitively expensive.

Alternatively, a third append action,append parity invalidate, could be defined to
invalidate the previous overwrite record in the log. To guarantee that the correct reco
undone, an operation must lock the parity log, allowing no other operations to appen
records, until it completes.

3.5.1.2 Computation

Similar to actions which read symbols from a device, the undo of actions which
compute new symbols is trivial if the result of the computation is written to an uninitia
ized buffer. If, however, the result overwrites one of the parameters provided to the a
performing the computation, the original contents of that buffer must be restored. Thi
be accomplished by logging either physical or logical information, depending upon t
type of action to be undone. For example, the XOR function is self-inverting, meaning
XOR actions undo themselves. If an action XOR’d the contents of three buffers and s
the result by overwriting the contents of one of the three:

(EQ 3-1)

the action could be undone either by restoring the original physical data (copy origin
data into ) or by recomputing the original data:

(EQ 3-2)

This type of logging, using a self-inverting action to undo itself, is referred to by Gray
transition logging and can complicate crash recovery procedures which assume that
actions are idempotent [Gray93].

3.5.1.3 Resource Manipulation

Allocation of resources is easily undone by simply deallocating them. Because
resource allocation actions are generally followed by deallocation actions in the sam
graph, the information required to perform the deallocation is available to be entered
the undo log without additional work.

B2new B2original B1 B0⊕ ⊕=

B2

B2original B2new B1 B0⊕ ⊕=
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Similarly, undoing a deallocation requires the (re)allocation of the resource. Ho
ever, when using allocation to undo resource deallocation actions, great care must be
to ensure that the locking hierarchy is not violated. Out-of-order resource allocation 
result in deadlock, as illustrated in the example of Figure 3-8.

Therefore, a general recovery scheme which undoes the effects of a sequence
actions must guarantee that the allocation of resources strictly obeys the locking hier
One very simple method of avoiding deadlock during rollback is to employ theDAG lock-
ing protocol. This protocol requires the sequential release of resources in the reverse
in which they were acquired, ensuring the preservation of the locking hierarchy durin
rollback [Gray93].

Another very simple solution is thetwo-phase locking protocol that requires that
once a graph releases a lock, it cannot acquire any other locks. Applying this to our 
diate problem, in which the undo process can begin at any point in the graph, require
no resources are released until the operation is complete.

3.5.1.4 Predicates

The by product of a predicate action is information which determines the flow o
execution. Predicates do not directly affect symbol values or buffers and therefore lea
visible state to be undone.

Figure 3-8 Deadlock resulting from out-of-order allocation during recovery

OperationO1 releases the locksL1, L2, L3, andL4 and later fails, prior to comple-
tion. This failure causes the recovery manger to work backward through the undo
log, undoing the effects of each action in LIFO fashion. In this example, the
“release” actions are undone using “allocate” actions. At the same time, an inde-
pendent operation,O2, attempts to allocate locksL1 throughL4. Because the
recovery manager has acquired the locks out-of-order, deadlock results.

O1:

time

Recovery Manager:

AL1 → AL2 → AL3 → AL4O2:

AL4 → AL3 → AL2 → AL1

RL1 → RL2 → RL3 → RL4 → failure
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3.5.2 Node States and Transitions

Each node in a graph has three fields, summarized in Table 3-3:do action, undo
action andstate. Similar to the DO and UNDO programs described in Figure 2-2 on
page 17, thedo action is used during normal execution and theundo action is used during
error recovery. Each of these fields contains the name and parameters of an action.

Table 3-3 Node fields

Node Field Description

do action function executed during normal processing

undo action function which removes the effects of the do action

state current state of the node
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Each node in a graph may be in one of the seven states summarized in Table
The allowable transitions between these states are illustrated in Figure 3-9. When a
is initially submitted for execution, all nodes are in thewait state, meaning that all of the
actions represented by the graph are in their pre-execution states as defined in
Section 3.2.2. A node enters theskip state if all of its parents are in theskip state or if its
parent is a predicate node that has determined that the branch which contains the no
not be executed. Once entered, a node will never leave theskip state. The actions corre-
sponding to nodes in theskip state are in their pre-execution states.

Nodes in thefired state represent actions that have begun, but have not comple
execution of their corresponding actions. A node enters thefired state if at least one of its
parents is in thepass state and the remainder of its parents are in either theskip or pass
states. When a node enters thefired state, itsdo action is executed. The node remains in
thefired state until thedo action completes. The node then enters either thepass or fail
state, depending upon the outcome of this execution.

If a node fails, the graph must fail atomically. This requires that the effects of p
ously-completed nodes be undone. When a node is to be undone, it first enters therecov-
ery state which indicates that the node’sundo action may begin execution. Only nodes
that have successfully completed execution enter therecovery state. Once theundo action
completes, the node enters theundone state, which signifies that the state changes ma
by the execution of the (do) action associated with that node have been undone. This 
cess of failing a graph atomically is described in further detail in Section 3.5.4.

3.5.3 Sequencing a Graph

Execution of a graph begins with thesource (head) node and completes with thesink
(tail) node. This direction of execution, from source to sink, is referred to asforward exe-
cution throughout the remainder of this dissertation. Assuming that the graph does n
contain any predicate nodes and that all nodes complete successfully, this process 

Table 3-4 Node states

Node State Description

wait blocked, waiting on parents to complete

fired execution of do action in progress

pass execution of do action completed successfully

fail execution of do action failed

skip node will not be executed

recovery execution of undo action in progress

undone previously executed node has since been undone
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ues until the sink node enters thepass state. At this point, all nodes are in thepass state,
the execution of the graph is complete, and the operation is declared to be successf
Additionally, any information recorded in the undo log for this graph may be deleted.

3.5.3.1 Sequencing Graphs with Predicate Nodes

If a graph includes a predicate node, some nodes may not be executed. Again
ward execution begins with the source node and concludes with the sink node. Assu
again that no errors are detected, the graph completes and undo information may b
carded. Nodes which were skipped will be in theskip state; all remaining nodes will be in
thepass state.

Figure 3-9 Node state transitions

All nodes in a graph begin in thewait state. When a graph successfully completes
execution, all nodes are in either thepass or skip states. Therecovery and
undone states, described later in Section 3.5.4, are reached only if the operation
fails.

wait

fired skipped

fail pass

recovery

branch not takennode ready to be executed

execution failed execution successful

execute node’s undo action

undone

node undo complete
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The sequencing of a graph which contains a predicate node is illustrated in
Figure 3-10. In this example, a predicate node (Probe) is used to determine if a data bloc
resides in a read cache. The scenario illustrated in Figure 3-10 assumes that the blo
found in the cache; therefore, theRd node, which loads the symbol from disk, is not exe
cuted. Unconditional execution resumes when theXOR node is reached. Because all of
theXOR node’s parents have completed (are in the either theskip or pass state) and at
least one of its parents is in theskip state, theXOR node is executed rather than skipped

3.5.4 Automating Error Recovery

When a node fails, it enters thefail state and forward execution of the graph is su
pended, meaning that no more nodes are allowed to leave thewait state. Before error
recovery may commence, all nodes that are in thefired state are allowed to complete exe
cution. At this point, all nodes in the graph are in either thewait, pass, done, or fail
states. Nodes in thefail state leave the modules that they modify in either an inaccess
or an unchanged state. Because of this, error recovery is limited to undoing the effe
the previously-completed nodes (i.e., those nodes that are in thepass state).

Figure 3-10 Sequencing a graph which contains a predicate

TheProbe node is a predicate, conditionally enabling execution of theRd node.
In this example, theProbe node returned a “hit” and theRd node was not exe-
cuted. The illustration presents the status of each node after the graph has com-
pleted forward execution.

MemA

hitmiss

pass

Rd
pass

Probe
pass

Rd
skip

XOR
pass
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This process is easily performed by simply working backward through the grap
executing theundo actions. The graph is now executed from the point of failure back to
the source node, in a process hereafter referred to asbackward execution. This process is
equivalent to undoing the effects of an aborted transaction by working backward thro
an undo log.

The rules for sequencing this process are straightforward. All nodes which are 
pass state will need to be undone. Any node in thepass state whose children are all in
either theundone, fail, orskip states may enter therecovery state. When a node enters
therecovery state, itsundo function is executed and, when complete, the node enters 
undone state. The process is complete when the source node has been undone; at 
point, each node is in either thewait, skip, undone, or fail state and the effects of the
graph have been completely removed. The array controller is now free to submit a n
graph for execution.

As an example, assume that a user has requested that a single block be writte
RAID level 5 array. Because the array is in the fault-free state and the request is sma
array controller selected a small-write graph (similar to the one in Figure 3-3) and su
ted it for execution. During execution, one of theRd actions fails as illustrated in
Figure 3-11. The execution engine, detecting that the node entered thefail state, suspends
forward execution of the graph and begins backward execution. When backward exe
completes, the effects of the graph will be completely undone. Because a fault is no
present in the array, the array controller will retry the user’s request, selecting a deg
write graph which does not depend upon the failed disk.

3.5.4.1 Coping With Deadlock

Because error recovery is performed on a per-operation basis, operations can
individually aborted. This means that if deadlocked operations (e.g. because of conte
for shared resources) can be detected, the deadlock can be eliminated by aborting o
more operations and then retrying them later. A common technique for detecting dea
in a system is to use awaits-for graph which models the resource ownership and reque
in a system in which concurrent processes compete for shared resources [Bernstein
illustrated in Figure 3-12, the waits-for graph is a directed graph in which the nodes 
sent operations waiting on shared resources. Arcs are drawn for each request from 
operation waiting on the resource to the operation which holds the resource. The pre
of a cycle in a waits-for graph indicates that a deadlock condition exists.

In this example, three operations are competing for exclusive ownership of lockL1,
L2, andL3. Because the operations were allowed to allocate the locks in an arbitrary o
operationsO1 andO2 have deadlocked. This situation could have easily been avoided
locking hierarchy had been established which constrained the order in which locks w
acquired. For instance, if the locking hierarchy required that operations acquire lock
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numerical order (e.g.L1, L2, L3), then deadlock betweenO1 andO2 would not be possible
(both operations would compete forL1 and the winner would be free to acquireL2).

Once this deadlock condition has been detected, it can be resolved by aborting
O1 or O3. Aborting either one of these operations will cause its resources to be relea
breaking the cycle in the waits-for graph. The other operation will then complete and
aborted operation can be retried.

Figure 3-11 Error recovery from backward execution

The failure of theRd node, indicated in bold, causes forward execution to halt.
Once theWr node which was in thefired state completes, backward execution
begins, undoing the previously completed actions by executing the correspondin
undo functions from Table 3-2. In the illustration on the right, theMemA node is
in therecovery state which implies that its undo function is currently being exe-
cuted.
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3.5.5 Distributing Graph Execution

It is possible to distribute the execution of a graph across multiple execution un
graph may be pruned arbitrarily with a single node being the minimum unit which ma
assigned to a processor. However, when the graph is pruned, the number of arcs wh
cut will directly determine the amount of communication overhead required among t
processors. First, as Figure 3-13 illustrates, a message will be required for each dep
dence between graph segments executing on distinct processors. Second, if each pr
maintains a local undo log, each processor will need to know when a graph complet
that its undo information may be discarded.

Additional communication is required when an error occurs, requiring all proces
to cease forward execution and commence backward execution. Because each sub
can be recovered individually, no synchronization between processors is required to
esce the entire graph. Instead, each subgraph is individually acquiesced before it can
backward execution.

Figure 3-12 Detecting deadlock with a waits-for graph

In this waits-for graph, each node represents an operation and each arc indicates
that an operation is waiting on a resource held by another operation. In this exam
ple, operationsO1 andO2 are deadlock because each is blocked, waiting on the
other. This condition is indicated by the presence of theO1-O2-O1 cycle.

O1

holds L1

waits for L2 & L3

O2

holds L2

waits for L1

O3

holds L3
L3

L2
L1
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3.6 Fault Model

In the previous chapter, I discussed the physical fault models that characterize
devices commonly used to implement redundant disk arrays. These devices are ass
to offer failfast behavior. In this chapter, I described a programming abstraction for re
senting the algorithms that perform array operations. These algorithms are compose
device actions that are abstracted with a wrapper that detects, diagnoses, and isola
device faults. If possible, this wrapper also provides recovery, reconfiguration, and r
of the fault; otherwise, the fault is declared to be unrecoverable and the failed region
the device are removed from service until an explicit repair operation is scheduled a

Figure 3-13 Pruning a graph for distributed execution

This graph has been pruned with cutsA-A’ andB-B’ to allow execution on three
separate processors. The processor responsible for executing node4 will need to
communicate three times with the processor executing nodes2, 5, and7: once to
wait on a message that node2 has completed execution, once to send a message
that node4 has completed execution, and once to wait on a message that node 7
has completed, indicating that the graph has completed and the local undo log
may be discarded. Similar communication is required between the processor exe
cuting nodes1, 3, and6 and the processor executing nodes2, 5, and7.

1

2

5

7

3

64
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B’
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A’
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completed. The wrappers are designed to guarantee atomicity of operation on each
bol. If a node that operates on multiple symbols (e.g., a multi-sector write to disk) en
ters a failure in processing some of the symbols (e.g., a single sector fails), the unaf
symbols are either modified correctly or are left unchanged.

In order to guarantee that the fault model of the disk array is preserved, I now
describe how these physical faults are modeled by the abstract programming repres
tion and execution mechanism described in the preceding sections. I begin by exam
node failures that correspond to the failure of some device. For the modeling and ex
tion techniques described in this chapter to be generally applicable, it is imperative t
they do not inherently weaken fault models that are defined for specific array archite
tures. Furthermore, it is necessary that the programmer understand the mapping of 
physical faults into the logical abstractions presented here in order to implement a fa
model.

I conclude this section with a discussion of failures that interrupt the execution
graphs but do not correspond to node failures. Specifically, I examine power, crash, 
controller failures. A particular array implementation may survive any combination o
these types of faults; therefore, it is important that the mechanism described here su
all of these failure types.

3.6.1 Node Failures

Device failures are detected by nodes during the execution of a graph. Recove
device failures are hidden by the nodes from the mechanism that executes the grap
their effects are therefore unnoticed outside the domain of the node. Unrecoverable 
failures result in the failure of a node. Nodes that fail do so atomically, leaving all sym
being acted upon either unchanged, or marked as failed. Because the effects of all n
are defined to be undoable, the effects of previously-completed nodes can be remov
permitting the graph to fail atomically. At this point, the system appears to the world 
a fault was detected on an idle system. There is no intermediate state to resolve, an
array is able to easily tolerate device failures as defined by the redundancy of the par
array architecture. In short, a device fault may result in the failure of a node. Node fa
cause the atomic failure of a graph, with all observable states being either unchange
marked as failed.

For example, if a write operation is initiated on a RAID level 6 array which durin
its execution encounters the failure of a disk sector, the write operation will suspend
cution, permitting all in-flight nodes to complete but not scheduling new nodes for ex
tion. When execution has acquiesced, the nodes which completed successfully are u
The node that failed has marked the regions of the device that failed as inaccessible
has restored the original values to the remaining regions of that device. When the un
all previously-executed nodes is complete, all visible state changes from the failed g
have been removed. Because the array is assumed to be initially in a consistent sta
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process has returned the system to a state that is free from error. The array controll
now retry the write operation, possibly using a new algorithm that avoids the failed se
Additionally, a repair operation can be scheduled to return the array to a fault-free st

As long as the execution mechanism is known to be functioning and the nodes
known to operate correctly, device failures are easily handled in this general fashion
spective of type or device. In this dissertation, I do not address nodes or execution m
nisms that do not behave correctly, other than to assume that errors in their design w
result in failstop behavior. I do address failures that result in the interruption of the e
tion of a graph.

3.6.2 Crash Recovery and Restart

If the execution of a graph is interrupted due to a controller failure, loss of powe
some other fault, acrash is said to have occurred and a process calledrestart is required to
bring the system back to life and restore consistency. Because a crash is an asynch
event, it is likely that a number of graphs will be incomplete when restart is initiated—
thermore, some of these graphs may have been executing in the forward state and 
may be executing in the backward direction. Because redundant disk arrays are not
gated to fail atomically with respect to crashes (Chapter 2), the restart procedure is 
sary only to prevent the appearance of a write hole. However, it is possible to make 
array fail atomically when a crash occurs by making the entire undo log durable, gua
teeing that the restart procedure will be able to undo the effects of all operations wh
were executing at the time of the crash.

Assuming a single-fault-tolerant array (i.e. the array does not survive simultane
disk and power failures), guaranteeing the semantics described Chapter 2 requires:

1. Each codeword in the array is in a consistent state, where “consistent” impl
legal codeword (e.g., even parity).

2. Operations interrupted by the crash will not affect the visible state of unrelat
user regions.

3. Operations interrupted by the crash will reach completion (pass or fail).

The most simplistic restart procedure, common in systems which are not capa
surviving power failures without loss of all controller state, is to make each codeword
the array consistent by sweeping through the entire array and manually updating the
information if the codeword is found to be inconsistent. This process, commonly refe
to as “scrubbing the array” can take several minutes for an array of even modest siz
process can be shortened if the assumption that the host will notify the array control
which operations were outstanding at the time of the crash, eliminating the need for
controller to examine all codewords in the array. Similarly, the array controller could
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devote a modest amount of nonvolatile memory (4KB) to recording this information
locally [Symbios96].

Finally, it is possible that the restart procedure itself can be interrupted by a cra
implying that the restart procedure may be executed a number of times before being
allowed to reach completion. Therefore, the restart procedure must be idempotent a
nodes of a graph must be guaranteed to have “exactly once” semantics [Gray93]. Th
be accomplished by either making each action idempotent or testable, meaning that
system is able to discern whether the action has been executed or not.

3.6.3 Controller Failover

In a system with redundant controllers, if a controller fails due to a permanent f
a process known ascontroller failover is used to transfer the work of the failed controlle
to a surviving controller. This process includes restarting the work which was in prog
on the failed controller. To do this, the undo and redo logs of each controller must be
ble to the surviving controllers, either by placing it in a central location (a disk) or by 
roring it in a second controller. Given the contents of the failed controller’s logs, the
surviving controller applies the standard restart procedure and then continues norm
cessing.

3.7 Summary

Instead of relying upon ad hoc methods for creating redundant disk array softw
this chapter has introduced a structured approach which has the advantage that it is 
(e.g. not specific to array architecture), does not require hand-crafting or analysis of e
is amenable to automated correctness verification, and can be extended to provide 
recovery from crashes. By isolating action-specific error recovery, array-level error re
ery has been automated and the previous dependence upon a hand-analysis of arra
cific error scenarios has been eliminated.

Array algorithms are represented as flow graphs, directed acyclic graphs whos
nodes are the actions, such as a disk write, which perform work in the system, and w
arcs are the dependencies, control or data, between these actions. Section 3.2 prese
rules for constructing the actions, Section 3.3 presented the rules for constructing th
graphs, and Appendix A demonstrated that from only a small set of actions, a comp
library of flow graphs which implement the most popular redundant disk array archit
tures is easily created.
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Executing redundant disk array operations represented as flow graphs is easil
mechanized. If the nodes of a graph are atomic and undoable, a graph can be execu
fashion similar to transactions, providing atomic failure of the graph and automated r
ery from errors. Furthermore, because the execution mechanism is general, the task
ifying the implementation is limited to ensuring that the infrastructure (actions and
execution mechanism) is correctly implemented and that the graphs are correctly
designed—there are no case-by-case recovery procedures to validate. Finally, if the
log is made durable, array operations can be made to fail atomically in the event of a

Chapter 4 introduces RAIDframe, a framework for prototyping disk arrays whic
based upon the paradigms (modular software, node/graph programming abstraction
mechanized execution) described in this chapter. Because creating undo informatio
actions such as a disk write may be expensive (a full disk rotation is required), Chap
demonstrates that the requirement that all nodes are undoable may be relaxed. Usin
RAIDframe, the performance consequences of requiring all nodes to be undoable is
ied and a novel method for eliminating the requirement that all actions, particularly t
expensive ones, is introduced.
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Chapter 4: RAIDframe: Putting Theory Into Practice

This chapter introduces RAIDframe, a software package for prototyping redund
disk arrays, developed by researchers at Carnegie Mellon’s Parallel Data Laboratory
mid-1990’s [Courtright96a, Courtright96b]. One of the principal research thrusts of th
Parallel Data Laboratory (PDL) is the exploration of new redundant disk array archit
tures [Holland94, Gibson95]. RAIDframe was developed to provide researchers with
easily-extended platform for implementing and testing new redundant disk array arc
tures. A thorough examination of RAIDframe can be found in:RAIDframe: Motivation,
Theory, and Implementation [Courtright96c].

RAIDframe is based upon the approach introduced in Chapter 3: modular desi
modeling operations as flow graphs, and automating error recovery. At the time of th
writing, RAIDframe supports RAID levels 0, 1, 4, and 5 [Patterson88] as well as pari
[Holland92] and chained [Hsiao90, Hsiao91] and interleaved declustering [Copeland
array architectures. RAID level 6 [RAB96], EVENODD [Blaum95], and parity logging
[Stodolsky94] are under study. I present RAIDframe as evidence that array software
structed using this approach is not only feasible, but desirable.

