A Transactional Approach to Redundant
Disk Array Implementation

William V. Courtright 11

15 May 1997
CMU-CS-97-141

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

A Dissertation submitted to the
Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Thesis Committee:
Garth A. Gibson
Martin Francis
Jim Gray
Daniel P. Siewiorek
Jeannette Wing

Copyright © 1997 Courtright

This work was supported in part by Data General, Digital Equipment Corporation, Hewlett-Pack-
ard, International Business Machines, Seagate, Storage Technology, and Symbios Logic. Addi-
tional support was also provided by a Symbios Logic graduate fellowship. Carnegie Mellon’s
Data Storage Systems Center also provided additional funding from the National Science Founda-
tion under grant number ECD-8907068. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of sponsoring companies or the government of the United States of Amer-
ica.

Keywords: disk array, storage, architecture, simulation, directed acyclic graph, software.

Dedicated to the memory of my grandfathers,

Charles Richard Courtright and Jappour Joseph

Abstract

Redundant disk arrays are a popular method of improving the dependability and perfor-
mance of disk storage and an ever-increasing number of array architectures are being pro-
posed to balance cost, performance, and dependability. Despite their differences, there is a
great deal of commonality between these architectures; unfortunately, it appears that cur-
rent implementations are not able to effectively exploit this commonality due to their

ad hoc approach to error recovery. Such techniques rely upon a case-by-case analysis of
errors, a manual process that is tedious and prone to mistakes. For each distinct error sce-
nario, a unique procedure is implemented to remove the effects of the error and complete
the affected operation. Unfortunately, this form of recovery is not easily extended because
the analysis must be repeated as new array operations and architectures are introduced.

Transaction-processing systems utilize logging techniques to mechanize the process of
recovering from errors. However, the expense of guaranteeing that all operations can be
undone from any point in their execution is too expensive to satisfy the performance and
resource requirements of redundant disk arrays.

This dissertation describes a novel programming abstraction and execution mechanism
based upon transactions that simplifies implementation. Disk array algorithms are mod-
eled as directed acyclic graphs: the nodes are actions such as “XOR” and the arcs repre-
sent data and control dependencies between them. Using this abstraction, we implemented
eight array architectures in RAIDframe, a framework for prototyping disk arrays. Code
reuse was consistently above 90%. The additional layers of abstraction did not affect the
response time and throughput characteristics of RAIDframe; however, RAIDframe con-
sumes 60% more CPU cycles than a hand-crafted non-redundant implementation.

RAIDframe employs roll-away error recovery, a novel scheme for mechanizing the execu-
tion of disk array algorithms without requiring that all actions be undoable. A barrier is
inserted into each algorithm: failures prior to the barrier result in rollback, relying upon
undo information. Once the barrier is crossed, the algorithm rolls forward to completion,
and undo records are unnecessary. Experiments revealed this approach to have identical
performance to that of non-logging schemes.

Vi

Acknowledgments

| am living a charmed life. | am continually blessed with an abundance of opportu-
nity and the support necessary to capitalize upon it. It is my privilege in this brief but sin-
cere statement to acknowledge my family and friends who have helped me, directly and
indirectly, in the pursuit of the work described in this dissertation. While this tribute is
woefully inadequate and decidedly incomplete, it is my hope that at the very least it serves
as a notice of my awareness and appreciation of their concern and efforts. The honor asso-
ciated with this degree is as much theirs as it is mine.

First and foremost, | am proud to be a part of a great family. Since my birth, my par-
ents, Bill and Mariam, have worked without interruption to provide for my needs and
teach me how to lead a rich and productive life. They continually remind me of the pride
that they find in me; however, that feeling is surely equaled, if not surpassed, by the pride |
have in being their son. My brother Joe, who is three years younger than myself, is more
like a big brother to me. | often find myself setting personal goals based upon his precious
achievements and counseling. Aside from my immediate family, | am also very close to
my grandmothers, cousins, aunts, and uncles. They have all given selflessly to my better-
ment.

| have also been blessed with a large contingent of friends who have helped me to
grow as a person and as a professional. For almost twenty years, | have been able to
include Mike Scheaffer in my circle of good friends. Even though we are half a continent
apart, Mike is able to see through any facade that | may present and help me through life’s
little bumps. While at Carnegie Mellon, | have been able to rely upon the friendship of
Chris and Nicole Newburn, who made me an extended member of their family. They
taught me more about myself than | would have thought possible. When | returned from
Pittsburgh after only three years, it was clear that | had grown as much outside my degree
program as | had within it. Recently, | have had the sincere pleasure of getting to know
Marla Martinous, someone who is very special and provides the sunshine that illuminates
my days.

| have had many teachers throughout my life, not all of whom are part of the aca-
demic community. Charles Button, my scoutmaster, has taught me a great deal, probably

Vil

more than either of us realize. Trueman Smith, my high school math instructor, is the first
instructor that challenged me on a personal level to excel. Curtis Martin, who | never had
as instructor, was a mentor my first year of high school. Curtis left before | was able to
enroll in his science courses, but he nevertheless opened the door to creative thinking and
introduced me to my first computer: an Ohio Scientific with a cassette drive and 8K of
memory (fully loaded!). Robert Higgins, my band instructor, taught me that success does
not come easy, but is worth the effort. While studying at the University of Kansas, Gary
Minden, a junior faculty member, made the time to take me under his wing and teach me
the design skills that have made my career successful. Harry Talley, a senior faculty mem-
ber who has recently retired, also took an interest me and has offered guidance throughout
my career in engineering.

It goes without saying that Garth Gibson has been my greatest instructor. He has
pushed me to points that | was certain | could never reach. What | didn’t expect is that he
would teach me so much about things that | considered to be outside of engineering. | con-
tinue to discover things that he has taught me and will probably never be able to fully
assess the gifts that he has bestowed upon me. | am still amazed at the patience he dis-
played as | worked my way through the program.

My doctoral work is also a direct result of the companionship and collaboration of
the people of the Parallel Data Lab (PDL). Specifically, Khalil Amiri, Chris Demetriou,
Mark Holland, Patty Mackiewicz, Paul Mazaitis, Hugo Patterson, LeAnn Neal Reilly, Erik
Riedel, Daniel Stodolsky, Rachad Youssef, and Jim Zelenka have all contributed directly
to this work. Patty has been a wellspring of support, providing a ear when it was needed.
Despite her busy schedule, she always made the time to take a personal interest in every-
one, making Garth’s research group a family. The enthusiasm and fresh viewpoints of
Khalil and Erik, who both arrived late in my tenure as a graduate student, helped me make
it through the final leg of my research. Mark, Hugo, LeAnn and Dan provided enlightened
discussions and served as mentors. Mark was also the driving force behind the creation of
RAIDframe. Dan, in addition to treating me to gourmet cooking, was also an author of
RAIDframe. LeAnn helped with my writing skills. Rachad, who added the simulator to
RAIDframe, used his untiring enthusiasm to keep everyone in the lab smiling, and for that
| am thankful. Chris, Paul, and Jim provided invaluable support in the lab. Additionally,
Chris wrote the striping driver used in Chapter 4 and Jim wrote and debugged large frac-
tions of RAIDframe. Mandana Vaziri, a student who was not a part of the PDL, introduced
me to model checking and furthered my understanding of formal verification. Her pleasant
demeanor and thought-provoking conversations were always a joy.

At the Electrical and Computer Engineering graduate office, Lynn Philibin and
Elaine Lawrence have provided moral and logistical support as | navigated the doctoral
program. Jeannette Wing, a member of my thesis committee who hails from the School of
Computer Science, has invested a great deal of time in my education, beyond what | would
consider to be typical. Dan Siewiorek has provided keen insight at crucial points in my

viii

degree program. Jim Gray of Microsoft Research, a very busy and talented man, made the
time to advise me over great distances. His genuine interest in my growth is exceeded only
by his wisdom.

Finally, | would like to thank the people of Symbios Logic, who paid for my educa-
tion. | hope to repay that debt many times over in the coming years. Specifically, | recog-
nize Sharon Boyd, Joe Edens, Marty Francis, Ed Marchand, Denise Rajala, Stan Skelton,
and Kim Walker. These people have been like family to me, always looking out for my
best interest. Sharon is my mother away from home, providing words of encouragement
always making sure that | don’t work too hard. Similarly, Marty is more like a father than
a supervisor. Marty hired me in 1986 and has been my supervisor for almost my entire ten-
ure at Symbios Logic. He is the best. I've never worked for Stan, and | don’t recall how we
became acquainted, but he has become my guardian angel. If it were not for his patient
counseling, | would have burned out on engineering long ago. Joe took the risk, as Direc-
tor of Engineering, to send a brash young engineer off to pursue a Ph.D. with no assurance
of what would become of that investment. Despite the disparity of our rank, | was always
able to walk into his office and let him know just what | was thinking, even if that meant
complete disagreement. Denise and Kim served as administrators of my Ph.D. program,
making sure that tuition was paid but, more importantly, helped me keep my sanity
throughout this entire process by listening and providing words of encouragement. Finally,
| thank Ed Marchand, who has patiently forgiven missed schedules and excused low pro-
ductivity the last seven months as | completed my degree.

Table of Contents

Chapter 1: Motivation, Problem Statement, and Thesis............cc.c.......... 1
Chapter 2: Fault-Tolerant Disk Storage...........ccocovevvvenieienecenceseeeeees 7...

P20 R =T 1 01T o] (0T |2 PP PP 8
2.1.1 Faults, Errors, and FailUre. ..ottt e e e e e 8
2.1.2 Fault Models and SEmMaNICSuuiiiiiiii i e e e e 9

2.2 IMIBHIICS ettt oottt e e e e e e e ettt ettt e e e e e e e e e e e eeeeernnrnnnnn 0......... 1

2.3 Improving System Dependabilitycoooriiiiiii s 11
2.3.1 Detection, Diagnosis, and ISOlationcciiiiiiiiiiee e 11
2.3.2 Recovery, Reconfiguration, and ReEPaIr..........cccccuuviiiiiiiiiiiiiiieeeeeeeeeeeeeeee 13
2.3.3 A Closer LOOK at ErrOr RECOVEIYcccceiiiiiieeeeeiiiiiiee e s e e e e e e e e e eeeeeeeaennnnnnes 14
A I I = 1 LY=o [RSP 15
PG TR B 1Yo 1 L1 o] o SRR 18

I 1S T D Y= P 18
2.4.1 DiSK TECNNOIOQY .. .ccevviiiiiiiiece e e e e aaaa 19
2. 4.2 FAUIE MOAEL ...t e e e e e e e e e e 21

2.4.2.1 Fault Model Used in ThiS WOIKccccoeeieiiiiiiieeeiesee e 22
2.4.3 DISCUSSIONciiittiie e ettt e ettt e e et e e e e e e et e e e e e e e et e e e e eeaas e e e e eestaaeeeaeenes 23
2.5 DISK ATTAY'S ... eiee ettt e e e e e e e et e e e e e bbbttt e e e e ettt e e e e e e e e e e e e e e e e n e 24
2.5.1 Striping for PerformMancCe..........ccooiieiiiiiiieeeeecre st 25
2.5.2 Redundant DISK AITAYS.......c.uuuiiieiiiiiiie e et e e e e e e e et e e e e e eata e e e eaeans 26
2.5.2. 1 ENCOUING .. ciiiiiiei ittt e e e e e e e e e 26
2.5.2.2 Algorithms for Accessing Informationccccoeevviiiiiiicccccceeeee, 27
2.5.2.3 The Berkeley RAID TaXONOMYuuuuuuuuiiiiiiaeaeeeeeeeeeeeeeeeeiiennnnnnneens 32
2.5.3 FAUIE MOAEL.......eeeieiiee et e e e e e e e e e e 33
2.5.4 Beyond the RAID TaXONOMYccovviiuuiiiiiiiiiiaieeeeeeeeeeeeeeeeeessaannnnne e eas 37
2.5.4.1 Improving Dependability ... 38
2.5.4.2 Improving PerformancCeuuueieiiiiiiiiiiiiiieee e 39
2.5.5 DISCUSSIONcevviiiiiiiiie e e et e e e e e et s e e e e e e e e e e e e e e e e e e ee e b s e e e e e e aeaaaaaees 42
2.6 CONCIUSIONS ...ttt e e e e e e e e e e e e e e et e e eae bbb b e e e e e e e eeeeaaaeeeees 43
Chapter 3: Mechanizing the Execution of Array Operations..............: 45
3.1 Goals of an ldeal APPIrOACKccccee i e e 46

Xi

3.2 Isolating ACtion-SPecCific RECOVEIYuuuiiiiiiiiiiiiiiiee e 48

3.2.1 Creating Pass/Fail ACHONS...........uuuuiiiiiiie e e e e e e e e eeeaeananns 48
3.2.2 Actions Commonly Used in Redundant Disk Array Algorithms 50
3.2.2.1 SYMDBDOI ACCESS....eiiiiiiiiiiiieee ettt 51
3.2.2.2 Resource Manipulationcccccoeeeeeeiiiiiiieiiccie e ee e 52
3.2.2.3 COMPULALION. ...ttt e e e e e e e e e e e e e e e e e an s 52
A N o (= To [0% 1R 53
3.3 Representing Array Operations as FIOW Graphscccccovieiieiiiiiiiiceceiveee, 53
3.3 L FIOW GraphS. ... e e e 53
3.3.2 PrediCate NOUESccouiiiiiiiiiii ettt 56
3.3.3 SIMPIIfying CONSIIAINTScooeiiiiiieec e e e 56
3.3.4 Graph OPLIMIZATION ...ceeeiiiiieieeeee e e e 57
3.3.5 Automating Correctness Verificationceeviiiiiiieeeeeecceeeeeecine e 59
3.3.6 DISCUSSION ...ttt e e e e e e e et e et a et bbb a e e e e e e e e e eeaes 59
3.4 Execution Based Upon Forward Error Recovery is Unreasonable........................ 60
3.4.1 Correct Design iS NOt ODVIOUSuuuuuiiiiiiiiieeeeeeeeeeeeeeeitten e e e e e e e 61
3.4.2 Exhaustive Testing iS ReqUIrEdcoouviiiiiiiiiiiie e 61
3.4.3 Recovery Code is ArchiteCture-SpPecCifiC.........cccuurrirmiiiiiiiiieiieieeeeee e 62
3.5 Simplifying Execution Through Mechanization..............cccccevvieiiiieeeieiiceeeeeiiins 63
3.5.1 Undoing Completed ACHIONS.......ccouiiiiiiieeiiiieeeeeeiiir e 63
3.5.1.1 SYMDBDOI ACCESS....eeiiiiiiiiiiiie et e e e 64
3.5.1.2 COMPULALION....uuiii i i e e e e e e e e e e e e e eaaeeees 65
3.5.1.3 Resource Manipulationcooooeeeioiiiiiiiiiiiiiiie e eeeeeeeeeees 65
TN T o =T [o7 1= 66
3.5.2 Node States and TranSItioNS..........cooociviiiiiiiiiiiiieee e 67
3.5.3.SequeNCING 8 Graphu e i 68
3.5.3.1 Sequencing Graphs with Predicate NOJESccceeevieieeeeeeiiieiiiieiiiinnns 69
3.5.4 Automating Error RECOVEIY.........ouuuuiiiiiiiiii e 70
3.5.4.1 Coping With DeadloCKccccumimiiiiiiiiiieeecee e 71
3.5.5 Distributing Graph EXECULIONuuuiiiiiiie et e e e e e e e e e eeeaanaeees 73
3.6 FAUIt MOAEL ... e e e e e e e e eeeeenes 74
B 00t oo [o V1 (U] 75
3.6.2 Crash Recovery and ReSta........cccouvieeieeiiiiiiiceeeeiices s e e e e e e 76
3.6.3 Controller FaIIOVETouiiiiiiii e 77
3.7 SUMIMIATY ..ttt et ettt e e e e e e e e et e e et et e e ee e e bbb e e e e e e e e e eeeeeeeees 77
Chapter 4: RAIDframe: Putting Theory Into Practice............................L9
Y o111V 1 o] o PP PPPPRRPP 79
A.2 AFCRITECIUI. ... e e e e e e e et e 81
o R B TS o | o I DT o 13 o] 1S 81
A W | o] =T [T PR PP TTTPPPP 84
4.2.3 Processing @ USer REQUEST........ccuuuiiiiiiiiiiie ettt 84
4.2.3. 1 LOCKING ..ttt ettt e e e e e e e e e e e e e e e 86
4.2.3.2 EITON RECOVEIY ...ttt ettt ettt e et et e et e e e enans 86

4.3 Evaluation

xii

I T R ST <1 (U o IR PPPPPTRRR 88

4.3.1.1 WOrkload GENEIatiON..........uuuiiiiiiiiiiiiiiiieeeeeeee e s eee e 89
4.3.2 EXTENSIDITY ... 89
4.3 3 EFfICIEINCY ...ttt 92
R V=T {Tor= 1 (o] o PP PPEPPPRPPTPPR 95
Y o] [ox 11153 o] 1 SRR TPUPPUPR 99
Chapter 5: Roll-Away Error RECOVEIYcccoocvvevieiiieiieceeeieeeees 101
5.1 Full Undo Logging iS EXPENSIVEciiiiiiiiiii et eeeaanes 101
5.2 Reducing Undo Logging REQUIFEMENTS........ccciiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 103
5.2.1 Limiting the Scope of RoIIbacK.............cccooovviiiiieec e, 103
5.2.2 Reclassifying Actions From Undoable to Real............ccccccoiviiviiiiiiiiinncnnnn, 104
5.3 ROII-FAWAY EITOr RECOVEIY ...ttt 104
5.3.1 Properties of Phase-1 Subgraphs ... 105
5.3.2 Properties of Phase-Il Subgraphs.........ccooooiiiiiiiiiiiiie e 106
5.3.3 Commit Node Determines Direction of RECOVErY...........ccoeeviiiiiiiiiiiinnnnne 106
5.3.3.1 Inserting a Commit Node Into a Read Graphccccoveeiiieennnn. 107
5.3.3.2 Inserting a Commit Node Into a Write Graphcceoovvivivviiiiinnnnns 107
5.3.4 Adjusting Graph EXecution RUIESccooiiiiiiiiiiiiiiiieee e 109
5.3.5 FAUIE MOUE.....uiiiiiiiiiiiiiieee ettt 114
5.3.5.1 Adjusting NOdE Properties..........cuuuuuuuiimiiiiiaeeeeeeeeeeeeeeeeeeiiiie s 116
5.4 Performance EValUation..............cooiiiiiiiioeiiiccceeeeeiiss e e e e e e e 116
IR 0o 1 = Tox 1 =TT =S 1 Vo P 117
5.0 SUIMIMIAIY ..ttt e ettt e e e e ettt e e e e e et eta e e e e eeesba e eeeeessnnn e eaeeennns 119
Chapter 6: Conclusions and Recommendations..............ccccccevvevenenne. 123
6.1 Validating the Problem ... 123
6.2 Eliminating Architecture-Specific Error Recovery Code..........ccccceeeiiiieeieeennnnnne. 124
6.2.1 Reducing LOgging Penaltiesuuuuiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 125
6.2.2 Enabling Correctness Validation ... 125
IR o = Tod 1 03 11 PSSR 126
6.4 Suggestions for FUTUIE WOTKoooo i 126
REFEIENCES.... .o 131....
Appendix A: Flow Graphs for Popular Array Architectures 141
AL RAID LEVEI ..ottt ettt e e e e e e e e e e e e s s e e e e e e e e e aaaeaeeens 142
A.2 RAID Level 1, Interleaved Declustering, and Chained Declustering................. 143
A.BRAID LEVEI 3. .ottt et a e e e e e e e as 144
A.4 RAID Levels 4 and 5 and Parity DeClUSIENNG..........uuuuirimiiiiiiiiiiiieeeeeeeeees 147
YN ST = 120 o T T [o TS PPUSUR 150
A.6 RAID Level 6 and EVENODD........cuuuiiiiiiiiiiiieieeeeeeee e 154

Xiii

A.7 TWO-DIMENSIONAI PAIILY ...ttt e 161

Appendix B: Modifying Graphs for Roll-Away Recovery...................... 169
APPENTIX C: DAlcc.cviiviieiciiece e 189...
C.1 Algorithm for Inserting a Commit Point Into a Write Graph.............ccoeeeeeeeeee. 190
C.2 RAW DAlA.....uiiiieiii e e e e e e e e e ennnns 196
C.3 Sample Configuration Filecooi i 230
INAEX e 231....

Xiv

List of Tables

Chapter 1: Motivation, Problem Statement, and Thesis

Chapter 2: Fault-Tolerant Disk Storage

Table 2-1 Disk array component reliabilityouiiiiiiiinieies

Chapter 3: Mechanizing the Execution of Array Operations

Table 3-1 Actions common to most disk array algorithms.............ccccccc.....
Table 3-2 Methods for undoing actionsScccovvvvviieeiiiiiiicce e,
Table 3-3 NOde fieldSuuiei e
Table 3-4 NOUE STAESuviiiiiiiiiieeie e

Chapter 4: RAIDframe: Putting Theory Into Practice

Table 4-1 Cost of creating new architectures...............cveeeiiiiiiiieeeeeeeeeee,
Table 4-2 RAIDframe execution profile ..o

Chapter 5: Roll-Away Error Recovery

Table 5-1 Structural constraints of graphs with commit nodes....................
Table 5-2 Execution invariants of graphs with commit nodes......................

Chapter 6: Conclusions and Recommendations
References

Appendix A: Flow Graphs for Popular Array Architectures

Table A-1 RAID level 1 graph selection.............cccoovvvvviiiiiiiiiiiie e,
Table A-2 RAID level 3 graph selection............ccooovviiiiiiiiiiiiiiiiiiieeeeeeee
Table A-3 RAID levels 4 and 5 graph selectionvceeiiiiiiiiieeiienneene,

XV

Table A-4 Parity logging graph selection

Table A-5 RAID level 6 graph Selection............ooooooiiiiiiiiiiiiiiii s 154

Table A-6 Two-dimensional parity graph selection

Appendix B: Modifying Graphs for Roll-Away Recovery

Appendix C: Data

Table C-1 Cross-reference of performance figures and raw data

Table C-2 Comparing RAIDframe to a hand-crafted implementation 196
Table C-3 Comparing RAIDframe to a hand-crafted implementation 196
Table C-4 Single disk performance of striper and RAIDframecccccevvvvvvivnnnns 197
Table C-5 Small-read performance of RAIDframe’s three environments.................. 198
Table C-6 Small-write performance of RAIDframe’s three environments................ 206
Table C-7 Relative performance of full undo 10ggingcceeviiiiiiiiiiiiis 214
Table C-8 Relative performance of roll-away recovery...........cccccceeiiiiiiieiiiiiininnnnnn. 222
Index

XVi

List of Figures

Chapter 1: Motivation, Problem Statement, and Thesis

Chapter 2: Fault-Tolerant Disk Storage

Figure 2-1 Parity codes detect SINGIE EITOIS........uuuiiiiiiiiie e e e 12
Figure 2-2 The DO-UNDO-REDO ProtoCOluuueeiiiiiiiiiiiiiieeeeeieeeeeeeieeeee 17
Figure 2-3 ACCESSING @ SECIONcuuuiii ittt e e e e e e e e e e e ea e e 19
Figure 2-4 Typical SeCtor fOrmattingcceeeeiiiiiiiieeeerrr e 20
Figure 2-5 Data layouts which enable concurrency in disk storageccccuvveee. 25
Figure 2-6 Codeword in a parity-protected disk array..........ccccceeeeeeiiiiieeeeiiviiiciiee e 27
Figure 2-7 Writing and reading data in a mirrored disk arrayoooeeeciiininnnnne. 28
Figure 2-8 The large-write algorithmccooooii i 28
Figure 2-9 The small-write algorithm..............ooormiiii e 30
Figure 2-10 The reconstruct-write algorithm..........cccooorriiiiiiiiiii e 31
Figure 2-11 The degraded-write algorithm...........cooooiiiiiiiiiiii e 31
Figure 2-12 The degraded-read algorithmcccoooiiiiiiieiiiiiier e, 32
Figure 2-13 Parity placement in RAID levels 4 and 5...........oeviis 33
Figure 2-14 Disk array with redundant controllers...........cccooeeviiiiiiciiiie e, 35
Figure 2-15 The WIIE NOIEvuieiiii e 36
Figure 2-16 TWO-dIMENSIONAl PAITEY.......uurriiiiiiiiiiiiieee e 39
Figure 2-17 Fault-free write operations in a parity logging disk array........................ 41

Chapter 3: Mechanizing the Execution of Array Operations

Figure 3-1 A layered software arChiteCtureccceeeveiiiiiiiiiiiii e 46
Figure 3-2 Flow graphs model program control flowcccccooveiiiiiiiiiiiiiiiiiiiiiiins 54
Figure 3-3 RAID level 4/5 small-write graph ..o, 55

Figure 3-4 Eliminating redundant @rCsScuuuiiiieiiiiiiiii e e e et e e e e e eens 57
Figure 3-5 Function-preserving transformationsooevvvviiiiiiiieee e 58
Figure 3-6 FOrWard EITOI TECOVETYcciiiiiiiiiititetee ettt et e e e e e e e e e e e e e e e e s eeeeb e 60
Figure 3-7 Constraining execution to ensure forward reCovery...........ccccccvieieeeeveennnnnn. 62

Xvii

Figure 3-8 Deadlock resulting from out-of-order allocation during recovery............. 66

Figure 3-9 Node State tranSItIONSuuuueuiiiie e e ettt e e e e e e e e e eeeeeeeeenne 69
Figure 3-10 Sequencing a graph which contains a predicate............ccccccovvvvvicciiinnennn. 70
Figure 3-11 Error recovery from backward eXeCution...............ccccuvvuviiiiiiiieeiiieeieeeeenn 72
Figure 3-12 Detecting deadlock with a waits-for graphccccooovviiiiiiiiiiiiie e, 73
Figure 3-13 Pruning a graph for distributed execution..............coevvviiiiiiiiiiiiniee e, 74

Chapter 4: RAIDframe: Putting Theory Into Practice

Figure 4-1 Processing parity stripes independentlycccccovveeeeeieiieieceeciiiiiceeeen 82
Figure 4-2 Mechanism for processing USEr reqUESES..........coouvviiiiiimimiiiiiiiieieee e eeeeenns 85
Figure 4-3 Setup used for collecting performance data...........ccccceeeeeveiiiiiiieieeiiiinee, 88
Figure 4-4 Single disk performance of striper and RAIDframeccccccccvceieeenennn. 93
Figure 4-5 Comparing RAIDframe to a hand-crafted implementation 94
Figure 4-6 Small-read performance of RAIDframe’s three environments................... 96
Figure 4-7 Small-write performance of RAIDframe’s three environments................. 98

Chapter 5: Roll-Away Error Recovery

Figure 5-1 Relative performance of full undo 10ggingceeveeviiiiiiiiiiiiiinn. 102
Figure 5-2 Dividing array operations int0 tWO PhaSesS..........cceeeiiieriieeieiiiiieeeeeiiiiiiinnns 105
Figure 5-3 Degraded-read graph ... 108
Figure 5-4 Algorithm for inserting a commit node into a write graph 108
Figure 5-5 Inserting a commit node into a RAID level 4/5 small-write graph.......... 110
Figure 5-6 Inserting a commit node into a RAID level 4/5 small-write graph.......... 111
Figure 5-7 Graph OptimiZation...........ooooiiiiiiiiii e 112
Figure 5-8 Recovering from errors prior to the commit point............cccoeeevvviiiiieeenens 113
Figure 5-9 Recovering from errors following the commit point................ccoevvvvnnnne. 115
Figure 5-10 Relative performance of roll-away reCoveryccccccvvvvvmreeeeeeeeeeeeenn 117

Chapter 6: Conclusions and Recommendations

Figure 6-1 Synchronized commit coordinates recovery of multi-graph requests......129
References

Appendix A: Flow Graphs for Popular Array Architectures

Figure A-1 Nonredundant graphsuueeeeoiiiiie e 142
Figure A-2 Mirrored-writ€ graph............cccoeiiie i e e e e e 143
Figure A-3 Large-Write graphcoueiiiiiiiiiiiiiiii et 145

Xvili

Figure A-4 Degraded-read graph ... 146

Figure A-5 SMall-Write graphi........ee oo 148
Figure A-6 ReCONSIrUCE-WIItE graph......ccoovviiieiicce e 149
Figure A-7 Parity-logging small-write graphcccciiiiiiiiiiiieeeeeee e 151
Figure A-8 Parity-logging reconstruct-write graphcccooeeiiiiiiiiii e 152
Figure A-9 Parity-logging large-write graph ..o, 153
Figure A-10 PQ double-degraded read graph..............eeeeeeiiiiiiiiiiiinii 155
Figure A-11 PQ degraded-DP-read graphcooiiiiiiiiiiiiicie e 156
Figure A-12 PQ small-Writ€ graphccooeiiiiiiieeccte e 157
Figure A-13 PQ RecoNnStruct-write graphccc.evveiiiiiiiiiiee e 158
Figure A-14 PQ double-degraded write graph............cccovviiiiiiiiiiiiiiie e, 159
Figure A-15 PQ large-write graphcoooviviieeeieee e 160
Figure A-16 2D double-degraded read graph ... 162
Figure A-17 2D small-write graph...........ooovviimiiiiiie e 164
Figure A-18 2D degraded-write graph..........cooooi i 165
Figure A-19 2D degraded-H write graph..........ccooorriiiiiiiiiie e 166
Figure A-20 2D degraded-DH write graph..............uvviiiiiiiiiiie 167
Figure A-21 2D degraded-DV Write graphcccuuvuiiiiiiiiiiiiiiiieeee e 168

Appendix B: Modifying Graphs for Roll-Away Recovery

Figure B-1 Nonredundant graphs............uueueiiiiiiiee et e e e e e e e e e e e e eeaeaneenes 170
Figure B-2 Mirrored-wWrite graph ... 170
Figure B-3 Large-Write graphccoo it e e e e aens 171
Figure B-4 Degraded-read graphcccoooee i 171
Figure B-5 Small-Write graph ... 172
Figure B-6 ReCONStrUCE-WIIte graphcoieiiiei i 173
Figure B-7 Parity-logging small-write graph..........cccccuiiiiiiiiiiiieeeeeeeeees 174
Figure B-8 Parity-logging reconstruct-write graph............oooviiiiiiiiiiiiiinee e 175
Figure B-9 Parity-logging large-write graphcccoooeiiiiiiiiiiiiiee e 176
Figure B-10 PQ double-degraded read graphccooooriiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 177
Figure B-11 PQ degraded-DP-read graph........ccoooiiiiiiiiiiiiiiiiie e 177
Figure B-12 PQ small-Writ€ graph.........ccoooiiiiiiiiieciie e 178
Figure B-13 PQ ReCcOoNStruCt-write graphcccccoeeiiiiiiiiiieeee e 179
Figure B-14 PQ double-degraded write graph............cccooiiiiiiiiiiiiiiciiie e 180
Figure B-15 PQ large-Write graphcccoeeiiiii i 181
Figure B-16 2D double-degraded read graphcccccciimiiiiiiiiiiie e 182
Figure B-17 2D small-Write graph...........uiiiiiiiiiiiiiic e 183
Figure B-18 2D degraded-write graph.............eciiiiiiiiiiee e 184
Figure B-19 2D degraded-H Write graphccccuuiiiiiiiiiiiiieeeeeeee e 185
Figure B-20 2D degraded-DH write graphccouuiiiiiiiiiiiii e 186

XiX

Figure B-21 2D degraded-DV write graph

Appendix C: Data

Index

XX

Chapter 1: Motivation, Problem Statement, and Thesis

The importance of storage systems, historically sidelined as peripheral devices
which supported the processing unit of the computer, has dramatically increased as com-
puter installations have become data-centric, rather than processor-centric. Customers are
no longer purchasing a single computer and building the storage system around it; they are
instead designing the computer around the central database.

The importance of data to customers has necessitated a continual search for
improvements in both the performance and the dependability of storage systems. Redun-
dant disk arrays are designed to offer improved performance and, at the same time,
increased dependability. This year, Disk/Trend estimates that world-wide shipments of
redundant disk arrays will be $12.3 billion, reaching $18.6 billion by 1999 [Disk96a]. This
outpaces the growth of commodity disk drives, estimated to by $29.7 billion this year,
reaching $45.9 billion in 1999 [Disk96b].

Redundant disk arrays are manufactured by corporations such as Data General, Dig-
ital Equipment, EMC, Hewlett-Packard, IBM, Storage Technology, and Symbios Logic
(formerly NCR). Despite the fact that storage systems based upon magnetic disk technol-
ogy have been in production for forty years, commaodity production of storage systems
that employ redundancy to survive disk faults has only recently occurred. Redundant disk
arrays, commonly referred to using the RAID taxonomy introduced by researchers at the
University of California’s Berkeley campus in 1987, began to increase in popularity when
commodity pricing of the small-form-factor disk drives used in personal computers made
redundant disk arrays more affordable, dependable, and higher performing than the single
large expensive disks (SLEDs) paradigm [Patterson88].

Since the introduction of the original RAID paper in 1988, research in redundant
disk arrays has flourished in an attempt to provide a broad spectrum of solutions for a vari-
ety of price/performance/dependability trade-offs. Our interest in the work described in
this dissertation began with the casual observation that, for reasons of complexity, disk
array vendors were limiting the scope of their product offerings to only the most basic
redundant disk array architectures. After examining the properties of current redundant
disk array implementations, we came to the conclusion that vendors were employing
design practices that had been used to implement nonredundant disk systems, but were
unsuited for the problem domain of fault-tolerant storage systems.

For example, servicing a user’s request to write data to a redundant disk array typi-
cally requires the execution of a partially-ordered series of actions such as: the allocation

of resources such as locks and buffers, the computation of new redundancy information,
the writing of new user data and newly-computed redundancy information to disk, and the
release of resources. If an error is detected during the execution of these actions, the array
is required to complete the user’s request, assuming that the fault which caused the error is
specified to be tolerated by the array’s fault model.

The process used to recover from the error and complete the request begins with an
assessment of the state changes made by actions completed at the time the error was
detected, and the damage caused by the error. Because some of these actions, such as the
writing of new data and the computation of new redundancy information, may occur in
parallel, the state space which must be explored may be significant in size. The process of
identifying the state space is often manual, tedious, and prone to mistakes. Furthermore,
the state space is architecture specific—as new algorithms are introduced, so are new exe-
cution states.

The second step in this process is to complete the user’s request. Because errors may
corrupt (or make unavailable) information which is necessary to complete the operation,
the algorithm being used to service the request may need to be altered. The specific alter-
ations to the algorithm are a function of the error and the current execution state—as the
execution state space increases, so does the number of alternate algorithms that must be
created by the programmer.

This process of mapping current execution state to a carefully prepared model of the
entire execution state space and then altering execution to move from the point of error
detection to request completion is knowrf@svard error recovenjLee9c, Stone89].

From informal conversations with practitioners, | discovered that 60-70% of the code
found in implementations based upon forward error recovery may be devoted to error
recovery. Friedman reports this number to be as high as 90% [Friedman96].

Because forward error recovery schemes are architecture specific, extending exist-
ing implementations to support new array architecture can be difficult. This is unfortunate
because, as | will demonstrate in Chapter 2, a wide variety of disk array algorithms can be
composed from a relatively small set of actions, suchisksead andXOR. Intuitively, it
stands to reason that a basic library of these actions should be able to support a multitude
of architectures.

Finally, verifying the correctness of a design which is built upon case-by-case analy-
sis is difficult. Not only must the error-free execution of the algorithms be verified, but the
identification and case-by-case treatment of all distinct error scenarios must be verified as
well.

Database systems have long employed transactions, independent units of work
which guarantee atomic (all-or-nothing) failure semantics without regard for the context in
which the transactions are executing. By logging the state changes that are made by each
transaction, errors which cause a transaction to abort (fail prior to completion) can be
recovered automatically by returning the system to the state which existed prior to the exe-

cution of the transaction which failed. This all-or-nothing semantic eliminates the need for
manually identifying and processing errors, instead allowing programmers to simply
design transactions which begin in a state which is free from error—the underlying system
assumes the responsibility for error recovery. This system also guarantees that the execu-
tion of each transaction is isolated from that of other transactions, a property commonly
known agsolationor serializability

Redundant disk array operations can be treated as transactions, meaning that the
execution of these operations can be mechanized in a general fashion, independent of
array architecture and the algorithms that are used to perform array operations. In this dis-
sertation, | argue that forward error recovery schemes, used with arguable success in non-
redundant disk systems, are unsuited for fault-tolerant disk systems. Employing a novel
programming abstraction, which graphically represents disk array operations as directed
acyclic graphs, and specializing error recovery technology found in transaction processing
systems, it is my thesis that by modeling redundant disk array operations as transactions:

redundant disk array software can be constructed in a fashion that reduces
the need for hand analysis of errors and concurrency, increases the frac-
tion of reusable code by reducing architecture-specific error recovery,
achieves performance comparable to hand-crafted implementations, and
does not consume significant resources.

To this end, | have written this dissertation which describes our experiments and approach
to redundant disk array software implementation. Also included in this dissertation is a
description oRAIDframe a software package for implementing and evaluating redundant
disk arrays developed by researchers at Carnegie Mellon’s Parallel Data Laboratory
[Courtright96c, PDLHTTP, RAIDframeHTTP]. RAIDframe employs the programming
abstraction and error recovery technology described in this dissertation and was used
extensively to demonstrate the claims made throughout the dissertation.

| hope that the work described in this dissertation will lead to an avoidance of soft-
ware faults in production systems; unfortunately, | have no empirical data to support this
belief. Rather, | argue that the simplicity of the approach, its demonstration in RAID-
frame, and the ability to formally verify systems using these techniques as correct, are
enough evidence to merit further investigation.

Before proceeding with a description of our approach to implementing redundant
disk array software, the dissertation commences with a study of background material.
Chapter 2 introduces the fundamental terminology used to describe fault-tolerant systems
as well as disk drive and disk array technology. The fault tolerance terminology | use is
consistent with that commonly found in the field [Gray93, Siewiorek92, and Lee90c].
Chapter 2 also reviews disk and disk array technology, including a description of the fault
model used in our experiments. This model is based upon a general array controller archi-
tecture found in commercial products, and the accepted notion that disk arrays fail non-
atomically when power failures and crashes are encountered.

Chapter 3 introduces a graphical programming abstraction based upon directed acy-
clic graphs in which the nodes represent actions sudislasead andXOR and the arcs
represent data and control dependencies. The nodes are designed to be atomic and, by
making them undoable, a mechanism for executing these graphs, which includes recovery
from node failures, is described. Because the mechanism is general (independent of graph
structure), the need for hand-crafting code to clean up after errors encountered during the
execution of array operations is eliminated.

This graphical programming abstraction, and a modular partitioning of functions
such as mapping and algorithm (graph) selection was the baRiAloframe a prototyp-
ing framework | describe in Chapter 4 that permits researchers to quickly implement disk
array architectures and evaluate them in real computing environments. This chapter pre-
sents an anecdotal history of our efforts as we developed eight disk array architectures in
RAIDframe, in which code reuse was consistently above 90%. Also included in this chap-
ter is an examination of RAIDframe’s efficiency, and a validation of its response-time and
throughput performance against expectation. For a nonredundant disk array, RAIDframe
was found to provide results consistent with a non-redundant hand-crafted striping driver,
but required 60% more CPU cycles. For redundant disk arrays, RAIDframe produced
results consistent with simple models that predict throughput as a function of the amount
of disk work in the system [Patterson88].

The study of error recovery is continued in Chapter 5, which begins by examining
the cost of the naive execution mechanism described in Chapter 3. That mechanism main-
tained enough undo information to permit rollback from the failure of any node in the
graph. Using RAIDframe, | show that the penalty for creating records for undoing disk
writes, which requires a pre-read of the disk sectors to be overwritten, results in a 33-50%
reduction in the small-write throughput of the eight architectures that we studied. This
degradation motivates the development aflbaway error recoveryan adaptation of the
two-phase commit protocol found in many transaction monitors. Roll-away error recovery
eliminates the need to perform expensive undo logging for actions such as a disk write
while maintaining the simplicity of a mechanized execution. Each array operation is
divided into two phases, separated by a barrier which requires completion of the first
phase before execution of the second phase may commence. Undo logs are maintained for
actions in the first phase of the operation—if an error is detected during the execution of
the first phase, these logs are used to automatically roll the operation back to its beginning,
failing it atomically. The operations are structured so that once execution of the second
phase commences, the failure of any single action will not prohibit the remaining actions
in the operation from being completed. This property guarantees that the an error detected
during the execution of the second phase of the operation will not alter the operation’s
algorithm, enabling execution to simply roll forward to completion. Roll-away error
recovery was implemented in RAIDframe and Chapter 5 demonstrates that its perfor-
mance is identical to those systems which do not employ logging.

| conclude the dissertation with Chapter 6, which reviews the specific contributions
and practicality of this work and presents a list of opportunities for future study. Notably,
this list includes a proposal for extending roll-away error recovery, through the use of

durable undo and redo logs, to ensure the atomic survival of power failure and software
crashes.

Chapter 2: Fault-Tolerant Disk Storage

Disk storage systems offered forty years ago, such as IBM’s Disk Drive RAMAC
350, were designed to tolerate only a minimal set of faults, relying instead upon external
mechanisms to tolerate failures in the disk system. Over time, disk storage products have
simplified the process of integrating them into systems by tolerating a wide variety of
faults without the need for external intervention. Today, customers are able to choose
between a variety of disk storage products, from commodity disk drives such as Seagate’s
Barracuda family which sell for less than 20¢ per MB, to single-fault tolerant disk arrays
such as Compaq’s server-based arrays at 25¢ per MB, subsystems such as Symbios
Logic’s MetaStor arrays which sell for 50¢ per MB, and EMC’s Symmetrix arrays which
employ large (1 GB) caches and sell for almost $2 per MB, to multiple-failure tolerating
disk arrays such as Storage Technology’s Iceberg which sells for $4 per MB. In fact, in
1995, 158 vendors collectively supplied 594 disk array products, ranging from software
and board products for desktop systems to free-standing rack-mounted enclosures for
mainframe systems [Disk96a].

It is my goal that, in addition to serving as compendium of background material for
this dissertation, the material in this chapter will convince the reader that there is a great
deal of commonality in redundant disk arrays which would suggest that there should be a
great deal of commonality in redundant disk array implementations. Later, in Chapter 3, |
demonstrate that exploiting this commonality is a problem and suggest a solution.

This chapter begins with a review of the terminology and metrics used throughout
the dissertation. Section 2.3 describes well-known procedures for implementing depend-
able systems, which can be applied to arbitrary systems, including disk arrays. Disk arrays
are then introduced by first describing disk drives, the fundamental building block of disk
arrays, in Section 2.4. Redundant disk arrays, which are capable of tolerating a variety of
failures, are then described in Section 2.5. This section includes a review of a variety of
architectures which provide cost, performance, and dependability optimizations, their
fault models, and the algorithms they employ for accessing data.

2.1 Terminology

Real systems are not perfect. Regardless of the care taken during design, construc-
tion, operation, and maintenance, defects will be introduced that result in exceptional
behavior. In many applications, such as spacecraft navigation systems, the dependability
of computing equipment is critical—even the most minute error can commit a crew to
travel where no man has gone before! Computing equipment used in these and other appli-
cations must therefore be designed to cope with defects.

Fault-tolerant computing, the science of creating dependable systems from imper-
fect components, is well studied and the brief introduction provided here is by no means
complete. Many excellent texts, suchRediable Computer Systems: Design and Evalua-
tion by Siewiorek and Swarz [Siewiorek92fansaction Processing: Concepts and Tech-
niquesby Gray and Reuter [Gray93], aRdult Tolerance: Principles and Practid®y Lee
and Anderson [Lee90c], offer a much broader and deeper introduction to this field than is
presented here. The purpose of this section is to introduce the terminology necessary to
understand the design goals and failure mechanisms of redundant disk arrays.

2.1.1 Faults, Errors, and Failure

All computing devices, whether constructed from hardware, software, or some com-
bination, have a specified operating behavior. That is, all devices are expected to behave in
a predictable manner. When the behavior of a device is inconsistent with expectation, an
error is said to exist. Erroneous behavior is a direct consequence of the preseiactt,of a
a defect in the device. The time between the introduction of a fault and detection of the
error it manifests is referred to esor latency

Faults can be eithenan-mader physical Man-made faults may be introduced
throughout the life of a device and are further subdivided into categories sdelsigs:
manufacturinginstallation andmaintenance fault®Physical faults are generally the
result of environmental factors such as temperature, vibration, or chemical processes such
as corrosion.

Faults are also categorized as a function of their durdemmanent faulisalso
known ashard faults are a result of defects which are always present and may only be
removed by an explicit repair operatidmansient faultsalso known asoft faults are
temporal and appear to repair themselves over time and disappear. Transient faults are
often a result of an environmental anomaly. A recurring transient fault is referred to as an
intermittent fault Intermittent faults are the result of a combination of a permanent defect
and an infrequent input pattern or environmental condition.

To better understand the relationship between faults, errors, and failure, consider an
accounting system used by a bank to maintain savings accounts. The system may have a
design fault (man-made fault) in the algorithm that computes interest, creating a latent
error. At the end of the month, when interest is to be paid, the error becomes effective at
the time when interest is computed incorrectly. The error is detected when the bank’s cus-
tomers all pay off their loans early. Because the design fault is always present, it is classi-
fied as a permanent (man-made) fault.

