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Abstract—Chronics are recurrent problems that often fly under
the radar of operations teams because they do not affect enough
users or service invocations to set off alarm thresholds. In
contrast with major outages that are rare, often have a single
cause, and as a result are relatively easy to detect and diagnose
quickly, chronic problems are elusive because they are often
triggered by complex conditions, persist in a system for days
or weeks, and coexist with other problems active at the same
time. In this paper, we present Draco, a scalable engine to
diagnose chronics that addresses these issues by using a “top-
down” approach that starts by heuristically identifying user
interactions that are likely to have failed, e.g., dropped calls, and
drills down to identify groups of properties that best explain the
difference between failed and successful interactions by using a
scalable Bayesian learner. We have deployed Draco in production
for the VoIP operations of a major ISP. In addition to providing
examples of chronics that Draco has helped identify, we show
via a comprehensive evaluation on production data that Draco
provided 97% coverage, had fewer than 4% false positives, and
outperformed state-of-the-art diagnostic techniques by up to 56%
for complex chronics.

I. INTRODUCTION

The evolution of large distributed systems into entire plat-
forms that provide dozens of distinct services to millions of
users requires rethinking classic notions of availability as a
binary property. Systems at such scales are rarely simply “up”
or “down”; even when they are working for an overwhelming
majority of users, there are almost always multiple ongoing
problems of different types that affect small subsets of users.
Often, the symptoms of each individual problem are not big
enough to trigger alarm thresholds, and thus they fly under
the radar of operations teams that are geared towards major
outages. We call such problems chronics—small problems
that persist in large distributed systems for days or even
weeks before they are detected (often as a result of customer
complaints). Chronics can occur repeatedly but unpredictably
for short durations of time, or persist, affecting small subsets
of users all the time. Nevertheless, they can cumulatively
contribute significantly to the degradation of user experience.
For example, data we obtained from the Voice over IP (VoIP)
platform of a major ISP revealed that even in the worst month
for major outages, the number of calls affected (dropped or
blocked) due to major outages was only 30% higher than the
number of calls impacted by chronics.

The discovery and diagnosis of never-before seen chronics
in platforms comprising thousands of network, server, and user
elements poses new challenges compared to the diagnosis of

major system outages. Threshold-based techniques [4], [6],
[15] do not work well because lowering thresholds to detect
chronics often increases the number of false positives. Long-
running persistent chronics can get absorbed into a system’s
definition of “normal”, thus posing problems for methods
based on historical models [9] or change-point detection [1].
Isolating individual problems is also more difficult—due to
their persistent nature, lots of chronics are often present in a
system at once, all starting and ending at different times, with
larger problems hiding smaller ones. Furthermore, they occur
even when the system works well for most users, and cannot
be diagnosed by isolating the system’s execution into periods
of “good” and “bad” behavior [17], [20]. Finally, chronics
often involve some unexpected combination of corner-cases
that impact only small subsets of users, e.g., a configuration
error that impacts only those users with a particular version
of a software stack, or a performance degradation that occurs
only when the load on a particular server temporarily increases
beyond a certain threshold.

To address these challenges, we present a new system called
Draco1 that can perform statistical diagnosis of chronics on
large systems by combining data logs from different sources,
and by diagnosing multiple ongoing problems—each identified
by complex signatures across multiple dimensions. Draco can
handle both discrete and real-valued data, and is threshold-free
to allow detection of even small problems. To enable discovery
of problems that have never been seen before or those that
have persisted in the background for a long time, Draco does
not rely on historical data. Draco minimizes false positives by
using a “top-down” approach that relies on a scalable Bayesian
distribution learner and an information-theoretic measure of
distance (KL distances) [12] to identify sets of “problem
signatures” that together explain the differences between the
failed and successful user interactions.

Draco’s core engine is scalable and domain-agnostic—
requiring only changes to some well-isolated data parsers to
be adapted to other applications. It is currently in production
use by the operations team of a major US-based provider’s
VoIP platform that handles tens of millions calls per day. The
problems we address, and our solutions, are not limited to
VoIP. They are likely to be applicable to many other large
platforms (e.g., e-commerce, web-search, social networks) that
serve users via independent interactions such as web requests.

1Draco is a genus of gliding lizards from Southeast Asia.



The contributions of this paper include the core algorithms
for chronics diagnosis, Draco’s scalable design, and a com-
prehensive evaluation of it’s speed and accuracy. We evaluate
Draco’s quality of diagnosis in two ways: 1) through fault
injection experiments that use real logs from our VoIP de-
ployment, but inject a variety of precisely controlled synthetic
failures so that ground truth is known, and 2) by cataloguing
actual incidents on the VoIP network that Draco was able to
identify, and which were subsequently confirmed by network
operations personnel.