In this chapter, I introduce the internal structure of RAIDframe and the fundame
design decisions that guided its evolution and affect the nature of studies conducted 
dissertation. I then describe our experiences with creating and modifying array arch
tures, revealing that modular code and automated recovery from errors allowed new
architectures to be implemented with only minimal code changes. The chapter conc
with an examination of the efficiency of RAIDframe, comparing the results obtained
through microbenchmark studies with those predicted by analytic models as well as 
comparisons to a hand-crafted striping (nonredundant) driver. Later, in Chapter 5, I u
RAIDframe to evaluate the relative performance of various error recovery schemes.

4.1 Motivation

Historically, researchers studying redundant disk arrays have been forced to ev
new architectures using either analytic or simulation methods [Blaum95, Cao94, Ch
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Lee91, Menon93b, Mogi94, Patterson88, Savage96, Stodolsky94]. Chapter 2 descr
variety of these architectures, most of which have never been implemented beyond 
first-order modeling required for event-driven simulation. In short, researchers were 
ducing new architectures and evaluating their performance, but were not demonstra
implementors the feasibility of constructing working prototypes.

In an attempt to bridge the gulf between simulation models and concrete imple
tations, Ed Lee and others at the University of California’s Berkeley campus develop
event-driven simulator which they calledraidSim [Chen90, Lee90a]. By drawing code
from the Sprite operating system [Ousterhout88], raidSim was designed to allow the
that implemented an array architecture in a simulation environment to be based upon
from a working system. This gave researchers the opportunity to analyze and refine
array architecture in a relatively-simple environment that was isolated from the comp
ties of a working system. Once the implementations was stabilized, the resulting cod
could be ported back into the real system. Since it’s introduction, raidSim has been 
publicly available [raidSimFTP] and was used extensively by Holland in his studies o
arrays in which a disk has failed [Holland94].

We see raidSim as an important step toward the ability to rapidly prototype and
uate new array architectures. While raidSim did reduce the labor required to move e
tion from the simulation to production environment, it did not fully capitalize upon the
similarities between array architectures beyond data layout and encoding: raidSim w
simply an event-driven simulator which provided an interface similar to that used by 
Sprite operating system.

In 1993, Garth Gibson, Mark Holland, Daniel Stodolsky, and I realized that con
structing a framework designed specifically to reduce the overall labor of defining, im
menting, and evaluating array architectures could greatly benefit our work. Following
lead of raidSim, we isolated functions that controlled data layout and encoding. Furt
more, we developed a library of pass/fail actions as described in Chapter 3, a gener
method (flow graphs) of composing array operations from them, and an execution m
nism that automated recovery from errors, eliminating the need to develop architectu
specific error-recovery code. The framework we developed, which we calledRAIDframe,
allows architectures to be evaluated in each of three environments without the need
code changes: (1) an event-driven simulator, (2) a user process which communicate
real disks through their raw device interface, and (3) as a device driver installed in a U
kernel.
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4.2 Architecture

The initial goal we established for the RAIDframe project was to simplify the ta
of implementing new redundant disk array architectures. Our basic approach was co
tional: partition the architecture of RAIDframe into modules that are known to chang
orthogonally with array architecture. Because we were interested in implementing a
ety of array architectures, we desired clear methods of reusing existing code to the 
possible extent. This meant not only reusing actions such as “disk write” that are com
to many array architectures, but also collecting and isolating as much architecture-sp
code as possible. Therefore, we designed RAIDframe to execute array operations in
eral manner in which the execution of graphs, including the recovery from node failur
automated, irrespective of array architecture.

4.2.1 Design Decisions

As with any design, we made a series of decisions that affected the scope of th
project, allowing a balance between several factors (in our case, efficiency and com
ity) to be achieved. First, we simplified our disk fault model to recognize only catastro
disk faults. We easily justified this because RAIDframe is intended to be strictly a pr
typing framework and our foreseeable studies do not require the discernment of sect
catastrophic disk faults. However, should the need arise, it is possible to extend RAI
frame to distinguish the failure of an individual sector by incorporating additional map
record the locations of the faults, so the fault model can be expanded at later time.

Second, we offered no services dedicated specifically to the survival of power,
troller, or cooling faults. This limitation is due to the fact that RAIDframe is delivered a
software-only package which we hope will be eventually ported to a variety of platfo
Eliminating the requirement for nonvolatile memory was seen as a necessary measu
increase the likelihood of the future portability of RAIDframe. RAIDframe guarantees
that after a crash, its internal structures (not disk state) are returned to their original p
on state. The damage observed by a user who experiences a crash is largely determ
the specific architecture being implemented—if, for example, dynamic mapping struc
were being maintained in RAIDframe’s volatile memory, then a crash would result in
loss of these maps and the inability to access previously-written data.

Third, RAIDframe will never attempt to construct a graph which accesses more
a single parity stripe. As Figure 4-1 illustrates, this restriction greatly simplifies the g
selection and creation routines by eliminating the need for scatter-gather actions wh
would otherwise be necessary to overcome the discontinuity of data at stripe bound
Requests that map to multiple parity stripes are broken into two subrequests which 
executed concurrently. Each subrequest is executed independently and the entire op
is successful only if all subrequests complete successfully. In the event that one or m
81
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Figure 4-1 Processing parity stripes independently

A data unit is the minimum unit of access supported by the array. In this illustra-
tion, a four-disk RAID level 5 is presented in which the size of a strip unit is equa
to three data units. A read request which accesses data unitsD1 throughD8 is con-
tained entirely within a single parity stripe and can be implemented using three
disk actions: readD1-D2, readD3-D5, and readD6-D8. Each read action inde-
pendently transfers data into a buffer in a contiguous fashion, without the need fo
scatter/gather DMA. However, if the read request crossed a parity stripe boundary
for instance requestingD1 throughD10, routing data from the disk actions to a
buffer is not as straightforward—if a single disk action were used to readD1-DE
from Disk 0, the data unitsD1-D2 andDC-DE would need to be routed to discon-
tinuous regions of the buffer. To avoid the need for scatter/gather transfers, RAID
frame will break this request into two concurrently executed subrequests,read D1-
D8 and readDC-D10. Requests to the same disk (e.g. readD1-D2 and readDC-
DE) may be queued at the physical drive which is able to preserve performance b
eliminating the need for a second pair of seek and rotate positioning operations.
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the subrequests are unable to complete, the request fails with the traditional disk se
that some regions of the request were successfully written while others were not. Pr
als for achieving atomic failure semantics of the entire request (instead of at each su
quest) are discussed in Chapter 6. Disk actions that are divided into multiple actions
queued at a drive may be later reassembled by the drive to preserve seek efficiency

Fourth, an architecture implemented in RAIDframe should run with a minimal se
graphs. RAIDframe will attempt to construct a single graph for each parity stripe acce
in a request; however, we do not require that implementors provide graphs for all po
single-parity-stripe optimizations. If RAIDframe discovers that a single graph is not a
able to process an entire request, it will successively decompose the request into su
quests, first to a series of stripe unit, and then data unit, accesses. Therefore, an
implementor is only required to install graphs for all possible single data unit access
Graphs that perform specialized algorithms given specific size and alignment combi
tions (e.g. the RAID level 5 reconstruct write of Figure 2-10) may be added seamles
over time.

Finally, resource (buffers and locks) allocation and deallocation is performed o
side of graph execution, limiting the scope of rollback during backward error recover
RAIDframe provides simple mechanisms for locking address ranges and managing 
shared buffer pool. Instead of releasing and then reacquiring locks on operations tha
failed and are later retried, RAIDframe holds the locks until retried operations either 
plete successfully or fail in a manner in which retry is not possible (e.g. more than o
fault in a single-fault-tolerant array). Buffers are allocated when graphs are created, 
ing the fields of individual nodes to be statically initialized prior to graph execution. T
greatly simplifies the process of debugging the graph-creation routines. When a gra
completes, a generic routine is called to free the graph and all of the buffers that we
attached to it.

We made other decisions which affected the design of RAIDframe, such as the
ner in which we manage buffer pools, but I believe that the decisions presented here
the most significant in terms of differentiating RAIDframe from other implementation
The greatest deviations from array product offerings are the ones concerning the fau
model, specifically RAIDframe’s lack of support for sector and crash failures. Becau
RAIDframe’s fundamental purpose is for prototyping, I do not believe that these omi
sions limit the scope of RAIDframe’s original goal, to prototype new disk array archit
tures. Furthermore, production disk arrays generally do not survive crashes atomica
Tolerating sector failures simply requires the addition of mapping information to track
repair the failed sectors. Surviving crashes requires making the undo log durable and
well-understood techniques for ensuring that the failure of a single controller can be
ated [Chen94, Gray90b, Menon93a].
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4.2.2 Libraries

RAIDframe’s framework is partitioned into six primary modules that may be mo
fied by implementors. These modules (mapping, actions, graph, graph selection, dis
queueing, and disk geometry) contain the libraries from which arrays are implement
Themapping library contains routines that transform the logical block address of the u
into a set of physical disk locations. This process includes the identification of data a
check (e.g. parity) units as well as any faults observable by the access. Theaction library
contains the pass/fail actions, described in Section 3.2.1, out of which are created th
nodes of graphs. The graph templates, which are used to implement array operation
contained in thegraph library. Thegraph selection library contains the architecture-spe-
cific routines that identify the appropriate graph template to use given the mapping i
mation (location and size of access, location of faults, etc.). Examples of the graphs
initially used in RAIDframe and the criteria for their selection are presented in
Appendix A. These graphs were initially designed without any error recovery proced
and were later replaced by the graphs of Appendix B which rely upon the two-phase
recovery scheme described in Chapter 5.

Array performance has an intimate relationship with disk performance. RAIDfra
allows researchers to exploit this relationship by providing disk queueing and geome
libraries. Thedisk queueing library allows the number of outstanding requests issued t
single disk drive to be specified as well as the method for queueing disk requests (e
FIFO, CVSCAN, SSTF, and SCAN [Geist87]) before dispatching them to the drive. W
RAIDframe is used as a simulator, a variety of disk models are available in thedisk geom-
etry library. These models, taken from raidSim, allow researchers to study the sensi
of the array to a wide-variety of disk parameters, including those pertaining to: secto
out, zone layout, and seek profiling,

4.2.3 Processing a User Request

Through the use of a programmable state machine, RAIDframe permits the ba
sequence of events used to process user requests to be tailored to a specific array 
ture. Specific optimizations such as the caching of user requests could be inserted o
architecture basis. However, we have found that the general sequence illustrated in
Figure 4-2 works well for all of the architectures which we have implemented to date
instance, some architectures may support read caching and therefore may include s
probe a cache prior to commencing the process of selecting a graph and scheduling
work. Regardless of architecture, all control sequences are constructed with the pre
that requests are broken into graphs which are executed concurrently and fail atomic
a graph fails, the (sub)request is retried and, assuming the state of the array has cha
different graph is used. This process repeats until either all graphs complete succes
or a graph can not be selected.
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Figure 4-2 Mechanism for processing user requests

A user request only fails if a graph can not be selected. If a graph fails during exe
cution, it is released and RAIDframe automatically retries the request, beginning
with the graph selection process. Graph failures are the result of permanent fault
which cause the configuration of the array to be altered. Therefore, because grap
selection is a function of the presence of a fault, subsequent retries will select dif
ferent graphs.

Map Access/Acquire Locks

Select Graph

Execute Graph

Release Graph

User
Request
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graph execution failed

found a graph
did not find a graph
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In Figure 4-2, requests are first mapped to the array and the necessary locks (
write locks on parity ranges) are acquired. This step includes decomposing requests
span multiple parity stripes into subrequests, each of which access a single parity st
Next, using an architecture-specific graph-selection function, the appropriate type of
graph is identified for each subrequest. Recall from the discussion of design decisio
Section 4.2.1 that if a single graph is not available for each parity stripe, each subre
will be further subdivided. Graph selection will fail if the region being accessed conta
more disk faults than can be tolerated, or if RAIDframe’s graph library does not cont
the minimal complement of graphs necessary to access all single data unit access p
If any part of graph selection fails, all locks are released and the request fails.

Assuming graph selection is successful, the selected graph-construction routin
used to create instances of the desired graphs. The process of creation includes allo
buffers that are required by the graph. Once graph creation has completed, the grap
ready for execution. Graphs are submitted to an execution engine which guarantees
each graph will either complete successfully or fail atomically. When execution com-
pletes, the graphs and buffers attached to them are released. If all graphs complete
cessfully, the parity locks are released and the request is complete.

If the execution of a graph fails, using architecture-specific mapping routines, s
lar to those used in the original mapping function, the mapping information for the as
ated request is updated, allowing the presence of recently-detected faults to be
incorporated. The process described above is then repeated. The graph selection pr
re-entered, and a new (presumably different) graph is selected.

4.2.3.1 Locking

As Figure 4-2 illustrates, RAIDframe acquires locks prior to graph selection an
execution and therefore the graphs used to represent these locks are not included a
in the graphs used by RAIDframe. The locking step of Figure 4-2 represents the acq
tion of locks that ensure that each request is processed in isolation of other requests
may be in flight. Because the locks are held until processing of the request is compl
regardless of outcome, the rollback of a failed graph will not involve unlocking and th
locking of state.

4.2.3.2 Error Recovery

As RAIDframe evolved, so did our understanding of how best to automate reco
from failed nodes. Initially, using the graphs of Appendix A, we experimented with ar
specific techniques that mimicked backward error recovery [Courtright94]. We discov
that this approach was inadequate because it did not support arrays that tolerated th
of more than one disk (e.g. RAID level 6). In the end, we developed a novel method
mechanized recovery, roll-away error recovery, that I later describe in Chapter 5.
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In Chapter 5, I use RAIDframe to examine the relative performance of forward,
backward, and roll-away error recovery schemes. To ensure an “apples-to-apples” c
parison in the validation studies of Section 4.3.4, I assume forward error recovery an
employ the graphs found in Appendix A without undo logging. However, all developm
work in RAIDframe is based upon roll-away error recovery and it is the graphs conta
in Appendix B that are shipped as part of the RAIDframe package.

4.3 Evaluation

This section evaluates RAIDframe’s ability to be extended, and the efficiency o
array architectures implemented in RAIDframe, in terms of performance overhead. A
cussion of the verification of RAIDframe’s ability to tolerate faults is deferred to
Section 5.5, which follows the discussion of the error recovery procedures used with
RAIDframe.

To evaluate RAIDframe’s ability to be extended, I examine the extension of a b
line RAID level 0 implementation to support seven additional architectures: parity de
tering [Holland92], RAID levels 1, 4, 5 [Patterson88], RAID level 6 [ATC90, RAB96],
chained declustering [Hsiao90, Hsiao91], and interleaved declustering [Copeland89
Teradata85]. The following analysis reveals that introducing these architectures requ
only modest code changes and that the changes were localized. While the majority 
architectures were implemented by members of the RAIDframe development team, 
interleaved and chained declustering architectures were implemented by Khalil Ami
first-year graduate student who was not a member of the team.

I evaluate RAIDframe’s performance by first examining its efficiency when com
pared to a hand-crafted striping (nonredundant) driver. RAIDframe returns the same
response time versus throughput results as the striping driver, regardless of array si
However, RAIDframe’s abstract programming interface demands a 60% CPU utiliza
premium over the hand-crafted driver. Finally, I evaluate RAIDframe’s small-access 
formance for eight disk array architectures which shows a favorable comparison to t
results predicted by simple throughput models. I perform this final evaluation for eac
RAIDframe’s three operating environments (simulator, user process, and device driv
and also evaluate their consistency.
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4.3.1 Setup

RAIDframe was developed at Carnegie Mellon’s Parallel Data Laboratory on D
Alpha workstations running Digital UNIX version 3.2. All experiments in this disserta
tion were conducted on a DEC Alpha 3000/500 workstation with 128 MB memory co
nected to ten HP 2247 disk drives. This details of this setup are illustrated in Figure
All equipment used is commercially available and, with the exception of the kernel, w
used without modification. The RAIDframe source code is available via anonymous 

Figure 4-3 Setup used for collecting performance data

RAIDframe was installed on an Alpha workstation running Digital UNIX ver-
sion 3.2. Because Digital UNIX does not support downloadable device drivers, a
custom kernel which contained RAIDframe had to be created. Five KZTSA Turbo
channel to Fast-Wide-Differential (FWD) SCSI Host Bus Adapters (HBA) were
used to cable to the disk drives which were housed in StorageWorks cabinets. FW
SCSI was used out of the Alpha to accommodate the necessary cable lengths. T
ten Hewlett-Packard 2247 disk drives were 8-bit single-ended (SE) SCSI 1 GB
drives. Five FWD to SE SCSI converters (DWZZA), installed in the StorageWorks
cabinets, were used to connect the single-ended drives to the fast-wide-differenti
cables.
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[RAIDframeFTP]. Unfortunately, due to licensing restrictions, I am not able to provid
copy of the kernel code or the modules that we used to integrate RAIDframe into Di
UNIX. Fortunately, RAIDframe contains no kernel-specific dependencies which wou
alter its performance, so researchers wishing to duplicate these experiments should 
to do so by independently building their own kernels or running RAIDframe as a use
cess, entirely independent of the underlying kernel.

Experiments were conducted using configuration files similar to the one in
Section C.3. All array configurations used a stripe unit size of 32KB (sixty-four 512 b
sectors per stripe unit) [Chen90]. Stripe size, the total storage associated with a strip
ies with experiment. RAIDframe was permitted to dispatch up to five outstanding req
to each disk—beyond that, RAIDframe managed a separate queue for each disk us
shortest seek time first (SSTF) scheduling. Parity declustering used a logical parity g
of five disks distributed over the physical array of ten disks.

4.3.1.1 Workload Generation

The efficiency and accuracy studies presented in the remainder of this section
conducted using pseudo-random workloads. These workloads were executed using
frame’s trace-playback mechanism which applied identical, high-concurrency acces
sequences to each architecture executing in the simulation, user-level, and device-d
environments.

Workload files were created for 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 thr
Each thread issues blocking (synchronous) 4 KB operations on random 4 KB aligne
addresses with no intervening delay. Because accesses were aligned and smaller th
stripe size, the number of graphs executing at any instant was less than or equal to 
number of threads. Read and write workloads were generated and executed separat
experiments display the average of three experiment runs. The data presented in th
formance figures, and their 95% confidence intervals, are presented in Appendix C. 
experiments, these data represent the average of three experiment runs, achieving 
dence interval which is typically 2% of the mean and does not exceed 7.8% of the m

4.3.2 Extensibility

To evaluate the cost of implementing new architectures in RAIDframe, I presen
anecdotal history of the architectures that we have implemented, examining the size
locality of code changes necessary to extend RAIDframe. The initial coding effort to
struct the basic RAIDframe platform resulted in the creation of 122 files and a total o
34,311 lines of code (LOC). RAIDframe is written in C and, in this study, I define LOC
include both source statements as well as comments. This initial framework, which w
designed to eventually support RAID levels 4, 5, and parity declustering, included a 
ing RAID level 0 implementation and provided the infrastructure necessary to condu
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performance and correctness experiments (e.g. workload generation, tracing, data v
tion tools). Once this framework was established, the architectures listed in Table 4-1
added in the order presented. This table measures “code reuse” as the ratio of unch
code to the amount of total code required to support the new architecture.

Adding parity declustering to RAIDframe required the addition of 7 new files, to
ling 2,021 LOC, which contained the nodes and graphs necessary to implement a p
encoded array architecture. These files also included the architecture-specific mappi
graph selection routines particular to parity declustering. Additionally, 395 LOC of ex
ing code, contained in 5 files, were modified. The infrastructure of RAIDframe was
extended to perform reconstruction of a failed disk onto a spare. Debug functions w
verify the correctness of parity, necessary for functional testing, were also added.
Together, adding parity declustering affected 12 files (out of 189) and 2,416 LOC (ou
36,727) or about 6.5% of RAIDframe’s total LOC and file counts.

For the sake of comparison, consider the amount of work required to incorpora
parity declustering into raidSim, a 92-file, 13,886-line simulator: 1 file was deleted, 1
files containing 1,204 lines of code were added and 46 files were modified, changing
1,167 lines and adding 2,742 lines. Collectively, to enable the research reported in o
paper, the number of lines of code, 5,113, was equivalent to 36% of the size of the or
simulator and affected over half of raidSim’s modules. This is about twice as much c
measured in LOC, as required to extend RAIDframe and the changes were distribut

Table 4-1 Cost of creating new architectures

Architecture New Code Modified Code
Code
Reuse

RAID level 0 34,311 LOC
167 files

— —

parity declustering 2,416
7 files

395 LOC
5 files

93.4%

RAID level 5 355 LOC
3 files

5 LOC
1 file

99.1%

RAID level 4 134 LOC
2 files

5 LOC
1 file

99.6%

RAID level 6 2644 LOC
7 files

88 LOC
4 files

93.2%

RAID level 1 373 LOC
2 files

35 LOC
2 files

99.0%

chained declustering 117 LOC
2 files

5 LOC
1 file

99.5%

interleaved declustering 119 LOC
2 files

5 LOC
1 file

99.5%
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across five times as many files. Even though raidSim was not originally constructed 
parity declustering in mind, it already supported RAID level 5, an architecture which
fers only in the mapping of data and parity. It is also important to remember that raid
is just a simulator—the changes to RAIDframe represent code which can operate in
environments, two of which move data to disk and verify the correctness of those tra
fers.