2.1.2 Fault Models and Semantics

Formulating an expectation of the behavior of a system is the first step in character-
izing the dependability of a system. This “expectation” is documented in what is known as
afault modelwhich specifies: the types of faults which are thought likely to occur, the
damage that they cause, their effects upon the behavior of the system, and the frequency of
their occurrence.

Each module in a system can often fail in many ways. However, the effects of the
errors manifested by these faults may often be similar, or even identical. Instead of coping
with each of these faults in a distinct manner, fault models often group sets of faults which
produce similar or identical errors into what | calhalt domain For example, there are
many distinct faults that can lead to the loss of power within a disk system (e.g., loss of
line power, power supply failure, operator error). Because the effect of each of these faults
is to deprive the system of power, these faults can be treated in a like fashion.

The relative timing of faults in systems is an important part of the fault model. For
example, a redundant disk array may be able to survive either a loss of line power or the
loss of a battery without failure; however, if the two faults should be present simulta-
neously, failure (loss of data) will result. Such a model is commonly referreditogées
fault tolerant meaning that the system will survive only the failure of a single fault
domain at any instant. Of course, it is possible to cigdtailt tolerantsystems which
tolerate the simultaneous occurrence of at mdstgults.

Finally, the fault model must describe the effect of faults upon the behavior of the
system. Users of a system request work, and these requests are performed as a sequence of
one or moreperations The operations are executed with an expected behavsanan-
tic, and the fault model specifies the effects, if any, of predictable faults upon this behav-
ior.

2.2 Metrics

Ultimately, two metrics are used to measure the dependability of computing equip-
ment:reliability andavailability [Laprie82]. Reliability is the probability that a device will
operate without failing for a period of timgand is computed as:

—Ih(x)dx
R(t) = e® (EQ 2-1)

whereh(x) is thefailure-rate or hazard functiorof the system which specifies the instanta-
neous failure rate of the device. If a system is known to have a constant failure rate, the
failure-rate function becomes constant and is often specified as reciprocatnaahe
time-to-failure(MTTF), the expected time interval between some instant in time and the
failure of the system.

When a system fails, an explicit repair operation is required to restore service. The
expected time required to complete a repair operati@an-time-to-repai(MTTR) is
measured from error detection to completion of the repair. Availability is a prediction of
the fraction of time that a device will be able to provide service. Assuming constant failure
and repair rates, expected availability is defined as:

Availability = MTT'\QTIGTTR (EQ 2-2)

The denominator of this equatidd;TTF + MTTR represents the total time between fail-
ures and is sometimes represented amen-time-between-failure (MTBF)

Finally, the performance of disk systems, is generally characterized by the metrics:
response time throughpwndcapacity Response time is total time required to service a
request, measured as the elapsed time from the arrival of a request, read or write, to com-
pletion. Throughput measures the rate at which operations are completed and is typically
reported as 10/s. Throughput is sometimes used to indieatgwidth the rate at which
data is moved in MB/s. In this dissertation, | will use the I0/s metric when discussing
throughput. Capacity is simply the amount of storage, typically measured in gigabytes, of
the disk system that is available for user data.

10

2.3 Improving System Dependability

Creating systems which are less likely to fail (i.e., have a higher MTTF) can be
accomplished by either reducing the likelihood that faults will be introduced or by creat-
ing procedures for hiding their effects [Randell78]. The first approach, referrethtdtas
intoleranceby Avizienis [Avizienis76] and commonly known &sult avoidanceis pow-
erful but ultimately limited in its ability to improve dependability because faults can not be
entirely eliminated. Typical approaches to fault avoidance employ quality assurance prac-
tices such as: using fewer, more reliable components; using only established and well-
understood design, manufacturing, and maintenance practices; thorough validation; and
restricting environmental conditions. STRIFE (Stress Life) testing is a common fault-
detection procedure used by manufacturers. This testing generally exposes a product to
environmental and operational extremes until a failure is detected. The root cause of the
failure is analyzed, the fault is eliminated (when possible) and testing resumes. By push-
ing the product to failure, even though the failures may occur outside normal operating
parameters, the weak points in the design and implementation are discovered and elimi-
nated.

If the failure rate or time required to repair a failed system is too high, availability
and reliability will drop below acceptable levels. When this occurs, fault avoidance tech-
nigues must be supplemented with procedures for hiding the effects of faultsfaltiese
tolerant systemare able to survive faults without manifesting their effects to the outside
world. This process is typically accomplished through the use of redundancy
[von Neumann56].

2.3.1 Detection, Diagnosis, and Isolation

The first steps taken in achieving fault tolerance @gg&action diagnosis andisola-
tion. Fault detection discovers the presence of a fault by detecting the errors it created. A
good example of this is parity encoding, a popular method used by information systems to
detect single faults in binary codewords [Hamming50]. Illustrated in Figure 2-1, parity is a
single-fault-detection code because detection of all single bit errors is guaranteed.

Because fault detection schemes such as parity do not necessarily determine the
location of the fault, methods for diagnosing the location of faults are necessary. Many
proven techniques exist for diagnosing permanent faults. Faults in information are gener-
ally located by using error-correcting codes such as Hamming codes which, unlike parity,
are able to detect, locate, and repair corrupted data [Hamming50, Arazi88]. However, as
explained in Figure 2-1, if the location of errors in data are known, the data becomes an
erasure channednd n-bit error detecting codes can be used to correct n-bit errors.

11

00110100 1 fault 10110100 1
information parity information parity

Zbits =0 Zbits # 0 (error!)

Figure 2-1 Parity codes detect single errors

Parity codes detect single errors by introducing an extra “parity” bit that forces

the binary sum of all bits, information plus parity, to be either even or odd. In this
example, the codeword uses even parity, meaning the binary sum of all bits is
expected to be zero. Over time, a fault occurs which causes the left-most bit to be
transformed from a zero to a one. The error is detected by noting that the sum of
the bits is no longer even. Note that the location of the error (the left-most bit in
this example) can not be determined from the non-zero summation alone. However,
if the location of the failed bit was also known, then that bit could be toggled to
correct the error. In general, given the location of a set of detectable errors, an
error detection scheme can be used to correct errors [Hamming50].

Duplicating components is a common method of diagnosing hardware faults. For
example, Triple-Module Redundancy (TMR) requires that three modules (possibly identi-
cal) compare results [Kuehn69]. A voting module is used to compare the responses of the
three modules. If a discrepancy is found, the faulty module is assumed to be the minority
voter. Similarly, software systems empldyversion programmingp detect faults associ-
ated with software design and construction [Chen78, Elmendorf72]. In these systems, the
outputs of a number of independently developed program modN)lesg compared for
inconsistencies. Again, a voting module is used to detect errors and locate failed modules.

An alternative to diagnosing faults by voting is to use a single component and moni-
tor its output. This is the basis for a software technique cadtaxery blocksvhich
detect software faults through the use of an explicit acceptance test [Anderson85,
Horning74]. First proposed by Horning, Lauer, Melliar-Smith, and Randell, recovery
blocks do not concurrently execute multiple software modules but instead monitor the out-
put of a single primary module. If the acceptance test detects an error, a secondary module
is called upon to replace the primary module and the previously-failed procedure is
retried.

It is possible that malicious sources can introduce faults which are intended to avoid
detection. These faults are classified by Lamport, Shostak, and Péggarame
because, like a Byzantine general looking for spies among his commanders, a system’s
fault diagnosis system has difficulty discerning their presence [Lamport82].

12

Once a fault has been detected and located, its effects can be contained by isolating
the faulty module from the system. To minimize the damage caused by a fault, fault mod-
els commonly assume that modules are able to detect, diagnose, and isolate faults in an
expedient manner. This behavior, referred ttadfast or failstop, requires modules to
stop themselves as soon as an error is detected, thereby preventing the spread of the fault.
For example, instead of a disk drive returning erroneous data which would be passed on to
applications for processing, it returns a message indicating that the presence of an error
prevents the request from being completed. The time required for detection is assumed to
be small, hence the term “failfast” [Gray93].

Failfast modules are self-checking, meaning that diagnosing faults in systems com-
posed of failfast modules is relatively straightforward. This is the basic premise of redun-
dant disk arrays which rely upon error-correcting codes and other mechanisms internal to
a disk drive to report any faults which may be present within the disk [Patterson88]. Fur-
thermore, failfast modules simplify the task of isolating faults within a system, reducing
the likelihood of their effects spreading to otherwise error-free components.

2.3.2 Recovery, Reconfiguration, and Repair

Once the presence of a fault has been detected and its location is known, the pro-
cesses oérror recovery reconfiguration andrepair may commence. Error recovery
removes the manifestations of the fault, restoring the system to a consistent state which is
free from error. With the fault contained and the system in a consistent state, components
may be reconfigured to restore service; however, until the failed component has been
repaired, service may be degraded. Additionally, the dependability of the system may
decline because the fault may have removed a component from service. To restore the
fault tolerance of the system, the failed module must be repaired.

Time-based redundancy allows transient faults, which appear to repair themselves,
to be survived by simply retrying the operation which failed [Gray93]. Intermittent faults
however, are more difficult to overcome—retry may work, but in some instances the recur-
rence rate of the fault may be too high, driving the dependability of the system down to an
unacceptable level. Therefore, a system’s ability to tolerate intermittent faults is often a
function of the robustness of the system’s fault-diagnosis mechanisms—if the fault can not
be diagnosed, the system is doomed to fail repeatedly.

The failed module, once removed from service, must be repaired. Because availabil-
ity is a function of the time to repair a fault (EQ 2-2), many systems provide on-line repair
services which are capable of repairing a failed module without taking the system off-line.
For example, redundant disk arrays often include spare drives for use in replacing failed
drives [Gibson93, Symbios95a]. When a drive fails, the array is reconfigured to use a
spare and the data stored on the failed drive is reconstructed onto the spare. The array is
available to service requests throughout the entire Femm'cess although, as Holland
demonstrates, the array may offer lower performance during this interval [Holland94]. At

13

a later time, the failed drive is physically removed from the array and another spare drive
is inserted in its place.

2.3.3 A Closer Look at Error Recovery

Methods for removing errors from a system fall into two general classestrd
error recoveryandbackward error recoveryrorward error recovery methods remove the
effects of an error by moving the system to a new, corrected state whereas backward error
recovery returns the system to a previous state [Lee90c, Laprie82].

Perhaps the most popular method of forward correction is simply retrying an opera-
tion. This method can be used to correct errors due to the failitlenmbotenbperations
which are the result of a transient fault. Idlempotent operations have the property that state
changes are not a function of the number of times the operation is executed; that is,
repeated execution of an idempotent operation causes no additional state changes beyond
those associated with its original execution.

Retry is unable to remove hard errors because they will only be repeated, and retry-
ing operations that are not idempotent introduces undesired state changes. When retry is
not applicable, forward error recovery schemes apply a distinct corrective measure given
the current situation. For example, if the trajectory of a spacecratft is discovered to be in
error, the appropriate action would be to fire the rockets in a manner that would guarantee
that the rocket will safely reach its destination. To determine the corrective rocket firing,
the current trajectory, position, intended destination, and other parameters must be known.

Systems that employ forward error recovery may construct a dedicated recovery
scheme for each possible error scenario (error type and context) and therefore require an
intimate understanding of the system. As the complexity of the system increases, the num-
ber of recovery schemes which the programmer must create grows with the number of
error scenarios. Additionally, the ability to predict all possible error scenarios diminishes.
The implications of this are two-fold: design faults are likely to be introduced and proper
validation becomes increasingly difficult. Errors overlooked during design are easily over-
looked during validation. Also, the number of combinations that must be verified may be
large—this problem is compounded in systems which concurrently execute large numbers
of independent operations.

Instead of trying to move forward to a new system state, backward error recovery
schemes return the system to a previous state, referred tecwery pointthat is
assumed to be free from error [Randell78, Stone89]. This is generally accomplished by
periodically storingecovery datainformation that describes the state of the system, dur-

1. Holland divides what | call the “repair” process into two distinct phases: “repair” and “reconstruction.” Holland stud-
ied the time to recompute lost information after a drive was replaced and uses the term “repair” to measure the time to
replace the failed drive and “reconstruction” as the time to initialize it's contents.

14

ing normal processing. When an error is detected, the system is returned to the recovery
point by reinstating the recovery data. The effects of the error, as well as all work com-
pleted since the recovery point, are undone. With the system restored to an error-free state,
the operation that failed can be retried, either by using the same procedure or, given the
presence of a fault in the system, by using a new procedure which does not rely upon the
failed module.

Backward error recovery requires that the actions which compose an operation must
be undoable. Unlike forward error recovery, backward error recovery techniques do not
rely upon an intimate understanding of all possible error types and the context in which
they occur; instead, backward error recovery blindly returns the system to a state prior to
the detection of an error, irrespective of error type or context.

Because errors can be treated in a general manner, backward error recovery is ame-
nable to mechanization. Two backward error recovery mechanisms found in use today are
checkpointingandaudit trails. Checkpointing systems establish a recovery point, known
as acheckpointby saving a subset of the system state, knovah@skpoint data
[Chandy72, Siewiorek92]. When an error is detected, the system returns to the checkpoint,
in a process callemllback, by restoring the checkpoint data. By returning to the check-
point, all work completed in the system since the checkpoint was first established is lost
and must later be redone.

An important optimization in backward error recovery systems is reducingthe
of recovery or the scope of the rollback operation. The unit of recovery determines the
amount of work that will be undone as a result of rollback. The unit of recovery can be
reduced from a global rollback (restoring the entire system to a previous state) to a per-
operation rollback (restoring the state changes made by the operation which failed to pre-
vious values) byoggingthe individual state changes of each operation. Logging, also
known in the literature gsurnalling or audit trails, is widely used in database systems
[Bjork75, Verhofstad78, Gray81].

2.3.4 Transactions

A special class of operatiortsansactionsare executed in a manner which guaran-
tees the semantic properties aomicity consistencyisolation anddurability. Collec-
tively referred to as “ACID” by Haérder and Reuter, these are the defining properties of
transactions [Haérder83, Gray93].

Atomicity requires that each transaction either completes successfully or leaves the
system unchanged. Atomic transactions eliminate the need for programmers to interpret
and correct incomplete state changes and therefore greatly simplify the process of coping
with errors [Lomet77, Lynch94]. Consistency implies that each transaction in the system
is only allowed to introduce valid state changes to the system. For example, a transaction
would not be permitted to withdraw $100 from an account with a balance of $50.

15

Transactions are frequently used in systems that are characterized by high concur-
rency and it is important to ensure that independent transactions do not interfere with one
another. Isolation ensures that transactions executing concurrently have no knowledge of
one another. Because concurrently executing transactions that run in isolation appear to an
external observer to execute in a serial fashion, the semantic property of isolation is some-
times referred to aserializability The property of isolation is important in applications
such as redundant disk arrays in which many transactions concurrently modify shared
information. Durability ensures that when a transaction commits (completes successfully)
the changes that it made to system state will survive subsequent faults such as loss of
power and system crash.

Transactions, are an important programming paradigm that have been widely
embraced by developers of complex fault-tolerant systems, such as those used in database
applications [Bernstein87, Gray93, Lynch94]. In addition to guaranteeing ACID seman-
tics, systems based upon transactions provide recovery on a per-transaction basis. Recov-
ery is typically accomplished by recording information in a durable log that is used by a
recovery manageto either remove the effects of transactions which failed prior to com-
mit, or to complete the state transformations of transactions which have committed but
were interrupted prior to completion.

A transaction is said toommitwhen it can guarantee success. If a transaction
encounters an error prior to commit, it must undo all visible state changes. Therefore, the
undo rulerequires the recording of enough information to undo all visible state changes
made by the transaction prior to its commit point. These changes are recordeddo an
log, which is generally required to be durable to ensure survival of system crashes. If an
action can not be undohehe transaction must be designed so that it does not execute
prior to commit. Similarly, if a transaction commits prior to completing all state changes
visible outside the local scope of the transactionrétle rulerequires that these state
changes be recorded in a duraieléo logprior to commit.

An important commit protocol is thtevo-phase commitvhich is used to coordinate
the atomic commit of a transaction across multiple participants [Bernstein87]. A central
coordinator asks each participant if they are able to commit. If one or more participants
vote “no,” the transaction aborts and each participant is asked to roll back by undoing their
effects. If, however, all participants vote “yes,” the transaction commits and each partici-
pant rolls forward to completion.

Gray et al describe an instance of the undo/redo approach used in the recovery man-
ager of the System R database manager [Gray81]. Called the DO-UNDO-REDO protocol,
this approach provides a transactional programming abstraction through the use of four
distinct programs: DO, UNDO, REDO, and COMMIT. lllustrated in Figure 2-2, the DO
program performs aactionwhich composes a transaction. Executing the DO program
results in execution of the specified action, thereby changing the state of the system. Prior

1. An action that can not be undone is callegah actionby Gray and Reuter [Gray93].

16

old new
state > DO ™ state
log
™ record
new old
state > UNDO ™ state
log ?
record
old
state | p REDO —» new
state
log ?
record

Figure 2-2 The DO-UNDO-REDO protocol

Taken from [Gray81], the transformations of h®, UNDO, andREDO pro-

grams are illustrated above. TIREO program applies an action that moves the
system to a new state and creates a log entryUN2O program uses the log
entry to undo the effect of tBE action. In the event of a crash, tREDO pro-
gram is used to restore work previously-completed since the last system check-
point.

to committing its changes, the DO program places a record in a log which contains enough
information to later undo or redo the effects of the action.

If the transaction fails, any previously-completed actions composing the transaction
must be undone. This is accomplished with the UNDO program which reads the undo log
in LIFO order, applying the log records and removing the state changes of the failed trans-
action. If a system crash occurs, the system may be restarted by first restoring the most-
recent checkpoint and then using the REDO program to redo transactions which commit-
ted after the checkpoint was taken.

17

2.3.5 Discussion

This section has quickly reviewed the basics of well-known mechanisms for tolerat-
ing failures. Dependable systems can reduce the likelihood of fault occurrence through the
use of established design practices. However, the occurrence of faults can not be avoided
entirely and therefore systems with higher dependability demands must be designed to tol-
erate faults.

Faults manifest themselves as errors which must be dealt with. | described two fun-
damental approaches to error recovery, forward and backward. Forward error recovery
approaches are generally ad hoc because they rely upon a case-by-case treatment of errors.
Furthermore, this case-by-case treatment prevents forward error recovery from being
mechanized. Forward error recovery is necessary when dealing with actions which are not
undoable.

Backward error recovery approaches, particularly transactions, offer general mecha-
nisms which better manage complexity. By guaranteeing ACID operation, programmers
are freed from the burden of interpreting and correcting the state changes made by par-
tially-completed operations. The price of this simplification is the overhead associated
with storing information which enables the system to undo the effects of transactions
which fail. This information is stored during normal processing and will therefore intro-
duce some performance degradation as well as resource consumption.

2.4 Disk Drives

Magnetic disk drives are the dominant form of secondary storage used in computer
systems. Also known as “hard” or “rigid” disk drives, they can be found in applications
from hand-held devices to mainframes. In 1995 alone, an estimated 89.6 million drives
were shipped worldwide [Disk96b]. With an annual growth rate predicted to be 17.5%,
shipments in 1998 are expected to exceed 149 million drives.

Disks are packaged and sold both individually and as collections. The technology,

failure mechanisms, and fault model of commodity disk drives are the focus of this sec-
tion. A discussion of fault-tolerant disk arrays is deferred to Section 2.5.

18

\ sector

actuator

\/

hedd platter track

spindle

Figure 2-3 Accessing a sector

A disk drive consists of a set of platters, each possessing a dedicated read/write
head. The platters are rotated by a common spindle and the heads are mounted on
a rotary voice-coil mechanism called an “actuator” Data is recorded on each plat-
ter in concentric rings which are subdivided into sectors.

A sector is accessed by first selecting the head which is assigned to the platter con-
taining the sector. The actuator then positions the head over the correct track in a
process referred to as “seeking.” Once the desired track has been reached, the
head waits for the rotation of the platter to place the desired sector directly under-
neath the head.

2.4.1 Disk Technology

General information on disk technology can be found in the Bagital Storage
Technology Handbodty Digital Equipment [Digital89] anén Introduction to Direct
Access Storage Devic8gerra [Sierra90]. Recent papers by Wood and Hodges [Wood93],
and Grochowski and Hoyt [Grochowski96a] explain the driving forces behind current disk
trends. A recent paper by Ruemmler and Wilkes provides an excellent discussion of disk
performance modeling [Ruemmler94].

Disk drives use magnetic recording techniques to provide nonvolatile storage. Data
is stored on rotatinglatters usually constructed from aluminum and coated with an iron-
oxide compound. Current commodity drives are available with 1.8”, 2.5”, 3.5", or 5.25”
diameter platters. The coating is referred to asrtbdia The platters, illustrated in
Figure 2-3, rotate on a spindle at a fixed rate of revolution, typically 5,400 or 7,200 rpm. A
set of magnetic read/write heads is positioned using a voice-coil mechanism called an
actuator There is one head per media surface and all heads move in unison. The rotation

19

Figure 2-4 Typical sector formatting

A “sector” includes the minimal amount of data a drive can transfer as well as the
information used by the drive to locate the data and detect and correct any errors
during readback. The sector format begins with an embedded servo field which is
used for centering the head on the track. A “gap” field is an unrecorded area and
used to isolate the “servo” and “sync” fields. The “sync” field contains a pattern
which synchronizes the drive’s electronics to the information contained in the sub-
sequent fields. Each sector is uniquely identified by information stored in the “ID”
field. User data, typically 512 bytes, is stored in the “data” field followed by error
detection and correction codes. The sector is terminated with an inter-sector
“gap” which is used to isolate sectors.

of the platters creates an air bearing which, given current technology, separates the head
from the media by a distance of less than 2 micro-inches [Grochowski96b].

Data is recorded on the media in concentric circles catielisthat are further sub-
divided intosectors A sector is the minimum unit of access offered by the diskarfédsd
densityof information which the head/media tribology can support is approaching
1 gigabit per square inch and is increasing at 60% per year. As Figure 2-4 illustrates, each
sector contains positioning information as well as check data for error detection and cor-
rection during readback. An explicit format operation is used when the drive is installed to
frame the sectors on the disk.

Sectors are accessed by first enabling the head for the platter surface which contains

the sector. This enabling, calledh@ad switchtypically requires 1 ms. With the proper
head enabled, the actuasaekdo the track which contains the sector. Seek times vary, as

20

a function of the diameter of the platter and workload. Today, the average seek time for
specified by most manufacturers for a 3.5” disk is just below 10 ms [Disk96b].

With the head positioned over the proper track, then head reads the track as the plat-
ter spins, waiting for the desired sector to move into position under the head. This time,
generally known asotational latencyis on average one-half of the time required for plat-
ter to complete a full rotation. The average rotational latency for a 7,200 rpm disk is 4.2
ms. At this point, the desired operation, the read or write of the sector, occurs.

2.4.2 Fault Model

Because error correcting codes (ECC) used in disk drives are very successful at
detecting errors and because verifying a write cannot be performed without a full rotation
of the platter (8.4 ms for a 7,200 rpm drive), writes are not verified and subsequent reads
discover bad writes. The primary goal of the check codes contained in the ECC field is the
detection of all errors in the data—error correction is a desired but secondary priority.
Great care is taken in the design of the check codes to ensure detection of all likely error
types. For example, Quantum’s Atlas family of drives uses a 198-bit Reed-Solomon code
which can detect a single burst error up to 73 bits in length and can correct up to 10 bytes
in a sector [Quantum95].

In addition to ECC codes, disk drives use retry and other techniques to recover from
read errors. For instance, some IBM drives which encounter a media error in a read opera-
tion invoke a 50-step recovery process to isolate the failure mechanism and recover the
data without loss [IBM95]. Ultimately, disks, such as those in Seagate’s Barracuda family,

specify a recovered error rate of less than 10 errors in evéhpit§ transferred
[Seagate95].

When ECC and other recovery measures fail, the disk will mark the sector as “bad”
and fail the read operation. For Barracuda drives, this happens for less than 1 sector in

every 13* bits transferred. Contemporary disk drives maintain a pool of spare sectors, and
the disk has the capability of automatically performing reconfiguration, replacing the
failed sector with a spare from the pool. This leaves the process of repair, (reconstructing
the lost information) to an external client.

Most important of all, the likelihood that a disk drive will return incorrect data is
negligible. For example, Barracuda drives specify a failure rate in error detection of less

than 1 sector in every #bbits transferred. Ruemmler and Wilkes recently traced a num-
ber of disks which supported UNIX file systems [Ruemmler93]. The highest read rate they
observed for a single disk was just under 5.2 million sectors read in a two month period.
Using a Barracuda disk drive and assuming 512 byte sectors, the Barracuda’s error detec-
tion function would have an expected MTTF of over 7.8 billion years! Methods for tolerat-
ing the failure of a drive to return correct data exist in the form of end-to-end detection

21

mechanisms. Throughout the remainder of the dissertation, | restrict my analysis to disks
which report all errors.

2.4.2.1 Fault Model Used in This Work

| treat single-sector operations as atomic: the sector is either written in its entirety or
not altered; subsequent reads either complete successfully or fail. Furthermore, disk oper-
ations, regardless of size, are idempotent, meaning that a failed write operation can be
retried without ill effects.

Multi-sector disk operations are not atomic. A disk drive does not guarantee that
once begun, a multi-sector operation will complete. Furthermore, individual disks are gen-
erally permitted to reorder a multi-sector request to reduce rotational latency [Digital89,
ANSI91]. Therefore, any subset of a multi-sector write operation may fail.

Faults in head positioning and recording mechanisms are avoided through auto-
mated internal calibrations which occur as frequently as every 10 minutes. These calibra-
tions compensate for changes in temperature which modify mechanical and electronic
operating parameters. Other periodic maintenance include validating the integrity of the
drive’s software by recomputing a ROM checksum and sanity checks of the electronics
[Seagate95].

Over time, disk drives will eventually fail in a catastrophic manner from which they
can not recover. In his dissertation, Gibson studied exponential, Weibull, and Gamma
models of disk failure distributions and concluded that exponential distributions are suffi-
cient when modeling mature products [Gibson92]. Assuming an exponential distribution,
the failure rate becomes constant and reliability is calculated as:

—t
MTTF

R(t) = e (EQ 2-3)

where MTTF is specified by disk vendors as an estimate of the expected amount of time
that the device will operate from the time it leaves the factory, assuming operation in a
controlled environment [Stone90].

It is worth noting that this model, specifying MTTF to indicate a drive’s reliability,
has come under criticism due to recent quality problems associated with the younger disk
drive products of several major disk drive vendors. The International Disk Drive Equip-
ment and Materials Association (IDEMA) has created a subcommittee, composed of disk
vendors and customers, to investigate better methods of specifying disk reliability
[IDEMAO9E].

22

Disk drives generally have a warranty or expected operating lifetime of two to five
years. To achieve this, disk drives such as the Seagate Barracuda drives have an MTTF of
800,000 hours (91 years). If these drives are to be used for a lifetime of 2.5 years, their
expected reliability is 97.3%.

-21, 915

R(21, 915 houry = €°°° %90 = 9739 (EQ 2-4)

Clearly, Seagate does not have 91 years of data on this product, so how can their MTTF
rating assumed to be credible? The answer is twofold: first, disk vendors base MTTF pre-
dictions on an analysis of the reliability of common disk drive components used in previ-
ous products. Second, testing is accelerated by subjecting the disk drive to extreme
operational conditions (power, temperature, and activity) which identify the weak points
of the design, enabling vendors to understand the mechanisms which are likely to cause
the majority of drive failures.

A catastrophic disk failure implies that the entire contents of a disk drive are perma-
nently lost. Catastrophic disk failures are often the result of a head crash or the failure of
disk electronics. Recovering from a catastrophic disk failure requires replacing the disk
and reconstructing its contents. The catastrophic failure of one disk does not affect the
remaining disks in the system; however, this does not necessarily imply that the faults that
lead to catastrophic disk failures are independent. For insttict®n the attractive
force between a head which is parked (resting on a non-rotating platter), can be so large
that the drive’s spindle motor is unable to rotate the platters (the drive fails to “spin up”).
This is a manufacturing defect and can therefore affect many drives from the same produc-
tion run. If power is lost to a collection of disks with this fault, it is possible that several
disks may fail due to the same fault when power is restored.

2.4.3 Discussion

Disk drives are commaodity devices that provide nonvolatile storage. Lampson and
Sturgis defined what has come to be the classic model of disk failures: write operations
rarely fail and sectors which were written successfully may decay over time [Lampson79].
Operations which read a sector are expected to tolerate transient failures, but will fail
when a permanent fault is detected. In addition to these sector-level failures, the drive may
experience a catastrophic failure (e.g. head crash or the failure of the internal controller)
which makes all sectors inaccessible.

The data that | presented in this section supports this model. | treat disk operations

as consistent, serializable, and durable. Single-sector operations are treated as atomic but
multi-sector operations are not. Finally, disk errors are self-identifying, meaning that disks

23

can be treated as erasure channels. This important property will be used in the following
section to simplify the redundancy necessary to tolerate disk failures.

Other fault models do exist. One example is the Mime disk architecture which main-
tains shadow copies of data to permit a checkpoint-based recovery [Chao92]. When an
error is detected during a multi-sector write, Mime uses the checkpoint data to restore the
surviving disk sectors to their original state, failing the operation atomically. At the time of
this writing, Mime has not moved beyond simulation studies, and contemporary disk sys-
tems continue to offer non-atomic failure semantics for multi-sector operations.

In addition to disk drives, storage systems are composed of modules such as power
supplies, fans, and cables. | defer a discussion of the failure of these components to
Section 2.5.3 which follows the introduction of disk array controllers. This analysis is
drawn largely from prior work [Chen94, Gibson92, Schulze89].

2.5 Disk Arrays

Disk performance improvements have not matched those in processors, creating
what Pugh refers to as an “access gap” [Pugh71]. This widening disparity in performance
is a consequence of the mechanical constraints faced only by disk drives. Disk head posi-
tioning mechanisms may reach accelerations as high as 50 g and the resulting forces act-
ing on the head can only be decreased by reducing the mass of the disk arm. Similarly,
rotational speedups are held in check by problems with heat and platter rigidity.

In 1990, 5.25” disk drives were the dominant form factor. These drives exhibited
average seek times of 12 ms and rotational latencies of 5.6 ms (5,400 rpm) [Disk90].
Today, the average seek time for high-performance 3.5” drives has dipped below 10 ms
and the fastest drives offer seek times below 7 ms. By increasing the rotational rate of the
platters to 7,200 rpm, rotational latency has dropped to 4.2 ms [Disk96b]. Together, this
implies an improvement in disk head positioning of 36% in the last five years.

By comparison, in this same period microprocessors have increased in performance
from a SPECint rating of 25 to 325, an increase of 1,200% [Patterson96]! Microprocessors
have directly benefited from continued advances in VLSI technology which not only
increase clock rates, but also increase the number of transistor a device can support. This,
in conjunction with improved design tools, has enabled the implementation of architec-
tural advances which permit the concurrent processing of multiple instructions.

24

Doa | | Dob Dod Do
Dia | | D1 D14 Dy
parallel-access array independent-access array

Figure 2-5 Data layouts which enable concurrency in disk storage

In this illustration,D,, represents a unit of user data. In the parallel-access array,

each data unit is distributed across all drives, effectively reducing the time spent
transferring data to/from the media by a factor equal to the number of drives. Sim-
ilarly, the independent-access array is designed to reduce head positioning time by
allowing each drive in the array to concurrently service an independent request.
This is possible because, unlike the parallel-access array, each data unit is con-
tained entirely on a single drive [RAB95].

2.5.1 Striping for Performance

Instead of relying upon disk drive technology improvements, disk storage system
architects have employed concurrency to achieve higher throughput and decreased
response time. By organizing commodity disks eni@ys, architects are able to increase
the overall performance of the disk system by placing data across the drives in a manner
that either enables independent accesses to perform positioning operations concurrently,
or enables large accesses to transfer data from several drives concurrently [Kim86,
Salem86]. By striping data such that a unit of access spans all drives, the array offers an
effective bandwidth equal to the transfer rate of a single disk multiplied by the number of
disks in the array. Because all disks transfer data in parallel, this disk array architecture is
known as garallel-access arrayRAB95] and is illustrated in Figure 2-5.

Parallel-access arrays are a common method of increasing disk performance in
applications which are dominated by large transfer sizes. A good example of a high-band-
width system is the Los Alamos High-Performance Data System (HPDS) which is
designed to provide high-speed transfer rates to network-attached storage. The system
moves approximately 120 gigabytes of data per day and supports data traffic rates up to 60
MB/s [Collins93].

25

Conversely, many applications are characterized by large numbers of small accesses.
Database applications, such as those used in banking applications, are an excellent exam-
ple. Updating a customer’s account involves reading a small record, modifying it, and then
writing the result back to disk. Contemporary database systems offer transaction rates
which demand up to 10,000 disk operations per second [Gray93]. With an average access
time of 11 ms, the throughput of today’s disks is less than 100 1/Os per second. However,
by distributing the records of the database uniformly across an array of disks, the work-
load can be evenly distributed, allowing all actuators in the array to be positioned indepen-
dently. Such an array is callednalependent-access array astripe se{RAB95].

2.5.2 Redundant Disk Arrays

Increasing the number of disks and controllers in an array increases the effective
capacity and performance of the array. Unfortunately, this has the simultaneous effect of
reducing dependability [Gibson93]. Disk arrays that are designed to tolerate disk faults
without loss of data or interruption of service are increasingly common. This subsection
introduces the most common redundant disk array architectures in production today, the
Berkeley RAID taxonomy, and presents a number of array architectures which are popular
in today’s research literature but have yet to be offered as products.

2.5.2.1 Encoding

Disk failures can be tolerated by creatingpadeword an encoding of user data and
check data, and distributing the codeword across an array of disks such that each disk in
the array contains at most one symbol (one bit) of the codeword. When a disk fails, the
result is equivalent to the loss of (at most) one symbol in the codeword. Because disks are
considered to be erasure channels, simple encodings such as single-copy or parity can be
used to reconstruct the symbol which was lost.

The two types of data encoding most common to redundant disk arrays are duplicate
copies and parity. Copy-based encoding is the most popular of all data encodings used in
redundant disk arrays. Array architectures which employ copy-based encodings are
referred to aslisk shadowin@r mirroring arrays [Bitton88, Gray90b]. Basic mirroring
systems maintain two copies of user data. By placing each of the two copies on an inde-
pendent disk, the failure of one disk can be tolerated by using the copy stored on the sur-
viving disk.

Disk arrays that are based on mirroring are easily understood and can be imple-
mented without specialized hardware. A significant disadvantage of mirrored arrays is that
50% of their total storage capacity is lost to redundant information (the mirror copy). To
overcome this problem, disk arrays are also constructed using codewords based upon par-

26

Po.g = D0 D; 0D,0D,0D,0Dg0Dg

Figure 2-6 Codeword in a parity-protected disk array

As previously described in Figure 2-1 on page 12, parity can be used to correct a
single error if its location is known. In this illustration, seven disks contain user
data and one disk is devoted to parity. Thus, only 12.5% of the array’s capacity is
lost to redundancy, a significant improvement over mirroring systems which
always sacrifice 50%.

ity encodings [Gibson92, Lawlor81, Park86, Patterson88]. Parity is computed simply as
the XOR of all data symbols in the codeword:

Py_,=Dy0D,0D,0..0D, (EQ 2-5)

n

As illustrated in Figure 2-6, parity-protected arrays reduce the capacity overhead lost to
redundancy from 50% to:

1

1 (EQ 2-6)
Ndisks

Overhea(})arity =

In order to increase significantly reduce the 50% capacity overhead lost to a mirror copy,
parity-protected disk arrays generally need to stripe across four or five drives, resulting in
an overhead of 25% to 20%.

2.5.2.2 Algorithms for Accessing Information
Reading information from a fault-free array that uses either a copy or parity-based

encoding is accomplished by simply reading the data directly from disk. In the case of
mirroring, because two copies of the data are stored in the array, the read may be directed

27

write read

Figure 2-7 Writing and reading data in a mirrored disk array

A copy of a user data block) is stored on each disk in the array. Writes update
both copies and reads may be directed to either copy. In the event that one of the
disks fails, read and write requests are simply directed to the surviving copy.

new data
|

XOR

Y
D
P

The large-write algorithm is used to overwrite an entire codeword in a fault-free
parity-protected disk array. New parity is computed from the new data to be writ-
ten. New values of data and parity overwrite previous values.

m ‘YVY

Figure 2-8 The large-write algorithm

to one of two disks. Similarly, as Figure 2-7 illustrates, writing data to a mirrored array
requires updating both copies.

Writing data to a parity-protected disk array is not as straightforward. In parity-

based arrays, the size of a codeword is constrained only by the number of disks in the

array and the symbols are not duplicate copies of one another. Because some accesses may
not overwrite all symbols in the codeword, a variety of algorithms are necessary to mini-
mize the performance degradation due to parity maintenance.

For instance, if an access spans an entire codeword in a parity-protected disk array,

thelarge-write algorithmillustrated in Figure 2-8, is used. Parity is computed directly
from the data to be written to the array and the entire codeword is overwritten. This algo-

28

rithm is efficient in that the minimal amount of disk work, one write per symbol (including
parity) is performed.

If an access overwrites a single symbol in the codeword, parity can be updated by

using thesmall-write algorithmwhich updates parity via a read-modify-write process.
Consider writing the symb@,e,,t0 @ codeword which is in the initial (old) state:

Poid = Doold H P1o1g H Dooig H -+ U Dpgig (EQ 2-7)

When the write is complete, parity should be altered, such that:

P = I:)OnewD Dlold u D20Id 0.0 Dnold (EQ 2'8)

new

Reading all of the data symbols in a widaq large) array is not efficient when we are
only trying to update a single symba@l{). Therefore, using the following two properties

of XOR:

Dooig U Doolg = 0 (EQ 2-9)

D1oigH 0 = Dy (EQ 2-10)

we can compute parity from the data and parity values that we are about to change:

I:)new - I:)old O DOold 0b

(EQ 2-11)

Onew

Intuitively, this simplification can be understood by thinking of the term
(Dooid & Donew as representing the change madbdgq which is then applied t8;y.

Figure 2-9 provides an illustration of an operation using the small-write algorithm.
Pre-reading each symbol (data and parity) before their overwrite means that the small-
write algorithm is twice as expensive in terms of the amount of disk work performed ver-

29

new data

oId data XOR

L

old parlty neW parity

Figure 2-9 The small-write algorithm

To minimize the amount of disk work required to maintain parity when overwriting
one symbol of a fault-free codeword, the small-write algorithm performs a read-
modify-write of the parity symbol, resulting in a total four disk accesses. In this
example, data is to be writtenBg. This requires pre-reading the old valuelyf

and parity Pg123), computing new parity as the XOR of Blgl newD, and old

Po123, and writing newDgy and newPg153.

sus symbols written when compared to the large-write algorithm. This disparity is often
referred to as themall-write problem

Unlike the large-write algorithm, which can only be used to write an entire code-
word, the small-write algorithm can be used to write an arbitrary number of symbols in a
fault-free codeword. However, because of its expense in terms of disk work, a third algo-
rithm, the reconstruct write, has been devised. Illustrated in Figure 2-T@¢ctmestruct-
write algorithmis similar to the large-write algorithm with the difference being that not all
data symbols are overwritten. Those that are not overwritten are read, enabling parity to be
directly computed from all data symbols in the new codeword. The reconstruct-write algo-
rithm requires one disk access for each symbol in the codeword, regardless of the number
of symbols being written. Therefore, if half or more (but not all) of a codeword is to be
written, the reconstruct-write algorithm is generally used because it requires less disk
work than the small-write algorithm.

Writing data to a codeword in which a fault has removed a symbol isn't too tricky. If
the disk containing the parity symbol has failed, the write is performed by simply writing
the new data—the update of parity is simply ignored. Similarly, if the entire codeword is
being overwritten, the large-write algorithm is used but the write of the disk which has
failed is eliminated.

If a disk containing a data symbol that is to be overwritten has failed, and the entire

codeword is not being written, then tthegraded-write algorithmillustrated in Figure 2-
11, is used. This algorithm is similar to the reconstruct-write algorithm: the data symbols

30

new data
|

Y

XOR

>
-
new parity
o 2 P

Figure 2-10 The reconstruct-write algorithm

The reconstruct-write algorithm is similar to the large-write algorithm in that new
parity is computed from all of the data symbols in the codeword. The data symbols
which are not being overwritteidg in this example) are read from disk.

new data
|

vy

XOR

new parity

y
e
o]

Figure 2-11 The degraded-write algorithm

If a disk containing a data symbol can not be overwritten, the simplest and least-
expensive method of updating parity is to use read the data symbols not being
overwritten and then compute parity from the entire set of data symbols. In this
exampleDgy andD; are to be written an array in which the disk containiighas

failed. The remaining data symbdl; andD3, are read from disk and new parity
Po123 Is computed as the XOR of all data symbols. The new valbgsgfand
D, is are then written to disk.

not being overwritten are read from disk and new parity is then computed from all of the
data symbols in the new codeword.

31

Ad

XOR

o) o2 (2] o
Figure 2-12 The degraded-read algorithm

In this example, a request is made to régga symbol which is stored on a disk
that has failed. Using the XOR function, igis recomputed from the surviving
symbols in the codeword which are read from disk.

Reading a symbol which was stored on a disk that has since failed is accomplished
by reconstructing it from the surviving data and parity symbols. This algorithm, com-
monly known as thdegraded-read algorithms illustrated in Figure 2-12.

2.5.2.3 The Berkeley RAID Taxonomy

In 1988, researchers at the University of California, Berkeley observed that 5.25”
disk drives which were used in personal computers had become commaodity devices. Their
low cost/actuator made them an attractive building block for arrays; however, their MTTF
was predicted to be only 30,000 hours, far below the MTTF of 100,000 hours found in the
14” IBM 3380 disk drives of the day. Realizing that disk performance was becoming
increasingly important, Patterson, Gibson, and Katz introduced a taxonomy for redundant
disk arrays based upon data layout and encoding [Patterson88, Gibson92]. The taxonomy
defined five levels of Redundant Arrays of Inexpensivsks (RAID). RAID level 0 was
later introduced by industry to denote a nonredundant disk array.

The Berkeley RAID levels are limited to single fault-tolerant array architectures.
RAID level 1 is used to denote mirrored disk arrays. RAID level 2 is reserved for arrays
which employ Hamming codes. The remaining RAID levels, 3 through 5, employ parity to
protect data from the failure of a single disk. Parallel-access arrays are categorized as
RAID level 3 and independent-access arrays are categorized as either RAID level 4 or
RAID level 5. As illustrated in Figure 2-13, RAID levels 4 and 5 are distinguished by the

1. The RAID Advisory Board defines “RAID” as Redundant Arrays of Independent Disks.

32

TN N N N TN N N YN
N N N N N] N N N
Do D, D, Po12 Do Dy D, Po12
N] N N N N N N N
Ds D4 Dsg Pays D4 Ds Pass D3
N N N N N] N N N
Ds D7 Dg | |Pe7s Dg | |Pe7s| | Ds D7
N] N N N N N N N
Do Da Dg | |PoaB Poag| | Do Da Dg
N N N N N N N
RAID Level 4 RAID Level 5

Figure 2-13 Parity placement in RAID levels 4 and 5

This figure compares the data layout and redundancy organizations for RAID lev-
els 4 and 5 for an array of four disks. Data units represent the unit of data access
supported by the array. Parity units represent redundancy information generated
from the bit-wise exclusive-or (parity) of a collection of data units. The redun-
dancy group formed by a parity unit and the data units it protects is commonly
known as a parity group.

placement of parity: RAID level 4 arrays place all parity on a single “parity” disk while
RAID level 5 arrays evenly distribute parity across the array.

Any write to a RAID level 4 disk array will involve the disk containing parity, mak-
ing it a bottleneck in small-write intensive workloads which require a read-modify-write
of the parity disk for each user I/0. In small-write-intensive workloads, the throughput of
a RAID level 4 disk array will be equal to one-half of the throughput of the parity drive.
RAID level 5 arrays, on the other hand, evenly distribute the parity and data workload
across the array, and achieve an aggregate throughput equal to one-fourth of the total
throughput of the combined disks in the array [Lee90b].

2.5.3 Fault Model

The internal workings of disk arrays (e.g. mapping, encoding, and algorithm selec-
tion) are abstracted from users by an interface that makes the array appear as a single disk
with higher performance, capacity, and dependability. It is natural to assume that read and
write operations should have the same semantics exhibited by disk drives, previously
described in Section 2.4.2. This subsection briefly describes the failure mechanisms com-
monly found in disk array products, the likelihood of their occurrence, and their effect
upon operation as perceived by the user. Detailed studies of disk array reliability are

33

widely available in research literature [Chen94, Ganger94, Gibson92, Gibson93, Ng94,
Patterson88, Schulze89, Savage96].

Recall that disk drives are assumed to be failstop devices. The same can be said for
disk arrays, if they are either constructed from failstop devices, or employ sufficient redun-
dancy to enable the failure of a non-failstop device to be detected in an expedient fashion.
In addition to disk drives, disk arrays require power, cooling, cabling. Additionally, the
array requires a control mechanism which is responsible for mapping, encoding, and algo-
rithm selection and execution is sometimes implemented in specialized hardware. This
disk array controllermay be implemented entirely in either software or in some combina-
tion of software and dedicated hardware.