This paper extends our earlier work [10] by handling
both discrete and real-valued data. In addition, this paper
includes a comprehensive evaluation showing that Draco is
able to quickly identify the attributes which are indicative
of failure with a high level of up to 97% coverage, while
maintaining a low level of less than 4% false positives.
Draco also outperforms state-of-the-art diagnostic techniques
that rely on decision trees [11], [20] by up to 56% when
diagnosing complex problems involving multiple attributes
while still providing near-interactive performance (< 1 second
per problem) on large datasets.

The paper is organized as follows: Section II provides a brief
background on VoIP networks and describes the VoIP dataset.
Sections III and IV discuss the design and implementation
of our diagnostic tool. Section V presents the results of our
fault injection experiments, while Section VI presents case
studies from production use where Draco helped in identifying
the root-causes of chronic problems. Finally, Section VII
compares Draco to related work.

II. CHRONICS IN TELECOM SYSTEMS

As of December 2010, 31 percent of the more than 87
million residential telephone subscriptions in the United States
were provided by interconnected VoIP providers. In addition,
approximately 31 percent of residential wireline 9-1-1 calls
were made using VoIP services, making the availability of
VoIP infrastructure critical [8].

We investigate chronics discovery for a part of the VoIP
operations of a major US-based ISP. The portion of the ISP’s
VoIP network that we analyzed handles tens of millions of
calls each day, contains several hundred network elements,
and is layered on a large IP backbone. The network offers
a portfolio of voice services including individual accounts,
self-managed solutions where customers manage their own
premise equipment (PBXs), and wholesale customers who
buy network minutes in bulk and resell them. Calls traverse
through combinations of network elements such as VoIP gate-
ways (IPBEs), traditional phone gateways (GSXs), accounting
servers, application servers, voicemail servers, and policy
servers (PSX). Many of these are built by different vendors
and have different log file formats.

To satisfy the high availability requirements of the system,
there are real-time operations teams that monitor both low-
level alarms derived from the equipment (server and network
errors, CPU/memory/network utilization counters, etc.), as
well as end-to-end indicators such as customer complaints
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Fig. 1. Draco identified multiple ongoing problems that affected calls passing
through the same network element at a production VoIP system.

and output from automated test call systems. Codebook-based
systems [22] that are driven by signatures of known problems
are used for identifying related alarms and for diagnosis. Major
outages often result in immediate impact on successful call
volumes, alarms from many sources, and are usually detected
and resolved quickly.

Despite such robust operations support, the system always
has a number of call defects occurring at any time of the day
in the form of “background noise”. Measured in defects per
million (DPM), they represent only a small fraction of the
calls at any given time, but left unchecked, they can add up
quickly over weeks and months. A separate chronics team
troubleshoots these defects, but diagnosis is still a largely
manual process. We seek to provide tools that can help such
chronics teams to quickly discover low-grade problems that
are hidden in the background noise.

A. Challenges in Diagnosing Chronics

We illustrate these challenges using examples of real in-
cidents diagnosed using Draco in a production system [10].
Figure 1 illustrates actual instances of chronic problems in
the service provider’s logs that were discovered using our tool.
In the first incident, the recurrent increase in defects during
night hours was traced to two different business customers,
who were attempting to send faxes overseas using unsupported
codecs during US night time. In the second incident, an
independent problem with a specific network element arose
and persisted until the network element was reset. Figure 2
illustrates a persistent chronic problem due to two blocked
CICs (Circuit Identification Codes) on the trunk group that
affected calls assigned to these blocked CICs in a round robin
manner. At peak, 2–3% of the calls passing this trunk group
would fail. After those CICs were unblocked, the total defects
associated with this error code were reduced by 80%.



Incident 3: Persistent problem at trunk group
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Fig. 2. Chronic problem at production system persists for several weeks
making it difficult them to detect using change-points.

These incidents highlight the challenges faced when diag-
nosing chronics namely:

1) Chronics fly under the radar. Chronics occur sporad-
ically, or affect a small subset customers, and thus may
not trigger any threshold-based alarms. In the incidents
shown in Figures 1 and 2, the defect rate observed by
the customers was a fraction of one percent. Setting
thresholds to detect these problems is notoriously dif-
ficult because lowering the thresholds to detect chronics
would increase the number of spurious alarms.

2) Persistent Problems. Some problems, occur only for
short durations of time, and could be discovered by
change-detection algorithms. However, other problems
persist for long periods of time as shown in Figure 2.
Algorithms that rely on change-point detection meth-
ods [1] or those that rely on historical models [9] would
fail to detect these problems.

3) Multiple independent problems. Because chronics of-
ten persist for long periods of time before they are
discovered, there are usually many of them ongoing at
the same time. Figure 1 illustrates how Draco identified
multiple ongoing problems that affected calls passing
through the same network element—one related to two
different business customers, and one related to the
network element

4) Complex triggers Chronics often involve only a small
subset of user interactions because they are triggered by
some unforeseen corner case arising due to a combina-
tion of factors. For example, certain chronics arise due
to a conflict between the configuration at the customer’s
premises and the ISP’s server. To effectively debug
these problems, operators need to know both the server
configuration, and the subset of customers affected.