With parity declustering working, the process of implementing RAID levels 4 an
became trivial. These two architectures completely reused all nodes and graphs of p
declustering as well as its graph-selection function. In essence, these two architectu
only required changes in the data and parity mapping functions. For RAID level 5, th
resulted in the creation of 355 LOC contained in 3 new files and the modification of
5 LOC in 1 existing file. Similarly, for RAID level 4, this resulted in the creation of
134 LOC in 2 new files and the modification of 5 LOC in 1 existing file.

Adding RAID level 6 scaled RAIDframe support to multiple-failure-tolerating
arrays by requiring the addition of nodes for encoding and decoding the Reed-Solom
encodings as well as the creation of graphs which maintained these codes. Beyond
RAID level 6 required the standard additions of graph selection and mapping functio
Unlike the other architectures described here, RAID level 6 is not a complete implem
tion: the Reed-Solomon encoding/decoding actions are not fully debugged and the p
dure which reconstructs the contents of a failed disk has not yet been modified. Igno
reconstruction and assuming that the debug of the encoding/decoding nodes will no
nificantly change their current LOC count, RAID level 6 required the addition of
2,644 LOC contained in 7 new files and the modification 88 LOC contained in 4 files

When I implemented RAID level 1, I maintained a detailed record of the time
required to complete the implementation. The overall effort required 460 minutes, du
which 370 lines of code were produced or modified. Broken down, the time until first
compilation was attempted was 90 minutes. This time included the creation of new m
ping and graph selection routines as well as a new graph used to write data to a fau
array. Once begun, the first successful compilation occurred 15 minutes later. Read 
first ran 55 minutes later, write graphs 105 minutes later. A run-time optimization of f
free reads which selected the mirror-copy with the shortest queue required an additi
145 minutes. Finally, an additional 50 minutes were required to complete the implem
tion of degraded-mode operation.

The implementations of chained and interleaved declustering, created by
Khalil Amiri, a member of the PDL who was not an author of RAIDframe, produced s
ilar results. Khalil required approximately 240 minutes to implement each of these tw
architectures. In each case, approximately two-thirds of his time was spent coding a
one-third debugging.

In the end, after implementing eight architectures and experimenting with parit
logging, log-structured storage, and EVENODD, we have consistently reused over 90
the existing code in RAIDframe. I contribute this level of reuse to the modular partitio
91
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of RAIDframe and the elimination of architecture-specific error recovery from failed n
failures. Code changes were confined and localized to: new actions, graphs, graph 
tion criteria, mapping, and reconstruction.

An equally important result is the elimination of architecture-specific testing. Th
architect only needs to ensure that the graphs are correctly designed and implemen
RAIDframe’s infrastructure guarantees correct execution in the event of a node failu

4.3.3 Efficiency

To evaluate RAIDframe’s ability to efficiently process requests, we compared
RAIDframe’s implementation of RAID level 0 kernel device driver to a nonredundant
striping driver which was independently developed for use in a file system project
[Patterson95]. The first experiment established the performance of RAIDframe on a s
disk. Figure 4-4 compares the single disk performance of RAIDframe’s device driver
that of the hand-crafted striping driver. Both drivers show near-identical response tim
a given throughput with a maximum throughput of approximately 80 IO/s.

Next, we examined the sensitivity of performance and CPU utilization to array s
With a constant workload of five threads per disk, each generating synchronous 4 K
requests, we measured response time versus throughput and CPU utilization for rea
write workloads. Figure 4-5(a) illustrates that RAIDframe produces the same results a
hand-crafted driver. The general shape of this graph is not pleasing to the eye: as th
ber of disks increases, so does throughput; however, response time is not linear or e
monotonic. This can be explained by several effects. First, as the system becomes m
heavily loaded, the response time will increase due to the Alpha’s limited ability to p
cess interrupts. This explains the 300-500 IO/sec region of the curves. Second, as th
ber of disks is increased from one to two, so are the array capacity and workload. T
means that in the experiment with one disk and five threads, the disk was processin
requests while four waited in it’s queue. Because the workloads are random, the max
queue depth per disk increases with the number of disks. In the two-disk experimen
was possible for there to be up to nine requests queued at a single disk. This explai
sudden rise in response time (11%) and modest increase in throughput (17%). As th
ber of disks in the array increases, the likelihood of all accesses colliding on a single
diminishes, and performance increases as one would expect (increasing throughput
flat response time). Again, regardless of shape, it is the strong correlation of RAIDfr
to the hand-crafted driver which is important.

Figure 4-5(b) illustrates that, regardless of array size, RAIDframe consumes 60
more CPU cycles than the striping driver. This is due to the layered architecture of R
frame which simplifies programming through abstract operations and modular partiti
ing. I investigated this hypothesis by profiling the execution of the two drivers usingAtom,
a commercially-available tool sold by Digital Equipment. I found that RAIDframe’s ca
tree contained sixty functions while the striping driver’s contained only nine.
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RAIDframe has four entry points:open() , close() , read() , andwrite() .
The calls toopen()  andclose()  total less than 1% of execution time and I dismiss
them from further study. With the exception of locking the extent to be written, execu
profiles were not sensitive to the type of workload, read or write. This locking dispari
was less than 1% and therefore no distinction is made between read and write work
in the following presentation.

Table 4-2 presents a breakdown of RAIDframe’s execution time based upon th
functions presented in Figure 4-2. Keep in mind that idle time spent waiting on a dis
drive to complete a request is not included and therefore, these percentages are of 
CPU time and not total user (i.e. “wall clock) time. Without surprise, the big-ticket ite
here is the process of executing a graph. This process requires walking the graph a
tracking the completion status of each node. An additional function, “state machine 
head,” also appear in the table. This function represents the time spent initializing an
cessing the state machine of Figure 4-2.

Figure 4-4 Single disk performance of striper and RAIDframe

Both implementations evaluated as device drivers executing in a Digital UNIX
kernel. The eight datapoints for each curve were produced by a random workloa
of synchronous 4KB requests from 1, 2, 5, 10, 15, 20, 30, and 40 concurrently-
requesting agents. SSTF disk queueing was used within the driver and up to 5
requests were allowed to be queued to the physical drive. This explains discontin
ity in the graphs which occurs when the number of threads (10) exceeds the max
mum number of simultaneous requests which may be dispatched to a drive (5). T
reduction in performance suggests that increasing the queue depth would improv
performance. Note that the x-axis does not begin with 0.
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Figure 4-5 Comparing RAIDframe to a hand-crafted implementation

This study compares the performance of RAIDframe’s RAID level 0 implementa-
tion to that of a hand-crafted striping driver. Data was collected for arrays of 1, 2,
4, 6, 8, and 10 disks. The workload per disk was constant at five threads per disk
each thread generating synchronous, random 4 KB requests.

Figure 4-5(a): Constant workload/disk Figure 4-5(b): CPU consumption
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Table 4-2 RAIDframe execution profile

Function %

mapping 7.93

lock acquisition 0.70

graph selection 7.37

graph creation 8.38

graph execution 46.78

graph release 7.86

lock release 4.22

state machine overhead 18.92
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4.3.4 Verification

The expected performance of eight disk array architectures implemented in RA
frame was verified by comparing the response time versus throughput characteristic
eight array architectures against the predictions of analytical models. Additionally, w
compared the consistency of the results obtained from each of RAIDframe’s three o
ing environments: simulator, user process, and device driver. In all experiments, we 
ten disks and the 1, 2, 5, 10, 15, 20, 30, and 40 thread workloads, previously descri
Section 4.3.1.1.

First, the ten-disk RAID level 0 read performance should improve by about a fa
of ten over the results of Figure 4-4, which indicated a single-disk throughput of abo
70 IO/sec at the “knee” of the curve and an eventual saturation of throughput of 79.7
sec. Figure 4-6 illustrates the read performance of eight RAIDframe architectures for
of RAIDframe’s operating environments. Concentrating, for the moment, on the kern
numbers of Figure 4-6(b), the ten-disk throughput of RAID level 0 reads in RAIDfram
device driver is 658 IO/sec.

With two exceptions, the remainder of the architectures, none of which require
redundancy work, perform similarly. The throughput of RAID level 4 is slightly worse
This is because the array has only nine disks that are able to service read requests—
entire disk is dedicated to storing parity. RAID level 1 is slightly better because each 
of user data is stored on two independent disks, allowing the read workload to be be
balanced among the ten disks in the array. In our implementation of RAID level 1, re
actions are dispatched to the copy with the shortest disk queue.

Finally, Figure 4-6 also illustrates the relative performance of RAIDframe’s thre
environments. The user and device driver environments compare favorably with com
ble throughput maximums and equivalent response times at given throughputs. How
the simulator predicts higher throughput maximums and lower response times at giv
throughputs. This is because the simulator does not account for the time required to
cute code, data transfer bottlenecks, or limited interrupt-processing capabilities.

Predicting the small-write performance for an array of ten disks is not a straigh
ward task, but simple models can be used to estimate performance relative to that o
gle disk [Patterson88]. As with reads, RAID level 0 write throughput should improve 
factor of ten over that of a single disk. Because RAID level 1, interleaved declusterin
and chained declustering each requires two disk accesses (write the two mirror cop
user data) to service a user request, they will achieve a performance of five (10/2) ti
that of a single disk.

RAID level 4, with its parity contained entirely on a single disk, will achieve one
half the performance of a single disk. This is because each small-write operation per
four disk access—read old data, write new data, read old parity, write new parity—a
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Figure 4-6 Small-read performance of RAIDframe’s three environments

Performance was measured using 4 KB aligned workloads. Datapoints represen
measurements for 1, 2, 5, 10, 15, 20, 30, and 40 thread workloads. Raw data,
including 95% confidence intervals, appears in Appendix C.

Figure 4-6(a): Simulator Figure 4-6(b): Kernel

Figure 4-6(c): User
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performance is ultimately limited by the two disk access to the parity disk for each u
request.

RAID level 5 and parity declustering distribute parity over the entire array. Thei
performance is therefore strictly a function of the number of disk accesses (four) req
to complete a small user write to the array. Their expected performance is therefore
(10/4) times that of a single disk. Similarly, RAID level 6 with its additional two disk
accesses which update the Reed-Solomon redundancy unit, should perform at (10/6
that of a single disk.

Figure 4-7 illustrates the small-write performance we measured for these eight
architectures in each of RAIDframe’s three environments. The results, with the exce
of interleaved and chained declustering, are consistent with our predictions. RAID le
reaches a throughput of 345 IO/sec, for an increase of just under 5x of the 78.8 IO/s
formance of a single disk. Like RAID level 1, interleaved and chained declustering b
maintain a primary and a secondary mirror copy of each block of user data. Howeve
unlike RAID level 1 which mirrors these two copies at identical disk offsets, these ar
tectures place the copies on different halves of the disks. In write-intensive workload
two actuators in a RAID level 1 mirrored pair move in synchronization with an averag
seek time equal to the time required to seek across one-half of the disk. In interleave
chained declustering, because the mirrored copies are stored at different disk offset
two actuators cover different seek ranges and the average is therefore greater than t
imal average of moving across one-half the total disk.

As expected, RAID level 4’s write throughput reaches 44 IO/sec, or about one-
that of a single disk. Parity declustering and RAID level 5, each predicted to reach a
throughput of 2.5 times that of a single disk, achieved throughputs 176 IO/sec (2.23x
175 IO/sec (2.22x), respectively. RAID level 6 attained a maximum write throughput 
119 IO/sec (1.51x), just below its predicted value of 1.67x.

Similar to the Figure 4-6, Figure 4-7 shows that the relative write performance 
RAIDframe’s three environments is consistent between user and kernel environment
that the simulator is optimistic. In the case of writes, RAIDframe is required to comp
(e.g. xor) redundancy information. Because the simulator does not model execution
the cost of these computations is absent from the final simulator performance, skewi
curves toward higher throughput.
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Figure 4-7 Small-write performance of RAIDframe’s three environments

Performance was measured using 4 KB aligned workloads. Datapoints represen
measurements for 1, 2, 5, 10, 15, 20, 30, and 40 thread workloads. Raw data,
including 95% confidence intervals, appears in Appendix C.

Figure 4-7(a): Simulator Figure 4-7(b): Kernel

Figure 4-7(c): User
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4.4 Conclusions

RAIDframe allows array architectures to be implemented with only modest cha
to existing code. Architectures implemented in RAIDframe can be evaluated using a
event-driven simulator, or against real disks as either a user process or a device driv
working UNIX kernel.

The cost of layering software in a manner which isolates an infrastructure desi
to support the execution of array operations, irrespective of array architectures, is an
increased consumption of CPU cycles. However, microprocessor performance has c
tently increased at a rate of 35% per year [Patterson96], and I believe the additional 
consumed by RAIDframe are easily absorbed by simply relying upon faster process
argue that trading a few extra CPU cycles consumed by RAIDframe is worth the red
tions in complexity that are achieved.

The principal benefit of RAIDframe is its ability to experiment with working imp
mentations of array architectures. By providing researchers with the ability to simplify
task of developing working prototypes, the performance of new array architectures c
evaluated in working systems which deliver workloads in real time. Furthermore, by 
onstrating a working prototype, researchers are better prepared to convince implem
that the complexity of their proposals is manageable.
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Chapter 5: Roll-Away Error Recovery

Recall, from Chapter 3, the goals of an ideal approach to implementing redund
disk array software: limited code changes to introduce new architectures, simplified 
recovery through atomic operation, acceptable overhead, and verifiable correctness
Section 3.3 introduced a programming abstraction for composing redundant disk arr
operations from atomic actions. This approach simplified the design and execution o
redundant disk array algorithms by isolating device-specific execution and error reco
(node failures) from array operation recovery (graph failures). Chapter 4 demonstrat
that this programming abstraction can be used in practice. It showed that a modular
tioning of software and the elimination of architecture-specific error recovery results 
implementation which requires only modest code changes to implement new redund
disk array architectures.

This chapter begins by examining the performance consequences and resourc
sumption of the undo/no-redo error recovery scheme described in Section 3.5. Runn
the 4 KB random write benchmark used in Chapter 4, Section 5.1 demonstrates tha
cost of pre-reading disk sectors before overwriting them degrades small-write perfor
mance by as much as 50%. Section 5.2 examines the necessity of full undo logging
cluding that it is possible to eliminate some undo log records, in a general manner,
independent of architecture. Proceeding from this conclusion, Section 5.3 introduceroll-
away error recovery, a two-phase method of error recovery which preserves the simp
of a general error recovery mechanism but without the performance cost incurred by
reading disk sectors prior to overwrites. After examining the performance and correc
consequences of roll-away error recovery, a variety of techniques for manipulating g
are described. The chapter concludes with a brief discussion of the possibility of exte
roll-away error recovery to guarantee atomic crash semantics.

5.1 Full Undo Logging is Expensive

Section 4.3.4 examined the performance of random 4 KB write operations in e
array architectures without regard for error recovery. Using the undo/no-redo schem
described in Section 3.5, error recovery can be completely mechanized by requiring
101



xecuted,
com-
e fails
 log

 I
d entry

erfor-
for
 creat-
fer-
which

a

the visible state changes made by each node can be undone. Before each node is e
the information necessary to undo its effects are stored in an undo log. If the graph 
pletes successfully (e.g. no node failures), its undo log entries are discarded. If a nod
during the execution of a graph, the underlying execution mechanism uses the undo
entries to fails the graph atomically.

To evaluate the cost, in terms of performance, of creating the undo log entries,
mimicked the maintenance of such a log, making each node generate an undo recor
as specified by Table 3-2 on page 64. Repeating the same workload of random 4 KB
writes, the data displayed in Figure 5-1 demonstrates a degradation in small-write p
mance of 50% for operations in nonredundant and mirroring architectures and 33% 
parity-based architectures. The principal source of this degradation is the cost of the
ing the undo log records for theWr nodes which require and extra disk access. The dif
ence in the degree of degradation was a result of the fraction of nodes in the graph 
performedWr actions—the higher the fraction, the greater the degradation.

Figure 5-1 Relative performance of full undo logging

Figure 5-1(b) shows the results of the experiment of Figure 4-7 (random 4 KB
writes) repeated with all nodes in the graphs generating undo records. To permit 
direct visual comparison, Figure 5-1(a) presents the data from Figure 4-7(b). All
data was for RAIDframe operating as a device driver.

Figure 5-1(a): Forward Figure 5-1(b): Undo/No-Redo
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5.2 Reducing Undo Logging Requirements

Redundant disk array operations maintain codewords which are recorded on du
storage. These operations fall into two general classes: those which retrieve informa
contained in codewords and those which modify existing codewords. Reading inform
from a codeword may involve either simply returning the symbols as they appear (e.
reading information from an array with no faults) or additionally performing a decodi
computation to reconstruct missing information (e.g. reading data from an array in w
a disk has failed).

Writing information to a redundant disk array will cause existing codewords to
change. This change may be in the form of a direct overwrite (modify all symbols of 
codeword) or modifications to selected symbols. In either case, this process can be 
ally described as the tasks of first creating new symbols followed by the task of writin
them to durable storage.

Why not simply rely upon some form of no-undo/redo recovery, which would
entirely eliminate the need for undo logging? Such an approach would require that a
changes to visible state made by a graph be stored in aredo log prior to being applied to
the commit of the graph. If the execution of a graph was interrupted, the work which
in-flight at the time of the interruption could be restarted (redone) using the contents 
redo log. Unfortunately, this scheme is not well-suited for our application. We are pri
rily concerned with node failures, which imply that a faulty component has been dete
in the system—simply retrying the same graph (algorithm) will fail because the same
failed component will prevent subsequent retries from succeeding. This problem cou
overcome by adding acheckpoint, a periodic snapshot of the system. If a graph failed, 
checkpoint could be restored and the redo log could be played forward up to the ins
before the failed graph was initiated. I also dismiss this implementation for the reaso
the checkpoint would have to be a snapshot of the entire array. This is necessary be
the array can not predict future updates and, in order to undo their effects (roll back 
restoring the checkpoint), the checkpoint must contain copies of all data. Furthermor
checkpoint must be constructed to survive the same faults as the fault model; that is
must survive disk failures. This implies that we may be using a disk array to simplify
recovery of a disk array.

5.2.1 Limiting the Scope of Rollback

RAIDframe reduced the amount of undo logging required to guarantee error re
ery by limiting the scope of the rollback operation. One way this was accomplished w
by allocating reader/writer locks outside the creation and execution of flow graphs. W
a graph failed, the locks were retained, eliminating the overhead associated with rele
and then reacquiring locks when operations were later retried using a different flow g
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Another technique RAIDframe employed to reduce the scope of rollback, usefu
only in write operations, was the allocation and initialization of a buffer which contain
the user data to be written to the array. By not discarding user write data when a gra
failed, the undo of a write buffer allocation and initialization was eliminated.

5.2.2 Reclassifying Actions From Undoable to Real

The approach presented in Section 3.5 assumed that all actions were undoabl
when a node failed, error recovery consisted of walking backward through the entire 
from the failed node to the source node, undoing the effects of all previously-comple
nodes. Recall from Table 3-2 on page 64 that creating the undo records forWr actions,
which required an additional disk access (read previous data) is expensive. If a gene
strategy for recovery could be created that eliminates the need for undoing these wr
(making them real actions), the overall cost of ensuring recoverability should decrea

Ensuring the recoverability of graphs which contain real actions requires that th
real actions not be executed until the actions upon which they depend have reached
which ensures that the graph will not roll back [Gray93]; that is, because real actions
not be undone, they should not be executed until enough work is completed to ensu
the graph will not need to roll back. Fortunately, because the write of symbols gener
occurs at the end of a graph and, assuming that all new symbols are known, the sym
are written independently (the write of one symbol does not depend upon the write o
another), it should be possible to eliminate the need to undo symbol writes, in effect
ing them real actions.

The following section describes a method for inserting a barrier in a graph that
lates the undoable nodes which precede the barrier from the real actions which follo
Barriers are then inserted into the graphs of Appendix A and the rules for executing g
with barriers are described.

5.3 Roll-Away Error Recovery

The previous section discussed the possibility of eliminating the undo of nodes
requiring that a graph be split by a barrier with undoable actions to the left and real a
to the right. Figure 5-2 illustrates such a graph in which a special node,Commit, has been
inserted to represent the barrier, dividing the graph into two phases. Actions in the P
subgraph either do not make durable state changes or make changes which are eas
undone and therefore, undo logging is minimal. Actions in the Phase-II subgraph mo
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symbols, but the structure of the graph guarantees that all symbol updates may occu
pendently, allowing all symbol updates to either complete successfully, or fail due to
presence of a permanent fault.