Representative MTTF values of each of these components are summarized in
Table 2-1. With the exception of array control software, the data in this table was taken
from a commercially available disk array manufactured by Symbios Logic [Symbios95a]
and is consistent with the guidelines outlined by the United States Department of Defense
[DOD81]. The reliability of array control software was estimated based on a limited sur-
vey of unpublished field return data and conversations with practitioners.

The power system can be treated as a failstop device because of the conditioning
normally present in supplies which isolates potentially-damaging line voltage surges from
disk array equipment. Array cooling is provided by assemblies which contain two fans.
Control electronics are included to adjust fan speed and detect and report fan failure.

The backpanel provides all electrical communication in the subsystem. Backpanel
faults can result in the loss of power, cooling, and the loss (or corruption) of communica-
tion between the controller and the disk drives and are a single point of failure. Backpanels
have no self-checking mechanisms and therefore can not be treated as failstop devices.
Instead, devices communicating across backpanels (or cables) must employ some form of

Table 2-1 Disk array component reliability

Component MTTF (hours)
MTTHR,ck (backpanel failure) 4,566,004
MTTFcpi-pwr (power cable failure) 10,000,000
MTTFqp-scsi(SCSI cable failure) 1,718,200
MTTFcqo1-asy(cooling assembly failure) 60,000
MTTFq.hw (array controller hardware failure) 81,000
MTTF.sw (array controller software failure) 40,000
MTTFyisk-cat(Catastrophic disk failure) 800,000
MTTFywr-supply(Power supply failure) 65,000

34

LAN

server A server B

I/O channel

controller A controller B

Figure 2-14 Disk array with redundant controllers

This figure illustrates a dual-controller disk array which provides storage to a
dual-server cluster. If either controller fails, both servers are assured access to
storage via the surviving controller.

end-to-end error detection mechanism, such as those used in SCSI and Fibre Channel
[ANSI91, ANSI94] which can be used to identify and isolate backpanel faults.

Hardware-assisted array controllers off-load tasks such as I/O management and par-
ity computation from a host CPU and may also isolate some data transfer operations from
the primary system bus. Similar to disk drive controllers, hardware-assisted disk array
controllers periodically perform a variety of sanity tests to provide failstop service
[Symbios95b]. For instance, it is unlikely that a “brain-dead” array controller will be capa-
ble of correctly forming valid messages which impart bad information. When a controller
does fail, all local volatile state is lost.

Many array products contain redundant controllers which give the array the ability
to survive a controller fault without loss of service. For example, Figure 2-14 illustrates a
dual-controller array. The failure of the array control mechanism should not result in a loss
of the data from previously-completed write operations. In fact, | assume that the array
controller should survive simultaneous failure of the array control mechanism and a disk.
When a controller does fail, all work in progress in that controller is interrupted and all
volatile state is lost. Generally, nonvolatile state that is required for controller failover

35

Do Dy D, D3 P

initial state: @ @
DO =0
DO =1

Figure 2-15 The write hole

In this example, the small-write algorithm, previously described in Figure 2-9, is
being used to write data to diEk in a parity-protected disk array in which disk

Dg has previously failed. Before the operation begins, the value of the symbol
stored on disl is “0” and can be computed as the XOR of the remaining data
and parity disks.

The write operation is interrupted at a point in which new information has been
written toD, but the parity disk has not been updated. When the controller is

restarted, the value d@g, is computed ast.” This problem is called the “write

hole” Unless measures are taken to complete (or remove the effects of) the write
operation which was interrupted, data corruption of unrelated dagy fas

occurred.

must be stored in a shared area which is accessible by the surviving controller(s). This
could be either a reserved area of a disk or mirrored memory regions which reside on the
array controllers.

Because disk arrays do not assume atomic failure of in-flight operations with respect
to faults which result in the failure of the array control mechanism, redundant disk array
implementors only need to worry about the side effects that can lead to the corruption of
codewords. That is, if a user write fails due to a crash, the user can make no expectation
(new data, old data, unknown data) about the region being written. However, the user
should expect that the remaining data in the array is unaffected. This latter expectation can
be difficult to maintain in the event of simultaneous power and disk failures.

Consider as an example the small-write operation illustrated in Figure 2-15, which
writes data to an array in which a disk has failed. The operation begins by computing new
parity and writing new data. Sometime between the writes of new data and new parity, the
array controller crashes (power or software fault). This leaves the codeword in an inconsis-

36

tent state and the original value of the failed disk can no longer be reconstructed, a prob-
lem commonly known as therite hole[RAB96]. Avoiding the “write hole” requires that
array control mechanisms record sufficient information in non-volatile memory so that
interrupted write operations can be completed after the crash.

Predicting the failure rate of array control software is more of an art than predicting
hardware reliability. This is because software reliability is a function of many subjective
measurements (schedule pressure, experience, code history, development environment,
test strategy, etc.). Unfortunately, the literature has almost entirely ignored the reliability
of array control software [Patterson88, Schulze89, Ganger94, Gibson93, Ng94,
Savage96]. In a recent paper, Chen et al modeled the effects of failures which interrupt the
array control mechanism [Chen94]. In this study, they define a crash as: “any event such as
a power failure, operator error, hardware breakdown, or software crash that can interrupt
an 1/0 operation on a disk array.” A value of MTJfnof 17,523 hours (1 month) was

assumed; however, this value did specifically include array control software. In fact, in
reliability calculations for implementations with hardware-assisted array control, system
crashes were entirely ignored.

| found the task of determining the defect rates of array control software from field
data to be a difficult one. First, many software faults are intermittent, appearing infre-
guently and when detected, are difficult to reproduce and isolate. Second, when a cus-
tomer experiences a failure, the first thing that a vendor is likely to do is request that the
customer upgrade to the most recent software—this usually eliminates the failure without
isolating the fault. Finally, when a controller is returned to the factory for failure analysis
(FA), a likely first step that a technician will take is to upgrade the software to its latest
revision (no point in debugging software that’s known to have bugs). Unfortunately, FA
technicians are able to repeat only 15% of failures after upgrading controller software.
Collectively, these problems suggest an under-reporting of software faults—failures that
are not repeatable by a manufacturer are not categorized as software faults.

Informal conversations with development organizations and the minimal field-return
data | have seen suggest a softwdie F,_g,, of 40,000 hours, which implies that soft-
ware is the single weakest single component of a redundant disk array. | can not provide
empirical data to confirm this; however, this finding is consistent with the general findings
in the field of fault tolerant systems which report software faults as the leading contributor
to failures in “fault-tolerant” systems [Gray90a].

2.5.4 Beyond the RAID Taxonomy

The Berkeley RAID taxonomy was immediately adopted as a de facto standard and
an industry consortium, the RAID Advisory Board, was created to standardize the applica-
tion of the RAID taxonomy to products [RAB95]. The demand for RAID systems
exploded, exceeding $9.7 billion in 1995, and estimated to exceed $18.6 billion by 1999
[Disk96a]. This demand is driven by a broad spectrum of capacity, dependability, cost, and

37

performance requirements. Researchers have generated a variety of architectures in an
attempt to cover this spectrum. A continued growth in new, specialized array architectures
is undermining the completeness of the RAID taxonomy. Summarizing all array architec-
tures proposed in the last five years is well beyond the scope of this discussion. The pur-
pose of this subsection is to demonstrate that by simply changing data placement, data
encoding, and the algorithms used to access data, a wide variety of architectures is easily
developed.

2.5.4.1 Improving Dependability

To begin, consider that as the number of disks (or any component) used in single-
fault tolerant disk arrays increases, reliability will suffer. Burkhard and Menon suggest
that by the year 2000, user capacity demands will require a large enough number of disks
in the array that the dependability of single fault-tolerant disk arrays will be inadequate
[Burkhard93]. A number of architectures have been designed to allow arrays to survive the
simultaneous failure of two disk drives without loss of data. Most notable are two-dimen-
sional parity [Gibson92] and EVENODD [Blaum95] which employ parity encodings, and
RAID level 6 [ATC90, STC94] which employs a Reed-Solomon encoding.

In single-fault tolerant schemes such as RAID level 5, each bit of user data is a sym-
bol in only a single codeword. two-dimensional paritgchemes [Gibson89], each block
of data is a member of two independent codewords. As illustrated in Figure 2-16, the
codewords are arranged orthogonally so that any two codewords have at most one com-
mon symbol. If two failures occur in a codeword, the missing data can be constructed from
the orthogonal codewords.

Intuitively, accessing information in an array protected by two-dimensional parity
occurs in much the same was as for a RAID level 5 disk array. Writes affect two code-
words, requiring additional parity computation and disk accesses. Also, additional algo-
rithms are necessary in order to provide operation in the face of two disk failures. In
Chapter 3, | introduce a novel programming abstraction for disk array operations and in
Appendix A | describe fifteen algorithms that can be used to access information stored in
disk arrays protected by two-dimensional parity.

Two-dimensional parity increases the amount of storage capacity lost to redundancy
and the additional disk work required to maintain the second parity disk reduces the
throughput of the array. Minimal redundancy overhead occurs if the number of data col-
umns is equal to the number of data rows. In this case, the amount of capacity lost to parity

information is:2, /Np,:4pisks - If the data disks in a two-dimensional array are not orga-
nized in a square array, the fraction of capacity lost to parity information will increase.

Blaum, Brady, Bruck, and Menon introdudeENODD a parity-based redun-

dancy scheme similar to two-dimensional parity, but with a different mapping of informa-
tion that guarantees a minimal capacity overhead regardless of the array organization (the

38

Figure 2-16 Two-dimensional parity

Two-dimensional parity protects data from any two disk faults by placing each
block of data in two independent codewords. For exarbplés protected by, 47

and P345.

array does not need to be physically square). Similar to two-dimensional parity, each data
symbol is a member of two distinct parity-based codewords. However, the codewords are
distributed in a fashion that results in a constant (minimal) redundancy overhead of

2 NDataDisks. The name “EVENODD” is derived from the fact that while one set of

codewords is always based upon even parity, the parity of the remaining codewords is
allowed to dynamically change from even to odd.

By employing two check symbols, a parity and a non-binary code, a codeword can
be constructed that tolerates two symbol (disk) failures. This approach, kn&¥ias
level § is used in Storage Technology'’s Iceberg product line [STC94]. The non-binary
code, a Reed-Solomon derivative, is typically computed using either large lookup tables or
an iterative process involving linear feedback shift registers—a relatively complex opera-
tion which requires specialized hardware.

2.5.4.2 Improving Performance

Counter to Burkard and Menon'’s prediction, Savage and Wilkes prépés&lD—
A Frequently Redundant Array of Independent Disks, an array architecture that trades
dependability for performance [Savage96]. Attempting to compensate for the small-write
problem found in RAID level 5 arrays, parity stripes in AFRAID are allowed to become
inconsistent for brief periods of time. When writing data to the array, if the parity drive is
busy, they defer its update to a later point in time. They predict that a 23% reduction in the

39

array’s mean time to data loss can increase performance by as much as 97%. AFRAID
changes the fault model of single-fault tolerant disk arrays because codewords which do
not have up-to-date parity are susceptible to a disk failure.

Instead of sacrificing dependability to achieve higher performance, it is possible to
increase performance through more traditional means, such as caching. Recognizing that
disk traffic is bursty [Ousterhout85, Ruemmler92], a write-back cache can be used to defer
updates until the array is idle [Golding95, Menon93a, Symbios95a]. By making the cache
nonvolatile, the semantic that completed write operations are durable is preserved. Addi-
tionally, deferring write operations allows small sequential operations to be coalesced into
larger, more efficient disk operations [Menon93a, Rosenblum92].

Alternatively, a variety of architectures have been proposed for trading capacity for
performance. These include deferring updates in a disk log [Bhide92, Stodolsky94] and
various schemes for modifying the logical to physical mapping of data that allow more
efficient array operations to be utilized [Menon93b, Mogi94, Solworth91].

Stodolsky, Holland, Courtright, and Gibson propogeadty logging an approach to
avoiding the small write problem by using disks more efficiently. Parity logging defers
updates to parity in RAID level 5 arrays by storing them in a FIFO log that is maintained
partially in controller memory and partially on disk. Using the rule of thumb that full track
accesses are ten times more efficient than sector accesses, parity logging collects large
amounts of parity updates and then applies them en mass at track rates.

Figure 2-17 illustrates two algorithms for writing data to a fault-free array. The first
algorithm replaces the small-write algorithm used in RAID level 5 disk arrays. Instead of
immediately performing the read-modify-write update of parity for each write operation,
an update record, reflecting the changes made to user data, is appended to the FIFO log.
Similarly, a large-write operation appends a parity overwrite record to the log. When the
log becomes full, it is emptied by reading its contents and that of the parity disk at track
rates, applying the records, and then writing the parity, again at track rates. To preserve
consistency, the log is processed in the same FIFO order that it was written.

A power failure that results in the loss of the portion of the parity log that is stored in
controller memory can be recovered from by simply reconstructing parity, assuming that
there are no disk failures. If the array is required to survive simultaneous disk and power
failures, then the parity log must be durable.

Instead of deferring work, Menon, Roche, and Kasson prdjmzdeng data and
parity which allows the physical location of disk blocks to be remapped [Menon93b].
Spare sectors are allocated in each disk cylinder—to reduce rotational latency, mappings
of data and parity are swapped to these spare locations as needed. Unlike the architectures
discussed to this point, the location of data and parity can not be statically determined. To
survive power failures, the data and parity mapping tables must be stored in nonvolatile
memory. Loss of mapping information results in the loss of all data in the array.

40

small write

new data
old data > XOR

Y

¢ update record

I EL

XOR

large write
I

|
Ll
—>

Y Y * overwrite record

Figure 2-17 Fault-free write operations in a parity logging disk array

These two algorithms are used to write data to a parity-logging disk array. The
uppermost algorithm is a variation of the small-write algorithm, previously
described in Figure 2-9, and the lower algorithm is a variant of the large-write
algorithm of Figure 2-8. In both cases, the fundamental difference is that parity
changes are stored in an append-only log rather than being written to disk. In the
case of a small write, a record containing changes which must be applied to parity
is placed in the log. In the case of a large write, in which a new value of parity has
been computed, an overwrite record is placed in the log.

Mogi and Masaru propose a logical remapping callgdal stripingthat is essen-
tially a marriage of the floating data and parity architecture, and the write-back caching
techniques previously discussed which coalesce small-write operations into more-efficient
large-write operations [Mogi94]. To survive power failures, the data and parity mapping
tables, as well as the write-back cache, must be stored in nonvolatile memory. To survive
controller failures, this information must be mirrored elsewhere in the array.

Still other directions exist. Seagate has introduced hardware support for RAID oper-
ations into their SCSI and Fibre Channel disk drives by providing XOR and third-party
(disk-to-disk) transfer capabilities that collectively reduce the amount of data traffic
between a central array controller and the disks in some RAID level 5 operations
[Seagate94]. These improvements, which effectively distribute portions of the array con-

41

trol mechanism to the disk drives, lead to a fundamental break with the architectures
described to this point: array control mechanisms are not distributed. Inherent properties
of the SCSI and Fibre Channel standards that weaken the disk array’s fault model have
limited the adoption of this technology. For example, a reset of the SCSI bus requires all
devices, including disk drives, to erase all buffers [ANSI91]. Because bus resets are unpre-
dictable, this may result in the destruction of state information necessary to complete an
operation.

Finally, Cao, Lim, Venkataraman, and Wilkes propose another distributed controller
architectureTickerTAIR designed specifically for RAID level 5 applications [Cao94].
User requests are receiveddrginator nodescentralized control mechanisms that select
the appropriate algorithm to be used and then dispatch disk and parity (XOR) work to
worker nodesEach worker node manages a subset of the disks in the array. Similar to the
Seagate model, worker nodes are relied upon to transfer information directly between
themselves, bypassing the originator node. TickerTAIP did not address the aforemen-
tioned problems with SCSI.

The failure of a worker node leaves the disks it manages inaccessible. Therefore, to
survive the failure of a worker node, codewords must be arranged so that each symbol is
stored on a disk managed by an independent worker node. To survive the failure of an
originator node, which manages the progress of the worker nodes involved in servicing
each user request, its state information is mirrored on other originator nodes. By ensuring
that enough information is duplicated across nodes, TickerTAIP is able to atomically sur-
vive the failure of any node or disk. Power failures are not survived atomically, and the
array therefore suffers from the “write hole” problem that was described in Figure 2-15.

Because there are multiple originator nodes, TickerTAIP does not guarantee isola-
tion (serializability) of user requests. TickerTAIP does permit users to specify an explicit
ordering of requests; however, because users have no notion of the alignment of their
requests to codeword boundaries, this does not avoid the problem of maintaining the con-
sistency of parity in codewords that are simultaneously updated by independent user
requests.

2.5.5 Discussion

Disk drive performance is limited by mechanical devices and its rate of performance
increase does not match that of processors. This section began by introducing the concept
of striping user data across an array of disks to improve performance for a variety of appli-
cation workloads. Relying upon the fact that disks can be treated as erasure channels, |
described two well-known methods of tolerating disk failures through the use of redundant
data. The first, normally called mirroring, relied upon two copies of data. The second
method, based upon parity, reduced the amount of disk capacity required for redundancy,
but required more algorithms for accessing information. | then described RAID, an infor-

42

mal taxonomy of redundant disk arrays, which is based upon the striping and encoding of
user data.

| defined a fault model for disk arrays that requires that array operations are serializ-
able, and durable. | described various techniques for implementing RAID systems which
adhere to this model and assumed that the components used to construct disk arrays were
either inherently failstop, or easily made to behave as failstop devices. | concluded the sec-
tion by reviewing a variety of disk array architectures that have recently been introduced
to optimize for performance, dependability, and cost.

Throughout this section, | have provided examples of the algorithms used to access
information stored in a disk array. An important observation is that despite the fact that the
number of algorithms necessary to properly implement all of the architectures | discussed
may be large, they were composed from a relatively small set of actions, such as disk read,
disk write and XOR. Intuitively, it would seem that given a working disk array, altering its
architecture should simply require changes to mapping and algorithm selection as well as
creating new algorithms from an existing library of actions. Occasionally, as new devices
(write-back cache, parity log, etc.) and encodings (Reed-Solomon) are introduced, pro-
grammers must additionally create the actions that operate upon them.

Another important point, which was only briefly examined here, is the potential dif-
ficulty of guaranteeing that disk arrays maintain the desired operating semantics. The
example | used was the “write hole,” in which the failure of a write operation results in an
unexpected loss of data. An interesting problem that | will later study at length is the
method(s) for correctly sequencing algorithms to ensure appropriate recoverability which
leads to correct operational behavior.

2.6 Conclusions

This chapter was written for three reasons. First, it was intended to educate the
reader on the fundamentals of general fault-tolerant systems and, to this end, the terminol-
ogy, metrics, and procedures necessary to improve the dependability of an arbitrary sys-
tem were described. Second, the chapter reviewed fault-tolerant disk systems, describing a
variety of disk array organizations that are able to tolerate a variety of faults, including the
loss of a disk, without loss of availability. Third, and most importantly, this chapter pro-
vided insight into a variety of array architectures, describing their expected behavior and
their commonality with other array architectures.

This third and final point is the springboard into the remainder of the dissertation. In
Section 2.5.4, | demonstrated that by making simple changes to mapping and encoding,

43

significant changes to the dependability, performance, and cost of a disk array are made.
As these changes are introduced, new algorithms are required for accessing information in
the array. Observing that these algorithms are constructed from a small set of actions that
access the storage devices (disk, cache) and compute check information (parity, Reed-
Solomon), it is reasonable to conclude that it is possible to construct disk arrays in a man-
ner which exploits this commonality, allowing programmers to only worry about the new
mapping, encoding, algorithm specification, and algorithm selection.

In Chapter 3, | investigate the validity of this hypothesis by examining methods for
executing array operations and recovering from the errors encountered during this execu-
tion. | demonstrate that not all of the techniques described in Section 2.3 are well suited
for use in redundant disk arrays, burdening the programmer with far more complexity than
iS necessary.

44

Chapter 3: Mechanizing the Execution of Array Operations

Chapter 2 demonstrated that array architectures are distinguished by mappings,
encodings, and the algorithms that are used to access information stored in the array.
These algorithms are composed from actions, such as disk read, which are common to
many array architectures. This leads to the layered model of disk array software illustrated
in Figure 3-1 and the casual observation that the well-known practice of modular design
should lead to greater software reuse.

This chapter concentrates upon the problems of specifying and executing array algo-
rithms. The chapter begins with a study of the goals that simplify the design and program-
ming of disk array software. Section 3.2 examines the actions which are the building
blocks of array algorithms and defines a consistent interface for all actions. Section 3.3
introduces a novel method of specifying array algorithms as directed graphs in which the
actions are represented by the nodes of the graph and the dependencies between the
actions by its arcs.

The remainder of this chapter concentrates upon the execution of these graphs. I dis-
miss ad hoc techniques of execution which rely upon forward error recovery as unreason-
able, because they do not effectively exploit the commonality between array
architectures—they require that new methods of recovery from errors must be defined and
implemented for each algorithm and array architecture. Instead, | embrace methods for
execution that are rooted in the design of dependable systems which employ transactions
[Bernstein87, Gray93, Lynch94]. Because transactions guarantee programmers atomic
behavior in the face of errors, a general execution mechanism which executes array algo-
rithms without regard for their function or the architecture that they support can be cre-
ated. Furthermore, the approach lends itself to the application of known techniques for
correctness verification and deadlock detection. This execution mechanism, described in
detail in Section 3.5, employs classic undo/no-redo recovery principles to guarantee
atomic operation and a fine-grain (single operation) unit of recovery in a single-controller
architecture. Chapter 4 describes an implementation based upon this execution mecha-
nism. Later, in Chapter 5, this mechanism is revised to accommodate a structured method
for reducing the amount of undo logging, without sacrificing these benefits. Multiple con-
troller architectures, and the redo logging necessary to support controller failover, are not
implemented.

45

user

config. interface

config. algorithm

mgmt. mapping | gglection array algorithms

symbol rsrc.

access | COMPUte | -onirol | Predicates

Figure 3-1 A layered software architecture

This diagram illustrates a basic partitioning of array software. The internal work-
ings of the array (boxes below the bold line) are hidden from the user who is pre-
sented with a simple read/write abstraction, similar to the one presented by
contemporary disk drives. The array software is represented by two layers: the
upper layer represents the configuration management, data mapping and algo-
rithms which distinguish array architectures. The lower layer represents the
actions, common to array architectures, which are used to compose new algo-
rithms.

This layered approach is common to software RAID systems such as those pro-
vided by NT which uses a layered driver architecture [Custer93]. Disk mirroring is
implemented as a layer above the low-level disk drivers, isolating the array algo-
rithms from the physical disk interface.

3.1 Goals of an Ideal Approach

Chapter 2 concluded with the observation that disk array architectures are differenti-
ated by the mappings used to locate data and check information, the devices used to store
this information, the algorithms used to access data, and the criteria for selecting an algo-
rithm. Furthermore, after examining a variety of architectures optimized for either perfor-
mance, reliability, or capacity, it became evident that the number of actions necessary to
construct array algorithms for these architectures was quite small. Intuitively, it would
seem that because almost all array architectures are implemented from a common set of
actions such as accessing symbols (e.g. disk read and write), computing check information

46

(e.g. XOR, Reed-Solomon), and manipulating resources (e.g. allocate), it would be possi-
ble to create an infrastructure for implementing array architectures which:

* limits the amount of code changes required to extend existing code to sup-
port a new array architecture

» simplifies error recovery by creating a process which guarantees that code-
words are updated atomically, reducing the need for hand analysis

» does not introduce overhead which results in either significant resource
consumption or performance degradation

» enables verification, early in the development cycle, of the ability of array
algorithms to correctly tolerate faults

The remainder of this dissertation is devoted to the pursuit of these four ideals.
Chapter 2 demonstrated the need to extend array architectures to explore distinct cost, per-
formance, and dependability solutions. Minimizing the amount of code changes required
to perform these extensions has a significant impact on production costs and the band-
width of the development organization. Amortizing the cost of writing code for use in
redundant array controllers across an entire development group (designers, coders, and
testers), a typical programmer can develop 9,300 lines of code (LOC) per year at a cost of
$18.50 per LOC [Potochnik96]. It is not uncommon for a fully-featured array controller
which supports multiple RAID levels to have 250,000 lines of code. Rewriting just 30% (a
conservative estimate) of these lines would require over eight man-years at a cost of
$1,387,500.

Simply reducing the cost of extending code to support new array architectures is an
incomplete goal. As described in Section 2.5.3, programmers must ensure that write oper-
ations which fail will contain their damage to the data symbols being written. When a
write operation fails in the middle of execution, the programmer must therefore ensure
that the integrity of the codeword is maintained. Failure to do this results in the problem
commonly known as therite hole in which data in the codeword, which was not a part
of the write operation, is permanently lost. This problem was discussed in detail in
Figure 2-15. The burden of maintaining codeword integrity can be greatly simplified if a
system can be devised to ensure atomic codeword updates. This would eliminate the task
of predicting and processing all incomplete codeword updates.

The cost of this system must be held in check. Performance is generally important
and the resources used to construct arrays are often precious. Software arrays, which pro-
vide little more than tolerance of disk failures, are generally not permitted to increase the
cost over today’s 20¢ per MB cost of commodity disk drives. The cost of array subsystems
that tolerate controller, fan, cabling, and power failures has fallen below $1 per MB and is
expected to reach 11¢ per MB by the end of the decade for some applications [IDC95].
Nonvolatile memory devices, which are capable of surviving loss of power without cor-
rupting data, currently cost as much as $20 for an 32KB part. Exotic solutions which

a7

employ large amounts of expensive resources such as nonvolatile memory may not be
practical. Therefore, a general solution must be sensitive to both performance as well as
resource consumption.

Finally, the process of verifying code as correct, regardless of the number of lines
involved, is an important function. As with any type of development process, the earlier
design defects are detected, the cheaper they are to repair, both in terms of cost and time.
Therefore, an ideal approach to developing array software will be amenable to correctness
verification during the early phases of implementation, rather than deferring all verifica-
tion to the lab-testing of prototypes.

3.2 Isolating Action-Specific Recovery

The obvious and best-known method for minimizing the amount of code changes
required to extend software is to create modular code which isolates functions that are
known to change orthogonally [Parnas72]. In Figure 3-1, | described the boundaries
between the modules which are changed to produce new disk array architectures. In this
section, | focus upon the actions which are used to compose array operations. Specifically,
| define a general interface which isolates recoverable errors detected during the execution
of these actions from the layer responsible for executing array algorithms, hiding the inter-
nal details of the actions from the array architect. By requiring that all action-specific
recovery be performed by the actions themselves, an infrastructure which allows a variety
of array architectures to be implemented without regard for the manner in which actions
are implemented becomes possible.

3.2.1 Creating Pass/Fail Actions

Irrespective of the type of an action, it is possible (and necessary) to define a set of
rules by which all actions must abide. By knowing that actions behave in a common man-
ner, the programmer can generalize the infrastructure used to execute array operations.
The first such rule is designed to isolate action-specific recovery from the process of
recovering from failed array algorithms, enabling programmers to create array algorithms
from a library of actions, without regard for the internal details of the actions. This is
accomplished by abstracting actions with a wrapper that is responsible for recovering from
all recoverable errors encountered during the execution of an action. With such a wrapper,
these actions can be viewed by the array architect as pass/fail building blocks in which
“pass” implies successful completion and “fail” implies that the action can not be com-
pleted and the failed components have been removed from service [Courtright94,

48

Courtright96a]. Actions are assumed to exhaust all known methods of recovering from
errors and therefore actions that fail are not retried.

Recall from Section 2.3 that the process of tolerating faults requires six steps: detec-
tion, diagnosis, isolation, recovery, reconfiguration, and repair. For all errors, actions are
required to detect, diagnose, and isolate all faults because these steps require information
which is local to the device. Additionally, for all recoverable errors, actions are required to
perform recovery, reconfiguration, and repair.

Because actions which fail remove devices from service, and because invariants may
exist across multiple devices to provide fault tolerance, actions must maintain the indepen-
dence of faults within a system. For instance, if an action is defined to update two symbols
in a codeword and one of the symbols fails, the action should not arbitrarily fail the second
symbol.

Actions may also (and often do) operate upon symbols in multiple codewords, but
must continue to preserve the independence of faults—if a symbol in one codeword is lost,
the action should not arbitrarily fail the symbols in the other codewords it is operating
upon. For example, if the failure of a single sector is detected during a multi-sector disk
read, the action performing the read should only mark the failed sector as “bad.”

One of the four ideals described in Section 3.1 was the elimination of coping with
incomplete codeword updates by creating a process for executing array algorithms atomi-
cally. If array algorithms are to atomically modify codewords, the actions from which they
are constructed must be known to execute atomically. This follows from the same notion
used in atomic commit protocols in transaction systems: transactions can be made to oper-
ate atomically if the actions from which they are composed are themselves atomic
[Bernstein87, Lynch94].

To summarize, there are four rules for creating actions:

1. Actions are responsible for detection, diagnosis, and isolation of all faults
encountered during their execution.

2. Actions are responsible for recovery, reconfiguration, and repair of all tolerable
faults detected during their execution.

3. Actions preserve the independence of faults within an array.

4. Actions are atomic.

49

3.2.2 Actions Commonly Used in Redundant Disk Array Algorithms

Four fundamental types of actions are necessary to implement the disk array algo-
rithms described in Chapter 2: symbol access, resource manipulation, computation, and
predicates. Table 3-1 presents examples of specific actions for each of these four types.
This table is not meant to be a comprehensive list of all actions required to implement
known array algorithms. Furthermore, because the study of array architectures is ongoing,
it is likely that new actions will be developed in the future. For instance, new actions are
necessary when new encodings (e.g. the Reed-Solomon encoding used in RAID level 6)
are employed to protect data. Similarly, new actions are required if a new device type (e.g.
the append-only log used in parity logging) is added to store symbols. Because the rules
presented in Section 3.2.1 apply equally to all instances and types of actions, the fact that
this table is incomplete is unimportant.

The remainder of this section describes the four basic types of actions. Each of these
types is distinguished by data dependencies and state transformations. The data dependen-
cies represent a dependence upon input parameters that are necessary for the action to
begin execution. The state invariants represent the transformation the actions make to the
system. Later, in discussions of the execution of array algorithms composed from these
types of actions, this information will be used to establish constraints for the construction
of array algorithms as well as to reason about the correctness of the error recovery proce-
dures in mechanisms that execute these graphs.

Table 3-1 Actions common to most disk array algorithms

Type Name Function
symbol access Rd copy data from disk to buffer
symbol access Wr copy data from buffer to disk
symbol access LogUpd append a “parity update” record
symbol access LogOvr append a “parity overwrite” record
rsrc. manipulation | MemA acquire a buffer
rsrc. manipulation | MemD release a buffer
rsrc. manipulation | Lock acquire a lock
rsrc. manipulation | Unlock release a lock
computation XOR EVENODD decode (XOR variant)
computation EO EVENODD encode (XOR variant)
computation EO EVENODD decode (XOR variant)
computation Q Reed-Solomon encode
computation Q Reed-Solomon decode
predicate Probe if hit, return shared lock and pointer

50

3.2.2.1 Symbol Access

Actions are necessary to load and store symbols between memory and devices such
as disk drives, append-only logs, and caches. Actions that read symbols are assumed to
copy them from the device to an uninitialized buffer. Conversely, actions that write sym-
bols copy them from an initialized buffer to a storage device. More formally, these actions
can be defined in terms of the state invariants which exist prior to, during, and after their
execution. For example, prior to the execution of a read action the following invariants
must be true:

» The region of the storage device (e.g., an offset/length pair) to be accessed
must be valid.

» A buffer must be supplied whose length is greater than or equal to the
length of the extent to be read.

* The contents of the extent to be read are presumed to contain information
from the previous write action to that extent.

* The contents of the buffer are assumed to be unknown.

Therefore, read actions have a dependence upon a valid address and buffer. Any algorithm
that uses read actions must ensure that these dependencies have been satisfied prior to exe-
cuting the read action.

During the execution of the read action, the contents of the storage device are
unchanged and the contents of the buffer may be in either the original (uninitialized) state,
a new (same as the extent of the storage device being read) state, or some arbitrary combi-
nation of these two. Read actions that fail will leave the buffer in one of these three states
but without an indication of which one—therefore, it is only safe to assume that read
actions that fail will leave the buffer in an uninitialized state. Once a read action com-
pletes, the extent being read is left unchanged and the contents of the buffer are identical
to the extent being read from the storage device. This behavior is consistent with tradi-
tional disk semantics and the atomicity requirement of Section 3.2.1.

Write actions have similar dependencies and invariants. Prior to execution, write
actions are dependent upon a valid device address and an initialized buffer. The amount of
data in the buffer that is to be written must be of equal length to the extent to be written on
the storage device. Once execution begins, the write action begins to copy information
from the buffer to the storage device. The order that the information is copied is arbitrary;
however, the information is copied in units of a predetermined length, such as a disk sec-
tor. If a write action fails, the buffer it is copying data from is left unchanged. Each unit of
the storage device being modified is left in one of three states: unchanged, identical to the
corresponding unit of the buffer, or inaccessible. Once a unit becomes inaccessible, it can
not be returned to service without an explicit repair operation. Because storage devices are
assumed to offer atomic operation on a predefined unit of access, write actions to these

51

devices can be made atomic—if an action fails, it is conceivable that recovery code could
be created to transition all of the previously-written units to their original states.

If the write action completes successfully, each unit of the storage device being writ-
ten is identical to the corresponding unit in the buffer and the buffer is unchanged from its
original value.

3.2.2.2 Resource Manipulation

Resource managers, whether they control locks, buffers, or some other resource,
provide two basic actions: allocation and deallocation. Actions that perform some form of
allocation must either return the requested resource or fail. Immediate return from an
action is not necessary, so it is permissible to wait for a resource to become available.

As with actions that access symbols, actions that manipulate resources can be char-
acterized by their dependencies and state invariants. Prior to execution of an action that
allocates a resource, a valid resource (one that is known to exist in the system) must be
known and the resource in question must be in either an “acquired” or “available” state.
During execution, the allocation action waits for the resource to enter an “available” state.
When the action completes, the resource is marked as “acquired” with the owner being the
process that invoked the action.

Actions that perform a release begin with a valid resource that has been acquired by
the process which invoked the release action. During execution, the action atomically
modifies the state of the resource from “acquired” to “available.” At the conclusion of the
release action, the state of the resource is marked as “available.”

3.2.2.3 Computation

Actions that perform computation require one or more buffers which contain the
information to be operated upon, a buffer in which to place the result in (may be the same
as one of the input buffers), and optionally, a parameter that specifies the type of computa-
tion to be performed. The initial states of the buffers are a function of the type of computa-
tion to be performed—generally, the buffers that contain the information to be operated
upon are assumed to be initialized and the output buffer is assumed to be uninitialized. If
the computation completes successfully, the output buffer will be initialized to its intended
value and the input buffers may be in either their original or some predetermined state. For
example, the computation may be designed to overwrite the result into one of the input
buffers.

Similar to actions that write symbols, actions that perform computations are permit-
ted to generate results in an arbitrary order, but are assumed to atomically perform that
computation on units of information of a predetermined size. Therefore, computations that
fail will leave each unit of the result buffer in either its original or final state.

52

3.2.2.4 Predicates

Unlike the actions previously described which modify the value of information
(buffer contents, storage device contents, or resource states), predicate actions produce a
result that is used to determine the flow of execution in the algorithm of which they are a
part of. To do this, predicate actions begin with a set of information that is used to make a
decision, the type of which is specific to each type of predicate action (e.g., two integers
for use in an equivalence test). The predicate also requires a register, assumed to be unini-
tialized, to record the result of its decision. When the predicate completes execution, the
inputs are left unchanged and the result register is in one of two or more predetermined
states. Predicate actions are required to execute atomically.

3.3 Representing Array Operations as Flow Graphs

Creating storage operations from a library of functions is a technique which has
been in use for more than twenty years. The best-known example of thishsitime|
programapproach used in the IBM System/370 architecture [Brown72]. At the time of its
introduction, much of the internal workings of a disk drive were exposed to the system,
requiring external control of arm positioning, sector searching, and data transfer. Using a
linear sequence of commands, channel programs isolated these details from users by pro-
viding an abstract interface which was closer to that found in today’s SCSI drives
[ANSIO1].

Similar methods for abstracting the details of disk array operations were recently
proposed in the distributed redundant disk array architecture called TickerTAIP [Ca094].
In TickerTAIP, the work required to maintain valid data encodings is performeaiiy
erswhich are distributed throughout the array. To simplify the management of simulta-
neous actions occurring across the array, TickerTAIP uses a centralized table in which
each entry contains a list of actions for a worker to execute. Once an array operation is ini-
tiated, each worker is responsible for sequencing its own activities.

3.3.1 Flow Graphs

Instead of using a table to represent an array operation, | propose thélose of
graphswhich provide a system with enough information to correctly sequence instruc-
tions without requiring an understanding of their collective effect [Aho88, Courtright94].
As Figure 3-2 illustrates, flow graphs are traditionally used to illustrate program control
flow betweerbasic blockssequences of statements which are: single entry, single exit,

53

=2%*i
|fa>xgot083

Bl
else goto B2
B2 x X-a > t=x
X=a B3
\ a=t
=h[2 * a]
= h[a]

Figure 3-2 Flow graphs model program control flow

In this illustration, arcs connect the basic blocB4{B4) of a program which fol-
low each other in some execution sequence. In this exampleBd/ttampletes,
eitherB2 or B3 will be executed.

and unconditional in their execution. The nodes of a flow graph are the basic blocks of a
program and the arcs represent the flow of control through the program. In this example,
control flows conditionally from blocB1 to blockB2. Block B4 is executed when either

B2 or B3 completes.

When using flow graphs to model RAID operations, the actions described in
Table 3-1 are represented as distinct nodes of a graph. Figure 3-3 illustrates a small-write
algorithm represented as a flow graph. Because each action is represented by a single
node, the properties of a node (e.g. atomic failure) are inherited from the defining proper-
ties of the actions.

Notice that the nodes in the graph of Figure 3-3 do not convey the context (e.g. “read
old parity”) of each action. This is because the context is known only by the designer of
the graph. Section 3.5.4 capitalizes upon this independence of context to permit the con-
struction of a general execution mechanism which is independent of array architecture.

The execution of actions within an array operation is constrained by the presence of
dependencies (control and data) which are represented by the directed arcs that connect
the nodes of the flow graph. An arc is drawn from a parent node to a child node if execu-
tion of the child is dependent upon the parent node. Because the type of dependence repre-
sented by the arcs will not be used to control execution, the arcs are left unlabeled.
Furthermore, a single arc may represent the presence of one or more data or control
dependencies.

54

Figure 3-3 RAID level 4/5 small-write graph

This illustration presents the small-write operation, first described in Figure 2-9
and now represented as a flow graph. The nodes of the graph are pass/fail actions
and the arcs represent the presence of control or data dependencies.

In this graph, thdRd-XOR-Wr chain on the far right performs the read-modify-
write of parity. TheRd-Wr chains represent the reading of old data and the over-
writing of new data. The fact that parity is computed from the old data is repre-
sented by the presence of Re-XOR arcs (true data dependencies). TR&Wr
arcs represent anti (read after write) data dependenciesLdble andUnlock

nodes ensure that the operation runs in isolation.

A control dependencexists between two actions when enabling the execution of
the child is conditional upon the completion of the parent. For example, the arc between
theLock andMemA nodes in Figure 3-3 represents a control dependence from the lock-
ing hierarchy which requires that parity locks be acquired prior to the acquisition of buff-
ers. Adata dependenaexists between actions which share data in some wayeAlata
dependencealso called aead-after-write(RAW) dependence, exists when an action pro-
duces (writes) a value consumed (read) by another. The arcs frétd tiales to the
XOR node are all true data dependencies. Converselntadata dependencalso
called awrite-after-read(WAR) dependence, exists when an action overwrites a value pre-

55

viously used (read) by an independent action. The arcs froRdthe theWr actions are
examples of anti dependencies. Finallytput dependencigalso calledvrite-after-write

(WAW) dependencies, occur between actions that overwrite the same object. The presence
of the output dependence guarantees a predictable ordering of the overwrite actions.

Unlike table-based representations, the visual information supplied in this represen-
tation provides an immediate understanding of the internal sequencing of actions which
compose an operation. Appendix A presents the flow graphs for algorithms required to
support RAID levels 0, 1, 3, 4, 5, and 6 as well as parity declustering, chained decluster-
ing, interleaved declustering, two-dimensional parity, and EVENODD architectures.
Included in this discussion is a description of each graph’s structure as well as when the
graph should be used.

3.3.2 Predicate Nodes

Normally, all nodes in a graph are executed as soon as their parents complete. How-
ever, it is possible to create a graph in which some nodes are never executed. This is
accomplished through the use of predicate nodgsedicate noddas two or more chil-
dren and, after completion, selectively enables one or more of the children for execution.

The only additional structural constraint required to insert a predicate node into a
graph is that any node which is a child of a predicate node may have no other parents than
the predicate node. Also, the arcs which connect the predicate node to its children are
labeled to indicate which branch will be taken given the result of the predicate.

3.3.3 Simplifying Constraints

To simplify execution, | require that the graphs be acyclic. | believe this is a reason-
able requirement because | am aware of no array algorithms which require loops. Elimi-
nating cycles does not eliminate predicate nodes and conditional execution. In the event
that the array controller receives a request which is too large to process as a single opera-
tion, the request can be decomposed and implemented as a collection of smaller opera-
tions.

Additionally, I require that all graphs am@oted graphsmeaning that all graphs
begin with a singleoot or source nodeThe source node has the property that it has no
parents. Similarly, | require the presence of a siaglke nodea node which has no chil-
dren. If a graph does not contain a single source or sink ndbl2Pgno operation) node
can be inserted to create one. Adding an éX@®& (no operation) node to create a single
source or sink has no effect upon the array algorithm represented by the graph.

56

Figure 3-4 Eliminating redundant arcs

Arcs represent the presence of dependencies (control or data) and are used to con-
strain execution. If the arcs connect control-equivalent sequences of nodes, the
arcs are treated equally, implying that redundant arcs can be eliminated. In this
example, ar@-E is eliminated because of chaiAsB-D-E andA-C-E. However,

if node A was a predicate that enabled eitheB-D-E, A-C-E, or A-E, then this
optimization would not be possible.

3.3.4 Graph Optimization

With the exception of arcs which connect a predicate node to its children, the type of
dependence represented by each arc is unimportant to the execution of the graph. There-
fore, arcs which have the same source and sink nodes are considered to be redundant and
can be represented as a single arc. Furthermore, as Figure 3-4 illustrates, any control-
equivalent arc whose source and sink nodes are identical to those of a sequence of con-
nected arcs may also be removed.

Finally, function-preserving transformations used by compilers to elimilezte
codeandcommon subexpressiooan be employed to optimize a flow graph [Aho88].
Common subexpressions, such as redundant store actions, may appear if multiple graphs
have been merged to form a single graph. Eliminating common subexpressions can pro-
duce dead code, a chain of nodes which is not connected to the sink node of the graph.
Figure 3-5 demonstrates the removal of a common subexpression and resulting dead code.
Dead code is eliminated by starting at the last node in the branch that has no children and
walking toward the source node, removing all nodes which have no true data dependencies
to their children.

57

v
!

Figure 3-5(a): Original Flow Graph Figure 3-5(b): Common Subexpression
Removed

Figure 3-5(c): Dead Code Eliminated

Figure 3-5 Function-preserving transformations

This example demonstrates the removal of a common subexpression (redundant
stores) and the subsequent elimination of the resulting dead code. Figure 3-5(a)
shows a code fragment which contaiig4). For reasons of space and simplicity,
the dashed arcs represent dependencies to nodes not represented in this illustra-
tion. In Figure 3-5(b), the duplicat/r(4) action has been eliminated, creating
dead code in the patiOP-RD(4)-XOR which has no children. In Figure 3-5(c),

the dead code has been eliminated.

58

3.3.5 Automating Correctness Verification

Flow graphs naturally model array operations in a form which is amenable to auto-
mated correctness verification. For example, Vaziri, Lynch, and Wing havenasied
checkingto validate the correctness of some of the graphs presented in Appendix A
[Vaziri96]. This technique models an algorithm as a finite state machine and then exercises
all possible orderings of the machine, verifying that the program invariants are satisfied at
each step [Clarke82, Clarke94]. Correctness verification of flow graphs therefore requires
the definition of the system invariants (e.g. even-parity codewords), the state changes
imposed by each action in an operation, and the rules which govern graph execution.

During the course of their study, error in the design of a RAID level 6 small-write
algorithm (taken from [Gibson95]) was uncovered. This error (a write hole) would have
led to data corruption in specific execution sequences.

3.3.6 Discussion

This section described the rules for modeling array algorithms as flow graphs given
a set of actions and their interdependencies. Included in this description were the manda-
tory structural constraints as well as some suggestions for simplifying the structure of
graphs and reducing the amount of work within a graph. Additionally, the design of flow
graphs can be exhaustively tested during the design phase, which should lead to reduced
development costs.

Given a small library of actions which access symbols, manipulate resources, com-
pute check information, and implement basic predicates, flow graphs can be used to con-
struct arbitrary array algorithms. As a demonstration, Appendix A presented twenty two
distinct flow graphs which are used in twelve disk array architectures.