III. DIAGNOSIS ALGORITHM

Draco uses a “top-down” approach to localize problems by
starting with user-visible symptoms of a problem, i.e., failed
calls, and drilling down to identify groups of attributes that
are the most highly indicative of the symptoms. We explain
Draco’s use in the context of a large telecommunication
system. However, Draco can be used to diagnose chronics
in other large distributed systems, such as e-commerce, web-
search, social networks, that have the following characteristics:

1) serve users via independent interactions, 2) log end-to-end
traces of user requests, and, 3) label each user interaction as
successful or failed.

The diagnosis algorithm proceeds in four steps. First, we
label user requests such as phone call attempts as successful
or failed, and extract system-level information associated with
each call from the server logs. This step is the only domain-
specific activity—all other steps are domain-agnostic. Second,
we compute an anomaly score for each attribute using a
standard information-theoretic metric that represents the “dif-
ference” between the success and failure attribute occurrence
probability distributions, as shown in Figure 3. Third, we use
a scalable ranking function to identify groups of attributes
that best discriminate between the success and failure labels,
as shown in Figure 4. Fourth, we examine the performance
logs of any network elements indicted during the third step,
and apply a similar ranking function to identify anomalous
performance metrics, such as high CPU or memory usage.
We describe each step of the approach in more detail below.

A. Labels and Attribute Extraction

We examined logs from the VoIP network over a period
of six months. These include call detail record (CDR) logs
that are generated locally by network elements for each call
that passes through them. The logs often contain hundreds
of attributes that specify details of the call such as the caller
and callee information. The structure and semantics of these
records are vendor-specific. These logs tend to be large—the
average size of the raw CDR logs is 30GB/day. Even after
significant consolidation to eliminate irrelevant data fields, the
average size is 2.4GB/day, and each log contains between
5000–10000 unique call attributes pertinent to diagnosis, i.e.,
attributes that appear in defective calls. In addition to CDR
logs, we also obtained performance logs collected by the
physical hosts on which the network elements run.

We start from user-visible symptoms of a problem, i.e.,
failed attempts to make a phone call. Labeling of user inter-
actions into success and failure interactions is easy if logs at
the user end device are available. However, if only logs from
network elements are available as in our case, domain-specific
heuristics will often be required. For phone calls, a user
redialing the same number immediately after disconnection,
zero talk time, or server reported error code can be used as
the failure indicator. In other systems, similar heuristics could
work too, e.g., a user repeatedly refreshing a web page, or
getting a HTTP error when accessing a page. Since these
labels are used for subsequent statistical analysis, occasional
mislabeling can be tolerated. We then correlate the lower-
level system log data extracted from the raw CDRs with these
user-level events (phone calls) to construct a “master record”
that represents the consolidated end-to-end trace. The log data
must have some common keys such as time, phone numbers,
and IP addresses that can be used to correlate the data with
the user-level event. However, the matches need not be exact,
and domain-specific matching rules can be used. For example,
entries may belong to the same call if the sender and receiver
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Call1: 2011-9-1 06:49:14,SUCCESS, Server1,Server2,Vendor1
Call2: 2011-9-1 06:49:30,FAIL,Server1,Customer1,Vendor1
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Log snippet from end-to-end traces

Fig. 3. Draco first extracts attributes from the labeled end-to-end traces and
represents them as truth table. Next, Draco computes an anomaly score as the
distance between the successful and failed distribution for each attribute.

phone numbers match in all available digits and timestamps
are within a small window of each other. Besides these keys,
the remainder of each log entry is not required to have any
special semantic meaning. We can treat it simply as a bag of
words. For our VoIP dataset, the end result is a list of “master
CDRs”, one for each phone call or call attempt, and each
labeled as a success or failure as shown in Figure 3.

Each master CDR consists of a number of attributes includ-
ing the caller and callee phone numbers, call time and duration,
network element names and IP addresses used to process the
call, any defect and success codes generated by the element,
the trunk lines used, and other fields present in the CDRs.
Domain knowledge can be used to choose which attributes to
include from the original raw logs.

B. Scalable Anomaly Score Computation

Given the set of master records, we then rank attributes using
a scoring function that quantifies the ability of the group to
discriminate between successful and failed calls. To do so, we
use an iterative Bayesian approach to learn a simple Bernoulli
(i.e., “coin toss”) model of successes and failures. The idea is
to model an attribute a as occurring in a call with a fixed, but
unknown probability pa. This attribute occurrence probability
is paf for failed calls, and pas for successful calls. The model
estimates these unknown probabilities using the master CDRs.
However, rather than learning a single value, we can estimate
the entire probability distribution of these unknown attribute
occurrence probabilities, i.e., F a

f (x) = P [paf ≤ x], and
F a
s (x) = P [pas ≤ x]. We start with an initial estimate for
F a
f and F a

s , and Bayes rule is used to update this estimate
as each new call in the dataset is processed, depending on
whether it is a successful and failed call, and whether it
contains the attribute a or not. Once these distributions are

learned, the score is simply the KL divergence [12], a standard
information theoretic metric of the “difference” between two
distributions, computed between these success and failure
attribute occurrence probability distributions.