Recovering from errors in such graphs is performed using an approach that we
roll-away error recovery: node failures which occur prior to the barrier force the graph
roll back while node failures which occur after the barrier cause execution to roll forw
The name “roll away” was chosen because node failures force the execution to proc
away from the barrier. Transaction-processing literature commonly refers to this barr
thecommit point, because once the barrier is reached, the transaction is committed t
move forward to completion rather than backing up. For the remainder of this dissert
I will refer to the barrier as the “commit point.” The roll-away execution mechanism is
described in detail in Section 5.3.4.

5.3.1 Properties of Phase-I Subgraphs

A Phase-I subgraph, and its nodes, have the same properties as those describ
Section 3.3. In fact, all of the graphs of Appendix A are valid Phase-I subgraphs. Sim
larly, the execution rules described in Section 3.5 also apply: if a node fails, the engi
walks backward through the graph, undoing the previously completed nodes.

With the graphs split into two phases, it is possible to add an additional constra
that will eliminate the deadlock problem described in Section 3.5.1.3. Recall that in o
to avoid deadlock during rollback which results from allocating (undoing deallocation

Figure 5-2 Dividing array operations into two phases

Array operations may be divided into two phases, the first which does not modify
codeword symbols and the second which does. The two phases are isolated by a
commit point which confines all undo logging to the actions in Phase-I and, if
atomic crash semantics are required, redo logging to the actions in Phase-II.

commit
point

Phase I: actions which
compute new symbols

Phase II: actions which
write new symbols
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locks, either a the DAG locking protocol or the two-phase lock protocol were necess
The DAG locking protocol requires that resources be released in reverse-order from
cation and the two-phase protocol requires that once any lock is released, no more 
are acquired. With the graphs split into two phases, only one of which being undoable
very easy to apply the two-phase locking protocol by placing all allocation actions in
Phase-I subgraph and all deallocation actions in the Phase-II subgraph. Locks are o
deallocated during rollback of a Phase-I subgraph or during the execution of a Phas
subgraph. In either case, once deallocation begins, no new locks will be acquired.

5.3.2 Properties of Phase-II Subgraphs

Unlike Phase-I subgraphs, which rely upon undo/no-redo error recovery, Phas
subgraphs rely upon no-undo/redo recovery. This change in error recovery protocols
cessitates changes in Phase-II structural constraints as well as execution rules. Firs
a node fails during the execution of a Phase-II subgraph, execution willroll-forward, exe-
cuting all nodes, regardless of pass/fail result, until execution of the sink node has c
pleted. When the execution of the sink node has completed, all nodes will be in eith
fail orpass state—a node in a Phase-II subgraph will never enter therecovery orundone
states because nodes in Phase-II subgraphs are never undone.

Second, if a node fails in a Phase-II subgraph, its failure must not impede the e
tion of the remaining nodes in the subgraph. This can only happen if the node which
generates a result which is used by its children. Formally, this is represented by a tru
dependence in the graph. Therefore, a Phase-II subgraph can contain no true data 
dencies.

Third, because execution of Phase-II subgraphs must be unconditional, predic
nodes are not allowed in the subgraph. Conditional execution is disallowed because
execution engine can not predict which branch to take should a predicate node fail,
thereby preventing execution of the subgraph from completing.

Finally, as described in the preceding discussion of Phase-I subgraphs, Phase
graphs may not contain actions which allocate resources and must contain all action
which deallocate resources.

5.3.3 Commit Node Determines Direction of Recovery

To keep the engine general, it is not designed to interpret the semantics of a gr
it is executed; the engine simply parses the graph, from source node to sink node. H
ever, if an error occurs and roll-away error recovery is employed, the engine must un
stand which subgraph is being executed so that it may apply the appropriate recove
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protocol: roll backward in the case of a Phase-I subgraph, roll forward in the case of
Phase-II subgraph.

To enable the engine to discern which subgraph it is currently executing, a a n
whose do action isCommit, is inserted between the two subgraphs, completely isolati
them from one another so that only one graph is being executed (has nodes in thefired
state) at any moment in time. The engine executes the node containing theCommit action
just like any other—theCommit action simply sends a message to the execution engin
(e.g. sets a flag) which indicates that the Phase-I subgraph has successfully comple
cution and that execution of the Phase-II subgraph has commenced. The commit no
the special property that it will never fail; therefore, it is only in either thewait, fired, or
pass states.

5.3.3.1 Inserting a Commit Node Into a Read Graph

Read graphs are, by definition, strictly Phase-I subgraphs—they do not contain
subgraph which writes new symbols to storage. As a sanity check in our implementa
we inserted a commit node into all graphs, even if there were no Phase-II nodes. Th
mitted a general post-processing analysis of all completed graphs to ensure that a c
node was present and in the correct state. Therefore, the commit node is always pos
at the end of the read graph as the sink node. This placement is easily rationalized b
izing that it is not possible to successfully complete a read operation unless all actio
complete successfully. If some of the actions fail, the operation is generally unable t
return all of the requested data without scheduling additional work. Therefore, the gra
allowed to fail atomically and then a different graph is scheduled in its place.

As an example, Figure 5-3 presents the degraded read graph from Figure A-4 
page 146 which has been modified to support roll-away error recovery through the a
tion of a commit node.

5.3.3.2 Inserting a Commit Node Into a Write Graph

Phase-I graphs are known to be recoverable and it stands to reason that simp
appending a commit node to the end of the write graph of Appendix A results in a gr
which is recoverable. However, to reduce undo logging, it is desirable to propagate t
commit node toward the head (source node) of the graph. Two conditions prevent pr
tion of the commit node: (1) the presence of predicate nodes and (2) the presence o
data dependencies. As Section 5.3.2 explained, predicate nodes are disallowed in P
subgraphs because all nodes of a Phase-II subgraph are unconditionally executed. 
data dependencies between the nodes in a Phase-II subgraph are disallowed becau
violate the property that the failure of one node should not affect the execution of oth
nodes in the graph. If true data dependencies were permitted in Phase-II subgraphs
failure of a node which produces a result (data) that is used by subsequent nodes w
prevent the subsequent nodes from executing.
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Figure 5-4 suggests an algorithm for inserting a commit node into a write graph
This algorithm looks for data dependencies, beginning with the sink node of the grap
working towards the source node. Each branch is explored until a node is discovere
has a data dependence to one or more of its children. The commit node is inserted b

Figure 5-3 Degraded-read graph

A Commit node has been added as to the end of the graph. Remember: reachin
the Commit node implies that the graph will complete successfully.

NOP

Rd

XOR

Rd ● ● ● Rd

Commit

Figure 5-4 Algorithm for inserting a commit node into a write graph

This algorithm inserts a commit node into a graph by beginning at the sink node
and then recursively examining each branch, looking for data dependencies
between two nodes. When a dependence is discovered, the commit node is inse
between these two nodes. As written, this algorithm does not look for predicate
nodes. This check can easily be added to the routineexplore() .

explore(node)
/* recursively explore toward the source node */

for each parent of node
if no data dependence between parent any child

explore(parent)
else

place commit node between parent and node

main()
/* begin with sink node and work toward source node */

explore(sink node)
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this node the node being examined. Note that this algorithm does not account for pre
nodes, which are not allowed in Phase-II subgraphs. The algorithm is easily extende
prevent predicate nodes from entering the Phase-II subgraph by looking for both da
dependencies and predicate nodes as the branches are explored. If either is found, 
commit node is inserted.

Appendix C contains the code for a program based upon this algorithm. This p
gram creates a RAID level 5 small-write graph, which appends a commit node to the
node of a graph, and then attempts to propagate the commit node toward the sourc
of the graph, in effect, moving nodes from the Phase-I subgraph to the Phase-II sub
This algorithm was used to transform the graphs of Appendix A into the graphs of
Appendix B.

To demonstrate this algorithm, I illustrate the series of steps required to insert 
commit node into the small-write graph originally presented as Figure 3-3 on page 5
duplicated here as Figure 5-5(a). The process of inserting the commit node begins i
Figure 5-5(b) in which the parents of the sink node (Unlock) are examined, beginning
with theWr node. The algorithm recursively walks up the graph until it reaches the R
node which has a data dependence to one of its children (XOR). TheCommit node is
inserted between theRd andWr nodes. This process is repeated in Figure 5-6 with the
second parent of the sink node,MemD, being examined. Again, the algorithm recursive
walks up the graph until this time theXOR node is reached. Because theXOR node has a
data dependence to its child (Wr), theCommit node is inserted betweenXOR andWr.
Because the sink node (Unlock) has no other parents, the process is complete.

Because the structure of the graph has changed, it is possible that some arcs 
graph may now have become redundant as defined in Section 3.3.4. Figure 5-7(a) il
trates the removal of theRd-Commit, which is now redundant. Next, because the nodes
the Phase-II subgraph (descendants of the commit node) are not undoable actions, 
strict serial ordering of resource deallocation actions, previously necessary to avoid 
lock during rollback, is no longer required. In this example, theMemD andUnlock nodes
of Figure 5-7(b) are now permitted to execute concurrently by removing the control
dependence (MemD-Unlock) which preserved this serial ordering. Finally, aNOP node is
added to maintain the property that the graph has a single sink node.

5.3.4 Adjusting Graph Execution Rules

Node failures which occur prior to the execution of the commit node are handle
the execution engine in the same manner described in Section 3.5.4—the engine wa
backward from the point of failure, executing the undo actions in the graph until the
source node is reached and the graph has failed atomically. Using the small-write gr
Figure 5-7(b), the process of recovering from a node failure prior to the commit node
illustrated in Figure 5-8.
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Figure 5-5 Inserting a commit node into a RAID level 4/5 small-write graph

Figure 5-5(a) illustrates a small graph that we wish to add a commit node to.
Beginning with theUnlock node, the parents of each node are recursively exam-
ined until a data dependence (represented by the bold arrows) is encountered. A
this point, theCommit node is inserted between the nodes that share the depen-
dence. In Figure 5-5(b), the left-most branch has been walked until the left-most
Rd node was reached. Because this node has a true data dependence to one of
children (Rd-XOR), the walk stops and theCommit node is inserted between the
Rd andWr nodes. This process continues in Figure 5-6.

Lock

MemA

Rd

Wr

Wr

Unlock

MemD

Rd

XOR

Figure 5-5(a): Initial graph Figure 5-5(b): Step 1: explore left-most
parents ofUnlock node

Commit

MemD

Rd

Wr

XOR

RdRd

Wr

MemA

Lock

Unlock
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Figure 5-6 Inserting a commit node into a RAID level 4/5 small-write graph

Continuing from Figure 5-5(b), the right-most branch is walked until theXOR
node is reached. Because this node has a true data dependence between itself a
its child (Wr), the walk stops and theCommit node is inserted between theXOR
andWr nodes. At this point, all branches leading to the sink node (Unlock) have
been explored, and the insertion is complete. The resulting graph is shown abov

Lock

MemA

Rd

Wr

Wr

Unlock

MemD

Rd

XOR

Commit
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Figure 5-7 Graph optimization

After completing insertion of the commit node, the graph of Figure 5-6, redundan
arcs are eliminated. Step 4 in this example eliminates theRd-Commit arc because
it duplicates theRd-XOR-Commit path. Finally, because resource deallocation
actions in the Phase-II subgraph do not require the serial ordering necessary whe
they were members of a Phase-I subgraph, theUnlock andMemD nodes are
allowed to occur in parallel. To guarantee a single sink node, aNOP node was
added.

Figure 5-7(a): Step 4: eliminate a redun-
dant arc

Figure 5-7(b): Step 5: eliminate an
unnecessary control dependence
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Figure 5-8 Recovering from errors prior to the commit point

The failure of theRd node, indicated in bold, causes forward execution to halt.
Once theWr node which was in thefired state completes, roll-backward execution
begins, undoing the previously completed actions by executing the correspondin
undo functions from each node. In the illustration on the right, theMemA node is
in therecovery state which implies that its undo function is currently being exe-
cuted. When roll-backward execution completes, the graph has failed atomically,
all nodes in the Phase-I subgraph are in either theundone or fail state and all
nodes in the Phase-I subgraph are in thewait state.
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Once the commit node is reached, execution of the graph will continue until the
node is reached, regardless of whether a node subsequently fails or not. Because th
information required to ensure the recoverability of the Phase-I subgraph is no longe
essary, the undo log records for this graph can be eliminated from the undo log whe
commit node is reached.

Section 3.5.3 specified that during the process of forward execution, a node is 
for execution if all of its parents are in some combination thepass or skip states. Because
forward execution of Phase-II subgraphs continues, regardless of node failures, this 
changed to enable a node for execution when its parents are in some combination o
pass or fail states.

An example of a node failure which occurs after the commit point is reached is
sented in Figure 5-9. In this example, execution continues forward, with all remainin
nodes successfully completing. When the execution of a graph reaches the sink nod
declared to be successful, regardless of node failures which may have occurred in P
II. This is possible because all symbols of the codeword, except those residing on fa
devices, were written correctly. The completion of the graph and the failure of a devi
can be viewed as two independent events whose ordering is arbitrary.

5.3.5 Fault Model

The fault model presented in Section 3.6 still holds; however, the defining prope
of nodes must be altered for nodes that appear in Phase-II subgraphs. Device faults
tinue to be observed as node failures. Node failures are survived in one of two ways
if the node fails prior to commit, the graph is rolled back as before, and the visible st
changes made by the graph are undone. If a node fails after commit has been reach
cution continues forward to the end, and the system is left in a state in which all sym
have either been updated correctly or marked as “failed.” The remainder of this sect
describes the changes to device actions (nodes) that are necessary to preserve the
model.

Failures that interrupt the execution of a graph can still be tolerated through th
of durable undo and redo logs. As before, the undo log contains the information nece
to undo the effects of a failed graph. Any graph whose execution is interrupted prior
commit is undone at restart. However, this is not the case for nodes that follow comm
This is because these nodes are not undoable. Therefore, once commit is reached, 
information to redo each node that follows the commit is entered into a redo log. Bec
we know that the graph can reach completion once commit occurs, playing the redo
after restart will cause the graph to reach completion.
114



Figure 5-9 Recovering from errors following the commit point

The failure of theWr node, indicated in bold, causes forward execution to halt.
Once theWr node which was in thefired state completes, roll-forward execution
begins, continuing until the sink node (Unlock) is executed and completed. When
execution completes, all nodes in the Phase-I subgraph are in either thepass or
skip state and all nodes in the Phase-II subgraph are in either the either thepass
or fail state. At this point, the system appears as if the graph completed without
error followed by a failure of a disk (which corresponds to theWr failure).
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5.3.5.1 Adjusting Node Properties

Recall, from Section 3.2.1, that nodal actions were defined to atomically updat
symbols that it operated upon—if the node failed, these symbols were left either
unchanged or marked as failed. Additionally, actions were required to maintain the i
pendence of the faults that they encounter—the failure of an action to properly oper
(read, write, or compute) upon one symbol should not necessarily fail the other sym
This atomic execution of actions greatly simplified the process of backward recovery
actions which failed left no state to clean up and actions which had previously comp
were undone using the contents of the undo log.

Because roll-away error recovery does not rely solely upon backward recovery
rules which specify how a node should fail must be reexamined. Specifically, instead
backing out successful changes to symbols, actions that fail during the execution of
Phase-II subgraph must complete all possible state changes. Therefore, unlike node
Phase-I subgraph, nodes that fail in a Phase-II subgraph must leave all symbols eith
changed, or marked as failed. For example, if a Phase-II action that writes symbols to
tiple sectors in a single disk encounters the failure of a single sector, it must comple
writes to surviving sectors. By doing this, the roll-forward recovery procedure of Pha
subgraphs is preserved.

5.4 Performance Evaluation

Similar to the analysis in Section 5.1, which compared the response times of va
architectures at given throughputs for the graphs of Appendix A with and without un
logging, I repeated the random 4 KB write benchmark of the eight array architecture
this time using the graphs of Appendix B. Read operations were not retested becau
graphs are identical to those used in Appendix A, with the exception that the sink no
(NOP) was replaced by a commit node. Figure 5-10 presents the results of this exper
which are that roll-away error recovery graphs exhibited the same performance as th
graphs which were executed with no undo logging. The actual data values, with 95%
fidence intervals, are presented in Table C-8 on page 222. The average difference in
response time for a given throughput was negligible (less than±1%) and the confidence
intervals were equally tight (less than±4% of the mean).

This strong correlation was not surprising: the Phase-I subgraphs were compo
entirely ofRd, Q, andXOR nodes, none of which required undo records. Therefore, t
only potential impact on performance was the elimination of some concurrency withi
graph, specifically at the point where the commit node was inserted.
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5.5 Correctness Testing

Roll-away error recovery is the sole method of recovery currently supported by
RAIDframe [Courtright96c]. Extensive testing of this error recovery protocol was per
formed by injecting disk faults into an array, causing each graph type to either roll for
or roll backward, and then verifying that the array continued to operate in a consiste
manner. The majority of our testing was performed with RAIDframe installed as a us
process, running against real disks. Installing RAIDframe as a user process simplifie
processes of fault injection and validation for two reasons: first, the simulator does n
actually move data and therefore data corruption bugs are difficult to detect. Second
injecting faults and monitoring their effects in the kernel can be cumbersome. Becau
same code is used when RAIDframe is installed as a simulator or device driver, the r

Figure 5-10 Relative performance of roll-away recovery

Figure 5-10(b) shows the results of the experiment of Figure 4-7 (random 4 KB
writes) repeated with all nodes in the graphs generating undo records. To permit 
direct visual comparison, Figure 5-10(a) presents the data from Figure 4-7(b). All
data was for RAIDframe operating as a device driver.
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Figure 5-10(a): Forward Figure 5-10(a): Roll-Away
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obtained through user-level testing are expected to apply equally well to all three en
ments.

I employed two of RAIDframe’s utilities,LoopTest  andReconTest , to perform
the testing. Each of these tests begins by initializing the array’s data and redundanc
blocks and then proceeds by sending a series of random write requests to the array
write request is followed by a read request to confirm that the data was properly writt
the array as well as a verification of the integrity of the codeword (i.e. that proper red
dancy information was written). The number of write requests, as well as number of 
requests which may execute concurrently, may be specified independently. TheRecon-
Test  has the additional property that at the end of the test, all data and redundancy
mation is read from the entire address space of the array, verifying not only that the
locations which were to be overwritten contained the appropriate data, but also verifi
that no side effects were introduced (e.g. extents which were not overwritten remain
unchanged). Finally, both utilities provided the ability to asynchronously fail a disk du
the test and begin reconstruction without bringing the array off-line.

Initial testing was performed to verify that the graph correctly parsed the graph
Testing began by modifying the engine code to first fail nodes in the Phase-I subgrap
later, the Phase-II subgraph. This permitted validation that the two execution protoco
roll-backward and roll-forward, were operational and correctly parsing the graph. Us
the small-write graph, I first failedRd andXOR nodes (in different experiments) which
forced rollback of the Phase-I subgraph. Next, I failed aWr node to verify that the engine
would continue to walk forward through a graph, given the failure of a Phase-II node
addition to this testing, RAIDframe contains routines which, when enabled, analyze e
graph that completes, performing sanity checks such as verifying that all nodes are in
states (e.g. all pass/skip). These routines were enabled throughout the testing proce

Once this engine was known to be parsing the graphs correctly the disk failure
mechanism provided by the utilities was used to inject asynchronous faults. Testing 
10,000 requests per thread, 30 threads, asynchronously failing a disk, and then reco
structing it, revealed no data corruption for random request sizes and alignments wh
exercised all of the graphs for RAID levels 1, 4, 5 and parity declustering1 libraries. Test-
ing was repeated until each graph was forced into both roll-back and roll-forward reco
scenarios.

Finally, limited testing was performed with RAIDframe installed as a device driv
in a Digital UNIX™ 3.2c kernel. First, using the UNIXdd  utility, random I/Os were sent
to the RAIDframe device and a drive was physically removed while the array was se
ing requests. Information describing the type of graphs which failed at the instant the
was removed, and the action taken by the execution engine, and the final state of all
in the graph was displayed on the console for verification. Additionally, the utilities wh
automatically verify that all nodes of completed (pass or fail) graphs were in valid sta

1. Development of interleaved and chained declustering, as well as RAID level 6, was not complete at the time 
testing. Because RAID level 0 is not fault tolerant, it could not be used in testing.
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were enabled. Testing was limited to about a dozen attempts because Digital UNIX 
not able to consistently tolerate the physical removal of SCSI devices, something it w
not designed to cope with. On average, one half of the removals resulted in a condit
known as a “SCSI bus freeze” in which all subsequent accesses to any device on th
bus that contained the drive that was removed are disallowed. The only remedy for r
ing access to these devices is to reboot the machine.