In the remainder of this chapter, | describe the process of executing graphs. This
process includes recovery from node (action) failures. In Section 3.4, | dismiss execution
based upon forward error recovery because the constraints necessary to design graphs that
are known to be recoverable are not obvious and a significant amount of architecture-spe-
cific error-recovery code is required. In Section 3.5, | describe a mechanism for executing
graphs which guarantees that each graph is executed atomically and imposes no structural
constraints upon the graphs. This guarantee is made by requiring that the effects of every
action may be undone at any point prior to the completion of the algorithm. Later, in
Chapter 5, | relax this requirement by inserting a barrier into each graph and only require
that actions executed prior to the barrier be undoable.

59

allocate memory

read old parity error induces algorithm change
read-old-data »mark disk as “failed”

XOR: new data, old data, parity discard old parity

write new data allocate additional memory
write new parity read remaining data symbols
deallocate resources XOR: new data, remaining data

write new parity
deallocate resources

Figure 3-6 Forward error recovery

In this example, the small-write algorithm is scheduled to perform a write opera-
tion. The operation begins by allocating a buffer and scheduling reads of old data
and old parity. When the read of old data fails, the read-modify-write of parity can
not be performed because it relies upon the old value of data. Therefore, the array
controller allocates additional memory, reads the remaining data symbols, and
computes new parity as the XOR of the data symbols.

3.4 Execution Based Upon Forward Error Recovery is Unreasonable

Based upon conversations with representatives of six vendors who in 1995 were col-
lectively responsible for over one-half of the world-wide disk array revenue [Disk96a], it
is my suspicion that the majority of the code used to implement redundant disk array con-
trol mechanisms is currently based upon some form of forward error recovery. These same
sources inform me that 50-60% of the software in disk array control mechanisms is
devoted to error recovery. In a recent articl€amputer Friedman reports this fraction to
be as high as 90% [Friedman96]. The unexpectedly-large size of this fraction is a direct
consequence of the fact that any system which employs forward error recovery is required
to provide a unique recovery procedure for each distinct error scenario.

In this section, | demonstrate that the burden of this approach upon the programmer,
who is required to have an intimate understanding of an array architecture in order to guar-
antee correct operation, is significant. For instance, array operations may need to be con-
strained in non-obvious ways to avoid thete hole a failure which results in the
unexpected loss of user data. This leads to the secondary problem of validating array soft-
ware as correct—exhaustive testing is necessary to ensure that each error scenario has
been identified and a correct recovery procedure has been implemented.

When an error is encountered during the execution of an operation in a disk array
based upon forward error recovery, the array control mechanism will attempt to complete
the operation by altering the algorithm currently being executed. As an example,

Figure 3-6 illustrates a write operation which is initially implemented using the small-

60

write algorithm. When the operation begins, all disks in the array are presumed to be with-
out fault. As the operation attempts to read the old values of data and parity, the disk con-
taining old data is discovered to be bad, resulting in the failure of the read of old data and
the subsequent inability to compute new parity. Parity is computed by altering the algo-
rithm: the remaining data symbols in the codeword are read and new parity is computed as
the XOR of all data symbols in the codeword.

Clearly, the corrective procedure necessary to recover from an error is a function of
the type of error and the context in which it occurred. For instance, in the example of
Figure 3-6, if the read of old parity (instead of old data) had failed, the algorithm would be
changed to simply write the new data to disk and ignore parity.

3.4.1 Correct Design is Not Obvious

Providing recovery from all error scenarios is not as trivial as the example of
Figure 3-6. In some instances, it is possible to construct algorithms which generate valid
codewords but leave the array in a state from which it can not recover if execution is inter-
rupted at certain points in time. That is, array algorithms may need to be constrained in
non-obvious ways to avoid the write hole.

As an example, consider an operation using the reconstruct-write algorithm. In this
example, illustrated in Figure 3-7, user daga D4, andD,, are to be written to an array in
which the disks are initially presumed to be free from faults. New parity is computed by
readingD3 and XOR’ing its contents with the new valuegf D;, andD,. This algo-

rithm clearly must complete the readxf and compute new parity before a new value of
P can be written to disk. What is not obvious is that the re&x oiust be completed
before the writes dDg, D4, andD, may commence.

3.4.2 Exhaustive Testing is Required

Figure 3-7 provides a classic example of the subtle way in which operations which
appear to be implemented correctly can lead to data corruption. In fact, in our early imple-
mentations of array software, we initially overlooked this very example. In addition to its
being non-obvious, it was difficult to detect during testing, even when the test was
designed specifically to exercise this algorithm. The unconstrained algorithm behaved cor-
rectly in fault-free as well as many degraded tests. Only after repeated testing was the tim-
ing just right so that the scenario described in Figure 3-7 was reached. Despite the fact that
the error was rare, it resulted in the unexpected loss of data.

Verifying code constructed in this fashion requires exhaustive testing—knowing that
the actions which compose an array algorithm are implemented correctly is not enough to

61

Do Dy D, D3 P

initial state: @ @
DR
final state: - -

s (R

Figure 3-7 Constraining execution to ensure forward recovery

In this example, new dat@,(1, 1) is to be written to disks containing the symbols
Do, D1, andD,. The symbadD3, whose value is currentlyl? should not be

affected by this operation. Because all of the disks in the array are presumed to be
without fault and over one-half of the symbols in the codeword are to be modified,
the reconstruct-write algorithm of Figure 2-10 is selected to carry-out the write
operation. In this exampl®, D1, andD, have been written to disk and the read

of D3 has failed due to a catastrophic disk failure, meaning fhe&n not be
updated. The value @f3 has been corrupted because the current vallrk ddes

not reflect the changes By, D1, andD,. Because the old valuesdf, D;, and

D, are not known, the codeword can not be restored to its original state and the
corruption is therefore permanent.

ensure that the algorithm itself is implemented correctly. Relying upon finding bugs late in
the development cycle, rather than at design time, is expensive. Boehm, in h&olfteok

ware Engineering Economicsstimates the cost of finding a bug during the test phases of
a project to be four to ten times the cost of finding it during the design phase [Boehm81].

3.4.3 Recovery Code is Architecture-Specific

In the beginning of this section, | presented estimates which indicated that the
majority of the array control software is devoted to error recovery procedures. This is
likely due to the fact that implementations based upon forward error recovery require a
case-by-case treatment of each error. Unfortunately, extending an existing implementation
by adding new array algorithms will require the addition of new error recovery code
because existing error recovery code can not be reused.

62

3.5 Simplifying Execution Through Mechanization

Once action-specific error recovery is removed from the structure of the graph, it is
possible to define and implement a general execution mechanism which automates recov-
ery from errors due to failed actions [Courtright94, Courtright96b]. This mechanism,
together with a library of actions, will allow rapid implementation of array operations.

This section introduces such a mechanism which employs an undo/no-redo recovery
scheme, similar to the approach used in the System R recovery manager [Gray81]. In this
approach, if an action fails at any time during the execution of a graph, the execution
mechanism will automatically undo the effects of all previously completed actions. The
information necessary to perform the undo is stored in a log as the graph is executed and
deleted from the log when the graph completes execution.

To guarantee correct operation, the approach described in this section assumes that
all actions are both atomic and undoable. These requirements are later relaxed in
Chapter 5, allowing elimination of much of the performance and storage overhead
required to achieve undoable actions. Finally, to tolerate crashes or other faults which
interrupt execution, the undo functions must be idempotent. Crash recovery is described in
Section 3.6.2.

3.5.1 Undoing Completed Actions

Removing the effects of failed graphs requires the ability to undo previously com-
pleted actions. This is accomplished using the undo log, previously described in
Section 2.3.3. By guaranteeing that enough information exists to undo all completed
actions in an graph, the system is capable of providing recovery without knowledge of the
context in which the actions were used.

The information necessary to perform this recovery is recorded in the undo log as
eitherlogical (e.g. “computed new parity”) @hysical(e.g. “wrote the following informa-
tion to disk: 0110015”) values. Generally, logical logging consumes less space and may

even require less work than creating and recording physical log entries.
The actions described in this section, the actions used to undo them, and the data

stored in the undo log, are summarized in Table 3-2. The remaining subsections briefly
explain how common array actions can be undone.

63

3.5.1.1 Symbol Access

Assuming non-destructive read actions, undoing a read action is trivial: do nothing.
This simple procedure is effective because the buffer that symbols are copied into by read
actions is presumed to be uninitialized and there is no initial value to be restored.

Undoing a disk write is equally straightforward, but more expensive in terms of per-
formance. A disk write is undone by restoring the sectors which were overwritten with
their original data. Therefore, a copy of this data must be placed in the undo log. Unfortu-
nately, to generate the copy, the original data must first be read from disk. This minimally
requires an additional full disk rotation (8.4 ms on a 7200 rpm drive). Because disk utiliza-
tion is a precious resource in the array, it is important to use the disks in an efficient man-
ner. Therefore, it is desirable to eliminate the requirement that disk writes are undoable,
something | examine in Chapter 5.

Parity logging algorithms require two actioagpend parity updatandappend
parity overwrite Because the log is defined to be append only, undoing an append requires
appending a record which undoes the previously appended record at a later time when the
log is processed in FIFO order.

Undoing the parity update can be undone by simply appending another copy of the
same record. This second record will cancel the first record in the same manner described
in EQ 3-2 (transition logging). Undoing a parity overwrite is a bit trickier. The presence of
a parity overwrite record in the parity log causes all previous parity information, whether
it be stored on disk or in the parity log, to be ignored. Undoing a parity overwrite record
could be performed by appending an additional parity overwrite record which contains the

Table 3-2 Methods for undoing actions

Action Undone By Log Data
Rd Copy none
Wr Wr previous disk contents
MemA MemD buffer pointer and size
MemD MemA buffer size
Lock Unlock lock name
Unlock Lock lock name
XOR XOR none
Q Q none
Q Q none
LogUpd LogUpd buffer contents or buffer pointer, parity address
LogOvr Loginv parity address

64

original value of parity. Because this previous value of parity is not known without scan-
ning the entire parity log, creating an undo record is prohibitively expensive.

Alternatively, a third append actioappend parity invalidatecould be defined to
invalidate the previous overwrite record in the log. To guarantee that the correct record is
undone, an operation must lock the parity log, allowing no other operations to append
records, until it completes.

3.5.1.2 Computation

Similar to actions which read symbols from a device, the undo of actions which can
compute new symbols is trivial if the result of the computation is written to an uninitial-
ized buffer. If, however, the result overwrites one of the parameters provided to the action
performing the computation, the original contents of that buffer must be restored. This can
be accomplished by logging either physical or logical information, depending upon the
type of action to be undone. For example, the XOR function is self-inverting, meaning that
XOR actions undo themselves. If an action XOR’d the contents of three buffers and stored
the result by overwriting the contents of one of the three:

B2new = B20riginal u B1 u BO (EQ 3-1)

the action could be undone either by restoring the original physical data (copy original
data intoB,) or by recomputing the original data:

B20rigina| = B2newD Bl 0 B0 (EQ 3-2)

This type of logging, using a self-inverting action to undo itself, is referred to by Gray as
transition loggingand can complicate crash recovery procedures which assume that
actions are idempotent [Gray93].

3.5.1.3 Resource Manipulation
Allocation of resources is easily undone by simply deallocating them. Because
resource allocation actions are generally followed by deallocation actions in the same

graph, the information required to perform the deallocation is available to be entered into
the undo log without additional work.

65

Ol: RLl — RL2 — RL3 — RL4 - failure

Recovery Manager: As-Asz-AL -A)
02: ALl - AL2 — AL3 - AL4
time

-

Figure 3-8 Deadlock resulting from out-of-order allocation during recovery

OperationO, releases the locKs;, L,, L3, andL, and later fails, prior to comple-
tion. This failure causes the recovery manger to work backward through the undo
log, undoing the effects of each action in LIFO fashion. In this example, the
“release” actions are undone using “allocate” actions. At the same time, an inde-
pendent operatior,, attempts to allocate locks throughL,. Because the

recovery manager has acquired the locks out-of-order, deadlock results.

Similarly, undoing a deallocation requires the (re)allocation of the resource. How-
ever, when using allocation to undo resource deallocation actions, great care must be taken
to ensure that the locking hierarchy is not violated. Out-of-order resource allocation can
result in deadlock, as illustrated in the example of Figure 3-8.

Therefore, a general recovery scheme which undoes the effects of a sequence of
actions must guarantee that the allocation of resources strictly obeys the locking hierarchy.
One very simple method of avoiding deadlock during rollback is to empldyAfelock-
ing protocol This protocol requires the sequential release of resources in the reverse order
in which they were acquired, ensuring the preservation of the locking hierarchy during
rollback [Gray93].

Another very simple solution is theo-phase lockingrotocol that requires that
once a graph releases a lock, it cannot acquire any other locks. Applying this to our imme-
diate problem, in which the undo process can begin at any point in the graph, requires that
no resources are released until the operation is complete.

3.5.1.4 Predicates
The by product of a predicate action is information which determines the flow of

execution. Predicates do not directly affect symbol values or buffers and therefore leave no
visible state to be undone.

66

3.5.2 Node States and Transitions

Each node in a graph has three fields, summarized in Tabléd3a8tion undo
actionandstate Similar to the DO and UNDO programs described in Figure 2-2 on
page 17, thelo actionis used during normal execution and timelo actions used during
error recovery. Each of these fields contains the name and parameters of an action.

Table 3-3 Node fields

Node Field Description
do action function executed during normal processing
undo action function which removes the effects of the do action
state current state of the node

67

Each node in a graph may be in one of the seven states summarized in Table 3-4.
The allowable transitions between these states are illustrated in Figure 3-9. When a graph
is initially submitted for execution, all nodes are in et state, meaning that all of the
actions represented by the graph are in their pre-execution states as defined in
Section 3.2.2. A node enters thidp state if all of its parents are in thkip state or if its
parent is a predicate node that has determined that the branch which contains the node will
not be executed. Once entered, a node will never leagkifhstate. The actions corre-
sponding to nodes in thekip state are in their pre-execution states.

Nodes in thdired state represent actions that have begun, but have not completed,
execution of their corresponding actions. A node enterfirdtkstate if at least one of its
parents is in thpass state and the remainder of its parents are in eithesktheor pass
states. When a node entersfined state, itglo actionis executed. The node remains in
thefired state until thelo actioncompletes. The node then enters eitheptss or fail
state, depending upon the outcome of this execution.

If a node fails, the graph must fail atomically. This requires that the effects of previ-
ously-completed nodes be undone. When a node is to be undone, it first enezethe
ery state which indicates that the node’slo actionmay begin execution. Only nodes
that have successfully completed execution enteettwrery state. Once thendo action
completes, the node enters tivelone state, which signifies that the state changes made
by the execution of thal) action associated with that node have been undone. This pro-
cess of failing a graph atomically is described in further detail in Section 3.5.4.

3.5.3 Sequencing a Graph

Execution of a graph begins with tbeurce(head) node and completes with #irek
(tail) node. This direction of execution, from source to sink, is referredftyvasrd exe-
cutionthroughout the remainder of this dissertation. Assuming that the graph does not
contain any predicate nodes and that all nodes complete successfully, this process contin-

Table 3-4 Node states

Node State Description
wait blocked, waiting on parents to complete
fired execution of do action in progress
pass execution of do action completed successfully
fail execution of do action failed
skip node will not be executed
recovery execution of undo action in progress
undone previously executed node has since been undone

68

node ready to be executed branch not taken

execution failed execution successful

execute node’s undo action

node undo complete

Figure 3-9 Node state transitions

All nodes in a graph begin in theait state. When a graph successfully completes
execution, all nodes are in either thass or skip states. Theecovery and

undone states, described later in Section 3.5.4, are reached only if the operation
fails.

ues until the sink node enters teess state. At this point, all nodes are in fhess state,
the execution of the graph is complete, and the operation is declared to be successful.
Additionally, any information recorded in the undo log for this graph may be deleted.

3.5.3.1 Sequencing Graphs with Predicate Nodes

If a graph includes a predicate node, some nodes may not be executed. Again, for-
ward execution begins with the source node and concludes with the sink node. Assuming
again that no errors are detected, the graph completes and undo information may be dis-
carded. Nodes which were skipped will be inskip state; all remaining nodes will be in
thepass state.

69

Figure 3-10 Sequencing a graph which contains a predicate

TheProbe node is a predicate, conditionally enabling execution oRiti@ode.

In this example, thBrobe node returned a “hit” and th&d node was not exe-
cuted. The illustration presents the status of each node after the graph has com-
pleted forward execution.

The sequencing of a graph which contains a predicate node is illustrated in
Figure 3-10. In this example, a predicate nd@®lpe) is used to determine if a data block
resides in a read cache. The scenario illustrated in Figure 3-10 assumes that the block was
found in the cache; therefore, tRe node, which loads the symbol from disk, is not exe-
cuted. Unconditional execution resumes whend®® node is reached. Because all of
the XOR node’s parents have completed (are in the eitheskipeor pass state) and at
least one of its parents is in thldp state, theXOR node is executed rather than skipped.

3.5.4 Automating Error Recovery

When a node fails, it enters tfaal state and forward execution of the graph is sus-
pended, meaning that no more nodes are allowed to leawaithstate. Before error
recovery may commence, all nodes that are ititbe state are allowed to complete exe-
cution. At this point, all nodes in the graph are in eithemthié pass, done, or fail
states. Nodes in tHeil state leave the modules that they modify in either an inaccessible
or an unchanged state. Because of this, error recovery is limited to undoing the effects of
the previously-completed nodes (i.e., those nodes that arepashestate).

70

This process is easily performed by simply working backward through the graph,
executing thaindo actionsThe graph is now executed from the point of failure back to
the source node, in a process hereafter referredaacgvard executianhis process is
equivalent to undoing the effects of an aborted transaction by working backward through
an undo log.

The rules for sequencing this process are straightforward. All nodes which are in the
pass state will need to be undone. Any node infiass state whose children are all in
either theundone, fail, or skip states may enter timecovery state. When a node enters
therecovery state, itaundo functionis executed and, when complete, the node enters the
undone state. The process is complete when the source node has been undone; at this
point, each node is in either thait, skip, undone, orfail state and the effects of the
graph have been completely removed. The array controller is now free to submit a new
graph for execution.

As an example, assume that a user has requested that a single block be written to a
RAID level 5 array. Because the array is in the fault-free state and the request is small, the
array controller selected a small-write graph (similar to the one in Figure 3-3) and submit-
ted it for execution. During execution, one of B actions fails as illustrated in
Figure 3-11. The execution engine, detecting that the node enteffad st@te, suspends
forward execution of the graph and begins backward execution. When backward execution
completes, the effects of the graph will be completely undone. Because a fault is now
present in the array, the array controller will retry the user’s request, selecting a degraded-
write graph which does not depend upon the failed disk.

3.5.4.1 Coping With Deadlock

Because error recovery is performed on a per-operation basis, operations can be
individually aborted. This means that if deadlocked operations (e.g. because of contention
for shared resources) can be detected, the deadlock can be eliminated by aborting one or
more operations and then retrying them later. A common technique for detecting deadlock
in a system is to useveaits-for graphwhich models the resource ownership and requests
in a system in which concurrent processes compete for shared resources [Bernstein87]. As
illustrated in Figure 3-12, the waits-for graph is a directed graph in which the nodes repre-
sent operations waiting on shared resources. Arcs are drawn for each request from the
operation waiting on the resource to the operation which holds the resource. The presence
of a cycle in a waits-for graph indicates that a deadlock condition exists.

In this example, three operations are competing for exclusive ownership ofjocks
L,, andL3. Because the operations were allowed to allocate the locks in an arbitrary order,
operationgD; andO, have deadlocked. This situation could have easily been avoided if a

locking hierarchyhad been established which constrained the order in which locks were
acquired. For instance, if the locking hierarchy required that operations acquire locks in

71

c
.S c
5 e
S 5
3 3
et X
ke Q)
@ e
= G
=
L b
3]
©
o

Figure 3-11 Error recovery from backward execution

The failure of thdRd node, indicated in bold, causes forward execution to halt.
Once theNr node which was in thired state completes, backward execution
begins, undoing the previously completed actions by executing the corresponding
undo functions from Table 3-2. In the illustration on the right MfegnA node is

in therecovery state which implies that its undo function is currently being exe-
cuted.

numerical order (e.d-q, L,, L3), then deadlock betwe&y andO, would not be possible
(both operations would compete toy and the winner would be free to acqulitg.

Once this deadlock condition has been detected, it can be resolved by aborting either
O, or O3. Aborting either one of these operations will cause its resources to be released,

breaking the cycle in the waits-for graph. The other operation will then complete and the
aborted operation can be retried.

72

O, O3
holds L, L3 holds Ly
waits for L, & L3

Oz
holds L2
waits for L,

Figure 3-12 Detecting deadlock with a waits-for graph

In this waits-for graph, each node represents an operation and each arc indicates
that an operation is waiting on a resource held by another operation. In this exam-
ple, operation$D; andO, are deadlock because each is blocked, waiting on the

other. This condition is indicated by the presence o&h®,-O, cycle.

3.5.5 Distributing Graph Execution

It is possible to distribute the execution of a graph across multiple execution units. A
graph may be pruned arbitrarily with a single node being the minimum unit which may be
assigned to a processor. However, when the graph is pruned, the number of arcs which are
cut will directly determine the amount of communication overhead required among the
processors. First, as Figure 3-13 illustrates, a message will be required for each depen-
dence between graph segments executing on distinct processors. Second, if each processor
maintains a local undo log, each processor will need to know when a graph completes so
that its undo information may be discarded.

Additional communication is required when an error occurs, requiring all processors
to cease forward execution and commence backward execution. Because each subgraph
can be recovered individually, no synchronization between processors is required to acqui-
esce the entire graph. Instead, each subgraph is individually acquiesced before it can begin
backward execution.

73

Figure 3-13 Pruning a graph for distributed execution

This graph has been pruned with cAtg\' andB-B’ to allow execution on three
separate processors. The processor responsible for executing natleeed to
communicate three times with the processor executing 2o&esnd7: once to

wait on a message that no8ldnas completed execution, once to send a message
that node4 has completed execution, and once to wait on a message that node 7
has completed, indicating that the graph has completed and the local undo log
may be discarded. Similar communication is required between the processor exe-
cuting noded, 3, and6 and the processor executing no@e$, and?.

3.6 Fault Model

In the previous chapter, | discussed the physical fault models that characterize the
devices commonly used to implement redundant disk arrays. These devices are assumed
to offer failfast behavior. In this chapter, | described a programming abstraction for repre-
senting the algorithms that perform array operations. These algorithms are composed from
device actions that are abstracted with a wrapper that detects, diagnoses, and isolates
device faults. If possible, this wrapper also provides recovery, reconfiguration, and repair
of the fault; otherwise, the fault is declared to be unrecoverable and the failed regions of
the device are removed from service until an explicit repair operation is scheduled and

74

completed. The wrappers are designed to guarantee atomicity of operation on each sym-
bol. If a node that operates on multiple symbols (e.g., a multi-sector write to disk) encoun-
ters a failure in processing some of the symbols (e.g., a single sector fails), the unaffected
symbols are either modified correctly or are left unchanged.

In order to guarantee that the fault model of the disk array is preserved, | now
describe how these physical faults are modeled by the abstract programming representa-
tion and execution mechanism described in the preceding sections. | begin by examining
node failures that correspond to the failure of some device. For the modeling and execu-
tion techniques described in this chapter to be generally applicable, it is imperative that
they do not inherently weaken fault models that are defined for specific array architec-
tures. Furthermore, it is necessary that the programmer understand the mapping of these
physical faults into the logical abstractions presented here in order to implement a fault
model.

| conclude this section with a discussion of failures that interrupt the execution of
graphs but do not correspond to node failures. Specifically, | examine power, crash, and
controller failures. A particular array implementation may survive any combination of
these types of faults; therefore, it is important that the mechanism described here support
all of these failure types.

3.6.1 Node Failures

Device failures are detected by nodes during the execution of a graph. Recoverable
device failures are hidden by the nodes from the mechanism that executes the graphs, and
their effects are therefore unnoticed outside the domain of the node. Unrecoverable device
failures result in the failure of a node. Nodes that fail do so atomically, leaving all symbols
being acted upon either unchanged, or marked as failed. Because the effects of all nodes
are defined to be undoable, the effects of previously-completed nodes can be removed,
permitting the graph to fail atomically. At this point, the system appears to the world as if
a fault was detected on an idle system. There is no intermediate state to resolve, and the
array is able to easily tolerate device failures as defined by the redundancy of the particular
array architecture. In short, a device fault may result in the failure of a node. Node failures
cause the atomic failure of a graph, with all observable states being either unchanged or
marked as failed.

For example, if a write operation is initiated on a RAID level 6 array which during

its execution encounters the failure of a disk sector, the write operation will suspend exe-
cution, permitting all in-flight nodes to complete but not scheduling new nodes for execu-
tion. When execution has acquiesced, the nodes which completed successfully are undone.
The node that failed has marked the regions of the device that failed as inaccessible and
has restored the original values to the remaining regions of that device. When the undo of
all previously-executed nodes is complete, all visible state changes from the failed graph
have been removed. Because the array is assumed to be initially in a consistent state, this

75

process has returned the system to a state that is free from error. The array controller can
now retry the write operation, possibly using a new algorithm that avoids the failed sector.
Additionally, a repair operation can be scheduled to return the array to a fault-free state.

As long as the execution mechanism is known to be functioning and the nodes are
known to operate correctly, device failures are easily handled in this general fashion, irre-
spective of type or device. In this dissertation, | do not address nodes or execution mecha-
nisms that do not behave correctly, other than to assume that errors in their design will
result in failstop behavior. | do address failures that result in the interruption of the execu-
tion of a graph.

3.6.2 Crash Recovery and Restart

If the execution of a graph is interrupted due to a controller failure, loss of power, or
some other fault, erashis said to have occurred and a process cadistdrtis required to
bring the system back to life and restore consistency. Because a crash is an asynchronous
event, it is likely that a number of graphs will be incomplete when restart is initiated—fur-
thermore, some of these graphs may have been executing in the forward state and some
may be executing in the backward direction. Because redundant disk arrays are not obli-
gated to fail atomically with respect to crashes (Chapter 2), the restart procedure is neces-
sary only to prevent the appearance of a write hole. However, it is possible to make the
array fail atomically when a crash occurs by making the entire undo log durable, guaran-
teeing that the restart procedure will be able to undo the effects of all operations which
were executing at the time of the crash.

Assuming a single-fault-tolerant array (i.e. the array does not survive simultaneous
disk and power failures), guaranteeing the semantics described Chapter 2 requires:

1. Each codeword in the array is in a consistent state, where “consistent” implies a
legal codeword (e.g., even parity).

2. Operations interrupted by the crash will not affect the visible state of unrelated
user regions.

3. Operations interrupted by the crash will reach completion (pass or fail).

The most simplistic restart procedure, common in systems which are not capable of
surviving power failures without loss of all controller state, is to make each codeword in
the array consistent by sweeping through the entire array and manually updating the check
information if the codeword is found to be inconsistent. This process, commonly referred
to as “scrubbing the array” can take several minutes for an array of even modest size. The
process can be shortened if the assumption that the host will notify the array controller
which operations were outstanding at the time of the crash, eliminating the need for the
controller to examine all codewords in the array. Similarly, the array controller could

76

devote a modest amount of nonvolatile memory (4KB) to recording this information
locally [Symbios96].

Finally, it is possible that the restart procedure itself can be interrupted by a crash,
implying that the restart procedure may be executed a number of times before being
allowed to reach completion. Therefore, the restart procedure must be idempotent and the
nodes of a graph must be guaranteed to have “exactly once” semantics [Gray93]. This may
be accomplished by either making each action idempotent or testable, meaning that the
system is able to discern whether the action has been executed or not.

3.6.3 Controller Failover

In a system with redundant controllers, if a controller fails due to a permanent fault,
a process known a®ntroller failoveris used to transfer the work of the failed controller
to a surviving controller. This process includes restarting the work which was in progress
on the failed controller. To do this, the undo and redo logs of each controller must be visi-
ble to the surviving controllers, either by placing it in a central location (a disk) or by mir-
roring it in a second controller. Given the contents of the failed controller’s logs, the
surviving controller applies the standard restart procedure and then continues normal pro-
cessing.

3.7 Summary

Instead of relying upon ad hoc methods for creating redundant disk array software,
this chapter has introduced a structured approach which has the advantage that it is general
(e.g. not specific to array architecture), does not require hand-crafting or analysis of errors,
is amenable to automated correctness verification, and can be extended to provide atomic
recovery from crashes. By isolating action-specific error recovery, array-level error recov-
ery has been automated and the previous dependence upon a hand-analysis of array-spe-
cific error scenarios has been eliminated.

Array algorithms are represented as flow graphs, directed acyclic graphs whose
nodes are the actions, such as a disk write, which perform work in the system, and whose
arcs are the dependencies, control or data, between these actions. Section 3.2 presented the
rules for constructing the actions, Section 3.3 presented the rules for constructing the
graphs, and Appendix A demonstrated that from only a small set of actions, a complete
library of flow graphs which implement the most popular redundant disk array architec-
tures is easily created.

77

Executing redundant disk array operations represented as flow graphs is easily
mechanized. If the nodes of a graph are atomic and undoable, a graph can be executed in a
fashion similar to transactions, providing atomic failure of the graph and automated recov-
ery from errors. Furthermore, because the execution mechanism is general, the task of ver-
ifying the implementation is limited to ensuring that the infrastructure (actions and
execution mechanism) is correctly implemented and that the graphs are correctly
designed—there are no case-by-case recovery procedures to validate. Finally, if the undo
log is made durable, array operations can be made to fail atomically in the event of a crash.

Chapter 4 introduces RAIDframe, a framework for prototyping disk arrays which is
based upon the paradigms (modular software, node/graph programming abstraction,
mechanized execution) described in this chapter. Because creating undo information for
actions such as a disk write may be expensive (a full disk rotation is required), Chapter 5
demonstrates that the requirement that all nodes are undoable may be relaxed. Using
RAIDframe, the performance consequences of requiring all nodes to be undoable is stud-
ied and a novel method for eliminating the requirement that all actions, particularly the
expensive ones, is introduced.

78

Chapter 4: RAIDframe: Putting Theory Into Practice

This chapter introduces RAIDframe, a software package for prototyping redundant
disk arrays, developed by researchers at Carnegie Mellon’s Parallel Data Laboratory in the
mid-1990’s [Courtright96a, Courtright96b]. One of the principal research thrusts of the
Parallel Data Laboratory (PDL) is the exploration of new redundant disk array architec-
tures [Holland94, Gibson95]. RAIDframe was developed to provide researchers with an
easily-extended platform for implementing and testing new redundant disk array architec-
tures. A thorough examination of RAIDframe can be foundRiktDframe: Motivation,

Theory, and Implementatid@ourtright96c].

RAIDframe is based upon the approach introduced in Chapter 3: modular design,
modeling operations as flow graphs, and automating error recovery. At the time of this
writing, RAIDframe supports RAID levels 0, 1, 4, and 5 [Patterson88] as well as parity
[Holland92] and chained [Hsia090, Hsiao91] and interleaved declustering [Copeland89]
array architectures. RAID level 6 [RAB96], EVENODD [Blaum95], and parity logging
[Stodolsky94] are under study. | present RAIDframe as evidence that array software con-
structed using this approach is not only feasible, but desirable.

In this chapter, | introduce the internal structure of RAIDframe and the fundamental
design decisions that guided its evolution and affect the nature of studies conducted in this
dissertation. | then describe our experiences with creating and modifying array architec-
tures, revealing that modular code and automated recovery from errors allowed new array
architectures to be implemented with only minimal code changes. The chapter concludes
with an examination of the efficiency of RAIDframe, comparing the results obtained
through microbenchmark studies with those predicted by analytic models as well as direct
comparisons to a hand-crafted striping (nonredundant) driver. Later, in Chapter 5, | use
RAIDframe to evaluate the relative performance of various error recovery schemes.

4.1 Motivation

Historically, researchers studying redundant disk arrays have been forced to evaluate
new architectures using either analytic or simulation methods [Blaum95, Ca094, Chen90,

79

Lee91, Menon93b, Mogi94, Patterson88, Savage96, Stodolsky94]. Chapter 2 described a
variety of these architectures, most of which have never been implemented beyond the
first-order modeling required for event-driven simulation. In short, researchers were intro-
ducing new architectures and evaluating their performance, but were not demonstrating to
implementors the feasibility of constructing working prototypes.

In an attempt to bridge the gulf between simulation models and concrete implemen-
tations, Ed Lee and others at the University of California’s Berkeley campus developed an
event-driven simulator which they calleldSim[Chen90, Lee90a]. By drawing code
from the Sprite operating system [Ousterhout88], raidSim was designed to allow the code
that implemented an array architecture in a simulation environment to be based upon code
from a working system. This gave researchers the opportunity to analyze and refine an
array architecture in a relatively-simple environment that was isolated from the complexi-
ties of a working system. Once the implementations was stabilized, the resulting code
could be ported back into the real system. Since it's introduction, raidSim has been made
publicly available [raidSImFTP] and was used extensively by Holland in his studies of
arrays in which a disk has failed [Holland94].

We see raidSim as an important step toward the ability to rapidly prototype and eval-
uate new array architectures. While raidSim did reduce the labor required to move evalua-
tion from the simulation to production environment, it did not fully capitalize upon the
similarities between array architectures beyond data layout and encoding: raidSim was
simply an event-driven simulator which provided an interface similar to that used by the
Sprite operating system.

In 1993, Garth Gibson, Mark Holland, Daniel Stodolsky, and | realized that con-
structing a framework designed specifically to reduce the overall labor of defining, imple-
menting, and evaluating array architectures could greatly benefit our work. Following the
lead of raidSim, we isolated functions that controlled data layout and encoding. Further-
more, we developed a library of pass/fail actions as described in Chapter 3, a general
method (flow graphs) of composing array operations from them, and an execution mecha-
nism that automated recovery from errors, eliminating the need to develop architecture-
specific error-recovery code. The framework we developed, which we Ball&frame
allows architectures to be evaluated in each of three environments without the need for
code changes: (1) an event-driven simulator, (2) a user process which communicates with
real disks through their raw device interface, and (3) as a device driver installed in a UNIX
kernel.

80

4.2 Architecture

The initial goal we established for the RAIDframe project was to simplify the task
of implementing new redundant disk array architectures. Our basic approach was conven-
tional: partition the architecture of RAIDframe into modules that are known to change
orthogonally with array architecture. Because we were interested in implementing a vari-
ety of array architectures, we desired clear methods of reusing existing code to the fullest
possible extent. This meant not only reusing actions such as “disk write” that are common
to many array architectures, but also collecting and isolating as much architecture-specific
code as possible. Therefore, we designed RAIDframe to execute array operations in a gen-
eral manner in which the execution of graphs, including the recovery from node failures, is
automated, irrespective of array architecture.

4.2.1 Design Decisions

As with any design, we made a series of decisions that affected the scope of the
project, allowing a balance between several factors (in our case, efficiency and complex-
ity) to be achieved. First, we simplified our disk fault model to recognize only catastrophic
disk faults. We easily justified this because RAIDframe is intended to be strictly a proto-
typing framework and our foreseeable studies do not require the discernment of sector and
catastrophic disk faults. However, should the need arise, it is possible to extend RAID-
frame to distinguish the failure of an individual sector by incorporating additional maps to
record the locations of the faults, so the fault model can be expanded at later time.

Second, we offered no services dedicated specifically to the survival of power, con-
troller, or cooling faults. This limitation is due to the fact that RAIDframe is delivered as a
software-only package which we hope will be eventually ported to a variety of platforms.
Eliminating the requirement for nonvolatile memory was seen as a necessary measure to
increase the likelihood of the future portability of RAIDframe. RAIDframe guarantees
that after a crash, its internal structures (not disk state) are returned to their original power-
on state. The damage observed by a user who experiences a crash is largely determined by
the specific architecture being implemented—if, for example, dynamic mapping structures
were being maintained in RAIDframe’s volatile memory, then a crash would result in the
loss of these maps and the inability to access previously-written data.

Third, RAIDframe will never attempt to construct a graph which accesses more than
a single parity stripe. As Figure 4-1 illustrates, this restriction greatly simplifies the graph
selection and creation routines by eliminating the need for scatter-gather actions which
would otherwise be necessary to overcome the discontinuity of data at stripe boundaries.
Requests that map to multiple parity stripes are broken into two subrequests which are
executed concurrently. Each subrequest is executed independently and the entire operation
is successful only if all subrequests complete successfully. In the event that one or more of

81

Disk 0 Disk 1 Disk 2 Disk 3

N N YN Y
N7 N N N N7 N NG

Do D3 Ds Po

parity stripe

D, D, D, P, e

data unit

stripe unit

o, D1g P, DA .

DA A A

Figure 4-1 Processing parity stripes independently

A data unit is the minimum unit of access supported by the array. In this illustra-
tion, a four-disk RAID level 5 is presented in which the size of a strip unit is equal
to three data units. A read request which accesses datalynitsoughDyg is con-

tained entirely within a single parity stripe and can be implemented using three
disk actions: readD,-D,, readD3-Ds, and readDg-Dg. Each read action inde-

pendently transfers data into a buffer in a contiguous fashion, without the need for
scatter/gather DMA. However, if the read request crossed a parity stripe boundary,
for instance requestin®, throughD,, routing data from the disk actions to a

buffer is not as straightforward—if a single disk action were used toDedo
from Disk 0O, the data unit$,-D, andD-Dg would need to be routed to discon-

tinuous regions of the buffer. To avoid the need for scatter/gather transfers, RAID-
frame will break this request into two concurrently executed subreqresesdd) -

Dg and readD-D 5. Requests to the same disk (e.g. lad, and readD-
Dg) may be queued at the physical drive which is able to preserve performance by
eliminating the need for a second pair of seek and rotate positioning operations.

82

the subrequests are unable to complete, the request fails with the traditional disk semantic
that some regions of the request were successfully written while others were not. Propos-
als for achieving atomic failure semantics of the entire request (instead of at each subre-
guest) are discussed in Chapter 6. Disk actions that are divided into multiple actions and
gueued at a drive may be later reassembled by the drive to preserve seek efficiency.

Fourth, an architecture implemented in RAIDframe should run with a minimal set of
graphs. RAIDframe will attempt to construct a single graph for each parity stripe accessed
in a request; however, we do not require that implementors provide graphs for all possible
single-parity-stripe optimizations. If RAIDframe discovers that a single graph is not avail-
able to process an entire request, it will successively decompose the request into subre-
guests, first to a series of stripe unit, and then data unit, accesses. Therefore, an
implementor is only required to install graphs for all possible single data unit accesses.
Graphs that perform specialized algorithms given specific size and alignment combina-
tions (e.g. the RAID level 5 reconstruct write of Figure 2-10) may be added seamlessly
over time.

Finally, resource (buffers and locks) allocation and deallocation is performed out-
side of graph execution, limiting the scope of rollback during backward error recovery.
RAIDframe provides simple mechanisms for locking address ranges and managing a
shared buffer pool. Instead of releasing and then reacquiring locks on operations that have
failed and are later retried, RAIDframe holds the locks until retried operations either com-
plete successfully or fail in a manner in which retry is not possible (e.g. more than one
fault in a single-fault-tolerant array). Buffers are allocated when graphs are created, allow-
ing the fields of individual nodes to be statically initialized prior to graph execution. This
greatly simplifies the process of debugging the graph-creation routines. When a graph
completes, a generic routine is called to free the graph and all of the buffers that were
attached to it.

We made other decisions which affected the design of RAIDframe, such as the man-
ner in which we manage buffer pools, but | believe that the decisions presented here are
the most significant in terms of differentiating RAIDframe from other implementations.
The greatest deviations from array product offerings are the ones concerning the fault
model, specifically RAIDframe’s lack of support for sector and crash failures. Because
RAIDframe’s fundamental purpose is for prototyping, | do not believe that these omis-
sions limit the scope of RAIDframe’s original goal, to prototype new disk array architec-
tures. Furthermore, production disk arrays generally do not survive crashes atomically.
Tolerating sector failures simply requires the addition of mapping information to track and
repair the failed sectors. Surviving crashes requires making the undo log durable and other
well-understood techniques for ensuring that the failure of a single controller can be toler-
ated [Chen94, Gray90b, Menon93a].

83

4.2.2 Libraries

RAIDframe’s framework is partitioned into six primary modules that may be modi-
fied by implementors. These modules (mapping, actions, graph, graph selection, disk
gueueing, and disk geometry) contain the libraries from which arrays are implemented.
Themapping librarycontains routines that transform the logical block address of the user
into a set of physical disk locations. This process includes the identification of data and
check (e.g. parity) units as well as any faults observable by the accesstidhdibrary
contains the pass/fail actions, described in Section 3.2.1, out of which are created the
nodes of graphs. The graph templates, which are used to implement array operations, are
contained in thgraph library. Thegraph selection librarcontains the architecture-spe-
cific routines that identify the appropriate graph template to use given the mapping infor-
mation (location and size of access, location of faults, etc.). Examples of the graphs
initially used in RAIDframe and the criteria for their selection are presented in
Appendix A. These graphs were initially designed without any error recovery procedures
and were later replaced by the graphs of Appendix B which rely upon the two-phase error
recovery scheme described in Chapter 5.

Array performance has an intimate relationship with disk performance. RAIDframe
allows researchers to exploit this relationship by providing disk queueing and geometry
libraries. Thedisk queueing librarallows the number of outstanding requests issued to a
single disk drive to be specified as well as the method for queueing disk requests (e.g.
FIFO, CVSCAN, SSTF, and SCAN [Geist87]) before dispatching them to the drive. When
RAIDframe is used as a simulator, a variety of disk models are availablediskhgeom-
etry library. These models, taken from raidSim, allow researchers to study the sensitivity
of the array to a wide-variety of disk parameters, including those pertaining to: sector lay-
out, zone layout, and seek profiling,

4.2.3 Processing a User Request

Through the use of a programmable state machine, RAIDframe permits the basic
sequence of events used to process user requests to be tailored to a specific array architec-
ture. Specific optimizations such as the caching of user requests could be inserted on a per-
architecture basis. However, we have found that the general sequence illustrated in
Figure 4-2 works well for all of the architectures which we have implemented to date. For
instance, some architectures may support read caching and therefore may include steps to
probe a cache prior to commencing the process of selecting a graph and scheduling disk
work. Regardless of architecture, all control sequences are constructed with the premise
that requests are broken into graphs which are executed concurrently and fail atomically. If
a graph fails, the (sub)request is retried and, assuming the state of the array has changed, a
different graph is used. This process repeats until either all graphs complete successfully
or a graph can not be selected.

84

User
Request

<Map Access/Acquire Locks>

'
(Select Graph >

did not find a graph

found a graph

< Release Locks > < Create Graph >
(Execute Graph >

< Release Graph >

graph execution passed

graph execution failed

< Release Locks > (Update Mapping >

Figure 4-2 Mechanism for processing user requests

A user request only fails if a graph can not be selected. If a graph fails during exe-
cution, it is released and RAIDframe automatically retries the request, beginning
with the graph selection process. Graph failures are the result of permanent faults
which cause the configuration of the array to be altered. Therefore, because graph
selection is a function of the presence of a fault, subsequent retries will select dif-
ferent graphs.

85

In Figure 4-2, requests are first mapped to the array and the necessary locks (e.g.
write locks on parity ranges) are acquired. This step includes decomposing requests that
span multiple parity stripes into subrequests, each of which access a single parity stripe.
Next, using an architecture-specific graph-selection function, the appropriate type of
graph is identified for each subrequest. Recall from the discussion of design decisions in
Section 4.2.1 that if a single graph is not available for each parity stripe, each subrequest
will be further subdivided. Graph selection will fail if the region being accessed contains
more disk faults than can be tolerated, or if RAIDframe’s graph library does not contain
the minimal complement of graphs necessary to access all single data unit access patterns.
If any part of graph selection fails, all locks are released and the request fails.

Assuming graph selection is successful, the selected graph-construction routines are
used to create instances of the desired graphs. The process of creation includes allocating
buffers that are required by the graph. Once graph creation has completed, the graphs are
ready for execution. Graphs are submitted to an execution engine which guarantees that
each graph will either complete successfully or fail atomically. When execution com-
pletes, the graphs and buffers attached to them are released. If all graphs complete suc-
cessfully, the parity locks are released and the request is complete.

If the execution of a graph fails, using architecture-specific mapping routines, simi-
lar to those used in the original mapping function, the mapping information for the associ-
ated request is updated, allowing the presence of recently-detected faults to be
incorporated. The process described above is then repeated. The graph selection process is
re-entered, and a new (presumably different) graph is selected.

4.2.3.1 Locking

As Figure 4-2 illustrates, RAIDframe acquires locks prior to graph selection and
execution and therefore the graphs used to represent these locks are not included as nodes
in the graphs used by RAIDframe. The locking step of Figure 4-2 represents the acquisi-
tion of locks that ensure that each request is processed in isolation of other requests that
may be in flight. Because the locks are held until processing of the request is completed,
regardless of outcome, the rollback of a failed graph will not involve unlocking and the re-
locking of state.

4.2.3.2 Error Recovery

As RAIDframe evolved, so did our understanding of how best to automate recovery
from failed nodes. Initially, using the graphs of Appendix A, we experimented with array-
specific techniques that mimicked backward error recovery [Courtright94]. We discovered
that this approach was inadequate because it did not support arrays that tolerated the loss
of more than one disk (e.g. RAID level 6). In the end, we developed a novel method of
mechanized recovery, roll-away error recovery, that | later describe in Chapter 5.

86

In Chapter 5, | use RAIDframe to examine the relative performance of forward,
backward, and roll-away error recovery schemes. To ensure an “apples-to-apples” com-
parison in the validation studies of Section 4.3.4, | assume forward error recovery and
employ the graphs found in Appendix A without undo logging. However, all development
work in RAIDframe is based upon roll-away error recovery and it is the graphs contained
in Appendix B that are shipped as part of the RAIDframe package.