We can compute the score for large numbers of attribute
groups and over large CDR volumes efficiently because the
KL divergence can be reduced to a closed form equation
due to two textbook results. The first result is that Beta
distributions are conjugate priors for Bernoulli models, i.e.,
if a Beta distribution Beta(x, y) is used as an initial estimate
for distribution F a

f (or F a
s ), and the forward probability

P [a appears in a failed call|F a
f ] (and similarly for successful

calls) is given by a Bernoulli distribution, then the new
estimate for F a

f after applying Bayes rule is also a Beta
distribution Beta(x+a, y+ b), where a and b are the number
of calls with and without attribute a, respectively. The second
result is that the KL divergence between two Beta distributed
random variables, X ∼ Beta(a, b) and Y ∼ Beta(c, d) is
given by the Equation

KL(Y ||X) = ln
B(a, b)

B(c, d)
− (a− c)ψ(c)− (b− d)ψ(d)

+(a− c+ b− d)ψ(c+ d) (1)

where B is the Beta function and ψ is the digamma function.
Therefore, if one starts with the initial assumption that the
failure and successful call attribute occurrence probabilities
pf and ps are uniformly distributed (which is a special case
of the Beta distribution), then setting a/b = 1+#successful
calls with/without attribute a, and c/d = 1+#failed calls
with/without attribute a in Equation 1 yields the desired score
in Equation 1. A similar observation is used to compute KL
divergences between two Bernoulli models in [14].

Figure 3 shows how the scoring works in terms of the
density functions for the success and failure attribute oc-
currence probability distributions. Intuitively, it scores higher
those attribute groups that are more likely to occur in failed
calls than in successful calls, but it does so while taking
into account the volume of data observed. This allows us to
increase confidence as we observe more calls. For example,
the score is higher after observing an attribute in 50 out of 100
failed calls as compared to observing it in 1 out of 2 failed
calls, even though both scenarios have the same underlying
probability pf of 0.5.

C. Attribute Group Generation

Chronics can arise due to complex triggers involving a com-
bination of factors such as conflicting software versions on
different network elements. These complex conditions are
represented as conjunctions of groups of attributes, e.g., “Cus-
tomer1 and LocationA and CodecB”. Draco identifies these
groups using a search tree as shown in Figure 4. The root node
of the tree represents the null set, and each branch represents
a single attribute. Each non-root node of the tree represents a
unique attribute group as specified by the path from the root
to that node, and the weight of the node is the anomaly score
for node’s attribute group. Starting with the direct children of
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Fig. 4. Draco uses an iterative Bayesian approach to rank combinations of attributes most correlated with the problem.

the root (representing a single attribute each), Draco expands
the tree to a depth of d to consider all groups containing
up to d attributes. Expanding along a branch of the tree
involves a filtering operation that retains only those successful
and failure events in which the attribute represented by that
branch was present. The filtering is required to get the success
and failure counts needed for the anomaly score computation.
These filtering operations dominate the algorithm’s running
time and dictate the data structures used in Draco’s design as
described in Section IV. The node with the highest weight is
picked as the dominant problem signature in that iteration.

For this process to be practical, there are two additional
complications that must be handled. The first is to find any
attributes that are synonyms of each other. For example,
attributes such as a particular customer’s IP address and
name, or a customer’s IP address and a dedicated IPBE
server assigned to that customer, may appear together in all
calls. Such overlapping attributes are indistinguishable from a
statistical point of view but may be meaningful to an operator
from a semantic standpoint (e.g., an operator may know how
to investigate an IPBE server but not know how to investigate
the customer’s IP). Therefore, at each node of the tree, we
identify all its equivalent attributes and represent the entire set
by a single canonical attribute when expanding the tree. The
threshold used to mark two, or more, attributes as synonyms is
referred to as the overlap probability and is a user-configurable
parameter that is typically set to a high value such as 0.99.
However, when presenting the problem signatures to the oper-
ator, we show all the synonyms associated with the attributes
identified in the signature.

The second complication is one of scalability. Because tens
of thousands of attributes can be present in the dataset, a brute-
force approach that expands the entire tree up to depth d is
infeasible. To explore attribute groups optimally, Draco uses
a branch-and-bound algorithm [13] to dynamically determine
the maximum breadth of the tree to explore. Specifically, for
each unexplored node of the tree n, Draco computes an upper
bound for the maximum anomaly score that can be achieved
by any child node n. If this upper bound is lower than the
maximum anomaly score seen so far, then exploration of n is

guaranteed to be fruitless, and it is discarded without further
exploration. The upper bound of the anomaly score for a
subtree, e.g., customer1 in Figure 4, can be shown to be
attained by assuming that there is a branch of that subtree
that explains all the failed calls in the subtree, and has zero
successes as computed by Equation 2.