5.6 Summary

Roll-away error recovery, a novel two-phase error recovery scheme, automate
problem of recovering from failures of actions which compose redundant disk array 
ations. Roll-away error recovery has been shown to enjoy the performance advantag
forward error recovery and the simplicity of backward error recovery schemes. Build
upon the graph-based representation defined in Chapter 3, roll-away error recovery 
mechanizes the execution of array algorithms. Like backward error recovery, roll-aw
error recovery eliminates the need for architecture-specific error-recovery code, sim
ing the processes of implementation, verification, and extension. However, unlike ba
ward error recovery, roll-away error recovery is able to do this without a significant (3
50%) performance degradation; in fact, roll-away error recovery performance is iden
to that of forward error recovery schemes which introduce no logging or other overh
during error-free processing.

This improvement in performance over strict backward error recovery schemes
result of the realization that not all actions must be undoable; specifically, by removin
need to undo actions such as a disk write, significant overhead is eliminated from th
ging process. Expanding the structural constraints of flow graphs, summarized here
Table 5-1, a commit node is inserted into each graph. Extending the execution invar
summarized here in Table 5-2, flow graphs are executed in a manner that guarantees
absence of a crash, atomic operation. If atomic crash semantics are required, the un
already in use, must be made durable. Also, a durable redo log must be created. Ho
because the redo records are easily created from state which currently exists in the 
controller, (disk accesses are not necessary), performance is not significantly degra

Roll-away error recovery has been implemented in RAIDframe and was demon
strated to be correct. A general method for inserting a commit node into a flow graph
developed and applied to each of the twenty one graphs of Appendix A. The resultin
twenty one graphs were introduced as Appendix B.
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Table 5-1 Structural constraints of graphs with commit nodes

Graph Segment Constraint

Global Single commit node in each graph.

Phase-I and Phase-II Subgraphs isolated by commit node

Single sink node.

Single source node.

No cycles.

Phase-I Single source node.

Single sink node (commit node).

All nodes are atomic and undoable.

Phase-II Single source node (commit node).

Single sink node.

No predicate nodes.

No true data dependencies.

Nodes preserve the independence of symbol operations.
If a node which operates upon multiple symbols detects a
failure when operating upon a subset of those symbols,
the remaining symbol operations are completed.
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Table 5-2 Execution invariants of graphs with commit nodes

Execution
Protocol Invariants

Normal (error free) Each nodes is initially in thewait state.

Execution begins with source node.

A node may be executed if all parents are in thepass or
skip states.

Execution terminates at the sink node. Each node is in
either thepass or skip state.

Roll Backward Commit node is inwait state.

All nodes in the Phase-II subgraph in thewait state.

Execution terminates at the source node. At completion,
each node in the Phase-I subgraph is in thewait, undone,
or fail state.

Roll Forward Commit node is in thepass state.

Each node in the Phase-I subgraph is in either thepass,
skip, orwait state.

Execution terminates at the sink node. At completion,
each node in the Phase-II subgraph is in either thepass
or fail state.
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Chapter 6: Conclusions and Recommendations

In Chapter 1 of this dissertation, I stated my belief that the contemporary meth
utilized in the implementation of redundant disk array software, which rely upon a ca
by-case treatment of errors, are inadequate in that they unnecessarily complicate th
cesses of coding, verification, and extension. In addition to demonstrating the validit
this belief, this dissertation made four principal contributions which directly support m
thesis:

1. A new programming abstraction to promote code reuse.

2. A reduction of architecture-specific error recovery code by isolating action-s
cific recovery from algorithm-specific recovery.

3. A mechanism for execution disk array algorithms that includes the recovery 
errors detected during execution.

4. A significant reduction, in comparison to a naive mechanical scheme, in the
ging penalties required to mechanize error recovery.

5. A programming abstraction which is amenable to automated correctness ve
tion.

6.1 Validating the Problem

The work described in this dissertation was motivated by the fundamental belie
the ad hoc techniques currently employed in the implementation of redundant disk a
software result in long development cycles due to the limited the ability of vendors to
quickly implement basic (e.g. RAID level 5) array architectures, and, once implemen
validate their correctness.

Chapter 2 provided a compendium of background information, including a revie
of a variety of disk array architectures. The necessity of error recovery in redundant 
123



 also
tively

tec-

y
face,
hical
h the
es (con-
in the
everal
ious—
e the

es the
covery
ese
e at
the
ry

en-
 be
s the

ce-

ach,
y
 in the
d
ted in
arrays, as well as several methods for coping with errors, was described. This review
demonstrated that a wide variety of disk array algorithms can be created from a rela
small set of actions, such asdisk read andXOR, suggesting that it should be possible to
quickly, and easily, extend a working disk array to support new algorithms and archi
tures.

Chapter 3 introduced a programming abstraction built upon the premise that b
encapsulating the actions which compose disk array algorithms with a pass/fail inter
recovery from action-specific errors can be isolated from array-level recovery. A grap
method of representing the sequencing of these actions was then introduced in whic
actions are represented nodes of the graph and the dependencies between the nod
trol or data) are represented by directed arcs. The merits of using forward recovery 
execution of these graphs was then examined and dismissed as unreasonable for s
reasons. First, correctly designing a graph to ensure that it is recoverable is not obv
subtle execution and failure timings which interrupt the execution of a graph can leav
system in a state from which recovery is impossible. Second, such a scheme requir
creation of a unique recovery procedure for each distinct error scenario. Because re
is not generalized, the execution of these graphs is not easily mechanized. Third, th
recovery procedures must be individually verified, something which is not easily don
design time. Finally, industry sources report that a significant fraction (over 50%) of 
code that is written for systems based upon this approach is devoted to error recove
[Friedman96].

If the execution of a graph, including the recovery from failed nodes, could be g
eralized, the problem of designing and verifying algorithm-specific procedures would
eliminated. Given the programming abstraction developed in Chapter 3, which isolate
action-specific error recovery from the execution of array algorithms, mechanization
should be possible, and therefore, the complexity of case-by-case error recovery pro
dures are unnecessary.

6.2 Eliminating Architecture-Specific Error Recovery Code

The final contribution of Chapter 3 was the introduction of a mechanized appro
borrowed from those used in transaction-processing systems, for executing disk arra
algorithms represented as graphs. The approach required that the actions contained
nodes of a graph be atomic and undoable. As a graph executed, each node recorde
enough information so that, if the graph failed, its effects could be undone. This resul
the atomic failure of a graph.
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Chapter 4 introducedRAIDframe, a prototyping framework built upon this graphica
programming abstraction. Implementations of eight disk array architectures revealed
RAIDframe’s modular construction permitted code reuse to be consistently above 90
Additionally, all changes were localized, further simplifying the process of extending
existing code. Analysis indicated that RAIDframe’s performance was consistent with
of a nonredundant hand-crafted striping driver; however, RAIDframe’s CPU consump
was 60% higher than that of the hand-crafted driver. Nevertheless, the response tim
sus throughput characteristics of the eight architectures implemented in RAIDframe
formed as expected.

6.2.1 Reducing Logging Penalties

Using RAIDframe, Chapter 5 examined the cost, in terms of performance, of g
anteeing that all nodes in a graph are undoable. Because undoing disk writes is exp
requiring the pre-read of disk sectors which are to be overwritten, the maximum sma
write throughputs of the eight array architectures were degraded by 30-50%.

RAIDframe already limited the scope of the rollback by eliminating allocating
resources (e.g. locks and buffers) and acquiring the data to be written to the array o
the graphs, eliminating the need for them to be undone. Chapter 5 introduced roll-aw
error recovery, a method for further reducing the need to log undo information. This 
accomplished by eliminating the need to undo nodes, such as disk write, which occur
the end of a graph. A commit point was inserted in each write graph, separating the a
that write information to disk from the actions that created the information which was
be written. If a node fails prior to commit, its effects are undone as before. If a node f
after commit, the graph rolls forward to completion. The rules for inserting the comm
point, which enable this roll-forward approach, were described and the graphs (and n
which were used in the previous experiments were modified accordingly. The result 
that the performance was that the logging overhead was eliminated.

6.2.2 Enabling Correctness Validation

Finally, because the programming abstraction introduced in Chapter 3 models 
algorithms as state machines, techniques such as model checking can be used to ve
array algorithms are recoverable [Vaziri96]. This approach exercises all possible inte
ings of a state machine to ensure that the correctness invariants are not violated. Ch
provided a list of invariants which govern the creation and execution of these machin
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6.3 Practicality

The previous section summarized the principal contributions of this dissertation
This section summarizes the practicality of the approach outlined in this dissertation
put to use in RAIDframe:

• design of a graph is straightforward—Appendix A described the design of twenty-on
flow graphs. A commit point was inserted into each of these graphs which were th
presented in Appendix B.

• many graphs can be generated from a small set of primitives—The twenty-two graphs
of Appendix B were created from nine actions:NOP, Rd, Wr, XOR, Commit, Q, Q,
LogOvr, andLogUpd. Through the addition of an XOR-based encoding, an additio
six graphs were possible by simply replacing theQ/Q nodes withE/E nodes.

• roll-away error recovery does not weaken the semantics of the storage system—The
traditional semantics for disk storage are that: completed write operations are dur
write operations which fail leave the area being overwritten in a an unknown state
write operations which fail do not affect areas not being overwritten. Roll-away rec
ery not only preserves these semantics but also, as the next section will describe
enables them to be strengthened to atomically survive power failures and system
crashes.

• deadlock avoidance is simplified—by ensuring that all deallocation actions occur afte
the barrier, the problem of avoiding deadlock during rollback (reallocating previou
released resources) is eliminated.

6.4 Suggestions for Future Work

As explained in Chapter 1, this dissertation broadly examined problems in redu
dant disk array software. As a result, we discovered many problems which have yet
examined in adequate detail. I present a list of these problems here in the hopes tha
researchers in this field will find them worthy of examination.

• graph compilation and optimization—A cursory examination of techniques for opti-
mizing flow graphs was presented in Section 3.3.4. I see three opportunities for in
esting work in this area: first, graphs could pass through an optimizer which perfo
the function-preserving transformations described in this dissertation. Coupling th
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optimizer with a cache and appropriate deferment strategies, it seems likely that t
optimizer could, at the very least, eliminate redundant load/stores of shared inform
(e.g. parity) and thereby improve performance.

Second, basic-block optimizations operate using only the structural constraints (d
dencies) present within a graph—no understanding of the semantics of the graph
used to optimize the algorithms found in the graphs. For example, if a number of g
which use the small-write algorithm to update independent blocks in a common p
stripe are merged, it is possible that the separate algorithms could be replaced by
gle large-write operation. This type of knowledge is currently only available during
process of mapping user requests into flow graphs.

Third, instead of specifying array operations as flow graphs, it would be interestin
see if a an abstraction, similar to a programming language, could be developed. T
may simplify the process of requesting storage access by providing an interface w
is more general, deferring details of implementation to a compiler which understan
details of the current implementation and is able to transform the high-level reques
a flow graph.

Fourth, because disk arrays are used to improve performance, it would be interes
see work on a tool which could assist the process of designing and validating the a
of graphs to achieve performance goals. This could be used in conjunction with th
compiler mentioned above, to produce graphs which don’t simply guarantee the c
state transformations, but also guarantee properties such as maximum buffer con
tion per IO.

• model checking—This is really work in progress [Vaziri96]. I repeat this item in this
section because I hope work will continue in this area, and that collaboration with
industry partners will develop in the near future. In following the work of Nancy Lyn
Mandana Vaziri and Jeannette Wing, I have seen interesting results: through the 
their models, they were able to predict write holes in the RAID level 6 small-write 
RAID level 5 reconstruct-write graphs with two graphs, one of which we did not ca

One obstacle that I have noticed is that because model checking is not integrated
the array development framework (in our case, RAIDframe), the duplicate specific
tions of flow graphs necessary for each environment lead to holes in the verificati
process. For instance, separate, but hopefully identical, specifications were creat
RAIDframe, model checking, and this dissertation. During the process of working
each of these three projects, errors, such as the inadvertent omission of an arc, w
introduced which caused these specifications to become inconsistent. Despite the
that the inconsistencies were often the result of typographical errors, their presen
often impeded progress and required many hours of careful checking (by hand) to
ensure that the specifications remained consistent. Therefore, it would be ideal if 
was some way to represent the flow graphs in a manner which eliminated the redu
specifications. For example, the code which specifies a graph used in RAIDframe
same code used to specify a graph in the model checking software, and, can be s
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ted to a printing routine which translates the code into a visual representation. Th
common specification could lead to an integration of model checking into a disk a
prototyping framework, such as RAIDframe, in which once a graph were entered 
the framework, it would be automatically validated prior to including it in the graph
creation library.

• node and infrastructure design—This dissertation largely ignored the design of node
focussing instead upon the design and execution of array algorithms. However, th
does not mean that the design of nodes is trivial. In fact, after developing RAIDfra
the pacing item in our development of new array architectures became the creatio
nodes, such as parity log append, and the infrastructure routines (parity log reinte
tion) for supporting them. I have no doubt that simplifying the implementation of s
functions would greatly simplify the process of array prototyping.

• nested execution—The mechanism for executing graphs described in this dissertati
assumed that the nodes from which graphs were constructed were both atomic a
some cases, undoable. This mechanism guaranteed that graphs execute atomica
the face of node failures. Given the complexity of node design and infrastructure 
tines, I believe that there may be merit in decomposing these functions into a seq
of functions instead of designing a single massive function.

• distributed execution—This study presumed the existence of a centralized controlle
which has total knowledge of a flow graph’s execution state. Section 3.5.5 propos
method of distributing the execution of a flow graph across multiple nodes connec
with a message-passing mechanism. Implementing and evaluating the generality
roll-away error recovery in a distributed environment would not only be useful for
redundant disk array applications, but could also provide interesting insights in th
development of distributed file systems.

• caching array architectures—Caching disk arrays are able to increase performance
deferring work until a time when it can be performed with greater efficiency. My st
of redundant disk array software excluded caching architectures. Understanding 
ramifications of recovery from errors encountered when completing deferred work
important to demonstrating the applicability of this approach to future array archit
tures which are increasingly likely to rely upon some form of deferment mechanis

• atomic disk semantics—Most fault models presume that disk arrays operations whic
are interrupted by crashes do not fail atomically, leaving the area to be written in a
unknown state (old data, new data, or unknown data). What is required is that op
tions which fail, regardless of fault, do not affect data which is not being overwritte
This semantic, carried forward from the traditional semantic of disk drives, continu
plague the implementors of dependable systems which require ACID behavior in 
storage system—architects have been forced to implement procedures outside th
age system to create stable storage.
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By using nonvolatile memory to hold array operating state, disk array vendors are
to produce controllers that atomically survive crashes. By adding a durable redo l
that contains enough information to repeat the Phase-II nodes, and making the un
durable, roll-away recovery permits the atomic survival of crashes (and pending r
ery from Phase-I node failures). At restart, replaying the contents of the undo log w
remove the effects of all graphs which were interrupted prior to the commit node. 
ilarly, replaying the contents of the redo log would complete the execution of grap
which were interrupted after the commit node. Extending this recoverability to mu
graph operations is possible by forcing both graphs to commit simultaneously. In 
illustration of Figure 6-1, multiple flow graphs are joined with a a common commit
node. After two or more flow graphs have been joined, the newly created graph c
converted to a proper flow graph by simply guaranteeing the existence of single s
and source nodes. By mirroring the undo and redo logs in multiple controllers, the
manent failure of a controller can be survived atomically.

Figure 6-1 Synchronized commit coordinates recovery of multi-graph requests

In this example, two flow graphs have been merged to share a single commit nod
effectively forcing both graphs to complete their Phase-I subgraph before either
graph is permitted to crossing the commit point. This effectively creates global
Phase-I and Phase-II subgraphs and enables global atomic recovery.

commit
node

Graph #1

Graph #2

source
node

sink
node
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Appendix A: Flow Graphs for Popular Array Architectures

This appendix demonstrates the process of composing popular array operation
from a set of atomic actions which are assumed to be undoable. Graphs, and the cr
for selecting them, are presented for twelve array architectures. The graphs contain
this appendix are the actual graphs used in the forward and backward error recover
ies described in Chapter 5. Later, in Appendix B, these graphs are modified to supp
roll-away error recovery.

Before proceeding, recall Section 4.2.3.1 that RAIDframe performs stripe locki
and memory allocation outside of the execution graph. Locks (shared or exclusive) t
protect the address range of the request are first allocated and then buffers are acq
Locks are held until the request is completed, regardless of outcome. Buffers are ac
at during the creation of each graph and released at the completion of its execution.
Because locks and buffers are acquired and released outside the scope of graph ex
the graphs presented here do not contain any resource allocation or deallocation ac
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A.1 RAID Level 0

RAID level 0 arrays do not encode data; therefore, the array is not fault-toleran
because of this, only nonredundant operations are available for use. Figure A-1 illus
the structure of nonredundant read and write operations, represented as flow graph
NOP actions guarantee that each graph has single source (head) and sink (tail) nod
Each graph is capable of supporting one or more simultaneous disk actions, allowin
graph to scale with the size of the user request.

Figure A-1 Nonredundant graphs

NOP

Nonredundant WriteNonredundant Read

RdRd ● ● ● WrWr ● ● ●

NOP NOP

NOP
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A.2 RAID Level 1, Interleaved Declustering, and Chained Declustering

RAID level 1 [Patterson88], chained declustering [Hsiao90, Hsiao91], and inter
leaved declustering [Copeland89, Teradata85] arrays are single-fault tolerant and em
copy-based redundancy to survive single disk faults without loss of service. This me
that operations are defined to service both fault-free and degraded read and write re
Table A-1 specifies which operations are used to service a request given the state o
disks.

In addition to the nonredundant graphs described in Figure A-1, RAID level 1 ar
require the an additional write operation, themirrored write, which is responsible for
maintaining copy-based redundancy in a fault-free array. This operation, illustrated i
Figure A-2, contains twice the number of write actions as a nonredundant write oper
because a copy of each symbol is written to both a primary and a secondary disk.

Table A-1 RAID level 1 graph selection

Request Disk Faults Graph

read none, single disk nonredundant read

write none mirrored write

write single disk nonredundant write

Figure A-2 Mirrored-write graph

RAID level 1 arrays use copy-based encoding to survive disk faults and require
that data must be written to two independent disks. In this graph, the write action
on the left represent writes to a primary disk(s) and write actions on the right rep-
resent writes of data to secondary disk(s).

NOP

NOP

WrWr ● ● ● WrWr ● ● ●
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A.3 RAID Level 3

RAID level 3 arrays are single fault-tolerant and use even-parity encoding to pr
data from disk failures. The criteria for selecting graphs is summarized in Table A-2. 
is bit-striped across the array, guaranteeing that all accesses, regardless of size, wil
involve all disks in the array. Because of this, the operation used to write data to the
is known as alarge write. The large-write operation, illustrated in Figure A-4, compute
the parity of a codeword and then simultaneously writes all symbols, data and parity
independent disks. The large-write operation (with one less disk write action) is also
when a data disk fails. If the disk which holds parity fails, a nonredundant write oper
(Figure A-1) is used.

The nonredundant read operation (Figure A-1) is used to read data from a faul
array or an array in which the disk containing parity has failed. If a data disk has been
adegraded-read operation reconstructs the missing data symbol by reading the entire
codeword (surviving data and parity) and XOR’ing them as described in Section 2.5

Table A-2 RAID level 3 graph selection

Request Disk Faults Graph

read none nonredundant read

read data disk degraded read

read parity disk nonredundant read

write none large write

write data disk large write

write parity disk nonredundant write
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Figure A-3 Large-write graph

This operation overwrites an entire codeword in a parity-protected array. When
the graph is submitted for execution, all new data is known. TheXOR node com-
putes new parity which is then written to disk. The otherWr nodes write new data
to disk.

If a disk which contains data has failed, this graph is still used to write data to the
array with the modification that theWr node which involves the failed disk is elim-
inated.

NOP

Wr

Wr

NOP

XORWr ● ● ●
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Figure A-4 Degraded-read graph

This operation is used to reconstruct missing data from a parity-protected array.
Data is “reconstructed” by reading all surviving symbols of the codeword: data
and parity. In this graph, theRd nodes on the left represent reads of surviving data
and theRd node on the right, the read of parity. Once all symbols (except the miss
ing symbol) are known, the missing symbol is computed as the XOR of the survi
ing symbols.

NOP

Rd

XOR

Rd ● ● ● Rd
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A.4 RAID Levels 4 and 5 and Parity Declustering

Similar to RAID level 3, RAID levels 4 and 5 [Patterson88] and parity decluster
[Holland92] arrays tolerate disk faults through the use of a parity encoding. As expe
the operations used to satisfy read and write requests are largely the same; howeve
because it is possible to write only a fraction of a codeword, additional write operatio
are required. Namely, thesmall-write operation (Figure A-5) which is used to write data 
less than half of a codeword and thereconstruct-write operation (Figure A-6) which is
used to write data to more than half, but less than a full codeword. Table A-3 provide
breakdown of graph selection for RAID level 4 and 5 arrays. Because these arrays d
only in mapping, the same table applies to both architectures.