4.3 Evaluation

This section evaluates RAIDframe’s ability to be extended, and the efficiency of
array architectures implemented in RAIDframe, in terms of performance overhead. A dis-
cussion of the verification of RAIDframe’s ability to tolerate faults is deferred to
Section 5.5, which follows the discussion of the error recovery procedures used within
RAIDframe.

To evaluate RAIDframe’s ability to be extended, | examine the extension of a base-
line RAID level O implementation to support seven additional architectures: parity declus-
tering [Holland92], RAID levels 1, 4, 5 [Patterson88], RAID level 6 [ATC90, RAB96],
chained declustering [Hsia090, Hsiao91], and interleaved declustering [Copeland89,
Teradata85]. The following analysis reveals that introducing these architectures required
only modest code changes and that the changes were localized. While the majority of the
architectures were implemented by members of the RAIDframe development team, the
interleaved and chained declustering architectures were implemented by Khalil Amiri, a
first-year graduate student who was not a member of the team.

| evaluate RAIDframe’s performance by first examining its efficiency when com-
pared to a hand-crafted striping (nonredundant) driver. RAIDframe returns the same
response time versus throughput results as the striping driver, regardless of array size.
However, RAIDframe’s abstract programming interface demands a 60% CPU utilization
premium over the hand-crafted driver. Finally, | evaluate RAIDframe’s small-access per-
formance for eight disk array architectures which shows a favorable comparison to the
results predicted by simple throughput models. | perform this final evaluation for each of
RAIDframe’s three operating environments (simulator, user process, and device driver)
and also evaluate their consistency.

87

HBA DWZZA
HBA DWZZA
[
c
£ HBA DWZZA
O
§ /1\ /1\
IE N] N]
S S
HBA DWZZA /{\ /{\
N] N]
=il Fwpscsi | |SESCSI ~
150 MHz Alpha 3000/500 —]
S S

HP 2247

Figure 4-3 Setup used for collecting performance data

RAIDframe was installed on an Alpha workstation running Digital UNer-

sion 3.2. Because Digital UNIX does not support downloadable device drivers, a
custom kernel which contained RAIDframe had to be created. Five KZTSA Turbo-
channel to Fast-Wide-Differential (FWD) SCSI Host Bus Adapters (HBA) were

used to cable to the disk drives which were housed in StorageWorks cabinets. FWD
SCSI was used out of the Alpha to accommodate the necessary cable lengths. The
ten Hewlett-Packard 2247 disk drives were 8-bit single-ended (SE) SCSI 1 GB
drives. Five FWD to SE SCSI converters (DWZZA), installed in the StorageWorks
cabinets, were used to connect the single-ended drives to the fast-wide-differential
cables.

4.3.1 Setup

RAIDframe was developed at Carnegie Mellon’s Parallel Data Laboratory on DEC
Alpha workstations running Digital UNIX version 3.2. All experiments in this disserta-
tion were conducted on a DEC Alpha 3000/500 workstation with 128 MB memory con-
nected to ten HP 2247 disk drives. This details of this setup are illustrated in Figure 4-3.
All equipment used is commercially available and, with the exception of the kernel, was
used without modification. The RAIDframe source code is available via anonymous ftp

88

[RAIDframeFTP]. Unfortunately, due to licensing restrictions, | am not able to provide a
copy of the kernel code or the modules that we used to integrate RAIDframe into Digital
UNIX. Fortunately, RAIDframe contains no kernel-specific dependencies which would

alter its performance, so researchers wishing to duplicate these experiments should be able
to do so by independently building their own kernels or running RAIDframe as a user pro-
cess, entirely independent of the underlying kernel.

Experiments were conducted using configuration files similar to the one in
Section C.3. All array configurations used a stripe unit size of 32KB (sixty-four 512 byte
sectors per stripe unit) [Chen90]. Stripe size, the total storage associated with a stripe, var-
ies with experiment. RAIDframe was permitted to dispatch up to five outstanding requests
to each disk—beyond that, RAIDframe managed a separate queue for each disk using
shortest seek time first (SSTF) scheduling. Parity declustering used a logical parity group
of five disks distributed over the physical array of ten disks.

4.3.1.1 Workload Generation

The efficiency and accuracy studies presented in the remainder of this section were
conducted using pseudo-random workloads. These workloads were executed using RAID-
frame’s trace-playback mechanism which applied identical, high-concurrency access
sequences to each architecture executing in the simulation, user-level, and device-driver
environments.

Workload files were created for 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 threads.
Each thread issues blocking (synchronous) 4 KB operations on random 4 KB aligned
addresses with no intervening delay. Because accesses were aligned and smaller that the
stripe size, the number of graphs executing at any instant was less than or equal to the
number of threads. Read and write workloads were generated and executed separately. All
experiments display the average of three experiment runs. The data presented in the per-
formance figures, and their 95% confidence intervals, are presented in Appendix C. In all
experiments, these data represent the average of three experiment runs, achieving a confi-
dence interval which is typically 2% of the mean and does not exceed 7.8% of the mean.

4.3.2 Extensibility

To evaluate the cost of implementing new architectures in RAIDframe, | present an
anecdotal history of the architectures that we have implemented, examining the size and
locality of code changes necessary to extend RAIDframe. The initial coding effort to con-
struct the basic RAIDframe platform resulted in the creation of 122 files and a total of
34,311 lines of code (LOC). RAIDframe is written in C and, in this study, | define LOC to
include both source statements as well as comments. This initial framework, which was
designed to eventually support RAID levels 4, 5, and parity declustering, included a work-
ing RAID level 0 implementation and provided the infrastructure necessary to conduct

89

performance and correctness experiments (e.g. workload generation, tracing, data verifica-
tion tools). Once this framework was established, the architectures listed in Table 4-1 were
added in the order presented. This table measures “code reuse” as the ratio of unchanged
code to the amount of total code required to support the new architecture.

Adding parity declustering to RAIDframe required the addition of 7 new files, total-
ling 2,021 LOC, which contained the nodes and graphs necessary to implement a parity-
encoded array architecture. These files also included the architecture-specific mapping and
graph selection routines particular to parity declustering. Additionally, 395 LOC of exist-
ing code, contained in 5 files, were modified. The infrastructure of RAIDframe was
extended to perform reconstruction of a failed disk onto a spare. Debug functions which
verify the correctness of parity, necessary for functional testing, were also added.
Together, adding parity declustering affected 12 files (out of 189) and 2,416 LOC (out of
36,727) or about 6.5% of RAIDframe’s total LOC and file counts.

For the sake of comparison, consider the amount of work required to incorporate
parity declustering into raidSim, a 92-file, 13,886-line simulator: 1 file was deleted, 11
files containing 1,204 lines of code were added and 46 files were modified, changing
1,167 lines and adding 2,742 lines. Collectively, to enable the research reported in one
paper, the number of lines of code, 5,113, was equivalent to 36% of the size of the original
simulator and affected over half of raidSim’s modules. This is about twice as much code,
measured in LOC, as required to extend RAIDframe and the changes were distributed

Table 4-1 Cost of creating new architectures

Code
Architecture New Code Modified Code Reuse
RAID level O 34,311 LOC —_ —
167 files

parity declustering 2,416 395 LOC 93.4%
7 files 5 files

RAID level 5 355 LOC 5L0OC 99.1%
3 files 1 file

RAID level 4 134 LOC 5L0OC 99.6%
2 files 1 file

RAID level 6 2644 LOC 88 LOC 93.2%
7 files 4 files

RAID level 1 373 LOC 35LOC 99.0%
2 files 2 files

chained declustering 117 LOC 5L0C 99.5%
2 files 1 file

interleaved declustering 119 LOC 5L0C 99.5%
2 files 1 file

90

across five times as many files. Even though raidSim was not originally constructed with
parity declustering in mind, it already supported RAID level 5, an architecture which dif-
fers only in the mapping of data and parity. It is also important to remember that raidSim
is just a simulator—the changes to RAIDframe represent code which can operate in three
environments, two of which move data to disk and verify the correctness of those trans-
fers.

With parity declustering working, the process of implementing RAID levels 4 and 5
became trivial. These two architectures completely reused all nodes and graphs of parity
declustering as well as its graph-selection function. In essence, these two architectures
only required changes in the data and parity mapping functions. For RAID level 5, this
resulted in the creation of 355 LOC contained in 3 new files and the modification of
5 LOC in 1 existing file. Similarly, for RAID level 4, this resulted in the creation of
134 LOC in 2 new files and the modification of 5 LOC in 1 existing file.

Adding RAID level 6 scaled RAIDframe support to multiple-failure-tolerating
arrays by requiring the addition of nodes for encoding and decoding the Reed-Solomon
encodings as well as the creation of graphs which maintained these codes. Beyond this,
RAID level 6 required the standard additions of graph selection and mapping functions.
Unlike the other architectures described here, RAID level 6 is not a complete implementa-
tion: the Reed-Solomon encoding/decoding actions are not fully debugged and the proce-
dure which reconstructs the contents of a failed disk has not yet been modified. Ignoring
reconstruction and assuming that the debug of the encoding/decoding nodes will not sig-
nificantly change their current LOC count, RAID level 6 required the addition of
2,644 LOC contained in 7 new files and the modification 88 LOC contained in 4 files.

When | implemented RAID level 1, | maintained a detailed record of the time
required to complete the implementation. The overall effort required 460 minutes, during
which 370 lines of code were produced or modified. Broken down, the time until first
compilation was attempted was 90 minutes. This time included the creation of new map-
ping and graph selection routines as well as a new graph used to write data to a fault-free
array. Once begun, the first successful compilation occurred 15 minutes later. Read graphs
first ran 55 minutes later, write graphs 105 minutes later. A run-time optimization of fault-
free reads which selected the mirror-copy with the shortest queue required an additional
145 minutes. Finally, an additional 50 minutes were required to complete the implementa-
tion of degraded-mode operation.

The implementations of chained and interleaved declustering, created by
Khalil Amiri, a member of the PDL who was not an author of RAIDframe, produced sim-
ilar results. Khalil required approximately 240 minutes to implement each of these two
architectures. In each case, approximately two-thirds of his time was spent coding and
one-third debugging.

In the end, after implementing eight architectures and experimenting with parity

logging, log-structured storage, and EVENODD, we have consistently reused over 90% of
the existing code in RAIDframe. | contribute this level of reuse to the modular partitioning

91

of RAIDframe and the elimination of architecture-specific error recovery from failed node
failures. Code changes were confined and localized to: new actions, graphs, graph selec-
tion criteria, mapping, and reconstruction.

An equally important result is the elimination of architecture-specific testing. The
architect only needs to ensure that the graphs are correctly designed and implemented—
RAIDframe’s infrastructure guarantees correct execution in the event of a node failure.

4.3.3 Efficiency

To evaluate RAIDframe’s ability to efficiently process requests, we compared
RAIDframe’s implementation of RAID level O kernel device driver to a nonredundant
striping driver which was independently developed for use in a file system project
[Patterson95]. The first experiment established the performance of RAIDframe on a single
disk. Figure 4-4 compares the single disk performance of RAIDframe’s device driver to
that of the hand-crafted striping driver. Both drivers show near-identical response times at
a given throughput with a maximum throughput of approximately 80 10/s.

Next, we examined the sensitivity of performance and CPU utilization to array size.
With a constant workload of five threads per disk, each generating synchronous 4 KB
requests, we measured response time versus throughput and CPU utilization for read and
write workloads. Figure 4-5(a) illustrates that RAIDframe produces the same results as the
hand-crafted driver. The general shape of this graph is not pleasing to the eye: as the num-
ber of disks increases, so does throughput; however, response time is not linear or even
monotonic. This can be explained by several effects. First, as the system becomes more
heavily loaded, the response time will increase due to the Alpha’s limited ability to pro-
cess interrupts. This explains the 300-500 10/sec region of the curves. Second, as the num-
ber of disks is increased from one to two, so are the array capacity and workload. This
means that in the experiment with one disk and five threads, the disk was processing one
requests while four waited in it's queue. Because the workloads are random, the maximum
gueue depth per disk increases with the number of disks. In the two-disk experiment, it
was possible for there to be up to nine requests queued at a single disk. This explains the
sudden rise in response time (11%) and modest increase in throughput (17%). As the num-
ber of disks in the array increases, the likelihood of all accesses colliding on a single disk
diminishes, and performance increases as one would expect (increasing throughput and
flat response time). Again, regardless of shape, it is the strong correlation of RAIDframe
to the hand-crafted driver which is important.

Figure 4-5(b) illustrates that, regardless of array size, RAIDframe consumes 60%
more CPU cycles than the striping driver. This is due to the layered architecture of RAID-
frame which simplifies programming through abstract operations and modular partition-
ing. | investigated this hypothesis by profiling the execution of the two driversAising
a commercially-available tool sold by Digital Equipment. | found that RAIDframe’s call
tree contained sixty functions while the striping driver’s contained only nine.

92

500

_ 400+

[%2)

E

() L

£ 300

3

S 200}

& c—oRAIDframe, RD

i} =—aRAIDframe, WR

X 100} 1 &—oStriper, RD
A—AStriper, WR

Throughput (I0/sec)

Figure 4-4 Single disk performance of striper and RAIDframe

Both implementations evaluated as device drivers executing in a DigitallUNIX
kernel. The eight datapoints for each curve were produced by a random workload
of synchronous 4KB requests from 1, 2, 5, 10, 15, 20, 30, and 40 concurrently-
requesting agents. SSTF disk queueing was used within the driver and up to 5
requests were allowed to be queued to the physical drive. This explains discontinu-
ity in the graphs which occurs when the number of threads (10) exceeds the maxi-
mum number of simultaneous requests which may be dispatched to a drive (5). The
reduction in performance suggests that increasing the queue depth would improve
performance. Note that the x-axis does not begin with 0.

RAIDframe has four entry pointspen() ,close() ,read() , andwrite()
The calls toopen() andclose() total less than 1% of execution time and | dismiss
them from further study. With the exception of locking the extent to be written, execution
profiles were not sensitive to the type of workload, read or write. This locking disparity
was less than 1% and therefore no distinction is made between read and write workloads
in the following presentation.

Table 4-2 presents a breakdown of RAIDframe’s execution time based upon the
functions presented in Figure 4-2. Keep in mind that idle time spent waiting on a disk
drive to complete a request is not included and therefore, these percentages are of total
CPU time and not total user (i.e. “wall clock) time. Without surprise, the big-ticket item
here is the process of executing a graph. This process requires walking the graph and
tracking the completion status of each node. An additional function, “state machine over-
head,” also appear in the table. This function represents the time spent initializing and pro-
cessing the state machine of Figure 4-2.

93

al
o
|
o
o

6—©Read - striper
407 80| E—8Read - RAPDframe
2| < o—o\Write - striper
é < s—AWrite - RAIDframe
230¢ S 60t
@ =
gzo- E 40}
d 5
10 20
0 : : : : 0 s
0O 100 200 300 400 500 01234567 891011
Throughput (10/sec) number of disks (HP 2247)
Figure 4-5(a): Constant workload/disk Figure 4-5(b): CPU consumption

Figure 4-5 Comparing RAIDframe to a hand-crafted implementation

This study compares the performance of RAIDframe’s RAID level O implementa-
tion to that of a hand-crafted striping driver. Data was collected for arrays of 1, 2,
4, 6, 8, and 10 disks. The workload per disk was constant at five threads per disk,
each thread generating synchronous, random 4 KB requests.

Table 4-2 RAIDframe execution profile

Function %
mapping 7.93
lock acquisition 0.70
graph selection 7.37
graph creation 8.38
graph execution 46.78
graph release 7.86
lock release 4.22
state machine overhead 18.92

94

4.3.4 \erification

The expected performance of eight disk array architectures implemented in RAID-
frame was verified by comparing the response time versus throughput characteristics of
eight array architectures against the predictions of analytical models. Additionally, we
compared the consistency of the results obtained from each of RAIDframe’s three operat-
ing environments: simulator, user process, and device driver. In all experiments, we used
ten disks and the 1, 2, 5, 10, 15, 20, 30, and 40 thread workloads, previously described in
Section 4.3.1.1.

First, the ten-disk RAID level O read performance should improve by about a factor
of ten over the results of Figure 4-4, which indicated a single-disk throughput of about
70 10/sec at the “knee” of the curve and an eventual saturation of throughput of 79.7 10/
sec. Figure 4-6 illustrates the read performance of eight RAIDframe architectures for each
of RAIDframe’s operating environments. Concentrating, for the moment, on the kernel
numbers of Figure 4-6(b), the ten-disk throughput of RAID level O reads in RAIDframe’s
device driver is 658 10/sec.

With two exceptions, the remainder of the architectures, none of which require
redundancy work, perform similarly. The throughput of RAID level 4 is slightly worse.
This is because the array has only nine disks that are able to service read requests—one
entire disk is dedicated to storing parity. RAID level 1 is slightly better because each block
of user data is stored on two independent disks, allowing the read workload to be better
balanced among the ten disks in the array. In our implementation of RAID level 1, read
actions are dispatched to the copy with the shortest disk queue.

Finally, Figure 4-6 also illustrates the relative performance of RAIDframe’s three
environments. The user and device driver environments compare favorably with compara-
ble throughput maximums and equivalent response times at given throughputs. However,
the simulator predicts higher throughput maximums and lower response times at given
throughputs. This is because the simulator does not account for the time required to exe-
cute code, data transfer bottlenecks, or limited interrupt-processing capabilities.

Predicting the small-write performance for an array of ten disks is not a straightfor-
ward task, but simple models can be used to estimate performance relative to that of a sin-
gle disk [Patterson88]. As with reads, RAID level 0 write throughput should improve by a
factor of ten over that of a single disk. Because RAID level 1, interleaved declustering,
and chained declustering each requires two disk accesses (write the two mirror copies of
user data) to service a user request, they will achieve a performance of five (10/2) times
that of a single disk.

RAID level 4, with its parity contained entirely on a single disk, will achieve one-

half the performance of a single disk. This is because each small-write operation performs
four disk access—read old data, write new data, read old parity, write new parity—and

95

(2]
o
[e2]
o

al
o
al
o

» »

Eo} Eaol
(0] [¢b)
£ £

030r 0 30r
0 [7)]
S S

020} o 20+
(7] (7]
() ()
x x

10+ 10+

0 : : : : 0 : : : :
0 200 400 600 800 0 200 400 600 800
Throughput (10/sec) Throughput (I0/sec)
Figure 4-6(a): Simulator Figure 4-6(b): Kernel

60

50+t
G—ORAID Level 0 2

=—8aRAID Level 1 <40}
—0RAID Level 4 GE)
A—ARAID Level 5 =

>—RAID Level 6 0 30T
x—x Declustering &

+—+Interleaved S oot
¥—*Chained @

™ 10}

0 L L L L
0 200 400 600 800
Throughput (I0/sec)

Figure 4-6(c): User

Figure 4-6 Small-read performance of RAIDframe’s three environments

Performance was measured using 4 KB aligned workloads. Datapoints represent
measurements for 1, 2, 5, 10, 15, 20, 30, and 40 thread workloads. Raw data,
including 95% confidence intervals, appears in Appendix C.

96

performance is ultimately limited by the two disk access to the parity disk for each user
request.

RAID level 5 and parity declustering distribute parity over the entire array. Their
performance is therefore strictly a function of the number of disk accesses (four) required
to complete a small user write to the array. Their expected performance is therefore 2.5
(10/4) times that of a single disk. Similarly, RAID level 6 with its additional two disk
accesses which update the Reed-Solomon redundancy unit, should perform at (10/6) times
that of a single disk.

Figure 4-7 illustrates the small-write performance we measured for these eight
architectures in each of RAIDframe’s three environments. The results, with the exception
of interleaved and chained declustering, are consistent with our predictions. RAID level 1
reaches a throughput of 345 10/sec, for an increase of just under 5x of the 78.8 10/sec per-
formance of a single disk. Like RAID level 1, interleaved and chained declustering both
maintain a primary and a secondary mirror copy of each block of user data. However,
unlike RAID level 1 which mirrors these two copies at identical disk offsets, these archi-
tectures place the copies on different halves of the disks. In write-intensive workloads, the
two actuators in a RAID level 1 mirrored pair move in synchronization with an average
seek time equal to the time required to seek across one-half of the disk. In interleaved and
chained declustering, because the mirrored copies are stored at different disk offsets, the
two actuators cover different seek ranges and the average is therefore greater than the min-
imal average of moving across one-half the total disk.

As expected, RAID level 4’s write throughput reaches 44 10/sec, or about one-half
that of a single disk. Parity declustering and RAID level 5, each predicted to reach a write
throughput of 2.5 times that of a single disk, achieved throughputs 176 10/sec (2.23x) and
175 I0/sec (2.22x), respectively. RAID level 6 attained a maximum write throughput of
119 10/sec (1.51x), just below its predicted value of 1.67x.

Similar to the Figure 4-6, Figure 4-7 shows that the relative write performance of
RAIDframe’s three environments is consistent between user and kernel environments, and
that the simulator is optimistic. In the case of writes, RAIDframe is required to compute
(e.g. xor) redundancy information. Because the simulator does not model execution time,
the cost of these computations is absent from the final simulator performance, skewing the
curves toward higher throughput.

97

300+ - 300+
m m
E E
Qo Qo
£200 £200
@ @
0 0
c c
o o
o o
$100 1 9100
n: Mio—éﬁ i
L L L L 0 L L L L
0 200 400 600 800 0 200 400 600 800
Throughput (I0/sec) Throughput (I0/sec)
Figure 4-7(a): Simulator Figure 4-7(b): Kernel
300 ¢
~ b S
6—ORAID Level 0 =
5—8aRAID Level 1 ~
—0RAID Level 4 2200 |
A—ARAID Level 5 &=
>—>RAID Level 6 o
x—x Declustering 2
+—+Interleaved S
¥—*Chained 2100
vd

0L : : : :
0 200 400 600 800
Throughput (I0/sec)
Figure 4-7(c): User

Figure 4-7 Small-write performance of RAIDframe’s three environments

Performance was measured using 4 KB aligned workloads. Datapoints represent
measurements for 1, 2, 5, 10, 15, 20, 30, and 40 thread workloads. Raw data,
including 95% confidence intervals, appears in Appendix C.

98

4.4 Conclusions

RAIDframe allows array architectures to be implemented with only modest changes
to existing code. Architectures implemented in RAIDframe can be evaluated using an
event-driven simulator, or against real disks as either a user process or a device driver in a
working UNIX kernel.

The cost of layering software in a manner which isolates an infrastructure designed
to support the execution of array operations, irrespective of array architectures, is an
increased consumption of CPU cycles. However, microprocessor performance has consis-
tently increased at a rate of 35% per year [Patterson96], and | believe the additional cycles
consumed by RAIDframe are easily absorbed by simply relying upon faster processors. |
argue that trading a few extra CPU cycles consumed by RAIDframe is worth the reduc-
tions in complexity that are achieved.

The principal benefit of RAIDframe is its ability to experiment with working imple-
mentations of array architectures. By providing researchers with the ability to simplify the
task of developing working prototypes, the performance of new array architectures can be
evaluated in working systems which deliver workloads in real time. Furthermore, by dem-
onstrating a working prototype, researchers are better prepared to convince implementors
that the complexity of their proposals is manageable.

99

100

Chapter 5: Roll-Away Error Recovery

Recall, from Chapter 3, the goals of an ideal approach to implementing redundant
disk array software: limited code changes to introduce new architectures, simplified error
recovery through atomic operation, acceptable overhead, and verifiable correctness.
Section 3.3 introduced a programming abstraction for composing redundant disk array
operations from atomic actions. This approach simplified the design and execution of
redundant disk array algorithms by isolating device-specific execution and error recovery
(node failures) from array operation recovery (graph failures). Chapter 4 demonstrated
that this programming abstraction can be used in practice. It showed that a modular parti-
tioning of software and the elimination of architecture-specific error recovery results in an
implementation which requires only modest code changes to implement new redundant
disk array architectures.

This chapter begins by examining the performance consequences and resource con-
sumption of the undo/no-redo error recovery scheme described in Section 3.5. Running
the 4 KB random write benchmark used in Chapter 4, Section 5.1 demonstrates that the
cost of pre-reading disk sectors before overwriting them degrades small-write perfor-
mance by as much as 50%. Section 5.2 examines the necessity of full undo logging, con-
cluding that it is possible to eliminate some undo log records, in a general manner,
independent of architecture. Proceeding from this conclusion, Section 5.3 intraullices
awayerror recovery, a two-phase method of error recovery which preserves the simplicity
of a general error recovery mechanism but without the performance cost incurred by pre-
reading disk sectors prior to overwrites. After examining the performance and correctness
consequences of roll-away error recovery, a variety of techniques for manipulating graphs
are described. The chapter concludes with a brief discussion of the possibility of extending
roll-away error recovery to guarantee atomic crash semantics.

5.1 Full Undo Logging is Expensive

Section 4.3.4 examined the performance of random 4 KB write operations in eight
array architectures without regard for error recovery. Using the undo/no-redo scheme
described in Section 3.5, error recovery can be completely mechanized by requiring that

101

G
| T o—oRAID Level 0 | InE;
300 &—&RAID Level 1 300
m &—0RAID Level 4 m
£ T A—ARAID Level 5 S
° >—RAID Level 6 °
£200 x—x Declustering £200
= +—+Interleaved =
8 ¥—*Chained @
c c
o o
@ @
$100 $100
@ @
0 : : : : 0 : : : :
0 200 400 600 800 0O 200 400 600 800
Throughput (I0/sec) Throughput (10/sec)
Figure 5-1(a): Forward Figure 5-1(b): Undo/No-Redo

Figure 5-1 Relative performance of full undo logging

Figure 5-1(b) shows the results of the experiment of Figure 4-7 (random 4 KB
writes) repeated with all nodes in the graphs generating undo records. To permit a
direct visual comparison, Figure 5-1(a) presents the data from Figure 4-7(b). All
data was for RAIDframe operating as a device driver.

the visible state changes made by each node can be undone. Before each node is executed,
the information necessary to undo its effects are stored in an undo log. If the graph com-
pletes successfully (e.g. no node failures), its undo log entries are discarded. If a node fails
during the execution of a graph, the underlying execution mechanism uses the undo log
entries to fails the graph atomically.

To evaluate the cost, in terms of performance, of creating the undo log entries, |
mimicked the maintenance of such a log, making each node generate an undo record entry
as specified by Table 3-2 on page 64. Repeating the same workload of random 4 KB
writes, the data displayed in Figure 5-1 demonstrates a degradation in small-write perfor-
mance of 50% for operations in nonredundant and mirroring architectures and 33% for
parity-based architectures. The principal source of this degradation is the cost of the creat-
ing the undo log records for theér nodes which require and extra disk access. The differ-
ence in the degree of degradation was a result of the fraction of nodes in the graph which
performedWr actions—the higher the fraction, the greater the degradation.

102

5.2 Reducing Undo Logging Requirements

Redundant disk array operations maintain codewords which are recorded on durable
storage. These operations fall into two general classes: those which retrieve information
contained in codewords and those which modify existing codewords. Reading information
from a codeword may involve either simply returning the symbols as they appear (e.g.
reading information from an array with no faults) or additionally performing a decoding
computation to reconstruct missing information (e.g. reading data from an array in which
a disk has failed).

Writing information to a redundant disk array will cause existing codewords to
change. This change may be in the form of a direct overwrite (modify all symbols of the
codeword) or modifications to selected symbols. In either case, this process can be gener-
ally described as the tasks of first creating new symbols followed by the task of writing of
them to durable storage.

Why not simply rely upon some form of no-undo/redo recovery, which would
entirely eliminate the need for undo logging? Such an approach would require that all
changes to visible state made by a graph be storegdodogprior to being applied to
the commit of the graph. If the execution of a graph was interrupted, the work which was
in-flight at the time of the interruption could be restarted (redone) using the contents of the
redo log. Unfortunately, this scheme is not well-suited for our application. We are prima-
rily concerned with node failures, which imply that a faulty component has been detected
in the system—simply retrying the same graph (algorithm) will fail because the same
failed component will prevent subsequent retries from succeeding. This problem could be
overcome by adding éheckpointa periodic snapshot of the system. If a graph failed, the
checkpoint could be restored and the redo log could be played forward up to the instant
before the failed graph was initiated. | also dismiss this implementation for the reason that
the checkpoint would have to be a snapshot of the entire array. This is necessary because
the array can not predict future updates and, in order to undo their effects (roll back by
restoring the checkpoint), the checkpoint must contain copies of all data. Furthermore, the
checkpoint must be constructed to survive the same faults as the fault model; that is, it
must survive disk failures. This implies that we may be using a disk array to simplify the
recovery of a disk array.

5.2.1 Limiting the Scope of Rollback

RAIDframe reduced the amount of undo logging required to guarantee error recov-
ery by limiting the scope of the rollback operation. One way this was accomplished was
by allocating reader/writer locks outside the creation and execution of flow graphs. When
a graph failed, the locks were retained, eliminating the overhead associated with releasing
and then reacquiring locks when operations were later retried using a different flow graph.

103

Another technique RAIDframe employed to reduce the scope of rollback, useful
only in write operations, was the allocation and initialization of a buffer which contains
the user data to be written to the array. By not discarding user write data when a graph
failed, the undo of a write buffer allocation and initialization was eliminated.

5.2.2 Reclassifying Actions From Undoable to Real

The approach presented in Section 3.5 assumed that all actions were undoable and,
when a node failed, error recovery consisted of walking backward through the entire graph
from the failed node to the source node, undoing the effects of all previously-completed
nodes. Recall from Table 3-2 on page 64 that creating the undo recovdsdotions,
which required an additional disk access (read previous data) is expensive. If a general
strategy for recovery could be created that eliminates the need for undoing these writes
(making them real actions), the overall cost of ensuring recoverability should decrease.

Ensuring the recoverability of graphs which contain real actions requires that the
real actions not be executed until the actions upon which they depend have reached a state
which ensures that the graph will not roll back [Gray93]; that is, because real actions can
not be undone, they should not be executed until enough work is completed to ensure that
the graph will not need to roll back. Fortunately, because the write of symbols generally
occurs at the end of a graph and, assuming that all new symbols are known, the symbols
are written independently (the write of one symbol does not depend upon the write of
another), it should be possible to eliminate the need to undo symbol writes, in effect mak-
ing them real actions.

The following section describes a method for inserting a barrier in a graph that iso-
lates the undoable nodes which precede the barrier from the real actions which follow it,
Barriers are then inserted into the graphs of Appendix A and the rules for executing graphs
with barriers are described.

5.3 Roll-Away Error Recovery

The previous section discussed the possibility of eliminating the undo of nodes by
requiring that a graph be split by a barrier with undoable actions to the left and real actions
to the right. Figure 5-2 illustrates such a graph in which a special Godanit, has been
inserted to represent the barrier, dividing the graph into two phases. Actions in the Phase-I
subgraph either do not make durable state changes or make changes which are easily
undone and therefore, undo logging is minimal. Actions in the Phase-IlI subgraph modify

104

commit
point

- / - /

Phase I. actions which Phase Il: actions which
compute new symbols write new symbols

Figure 5-2 Dividing array operations into two phases

Array operations may be divided into two phases, the first which does not modify
codeword symbols and the second which does. The two phases are isolated by a
commit point which confines all undo logging to the actions in Phase-I and, if
atomic crash semantics are required, redo logging to the actions in Phase-II.

symbols, but the structure of the graph guarantees that all symbol updates may occur inde-
pendently, allowing all symbol updates to either complete successfully, or fail due to the
presence of a permanent fault.

Recovering from errors in such graphs is performed using an approach that we call
roll-away error recoverynode failures which occur prior to the barrier force the graph to
roll back while node failures which occur after the barrier cause execution to roll forward.
The name *“roll away” was chosen because node failures force the execution to proceed
away from the barrier. Transaction-processing literature commonly refers to this barrier as
thecommit pointbecause once the barrier is reached, the transaction is committed to
move forward to completion rather than backing up. For the remainder of this dissertation,
| will refer to the barrier as the “commit point.” The roll-away execution mechanism is
described in detail in Section 5.3.4.

5.3.1 Properties of Phase-1 Subgraphs

A Phase-I subgraph, and its nodes, have the same properties as those described in
Section 3.3. In fact, all of the graphs of Appendix A are valid Phase-I subgraphs. Simi-
larly, the execution rules described in Section 3.5 also apply: if a node fails, the engine
walks backward through the graph, undoing the previously completed nodes.

With the graphs split into two phases, it is possible to add an additional constraint

that will eliminate the deadlock problem described in Section 3.5.1.3. Recall that in order
to avoid deadlock during rollback which results from allocating (undoing deallocation),

105

locks, either a the DAG locking protocol or the two-phase lock protocol were necessary.
The DAG locking protocol requires that resources be released in reverse-order from allo-
cation and the two-phase protocol requires that once any lock is released, no more locks
are acquired. With the graphs split into two phases, only one of which being undoable, it is
very easy to apply the two-phase locking protocol by placing all allocation actions in the
Phase-I subgraph and all deallocation actions in the Phase-1l subgraph. Locks are only
deallocated during rollback of a Phase-I subgraph or during the execution of a Phase-II
subgraph. In either case, once deallocation begins, no new locks will be acquired.

5.3.2 Properties of Phase-1l Subgraphs

Unlike Phase-I subgraphs, which rely upon undo/no-redo error recovery, Phase-l|
subgraphs rely upon no-undo/redo recovery. This change in error recovery protocols nec-
cessitates changes in Phase-Il structural constraints as well as execution rules. First, when
a node fails during the execution of a Phase-Il subgraph, executionllafidirward, exe-
cuting all nodes, regardless of pass/fail result, until execution of the sink node has com-
pleted. When the execution of the sink node has completed, all nodes will be in either the
fail or pass state—a node in a Phase-Il subgraph will never enteetio®ery orundone
states because nodes in Phase-Il subgraphs are never undone.

Second, if a node fails in a Phase-Il subgraph, its failure must not impede the execu-
tion of the remaining nodes in the subgraph. This can only happen if the node which fails
generates a result which is used by its children. Formally, this is represented by a true data
dependence in the graph. Therefore, a Phase-Il subgraph can contain no true data depen-
dencies.

Third, because execution of Phase-Il subgraphs must be unconditional, predicate
nodes are not allowed in the subgraph. Conditional execution is disallowed because the
execution engine can not predict which branch to take should a predicate node falil,
thereby preventing execution of the subgraph from completing.

Finally, as described in the preceding discussion of Phase-| subgraphs, Phase-Il sub-
graphs may not contain actions which allocate resources and must contain all actions
which deallocate resources.

5.3.3 Commit Node Determines Direction of Recovery

To keep the engine general, it is not designed to interpret the semantics of a graph as
it is executed; the engine simply parses the graph, from source node to sink node. How-
ever, if an error occurs and roll-away error recovery is employed, the engine must under-
stand which subgraph is being executed so that it may apply the appropriate recovery

106

protocol: roll backward in the case of a Phase-I subgraph, roll forward in the case of a
Phase-Il subgraph.

To enable the engine to discern which subgraph it is currently executing, a a node
whose do action iEommit, is inserted between the two subgraphs, completely isolating
them from one another so that only one graph is being executed (has noddisad the
state) at any moment in time. The engine executes the node containapnthet action
just like any other—th€ommit action simply sends a message to the execution engine
(e.g. sets a flag) which indicates that the Phase-I subgraph has successfully completed exe-
cution and that execution of the Phase-1l subgraph has commenced. The commit node has
the special property that it will never fail; therefore, it is only in eithenihig fired, or
pass states.

5.3.3.1 Inserting a Commit Node Into a Read Graph

Read graphs are, by definition, strictly Phase-I subgraphs—they do not contain a
subgraph which writes new symbols to storage. As a sanity check in our implementation,
we inserted a commit node into all graphs, even if there were no Phase-Il nodes. This per-
mitted a general post-processing analysis of all completed graphs to ensure that a commit
node was present and in the correct state. Therefore, the commit node is always positioned
at the end of the read graph as the sink node. This placement is easily rationalized by real-
izing that it is not possible to successfully complete a read operation unless all actions
complete successfully. If some of the actions fail, the operation is generally unable to
return all of the requested data without scheduling additional work. Therefore, the graph is
allowed to fail atomically and then a different graph is scheduled in its place.

As an example, Figure 5-3 presents the degraded read graph from Figure A-4 on
page 146 which has been modified to support roll-away error recovery through the addi-
tion of a commit node.

5.3.3.2 Inserting a Commit Node Into a Write Graph

Phase-| graphs are known to be recoverable and it stands to reason that simply
appending a commit node to the end of the write graph of Appendix A results in a graph
which is recoverable. However, to reduce undo logging, it is desirable to propagate the
commit node toward the head (source node) of the graph. Two conditions prevent propaga-
tion of the commit node: (1) the presence of predicate nodes and (2) the presence of true
data dependencies. As Section 5.3.2 explained, predicate nodes are disallowed in Phase-l|
subgraphs because all nodes of a Phase-Il subgraph are unconditionally executed. True
data dependencies between the nodes in a Phase-Il subgraph are disallowed because they
violate the property that the failure of one node should not affect the execution of other
nodes in the graph. If true data dependencies were permitted in Phase-Il subgraphs, the
failure of a node which produces a result (data) that is used by subsequent nodes would
prevent the subsequent nodes from executing.

107

Figure 5-3 Degraded-read graph

A Commit node has been added as to the end of the graph. Remember: reaching
the Commit node implies that the graph will complete successfully.

explore(node)
[* recursively explore toward the source node */
for each parent of node
if no data dependence between parent any child
explore(parent)
else
place commit node between parent and node

main()
[* begin with sink node and work toward source node */
explore(sink node)

Figure 5-4 Algorithm for inserting a commit node into a write graph

This algorithm inserts a commit node into a graph by beginning at the sink node
and then recursively examining each branch, looking for data dependencies
between two nodes. When a dependence is discovered, the commit node is inserted
between these two nodes. As written, this algorithm does not look for predicate
nodes. This check can easily be added to the roaekipkre()

Figure 5-4 suggests an algorithm for inserting a commit node into a write graph.

This algorithm looks for data dependencies, beginning with the sink node of the graph and
working towards the source node. Each branch is explored until a node is discovered that
has a data dependence to one or more of its children. The commit node is inserted between

108

this node the node being examined. Note that this algorithm does not account for predicate
nodes, which are not allowed in Phase-IlI subgraphs. The algorithm is easily extended to
prevent predicate nodes from entering the Phase-Il subgraph by looking for both data
dependencies and predicate nodes as the branches are explored. If either is found, the
commit node is inserted.

Appendix C contains the code for a program based upon this algorithm. This pro-
gram creates a RAID level 5 small-write graph, which appends a commit node to the sink
node of a graph, and then attempts to propagate the commit node toward the source node
of the graph, in effect, moving nodes from the Phase-I subgraph to the Phase-Il subgraph.
This algorithm was used to transform the graphs of Appendix A into the graphs of
Appendix B.

To demonstrate this algorithm, I illustrate the series of steps required to insert a
commit node into the small-write graph originally presented as Figure 3-3 on page 55 and
duplicated here as Figure 5-5(a). The process of inserting the commit node begins in
Figure 5-5(b) in which the parents of the sink nddel@ck) are examined, beginning
with theWr node. The algorithm recursively walks up the graph until it reaches the Rd
node which has a data dependence to one of its childf@R), TheCommit node is
inserted between tHed andWr nodes. This process is repeated in Figure 5-6 with the
second parent of the sink nodiéemD, being examined. Again, the algorithm recursively
walks up the graph until this time t&®R node is reached. Because ¥@R node has a
data dependence to its chiM/x), theCommit node is inserted betwe®OR andWr.
Because the sink nodérflock) has no other parents, the process is complete.

Because the structure of the graph has changed, it is possible that some arcs in the
graph may now have become redundant as defined in Section 3.3.4. Figure 5-7(a) illus-
trates the removal of tHed-Commit, which is now redundant. Next, because the nodes in
the Phase-Il subgraph (descendants of the commit node) are not undoable actions, the
strict serial ordering of resource deallocation actions, previously necessary to avoid dead-
lock during rollback, is no longer required. In this exampleMeenD andUnlock nodes
of Figure 5-7(b) are now permitted to execute concurrently by removing the control
dependenceMemD-Unlock) which preserved this serial ordering. Finalll§@P node is
added to maintain the property that the graph has a single sink node.

5.3.4 Adjusting Graph Execution Rules

Node failures which occur prior to the execution of the commit node are handled by
the execution engine in the same manner described in Section 3.5.4—the engine walks
backward from the point of failure, executing the undo actions in the graph until the
source node is reached and the graph has failed atomically. Using the small-write graph of
Figure 5-7(b), the process of recovering from a node failure prior to the commit node is
illustrated in Figure 5-8.

109

Figure 5-5(a): Initial graph Figure 5-5(b): Step 1: explore left-most
parents otnlock node

Figure 5-5 Inserting a commit node into a RAID level 4/5 small-write graph

Figure 5-5(a) illustrates a small graph that we wish to add a commit node to.
Beginning with th&Jnlock node, the parents of each node are recursively exam-
ined until a data dependence (represented by the bold arrows) is encountered. At
this point, theCommit node is inserted between the nodes that share the depen-
dence. In Figure 5-5(b), the left-most branch has been walked until the left-most
Rd node was reached. Because this node has a true data dependence to one of its
children Rd-XOR), the walk stops and ti@ommit node is inserted between the

Rd andWr nodes. This process continues in Figure 5-6.

110

Figure 5-6 Inserting a commit node into a RAID level 4/5 small-write graph

Continuing from Figure 5-5(b), the right-most branch is walked untiXO&

node is reached. Because this node has a true data dependence between itself and
its child Wr), the walk stops and ti@ommit node is inserted between tHOR

andWr nodes. At this point, all branches leading to the sink nOdé¢k) have

been explored, and the insertion is complete. The resulting graph is shown above.

111

Figure 5-7(a): Step 4: eliminate a redun- Figure 5-7(b): Step 5: eliminate an
dant arc unnecessary control dependence

Figure 5-7 Graph optimization

After completing insertion of the commit node, the graph of Figure 5-6, redundant
arcs are eliminated. Step 4 in this example eliminateRth€ommit arc because

it duplicates theRd-XOR-Commit path. Finally, because resource deallocation
actions in the Phase-Il subgraph do not require the serial ordering necessary when
they were members of a Phase-1 subgraphUthleck andMemD nodes are

allowed to occur in parallel. To guarantee a single sink nod¢Q& node was

added.

112

[[
2 S
+— +—
> >
o D
X X
Q (D)
o ©
G 3
= =
b~ -
O O
©

L

Y o

Figure 5-8 Recovering from errors prior to the commit point

The failure of thdRd node, indicated in bold, causes forward execution to halt.
Once théNr node which was in tHeed state completes, roll-backward execution
begins, undoing the previously completed actions by executing the corresponding
undo functions from each node. In the illustration on the rightiviemA node is

in therecovery state which implies that its undo function is currently being exe-
cuted. When roll-backward execution completes, the graph has failed atomically,
all nodes in the Phase-I subgraph are in eitherdhdone or fail state and alll

nodes in the Phase-1 subgraph are in wegt state.

113

Once the commit node is reached, execution of the graph will continue until the sink
node is reached, regardless of whether a node subsequently fails or not. Because the undo
information required to ensure the recoverability of the Phase-I subgraph is no longer nec-
essary, the undo log records for this graph can be eliminated from the undo log when the
commit node is reached.

Section 3.5.3 specified that during the process of forward execution, a node is ready
for execution if all of its parents are in some combinatiomp#ss or skip states. Because
forward execution of Phase-Il subgraphs continues, regardless of node failures, this rule is
changed to enable a node for execution when its parents are in some combination of the
pass or fail states.

An example of a node failure which occurs after the commit point is reached is pre-
sented in Figure 5-9. In this example, execution continues forward, with all remaining
nodes successfully completing. When the execution of a graph reaches the sink node, it is
declared to be successful, regardless of node failures which may have occurred in Phase-
ll. This is possible because all symbols of the codeword, except those residing on failed
devices, were written correctly. The completion of the graph and the failure of a device
can be viewed as two independent events whose ordering is arbitrary.

5.3.5 Fault Model

The fault model presented in Section 3.6 still holds; however, the defining properties
of nodes must be altered for nodes that appear in Phase-Il subgraphs. Device faults con-
tinue to be observed as node failures. Node failures are survived in one of two ways: first,
if the node fails prior to commit, the graph is rolled back as before, and the visible state
changes made by the graph are undone. If a node fails after commit has been reached, exe-
cution continues forward to the end, and the system is left in a state in which all symbols
have either been updated correctly or marked as “failed.” The remainder of this section
describes the changes to device actions (nodes) that are necessary to preserve the fault
model.

Failures that interrupt the execution of a graph can still be tolerated through the use
of durable undo and redo logs. As before, the undo log contains the information necessary
to undo the effects of a failed graph. Any graph whose execution is interrupted prior to
commit is undone at restart. However, this is not the case for nodes that follow commit.
This is because these nodes are not undoable. Therefore, once commit is reached, enough
information to redo each node that follows the commit is entered into a redo log. Because
we know that the graph can reach completion once commit occurs, playing the redo log
after restart will cause the graph to reach completion.