KLb(Y ||X) = ln
B(1, a+ b− 1)

B(c, d)
− (1− c)ψ(c)−

(a+ b− 1− d)ψ(d) +
(a+ b− c− d)ψ(c+ d) (2)

For example, if the attribute customer1 was associated with
100 failed calls and 10000 successful calls, then the maximum
possible anomaly score for the subtree anchored at customer1
would be a branch with 100 failed calls and zero successes.

We iteratively apply this algorithm in a greedy fashion to
identify multiple concurrent problems by removing all calls
(both success and failures) that match this identified problem
signature from the dataset, and repeat the process. Doing so
removes the impact of the first diagnosed problem and allows
us to ask what explains the remaining failures. In this manner,
we can identify separate independent failure causes (see Steps
2 and 3 in Figure 4).

The average complexity of our algorithm is M ∗ N ∗ Dr,
where M is the number of attributes, N is the number of calls,
D is the average depth of the tree, and r is the average degree
of nodes in the tree. The magnitudes of D and r are determined
dynamically by the Draco’s branch-and-bound algorithm.

D. Real-Valued Resource Counters
The Bayesian approach presented in Section III-B is scal-

able enough to be directly applied to the large numbers of dis-
crete attributes present in our data sets. However, it is difficult
to construct such numerically cheap comparison techniques
to compare between success and failure distributions of real-
valued data. To overcome this limitation, we analyze only a
subset of the real-valued data that is linked to attributes that are
implicated in signatures produced by the Bayesian analysis.

Specifically, the real-valued data in the VoIP dataset includes
performance logs of any network elements within the service
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provider’s network. These performance logs include periodic
measurements (at 5–15 minute intervals) of CPU and memory
utilization, network traffic, disk I/O, and other OS-level met-
rics. For each problem signature identified in Section III-C,
Draco considers only those performance measurements as-
sociated with network elements present in the signature. We
identify the resource-usage metrics that are highly correlated
with the problem by annotating each call that matches the
problem signature with the resource-usage metrics gathered
during the same time interval, as illustrated in the log snippet
below.

# Resource−usage m e t r i c s f o r s e r v e r 2
# Timestamp , CallNo , S t a t u s , Memory (%) , CPU(%)
20100901064914 ,1 ,SUCCESS, 5 4 , 6
20100901065530 ,2 , FAIL , 8 2 , 4
20100901070030 ,3 , FAIL , 7 5 , 2 0

Next, we use the Wilcoxon rank-sum test [16] to determine
whether the distribution of each metric in failed calls differs
significantly from the distribution of each metric in successful
calls. The Wilcoxon rank-sum test does not assume that the
data is drawn from any particular distribution, and assesses
whether one of two samples of independent observations tends
to have larger values than the other. Comparing the distribution
of metrics between successful and failed calls within the same
time interval makes Draco more robust to seasonal variations
in load (e.g, night-time vs. day-time).

IV. ARCHITECTURE AND DESIGN

We have implemented a prototype of Draco, written in C,
which is comprised of data collectors that process consolidated
end-to-end call traces to extract attributes of interest, and
a diagnosis engine that outputs a ranked list of problems
identified (see Figure 5). For the past year, this prototype has
been in active daily use by the chronics team at the large
ISP to analyze the production VoIP platform. The prototype
is flexible since it can be easily extended to incorporate
additional sources of information, such as software versions

Attribute Index

Server1

Customer1 Anchor

Time Slice
Expiry
Event-list pointer
Fail count
Success count

Anchor

Event List

Call1:  Success
     Server1
     Server2
     Vendor1

Call2: FAIL
      Server1
      Customer1
      Vendor1

Fig. 6. Draco achieves high performance by maintaining in-memory indices
of attribute and event data.

and Quality of Service (QoS) data. In addition, the prototype
is scalable and capable of handling tens of millions of calls
in real-time even when running on a single server.

The data collectors extract attributes from server logs, and
archive the processed logs. Each data collector supports one
or more data formats specified using configuration files, which
increases the flexibility of our prototype. The data collectors
also send data to the diagnosis engine, which implements
the algorithms described above in Sections III-B and III-C.
The diagnosis engine can receive data from concurrent input
sources (i.e., multiple collectors) to reduce the amount of time
needed to load data. The diagnosis engine can also be run in an
offline mode by reading processed logs from the data archive.

The diagnosis engine considers each end-to-end call record
as an event. The engine collects and manages events over a
user-controlled time window of length T seconds (the chronics
analysis team typically uses a window size of a whole day).
Timestamp information in the event data is used to determine
the bounds of the window; as new data is received, the window
progresses forward and old events are aged off.