The small-write operation, illustrated in Figure A-5, writes both data and parity 
disk. Parity is computed as:

(EQ A-1)

The cluster of read actions on the left side of the graph represent the read of old dat

the single read action on the right represents the read of old parity. Once parity has 

computed, the new data and parity symbols are written to the array.

Table A-3 RAID levels 4 and 5 graph selection

Request Disk Faults Graph

read none nonredundant read

read data disk degraded read

read parity disk nonredundant read

write < 50% of codeword none small write

write > 50% and < 100% none reconstruct write

write entire codeword none large write

write data disk reconstruct write

write parity disk nonredundant write

Paritynew Parityold Dataold Datanew⊕ ⊕=
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In the reconstruct-write operation, illustrated in Figure A-6, parity is computed fr
all symbols in the codeword. TheRd actions collect data symbols which are not being
overwritten. Once all data symbols are collected, parity is computed and the new da
parity symbols are written to disk.

Figure A-5 Small-write graph

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr ● ● ●

● ● ●
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Figure A-6 Reconstruct-write graph

This graph, as drawn, was used in forward error recovery experiments. TheRd
actions read the data symbols which are not being overwritten. The left-mostWr
actions overwrite data symbols and theWr action on the right overwrites parity.
As discussed in Section 3.4.1, theNOP node is necessary to avoid the write hole in
implementations that employ forward error recovery.

TheNOP node was removed for backward error recovery experiments which
assumed that all nodes could be undone. With theNOP node removed, the data
writes are allowed to begin immediately (i.e. were direct descendents of the sourc
node.

NOP

Rd

Wr Wr

NOP

Rd

XOR

Wr ● ● ●

● ● ●

NOP
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A.5 Parity Logging

Instead of committing parity information directly to disk, parity logging records
changes to parity in an append-only log [Stodolsky94]. Later, when the log fills, the p
updates are applied en mass. If a disk fails in a parity logging array, I assume that the
is acquiesced and that the contents of the log are applied, converting the array to a 
level 5 array; therefore, all degraded operations in parity logging arrays, as well as r
operations, are identical to those used in RAID levels 4 and 5. Table A-4 summarize
criteria used to select graphs in a parity logging array.

In general, the structure of write operations in parity-logging arrays is similar to
of operations for writing data in RAID level 4 and 5 arrays—the principal difference be
that the disk actions which write parity are replaced by log actions. Figure A-7 illustra
parity-logging small-write operation. In this graph, the read of old parity has been eli
nated and the write of parity to disk has been replaced by a log action which places 
“update” record in the parity log. An update record contains the exclusive-or of old a
new data.

A reconstruct-write operation in parity logging is identical to a reconstruct-write
operation in RAID levels 4 and 5 (Figure A-6) with the exception that theWr action which
overwrites parity on disk is replaced by a log action which appends an “overwrite” re
to the parity log. The parity-logging reconstruct-write operation is illustrated in Figure
8.

Similarly, the parity-logging large-write operation, illustrated in Figure A-9, is id
tical to the large-write operation of Figure A-4 with the exception that the write of par
to disk is replaced by a log action.

Table A-4 Parity logging graph selection

Request Disk Faults Graph

read none nonredundant read

read any single disk use RAID level 5 graphs

write < 50% of codeword none parity-log small write

write  50%, < 100% none parity-log reconstruct write

write = 100% none parity-log overwrite write

write any single disk use RAID level 5 graphs
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Figure A-7 Parity-logging small-write graph

Similar to a RAID level 5 small-write operation, the parity-logging small write
computes an update to parity based upon the exclusive-or of old and new data.
However, instead of updating parity directly, this operation records the update
record in an append only log.

NOP

Wr LogUpd

NOP

XOR

Wr ● ● ●

RdRd ● ● ●
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Figure A-8 Parity-logging reconstruct-write graph

This graph implements the same algorithm used in the RAID level 5 reconstruct-
write operation except that the new parity which was previously overwritten on
disk is now recorded in the parity log as an overwrite record.

NOP

Rd

Wr LogOvr

NOP

Rd

XOR

Wr ● ● ●

● ● ●

NOP
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Figure A-9 Parity-logging large-write graph

This graph is identical to the RAID level 3 large-write operation with the exception
that instead of overwriting parity which is stored on disk, an overwrite record is
recorded in the parity log.

NOP

Wr

LogOvr

NOP

XORWr ● ● ●
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A.6 RAID Level 6 and EVENODD

In addition to parity, RAID level 6 [RAB96] and EVENODD [Blaum95] arrays
employ a second check symbol to allow survival of two simultaneous disk failures. In
RAID level 6, I refer to this second symbol as “Q” and in EVENODD I refer to it as “E
The graphs and graph selection for each of these two architectures is identical, and
present only the graphs in terms of RAID level 6. To create the EVENODD graphs, si
replace the Q nodes with E nodes. The graphs used by these two architectures are 
rized in Table A-5.

Table A-5 RAID level 6 graph selection

Request Disk Faults Graph

read none nonredundant read

read single data disk degraded read

read parity disk nonredundant read

read Q disk nonredundant read

read two data disks PQ double-degraded read

read data + parity disks PQ degraded-DP read

read data + Q disks degraded read

read parity + Q disks nonredundant read

write < 50% of codeword none PQ small write

write < 50% of codeword parity PQ small write, P omitted

write < 50% of codeword Q small write

write > 50% and < 100% none PQ reconstruct write

write > 50% and < 100% parity PQ reconstruct, P omitted

write > 50% and < 100% Q reconstruct write

write 100% none PQ large write

write 100% parity PQ large write, P omitted

write 100% Q large write

write one data disk PQ reconstruct write

write two data disks PQ double-degraded write

write data + parity disks PQ reconstruct, P omitted

write data + Q disks reconstruct write

write parity + Q disks nonredundant write
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Read operations to a fault-free or single fault arrays are handled in much the s
manner as RAID level 5. When an attempt is made to read a codeword with two mis
data symbols, aPQ double-degraded read operation, illustrated in Figure A-10, is used.
This operation is simply an extension of the degraded-read operation previously defin
Figure A-4, the only difference being the addition of an extra decoding step.

Reading data from a codeword in which both a data symbol and parity are mis
requires the use of the “Q” symbol to reconstruct the missing data. The operation to
this, thePQ degraded-DP-read operations is illustrated in Figure A-11.

Similar to RAID level 5 arrays, writing less than half of a codeword to a RAID le
6 array is best done using a read-modify-write algorithm. ThePQ small-write operation,
illustrated in Figure A-12, writes new data symbols and computes new values of par
and “Q” using Equation A-1 on page 147. If either the parity or Q disks fail, this sam
graph is used but the chains which would normally update the now-failed check sym
are omitted.

Writing over half, but less than an entire, codeword is best done by a reconstru
write, similar to the one used in RAID level 5. Illustrated in Figure A-13, thePQ recon-
struct-write operation reads the data symbols not overwritten, meaning that the entir
(new) codeword is held in memory. Parity and Q are then computed and the new da

Figure A-10 PQ double-degraded read graph

This operation is used when two data units are missing from the codeword. The
left-mostRd action reads the old value of parity and the right-most action reads
the old value of Q. The center Rd actions read all surviving data in the codeword
TheQ action regenerates a single missing data symbol and theXOR node regen-
erates the other missing symbol.

NOP

RdRd ● ● ●

Q

XOR

Rd Rd
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ity, and Q are then written to disk. This operation is also used when data is being writ
an array in which a single data disk has failed and a fault-free disk is being written.

If two data disks have failed and data is written to at least one, but not both, of
failed disks, thePQ double-degraded write operation, illustrated in Figure A-14, is used.
This graph employs an algorithm similar to the one used in the PQ degraded write o
tion, but must reconstruct the failed data which is not overwritten.

Finally, writing data to the entire codeword is simply performed using thePQ large-
write operation. Illustrated in Figure A-15, the operation overwrites every symbol in t
codeword.

Figure A-11 PQ degraded-DP-read graph

Same as the degraded-read graph of Figure A-4 but usesQ instead ofXOR.

NOP

Rd

NOP

RdRd ● ● ●

Q
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Figure A-12 PQ small-write graph

Similar to the small-write graph (Figure A-5) but with an extra chain added to
update the “Q” disk. Additionally, aNOP node was added to avoid a write hole in
systems which employ forward error recovery. This node prevents graphs which
fail from two faults from partially modifying a codeword, making recovery impos-
sible. TheNOP node is removed when backward error recovery is employed. The
redundant arcs (e.g.Rd-Wr) appear are necessary when the NOP node is
removed.

NOP

Rd

Wr Wr

NOP

RdRd

Q

Wr ● ● ●

● ● ●

XOR

Rd

Wr

NOP
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Figure A-13 PQ Reconstruct-write graph

Similar to the reconstruct-write graph (Figure A-6), but with an extra chain added
to update the “Q” disk. In this example, assume thatD1 andD2 are to be written.
TheRd actions read old data (D0 D3 andD4). New values ofP andQ are then
computed and the writes ofD1, P, andQ are initiated. TheNOP node prevents the
write of new data (D1) from executing until the entire codeword is stored in the
controller. is necessary in forward error recovery implementations to ensure recov
ery. Implementations employing backward error recovery are allowed to remove
theNOP node, allowing the write of new data to occur as soon as the graph begin
execution.

NOP

Rd

Wr Wr

NOP

Rd

Q

Wr ● ● ●

● ● ●

NOPXOR

Wr

D0 D1 D2 D3 P QD4
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Figure A-14 PQ double-degraded write graph

Assume thatD1 andD2 are to be overwritten. BecauseD4 is missing, the PQ
reconstruct operation can not be used. This operation completes the requests by
reconstructingD4 and then using the reconstruct-write algorithm.

First all surviving symbols are read. TheRd actions in the center read the read of
data (e.g.D0 D1 andD3), theRd actions on the ends read oldP andQ. TheQ
action reconstructsD4. At this point, the entire codeword is known and the compu-
tation and writing of parity, Q and data can commence.

D0 D1 D2 D3 P QD4

NOP

Rd

Wr Wr

NOP

Rd

Q

Wr ● ● ●

● ● ●

XOR

Wr

Rd Rd

Q

XOR
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Figure A-15 PQ large-write graph

Similar to the large-write graph (Figure A-3) but with an extra chain added to
update the “Q” disk.

NOP

Wr

Wr

NOP

QWr ● ● ●XOR

Wr
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A.7 Two-Dimensional Parity

Disk arrays which employ two-dimensional parity are capable of surviving two
simultaneous disk failures [Gibson89]. Naturally, this implies that a greater set of op
tions is required in a two-dimensional parity implementation. Table A-6 summarizes 
criteria for selecting an operation given the number and location of disk faults in the a
For simplicity, I have included the basic set of operations necessary to implement tw
dimensional parity. It is possible to enrich this set of operations to with operations w
increase performance by optimally manipulating parity given the access size (e.g. re
struct-style update of horizontal parity and small-write update of vertical parity).

Fault-free two-dimensional parity array operations are the same as those used
RAID level 4 and 5 arrays. The same is true for read operations which involve a sing
failed data disk or one or two failed parity disks.

A new read operation,2D double-degraded read, is required when two data disks
have failed. This case and the graph which implements the operation are illustrated 
Figure A-16. The operation reconstructs missing information using the vertical code
words. This same operation is used in the case that a data and a horizontal parity d
lost with the modification that only one data disk will need to be reconstructed.

Table A-6 Two-dimensional parity graph selection

Request Disk Faults Graph

read none nonredundant read

read one data disk degraded read

read one parity disk nonredundant read

read two data disks 2D double-degraded read

read data + vert. parity degraded read

read data + horiz. parity 2D double-degraded read

read two parity disks nonredundant read

write none 2D small write

write one data disk 2D degraded write

write vertical parity 2D small write, omit V

write horizontal parity 2D degraded-H write

write data + vert. parity 2D degraded-DV write

write data + horiz. parity 2D degraded-DH write

write two data disks 2D degraded-DH write

write two parity disks nonredundant write
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Figure A-16 2D double-degraded read graph

This operation is similar to the degraded-read operation used in RAID level 5
arrays, but extended to reconstruct missing data from two codewords. Assume th
D3-D5 are being read. The left-mostRd-XOR actions gather surviving informa-
tion to reconstruct a unit of missing data (e.g.D4). Similarly, the right-mostRd-
XOR actions reconstruct the second missing unit of data (e.g.D5). The centerRd
actions retrieve data from non-failed disks (e.g.D3).

NOP

NOP

XOR

Rd ● ● ● Rd RdRd ● ● ●

XOR

Rd ● ● ● Rd

P036 P147 P258

P012D2D1D0

D3 D4 D5 P345

P678D8D7D6
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Because write operations must update parity for two codewords, they must per
additional work not found in the RAID level 5 graphs. The2D small write operation, illus-
trated in Figure A-17, uses the same principle (read-modify-write) as the RAID level
small-write operation (Figure A-5), but extends the approach to include vertical code
words. Additionally, this graph, as do all 2D write graphs, requires that all writes are
enabled simultaneously to guarantee that all error scenarios are recoverable in impl
tation that employ forward error recovery. If backward error recovery is used, this co
straint is removed because the graph may back up from any failure point.

Writing data to a codeword in which a single data disk has failed requires that 
2D small write operation be modified, replacing small-write style parity updates whic
involve the failed data to reconstruct-style updates. This operation, called a2D degraded
write, is illustrated in Figure A-18.

If, in instead of a failed data disk, a disk containing vertical parity has failed, the
small-write operation is used, with the update of the failed vertical parity eliminated. 
the disk containing horizontal parity has failed, the update of horizontal parity is rem
from the 2D small-write operation. This variant, called the2D degraded-H write opera-
tion, is illustrated in Figure A-19.

If both a data disk and the disk containing horizontal parity have failed, the writ
performed using a2D degraded-DH write operation, illustrated in Figure A-20. This ope
ation is essentially a 2D degraded write with the update of horizontal parity removed.
ilarly, if a data disk and a disk containing vertical parity is removed, the 2D degraded 
operation is modified and the update of vertical parity which protected the failed data
is removed. This variant, called the2D degraded-DV write operation, is illustrated in
Figure A-21. If the data and vertical parity failures don’t overlap, a combination of the
degraded write and 2D degraded-V

Finally, I point out that many other variants of this basic set of graphs are poss
Hopefully, this appendix has provided you, the reader, enough insight to begin cons
ing these operations autonomously.
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Figure A-17 2D small-write graph

This operation writes data to one or more blocks of a single horizontal codeword
and employs the small-write method of updating associated parity. The right-mos
Rd-XOR-Wr chain is used to update horizontal parity. The centerRd-Wr chains
represent the reading of old data and the writing of new data. The left-mostRd-
XOR-Wr chains represent the updates of vertical parity. Notice that theseXOR
actions depend only on one block of old data while theXOR used to compute hor-
izontal parity depends on all “old data” blocks.

NOP

Wr

NOP

Rd

XOR

RdRd ● ● ●

XORXOR ● ● ●

WrWr ● ● ● WrWr ● ● ●

RdRd ● ● ●
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Figure A-18 2D degraded-write graph

To write data toD4 and D5, a 2D degraded-data operation is used. This operation
uses the small-write algorithm to updateP147 and the reconstruct-write algorithm
to updateP258 andP345.

TheRd-XOR-Wr chains on the left represent the read-modify-write of the vertical
parity of non-failed data disks (e.g.P14). The left-centerRd nodes gather old hor-
izontal data (e.g.D3). The left-centerWr nodes write new data (e.g.D4). The
right-centerRd-XOR-Wr chain reads old vertical data of the disk that failed (e.g.
D2) and updates vertical parity (e.g.P25). The right-mostRd-XOR-Wr chain
updates horizontal parity (e.g.P345).

P03 P14 P25

P012D2D1D0

D3 D4 D5 P345

NOP

Rd

Wr

NOP

Rd

XOR

● ● ● RdRd ● ● ● RdRd ● ● ● Rd

XORXOR ● ● ● XOR

WrWrWr ● ● ● WrWr ● ● ●
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Figure A-19 2D degraded-H write graph

Similar to 2D small write but with the update of horizontal parity removed. Assum
ing thatD4 andD5 are to be written, theRd-XOR-Wr chains on the left update
vertical parity (e.g.P147 andP258). TheRd-Wr chains on the right read and write
data (e.g.D4 andD5).
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NOP

RdRd ● ● ●

XORXOR ● ● ●
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Figure A-20 2D degraded-DH write graph

Same as 2D degraded write but with update of horizontal parity removed.

P036 P147 P258

P012D2D1D0
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Figure A-21 2D degraded-DV write graph

Same as 2D degraded write but with update of vertical parity of failed data disk
removed.

P036 P147 P258
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Appendix B: Modifying Graphs for Roll-Away Recovery

This appendix presents the flow graphs created in Appendix A but adapted for
away error recovery. This presentation assumes an understanding of the graph stru
which was explained in Appendix A.

The rules for placing a commit node in a graph were described in Section 5.3.3
short, commit nodes are generally the sink node of read operations and the parent o
symbol update actions which are found in write operations.

These structure of these graphs is identical to those used in the roll-away erro
recovery experiments of Chapter 5. The graphs are presented in the same order tha
were introduced in Appendix A.
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Figure B-1 Nonredundant graphs

TheNOP sink node of the nonredundant read graph is replaced by aCommit
node. TheNOP source node of the nonredundant write graph is replaced by a
Commit node.

Commit

Nonredundant WriteNonredundant Read

RdRd ● ● ● WrWr ● ● ●

NOP Commit

NOP

Figure B-2 Mirrored-write graph

TheNOP source node of the nonredundant write graph is replaced by aCommit
node.

Commit

NOP

WrWr ● ● ● WrWr ● ● ●
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Figure B-3 Large-write graph

Instead of writing new data concurrently with the computation of new parity, a
Commit node is inserted to block the writes of new data until theXOR node has
completed execution.

XOR

Wr Wr

NOP

Commit

Wr ● ● ●

Figure B-4 Degraded-read graph

A Commit node has been added as to the end of the graph. Remember: reachin
the Commit node implies that the graph will complete successfully.

NOP

Rd

XOR

Rd ● ● ● Rd

Commit
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Figure B-5 Small-write graph

A Commit node was inserted to prevent writes of new data from proceeding until
all reads of old data and the computation parity have been completed.
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Wr Wr

NOP

RdRd
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Commit
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Figure B-6 Reconstruct-write graph

The middleNOP was replaced with aCommit node which prevents the writes of
new data from being executed until new parity has been computed.
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Figure B-7 Parity-logging small-write graph

A Commit node is inserted to prevent writes of new data from proceeding until all
reads of old data have completed and new parity has been computed.

NOP

Wr LogUpd

NOP

XOR

Wr ● ● ●
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Commit
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Figure B-8 Parity-logging reconstruct-write graph

The middleNOP node, which prevented writes of new data from proceeding until
all Rd nodes had completed has been replaced by aCommit node which prevents
writes from proceeding until allRd nodes have completed and the parity update
record has been computed.
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Wr LogOvr

NOP
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Figure B-9 Parity-logging large-write graph

Instead of writing new data concurrently with the computation of the parity over-
write record, aCommit node is inserted to block the writes of new data until the
XOR node has completed execution.
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Wr LogOvr

NOP
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Commit
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Figure B-10 PQ double-degraded read graph

A Commit node has been added as to the end of the graph. Remember: reachin
the Commit node is reached implies that the graph will complete successfully.

NOP

RdRd ● ● ●

Q

XOR

Rd Rd

Commit

Figure B-11 PQ degraded-DP-read graph

TheNOP sink node was replaced by aCommit node.

NOP
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Commit

RdRd ● ● ●

Q
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Figure B-12 PQ small-write graph

A Commit node was added to block all writes from initiating until all new symbols
(data, parity, and Q) have been computed.
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Figure B-13 PQ Reconstruct-write graph

Replaced centralNOP node with a Commit node which blocks all Wr nodes from
executing until all new symbols have been computed.
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Figure B-14 PQ double-degraded write graph

A Commit node was added to preventWr actions from executing before theXOR
andQ nodes have completed.
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Figure B-15 PQ large-write graph

Instead of writing new data concurrently with the computation of the parity over-
write record, aCommit node is inserted to block the writes of new data until the
XOR andQ nodes have completed execution.
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Figure B-16 2D double-degraded read graph

ReplacedNOP sink node with a commit node.
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Figure B-17 2D small-write graph

A Commit node was added, eliminating the need to undo theWr actions.
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Figure B-18 2D degraded-write graph

A Commit node was added, eliminating the need to undo theWr actions.
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Figure B-19 2D degraded-H write graph

A Commit node was added, eliminating the need to undo theWr actions.
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Figure B-20 2D degraded-DH write graph

A Commit node was added, eliminating the need to undo theWr actions.
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Figure B-21 2D degraded-DV write graph

A Commit node was added, eliminating the need to undo theWr actions.
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Appendix C: Data

This appendix contains the algorithm that was used to insert a commit node in
example of Section 5.3.3.2 (Section C.1), the raw data for each figure presented in t
sertation (Section C.2) as well as a sample configuration file (Section C.3). Table C-
relates the figure numbers with the tables which contain the raw data presented in th
figure.