114

forward execution

- roll-forward execution

Figure 5-9 Recovering from errors following the commit point

The failure of th&Vr node, indicated in bold, causes forward execution to halt.
Once theNr node which was in thired state completes, roll-forward execution
begins, continuing until the sink nodénlock) is executed and completed. When
execution completes, all nodes in the Phase-I subgraph are in eitheadber

skip state and all nodes in the Phase-Il subgraph are in either the eithpatise

or fail state. At this point, the system appears as if the graph completed without
error followed by a failure of a disk (which corresponds towhefailure).

115

5.3.5.1 Adjusting Node Properties

Recall, from Section 3.2.1, that nodal actions were defined to atomically update all
symbols that it operated upon—if the node failed, these symbols were left either
unchanged or marked as failed. Additionally, actions were required to maintain the inde-
pendence of the faults that they encounter—the failure of an action to properly operate
(read, write, or compute) upon one symbol should not necessarily fail the other symbols.
This atomic execution of actions greatly simplified the process of backward recovery;
actions which failed left no state to clean up and actions which had previously completed
were undone using the contents of the undo log.

Because roll-away error recovery does not rely solely upon backward recovery, the
rules which specify how a node should fail must be reexamined. Specifically, instead of
backing out successful changes to symbols, actions that fail during the execution of a
Phase-1l subgraph must complete all possible state changes. Therefore, unlike nodes in a
Phase-I subgraph, nodes that fail in a Phase-Il subgraph must leave all symbols either
changedor marked as failed. For example, if a Phase-Il action that writes symbols to mul-
tiple sectors in a single disk encounters the failure of a single sector, it must complete the
writes to surviving sectors. By doing this, the roll-forward recovery procedure of Phase-II
subgraphs is preserved.

5.4 Performance Evaluation

Similar to the analysis in Section 5.1, which compared the response times of various
architectures at given throughputs for the graphs of Appendix A with and without undo
logging, | repeated the random 4 KB write benchmark of the eight array architectures, but
this time using the graphs of Appendix B. Read operations were not retested because the
graphs are identical to those used in Appendix A, with the exception that the sink node
(NOP) was replaced by a commit node. Figure 5-10 presents the results of this experiment
which are that roll-away error recovery graphs exhibited the same performance as the
graphs which were executed with no undo logging. The actual data values, with 95% con-
fidence intervals, are presented in Table C-8 on page 222. The average difference in
response time for a given throughput was negligible (lesstih#) and the confidence
intervals were equally tight (less tha#% of the mean).

This strong correlation was not surprising: the Phase-I subgraphs were composed
entirely ofRd, Q, andXOR nodes, none of which required undo records. Therefore, the
only potential impact on performance was the elimination of some concurrency within the
graph, specifically at the point where the commit node was inserted.

116

BF G—oRAID Level O
&—aRAID Level 1 1 300 |
—oRAID Level 4
| A—ARAID Level 5
>—>RAID Level 6
x—x Declustering
+—+Interleaved
¥—xChained

300

N
o
o

ponse time (ms)
o
(@)

-
o
o

Response time (ms)

Res
(BN
o
o

0o 200 400 600 800 0O 200 400 600 800
Throughput (10/sec) Throughput (I0/sec)

Figure 5-10(a): Forward Figure 5-10(a): Roll-Away

Figure 5-10 Relative performance of roll-away recovery

Figure 5-10(b) shows the results of the experiment of Figure 4-7 (random 4 KB
writes) repeated with all nodes in the graphs generating undo records. To permit a
direct visual comparison, Figure 5-10(a) presents the data from Figure 4-7(b). All
data was for RAIDframe operating as a device driver.

5.5 Correctness Testing

Roll-away error recovery is the sole method of recovery currently supported by
RAIDframe [Courtright96c]. Extensive testing of this error recovery protocol was per-
formed by injecting disk faults into an array, causing each graph type to either roll forward
or roll backward, and then verifying that the array continued to operate in a consistent
manner. The majority of our testing was performed with RAIDframe installed as a user
process, running against real disks. Installing RAIDframe as a user process simplified the
processes of fault injection and validation for two reasons: first, the simulator does not
actually move data and therefore data corruption bugs are difficult to detect. Second,
injecting faults and monitoring their effects in the kernel can be cumbersome. Because the
same code is used when RAIDframe is installed as a simulator or device driver, the results

117

obtained through user-level testing are expected to apply equally well to all three environ-
ments.

| employed two of RAIDframe’s utilitied,oopTest andReconTest , to perform
the testing. Each of these tests begins by initializing the array’s data and redundancy
blocks and then proceeds by sending a series of random write requests to the array. Each
write request is followed by a read request to confirm that the data was properly written to
the array as well as a verification of the integrity of the codeword (i.e. that proper redun-
dancy information was written). The number of write requests, as well as number of write
requests which may execute concurrently, may be specified independentReddre
Test has the additional property that at the end of the test, all data and redundancy infor-
mation is read from the entire address space of the array, verifying not only that the
locations which were to be overwritten contained the appropriate data, but also verified
that no side effects were introduced (e.g. extents which were not overwritten remained
unchanged). Finally, both utilities provided the ability to asynchronously fail a disk during
the test and begin reconstruction without bringing the array off-line.

Initial testing was performed to verify that the graph correctly parsed the graphs.
Testing began by modifying the engine code to first fail nodes in the Phase-I subgraph, and
later, the Phase-Il subgraph. This permitted validation that the two execution protocols,
roll-backward and roll-forward, were operational and correctly parsing the graph. Using
the small-write graph, | first faileldd andXOR nodes (in different experiments) which
forced rollback of the Phase-I subgraph. Next, | fail®dranode to verify that the engine
would continue to walk forward through a graph, given the failure of a Phase-Il node. In
addition to this testing, RAIDframe contains routines which, when enabled, analyze every
graph that completes, performing sanity checks such as verifying that all nodes are in valid
states (e.g. all pass/skip). These routines were enabled throughout the testing procedure.

Once this engine was known to be parsing the graphs correctly the disk failure
mechanism provided by the utilities was used to inject asynchronous faults. Testing with
10,000 requests per thread, 30 threads, asynchronously failing a disk, and then recon-
structing it, revealed no data corruption for random request sizes and alignments which
exercised all of the graphs for RAID levels 1, 4, 5 and parity declustditingries. Test-
ing was repeated until each graph was forced into both roll-back and roll-forward recovery
scenarios.

Finally, limited testing was performed with RAIDframe installed as a device driver
in a Digital UNIX™ 3.2c kernel. First, using the UNB utility, random I/Os were sent
to the RAIDframe device and a drive was physically removed while the array was servic-
ing requests. Information describing the type of graphs which failed at the instant the drive
was removed, and the action taken by the execution engine, and the final state of all nodes
in the graph was displayed on the console for verification. Additionally, the utilities which
automatically verify that all nodes of completed (pass or fail) graphs were in valid states

1. Development of interleaved and chained declustering, as well as RAID level 6, was not complete at the time of this
testing. Because RAID level O is not fault tolerant, it could not be used in testing.

118

were enabled. Testing was limited to about a dozen attempts because Digital UNIX was
not able to consistently tolerate the physical removal of SCSI devices, something it was
not designed to cope with. On average, one half of the removals resulted in a condition
known as a “SCSI bus freeze” in which all subsequent accesses to any device on the SCSI
bus that contained the drive that was removed are disallowed. The only remedy for restor-
ing access to these devices is to reboot the machine.

5.6 Summary

Roll-away error recovery, a novel two-phase error recovery scheme, automates the
problem of recovering from failures of actions which compose redundant disk array oper-
ations. Roll-away error recovery has been shown to enjoy the performance advantages of
forward error recovery and the simplicity of backward error recovery schemes. Building
upon the graph-based representation defined in Chapter 3, roll-away error recovery fully-
mechanizes the execution of array algorithms. Like backward error recovery, roll-away
error recovery eliminates the need for architecture-specific error-recovery code, simplify-
ing the processes of implementation, verification, and extension. However, unlike back-
ward error recovery, roll-away error recovery is able to do this without a significant (30-
50%) performance degradation; in fact, roll-away error recovery performance is identical
to that of forward error recovery schemes which introduce no logging or other overhead
during error-free processing.

This improvement in performance over strict backward error recovery schemes is a
result of the realization that not all actions must be undoable; specifically, by removing the
need to undo actions such as a disk write, significant overhead is eliminated from the log-
ging process. Expanding the structural constraints of flow graphs, summarized here in
Table 5-1, a commit node is inserted into each graph. Extending the execution invariants,
summarized here in Table 5-2, flow graphs are executed in a manner that guarantees, in the
absence of a crash, atomic operation. If atomic crash semantics are required, the undo log,
already in use, must be made durable. Also, a durable redo log must be created. However,
because the redo records are easily created from state which currently exists in the array
controller, (disk accesses are not necessary), performance is not significantly degraded.

Roll-away error recovery has been implemented in RAIDframe and was demon-
strated to be correct. A general method for inserting a commit node into a flow graph was
developed and applied to each of the twenty one graphs of Appendix A. The resulting
twenty one graphs were introduced as Appendix B.

119

Table 5-1 Structural constraints of graphs with commit nodes

Graph Segment

Constraint

Global

Single commit node in each graph.

Phase-l and Phase-Il Subgraphs isolated by commit node.

Single sink node.

Single source node.

No cycles.

Phase-I Single source node.

Single sink node (commit node).

All nodes are atomic and undoable.
Phase-ll Single source node (commit node).

Single sink node.

No predicate nodes.

No true data dependencies.

Nodes preserve the independence of symbol operatic
If a node which operates upon multiple symbols deteg
failure when operating upon a subset of those symbo
the remaining symbol operations are completed.

ns.
tsa
S,

120

Table 5-2 Execution invariants of graphs with commit nodes

Execution
Protocol

Invariants

Normal (error free)

Each nodes is initially in thait state.

Execution begins with source node.

A node may be executed if all parents are inpidess or
skip states.

Execution terminates at the sink node. Each node is i
either thepass or skip state.

Roll Backward

Commit node is ivait state.

All nodes in the Phase-Il subgraph in thait state.

Execution terminates at the source node. At completi
each node in the Phase-I subgraph is imtig undone,
or fail state.

Roll Forward

Commit node is in thgass state.

Each node in the Phase-I subgraph is in eithepdiss,
skip, orwait state.

Execution terminates at the sink node. At completion,
each node in the Phase-Il subgraph is in eithepdlss

or fail state.

121

122

Chapter 6: Conclusions and Recommendations

In Chapter 1 of this dissertation, | stated my belief that the contemporary methods
utilized in the implementation of redundant disk array software, which rely upon a case-
by-case treatment of errors, are inadequate in that they unnecessarily complicate the pro-
cesses of coding, verification, and extension. In addition to demonstrating the validity of
this belief, this dissertation made four principal contributions which directly support my
thesis:

1. A new programming abstraction to promote code reuse.

2. A reduction of architecture-specific error recovery code by isolating action-spe-
cific recovery from algorithm-specific recovery.

3. A mechanism for execution disk array algorithms that includes the recovery from
errors detected during execution.

4. A significant reduction, in comparison to a naive mechanical scheme, in the log-
ging penalties required to mechanize error recovery.

5. A programming abstraction which is amenable to automated correctness verifica-
tion.

6.1 Validating the Problem

The work described in this dissertation was motivated by the fundamental belief that
the ad hoc techniques currently employed in the implementation of redundant disk array
software result in long development cycles due to the limited the ability of vendors to
quickly implement basic (e.g. RAID level 5) array architectures, and, once implemented,
validate their correctness.

Chapter 2 provided a compendium of background information, including a review
of a variety of disk array architectures. The necessity of error recovery in redundant disk

123

arrays, as well as several methods for coping with errors, was described. This review also
demonstrated that a wide variety of disk array algorithms can be created from a relatively
small set of actions, such disk readandXOR suggesting that it should be possible to
quickly, and easily, extend a working disk array to support new algorithms and architec-
tures.

Chapter 3 introduced a programming abstraction built upon the premise that by
encapsulating the actions which compose disk array algorithms with a pass/fail interface,
recovery from action-specific errors can be isolated from array-level recovery. A graphical
method of representing the sequencing of these actions was then introduced in which the
actions are represented nodes of the graph and the dependencies between the nodes (con-
trol or data) are represented by directed arcs. The merits of using forward recovery in the
execution of these graphs was then examined and dismissed as unreasonable for several
reasons. First, correctly designing a graph to ensure that it is recoverable is not obvious—
subtle execution and failure timings which interrupt the execution of a graph can leave the
system in a state from which recovery is impossible. Second, such a scheme requires the
creation of a unique recovery procedure for each distinct error scenario. Because recovery
is not generalized, the execution of these graphs is not easily mechanized. Third, these
recovery procedures must be individually verified, something which is not easily done at
design time. Finally, industry sources report that a significant fraction (over 50%) of the
code that is written for systems based upon this approach is devoted to error recovery
[Friedman96].

If the execution of a graph, including the recovery from failed nodes, could be gen-
eralized, the problem of designing and verifying algorithm-specific procedures would be
eliminated. Given the programming abstraction developed in Chapter 3, which isolates the
action-specific error recovery from the execution of array algorithms, mechanization
should be possible, and therefore, the complexity of case-by-case error recovery proce-
dures are unnecessary.

6.2 Eliminating Architecture-Specific Error Recovery Code

The final contribution of Chapter 3 was the introduction of a mechanized approach,
borrowed from those used in transaction-processing systems, for executing disk array
algorithms represented as graphs. The approach required that the actions contained in the
nodes of a graph be atomic and undoable. As a graph executed, each node recorded
enough information so that, if the graph failed, its effects could be undone. This resulted in
the atomic failure of a graph.

124

Chapter 4 introduceRAIDframe a prototyping framework built upon this graphical
programming abstraction. Implementations of eight disk array architectures revealed that
RAIDframe’s modular construction permitted code reuse to be consistently above 90%.
Additionally, all changes were localized, further simplifying the process of extending
existing code. Analysis indicated that RAIDframe’s performance was consistent with that
of a nonredundant hand-crafted striping driver; however, RAIDframe’s CPU consumption
was 60% higher than that of the hand-crafted driver. Nevertheless, the response time ver-
sus throughput characteristics of the eight architectures implemented in RAIDframe per-
formed as expected.

6.2.1 Reducing Logging Penalties

Using RAIDframe, Chapter 5 examined the cost, in terms of performance, of guar-
anteeing that all nodes in a graph are undoable. Because undoing disk writes is expensive,
requiring the pre-read of disk sectors which are to be overwritten, the maximum small-
write throughputs of the eight array architectures were degraded by 30-50%.

RAIDframe already limited the scope of the rollback by eliminating allocating
resources (e.g. locks and buffers) and acquiring the data to be written to the array outside
the graphs, eliminating the need for them to be undone. Chapter 5 introduced roll-away
error recovery, a method for further reducing the need to log undo information. This was
accomplished by eliminating the need to undo nodes, such as disk write, which occurred at
the end of a graph. A commit point was inserted in each write graph, separating the actions
that write information to disk from the actions that created the information which was to
be written. If a node fails prior to commit, its effects are undone as before. If a node failed
after commit, the graph rolls forward to completion. The rules for inserting the commit
point, which enable this roll-forward approach, were described and the graphs (and nodes)
which were used in the previous experiments were modified accordingly. The result was
that the performance was that the logging overhead was eliminated.

6.2.2 Enabling Correctness Validation

Finally, because the programming abstraction introduced in Chapter 3 models array
algorithms as state machines, techniques such as model checking can be used to verify that
array algorithms are recoverable [Vaziri96]. This approach exercises all possible interleav-
ings of a state machine to ensure that the correctness invariants are not violated. Chapter 5
provided a list of invariants which govern the creation and execution of these machines.

125

6.3 Practicality

The previous section summarized the principal contributions of this dissertation.
This section summarizes the practicality of the approach outlined in this dissertation and
put to use in RAIDframe:

« design of a graph is straightforwardAppendix A described the design of twenty-one
flow graphs. A commit point was inserted into each of these graphs which were then
presented in Appendix B.

« many graphs can be generated from a small set of primitifé® twenty-two graphs
of Appendix B were created from nine actioN®P, Rd, Wr, XOR, Commit, Q, Q,
LogOvr, andLogUpd. Through the addition of an XOR-based encoding, an additional
six graphs were possible by simply replacing@4® nodes withE/E nodes.

« roll-away error recovery does not weaken the semantics of the storage-system
traditional semantics for disk storage are that: completed write operations are durable,
write operations which fail leave the area being overwritten in a an unknown state, and
write operations which fail do not affect areas not being overwritten. Roll-away recov-
ery not only preserves these semantics but also, as the next section will describe,
enables them to be strengthened to atomically survive power failures and system
crashes.

- deadlock avoidance is simplifieeby ensuring that all deallocation actions occur after
the barrier, the problem of avoiding deadlock during rollback (reallocating previously-
released resources) is eliminated.

6.4 Suggestions for Future Work

As explained in Chapter 1, this dissertation broadly examined problems in redun-
dant disk array software. As a result, we discovered many problems which have yet to be
examined in adequate detail. | present a list of these problems here in the hopes that other
researchers in this field will find them worthy of examination.

« graph compilation and optimizatierA cursory examination of techniques for opti-
mizing flow graphs was presented in Section 3.3.4. | see three opportunities for inter-
esting work in this area: first, graphs could pass through an optimizer which performs
the function-preserving transformations described in this dissertation. Coupling this

126

optimizer with a cache and appropriate deferment strategies, it seems likely that this
optimizer could, at the very least, eliminate redundant load/stores of shared information
(e.g. parity) and thereby improve performance.

Second, basic-block optimizations operate using only the structural constraints (depen-
dencies) present within a graph—no understanding of the semantics of the graph are
used to optimize the algorithms found in the graphs. For example, if a number of graphs
which use the small-write algorithm to update independent blocks in a common parity
stripe are merged, it is possible that the separate algorithms could be replaced by a sin-
gle large-write operation. This type of knowledge is currently only available during the
process of mapping user requests into flow graphs.

Third, instead of specifying array operations as flow graphs, it would be interesting to
see if a an abstraction, similar to a programming language, could be developed. This
may simplify the process of requesting storage access by providing an interface which
is more general, deferring details of implementation to a compiler which understand the
details of the current implementation and is able to transform the high-level request into
a flow graph.

Fourth, because disk arrays are used to improve performance, it would be interesting to
see work on a tool which could assist the process of designing and validating the ability
of graphs to achieve performance goals. This could be used in conjunction with the
compiler mentioned above, to produce graphs which don’t simply guarantee the correct
state transformations, but also guarantee properties such as maximum buffer consump-
tion per 10.

model checking-This is really work in progress [Vaziri96]. | repeat this item in this
section because | hope work will continue in this area, and that collaboration with
industry partners will develop in the near future. In following the work of Nancy Lynch,
Mandana Vaziri and Jeannette Wing, | have seen interesting results: through the use of
their models, they were able to predict write holes in the RAID level 6 small-write and
RAID level 5 reconstruct-write graphs with two graphs, one of which we did not catch.

One obstacle that | have noticed is that because model checking is not integrated into
the array development framework (in our case, RAIDframe), the duplicate specifica-
tions of flow graphs necessary for each environment lead to holes in the verification
process. For instance, separate, but hopefully identical, specifications were created for
RAIDframe, model checking, and this dissertation. During the process of working on
each of these three projects, errors, such as the inadvertent omission of an arc, were
introduced which caused these specifications to become inconsistent. Despite the fact
that the inconsistencies were often the result of typographical errors, their presence
often impeded progress and required many hours of careful checking (by hand) to
ensure that the specifications remained consistent. Therefore, it would be ideal if there
was some way to represent the flow graphs in a manner which eliminated the redundant
specifications. For example, the code which specifies a graph used in RAIDframe is the
same code used to specify a graph in the model checking software, and, can be submit-

127

ted to a printing routine which translates the code into a visual representation. This
common specification could lead to an integration of model checking into a disk array
prototyping framework, such as RAIDframe, in which once a graph were entered into
the framework, it would be automatically validated prior to including it in the graph-
creation library.

node and infrastructure designaThis dissertation largely ignored the design of nodes,
focussing instead upon the design and execution of array algorithms. However, this
does not mean that the design of nodes is trivial. In fact, after developing RAIDframe,
the pacing item in our development of new array architectures became the creation of
nodes, such as parity log append, and the infrastructure routines (parity log reintegra-
tion) for supporting them. | have no doubt that simplifying the implementation of such
functions would greatly simplify the process of array prototyping.

nested executierThe mechanism for executing graphs described in this dissertation
assumed that the nodes from which graphs were constructed were both atomic and, in
some cases, undoable. This mechanism guaranteed that graphs execute atomically in
the face of node failures. Given the complexity of node design and infrastructure rou-
tines, | believe that there may be merit in decomposing these functions into a sequence
of functions instead of designing a single massive function.

distributed executicr-This study presumed the existence of a centralized controller
which has total knowledge of a flow graph’s execution state. Section 3.5.5 proposed a
method of distributing the execution of a flow graph across multiple nodes connected
with a message-passing mechanism. Implementing and evaluating the generality of
roll-away error recovery in a distributed environment would not only be useful for
redundant disk array applications, but could also provide interesting insights in the
development of distributed file systems.

caching array architectures-Caching disk arrays are able to increase performance by
deferring work until a time when it can be performed with greater efficiency. My study
of redundant disk array software excluded caching architectures. Understanding the
ramifications of recovery from errors encountered when completing deferred work are
important to demonstrating the applicability of this approach to future array architec-
tures which are increasingly likely to rely upon some form of deferment mechanism.

atomic disk semantiesMost fault models presume that disk arrays operations which

are interrupted by crashes do not fail atomically, leaving the area to be written in an
unknown state (old data, new data, or unknown data). What is required is that opera-
tions which fail, regardless of fault, do not affect data which is not being overwritten.
This semantic, carried forward from the traditional semantic of disk drives, continues to
plague the implementors of dependable systems which require ACID behavior in a
storage system—architects have been forced to implement procedures outside the stor-
age system to create stable storage.

128

source commit

node node

Figure 6-1 Synchronized commit coordinates recovery of multi-graph requests

In this example, two flow graphs have been merged to share a single commit node,
effectively forcing both graphs to complete their Phase-I subgraph before either
graph is permitted to crossing the commit point. This effectively creates global
Phase-I and Phase-Il subgraphs and enables global atomic recovery.

By using nonvolatile memory to hold array operating state, disk array vendors are able
to produce controllers that atomically survive crashes. By adding a durable redo log
that contains enough information to repeat the Phase-1l nodes, and making the undo log
durable, roll-away recovery permits the atomic survival of crashes (and pending recov-
ery from Phase-1 node failures). At restart, replaying the contents of the undo log would
remove the effects of all graphs which were interrupted prior to the commit node. Sim-
ilarly, replaying the contents of the redo log would complete the execution of graphs
which were interrupted after the commit node. Extending this recoverability to multi-
graph operations is possible by forcing both graphs to commit simultaneously. In the
illustration of Figure 6-1, multiple flow graphs are joined with a a common commit
node. After two or more flow graphs have been joined, the newly created graph can be
converted to a proper flow graph by simply guaranteeing the existence of single sink
and source nodes. By mirroring the undo and redo logs in multiple controllers, the per-
manent failure of a controller can be survived atomically.

129

130

References

[Aho88] Aho, A. V., Sethi, R., and Ullman, J. Dompilers: Principles, Techniques, and
Tools Reading, MA: Addison-esley Publishing Company (March, 1988).

[Anderson85] Anderson, T., Barret, P. A., Halliwell, D. N., and Moulding, M. R. “An
evaluation of software fault tolerance in a practical systermoteedings of the 15th Annual
International Symposium on Fault-Tolerant Computing (FTCSiids Alamitos, CA:

IEEE Computer Society Press, Ann Arbor, Ml (June 19-21, 1985) 140-145.

[ANSI91] American National Standard for Information Systems (ANSHall Computer
System Interface - 2 (SCSI-@pcument X3.131-1991. Global Engineering Documents,
2805 McGaw, Irvine, CA 92714. (October 17, 1991).

[ANSI94] American National Standard for Information Systems (ANSiye Channel
Arbitrated Loop (FC-AL)Global Engineering Documents, 2805 McGaw, Irvine, CA 92714.
(June 17, 1994).

[Arazi88] Arazi, B.A Commonsense Approach to the Theory of Error Correcting Codes
Cambridge, MA: MIT Press (1988).

[ATC90] Array Technology Corporatioroduct Description: RAID+ Series Model RX
Boulder, CO (1990).

[Avizienis76] Avizienis, A. “Fault-tolerant systems$EEE Transactions on Computers
C-25(12). (December 1976), 1304-1312.

[Bellcore95] BellcoreReliability Prediction Procedure for Electronic EquipméeFdchnical
Reference TR-TSY-332, Issue 5. (December 1, 1995).

[Bernstein87] Bernstein, P. A., Hadzilacos, V., and Goodma@poNcurrency Control and
Recovery in Database Systemeading, MA: Addison-Wesly (1987).

[Bhide92] Bhide, A. and Dias, RAID architectures for OLTRBM Computer Science
Research Report RC 1789. IBM Corp., Almaden, Calif. (1992).

[Bitton88] Bitton, D. and Gray, J. “Disk shadowin@foceedings of the 14th Conference on
Very Large Data Bases (VLDB-14peptember 1988) 331-338.

131

[Bjork75] Bjork, L. A. Jr. “Generalized audit trail requirements and concepts for data base
applications.1BM Systems Journdl4(3). (1975) 229-245.

[Blaum94] Blaum, M., Brady, J., Bruck, J., and Menon, J. “EVENODD: an optimal scheme
for tolerating double disk failures in RAID architecturérbceedings of the 21st Annual
Symposium on Computer Architecture (ISQAs Alamitos, CA: IEEE Computer Society
Press. Chicago. (April18-21, 1994) 245-254.

[Boehm81] Boehm, B. W5oftware Engineering Economi&nglewood Cliffs, NJ:
Prentice-Hall (1981).

[Brown72] Brown, D. T., Eibsen, R. L., and Thorn, C. A. “Channel and direct access device
architecture.IBM Systems Journdll1(3). (1972) 186-199.

[Burkhard93] Burkhard, W. and Menon, J. “Disk array storage system reliability.”
Proceedings of the 23rd Annual International Symposium on Fault-Tolerant Computing
(FTCS-23) Toulouse, France. (June 1993).

[Cao94] Cao, P., Lim, S. B., Venkataraman, S., and Wilkes, J. “The TickerTAIP parallel
RAID architecture’ACM Transactions on Computer Syster€3). (August 1994)
236-269.

[Chandy72] Chandy, K. M. and Ramamaoorthy, C. V. “Rolllback and recovery strategies for
computer programslEEE Transactions on ComputeZs21(6). (June 1972) 546-556.

[Chao92] Chao, C., English, R., Jacobson, D., Stepanov, A., and Wilkes, J. “Mime: a high
performance parallel storage device with strong recovery guarantees.” Hewlett-Packard
technical report HPL-CSP-92-9. (November 1992).

[Chen78] Chen, L. and Avizienis, A. “N-version programming: a fault-tolerance approach to
reliability of software operationProceedings of the 8th Annual International Symposium

on Fault-Tolerant Computing (FTCS:&)os Alamitos, CA: IEEE Computer Society Press.
Tolouse, France (June 1978) 3-9.

[Chen90] Chen, P., and Patterson, D. “Maximizing performance in a striped disk array.”
Proceedings of the 17th International Symposium on Computer Architecture.(L9GA)
Alamitos, CA: IEEE Computer Society Press. Seattle, WA. (May 1990) 322-331.

[Chen94] Chen, P. M., Lee, E. K., Gibson, G. A,, Katz, R. H., and Patterson, D. A. “RAID:
high-performance, reliable secondary stora§€M Computing Survey&s(2). (June 1994)
143-185.

[Clarke82] Clarke, E. and Emerson, E. A. “Synthesis of synchronization skeletons for
branching time temporal logic.” Proceedings of the Workshop on Logic of Programs, May
1981, Yorktown Heights, NY. Published lascture Notes in Computer Sciends. 131.

Wein, Austria: Springer-Verlag (1982) 52-71.

132

[Clarke94] Clarke, E., Grumberg, O., and Long, D. “Model checkipgnteedings of the
International Summer School on Deductive Program Desiigmktoberdorf, Germany.
(July 26 - August 27, 1994).

[Collins93] Collins, W., Brewton, J., Cook, D., Jones, L., Kelly, K., Kluegel, L., Krantz, D.,
and Ramsey, C. “Los Alamos HPDS: high-speed data trarRfecéedings of the 12th

IEEE Symposium on Mass Storage SysteosAlamitos, CA: IEEE Computer Society
Press. Monterey, CA (April 26-29, 1993) 111-118.

[CRW96] “Suppliers undaunted by Hewlett-PackardCaomputer Retail Weelebruary 5,
1996) 62.

[Copeland] Copeland, G. and Keller, T. “A comparison of high-availability media recovery
techniques.Proceedings of the ACM Conference on Management of Data (SIGMOD)
(1989) 98-109.

[Courtright94] Courtright, W. V. Il and Gibson, Garth A. “Backward error recovery in
redundant disk arrays?roceedings of the 20th International Conference for the Resource
Management and Performance Evaluation of Enterprise Computing Systems (CMG94)
Computer Measurement Group, 414 Plaza Drive, Suite 209, Westmont, IL 60559. Orlando,
FL (December 4-9, 1994) 63-74.

[Courtright96a] Courtright, W. V. II, Gibson, G., Holland, M., and Zelenka, J. “RAIDframe:
rapid prototyping for disk arrays?roceedings of the Joint International Conference on
Measurement & Modeling of Computer Systems (SIGMETRICS8i@&delphia, PA (May
23-26, 1996) 268-269.

[Courtright96b] Courtright, W. V. 1I, Amiri, K., Gibson, G., Holland, M., and Zelenka, J. “A
structured approach to redundant disk array softwBreceedings of the IEEE

International Computer Performance and Dependability Symposium (IPDSJA&na-
Champaign, IL (September 4-6, 1996) 11-20.

[Courtright96c] Courtright, W. V. Il, Holland, M., Gibson, G., and Reilly, LRMIDframe:
A Rapid Prototyping Tool for RAID Syster@®mputer Science Technical Report CMU-CS-
96-xxx, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (1996).

[Custer93] Custer, Hnside Windows N'Microsoft Press, One Microsoft Way, Redmond,
WA 98052-6399. (1993).

[Digital89] Digital Equipment Corporatiomigital Storage Technology Handboqi 989).

[Disk90] Disk/Trend, Inc1990 Disk/Trend Report: Rigid Disk Drivédountain View, CA
(October 1990).

[Disk96a] Disk/Trend, Inc1996 Disk/Trend Report: Disk Drive Arraygdountain View, CA
(November 1996).

133

[Disk96b] Disk/Trend, Inc1995 Disk/Trend Report: Rigid Disk Drivédountain View, CA
(May 1996).

[DOD81] U.S.A. Dept. of Defens#lilitary Standard: Reliability Modeling and Prediction
MIL-STD-756B. Washington 20301. (November 18, 1981).

[DOD86] U.S.A. Dept. of Defens#lilitary Handbook: Reliability Prediction of Electronic
EquipmentMIL-HDBK-217E. Washington 20301. (October 27, 1986).

[Elmendorf72] Elmendorf, W. R. “Fault-tolerant programmirfggbceedings of the 2nd
International Symposium on Fault-Tolerant Computing (FTC% Alamitos, CA: IEEE
Computer Society Press, Newton, MA (June 19-21, 1972) 79-83.

[Friedman96] Friedman, M. B. “RAID keeps going and going antEEE Spectrun33(4).
(April 1996) 73-79.

[Fujitsu87] Fujitsu CorporatioM2361A: Mini-Disk Drive Engineering Specifications,
BO3P-4825-001A(February 1987).

[Ganger94] Ganger, G. R., Worthington, B. L., Hou, R. Y., and Patt, Y. N. “Disk arrays:
high-performance, high-reliability storage syster@inputer(March 1994) 30-36.

[Geist87] Geist, R. and Daniel, S. “A continuum of disk scheduling algoritx@i
Transactions on Computer Systeb(s) (February 1987) 77-92.

[Gibson89] Gibson, G. A., Hellerstein, L., Karp, R. M., Katz, R. H., and Patterson, D. A.
“Coding techniquest for handling failures in large disk arragmteedings of the Third
International Conference on Architectural Support for Programming Languages (ASPLOS
l1) . Boston, MA. (April 1989) 123-132.

[Gibson92] Gibson, G. ARedundant Disk Arrays: Reliable, Parallel Secondary Storage
Cambridge, MA: MIT Press (1992).

[Gibson93] Gibson, G. A., Patterson, D. A. “Designing disk arrays for high data reliability.”
Journal of Parallel and Distributed Computidd(1-2). (1993) 4-27.

[Gibson95a] Gibson, G. A, et. al. “The Scotch Parallel Storage Systemesst of Papers:
Fortieth IEEE Computer Society International Conference (COMPCON Spring_‘88)
Alamitos, CA: IEEE Computer Society Press, San Francisco, CA. (March 5-9, 1995) 403-
410.

[Gibson95b] Gibson, G. Courtright, W. V. Il, Holland, M., and ZelenkRAIDframe:

Rapid Prototyping for Disk Array€omputer Science Technical Report CMU-CS-95-200,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (1995).

134

[Golding95] Golding, R., Bosch, P., Staelin, C., Sullivan, T., and Wilkes, J. “Idleness is not
sloth.” Proceedings of the USENIX 1995 Technical Conference on UNIX and Advanced
Computing System&SENIX Association, Berkeley, CA (1995) 201-212.

[Gray81] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F., and
Traiger, |. “The recovery manager of the System R database maameputing Surveys
13(2). (June 1981) 223-242.

[Gray85] Gray, J. “Why do computers stop and what can be done about it?” Tandem
Computers Technical Report 85.7 part number 87614. 19333 Vallco Parkway, Cupertino,
CA 95014. (June 1985).

[Gray90a] Gray, J. “A census of Tandem system availability: 1985-1990.” Tandem
Computers Technical Report 90.1 part number 33579. 19333 Vallco Parkway, Cupertino,
CA 95014. (January 1990).

[Gray90b] Gray, J. and Walker, M. “Parity striping of disk arrays: low-cost reliable storage
with acceptable throughpuProceedings of the 16th Conference on Very Large Data Bases
(VLDB-16) Brisbane, Australia (August 13-16, 1990) 148-159.

[Gray93] Gray, J. and Reuter, Aransaction Processing: Concepts and TechnigBas
Mateo, CA: Morgan Kaufmann Publishers (1993).

[Grochowski96a] Grochowski, E. and Hoyt, R. F. “Future trends in hard disk dilz&€”
Transactions on Magneti@&2(3). (May 1996) 1850-1854.

[Grochowski96b] Grochowski, E. “40 Years of Innovation in Hard Disk Drive Technology.”
Computer Technology Reviefvall 1996) 104-107.

[Haérder83] Haérder, T. and Reuter, A. “Principles of transaction-oriented database
recovery.”"Computing Surveys5(4). (December 1983) 287-317.

[Hamming50] Hamming, W. R. “Error detecting and error correcting coBe#i. Systems
Technical JournaR9(2). (April 1950) 147-160.

[Holland92] Holland, M. and Gibson, G. “Parity declustering for continuous operation in
redundant disk arrays?roceedings of the International Conference on Architectural Suport
for Programming Languages and Operating Syst@x&PLOS). Boston (October 1992) 23-
25.

[Holland94] Holland, MOn-Line Reconstruction in Redundant Disk Arrais.D.

dissertation. Computer Science Technical Report CMU-CS-94-164, Carnegie Mellon
University, 5000 Forbes Ave., Pittsburgh, PA 15213. (May 1994).

135

[Horning74] Horning, J. J., Lauer, H. C., Melliar-Smith, P. M., and Randell, B. “A program
structure for error detection and recovebgtture Notes in Computer Sciends. 16.
Wein, Austria: Springer-Verlag (1974) 171-187.

[Hsiao90] Hsiao, H. and DeWitt, D. “Chained declustering: a new availability strategy for
multiprocessor database machin&dceedings of the International Data Engineering
Conference(1990).

[Hsia091] Hsiao, H. and DeWitt, D. “/A performance study of three high-availablity data
replication strategiesProceedings of the International Conference on Parallel and
Distributed Information System@991) 18-28.

[IBM95] International Business Machine3CSI Logical Interface Specification: DFMS/
DFHS SCSI Models, All Capacities, 3.5 Inch Drigigsl. 3.0). publication #3303. (February
20, 1995).

[IDC95] International Data Corporatioh995 Worldwide HDD and RAID Storage
Subsystem Market Review and Forecdst 1. Five Speen Street, Framingham, MA 01701.
(October 1995) 42.

[IDEMA96] MTBF Redefinition Subcommittee Meeting Minutgernational Disk Drive
Equipment and Materials Association (IDEMA), 710 Lakeway, Suite 140, Sunnyvale, CA
94806 .http://www.idema.org (August 28, 1996).

[Kim86] Kim, M. Y. “Synchronized disk interleavinglEEE Transactions on Computers
35(11). (November 1986) 978-988.

[Kuehn69] Kuehn, R. E. “Computer redundancy: design, performance, and flEHE.”
Transactions on ReliabilitiR-18(1). (February 1969) 3-11.

[Lamport82] Lamport, L., Shostak, S., and Pease, M. “The byzantine generals’ problems.”
ACM Transactions on Programming Languages and Sy<te(1982) 382-401.

[Lampson79] Lampson, B. W. and Sturgis, H. E. “Crash recovery in a distributed data
storage system.” XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
94304 (April 27, 1979).

[Laprie82] Laprie, J. C. and Costes, A. “Dependability: a unifying concept for reliable
computing.”Proceedings of the 12th International Symposium on Fault-Tolerant Computing
(FTCS-12) Los Alamitos, CA: IEEE Computer Society Press. Santa Monica, CA (June
22-24,1982) 18-21.

[Lawlor81] Lawlor, F. D. “Efficient mass storage parity recovery mechani&il”
Technical Disclosure Bulletig4(2). (July 1981) 986-987.

136

[Lee90a] Lee, E. K. “Software and performance issures in the implementation of a RAID
prototoype.” Technical report UCB/CSD 90/573, Computer Science Division (EECS),
University of California, Berkeley, CA 94720. (May 17, 1990).

[Lee90b] Lee, E. K. and Katz, R. H. “Performance considerations of parity placement in disk
arrays.”Proceedings of the 12th Annual International Symposium on Fault-Tolerant
Computing (FTCS-12) os Alamitos, CA: IEEE Computer Society Press. Santa Monica,

CA (June 22-24, 1982) 190-199.

[Lee90c] Lee, P. A. and Anderson, T.Fault Tolerance: Principles and Practi¢2nd ed.).
Wein, Austria: Springer-Verlag (1990).

[Lee91] Lee, E. K. and Katz, R. H. “Performance Consequences of parity placement in disk
arrays.”Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOBAM)AIto, CA. (April 1991)
190-199.

[Lomet77] Lomet, D. B. “Process structuring, synchronization, and recovery using atomic
actions."’ACM SIGPLAN Notice$2(3). (March 1977) 128-137.

[Lynch94] Lynch, N., Merrit, M., Weihl, W. and Fekete, Atomic TransactionsSan Mateo,
CA: Morgan Kaufmann Publishers (1994).

[Massiglia86] Massiglia, Pigital Large System Mass Storage Handbdaigital
Equipment Corporation. (1986).]

[Menon93a] Menon, J. and Cortney, J. “The architecture of a fault-tolerant cached RAID
controller.” Proceedings of the 20th Annual International Symposium on Computer
Architecture (ISCA-20)Los Alamitos, CA: IEEE Computer Society Press. San Diego, CA
(May 16-19, 1993) 76-86.

[Menon93b] Menon, J., Roche, J., and Kasson, J. “Floating parity and data disk arrays.”
Journal of Parallel and Distributed Computin@anuary 1993).

[Meyers78] Meyers, G. Lomposite/Structured Desighew York: Nav Nostrand Reinhold
Co. (1978).

[Mogi94] Mogi, K. and Masaru, K. “Dynamic parity stripe reorganizations for RAID5 disk
arrays.”Proceedings of the Third Conference on Parallel and Distributed Information
SystemsLos Alamitos, CA: IEEE Computer Society Press, Austin, TX. (September 28-30,
1994) 17-26.

[Ng94] Ng, S. W. “Crosshatch disk array for improved reliability and performance.”
Proceedings of the 21st Annual Symposium on Computer Architecture.(L8€A)
Alamitos, CA: IEEE Computer Society Press. Chicago. (Aprill8-21, 1994) 255-264.

137

[Ousterhout85] Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze, j. A., Kupfer, M., and
Thompson, J. G. “A trace-driven analysis of the Unix 4.2 BSD file sysRmceedings of
the 10th Symposium on Operating Systems PrinciPiess Island, WA (1985) 15-24.

[Ousterhout88] Ousterhout, J. K., Cherenson, A. R., Douglis, F., Nelson, Michael N., and

Welch, B. B. “The sprite network operating systefBEE ComputeR1(2). (February 1988)
23-35.

[Park86] Park, A. and Balasubramanian, K. “Providing fault tolerance in parallel secondary
storage systems.” Technical Report CS-TR-057-86. Dept. of Computer Science, Princeton
University, Princeton NJ (1986).

[Parnas72] Parnas, D. L. “On the criteria to be used in decomposing systems into modules.”
Communications of the ACIb(12). (December 1972) 1053-1058.

[Patterson88] Patterson, D. A., Gibson, G. A., and Katz, R. H. “A case for redundant arrays
of inexpensive disks (RAID)Proceedings of the 1988 ACM Conference on Management of
Data (SIGMOD) ACM Press, Chicago (June 1988) 109-116.

[Patterson95] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka, J.
“Informed prefetching and cachind?toceedings of the 15th Symposium on Operating
Systems PrinciplegDecember 1995).

[Patterson96] Pattterson, D. A. and Hennessy, Gomputer Architecture: A Quantitative
Approach(2nd ed.). San Francisco, CA: Morgan Kaufmann Publishers (1996).

[PDLHTTP] http://www.cs.cmu.edu/Web/Groups/PDL

[Polyzois93] Polyzois, C., Bhide, A., and Dias, D. “Disk mirroring with alternating deferred
updates.’Proceedings of the Conference on Very Large Data B&5@33) 604-617.

[Potochnik96] Potochnik, J. Manager, Symbios Logic OEM Software Development.
personal communication. (April 22, 1996).

[Pugh71] Pugh, E. W. “Storage hierarchies: gaps, cliffs, and trd&@E Transactions on
Magnetics Vol. MAG-7. (December 1971) 810-814.

[Quantum95] Quantum Corptlas XP31070/XP32150/XP34300S Product Manual
publication number 81-108333-01. (April 1995).

[RAB96] RAID Advisory Board.The RAIDbook: A Source Book for Disk Array
Technololgy(5th ed.). ISBN 1-879936-90-9. St Peter, MN. (February, 1996).

[raidSImFTP]ftp://ftp.cs.cmu.edu/project/pdl/raidSim

[RAIDframeFTP]ftp://ftp.cs.cmu.edu/project/pdl/RAIDframe

138

[RAIDframeHTTP] http://www.cs.cmu.edu/Web/Groups/PDL/RAIDframe

[Randell78] Randell, B., Lee, P. A., and Treleaven, P. C. “Reliability Issues in Computing
Systems DesignComputing Surveys0(2). (June 1978) 123-165.

[Rosenblum92] Rosenblum, m. and Ousterhout, J. K. “The design and implementation of a
log-structured file systemACM Transactions on Computer Systehi¥1). (February 1992)
26-52.

[Ruemmler93] Ruemmler, C. and Wilkes, J. “UNIX disk access pattédS&ENIX Winter
1993 Technical Conference Proceedirfgan Diego, CA (January 25-29, 1993) 405-420.

[Ruemmler94] Rummler, C. and Wilkes, J. “An introduction to disk drive modeling.”
Computer25(3). (March 1994) 17-28.

[Salem86] Salem, K. and Garcia-Molina, H. “Disk stripirigrbceedings of the 2nd
International Conference on Data Engineerihgs Alamitos, CA: IEEE Computer Society
Press. (1986) 336-342.

[Savage96] Savage, S. and Wilkes, J. “AFRAID—a frequently redundant array of
independent disksProceedings of the 1996 USENIX Technical Confereé®ar Diego,
CA. (January 22-26, 1996) 27-39.

[Schulze89] Schulze, M. E., Gibson, G. A, Katz, R. H., and Patterson, D. A. “How reliable
is RAID?” Proceedings of the 1989 Computer Society International Conference
(COMPCON89) Los Alamitos, CA: IEEE Computer Society Press, San Francisco, CA,
(spring 1989) 118-123.

[Seagate94] Seagate Technold@ID 5 Support on SCSI Disk Drivig®ev. 1.51). 925
Disc Drive, Scotts Valley, CA 95066-4544. (November 3, 1994).

[Seagate95] Seagate Technology, Barracuda 4 ST15150N/ND ST15150W/WD/WC/DC
Disc Drive Product Manua\ol. 1). Publication Number: 83328880-B. 925 Disc Drive,
Scotts Valley, CA 95066-4544. (March 1995).

[Seltzer90] Seltzer, M., Chen, P., and Ousterhout, J. “Disk scheduling revisited.”
Proceedings of the USENIX Winter Technical ConferéWaeshington, DC (January 1990)
313-323.

[Sierra90] Sierra, H. MAN Introduction to Direct Access Storage Devidsston:
Academic Press (1990).

[Siewiorek92] Siewiorek, D. P. and Swarz, RR&liable Computer Systems: Design and
Evaluation(2nd ed.). Bedford, MA: Digital Press (1992).