Performance was a primary concern while architecting the
diagnosis engine as it is necessary to manage thousands of
attributes from the VoIP system in real-time. The filtering
operations involved in the exploration of the search tree and in
filtering out data that can be explained by a newly discovered
problem signature, as described in Section III-C, are the most
expensive operations of each analysis. This is because each
filtering operation must operate on the entire dataset consisting
of both successful and failed events, which, despite reductions
due to sampling, can still be very large. To construct appro-
priate data structures for this process, we use the observation
that if each event is treated as a “document” that contains
words corresponding to each attribute, then computation of
the anomaly score for an attribute group involves “searching”
both the success and failure document sets for that group of
attribute keywords, and counting the matches. Therefore, as
shown in Figure 6, Draco’s core data structures are constructed
similarly to search engines—using an inverted hash table to
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and (3), identify recurrent problems using plots of affected calls.

index attributes.
The inverted index maps each attribute back to a linked list

of events that contains the attribute. These mappings allow
linear time computation of set intersections so that success and
failure counts can be quickly constructed for any conjunction
of attributes and negated attributes (to support exclusion of
events that match previously discovered signatures). For each
attribute, a series of success and failure counts are maintained
based on the time slices. Managing the counts by time allows
them to be adjusted as the time window rolls forward without
the need to recount across all unexpired events.

A. Success Event Sampling

Due to the nature of chronics, the datasets Draco processes
usually have a disproportionately larger number of successful
events as compare to failures. Sampling successful events as
they are read by the diagnosis engine yields both a significant
reduction in overall memory utilization, and also significantly
reduces the time to perform an analysis. To sample, we bin
each successful event based on its time slice, and keep 1
out of every N th successful event in each bin. Unbiased
random sampling preserves the correctness of the Bayesian
estimation of success and failure distributions as described
in Section III-B, and thus preserves the correctness of the
anomaly score of Equation 1. Its only impact is to reduce
the number of success events, and thus the uncertainty of
the success distribution. The results from our production runs
of Draco, discussed in Section VI, shows that sampling does
not appreciably impact Draco’s accuracy, but does increase its
speed by more than two orders of magnitude.

B. Visualization

Operators access the prototype via an interactive web-based
user interface. Figure 7 illustrates how the web-interface
facilitates the operator’s workflow.

1) The operator searches for the date and the types of
problems they are interested in analyzing. For example,

operators can restrict the analysis to calls for a specified
VoIP service on a given date.

2) Next, operators are directed to an interactive web-
interface interface that ranks the top-20 problems di-
agnosed by Draco that match their filter, sorted by
decreasing severity. Operators can gain more insight on
the nature of the problem by viewing samples of calls
affected via a drop-down option. The call samples dis-
play additional information from the call detail records,
such as telephone numbers and call durations, that might
not be captured by Draco’s problem signature.

3) A plot showing the frequency of the problem is dis-
played on the right, providing insight on the duration
and severity of the problem.

V. RESULTS FROM FAULT INJECTION STUDY

We conducted a fault injection study to investigate the
effectiveness of Draco under a variety of precisely controlled
synthetic faults so that ground truth was known. We also
benchmarked our approach against Pinpoint [11] and Spec-
troscope [20].

A. Fault Injection Dataset

We simulated faults using actual call-detail records (CDRs)
of successful calls from the VoIP production system. We
divided the CDRs into 1-hour intervals to yield 500 hourly
traces. We injected faults by changing the labels of successful
calls, which contained attributes of interest, to failed calls.
The attributes of interest were individual network elements,
customer sites, links (routes), and their combinations. These
attributes were selected because they were the most common
features tracked by the operations team at the large ISP.

We randomly varied the combination of attributes associated
with each fault from 1 to 3, and ensured that these attributes
were not synonyms of each other. We also varied the number
of independent faults in each hourly trace from 1 to 3.
The probability of each fault injected ranged from 1% to
10% of calls containing the chosen attributes. In addition,
we investigated the effect of mislabeled data by incorrectly
labeling 5–20% of failed calls as successful, and randomly
labeling an equivalent number of successful calls as failed.

We sought to answer the following questions through fault
injection: 1) how does varying the fault probability impact
the effectiveness of diagnosis? 2) how well can we diagnose
complex failures involving multiple attributes? 3) can we
identify multiple concurrent faults? and 4) how does noise
due to mislabeled data affect diagnosis?

We evaluated the effectiveness of Draco based on the rank of
the correct root-cause in the diagnostic output, and computed
recall and mean-average-precision. Recall is the fraction of
injected faults that were correctly identified in the top-20
root-causes. Mean-average-precision is a measure of the false
positive rate, which is typically used to analyze the quality of
ranked search results. A high mean-average-precision indicates
that the algorithm had low false positive rates, and ranked the
relevant root-causes at the top of the list.
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(a) Draco’s precision and recall remained relatively
constant despite variations in fault probability.
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(b) Draco correctly identified complex prob-
lems involving a combination of attributes.
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(c) Draco’s recall is robust to noise, and its preci-
sion is degraded in proportion to noise.

Fig. 8. Effect of variation in fault probability, number of attributes associated with each fault, and noise on Draco’s performance.