Table C-1 Cross-reference of performance figures and raw data

Performance Figure Performance Data

Figure Number Page Number Table Number Page Number

4-5(a) 94 C-2 196

4-5(b) 94 C-3 196

4-4 93 C-4 197

4-6 96 C-5 198

4-7 98 C-6 206

5-1 102 C-7 214

5-10 117 C-8 222
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C.1 Algorithm for Inserting a Commit Point Into a Write Graph

The following program creates a RAID level 5 small-write graph without a com
node, prints the graph, inserts a commit node, and then prints the new graph.

/*
 * code for inserting commit node into a graph
 */

#include <stdio.h>
#include <stdlib.h>
#include <sys/file.h>

#define MAX_PARENTS 8
#define MAX_CHILDREN 8
#define MAX_NODES 100

typedef struct node_s {
  char* name;
  int num_p; /* number of parents */
  int parent[MAX_PARENTS]; /* ptrs to parents */
  int num_c; /* number of children */
  int child[MAX_CHILDREN]; /* ptrs to children */
  int dat_dep_child; /* 1 if one or more children are data
dependent */
} node_t;

typedef struct dag_s {
  int length; /* number of nodes in the dag */
  int cmt_ptr; /* ptr to the commit node */
} dag_t;

node_t node[MAX_NODES];
dag_t dag;

static void build_dag()
{
  int i;
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  /* build a RAID level 5 small-write graph */

  /* head of dag is always node 0
     tail of dag is always node (length - 1) */

  dag.length = 9;
  dag.cmt_ptr = dag.length;

  node[0].name = “Lock”;
  node[0].num_p = 0;
  node[0].num_c = 1;
  node[0].child[0] = 1;
  node[0].dat_dep_child = 0;

  node[1].name = “MemA”;
  node[1].num_p = 1;
  node[1].parent[0] = 0;
  node[1].num_c = 2;
  node[1].child[0] = 2;
  node[1].child[1] = 3;
  node[1].dat_dep_child = 1;

  node[2].name = “Rd”;
  node[2].num_p = 1;
  node[2].parent[0] = 1;
  node[2].num_c = 2;
  node[2].child[0] = 4;
  node[2].child[1] = 5;
  node[2].dat_dep_child = 1;

  node[3].name = “Rd”;
  node[3].num_p = 1;
  node[3].parent[0] = 1;
  node[3].num_c = 1;
  node[3].child[0] = 5;
  node[3].dat_dep_child = 1;

  node[4].name = “Wr”;
  node[4].num_p = 1;
  node[4].parent[0] = 2;
  node[4].num_c = 1;
  node[4].child[0] = 8;
  node[4].dat_dep_child = 0;

  node[5].name = “XOR”;
  node[5].num_p = 2;
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  node[5].parent[0] = 2;
  node[5].parent[1] = 3;
  node[5].num_c = 1;
  node[5].child[0] = 6;
  node[5].dat_dep_child = 1;

  node[6].name = “Wr”;
  node[6].num_p = 1;
  node[6].parent[0] = 5;
  node[6].num_c = 1;
  node[6].child[0] = 7;
  node[6].dat_dep_child = 0;

  node[7].name = “MemD”;
  node[7].num_p = 1;
  node[7].parent[0] = 6;
  node[7].num_c = 1;
  node[7].child[0] = 8;
  node[7].dat_dep_child = 0;

  node[8].name = “Unlock”;
  node[8].num_p = 2;
  node[8].parent[0] = 4;
  node[8].parent[1] = 7;
  node[8].num_c = 0;
  node[8].dat_dep_child = 0;

  /* initialize commit node but do not connect to dag */
  node[9].name = “Commit”;
  node[9].num_p = 0;
  node[9].parent[0] = 0;
  node[9].num_c = 0;
  node[9].dat_dep_child = 0;
}

static void print_node(int node_id)
{
  int i;

  printf(“Node ID: %d\n”,node_id);
  printf(“     name: %s\n”,node[node_id].name);
  if (node[node_id].num_p > 0) {
    printf(“     parents:”);
    for (i = 0; i < node[node_id].num_p; i++)
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      printf(“ %d”, node[node_id].parent[i]);
    printf(“\n”);
  }
  else
    printf(“     parents: none\n”);

  if (node[node_id].num_c > 0) {
    printf(“     children:”);
    for (i = 0; i < node[node_id].num_c; i++)
      printf(“ %d”, node[node_id].child[i]);
    printf(“\n”);
  }
  else
    printf(“     children: none\n”);

  if (node[node_id].dat_dep_child)
    printf(“     * node originally had data-dependent chil-
dren\n\n”);
  else
    printf(“\n”);
}

static void print_dag()
{
  int i;

  printf(“\n\nPrinting %d-node DAG\n\n”,dag.length);
  for (i = 0; i < dag.length; i++)
    print_node(i);
}

static void insert_commit(int p, int c)
{
  int i, done;

  /* insert the comment node between the nodes p and c */
  /* p is the parent of c */

  /* commit node has an additional child, c */
  /* make sure c isn’t already a child of the commit node */
  done = 0;
  for (i = 0; i < node[dag.cmt_ptr].num_c; i++)
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    if (node[dag.cmt_ptr].parent[i] == c)
      done = 1;
  if (!done) {
    node[dag.cmt_ptr].child[node[dag.cmt_ptr].num_c] = c;
    node[dag.cmt_ptr].num_c++;
  }

  /* c’s only parent is the commit node */
  node[c].num_p = 1;
  node[c].parent[0] = dag.cmt_ptr;

  /* p replaces child c with commit node */
  for (i = 0; i < node[p].num_c; i++)
    if (node[p].child[i] == c)
      node[p].child[i] = dag.cmt_ptr;

  /* p is added to the list of parents in the commit node */
  /* make sure p isn’t already a parent of the commit node */
  done = 0;
  for (i = 0; i < node[dag.cmt_ptr].num_p; i++)
    if (node[dag.cmt_ptr].parent[i] == p)
      done = 1;
  if (!done) {
    node[dag.cmt_ptr].parent[node[dag.cmt_ptr].num_p] = p;
    node[dag.cmt_ptr].num_p++;
  }

}

static void explore_branch(int node_id)
{
  int i, p_id;

  /* recursively look at all of node_id’s parents */
  /* stop searching if a data dependency is encountered */
  /* and then insert the commit node between nodes */

  for (i = 0; i < node[node_id].num_p; i++) {
    p_id =  node[node_id].parent[i];
    if (!node[p_id].dat_dep_child)
      explore_branch(p_id);
    else
      insert_commit(p_id, node_id);
  }
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}

static void add_commit()
{
  int node_id;

  /* look for first sign of data dependencies */
  /* begin with sink node and work towards source node */

  explore_branch(dag.length - 1);
  dag.length++; /* commit node now a part of the dag */
}

int main(int argc, char **argv)
{
  build_dag();
  printf(“Original DAG, without commit node:\n”);
  print_dag();
  add_commit();
  printf(“Final DAG, with commit node:\n”);
  print_dag();
}
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C.2 Raw Data

Table C-2 Comparing RAIDframe to a hand-crafted implementation

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

RAIDframe Striping Driver

Number of
Disks Read Write Read Write

1 53.55± 0.48

36.93± 0.35

51.17± 0.12

38.65± 0.10

53.12± 1.05

36.90± 0.22

51.31± 0.62

38.55± 0.47

2 92.12± 0.74

42.02± 0.16

87.64± 0.62

44.34± 0.30

92.77± 1.20

42.10± 0.48

90.19± 1.38

43.47± 0.48

4 200.30± 2.28

38.36± 0.50

193.40± 2.19

40.00± 0.31

199.64± 0.64

38.31± 0.47

193.64± 3.12

39.85± 0.71

6 318.88± 2.24

35.55± 0.48

309.52± 6.68

36.69± 0.55

321.85± 4.46

35.39± 0.23

307.62± 9.02

36.86± 0.41

8 412.93± 4.38

36.05± 0.16

409.47± 4.78

36.70± 0.33

421.12± 4.20

35.68± 0.22

404.78± 1.13

37.20± 0.20

10 472.44± 7.51

39.27± 0.52

462.30± 3.14

40.48± 0.35

473.99± 9.13

39.45± 0.54

461.50± 1.53

40.62± 0.16

Table C-3 Comparing RAIDframe to a hand-crafted implementation

CPU Utilization (%) ± 95% confidence interval

RAIDframe Striping Driver

Number of
Disks Read Write Read Write

1 4.53± 0.13 4.67± 0.10 2.84± 0.05 2.75± 0.02

2 7.69± 0.24 7.78± 0.13 4.80± 0.11 4.67± 0.05

4 16.82± 0.12 17.12± 0.04 10.39± 0.07 10.17± 0.21

6 27.21± 0.27 27.73± 0.49 16.83± 0.28 16.45± 0.36

8 35.77± 0.37 36.90± 0.22 22.10± 0.28 21.63± 0.30

10 41.73± 0.97 42.30± 0.39 25.66± 0.41 25.26± 0.16
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Table C-4 Single disk performance of striper and RAIDframe

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

RAIDframe Striping Driver

Read Write Read Write

1 56.6± 0.62

17.26± 0.10

54.31± 0.09

18.08± 0.03

57.67± 0.40

17.00± 0.09

55.10± 0.18

17.86± 0.07

2 62.38± 0.43

31.64± 0.19

58.94± 0.10

33.52± 0.06

62.55± 0.19

31.60± 0.08

59.01± 0.22

33.52± 0.14

5 67.66± 0.12

72.81± 0.22

65.65± 0.40

75.01± 0.73

68.14± 0.33

72.40± 0.29

66.28± 0.20

74.28± 0.30

10 69.78± 0.34

139.65± 0.47

68.83± 0.44

142.40± 0.77

69.19± 0.45

141.70± 0.80

67.84± 0.40

145.03± 1.44

15 73.08± 0.25

200.05± 0.55

71.52± 0.69

203.20± 1.67

72.48± 0.49

201.62± 1.36

70.79± 0.08

206.16± 0.80

20 75.43± 0.28

256.26± 2.90

73.93± 0.50

261.44± 2.57

74.63± 0.31

260.21± 0.81

73.04± 0.27

264.79± 0.51

30 78.05± 0.25

369.21± 2.74

76.60± 0.25

374.47± 1.35

77.55± 0.62

371.23± 2.47

76.41± 0.48

377.27± 2.16

40 79.68± 0.28

478.04± 6.87

78.80± 0.23

484.56± 1.01

79.50± 0.35

481.85± 2.55

78.20± 0.41

487.45± 2.94
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Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel

RAID level 0 1 95.65± 0.32

9.69± 0.03

68.53± 0.81

14.37± 0.17

70.60± 1.37

13.78± 0.20

2 139.94± 0.54

10.34± 0.02

129.68± 0.15

15.06± 0.02

134.41± 1.61

14.43± 0.18

5 351.18± 1.63

12.29± 0.04

273.99± 2.30

17.47± 0.15

281.41± 1.38

16.80± 0.12

10 561.78± 1.20

16.18± 0.10

425.43± 3.83

22.04± 0.26

435.68± 5.55

21.15± 0.22

15 671.88± 8.55

20.37± 0.32

508.25± 4.36

27.21± 0.22

521.78± 5.17

26.00± 0.09

20 742.96± 11.82

24.71± 0.76

559.80± 6.83

32.19± 0.42

558.87± 22.19

31.06± 0.54

30 817.81± 9.85

33.64± 0.36

601.80± 1.80

42.26± 0.32

635.85± 6.59

41.27± 0.59

40 870.37± 3.04

42.07± 0.20

611.49± 4.82

52.84± 0.86

657.91± 24.20

51.57± 0.44
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RAID level 1 1 95.50± 0.54

9.97± 0.06

68.29± 0.17

14.42± 0.05

70.86± 0.58

13.79± 0.11

2 163.81± 0.91

10.04± 0.05

131.99± 0.52

14.76± 0.08

137.14± 1.26

14.11± 0.06

5 386.96± 3.86

11.08± 0.09

290.07± 0.85

16.44± 0.07

306.71± 2.11

15.49± 0.07

10 630.33± 1.14

14.38± 0.06

455.63± 2.55

20.31± 0.13

483.27± 7.33

19.02± 0.14

15 742.95± 6.48

18.45± 0.19

540.03± 2.43

24.72± 0.14

567.02± 9.75

23.90± 0.24

20 808.30± 3.93

22.85± 0.09

566.24± 3.38

29.91± 0.43

615.53± 4.79

28.98± 0.14

30 866.52± 9.41

31.89± 0.33

575.72± 1.70

41.59± 0.91

663.27± 11.11

39.73± 0.51

40 902.41± 8.16

40.63± 0.11

575.11± 1.70

54.56± 0.65

675.66± 7.06

50.70± 0.29

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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RAID level 4 1 95.99± 0.67

9.92± 0.07

68.11± 0.38

14.47± 0.09

70.66± 0.54

13.82± 0.11

2 159.95± 0.16

10.53± 0.02

127.82± 0.27

15.27± 0.03

132.72± 0.46

14.61± 0.06

5 343.05± 0.16

12.60± 0.05

266.95± 1.70

17.94± 0.13

276.01± 0.33

17.22± 0.10

10 531.25± 8.41

16.99± 0.20

403.36± 2.36

23.38± 0.14

414.83± 5.91

22.42± 0.21

15 626.28± 12.87

22.04± 0.41

483.17± 1.90

28.80± 0.15

494.29± 3.93

27.72± 0.29

20 687.60± 5.63

26.83± 0.51

521.92± 4.38

35.25± 0.48

533.38± 7.29

33.65± 0.24

30 757.43± 9.82

36.57± 0.19

574.74± 4.02

46.05± 0.79

594.30± 7.23

44.90± 0.53

40 794.92± 4.47

46.35± 0.54

591.26± 4.75

57.38± 0.94

610.14± 11.38

56.71± 0.26

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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RAID level 5 1 95.38± 0.54

9.99± 0.06

68.18± 0.35

14.45± 0.07

70.59± 0.21

13.84± 0.03

2 160.04± 1.12

10.49± 0.08

128.24± 1.13

15.22± 0.14

133.44± 0.46

14.51± 0.02

5 349.00± 6.98

12.34± 0.19

270.41± 2.07

17.69± 0.15

282.42± 4.04

16.89± 0.19

10 559.25± 0.47

16.11± 0.04

415.55± 3.04

22.59± 0.17

428.84± 11.72

21.52± 0.12

15 668.97± 6.47

20.47± 0.06

504.88± 2.76

27.29± 0.29

511.51± 11.37

26.48± 0.29

20 746.40± 4.02

24.71± 0.30

549.31± 1.55

32.54± 0.08

570.40± 16.52

31.45± 0.35

30 827.39± 11.28

33.75± 0.44

584.73± 2.43

42.98± 0.35

632.95± 13.58

41.52± 1.15

40 866.40± 11.03

42.23± 0.20

587.51± 3.24

54.54± 0.52

655.52± 5.13

51.86± 0.50

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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RAID level 6 1 92.76± 0.54

10.29± 0.06

65.77± 0.13

14.99± 0.03

67.93± 0.06

14.40± 0.01

2 157.03± 0.65

10.86± 0.06

123.63± 1.02

15.80± 0.14

128.68± 1.08

15.06± 0.09

5 337.84± 1.50

12.73± 0.12

262.25± 0.91

18.26± 0.05

272.77± 1.11

17.47± 0.10

10 542.03± 3.60

16.83± 0.15

406.78± 3.50

23.05± 0.23

419.38± 10.10

22.19± 0.31

15 652.23± 4.39

21.09± 0.28

485.14± 0.97

28.44± 0.06

506.79± 3.98

27.24± 0.23

20 724.28± 9.49

25.12± 0.03

532.74± 2.97

33.65± 0.49

546.41± 6.06

32.35± 0.10

30 800.19± 7.60

34.44± 0.40

562.90± 1.48

44.15± 0.35

607.25± 3.13

42.89± 0.27

40 852.07± 5.83

43.15± 0.28

566.53± 0.97

57.16± 0.85

638.45± 22.79

53.74± 0.80

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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parity
declustering

1 93.77± 0.45

10.17± 0.06

67.40± 0.32

14.63± 0.08

69.80± 0.13

14.00± 0.03

2 158.58± 0.62

10.66± 0.04

127.12± 0.52

15.63± 0.06

132.39± 0.51

14.67± 0.07

5 344.41± 3.40

12.48± 0.07

269.55± 0.69

17.75± 0.04

276.80± 3.29

17.10± 0.08

10 556.15± 9.66

16.32± 0.21

412.13± 0.33

22.83± 0.05

427.86± 4.21

21.59± 0.23

15 665.44± 4.28

20.72± 0.25

497.37± 7.64

27.58± 0.35

509.90± 4.00

26.46± 0.27

20 728.87± 10.58

25.23± 0.16

544.82± 4.33

32.61± 0.25

562.73± 5.09

31.79± 0.35

30 807.74± 11.51

34.02± 0.19

576.08± 1.88

43.17± 0.74

615.98± 17.31

42.20± 0.58

40 855.15± 11.14

42.79± 0.79

578.48± 1.04

56.11± 0.44

652.66± 7.53

52.39± 0.20

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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interleaved
declustering

1 95.59± 0.79

9.96± 0.08

68.26± 0.34

14.43± 0.07

70.97± 0.17

13.76± 0.04

2 160.36± 0.04

10.46± 0.05

128.87± 0.58

15.13± 0.07

134.46± 0.48

14.44± 0.05

5 349.55± 0.58

12.31± 0.04

274.26± 0.94

17.43± 0.07

283.08± 2.23

16.77± 0.11

10 556.33± 7.60

16.37± 0.23

415.49± 2.20

22.57± 0.10

436.73± 6.19

21.17± 0.25

15 665.21± 3.38

20.56± 0.19

503.34± 2.51

27.36± 0.17

518.33± 5.65

26.39± 0.15

20 743.47± 5.52

24.59± 0.08

548.57± 3.69

32.41± 0.30

571.88± 13.38

31.27± 0.65

30 807.02± 2.59

22.76± 0.45

573.39± 1.94

43.58± 0.17

625.22± 11.38

41.81± 0.75

40 871.36± 6.54

41.96± 0.09

577.79± 0.89

55.33± 0.65

661.86± 11.70

51.60± 0.88

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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chained
declustering

1 95.78± 0.39

9.94± 0.04

68.15± 0.41

14.46± 0.09

70.94± 0.31

13.77± 0.06

2 160.19± 0.16

10.47± 0.02

127.91± 0.42

15.25± 0.05

133.76± 1.36

14.51± 0.13

5 351.18± 1.63

12.29± 0.04

272.91± 0.16

17.52± 0.03

283.80± 4.39

16.75± 0.12

10 561.78± 1.20

16.18± 0.10

419.80± 3.85

22.31± 0.21

432.97± 4.53

21.21± 0.18

15 671.88± 8.55

20.37± 0.32

506.52± 6.02

27.09± 0.37

519.66± 4.88

26.13± 0.27

20 742.96± 11.82

24.71± 0.46

548.44± 3.60

32.59± 0.44

568.20± 12.65

30.98± 0.11

30 817.81± 9.85

33.64± 0.36

575.78± 1.48

43.26± 0.40

636.86± 6.26

41.30± 0.55

40 870.37± 3.04

42.07± 0.20

575.74± 2.53

55.87± 0.30

663.80± 6.26

51.80± 1.50

Table C-5 Small-read performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel

RAID level 0 1 95.65± 0.32

9.96± 0.03

65.25± 0.71

15.13± 0.16

67.61± 0.15

14.46± 0.03

2 139.94± 0.54

10.34± 0.02

123.72± 1.76

15.80± 0.23

127.87± 0.95

15.20± 0.12

5 351.18± 1.63

12.29± 0.04

264.25± 1.59

18.20± 0.11

269.77± 1.64

17.51± 0.02

10 561.78± 1.20

16.18± 0.10

409.90± 9.22

22.97± 0.44

413.06± 0.71

22.34± 0.19

15 671.88± 8.55

20.37± 0.32

500.64± 2.96

22.73± 0.23

500.72± 9.49

27.02± 0.13

20 742.96± 11.82

24.71± 0.46

546.89± 5.59

33.32± 0.35

550.66± 6.39

32.15± 0.42

30 817.81± 9.85

33.64± 0.36

594.74± 3.04

43.36± 0.32

614.04± 5.25

42.96± 0.57

40 870.37± 3.04

42.07± 0.20

605.90± 0.91

54.39± 0.11

647.42± 11.65

52.99± 0.58
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RAID level 1 1 91.06± 1.13