139

[Solworth91] Solworth, J. and Orji, C. “Distorted Mirror®foceedings of the Conference
on Parallel and Distributed Information Syster{i991) 10-17.

[STC94] Storage Technology Corporation. Iceberg 9200 Storage System: Introduction. STK
Part Number 307406101. Corporate Technical Publications, 2270 S. 88th St., Lousiville, CO
80028. (1994).

[Stodolsky94] Stodolsky, D., Holland, M., Courtright, W. V. Il, and Gibson, G. A. “Parity-
logging disk arrays. ACM Transactions on Computer Systdr€3). (August 1994)
206-235.

[Stone89] Stone, R. F. “Reliable computing systems - a review.” Computer Science
Technical Report YCS 110, University of York, England (1989).

[Symbios95a] Symbios Logi€unctional Specification: 6210 10 Drive SubsystRev. C).
FS 348-0029527. 3718 N. Rock Rd, Wichita, KS 67226 (December 1995).

[Symbios95b] Symbios Logitjardware Functional Specification for the Symbios Logic
Series 3 RAID Controller Model 36ZRev. B). FS 348-0029459. 3718 N. Rock Rd,
Wichita, KS 67226 (December 1995) 48.

[Symbios96] Symbios LogiSoftware Integrator's Guide: Series 3 RAID Controll&¥48-
0026028 Rev. C. 3718 N. Rock Rd., Wichita, KS 67226 (March 1996).

[Teradata85] Teradata ColpBC/1012 Data Base Computer System Man({rRel. 13)
C10-0001-01. (1985).

[TMC87] Thinking Machines CorpgConnection Machine Model CM-2 Technical Summary
Technical Report HA87-4. (April 1987).

[Vaziri96] Vaziri-Farahani, MProving Correctness of a Controller Algorithm for the RAID
Level 5 SystenMaster’s thesis. Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (August 1996).

[Verhofstad78] Verhofstad, J. S. M. “Recovery techniques for database systemgIiting
Surveysl0(2). (June 1978) 167-195.

[von Neumann56] von Neumann, J. “Probabilistic logics and the synthesis of reliable
organisms from unreliable components.” In Shannon, C. E., and McCarthy, J. (Eds.)
Automata Studie$rinceton, NJ: Princeton University Press (1956) 43-98.

[Wo0d93] Wood, C. and Hodges, P. “DASD Trends: cost, performance, and form factor.”
Proceedings of the IEE&L(4). (April 1993) 573-585.

140

Appendix A: Flow Graphs for Popular Array Architectures

This appendix demonstrates the process of composing popular array operations
from a set of atomic actions which are assumed to be undoable. Graphs, and the criteria
for selecting them, are presented for twelve array architectures. The graphs contained in
this appendix are the actual graphs used in the forward and backward error recovery stud-
ies described in Chapter 5. Later, in Appendix B, these graphs are modified to support
roll-away error recovery.

Before proceeding, recall Section 4.2.3.1 that RAIDframe performs stripe locking
and memory allocation outside of the execution graph. Locks (shared or exclusive) that
protect the address range of the request are first allocated and then buffers are acquired.
Locks are held until the request is completed, regardless of outcome. Buffers are acquired
at during the creation of each graph and released at the completion of its execution.
Because locks and buffers are acquired and released outside the scope of graph execution,
the graphs presented here do not contain any resource allocation or deallocation actions.

141

NOP

NOP

Nonredundant Read Nonredundant Write

Figure A-1 Nonredundant graphs

A.1 RAID Level O

RAID level 0 arrays do not encode data; therefore, the array is not fault-tolerant and
because of this, only nonredundant operations are available for use. Figure A-1 illustrates
the structure of nonredundant read and write operations, represented as flow graphs. The
NOP actions guarantee that each graph has single source (head) and sink (tail) nodes.
Each graph is capable of supporting one or more simultaneous disk actions, allowing the
graph to scale with the size of the user request.

142

Figure A-2 Mirrored-write graph

RAID level 1 arrays use copy-based encoding to survive disk faults and require
that data must be written to two independent disks. In this graph, the write actions
on the left represent writes to a primary disk(s) and write actions on the right rep-
resent writes of data to secondary disk(s).

A.2 RAID Level 1, Interleaved Declustering, and Chained Declustering

RAID level 1 [Patterson88], chained declustering [Hsiao90, Hsiao91], and inter-
leaved declustering [Copeland89, Teradata85] arrays are single-fault tolerant and employ
copy-based redundancy to survive single disk faults without loss of service. This means
that operations are defined to service both fault-free and degraded read and write requests.
Table A-1 specifies which operations are used to service a request given the state of the
disks.

In addition to the nonredundant graphs described in Figure A-1, RAID level 1 arrays
require the an additional write operation, thierored write, which is responsible for
maintaining copy-based redundancy in a fault-free array. This operation, illustrated in
Figure A-2, contains twice the number of write actions as a nonredundant write operation
because a copy of each symbol is written to both a primary and a secondary disk.

Table A-1 RAID level 1 graph selection

Request Disk Faults Graph
read none, single disk nonredundant read
write none mirrored write
write single disk nonredundant write

143

A.3 RAID Level 3

RAID level 3 arrays are single fault-tolerant and use even-parity encoding to protect
data from disk failures. The criteria for selecting graphs is summarized in Table A-2. Data
is bit-striped across the array, guaranteeing that all accesses, regardless of size, will
involve all disks in the array. Because of this, the operation used to write data to the array
is known as darge write The large-write operation, illustrated in Figure A-4, computes
the parity of a codeword and then simultaneously writes all symbols, data and parity, to
independent disks. The large-write operation (with one less disk write action) is also used
when a data disk fails. If the disk which holds parity fails, a nonredundant write operation
(Figure A-1) is used.

The nonredundant read operation (Figure A-1) is used to read data from a fault-free
array or an array in which the disk containing parity has failed. If a data disk has been lost,
adegraded-readperation reconstructs the missing data symbol by reading the entire
codeword (surviving data and parity) and XOR’ing them as described in Section 2.5.2.2.

Table A-2 RAID level 3 graph selection

Request Disk Faults Graph
read none nonredundant read
read data disk degraded read
read parity disk nonredundant read
write none large write
write data disk large write
write parity disk nonredundant write

144

Figure A-3 Large-write graph

This operation overwrites an entire codeword in a parity-protected array. When
the graph is submitted for execution, all new data is knownXUO# node com-
putes new parity which is then written to disk. The otiienodes write new data
to disk.

If a disk which contains data has failed, this graph is still used to write data to the
array with the modification that th&r node which involves the failed disk is elim-
inated.

145

NOP

XOR

Figure A-4 Degraded-read graph

This operation is used to reconstruct missing data from a parity-protected array.
Data is “reconstructed” by reading all surviving symbols of the codeword: data
and parity. In this graph, thRd nodes on the left represent reads of surviving data
and theRd node on the right, the read of parity. Once all symbols (except the miss-
ing symbol) are known, the missing symbol is computed as the XOR of the surviv-
ing symbols.

146

A.4 RAID Levels 4 and 5 and Parity Declustering

Similar to RAID level 3, RAID levels 4 and 5 [Patterson88] and parity declustering
[Holland92] arrays tolerate disk faults through the use of a parity encoding. As expected,
the operations used to satisfy read and write requests are largely the same; however,
because it is possible to write only a fraction of a codeword, additional write operations
are required. Namely, tlegnall-writeoperation (Figure A-5) which is used to write data to
less than half of a codeword and theonstruct-writeoperation (Figure A-6) which is
used to write data to more than half, but less than a full codeword. Table A-3 provides a
breakdown of graph selection for RAID level 4 and 5 arrays. Because these arrays differ
only in mapping, the same table applies to both architectures.

The small-write operation, illustrated in Figure A-5, writes both data and parity to
disk. Parity is computed as:

Parity,.,, = Parity, 4 U Data, 40 Data,,,, (EQ A-1)

The cluster of read actions on the left side of the graph represent the read of old data and
the single read action on the right represents the read of old parity. Once parity has been

computed, the new data and parity symbols are written to the array.

Table A-3 RAID levels 4 and 5 graph selection

Request Disk Faults Graph
read none nonredundant read
read data disk degraded read
read parity disk nonredundant read
write < 50% of codeword none small write
write > 50% and < 100% none reconstruct write
write entire codeword none large write
write data disk reconstruct write
write parity disk nonredundant write

147

Figure A-5 Small-write graph

In the reconstruct-write operation, illustrated in Figure A-6, parity is computed from
all symbols in the codeword. TIRe actions collect data symbols which are not being
overwritten. Once all data symbols are collected, parity is computed and the new data and
parity symbols are written to disk.

148

Figure A-6 Reconstruct-write graph

This graph, as drawn, was used in forward error recovery experiment®d he
actions read the data symbols which are not being overwritten. The lefiAfmost
actions overwrite data symbols and e action on the right overwrites parity.
As discussed in Section 3.4.1, M@P node is necessary to avoid the write hole in
implementations that employ forward error recovery.

TheNOP node was removed for backward error recovery experiments which
assumed that all nodes could be undone. WittNtDOP node removed, the data

writes are allowed to begin immediately (i.e. were direct descendents of the source
node.

149

A.5 Parity Logging

Instead of committing parity information directly to disk, parity logging records
changes to parity in an append-only log [Stodolsky94]. Later, when the log fills, the parity
updates are applied en mass. If a disk fails in a parity logging array, | assume that the array
is acquiesced and that the contents of the log are applied, converting the array to a RAID
level 5 array; therefore, all degraded operations in parity logging arrays, as well as read
operations, are identical to those used in RAID levels 4 and 5. Table A-4 summarizes the
criteria used to select graphs in a parity logging array.

In general, the structure of write operations in parity-logging arrays is similar to that
of operations for writing data in RAID level 4 and 5 arrays—the principal difference being
that the disk actions which write parity are replaced by log actions. Figure A-7 illustrates a
parity-logging small-write operation. In this graph, the read of old parity has been elimi-
nated and the write of parity to disk has been replaced by a log action which places an
“update” record in the parity log. An update record contains the exclusive-or of old and
new data.

A reconstruct-write operation in parity logging is identical to a reconstruct-write
operation in RAID levels 4 and 5 (Figure A-6) with the exception thatthaction which
overwrites parity on disk is replaced by a log action which appends an “overwrite” record
to the parity log. The parity-logging reconstruct-write operation is illustrated in Figure A-
8.

Similarly, the parity-logging large-write operation, illustrated in Figure A-9, is iden-

tical to the large-write operation of Figure A-4 with the exception that the write of parity
to disk is replaced by a log action.

Table A-4 Parity logging graph selection

Request Disk Faults Graph
read none nonredundant read
read any single disk use RAID level 5 graphg
write < 50% of codeword none parity-log small write
write 50%, < 100% none parity-log reconstruct wiite
write = 100% none parity-log overwrite write
write any single disk use RAID level 5 graphs

150

Figure A-7 Parity-logging small-write graph

Similar to a RAID level 5 small-write operation, the parity-logging small write
computes an update to parity based upon the exclusive-or of old and new data.
However, instead of updating parity directly, this operation records the update
record in an append only log.

151

Figure A-8 Parity-logging reconstruct-write graph

This graph implements the same algorithm used in the RAID level 5 reconstruct-
write operation except that the new parity which was previously overwritten on
disk is now recorded in the parity log as an overwrite record.

152

Figure A-9 Parity-logging large-write graph

This graph is identical to the RAID level 3 large-write operation with the exception
that instead of overwriting parity which is stored on disk, an overwrite record is

recorded in the parity log.

153

A.6 RAID Level 6 and EVENODD

In addition to parity, RAID level 6 [RAB96] and EVENODD [Blaum95] arrays
employ a second check symbol to allow survival of two simultaneous disk failures. In
RAID level 6, | refer to this second symbol as “Q” and in EVENODD | refer to it as “E.”
The graphs and graph selection for each of these two architectures is identical, and |
present only the graphs in terms of RAID level 6. To create the EVENODD graphs, simply
replace the Q nodes with E nodes. The graphs used by these two architectures are summa-
rized in Table A-5.

Table A-5 RAID level 6 graph selection

Request Disk Faults Graph
read none nonredundant read
read single data disk degraded read
read parity disk nonredundant read
read Q disk nonredundant read
read two data disks PQ double-degraded read
read data + parity disks| PQ degraded-DP read
read data + Q disks degraded read
read parity + Q disks nonredundant read

write < 50% of codeword

none

PQ small write

write < 50% of codeword parity PQ small write, P omitted
write < 50% of codeword Q small write

write > 50% and < 100% none PQ reconstruct write
write > 50% and < 100% parity PQ reconstruct, P omitted
write > 50% and < 100% Q reconstruct write

write 100% none PQ large write

write 100% parity PQ large write, P omitted
write 100% Q large write

write one data disk PQ reconstruct write

write two data disks PQ double-degraded write
write data + parity disks | PQ reconstruct, P omitted
write data + Q disks reconstruct write

write parity + Q disks nonredundant write

154

Figure A-10 PQ double-degraded read graph

This operation is used when two data units are missing from the codeword. The
left-mostRd action reads the old value of parity and the right-most action reads
the old value of Q. The center Rd actions read all surviving data in the codeword.
TheQ action regenerates a single missing data symbol and @t node regen-
erates the other missing symbol.

Read operations to a fault-free or single fault arrays are handled in much the same
manner as RAID level 5. When an attempt is made to read a codeword with two missing
data symbols, BQ double-degraded reamperation, illustrated in Figure A-10, is used.

This operation is simply an extension of the degraded-read operation previously defined in
Figure A-4, the only difference being the addition of an extra decoding step.

Reading data from a codeword in which both a data symbol and parity are missing
requires the use of the “Q” symbol to reconstruct the missing data. The operation to do
this, thePQ degraded-DP-readperations is illustrated in Figure A-11.

Similar to RAID level 5 arrays, writing less than half of a codeword to a RAID level
6 array is best done using a read-modify-write algorithm.P@Qesmall-write operation
illustrated in Figure A-12, writes new data symbols and computes new values of parity
and “Q” using Equation A-1 on page 147. If either the parity or Q disks fail, this same
graph is used but the chains which would normally update the now-failed check symbol
are omitted.

Writing over half, but less than an entire, codeword is best done by a reconstruct
write, similar to the one used in RAID level 5. lllustrated in Figure A-13PfQaecon-
struct-writeoperation reads the data symbols not overwritten, meaning that the entire
(new) codeword is held in memory. Parity and Q are then computed and the new data, par-

155

Figure A-11 PQ degraded-DP-read graph

Same as the degraded-read graph of Figure A-4 but@Qdastead oXOR.

ity, and Q are then written to disk. This operation is also used when data is being written to
an array in which a single data disk has failed and a fault-free disk is being written.

If two data disks have failed and data is written to at least one, but not both, of the
failed disks, thd>Q double-degraded writeperation, illustrated in Figure A-14, is used.
This graph employs an algorithm similar to the one used in the PQ degraded write opera-
tion, but must reconstruct the failed data which is not overwritten.

Finally, writing data to the entire codeword is simply performed using@é&arge-

write operation. lllustrated in Figure A-15, the operation overwrites every symbol in the
codeword.

156

Figure A-12 PQ small-write graph

Similar to the small-write graph (Figure A-5) but with an extra chain added to
update the “Q” disk. Additionally, lOP node was added to avoid a write hole in
systems which employ forward error recovery. This node prevents graphs which
fail from two faults from partially modifying a codeword, making recovery impos-
sible. TheNOP node is removed when backward error recovery is employed. The
redundant arcs (e.drd-Wr) appear are necessary when the NOP node is
removed.

157

GG GGGl

Figure A-13 PQ Reconstruct-write graph

Similar to the reconstruct-write graph (Figure A-6), but with an extra chain added
to update the “Q” disk. In this example, assume atandD2 are to be written.
TheRd actions read old datel(y D3 andD,). New values d? andQ are then

computed and the writes bf;, P, andQ are initiated. ThéNOP node prevents the
write of new datald,) from executing until the entire codeword is stored in the

controller. is necessary in forward error recovery implementations to ensure recov-
ery. Implementations employing backward error recovery are allowed to remove
theNOP node, allowing the write of new data to occur as soon as the graph begins
execution.

158

=) I EE

Figure A-14 PQ double-degraded write graph

Assume thaD, andD, are to be overwritten. BecauBg is missing, the PQ

reconstruct operation can not be used. This operation completes the requests by
reconstructing®, and then using the reconstruct-write algorithm.

First all surviving symbols are read. TRal actions in the center read the read of
data (e.gDgy D4 andD3), theRd actions on the ends read dddandQ. TheQ

action reconstruct®,. At this point, the entire codeword is known and the compu-
tation and writing of parity, Q and data can commence.

159

Figure A-15 PQ large-write graph

Similar to the large-write graph (Figure A-3) but with an extra chain added to
update the “Q” disk.

160

A.7 Two-Dimensional Parity

Disk arrays which employ two-dimensional parity are capable of surviving two
simultaneous disk failures [Gibson89]. Naturally, this implies that a greater set of opera-
tions is required in a two-dimensional parity implementation. Table A-6 summarizes the
criteria for selecting an operation given the number and location of disk faults in the array.
For simplicity, | have included the basic set of operations necessary to implement two-
dimensional parity. It is possible to enrich this set of operations to with operations which
increase performance by optimally manipulating parity given the access size (e.g. recon-
struct-style update of horizontal parity and small-write update of vertical parity).

Fault-free two-dimensional parity array operations are the same as those used in
RAID level 4 and 5 arrays. The same is true for read operations which involve a single
failed data disk or one or two failed parity disks.

A new read operatior2D double-degraded reads required when two data disks
have failed. This case and the graph which implements the operation are illustrated in
Figure A-16. The operation reconstructs missing information using the vertical code-
words. This same operation is used in the case that a data and a horizontal parity disk are
lost with the modification that only one data disk will need to be reconstructed.

Table A-6 Two-dimensional parity graph selection

Request Disk Faults Graph
read none nonredundant read
read one data disk degraded read
read one parity disk nonredundant read
read two data disks 2D double-degraded read
read data + vert. parity degraded read
read data + horiz. parityy 2D double-degraded read
read two parity disks nonredundant read
write none 2D small write
write one data disk 2D degraded write
write vertical parity 2D small write, omit V
write horizontal parity 2D degraded-H write
write data + vert. parity 2D degraded-DV write
write data + horiz. parity| 2D degraded-DH write
write two data disks 2D degraded-DH write
write two parity disks nonredundant write

161

Figure A-16 2D double-degraded read graph

This operation is similar to the degraded-read operation used in RAID level 5
arrays, but extended to reconstruct missing data from two codewords. Assume that
D3-Dg are being read. The left-mdt-XOR actions gather surviving informa-

tion to reconstruct a unit of missing data (ébg). Similarly, the right-mosRd-
XOR actions reconstruct the second missing unit of data g)g.The centeRd
actions retrieve data from non-failed disks (&©g).

162

Because write operations must update parity for two codewords, they must perform
additional work not found in the RAID level 5 graphs. Biesmall writeoperation, illus-
trated in Figure A-17, uses the same principle (read-modify-write) as the RAID level 5
small-write operation (Figure A-5), but extends the approach to include vertical code-
words. Additionally, this graph, as do all 2D write graphs, requires that all writes are
enabled simultaneously to guarantee that all error scenarios are recoverable in implemen-
tation that employ forward error recovery. If backward error recovery is used, this con-
straint is removed because the graph may back up from any failure point.

Writing data to a codeword in which a single data disk has failed requires that the
2D small write operation be modified, replacing small-write style parity updates which
involve the failed data to reconstruct-style updates. This operation, c2l2diegraded
write, is illustrated in Figure A-18.

If, in instead of a failed data disk, a disk containing vertical parity has failed, the 2D
small-write operation is used, with the update of the failed vertical parity eliminated. If,
the disk containing horizontal parity has failed, the update of horizontal parity is removed
from the 2D small-write operation. This variant, called2bedegraded-H writ@pera-
tion, is illustrated in Figure A-19.

If both a data disk and the disk containing horizontal parity have failed, the write is
performed using 2D degraded-DH writ@peration, illustrated in Figure A-20. This oper-
ation is essentially a 2D degraded write with the update of horizontal parity removed. Sim-
ilarly, if a data disk and a disk containing vertical parity is removed, the 2D degraded write
operation is modified and the update of vertical parity which protected the failed data disk
is removed. This variant, called tAB degraded-DV writ@peration, is illustrated in
Figure A-21. If the data and vertical parity failures don't overlap, a combination of the 2D
degraded write and 2D degraded-V

Finally, | point out that many other variants of this basic set of graphs are possible.

Hopefully, this appendix has provided you, the reader, enough insight to begin construct-
ing these operations autonomously.

163

Figure A-17 2D small-write graph

This operation writes data to one or more blocks of a single horizontal codeword
and employs the small-write method of updating associated parity. The right-most
Rd-XOR-Wr chain is used to update horizontal parity. The ceR@Wr chains
represent the reading of old data and the writing of new data. The leftRdest
XOR-Wr chains represent the updates of vertical parity. Notice that théese

actions depend only on one block of old data whileXtb&® used to compute hor-
izontal parity depends on all “old data” blocks.

164

OO

Figure A-18 2D degraded-write graph

To write data tdD, andDs, a 2D degraded-data operation is used. This operation
uses the small-write algorithm to upd#tg,7 and the reconstruct-write algorithm
to updateP 55 andPgys.

TheRd-XOR-Wr chains on the left represent the read-modify-write of the vertical
parity of non-failed data disks (e8q4). The left-centeRd nodes gather old hor-

izontal data (e.gD3). The left-centeWr nodes write new data (e.9,). The

right-centerRd-XOR-Wr chain reads old vertical data of the disk that failed (e.qg.
D,) and updates vertical parity (e.By5). The right-mosRd-XOR-Wr chain
updates horizontal parity (e.8345).

165

Figure A-19 2D degraded-H write graph

Similar to 2D small write but with the update of horizontal parity removed. Assum-
ing thatD, andDg are to be written, th&d-XOR-Wr chains on the left update

vertical parity (e.gP147 andP,sg). TheRd-Wr chains on the right read and write
data (e.gD,4 andDsg).

166

Figure A-20 2D degraded-DH write graph

Same as 2D degraded write but with update of horizontal parity removed.

167

Figure A-21 2D degraded-DV write graph

Same as 2D degraded write but with update of vertical parity of failed data disk
removed.

168

Appendix B: Modifying Graphs for Roll-Away Recovery

This appendix presents the flow graphs created in Appendix A but adapted for roll-
away error recovery. This presentation assumes an understanding of the graph structure,
which was explained in Appendix A.

The rules for placing a commit node in a graph were described in Section 5.3.3. In
short, commit nodes are generally the sink node of read operations and the parent of all
symbol update actions which are found in write operations.

These structure of these graphs is identical to those used in the roll-away error

recovery experiments of Chapter 5. The graphs are presented in the same order that they
were introduced in Appendix A.

169

Nonredundant Read Nonredundant Write

Figure B-1 Nonredundant graphs

TheNOP sink node of the nonredundant read graph is replaced®@yramit
node. TheNOP source node of the nonredundant write graph is replaced by a
Commit node.

Figure B-2 Mirrored-write graph

TheNOP source node of the nonredundant write graph is replaced@ynamit
node.

170

Figure B-3 Large-write graph

Instead of writing new data concurrently with the computation of new parity, a
Commit node is inserted to block the writes of new data untiXlt®® node has

completed execution.

Figure B-4 Degraded-read graph

A Commit node has been added as to the end of the graph. Remember: reaching
the Commit node implies that the graph will complete successfully.

171

Figure B-5 Small-write graph

A Commit node was inserted to prevent writes of new data from proceeding until
all reads of old data and the computation parity have been completed.

172

Figure B-6 Reconstruct-write graph

The middIeNOP was replaced with &ommit node which prevents the writes of
new data from being executed until new parity has been computed.

173

Figure B-7 Parity-logging small-write graph

A Commit node is inserted to prevent writes of new data from proceeding until all
reads of old data have completed and new parity has been computed.

174

Figure B-8 Parity-logging reconstruct-write graph

The middIeNOP node, which prevented writes of new data from proceeding until
all Rd nodes had completed has been replaced ®gramit node which prevents
writes from proceeding until aRd nodes have completed and the parity update
record has been computed.

175

Figure B-9 Parity-logging large-write graph

Instead of writing new data concurrently with the computation of the parity over-
write record, aCommit node is inserted to block the writes of new data until the
XOR node has completed execution.

176

Figure B-10 PQ double-degraded read graph

A Commit node has been added as to the end of the graph. Remember: reaching
the Commit node is reached implies that the graph will complete successfully.

Figure B-11 PQ degraded-DP-read graph

TheNOP sink node was replaced byCammmit node.

177

Figure B-12 PQ small-write graph

A Commit node was added to block all writes from initiating until all new symbols
(data, parity, and Q) have been computed.

178

Figure B-13 PQ Reconstruct-write graph

Replaced centrdNOP node with a Commit node which blocks all Wr nodes from
executing until all new symbols have been computed.

179

Figure B-14 PQ double-degraded write graph

A Commit node was added to prevafivr actions from executing before tHOR
andQ nodes have completed.

180

Figure B-15 PQ large-write graph

Instead of writing new data concurrently with the computation of the parity over-
write record, aCommit node is inserted to block the writes of new data until the
XOR andQ nodes have completed execution.

181

Figure B-16 2D double-degraded read graph

ReplacedNOP sink node with a commit node.

182

Figure B-17 2D small-write graph

A Commit node was added, eliminating the need to undd\thactions.

183

(e G (e

Figure B-18 2D degraded-write graph

A Commit node was added, eliminating the need to undd\thactions.

184

Figure B-19 2D degraded-H write graph

A Commit node was added, eliminating the need to undd\thactions.

185

Figure B-20 2D degraded-DH write graph

A Commit node was added, eliminating the need to undd\thactions.

186

Figure B-21 2D degraded-DV write graph

A Commit node was added, eliminating the need to undd\thactions.

187

188

Appendix C: Data

This appendix contains the algorithm that was used to insert a commit node in the
example of Section 5.3.3.2 (Section C.1), the raw data for each figure presented in the dis-
sertation (Section C.2) as well as a sample configuration file (Section C.3). Table C-1 cor-
relates the figure numbers with the tables which contain the raw data presented in the
figure.

Table C-1 Cross-reference of performance figures and raw data

Performance Figure Performance Data
Figure Number Page Number Table Number Page Number

4-5(a) 94 C-2 196
4-5(b) 94 C-3 196
4-4 93 C-4 197
4-6 96 C-5 198
4-7 98 C-6 206

5-1 102 C-7 214
5-10 117 C-8 222

189

C.1 Algorithm for Inserting a Commit Point Into a Write Graph

The following program creates a RAID level 5 small-write graph without a commit
node, prints the graph, inserts a commit node, and then prints the new graph.

/*
* code for inserting commit node into a graph
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/file.h>

#define MAX_PARENTS 8
#define MAX_CHILDREN 8
#define MAX_NODES 100

typedef struct node_s {

char* name;

int num_p; /* number of parents */

int parentfMAX_PARENTS]; /* ptrs to parents */

int num_c; /* number of children */

int child[MAX_CHILDREN]; /* ptrs to children */

int dat_dep_child; /* 1 if one or more children are data
dependent */
} node_t;

typedef struct dag_s {
int length; /* number of nodes in the dag */
int cmt_ptr; /* ptr to the commit node */
}dag_t;

node_t node[MAX_NODES];
dag_tdag;

static void build_dag()
{

inti;

190

/* build a RAID level 5 small-write graph */

/* head of dag is always node O
tail of dag is always node (length - 1) */

dag.length = 9;
dag.cmt_ptr = dag.length;

node[0].name = “Lock”;
node[0].num_p = 0;
node[0].num_c = 1;
node[0].child[0] = 1,
node[0].dat_dep_child = 0;

node[l].name = “MemA”;
node[1l].num_p = 1;
node[1].parent[0] = O;
node[l].num_c = 2;
node[1].child[0] = 2;
node[1].child[1] = 3;
node[1].dat_dep_child = 1;

node[2].name = “Rd”;
node[2].num_p = 1;
node[2].parent[0] = 1;
node[2].num_c = 2;
node[2].child[0] = 4;
node[2].child[1] = 5;
node[2].dat_dep_child = 1,

node[3].name = “Rd”;
node[3].num_p =1,
node[3].parent[0] = 1;
node[3].num_c = 1;
node[3].child[0] = 5;
node[3].dat_dep_child = 1;

node[4].name = “Wr”,
node[4].num_p = 1;
node[4].parent[0] = 2;
node[4].num_c = 1;
node[4].child[0] = 8;
node[4].dat_dep_child = 0;

node[5].name = “XOR";
node[5].num_p = 2;

191

node[5].parent[0] = 2;
node[5].parent[1] = 3;
node[5].num_c = 1;
nodel[5].child[0] = 6;
node[5].dat_dep_child = 1;

node[6].name = “Wr”;
node[6].num_p = 1,
node[6].parent[0] = 5;
node[6].num_c = 1;
node[6].child[0] = 7;
node[6].dat_dep_child = 0;

node[7].name = “MemD”;
node[7].num_p = 1;
node[7].parent[0] = 6;
node[7].num_c = 1;
node[7].child[0] = 8;
node[7].dat_dep_child = 0;

node[8].name = “Unlock”;
node[8].num_p = 2;
node[8].parent[0] = 4;
node[8].parent[1] = 7;
node[8].num_c = 0;
node[8].dat_dep_child = 0;

[* initialize commit node but do not connect to dag */
node[9].name = “Commit”;

node[9].num_p = 0;

node[9].parent[0] = O;

node[9].num_c = 0;

node[9].dat_dep_child = 0;

static void print_node(int node _id)

{

inti;

printf(“Node ID: %d\n”,node_id);
printf(* name: %s\n”,node[node_id].name);
if (node[node_id].num_p > 0) {

printf(* parents:”);

for (i = 0; i < node[node_id].num_p; i++)

192

printf(* %d”, node[node_id].parent[i]);
printf(*\n”);
}
else
printf(* parents: none\n”);

if (node[node_id].num_c > 0) {
printf(* children:”);
for (i = 0; i < node[node_id].num_c; i++)
printf(* %d”, node[node_id].child[i]);
printf(*\n");
}
else
printf(* children: none\n”);

if (node[node_id].dat_dep_child)
printf(* * node originally had data-dependent chil-
dren\n\n”);
else
printf(*\n”);
}

static void print_dag()
{

inti;

printf(“\n\nPrinting %d-node DAG\n\n",dag.length);
for (i = 0; i < dag.length; i++)
print_node(i);
}

static void insert_commit(int p, int c)

{

int i, done;

[* insert the comment node between the nodes p and ¢ */
[* p is the parent of ¢ */

[* commit node has an additional child, ¢ */

/* make sure c isn’t already a child of the commit node */
done = 0;

for (i = 0; i < node[dag.cmt_ptr].num_c; i++)

193

if (node[dag.cmt_ptr].parent[i] == c)
done =1,
if (Idone) {
node[dag.cmt_ptr].child[node[dag.cmt_ptr].num_c] = c;
node[dag.cmt_ptr].num_c++;

}

[* ¢’s only parent is the commit node */
node[c].num_p = 1;
nodelc].parent[0] = dag.cmt_ptr;

I* p replaces child ¢ with commit node */
for (i = 0; i < node[p].num_c; i++)
if (node[p].child[i] == c)
node|[p].child[i] = dag.cmt_ptr;

[* p is added to the list of parents in the commit node */
/* make sure p isn’t already a parent of the commit node */
done = 0;
for (i = O0; i < node[dag.cmt_ptr].num_p; i++)
if (node[dag.cmt_ptr].parent[i] == p)
done =1,
if ('done) {
node[dag.cmt_ptr].parent[node[dag.cmt_ptr].num_p] = p;
node[dag.cmt_ptr].num_p++;

}

static void explore_branch(int node_id)

{
inti, p_id;

* recursively look at all of node_id’s parents */
[* stop searching if a data dependency is encountered */
[* and then insert the commit node between nodes */

for (i = 0; i < node[node_id].num_p; i++) {
p_id = node[node_id].parent][i];
if ('node[p_id].dat_dep_child)
explore_branch(p_id);
else
insert_commit(p_id, node_id);

}

194

static void add_commit()

{

int node _id;

/* look for first sign of data dependencies */
I* begin with sink node and work towards source node */

explore_branch(dag.length - 1);
dag.length++; /* commit node now a part of the dag */

int main(int argc, char **argv)

{
build_dag();
printf(“Original DAG, without commit node:\n");
print_dag();
add_commit();
printf(“Final DAG, with commit node:\n”);
print_dag();

195

C.2 Raw Data

Table C-2 Comparing RAIDframe to a hand-crafted implementation

Throughput (I0/s) + 95% confidence interval
Response Time (ms} 95% confidence interval

RAIDframe Striping Driver
Number of
Disks Read Write Read Write
1 53.55+ 0.48 51.17+0.12 53.12+ 1.05 51.31+ 0.62
36.93+ 0.35 38.65+ 0.10 36.90% 0.22 38.55+ 0.47
2 92.12+ 0.74 87.64+ 0.62 92.77+1.20 90.19+ 1.38
42.02+ 0.16 44.34+ 0.30 42.10+ 0.48 43.47+0.48
4 200.30£ 2.28| 193.40+ 2.19| 199.64+ 0.64| 193.64+ 3.12
38.36% 0.50 40.00+ 0.31 38.31+ 0.47 39.85+0.71
6 318.88+ 2.24| 309.52+ 6.68| 321.85+4.46| 307.62+9.02
35.55+0.48 36.69+ 0.55 35.39%£ 0.23 36.86+ 0.41
8 412,93+ 4.38| 409.47+4.78| 421.12+4.20| 404.78+ 1.13
36.05+ 0.16 36.70+ 0.33 35.68+ 0.22 37.20£ 0.20
10 47244 7.51| 462.30+3.14| 473.99+£9.13| 461.50+ 1.53
39.27+ 0.52 40.48+ 0.35 39.45+ 0.54 40.62+ 0.16

Table C-3 Comparing RAIDframe to a hand-crafted implementation

CPU Utilization (%) + 95% confidence interval

RAIDframe Striping Driver
Number of
Disks Read Write Read Write
1 4.53+0.13 4.67+0.10 2.84+ 0.05 2.75 0.02
2 7.69+0.24 7.780.13 4.80+ 0.11 4.67+ 0.05
4 16.82+ 0.12 17.12+ 0.04 10.3% 0.07 10.1A# 0.21
6 27.21+ 0.27 27.73 0.49 16.83t 0.28 16.45 0.36
8 35.77+ 0.37 36.9Gt 0.22 22.10: 0.28 21.63 0.30
10 41.73+ 0.97 42.30 0.39 25.66t 0.41 25.26t 0.16

196

Table C-4 Single disk performance of striper and RAIDframe

Throughput (I0/s) + 95% confidence interval
Response Time (ms} 95% confidence interval

Number of
Concurrent RAIDframe Striping Driver
Requesting
Processes Read Write Read Write
1 56.6+ 0.62 54.31+ 0.09 57.67+ 0.40 55.10+ 0.18
17.26+ 0.10 18.08+ 0.03 17.00+ 0.09 17.86% 0.07
2 62.38+ 0.43 58.94+ 0.10 62.55+ 0.19 59.01+ 0.22
31.64+ 0.19 33.52+ 0.06 31.60+ 0.08 33.52+ 0.14
5 67.66+ 0.12 65.65+ 0.40 68.14+ 0.33 66.28+ 0.20
72.81+ 0.22 75.01+£ 0.73 72.40%+ 0.29 74.28+ 0.30
10 69.78+ 0.34 68.83+ 0.44 69.19+ 0.45 67.84+ 0.40
139.65+ 0.47| 142.40+0.77| 141.70+£0.80| 145.03+1.44
15 73.08+ 0.25 71.52+ 0.69 72.48+ 0.49 70.79+ 0.08
200.05+ 0.55| 203.20+1.67| 201.62+1.36| 206.16+ 0.80
20 75.43+ 0.28 73.93+ 0.50 74.63+ 0.31 73.04+ 0.27
256.26+ 2.90| 261.44+2.57| 260.21+0.81| 264.79+0.51
30 78.05+ 0.25 76.60+ 0.25 77.55+ 0.62 76.41+ 0.48
369.21+ 2.74| 374.47+1.35| 371.23+2.47| 377.27+£2.16
40 79.68+ 0.28 78.80+ 0.23 79.50+ 0.35 78.20+ 0.41
478.04+ 6.87| 484.56+ 1.01| 481.85+2.55| 487.45+2.94

197

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level O 1 95.65-0.32| 68.53+0.81| 70.60+1.37
9.69+0.03| 14.37+0.17| 13.78+£0.20
2 139.94+ 0.54| 129.68+0.15| 134.41+1.61
10.34+0.02| 15.06+0.02| 14.43+0.18
5 351.18+1.63| 273.99+2.30| 281.41+1.38
12.29+0.04| 17.47+£0.15| 16.80+0.12
10 561.78t 1.20| 425.43+ 3.83| 435.68+ 5.55
16.18+ 0.10| 22.04+£0.26| 21.15+0.22
15 671.88t 8.55| 508.25+ 4.36| 521.78+5.17
20.37£0.32| 27.21+0.22| 26.00+0.09
20 742.96+ 11.82| 559.80+ 6.83| 558.87+ 22.19
24,71+ 0.76| 32.19+0.42| 31.06+0.54
30 817.81+ 9.85| 601.80+ 1.80| 635.85+ 6.59
33.64+ 0.36| 42.26+0.32| 41.27+0.59
40 870.37+ 3.04| 611.49+ 4.82| 657.91+ 24.20
42.07£0.20| 52.84+0.86| 51.57+0.44

198

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel

RAID level 1 1 95.5Ct 0.54 68.29+ 0.17 70.86x 0.58
9.97+0.06| 14.42+0.05| 13.79+0.11

2 163.81+ 0.91| 131.99+0.52| 137.14+ 1.26

10.04+ 0.05| 14.76+0.08| 14.11+0.06

5 386.96+ 3.86| 290.07+0.85| 306.71+2.11

11.08+0.09| 16.44+0.07| 15.49+0.07

10 630.33t 1.14| 455.63+ 2.55| 483.27+ 7.33

14.38+ 0.06| 20.31+0.13| 19.02+0.14

15 742.95 6.48| 540.03+ 2.43| 567.02+ 9.75

18.45+ 0.19| 24.72+0.14| 23.90+0.24

20 808.30t 3.93| 566.24+ 3.38| 615.53+ 4.79

22.85+0.09| 29.91+0.43| 28.98+0.14
30 866.52+ 9.41| 575.72+ 1.70| 663.27+ 11.11

31.89+ 0.33| 41.59+0.91| 39.73+0.51

40 902.41+ 8.16| 575.11+£1.70| 675.66% 7.06

40.63+ 0.11| 54.56+0.65| 50.70+0.29

199

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel

RAID level 4 1 95.99- 0.67| 68.11+0.38| 70.66%0.54
9.92+0.07| 14.47+0.09| 13.82+0.11

2 159.95+ 0.16| 127.82+0.27| 132.72+0.46

10.53+0.02| 15.27+£0.03| 14.61+0.06

5 343.05+ 0.16| 266.95+1.70| 276.01+ 0.33

12.60+ 0.05| 17.94+0.13| 17.22+0.10

10 531.25+ 8.41| 403.36+2.36| 414.83+5.91

16.99+ 0.20| 23.38+0.14| 22.42+0.21

15 626.28t 12.87| 483.17+ 1.90| 494.29+ 3.93

22.04+0.41| 28.80+0.15| 27.72+0.29

20 687.60t 5.63| 521.92+ 4.38| 533.38+ 7.29

26.83+0.51| 35.25+0.48| 33.65+0.24

30 757.439.82| 574.74+ 4.02| 594.30+ 7.23

36.57+ 0.19| 46.05+0.79| 44.90+0.53
40 794.92+ 4.47| 591.26+4.75| 610.14+ 11.38

46.35+ 0.54| 57.38+£0.94| 56.71+0.26

200

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel

RAID level 5 1 95.38 0.54 68.18+ 0.35 70.59+ 0.21
9.99+0.06| 14.45+0.07| 13.84+0.03

2 160.04+ 1.12| 128.24+1.13| 133.44+0.46

10.49+ 0.08| 15.22+0.14| 14.51+0.02

5 349.00+ 6.98| 270.41+ 2.07| 282.42+4.04

12.34+0.19| 17.69+0.15| 16.89+0.19

10 559.25+ 0.47| 415.55+ 3.04| 428.84+ 11.72

16.11+ 0.04| 22.59+0.17| 21.52+0.12
15 668.97+ 6.47| 504.88+2.76| 511.51+ 11.37

20.47+£0.06| 27.29+0.29| 26.48+0.29
20 746.40t 4.02| 549.31+ 1.55| 570.40+ 16.52

24,71+ 0.30| 32.54+0.08| 31.45+0.35
30 827.3% 11.28| 584.73+ 2.43| 632.95+ 13.58

33.75x 0.44 42.98+ 0.35 41.52+ 1.15

40 866.40t 11.03| 587.51+ 3.24| 655.52+ 5.13

42.23+0.20| 54.54+0.52| 51.86+0.50

201

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level 6 1 92.76: 0.54| 65.77+0.13| 67.93+0.06
10.29+ 0.06| 14.99+0.03| 14.40+0.01
2 157.03£ 0.65| 123.63+1.02| 128.68+ 1.08
10.86+ 0.06| 15.80+0.14| 15.06%0.09
5 337.84+1.50| 262.25+0.91| 272.77+1.11
12.73+0.12| 18.26+£0.05| 17.47+0.10
10 542.03t 3.60| 406.78+ 3.50| 419.38+ 10.10
16.83+ 0.15| 23.05+0.23| 22.19+0.31
15 652.23 4.39| 485.14+ 0.97| 506.79+ 3.98
21.09+ 0.28| 28.44+0.06| 27.24+0.23
20 724.28: 9.49| 532.74+2.97| 546.41+ 6.06
25.12+ 0.03| 33.65+0.49| 32.35+0.10
30 800.19% 7.60| 562.90+ 1.48| 607.25+ 3.13
34.44+ 0.40 44,15+ 0.35 42.89+ 0.27
40 852.07+ 5.83| 566.53+ 0.97 | 638.45+ 22.79
43.15+ 0.28| 57.16£0.85| 53.74+0.80

202

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
parity 1 93.77£0.45| 67.40+£0.32| 69.80+0.13
declustering 10.17+0.06| 14.63+0.08| 14.00+ 0.03
2 158.58+ 0.62| 127.12+0.52| 132.39+0.51
10.66+ 0.04| 15.63+0.06| 14.67+0.07
5 344.41+ 3.40| 269.55+ 0.69| 276.80+ 3.29
12.48+ 0.07 17.75+£ 0.04 17.10+ 0.08
10 556.15+ 9.66| 412.13+ 0.33| 427.86+ 4.21
16.32+ 0.21| 22.83+0.05| 21.59+0.23
15 665.44+ 4.28| 497.37+ 7.64| 509.90+ 4.00
20.72+0.25| 27.58+0.35| 26.46+0.27
20 728.87+ 10.58| 544.82+ 4.33| 562.73+ 5.09
25.23+0.16| 32.61+0.25| 31.79+0.35
30 807.74t 11.51| 576.08+ 1.88| 615.98+ 17.31
34.02+ 0.19| 43.17+0.74| 42.20+0.58
40 855.15+ 11.14| 578.48+1.04| 652.66% 7.53
4279+ 0.79| 56.11+0.44| 52.39+0.20

203

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
interleaved 1 95,59+ 0.79| 68.26£0.34| 70.97+£0.17
declustering 0.96+0.08| 14.43:0.07| 13.76+0.04
2 160.36+ 0.04| 128.87+0.58| 134.46+ 0.48
10.46+ 0.05 15.13+£ 0.07 14.44+ 0.05
5 349.55+ 0.58| 274.26+ 0.94| 283.08+ 2.23
12.31+£ 0.04 17.43+£ 0.07 16.77£ 0.11
10 556.33t 7.60| 415.49+2.20| 436.73+6.19
16.37+ 0.23| 22.57+0.10| 21.17+0.25
15 665.21+ 3.38| 503.34+ 2.51| 518.33+5.65
20.56+ 0.19| 27.36£0.17| 26.39+0.15
20 743.47+ 5.52| 548.57+ 3.69| 571.88+ 13.38
24,59+ 0.08| 32.41+0.30| 31.27+0.65
30 807.02 2.59| 573.39+ 1.94| 625.22+ 11.38
22.76x 0.45 43.58+ 0.17 41.81+ 0.75
40 871.36t 6.54| 577.79+ 0.89| 661.86+ 11.70
41.96+£ 0.09| 55.33+0.65| 51.60+0.88

204

Table C-5 Small-read performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
chained 1 95.78+ 0.39| 68.15+0.41| 70.94+0.31
declustering 9.94+0.04| 14.46:£0.09| 13.77+0.06
2 160.19+ 0.16| 127.91+0.42| 133.76+ 1.36
10.47+ 0.02 15.25+ 0.05 1451+ 0.13
5 351.18+1.63| 272.91+0.16| 283.80+4.39
12.29+ 0.04| 17.52+0.03| 16.75£0.12
10 561.78+ 1.20| 419.80+ 3.85| 432.97+ 4.53
16.18+ 0.10| 22.31+0.21| 21.21+0.18
15 671.88 8.55| 506.52+ 6.02| 519.66+ 4.88
20.37£0.32| 27.09+0.37| 26.13+0.27
20 742.96t 11.82| 548.44+ 3.60| 568.20+ 12.65
2471+ 0.46| 32.59+0.44| 30.98+0.11
30 817.81+ 9.85| 575.78+ 1.48| 636.86+ 6.26
33.64+ 0.36| 43.26+0.40| 41.30+0.55
40 870.37 3.04| 575.74+ 2.53| 663.80+ 6.26
42.07+£0.20| 55.87+£0.30| 51.80+1.50