B. Draco’s Fault Injection Results

Draco successfully diagnosed 97% of faults injected, with
lower than 4% false positives. All the false negatives occurred
when we injected two faults that were logically indepen-
dent, but happened to share a large intersection of attributes
correlated with the faults. In these cases, Draco typically
reported a single root-cause that listed the shared attributes. A
more detailed breakdown of the results of our fault injection
experiments is provided below.

1) Draco is robust to variations in fault probability. Fig-
ure 8(a) shows that Draco correctly identified the root-
cause of injected faults despite variations in the fault
probability; Draco’s precision and recall remained rela-
tively constant at >96% and >94% respectively.

2) Draco correctly diagnoses chronics triggered by com-
plex conditions. Figure 8(b) shows that Draco correctly
diagnosed chronics triggered by the interaction of two
or more attributes. Draco’s precision and recall were
slightly degraded from 99% to 98%, and 99% to 93%
respectively for chronics involving multiple attributes.
As explained above, this drop in recall was due to the
presence of faults that were not truly independent rather
than the number of attributes associated with each fault.

3) Draco is effective at diagnosing multiple concurrent
faults. Draco correctly ranked 97% of the relevant root-
causes within the top-3 likely causes of chronics. This
high ranking of likely root-causes allows operators to
quickly focus their attention on the most pressing issues.

4) Draco tolerates noise due to occasional mislabeling.
Figure 8(c) shows that Draco’s recall is robust to noise,
and that precision is degraded in proportion to noise. The
drop in precision is due spurious attributes introduced
by the incorrect labels. Draco’s ranking of likely causes
remained robust to noise—even when 20% of failed calls
were mislabeled, Draco correctly identified >94% of
injected faults within the top-3 likely causes.

C. Benchmarking Against Existing Algorithms
We benchmarked our approach against Pinpoint [11] and

Spectroscope [20]. These diagnosis algorithms are most sim-
ilar to Draco as they rely on truth tables, and decision trees
that use information-theoretic splitting functions to identify
attributes most indicative of failures. We implemented the
decision tree algorithms using See5 [19], an open-source
implementation of the C5.0 algorithm written in C++.

1) Pinpoint: We implemented Pinpoint [11] by training a
decision tree using the labeled failed and successful calls. We
then diagnosed problems by examining each branch in the
decision tree whose leaf node classified failed calls, and ranked
the branches based on the number of failed calls. We observed
that precision and recall were primarily influenced by the ratio
of failed calls to successful calls in the dataset, as shown in
Figure 9. We varied this ratio by randomly sampling successful
calls, while leaving the number of failed calls unmodified. The
best performance was achieved when the ratio of failed to
successful calls was similar. Weiss and Provost [21] explain
that the performance of decision tree algorithms is degraded
when class distributions are imbalanced—these imbalances
are commonplace when diagnosing chronics as the number
of successes significantly exceeds the number of failures. An
example of this degraded performance is shown in Figure 9
where recall dropped to 48% when the number of successful
calls outweighed the number of failed calls by a factor of 100.
In this case, often the best predictor was a decision tree with
no branches that always predicted success.

2) Spectroscope: Spectroscope [20] localizes the source of
performance degradations between two periods or executions
of a system to just a few relevant components. It does so
by leveraging the insight that such changes often manifest as
changes or mutations in the structure of individual requests
(e.g., the components visited, the functions executed, etc.) or
in their per-component latencies. Spectroscope identifies mu-
tated request flows from the problem period and localizes the
problem by showing how they differ from their precursors—
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Fig. 9. The performance of decision trees is influenced by the ratio of failed
to successful calls in the dataset. Performance degrades significantly when
successful calls greatly outnumber failed calls in the dataset.

the way they were serviced in the non-problem period. Ad-
ditional localization is performed by using a decision tree to
identify low-level parameters (e.g., function calls) that best
differentiate a mutation from its precursor.

The fault models for Spectroscope and Draco are different—
Spectroscope targets problems that result in significant perfor-
mance degradations, whereas Draco targets chronics. There-
fore, we implemented a modified version of Spectroscope-
mod where successful calls represent the non-problem period,
and failed calls represent the problem period. We investigated
whether sampling successful calls using the notion of precur-
sors (i.e, successful calls that were similar, but not identical to
failed calls), yielded better results than the random sampling
we employed for Pinpoint. We identified precursors by sam-
pling successful calls whose string-edit distance from failed
calls was below a predefined threshold. We then localized the
root-cause of the problem using decision trees.

D. Benchmarking results

Figure 10(a) summarizes the overall mean-average-precision
and recall of Pinpoint2, Spectroscope-mod, and Draco when
diagnosing injected faults, in the absence of noise. Draco
performed better than both Pinpoint and Spectroscope-mod by
identifying 97% of injected faults with an average precision
of 99%. The precision of Pinpoint and Spectroscope-mod
were comparable, at 90%. Spectroscope-mod’s recall was 6%
higher than Pinpoint’s demonstrating that strategic sampling
of success data can improve performance.