10.48± 0.14

53.62± 0.22

18.43± 0.08

56.76± 0.38

17.29± 0.11

2 151.98± 0.58

11.61± 0.07

98.88± 0.61

19.82± 0.13

103.98± 0.62

18.77± 0.10

5 272.92± 1.97

15.97± 0.25

190.31± 0.64

25.43± 0.08

196.25± 2.14

24.59± 0.14

10 364.87± 2.71

25.17± 0.25

264.36± 2.94

36.28± 0.45

262.96± 0.90

35.86± 0.39

15 406.36± 5.76

34.37± 0.44

297.85± 3.66

48.27± 0.50

293.62± 6.67

47.84± 0.53

20 426.38± 6.69

43.56± 0.24

317.98± 4.17

60.07± 0.88

311.95± 4.95

59.41± 0.91

30 453.89± 3.76

61.27± 0.48

338.90± 1.08

84.80± 0.32

334.09± 5.61

82.49± 1.23

40 469.72± 4.03

79.67± 0.63

356.54± 3.97

106.88± 0.59

344.97± 1.47

105.11± 0.72

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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RAID level 4 1 45.93± 0.20

21.27± 0.09

34.28± 0.59

28.95± 0.51

35.70± 0.43

27.67± 0.34

2 46.51± 0.11

42.49± 0.11

38.24± 0.44

51.91± 0.60

37.80± 0.12

52.49± 0.17

5 47.35± 0.12

104.93± 0.26

39.19± 0.54

126.65± 1.73

39.09± 0.14

126.84± 0.46

10 48.01± 0.28

207.12± 1.12

40.56± 0.32

244.54± 1.74

40.20± 0.18

245.32± 1.38

15 48.64± 0.02

306.45± 0.14

42.23± 0.07

352.62± 0.55

41.48± 0.11

354.54± 2.40

20 48.90± 0.23

405.80± 1.76

43.09± 0.17

461.04± 2.17

42.37± 0.03

459.08± 1.38

30 49.11± 0.25

604.41± 2.90

44.13± 0.09

675.60± 1.32

43.33± 0.13

666.99± 0.96

40 49.76± 0.17

793.36± 2.66

45.00± 0.09

883.81± 1.88

43.98± 0.28

861.25± 4.37

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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RAID level 5 1 45.79± 0.01

21.34± 0.01

34.32± 0.40

28.91± 0.33

36.06± 0.34

27.39± 0.26

2 75.78± 0.35

25.88± 0.12

55.68± 0.20

35.48± 0.14

57.84± 0.54

34.07± 0.30

5 127.37± 0.62

38.74± 0.18

95.38± 0.87

51.55± 0.46

96.23± 1.39

50.75± 0.73

10 165.00± 0.87

59.22± 0.37

128.74± 1.14

76.30± 0.74

96.23± 2.06

74.90± 0.73

15 186.31± 2.07

78.79± 0.76

146.01± 1.05

100.68± 0.70

145.15± 1.49

99.13± 0.88

20 197.51± 2.04

99.34± 1.07

156.60± 1.61

124.87± 1.58

153.93± 0.95

123.58± 0.58

30 210.95± 2.31

139.82± 1.05

172.38± 1.68

170.52± 1.58

169.24± 0.95

166.31± 0.58

40 219.55± 0.97

179.63± 0.67

182.06± 1.12

214.01± 2.07

176.31± 1.25

211.70± 0.29

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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RAID level 6 1 40.72± 0.06

24.05± 0.03

28.13± 0.43

35.33± 0.54

32.01± 0.15

30.90± 0.14

2 60.58± 0.23

32.51± 0.18

43.05± 0.63

45.94± 0.68

46.41± 0.32

42.61± 0.34

5 93.83± 0.57

52.75± 0.32

69.27± 1.15

71.09± 1.24

72.21± 0.46

68.15± 0.45

10 116.23± 0.99

85.39± 0.75

89.52± 0.76

109.81± 0.86

91.51± 1.16

106.67± 1.57

15 128.61± 0.81

115.89± 0.72

99.57± 0.94

147.44± 1.44

101.65± 0.62

143.50± 0.43

20 135.60± 1.71

146.61± 1.81

104.76± 0.44

186.42± 0.87

107.07± 0.98

179.97± 1.87

30 142.96± 0.65

208.51± 0.90

108.90± 0.29

267.21± 1.04

114.56± 0.60

248.72± 1.33

40 147.12± 1.75

270.00± 2.69

109.74± 0.53

354.15± 1.15

118.68± 0.81

319.30± 1.99

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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parity
declustering

1 42.59± 0.09

22.98± 0.05

34.49± 0.43

28.77± 0.37

35.45± 0.41

27.87± 0.32

2 72.84± 0.61

26.95± 0.22

55.36± 0.75

35.71± 0.48

57.09± 0.22

34.58± 0.10

5 126.07± 1.20

39.13± 0.38

94.80± 0.89

51.87± 0.49

95.87± 1.25

51.11± 0.69

10 165.92± 1.71

58.76± 0.49

128.07± 0.79

76.72± 0.48

127.04± 1.24

76.55± 0.95

15 184.33± 1.47

76.69± 0.54

144.78± 1.23

101.64± 0.83

145.28± 1.55

76.55± 0.54

20 196.73± 0.60

99.65± 0.24

156.14± 1.95

125.33± 1.67

154.44± 2.20

123.80± 1.07

30 209.32± 1.48

140.95± 1.10

170.02± 1.64

172.81± 1.61

167.04± 1.42

170.24± 1.23

40 217.81± 0.81

181.06± 0.93

179.01± 0.64

218.58± 0.63

175.45± 0.69

212.93± 0.94

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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interleaved
declustering

1 53.96± 0.37

18.03± 0.13

42.79± 0.48

23.16± 0.25

44.37± 0.20

22.21± 0.10

2 96.34± 0.68

20.25± 0.14

77.48± 0.48

25.42± 0.16

79.57± 0.23

24.70± 0.07

5 177.10± 0.77

26.33± 0.13

145.81± 1.25

33.55± 0.32

147.57± 1.93

32.74± 0.34

10 258.00± 0.75

36.18± 0.24

205.63± 1.90

47.34± 0.43

206.44± 1.93

46.43± 0.31

15 306.26± 4.27

45.78± 0.37

239.86± 1.67

60.77± 0.42

238.45± 1.46

59.58± 0.09

20 336.65± 2.31

55.73± 0.27

262.81± 2.29

73.85± 0.85

256.55± 2.47

73.42± 0.53

30 374.74± 1.61

74.93± 0.10

289.42± 1.93

100.46± 0.41

279.33± 2.26

98.27± 0.64

40 400.72± 3.34

93.52± 1.06

306.28± 0.82

126.16± 0.33

300.10± 4.24

123.05± 1.21

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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chained
declustering

1 57.23± 0.02

16.97± 0.01

44.53± 0.46

22.23± 0.23

46.13± 0.30

21.35± 0.15

2 100.51± 0.73

19.40± 0.14

79.73± 1.02

24.69± 0.32

82.59± 0.44

23.74± 0.11

5 182.83± 0.94

25.41± 0.18

150.37± 1.25

32.48± 0.27

152.79± 1.14

31.75± 0.03

10 265.96± 0.13

34.87± 0.20

210.62± 3.06

46.17± 0.68

210.75± 1.42

45.48± 0.33

15 314.52± 3.15

44.85± 0.29

246.31± 1.75

59.09± 0.47

244.47± 3.33

58.44± 0.67

20 346.18± 1.84

54.41± 0.07

268.33± 0.94

72.20± 0.24

263.48± 1.63

71.47± 0.31

30 382.18± 2.01

73.49± 0.59

296.46± 4.01

97.94± 1.38

286.71± 1.62

96.60± 0.41

40 407.90± 6.35

92.03± 0.94

312.01± 0.75

123.70± 0.40

304.51± 1.31

120.60± 0.81

Table C-6 Small-write performance of RAIDframe’s three environments

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Simulator User Kernel
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Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward

RAID level 0 1 67.71± 0.15

14.46± 0.03

39.88± 0.51

24.74± 0.31

2 127.87± 0.95

15.20± 0.12

73.06± 0.98

26.88± 0.30

5 269.77± 1.64

17.51± 0.02

142.44± 1.54

33.77± 0.06

10 413.06± 0.71

22.34± 0.19

210.88± 3.93

45.00± 0.90

15 500.72± 9.49

27.02± 0.13

251.46± 4.26

55.85± 0.77

20 550.66± 6.39

32.15± 0.42

273.33± 2.44

67.45± 0.03

30 614.04± 5.25

42.96± 0.57

305.29± 7.68

89.38± 1.90

40 647.42± 11.65

52.99± 0.58

324.90± 3.85

111.33± 0.96
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RAID level 1 1 56.76± 0.38

17.29± 0.11

35.65± 0.44

27.72± 0.34

2 103.98± 0.62

18.77± 0.10

59.95± 0.62

32.89± 0.32

5 196.25± 2.14

24.59± 0.14

102.28± 1.70

47.61± 0.81

10 262.96± 0.90

35.86± 0.39

131.43± 2.38

73.24± 1.00

15 293.62± 6.67

47.84± 0.53

148.22± 0.86

96.94± 0.81

20 311.95± 4.95

59.41± 0.91

156.14± 1.80

121.85± 1.39

30 334.09± 5.61

82.49± 1.23

168.25± 1.35

166.43± 1.49

40 344.97± 1.47

105.11± 0.72

176.07± 3.25

212.28± 2.12

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
215



RAID level 4 1 35.70± 0.43

27.67± 0.34

34.33± 0.31

28.76± 0.26

2 37.80± 0.12

52.49± 0.17

25.40± 0.05

78.33± 0.14

5 39.09± 0.14

126.84± 0.46

25.94± 0.04

191.76± 0.38

10 40.20± 0.18

245.32± 1.38

26.85± 0.02

367.94± 0.19

15 41.48± 0.11

354.54± 2.40

27.65± 0.03

532.72± 2.16

20 42.37± 0.03

459.08± 1.38

28.19± 0.10

692.19± 1.89

30 43.33± 0.13

666.99± 0.96

29.05± 0.09

999.41± 5.53

40 43.98± 0.28

861.25± 4.37

29.39± 0.17

1303.31± 7.88

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
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RAID level 5 1 36.06± 0.34

27.39± 0.26

33.96± 29.07

29.07± 0.20

2 57.84± 0.54

34.07± 0.30

43.86± 0.69

45.12± 0.75

5 96.23± 1.39

50.75± 0.73

67.81± 0.40

72.43± 0.84

10 129.03± 2.06

74.90± 0.73

87.46± 1.07

110.73± 1.49

15 145.15± 1.49

99.13± 0.88

97.36± 0.73

149.54± 1.39

20 153.93± 0.82

123.58± 1.08

103.13± 1.15

187.30± 2.44

30 169.24± 0.95

166.31± 0.58

113.39± 1.72

252.30± 3.69

40 176.31± 1.25

211.70± 0.29

119.84± 0.24

316.15± 0.78

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
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RAID level 6 1 32.01± 0.15

30.90± 0.14

28.38± 0.16

34.87± 0.20

2 46.41± 0.32

42.61± 0.34

32.13± 0.33

61.72± 0.66

5 72.21± 0.46

68.15± 0.45

49.22± 0.27

100.54± 0.45

10 91.51± 1.16

106.67± 1.57

60.65± 0.49

161.98± 1.45

15 101.65± 0.62

143.50± 0.93

67.31± 0.74

217.96± 1.92

20 107.07± 0.98

179.97± 1.87

71.04± 0.60

271.96± 2.59

30 114.56± 0.60

248.72± 1.33

76.04± 0.77

377.80± 1.15

40 118.68± 0.81

319.30± 1.99

79.40± 0.71

479.17± 3.59

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
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parity
declustering

1 35.45± 0.41

27.87± 0.32

33.88± 0.48

29.16± 0.42

2 57.09± 0.22

34.58± 0.10

43.69± 0.39

45.28± 0.43

5 95.87± 1.25

51.11± 0.69

66.85± 0.23

73.25± 0.33

10 127.04± 1.24

76.55± 0.95

86.15± 0.48

112.86± 1.50

15 145.28± 1.55

99.48± 0.54

96.64± 0.40

150.23± 0.20

20 154.44± 2.20

123.80± 1.07

102.65± 0.90

187.41± 0.80

30 167.04± 1.42

170.24± 1.23

111.32± 1.72

255.85± 4.62

40 175.45± 0.69

212.93± 0.94

117.45± 0.72

321.50± 1.54

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
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interleaved
declustering

1 44.37± 0.20

22.21± 0.10

30.63± 0.38

32.32± 0.40

2 79.57± 0.23

24.70± 0.07

45.98± 0.43

43.04± 0.41

5 147.57± 1.93

32.74± 0.34

75.09± 1.01

65.30± 1.12

10 206.44± 1.93

46.43± 0.34

100.03± 1.36

96.77± 1.48

15 238.45± 1.46

59.58± 0.09

115.90± 0.13

125.87± 0.60

20 256.55± 2.47

73.42± 0.53

126.21± 0.25

152.40± 1.07

30 279.33± 2.26

98.27± 0.64

141.86± 1.40

203.25± 2.13

40 300.10± 4.24

123.05± 1.21

149.92± 0.31

249.95± 2.53

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
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chained
declustering

1 46.13± 0.30

21.35± 0.15

31.38± 0.24

31.53± 0.24

2 82.59± 0.44

23.74± 0.11

47.68± 0.33

41.49± 0.32

5 152.79± 1.14

31.75± 0.03

76.94± 0.45

63.44± 0.61

10 210.75± 1.42

45.48± 0.33

104.57± 0.64

93.48± 0.49

15 244.47± 3.33

58.44± 0.67

119.46± 0.28

121.60± 0.08

20 263.48± 1.63

71.47± 0.37

129.61± 0.44

147.45± 0.33

30 286.71± 1.62

96.60± 0.42

144.53± 0.37

197.74± 1.38

40 304.51± 1.31

120.60± 0.81

153.46± 0.50

244.89± 1.27

Table C-7 Relative performance of full undo logging

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Backward
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Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Rollaway

RAID level 0 1 67.71± 0.15

14.46± 0.03

68.56± 0.20

14.25± 0.03

2 127.87± 0.95

15.20± 0.12

129.47± 1.18

14.97± 0.06

5 269.77± 1.64

17.51± 0.02

274.56± 4.94

17.30± 0.28

10 413.06± 0.71

22.34± 0.19

422.39± 2.16

21.74± 0.18

15 500.72± 9.49

27.02± 0.13

499.77± 6.90

27.06± 0.16

20 550.66± 6.39

32.15± 0.42

556.92± 6.08

31.96± 0.39

30 614.04± 5.25

42.96± 0.57

609.11± 9.72

42.62± 0.14

40 647.42± 11.65

52.99± 0.58

656.20± 15.47

52.63± 0.18
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RAID level 1 1 56.76± 0.38

17.29± 0.11

57.26± 0.64

17.14± 0.19

2 103.98± 0.62

18.77± 0.10

104.17± 0.59

18.75± 0.11

5 196.25± 2.14

24.59± 0.14

197.35± 1.05

24.35± 0.27

10 262.96± 0.90

35.86± 0.39

263.06± 5.63

35.95± 0.50

15 293.62± 6.67

47.84± 0.53

296.52± 3.21

47.48± 0.72

20 311.95± 4.95

59.41± 0.91

311.62± 3.58

59.93± 0.61

30 334.09± 5.61

82.49± 1.23

335.51± 3.53

82.20± 0.86

40 344.97± 1.47

105.11± 0.72

346.77± 2.35

105.90± 1.16

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Rollaway
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RAID level 4 1 35.70± 0.43

27.67± 0.34

35.05± 1.05

28.20± 0.85

2 37.80± 0.12

52.49± 0.17

37.97± 0.16

52.24± 0.19

5 39.09± 0.14

126.84± 0.46

39.07± 0.20

126.85± 0.54

10 40.20± 0.18

245.32± 1.38

40.24± 0.18

244.45± 1.19

15 41.48± 0.11

354.54± 2.40

41.51± 0.27

354.23± 3.96

20 42.37± 0.03

459.08± 1.38

42.25± 0.15

458.54± 0.95

30 43.33± 0.13

666.99± 0.96

43.42± 0.18

664.18± 3.93

40 43.98± 0.28

861.25± 4.37

44.16± 0.23

865.27± 5.40

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Rollaway
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RAID level 5 1 36.06± 0.34

27.39± 0.26

35.60± 0.21

27.76± 0.15

2 57.84± 0.54

34.07± 0.30

57.15± 0.62

34.55± 0.40

5 96.23± 1.39

50.75± 0.73

95.60± 0.75

51.04± 0.15

10 129.03± 2.06

74.90± 0.73

128.64± 1.31

75.65± 0.60

15 145.15± 1.49

99.13± 0.88

144.51± 1.11

100.00± 1.12

20 153.93± 0.82

123.58± 1.08

154.76± 0.84

122.89± 0.68

30 169.24± 0.95

166.31± 0.58

167.63± 0.86

167.88± 0.88

40 176.31± 1.25

211.70± 0.29

177.06± 1.15

211.45± 2.33

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval

Forward Rollaway
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RAID level 6 1 32.01± 0.15

30.90± 0.14

32.12± 0.44

30.79± 0.41

2 46.41± 0.32

42.61± 0.34

46.39± 0.30

42.59± 0.28

5 72.21± 0.46

68.15± 0.45

71.86± 0.53

68.20± 0.82

10 91.51± 1.16

106.67± 1.57

90.92± 1.12

107.36± 1.77

15 101.65± 0.62

143.50± 0.93

101.52± 1.09

143.73± 0.77

20 107.07± 0.98

179.97± 1.87

106.72± 1.19

180.63± 1.02

30 114.56± 0.60

248.72± 1.33

114.30± 1.39

250.08± 3.38

40 118.68± 0.81

319.30± 1.99

118.57± 0.97

319.74± 3.78

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval
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parity
declustering

1 35.45± 0.41

27.87± 0.32

35.20± 0.37

28.07± 0.29

2 57.09± 0.22

34.58± 0.10

56.63± 0.46

34.88± 0.29

5 95.87± 1.25

51.11± 0.69

94.98± 1.13

51.58± 0.50

10 127.04± 1.24

76.55± 0.95

126.10± 2.00

76.89± 1.00

15 145.28± 1.55

99.48± 0.54

144.05± 0.27

100.65± 0.31

20 154.44± 2.20

123.80± 1.07

153.32± 0.83

125.00± 0.98

30 167.04± 1.42

170.24± 1.23

164.59± 2.17

171.65± 1.61

40 175.45± 0.69

212.93± 0.94

174.89± 1.04

214.52± 0.47

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval
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interleaved
declustering

1 44.37± 0.20

22.21± 0.10

44.73± 0.24

22.03± 0.12

2 79.57± 0.23

24.70± 0.07

80.44± 0.51

24.42± 0.15

5 147.57± 1.93

32.74± 0.34

148.26± 1.16

32.60± 0.37

10 206.44± 1.93

46.43± 0.34

206.50± 3.74

46.26± 0.37

15 238.45± 1.46

59.58± 0.09

238.76± 0.92

59.78± 0.34

20 256.55± 2.47

73.42± 0.53

258.51± 3.78

73.25± 0.68

30 279.33± 2.26

98.27± 0.64

284.59± 2.89

99.03± 0.75

40 300.10± 4.24

123.05± 1.21

299.08± 2.95

123.48± 0.37

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval
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chained
declustering

1 46.13± 0.30

21.35± 0.15

46.61± 0.31

21.13± 0.14

2 82.59± 0.44

23.74± 0.11

82.59± 0.77

23.67± 0.16

5 152.79± 1.14

31.75± 0.03

152.64± 0.60

31.67± 0.18

10 210.75± 1.42

45.48± 0.33

212.03± 1.64

45.14± 0.13

15 244.47± 3.33

58.44± 0.67

245.16± 3.37

58.09± 0.70

20 263.48± 1.63

71.47± 0.37

265.58± 1.25

70.89± 0.60

30 286.71± 1.62

96.60± 0.42

289.40± 3.34

96.45± 1.64

40 304.51± 1.31

120.60± 0.81

304.40± 1.27

120.80± 0.28

Table C-8 Relative performance of roll-away recovery

Architecture

Number of
Concurrent
Requesting
Processes

Throughput (IO/s) ± 95% confidence interval
Response Time (ms)± 95% confidence interval
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C.3 Sample Configuration File

START array
# params are: numRow numCol numSpare
1 10 0

START disks
# a list of device files corresponding to physical disks
/dev/rrz18c
/dev/rrz26c
/dev/rrz34c
/dev/rrz42c
/dev/rrz50c
/dev/rrz19c
/dev/rrz27c
/dev/rrz35c
/dev/rrz43c
/dev/rrz51c
/dev/rrz20c
/dev/rrz28c
/dev/rrz36c
/dev/rrz44c
/dev/rrz52c

START spare
# a list of device files corresponding to spare disks
# spare device goes here

START layout
# general layout params:
# sectPerSU SUsPerParityUnit SUsPerReconUnit parityConfig
64 1 1 5

START queue
# generic queue params: queue type, num concurrent reqs that
can be sent to a disk
sstf 5
# queue-specific configuration lines:
#    (none for FIFO)

START debug
accessTraceBufSize 100
maxTraceRunTimeSec 30
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