205

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level O 1 95.65-0.32| 65.25+0.71| 67.61+0.15
9.96+0.03| 15.13+0.16| 14.46+0.03
2 139.94+ 0.54| 123.72+1.76| 127.87+0.95
10.34+0.02| 15.80+£0.23| 15.20+0.12
5 351.18+1.63| 264.25+1.59| 269.77+1.64
12.29+0.04| 18.20+0.11| 17.51+0.02
10 561.78t 1.20| 409.90+ 9.22| 413.06+0.71
16.18+ 0.10| 22.97+£0.44| 22.34+0.19
15 671.88t 8.55| 500.64+ 2.96| 500.72+ 9.49
20.37£0.32| 22.73+0.23| 27.02+0.13
20 742.96+ 11.82| 546.89+ 5.59| 550.66+ 6.39
24,71+ 0.46| 33.32+0.35| 32.15+0.42
30 817.81+ 9.85| 594.74+ 3.04| 614.04+5.25
33.64+ 0.36| 43.36£0.32| 42.96+0.57
40 870.37 3.04| 605.90+ 0.91| 647.42+ 11.65
42.07£0.20| 54.39+0.11| 52.99+0.58

206

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level 1 1 91.06:1.13| 53.62+0.22| 56.76+0.38
10.48+0.14| 18.43+0.08| 17.29+0.11
2 151.98+ 0.58| 98.88+0.61| 103.98+0.62
11.61+0.07| 19.82+0.13| 18.77+0.10
5 272.92+ 1.97| 190.31+0.64| 196.25+ 2.14
15.97+0.25| 25.43+0.08| 24.59+0.14
10 364.87+ 2.71| 264.36+2.94| 262.96+ 0.90
25.17+£0.25| 36.28+0.45| 35.86+0.39
15 406.36t 5.76| 297.85+ 3.66| 293.62+ 6.67
34.37£0.44| 48.27+£0.50| 47.84+0.53
20 426.38t 6.69| 317.98+4.17| 311.95+4.95
43.56+ 0.24| 60.07£0.88| 59.41+0.91
30 453.89+ 3.76| 338.90+ 1.08| 334.09+ 5.61
61.27+ 0.48| 84.80+0.32| 82.49+1.23
40 469.72£ 4.03| 356.54+ 3.97| 344.97+ 1.47
79.67+ 0.63| 106.88+ 0.59| 105.11+0.72

207

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level 4 1 4593t 0.20| 34.28+0.59| 35.70+0.43
21.27+0.09| 28.95+0.51| 27.67+0.34
2 46.51+ 0.11| 38.24+0.44| 37.80+0.12
42.49+ 0.11 51.91+ 0.60 52.49x+ 0.17
5 47.35+0.12| 39.19+0.54| 39.09+0.14
104.93+ 0.26| 126.65+1.73| 126.84+ 0.46
10 48.01+ 0.28| 40.56+0.32| 40.20+0.18
207.12+1.12| 24454+ 1.74| 245.32+ 1.38
15 48.64+ 0.02| 42.23+£0.07| 41.48+0.11
306.45+ 0.14| 352.62+ 0.55| 354.54+ 2.40
20 48.90+ 0.23| 43.09+0.17| 42.37+0.03
405.80+ 1.76| 461.04+2.17| 459.08+ 1.38
30 49.11+ 0.25| 44.13+0.09| 43.33+0.13
604.41+ 2.90| 675.60+ 1.32| 666.99+ 0.96
40 49.76+ 0.17| 45.00£0.09| 43.98+0.28
793.36+ 2.66| 883.81+ 1.88| 861.25+ 4.37

208

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level 5 1 45.7% 0.01| 34.32+0.40| 36.06+0.34
21.34+0.01| 28.91+0.33| 27.39+0.26
2 75.78+£ 0.35| 55.68+0.20| 57.84+0.54
25.88+ 0.12| 35.48+0.14| 34.07+0.30
5 127.37£ 0.62| 95.38+0.87| 96.23+1.39
38.74+ 0.18 51.55+ 0.46 50.75x 0.73
10 165.00t 0.87| 128.74+1.14| 96.23+ 2.06
59.22+ 0.37| 76.30£0.74| 74.90+0.73
15 186.31+ 2.07| 146.01+1.05| 145.15+1.49
78.79+£ 0.76| 100.68+0.70| 99.13+0.88
20 197.51+ 2.04| 156.60+ 1.61| 153.93+ 0.95
99.34+ 1.07| 124.87+1.58| 123.58+ 0.58
30 210.95:2.31| 172.38+1.68| 169.24+ 0.95
139.82+ 1.05| 170.52+1.58| 166.31+ 0.58
40 219.55+ 0.97| 182.06+ 1.12| 176.31+ 1.25
179.63+ 0.67| 214.01+2.07| 211.70+0.29

209

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
RAID level 6 1 40.72 0.06| 28.13+0.43| 32.01+0.15
24.05+ 0.03| 35.33+0.54| 30.90+0.14
2 60.58+ 0.23| 43.05+£0.63| 46.41+0.32
32.51+0.18| 45.94+0.68| 42.61+0.34
5 93.83+ 0.57| 69.27+1.15| 72.21+0.46
52.75+ 0.32 71.09+ 1.24 68.15+ 0.45
10 116.23: 0.99| 89.52+0.76| 91.51+1.16
85.39+ 0.75| 109.81+0.86| 106.67+ 1.57
15 128.61+ 0.81| 99.57+0.94| 101.65* 0.62
115.89+ 0.72| 147.44+1.44| 143.50+0.43
20 135.60t 1.71| 104.76+ 0.44| 107.07+0.98
146.61+ 1.81| 186.42+ 0.87| 179.97+ 1.87
30 142,96t 0.65| 108.90+ 0.29| 114.56+ 0.60
208.51+ 0.90| 267.21+1.04| 248.72+1.33
40 147.12+ 1.75| 109.74+ 0.53| 118.68+ 0.81
270.00+ 2.69| 354.15+ 1.15| 319.30+ 1.99

210

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
parity 1 42.59+ 0.09| 34.49+0.43| 35.45+0.41
declustering 22.98+0.05| 28.77+0.37| 27.87+0.32
2 72.84+£0.61| 55.36+£0.75| 57.09+0.22
26.95+ 0.22| 35.71+0.48| 34.58+0.10
5 126.07+ 1.20| 94.80+£0.89| 95.87+1.25
39.13+£0.38 51.87+ 0.49 51.11+ 0.69
10 165.92+ 1.71| 128.07+£0.79| 127.04+1.24
58.76+ 0.49| 76.72+0.48| 76.55+0.95
15 184.33t 1.47| 144.78+1.23| 145.28+1.55
76.69+ 0.54| 101.64+0.83| 76.55+0.54
20 196.73t 0.60| 156.14+ 1.95| 154.44+2.20
99.65+ 0.24| 125.33+1.67| 123.80+1.07
30 209.32+ 1.48| 170.02+ 1.64| 167.04+ 1.42
140.95+ 1.10| 172.81+1.61| 170.24+1.23
40 217.81+0.81| 179.01£0.64| 175.45%+0.69
181.06+ 0.93| 218.58+ 0.63| 212.93+0.94

211

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
interleaved 1 53.96+£ 0.37| 42.79+£0.48| 44.37£0.20
declustering 18.03£0.13| 23.16+0.25| 22.21+0.10
2 96.34+ 0.68| 77.48+0.48| 79.57+0.23
20.25+ 0.14| 25.42+0.16| 24.70+0.07
5 177.10£0.77| 145.81+ 1.25| 147.57+ 1.93
26.33+ 0.13| 33.55+0.32| 32.74+0.34
10 258.00t 0.75| 205.63+ 1.90| 206.44+ 1.93
36.18+ 0.24| 47.34+0.43| 46.43+0.31
15 306.26+ 4.27| 239.86+ 1.67| 238.45+ 1.46
4578+ 0.37| 60.77£0.42| 59.58+0.09
20 336.65+ 2.31| 262.81+ 2.29| 256.55+ 2.47
55.73+ 0.27| 73.85+0.85| 73.42+0.53
30 374.74t 1.61| 289.42+ 1.93| 279.33+ 2.26
7493+ 0.10| 100.46+0.41| 98.27+0.64
40 400.72+ 3.34| 306.28+0.82| 300.10+ 4.24
93.52+ 1.06| 126.16+ 0.33| 123.05+ 1.21

212

Table C-6 Small-write performance of RAIDframe’s three environments

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Simulator User Kernel
chained 1 57.23+0.02| 44.53+0.46| 46.13+0.30
declustering 16.97£0.01| 22.23+0.23| 21.35+0.15
2 100.51+ 0.73| 79.73+1.02| 82.59+0.44
19.40+ 0.14| 24.69+0.32| 23.74+0.11
5 182.83£ 0.94| 150.37+1.25| 152.79+1.14
25.41+0.18| 32.48+0.27| 31.75+0.03
10 265.96+ 0.13| 210.62+ 3.06| 210.75+ 1.42
34.87+£0.20| 46.17+0.68| 45.48+0.33
15 314.52+ 3.15| 246.31+ 1.75| 244.47+ 3.33
44.85+ 0.29| 59.09+0.47| 58.44+0.67
20 346.18+ 1.84| 268.33+0.94| 263.48+1.63
54.41+ 0.07| 72.20£0.24| 71.47+0.31
30 382.18: 2.01| 296.46+ 4.01| 286.71+ 1.62
73.49+ 0.59| 97.94+1.38| 96.60+0.41
40 407.90t 6.35| 312.01+£0.75| 304.51+1.31
92.03+ 0.94| 123.70+0.40| 120.60+0.81

213

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
RAID level O 1 67.7% 0.15 39.88+ 0.51
14.46% 0.03 24.74+ 0.31
2 127.87+ 0.95 73.06x 0.98
15.20+ 0.12 26.88+ 0.30
5 269.77+ 1.64 142.44+ 1.54
17.51+ 0.02 33.77+ 0.06
10 413.06t 0.71 210.88+ 3.93
22.34+ 0.19 45.00+ 0.90
15 500.72+ 9.49 251.46+ 4.26
27.02+ 0.13 55.85+ 0.77
20 550.66t 6.39 273.33t 2.44
32.15+£ 0.42 67.45+ 0.03
30 614.04t 5.25 305.29+ 7.68
42.96+ 0.57 89.38+ 1.90
40 647.42t 11.65 324.90+ 3.85
52.99+ 0.58 111.33+ 0.96

214

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
RAID level 1 1 56.76t 0.38 35.65+ 0.44
17.29+ 0.11 27.72+ 0.34
2 103.98+ 0.62 59.95+ 0.62
18.77+ 0.10 32.89+ 0.32
5 196.25+ 2.14 102.28+ 1.70
24.59+ 0.14 47.61+ 0.81
10 262.96+ 0.90 131.43+ 2.38
35.86+ 0.39 73.24+ 1.00
15 293.62+ 6.67 148.22+ 0.86
47.84+ 0.53 96.94+ 0.81
20 311.95+4.95 156.14+ 1.80
59.41+ 0.91 121.85+ 1.39
30 334.09+ 5.61 168.25+ 1.35
82.49+ 1.23 166.43+ 1.49
40 34497 1.47 176.07+ 3.25
105.11+ 0.72 212.28+ 2.12

215

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
RAID level 4 1 35.7G: 0.43 34.33£0.31
27.67+0.34 28.76+ 0.26
2 37.80+ 0.12 25.40+ 0.05
52.49+ 0.17 78.33+0.14
5 39.09+ 0.14 25.94+ 0.04
126.84+ 0.46 191.76+ 0.38
10 40.20+ 0.18 26.85+ 0.02
245.32+ 1.38 367.94+ 0.19
15 41.48+0.11 27.65+ 0.03
354.54+ 2.40 532.72+ 2.16
20 42.37+ 0.03 28.19+0.10
459.08+ 1.38 692.19+ 1.89
30 43.33+ 0.13 29.05+ 0.09
666.99+ 0.96 999.41+ 5.53
40 43.98+ 0.28 29.39+ 0.17
861.25+ 4.37 1303.31+ 7.88

216

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
RAID level 5 1 36.06t 0.34 33.96+ 29.07
27.39+ 0.26 29.07+ 0.20
2 57.84+ 0.54 43.86+ 0.69
34.07+ 0.30 45.12+ 0.75
5 96.23+ 1.39 67.81+ 0.40
50.75+ 0.73 72.43+0.84
10 129.03t 2.06 87.46+ 1.07
74.90+ 0.73 110.73+ 1.49
15 145.15 1.49 97.36+ 0.73
99.13+0.88 149.54+ 1.39
20 153.93t 0.82 103.13+ 1.15
123.58+ 1.08 187.30+ 2.44
30 169.24+ 0.95 113.39+ 1.72
166.31+ 0.58 252.30+ 3.69
40 176.31+ 1.25 119.84+ 0.24
211.70+ 0.29 316.15+ 0.78

217

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
RAID level 6 1 32.01 0.15 28.38+ 0.16
30.90+ 0.14 34.87+ 0.20
2 46.41+ 0.32 32.13+ 0.33
42.61+ 0.34 61.72+ 0.66
5 72.21+ 0.46 49.22+ 0.27
68.15+ 0.45 100.54+ 0.45
10 91.51+1.16 60.65+ 0.49
106.67+ 1.57 161.98+ 1.45
15 101.65t 0.62 67.31+£ 0.74
143.50+ 0.93 217.96+ 1.92
20 107.07+ 0.98 71.04+ 0.60
179.97+ 1.87 271.96+ 2.59
30 114.56t 0.60 76.04+ 0.77
248.72+ 1.33 377.80+ 1.15
40 118.68t 0.81 79.40+ 0.71
319.30+ 1.99 479.17+ 3.59

218

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
parity 1 35.45+ 0.41 33.88+ 0.48
declustering 27.87+0.32 29.162 0.42
2 57.09+ 0.22 43.69+ 0.39
34.58+ 0.10 45.28+ 0.43
5 95.87+ 1.25 66.85+ 0.23
51.11+ 0.69 73.25+ 0.33
10 127.04+ 1.24 86.15+ 0.48
76.55+ 0.95 112.86+ 1.50
15 145.28t 1.55 96.64+ 0.40
99.48+ 0.54 150.23+ 0.20
20 154.44+ 2.20 102.65+ 0.90
123.80+ 1.07 187.41+ 0.80
30 167.04t 1.42 111.32+ 1.72
170.24+ 1.23 255.85+ 4.62
40 175.45+ 0.69 117.45+ 0.72
212.93+ 0.94 321.50+ 1.54

219

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
interleaved 1 44.37+ 0.20 30.63+ 0.38
declustering 22.21+ 0.10 32.32+ 0.40
2 79.57+ 0.23 45.98+ 0.43
24.70+ 0.07 43.04+ 0.41
5 147.57+ 1.93 75.09+ 1.01
32.74+ 0.34 65.30+ 1.12
10 206.44+ 1.93 100.03+ 1.36
46.43+ 0.34 96.77+ 1.48
15 238.45 1.46 115.90+ 0.13
59.58+ 0.09 125.87+ 0.60
20 256.55+ 2.47 126.21+ 0.25
73.42+ 0.53 152.40+ 1.07
30 279.33 2.26 141.86+ 1.40
98.27+ 0.64 203.25+ 2.13
40 300.10t 4.24 149.92+ 0.31
123.05+ 1.21 249.95+ 2.53

220

Table C-7 Relative performance of full undo logging

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Backward
chained 1 46.13+ 0.30 31.38+£0.24
declustering 21.35% 0.15 31.53+ 0.24
2 82.59+ 0.44 47.68+ 0.33
23.74+ 0.11 41.49+ 0.32
5 152.79+ 1.14 76.94% 0.45
31.75+ 0.03 63.44+ 0.61
10 210.75: 1.42 104.57+ 0.64
45.48+ 0.33 93.48+ 0.49
15 244,47+ 3.33 119.46+ 0.28
58.44+ 0.67 121.60+ 0.08
20 263.48+ 1.63 129.61+ 0.44
71.47+0.37 147.45+ 0.33
30 286.71+ 1.62 144.53+ 0.37
96.60x 0.42 197.74+ 1.38
40 304.51+ 1.31 153.46+ 0.50
120.60+ 0.81 244.89+ 1.27

221

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway

RAID level O 1 67.7% 0.15 68.56+ 0.20
14.46% 0.03 14.25+ 0.03

2 127.87+ 0.95 129.47+1.18

15.20+ 0.12 14.97+ 0.06

5 269.77+ 1.64 274.56+ 4.94

17.51+ 0.02 17.30+ 0.28

10 413.06t 0.71 422.39+ 2.16

22.34+ 0.19 21.74+ 0.18

15 500.72+ 9.49 499.77+ 6.90

27.02+ 0.13 27.06+ 0.16

20 550.66t 6.39 556.92+ 6.08

32.15+£ 0.42 31.96+ 0.39

30 614.04t 5.25 609.11+ 9.72

42.96+ 0.57 42.62+ 0.14
40 647.42t 11.65 656.20+ 15.47

52.99+ 0.58 52.63+0.18

222

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
RAID level 1 1 56.76t 0.38 57.26x 0.64
17.29+ 0.11 17.14+ 0.19
2 103.98+ 0.62 104.17+ 0.59
18.77£ 0.10 18.75+ 0.11
5 196.25+ 2.14 197.35+ 1.05
24.59+ 0.14 24.35+ 0.27
10 262.96+ 0.90 263.06x 5.63
35.86+ 0.39 35.95+ 0.50
15 293.62+ 6.67 296.52+ 3.21
47.84+ 0.53 47.48+0.72
20 311.95+4.95 311.62+ 3.58
59.41+ 0.91 59.93+ 0.61
30 334.09+ 5.61 335.51+ 3.53
82.49+ 1.23 82.20+ 0.86
40 34497 1.47 346.77+ 2.35
105.11+ 0.72 105.90+ 1.16

223

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
RAID level 4 1 35.7G: 0.43 35.05+ 1.05
27.67+0.34 28.20+ 0.85
2 37.80+ 0.12 37.97+£0.16
52.49+ 0.17 52.24+ 0.19
5 39.09+ 0.14 39.07+ 0.20
126.84+ 0.46 126.85+ 0.54
10 40.20+ 0.18 40.24+ 0.18
245.32+ 1.38 244.45+ 1.19
15 41.48+0.11 41.51+ 0.27
354.54+ 2.40 354.23+ 3.96
20 42.37+ 0.03 42.25+ 0.15
459.08+ 1.38 458.54+ 0.95
30 43.33+ 0.13 43.42+0.18
666.99+ 0.96 664.18+ 3.93
40 43.98+ 0.28 44.16+ 0.23
861.25+ 4.37 865.27+ 5.40

224

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
RAID level 5 1 36.06: 0.34 35.60+ 0.21
27.39+ 0.26 27.76x 0.15
2 57.84+ 0.54 57.15+ 0.62
34.07+ 0.30 34.55+ 0.40
5 96.23+ 1.39 95.60+ 0.75
50.75+ 0.73 51.04+ 0.15
10 129.03t 2.06 128.64+ 1.31
74.90+ 0.73 75.65+ 0.60
15 145.15 1.49 144,51+ 1.11
99.13+0.88 100.00+ 1.12
20 153.93t 0.82 154.76+ 0.84
123.58+ 1.08 122.89+ 0.68
30 169.24+ 0.95 167.63+ 0.86
166.31+ 0.58 167.88+ 0.88
40 176.31+ 1.25 177.06x 1.15
211.70+ 0.29 211.45+ 2.33

225

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
RAID level 6 1 32.0% 0.15 32.12+ 0.44
30.90+ 0.14 30.79+ 0.41
2 46.41+ 0.32 46.39+ 0.30
42.61+ 0.34 42.59+ 0.28
5 72.21+ 0.46 71.86% 0.53
68.15+ 0.45 68.20+ 0.82
10 91.51+ 1.16 90.92+ 1.12
106.67+ 1.57 107.36+ 1.77
15 101.65t 0.62 101.52+ 1.09
143.50+ 0.93 143.73+ 0.77
20 107.07+ 0.98 106.72+ 1.19
179.97+ 1.87 180.63+ 1.02
30 114.56t 0.60 114.30+ 1.39
248.72+ 1.33 250.08+ 3.38
40 118.68t 0.81 118.57+ 0.97
319.30+ 1.99 319.74+ 3.78

226

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
parity 1 35.45+ 0.41 35.20%+ 0.37
declustering 27.87+0.32 28.07+ 0.29
2 57.09+ 0.22 56.63+ 0.46
34.58+ 0.10 34.88+ 0.29
5 95.87+ 1.25 94.98+ 1.13
51.11+ 0.69 51.58+ 0.50
10 127.04 1.24 126.10+ 2.00
76.55+ 0.95 76.89+ 1.00
15 145.28t 1.55 144.05+ 0.27
99.48+ 0.54 100.65+ 0.31
20 154.44+ 2.20 153.32+ 0.83
123.80+ 1.07 125.00+ 0.98
30 167.04t 1.42 164.59+ 2.17
170.24+ 1.23 171.65+ 1.61
40 175.45+ 0.69 174.89+ 1.04
212.93+ 0.94 214.52+ 0.47

227

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
interleaved 1 44.37+ 0.20 4473+ 0.24
declustering 22.21+0.10 22.03+ 0.12
2 79.57+ 0.23 80.44+ 0.51
24.70+ 0.07 24.42+ 0.15
5 147.57+ 1.93 148.26+ 1.16
32.74+ 0.34 32.60+ 0.37
10 206.44+ 1.93 206.50+ 3.74
46.43+ 0.34 46.26+ 0.37
15 238.45 1.46 238.76x+ 0.92
59.58+ 0.09 59.78+ 0.34
20 256.55+ 2.47 258.51+ 3.78
73.42+ 0.53 73.25+ 0.68
30 279.33 2.26 284.59+ 2.89
98.27+ 0.64 99.03+0.75
40 300.10t 4.24 299.08+ 2.95
123.05+ 1.21 123.48+ 0.37

228

Table C-8 Relative performance of roll-away recovery

Number of Throughput (I0/s) £ 95% confidence interval
Concurrent Response Time (ms} 95% confidence interval
Requesting
Architecture Processes Forward Rollaway
chained 1 46.13+ 0.30 46.61+ 0.31
declustering 21.35% 0.15 21.13+0.14
2 82.59+ 0.44 82.59+ 0.77
23.74+ 0.11 23.67+0.16
5 152.79+ 1.14 152.64+ 0.60
31.75+ 0.03 31.67+0.18
10 210.75t 1.42 212.03+ 1.64
45.48+ 0.33 45.14+ 0.13
15 244,47+ 3.33 245.16+ 3.37
58.44+ 0.67 58.09+ 0.70
20 263.48+ 1.63 265.58+ 1.25
71.47+0.37 70.89+ 0.60
30 286.71+ 1.62 289.40+ 3.34
96.60+ 0.42 96.45+ 1.64
40 304.51+ 1.31 304.40+ 1.27
120.60+ 0.81 120.80+ 0.28

229

C.3 Sample Configuration File

START array
params are: numRow numCol numSpare
1100

START disks
a list of device files corresponding to physical disks
/dev/rrz18c
/dev/rrz26¢
/dev/rrz34c
/dev/rrz42c
/dev/rrz50c
/dev/rrz19c
/dev/rrz27c
/dev/rrz35c
/dev/rrz43c
/dev/rrz51c
/dev/rrz20c
/dev/rrz28c
/dev/rrz36¢
/dev/rrz44c
/dev/rrz52c

START spare
a list of device files corresponding to spare disks
spare device goes here

START layout

general layout params:

sectPerSU SUsPerParityUnit SUsPerReconUnit parityConfig
64115

START queue

generic queue params: queue type, num concurrent reqgs that
can be sent to a disk

sstf 5

queue-specific configuration lines:

(none for FIFO)

START debug

accessTraceBufSize 100
maxTraceRunTimeSec 30

230

A
Action
computation 50, 52
defining properties 49
predicate 50, 53
real 16
resource manipulation 50, 52
symbol access 50, 51-52
AFRAID 39-40
Amiri, K. 87,91
Anderson, T. A. 8
Atom 92
Atomicity 15
Audit trails
Seel ogging
Availability 10, 13
Avizienis, A. 11

B

Backward error recovery 14-15
recovery data 14
recovery point 14
rollback 15
unit of recovery 15

Backward execution 71

Bandwidth 10

Basic block 53

Blaum, M. 38

Boehm, B. W. 62

Brady, J. 38

Bruck, J. 38

Burkhard, W. 38, 39

C
Cao, P. 42
Capacity 10
Chained declustering 91
Channel program 53
Checkpointing 15, 103
Codeword 26
Commit point 105
Consistency 15
Control dependence 55
Controller

crash 76

failover 35, 77

restart 76
Crash recovery 65, 7677

D
DAG locking protocol 66
Data dependence 55
anti 55
output 56

Index

true 55
Data General 1
Deadlock
avoidance 71-72
detection 71
elimination 71
locking hierarchy 71
Degraded-read algorithm 32
Degraded-write algorithm 30, 31
Digital Equipment 1, 19
Digital UNIX 88, 93
Disk 18-24
actuator 19
areal density 20
cost 7
diameter 19
head switch 20
head-media separation 20
mean time to failure 22-23, 32
meant time to failure 21
media 19
platter 19
rate of rotation 19
rotational latency 21
sales 1,18
sector 20
seek 19, 20
stiction 23
track 20
Disk array
cost 7, 47
independent-access array 26, 32
parallel-access array 25, 32
sales 1,7, 37
Disk array controller 34
Disk array operations
2D degraded write 165, 184
2D degraded-DH write 167, 186
2D degraded-DV write 168, 187
2D degraded-H write graph 166, 185
2D double-degraded read 162, 182
2D small write 164, 183
degraded read 108, 146, 171
large-write 145, 171
mirrored write 143, 170
nonredundant read 142, 170
nonredundant write 142, 170
parity-logging large write 153, 176
parity-logging reconstruct write 152, 175
parity-logging small write 151, 174
PQ degraded-DP read 156, 177
PQ double-degraded read 155, 177
PQ double-degraded write 159, 180
PQ large write 160, 181
PQ reconstruct write 158, 179

231

PQ small write 157, 178
reconstruct-write 149, 173
small write 55, 109, 148, 172
Disk/Trend 1
Do action 67, 68
DO-UNDO-REDO protocol 16-17
Durability 16

E
EMC 1
Symmetrix 7
Erasure channel 11, 24, 26, 42
Error
defined 8
latency 8
Error recovery 13
See alsd®ackward error recovery
See alsd-orward error recovery
EVENODD 38, 38-39, 154-156

F
Failfast 13
Failstop
SeeFailfast
Failure analysis 37
Failure-rate function 10
Fault
byzantine 12
defined 8
hard 8
intermittent 8, 13
man-made 8
permanent 8
physical 8
soft 8
transient 8, 13, 14
Fault avoidance 11
Fault domain 9
Fault intolerance 11
Fault model 74-77
Fault tolerance
single fault tolerant 9
Fault tolerant 11
Floating data and parity 40
Flow graph 53-56
common subexpression elimination 57
dead code elimination 57
redundant arc elimination 57
Forward error recovery 2, 14
retry 13, 14
Forward execution 68
Friedman, M. B. 2

G

Gibson, G. A. 22, 32, 40, 80
Gray, J. 8, 16

Grochowski, E. 19

H

Haérder, T. 15

Hamming code 11

Hazard function
SeeFailure-rate function

Hewlett-Packard 1

232

Hodges, P. 19

Holland, M. C. 13, 40, 80
Horning, J. J. 12

Hoyt, R. F. 19

|
IBM 1
RAMAC 350 7
System/370 53
Idempotent operation 14
Interleaved declustering 91
International Disk Drive Equipment and Materials
Association (IDEMA) 22
Isolation 16

J
Journalling
Seel.ogging

K

Kasson, J. 40
Katz, R. H. 32

L
Lamport, L. 12
Lampson, B. W. 23
Large-write algorithm 28
Lauer, H. C. 12
Lee, E. K. 80
Lee, P.A. 8
Lim, S. B. 42
Logging 15
logical 63
physical 63
transition 64, 65
Lynch, N. 59, 127

M
Masaru, K. 41
Mean Time Between Failure (MTBF) 10
Mean Time To Failure (MTTF) 10
Mean Time To Repair (MTTR) 10
Melliar-Smith, P. M. 12
Menon, J. 38, 39, 40
Microprocessor

performance 24, 99
Model checking 59
Mogi, K. 41
MTBF

SeeMean Time Between Failure
MTTF

SeeMean Time To Failure
MTTR

SeeMean Time To Repair

N
NCR 1
Node state 68
Nonvolatile memory
cost 47
N-version programming 12

@)
Operation

semantics 9

P
Parallel Data Laboratory (PDL) 3, 79, 88
Parity code 11
Parity declustering 90-91
Parity logging 40, 150
Parity logging actions
parity invalidate 65
parity overwrite 64
parity update 64
Patterson, D. A. 32
Pease, M. 12
Predicate node 56, 57, 68, 69-70

Q

Quantam
Atlas disk drive 21

R
RAID
level 0 32, 142
level 1 32,91, 143
level 2 32
level 3 32, 144
level 4 32,91, 147-148
level 5 32, 38, 39, 40, 42, 82, 91, 147-148
level 6 38, 39, 91, 154-156
taxonomy 1, 32
RAID Advisory Board 32, 37
RAIDframe 3, 4
action library 84
design decisions 81-83
disk geometry library 84
disk queueing library 84
graph library 84
graph selection library 84
mapping library 84
raidSim 80
extensibility 90
Randell, B. 12
Reconfiguration 13
Reconstruct-write algorithm 30, 31
Recovery block 12
Redo log 16, 103, 114
Redo logs 77
Redo rule 16
Redundant disk array 26-37
disk shadowing 26
mirroring 26
See als®isk array
See als&RAID
Reliability 10
Repair 13
Response time 10
Reuter, A. 8, 15, 16
Roche, J. 40
Roll-away error recovery 104-116
Ruemmler, C. 19, 21

S
Savage, S. 39
Seagate
Barracuda disk drive 7, 21

233

drive-supported RAID 41
Serializability
Seelsolation
Shostak, S. 12
Sierra, H. M. 19
Siewiorek, D. P. 8
Sink node 56
Small-write algorithm 29, 30, 40
Small-write problem 30, 39
Software
cost of a line of code 47
programmer productivity 47
Source node 56
Sprite operating system 80
Stodolsky, D. 40, 80
Storage Technology 1
Iceberg 7, 39
Stripe set 26
Sturgis, H. E. 23
Swarz, R. S. 8
Symbios Logic 1
MetaStor 7
System R 16

T
Thesis statement 3
Throughput 10
TickerTAIP 42,53
Transaction 16-17

ACID semantics 15

action 16

commit 16

recovery manager 16

two-phase commit 16

undo rule 16
Triple Module Redundancy (TMR) 12
Two-dimensional parity 38, 38, 161-163
Two-phase locking 66

U

Undo action 67, 68

Undo log 16, 63, 66, 69, 71, 73, 74, 77, 114
Univ. of California, Berkeley 1, 32, 80

\%

Vaziri, M. 59, 127
Venkataraman, S. 42
Virtual striping 41

W

Waits-for graph 71
Wilkes, J. 19, 21, 39, 42
Wing, J. 59, 127

Wood, C. 19

Write hole 36, 37, 42, 43, 47, 59, 60, 61, 76, 149, 157

	A Transactional Approach to Redundant Disk Array I...
	William V. Courtright II
	15 May 1997
	CMU-CS-97-141
	School of Computer Science
	Carnegie Mellon University
	Pittsburgh, PA 15213
	A Dissertation submitted to the
	Department of Electrical and Computer Engineering
	in Partial Fulfillment of the Requirements
	for the Degree of Doctor of Philosophy
	Thesis Committee:
	Garth A. Gibson
	Martin Francis
	Jim Gray
	Daniel P. Siewiorek
	Jeannette Wing
	Copyright © 1997 Courtright
	This work was supported in part by Data General, D...
	Dedicated to the memory of my grandfathers,
	Charles Richard Courtright and Jappour Joseph
	Abstract
	Acknowledgments

	Table of Contents
	Chapter 1: Motivation, Problem Statement, and Thes...
	Chapter 2: Fault-Tolerant Disk Storage 7
	Chapter 3: Mechanizing the Execution of Array Oper...
	Chapter 4: RAIDframe: Putting Theory Into Practice...
	Chapter 5: Roll-Away Error Recovery 101
	Chapter 6: Conclusions and Recommendations 123
	References 131
	Appendix A: Flow Graphs for Popular Array Architec...
	Appendix B: Modifying Graphs for Roll-Away Recover...
	Appendix C: Data 189
	Index 231

	List of Tables
	Chapter 1: Motivation, Problem Statement, and Thes...
	Chapter 2: Fault-Tolerant Disk Storage
	Chapter 3: Mechanizing the Execution of Array Oper...
	Chapter 4: RAIDframe: Putting Theory Into Practice...
	Chapter 5: Roll-Away Error Recovery
	Chapter 6: Conclusions and Recommendations
	References
	Appendix A: Flow Graphs for Popular Array Architec...
	Appendix B: Modifying Graphs for Roll-Away Recover...
	Appendix C: Data
	Index

	List of Figures
	Chapter 1: Motivation, Problem Statement, and Thes...
	Chapter 2: Fault-Tolerant Disk Storage
	Chapter 3: Mechanizing the Execution of Array Oper...
	Chapter 4: RAIDframe: Putting Theory Into Practice...
	Chapter 5: Roll-Away Error Recovery
	Chapter 6: Conclusions and Recommendations
	References
	Appendix A: Flow Graphs for Popular Array Architec...
	Appendix B: Modifying Graphs for Roll-Away Recover...
	Appendix C: Data
	Index

	Chapter 1: Motivation, Problem Statement, and Thes...
	Chapter 2: Fault-Tolerant Disk Storage
	2.1� Terminology
	2.1.1� Faults, Errors, and Failure
	2.1.2� Fault Models and Semantics

	2.2� Metrics
	(EQ 2-1)
	(EQ 2-2)

	2.3� Improving System Dependability
	2.3.1� Detection, Diagnosis, and Isolation
	Figure 2-1� Parity codes detect single errors

	2.3.2� Recovery, Reconfiguration, and Repair
	2.3.3� A Closer Look at Error Recovery
	2.3.4� Transactions
	Figure 2-2� The DO-UNDO-REDO protocol

	2.3.5� Discussion

	2.4� Disk Drives
	2.4.1� Disk Technology
	Figure 2-3� Accessing a sector
	Figure 2-4� Typical sector formatting

	2.4.2� Fault Model
	2.4.2.1� Fault Model Used in This Work
	(EQ 2-3)
	(EQ 2-4)

	2.4.3� Discussion

	2.5� Disk Arrays
	2.5.1� Striping for Performance
	Figure 2-5� Data layouts which enable concurrency ...

	2.5.2� Redundant Disk Arrays
	2.5.2.1� Encoding
	(EQ 2-5)
	Figure 2-6� Codeword in a parity-protected disk ar...
	(EQ 2-6)

	2.5.2.2� Algorithms for Accessing Information
	Figure 2-7� Writing and reading data in a mirrored...
	Figure 2-8� The large-write algorithm
	(EQ 2-7)
	(EQ 2-8)
	(EQ 2-9)
	(EQ 2-10)
	(EQ 2-11)
	Figure 2-9� The small-write algorithm
	Figure 2-10� The reconstruct-write algorithm
	Figure 2-11� The degraded-write algorithm
	Figure 2-12� The degraded-read algorithm

	2.5.2.3� The Berkeley RAID Taxonomy
	Figure 2-13� Parity placement in RAID levels 4 and...

	2.5.3� Fault Model
	Table 2-1� Disk array component reliability
	Figure 2-14� Disk array with redundant controllers...
	Figure 2-15� The write hole

	2.5.4� Beyond the RAID Taxonomy
	2.5.4.1� Improving Dependability
	Figure 2-16� Two-dimensional parity

	2.5.4.2� Improving Performance
	Figure 2-17� Fault-free write operations in a pari...

	2.5.5� Discussion

	2.6� Conclusions

	Chapter 3: Mechanizing the Execution of Array Oper...
	Figure 3�1� A layered software architecture
	3.1� Goals of an Ideal Approach
	3.2� Isolating Action-Specific Recovery
	3.2.1� Creating Pass/Fail Actions
	1. Actions are responsible for detection, diagnosi...
	2. Actions are responsible for recovery, reconfigu...
	3. Actions preserve the independence of faults wit...
	4. Actions are atomic.

	3.2.2� Actions Commonly Used in Redundant Disk Arr...
	Table 3�1� Actions common to most disk array algor...
	3.2.2.1� Symbol Access
	3.2.2.2� Resource Manipulation
	3.2.2.3� Computation
	3.2.2.4� Predicates

	3.3� Representing Array Operations as Flow Graphs
	3.3.1� Flow Graphs
	Figure 3�2� Flow graphs model program control flow...
	Figure 3�3� RAID level 4/5 small-write graph

	3.3.2� Predicate Nodes
	3.3.3� Simplifying Constraints
	3.3.4� Graph Optimization
	Figure 3�4� Eliminating redundant arcs
	Figure 3�5� Function-preserving transformations

	3.3.5� Automating Correctness Verification
	3.3.6� Discussion

	3.4� Execution Based Upon Forward Error Recovery i...
	Figure 3�6� Forward error recovery
	3.4.1� Correct Design is Not Obvious
	Figure 3�7� Constraining execution to ensure forwa...

	3.4.2� Exhaustive Testing is Required
	3.4.3� Recovery Code is Architecture-Specific

	3.5� Simplifying Execution Through Mechanization
	3.5.1� Undoing Completed Actions
	Table 3�2� Methods for undoing actions
	3.5.1.1� Symbol Access
	3.5.1.2� Computation
	(EQ 3-1)
	(EQ 3-2)

	3.5.1.3� Resource Manipulation
	Figure 3�8� Deadlock resulting from out-of-order a...

	3.5.1.4� Predicates

	3.5.2� Node States and Transitions
	Table 3�3� Node fields
	Table 3�4� Node states
	Figure 3�9� Node state transitions

	3.5.3� Sequencing a Graph
	3.5.3.1� Sequencing Graphs with Predicate Nodes
	Figure 3�10� Sequencing a graph which contains a p...

	3.5.4� Automating Error Recovery
	Figure 3�11� Error recovery from backward executio...
	3.5.4.1� Coping With Deadlock
	Figure 3�12� Detecting deadlock with a waits-for g...

	3.5.5� Distributing Graph Execution
	Figure 3�13� Pruning a graph for distributed execu...

	3.6� Fault Model
	3.6.1� Node Failures
	3.6.2� Crash Recovery and Restart
	1. Each codeword in the array is in a consistent s...
	2. Operations interrupted by the crash will not af...
	3. Operations interrupted by the crash will reach ...

	3.6.3� Controller Failover

	3.7� Summary

	Chapter 4: RAIDframe: Putting Theory Into Practice...
	4.1� Motivation
	4.2� Architecture
	4.2.1� Design Decisions
	Figure 4-1� Processing parity stripes independentl...

	4.2.2� Libraries
	4.2.3� Processing a User Request
	Figure 4-2� Mechanism for processing user requests...
	4.2.3.1� Locking
	4.2.3.2� Error Recovery

	4.3� Evaluation
	4.3.1� Setup
	Figure 4-3� Setup used for collecting performance ...
	4.3.1.1� Workload Generation

	4.3.2� Extensibility
	Table 4�1� Cost of creating new architectures

	4.3.3� Efficiency
	Figure 4-4� Single disk performance of striper and...
	Figure 4-5� Comparing RAIDframe to a hand-crafted ...
	Table 4�2� RAIDframe execution profile

	4.3.4� Verification
	Figure 4-6� Small-read performance of RAIDframe’s ...
	Figure 4-7� Small-write performance of RAIDframe’s...

	4.4� Conclusions

	Chapter 5: Roll-Away Error Recovery
	5.1� Full Undo Logging is Expensive
	Figure 5�1� Relative performance of full undo logg...

	5.2� Reducing Undo Logging Requirements
	5.2.1� Limiting the Scope of Rollback
	5.2.2� Reclassifying Actions From Undoable to Real...

	5.3� Roll-Away Error Recovery
	Figure 5�2� Dividing array operations into two pha...
	5.3.1� Properties of Phase-I Subgraphs
	5.3.2� Properties of Phase-II Subgraphs
	5.3.3� Commit Node Determines Direction of Recover...
	5.3.3.1� Inserting a Commit Node Into a Read Graph...
	Figure 5�3� Degraded-read graph

	5.3.3.2� Inserting a Commit Node Into a Write Grap...
	Figure 5�4� Algorithm for inserting a commit node ...
	Figure 5�5� Inserting a commit node into a RAID le...
	Figure 5�6� Inserting a commit node into a RAID le...
	Figure 5�7� Graph optimization

	5.3.4� Adjusting Graph Execution Rules
	Figure 5�8� Recovering from errors prior to the co...
	Figure 5�9� Recovering from errors following the c...

	5.3.5� Fault Model
	5.3.5.1� Adjusting Node Properties

	5.4� Performance Evaluation
	Figure 5�10� Relative performance of roll-away rec...

	5.5� Correctness Testing
	5.6� Summary
	Table 5�1� Structural constraints of graphs with c...
	Table 5�2� Execution invariants of graphs with com...

	Chapter 6: Conclusions and Recommendations
	1. A new programming abstraction to promote code r...
	2. A reduction of architecture-specific error reco...
	3. A mechanism for execution disk array algorithms...
	4. A significant reduction, in comparison to a nai...
	5. A programming abstraction which is amenable to ...
	6.1� Validating the Problem
	6.2� Eliminating Architecture-Specific Error Recov...
	6.2.1� Reducing Logging Penalties
	6.2.2� Enabling Correctness Validation

	6.3� Practicality
	6.4� Suggestions for Future Work
	Figure 6�1� Synchronized commit coordinates recove...

	Appendix A: Flow Graphs for Popular Array Architec...
	A.1� RAID Level 0
	Figure A-1� Nonredundant graphs

	A.2� RAID Level 1, Interleaved Declustering, and C...
	Table A-1� RAID level 1 graph selection
	Figure A-2� Mirrored-write graph

	A.3� RAID Level 3
	Table A-2� RAID level 3 graph selection
	Figure A-3� Large-write graph
	Figure A-4� Degraded-read graph

	A.4� RAID Levels 4 and 5 and Parity Declustering
	Table A-3� RAID levels 4 and 5 graph selection
	(EQ A-1)
	Figure A-5� Small-write graph
	Figure A-6� Reconstruct-write graph

	A.5� Parity Logging
	Table A-4� Parity logging graph selection
	Figure A-7� Parity-logging small-write graph
	Figure A-8� Parity-logging reconstruct-write graph...
	Figure A-9� Parity-logging large-write graph

	A.6� RAID Level 6 and EVENODD
	Table A-5� RAID level 6 graph selection
	Figure A-10� PQ double-degraded read graph
	Figure A-11� PQ degraded-DP-read graph
	Figure A-12� PQ small-write graph
	Figure A-13� PQ Reconstruct-write graph
	Figure A-14� PQ double-degraded write graph
	Figure A-15� PQ large-write graph

	A.7� Two-Dimensional Parity
	Table A-6� Two-dimensional parity graph selection
	Figure A-16� 2D double-degraded read graph
	Figure A-17� 2D small-write graph
	Figure A-18� 2D degraded-write graph
	Figure A-19� 2D degraded-H write graph
	Figure A-20� 2D degraded-DH write graph
	Figure A-21� 2D degraded-DV write graph

	Appendix B: Modifying Graphs for Roll-Away Recover...
	Figure B-1� Nonredundant graphs
	Figure B-2� Mirrored-write graph
	Figure B-3� Large-write graph
	Figure B-4� Degraded-read graph
	Figure B-5� Small-write graph
	Figure B-6� Reconstruct-write graph
	Figure B-7� Parity-logging small-write graph
	Figure B-8� Parity-logging reconstruct-write graph...
	Figure B-9� Parity-logging large-write graph
	Figure B-10� PQ double-degraded read graph
	Figure B-11� PQ degraded-DP-read graph
	Figure B-12� PQ small-write graph
	Figure B-13� PQ Reconstruct-write graph
	Figure B-14� PQ double-degraded write graph
	Figure B-15� PQ large-write graph
	Figure B-16� 2D double-degraded read graph
	Figure B-17� 2D small-write graph
	Figure B-18� 2D degraded-write graph
	Figure B-19� 2D degraded-H write graph
	Figure B-20� 2D degraded-DH write graph
	Figure B-21� 2D degraded-DV write graph

	Appendix C: Data
	Table C�1� Cross-reference of performance figures ...
	C.1� Algorithm for Inserting a Commit Point Into a...
	C.2� Raw Data
	Table C�2� Comparing RAIDframe to a hand-crafted i...
	Table C�3� Comparing RAIDframe to a hand-crafted i...
	Table C�4� Single disk performance of striper and ...
	Table C�5� Small-read performance of RAIDframe’s t...
	Table C�6� Small-write performance of RAIDframe’s ...
	Table C�7� Relative performance of full undo loggi...
	Table C�8� Relative performance of roll-away recov...

	C.3� Sample Configuration File
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