The differences in performance between Draco and the
decision tree approaches were more pronounced when we lim-
ited our analysis to fault injection traces that either contained
multiple independent faults, or chronics triggered by complex
corner cases involving a combination of two attributes. Draco
correctly diagnosed up to 20% more injected faults for traces
containing multiple independent faults, as illustrated in Fig-
ure 10(b). Draco significantly outperformed the decision tree
approaches for chronics triggered by a combination of two

2For Pinpoint and Spectroscope-mod, we sampled successful calls to yield
a 1:5 ratio of failed to successful calls, which provided the best performance.
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(a) Overall, Draco performed better than both Pinpoint
and Spectroscope-mod at diagnosing chronics.
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(b) Draco’s recall was higher by up to 20% for traces
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(c) Draco outperformed both Pinpoint and Spectroscope-
mod, with a recall of up to 56% better for complex chron-
ics triggered by a combination of 2 or more attributes.

Fig. 10. Benchmarking Draco against Pinpoint and Spectroscope-mod.

or more attributes, achieving a recall of up to 56% higher as
shown in Figure 10(c).

The reasons for the degraded precision and recall for
Pinpoint and Spectroscope-mod are outlined below:

1) The decision tree performed poorly at diagnosing faults
injected with low probabilities, particularly in traces
containing multiple concurrent faults. In these instances,
the decision tree algorithm would split the tree to
classify faults occurring at higher probabilities, thereby
masking faults with lower probabilities.

2) The performance of the decision tree is degraded when
chronic problems arise due to a combination of attributes
because it identifies some, but not all relevant root-
causes. We took great care to ensure that the combi-
nation of attributes associated with each injected fault



were not synonyms of each other to eliminate this as
contributing factor to the poor performance. We investi-
gated the effect on performance of considering partial
matches where at least one of the affected attributes is
identified. In this case, the recall of both Pinpoint are
Spectroscope-mod improved to 83% suggesting that the
decision tree was pruning relevant features.

VI. DRACO IN PRACTICE

We have deployed Draco on a portion of wireline VoIP
services provided by a major ISP. Over the past year, Draco has
assisted operators in performing chronics analysis of dropped
and blocked calls on the production system. We evaluated the
effectiveness of Draco using a diverse set of real incidents from
a production telecommunication system, listed in Table I. We
ran our experiments on a 8-core Xeon HT (@2.4GHz) with
24GB of memory.

A. Real Incidents

We evaluated Draco against chronics with known root-
causes from the production system; see Table I. The root-
causes of the chronics included configuration problems at the
customer premises, resource contention, software problems,
and an intermittent power-outage. Draco correctly localized
the network element or customer associated with the chronic
problem in 8 out of these 10 incidents. Once the problem
is localized by Draco, operators can promptly liase with
customers, or query logs outside Draco’s scope to diagnose
the problem in more detail. The two incidents in which we did
not implicate the correct element were a software problem in
a policy server (incident 9) and a power outage that resulted
in intermittent problems during failover (incident 10). In both
incidents, the network element that was the root-cause of the
problem was not present in our input data so Draco indicted
the network elements adjacent to the root-cause.

In addition to localizing network elements associated with
the chronic problem, Draco analyzed the performance logs of
the identified network element whenever they were available.
Draco flagged a resource metric as anomalous if the distribu-
tion of the metric in failed calls was significantly different from
that in successful calls. Draco used the Mann-Whitney rank
test to reject the null hypothesis that the real-valued metrics
associated with failed and successful calls were drawn from
the same distribution with a significance-level of 1%. The test
helped to localize problems due to resource-contention at a
network element.

B. Case Studies

We highlight four case studies from Table I, to illustrate
how Draco has been used by the chronics team quickly to
identify several new problems.

Incident 4: Poor call quality (due to packet delay, jitter,
and packet loss) is a chronic problem that is difficult to
detect because the call is neither blocked nor dropped and
thus appears as a successful event from the system’s point of
view. To diagnose poor call quality, the gateway servers were

configured to log the message-loss percentage for each call.
In addition, the Draco data collector was modified to ignore
failed (dropped and blocked) calls and treat the set of calls
with poor quality (loss > threshold) as the new set of failed
calls. The resulting data can then be analyzed normally by
Draco’s diagnosis engine.

Draco indicated that the top quality of service issue (ap-
proximately 48% of all poor quality calls) was related to a
single business customer. Further, Draco did not implicate any
network elements indicating that the root-cause of the problem
was likely with the customer equipment and not a problem
with the ISP’s hardware and/or network. When the customer
was notified, and the problem corrected, the overall number
of quality of service failures was reduced as expected.

Incident 5: A business customer experienced extremely
high call volumes which resulted in intermittent congestion
on bundles between two gateway servers and a switch. Draco
identified the network element associated with the customer
(i.e., the customer’s IPBE), and determined that the problem
was correlated with high concurrent sessions and CPU usage.

Incident 6: An intermittent performance problem with
two application servers led to an increase in call defects
persisting for several days. This problem affected 0.1% of
all calls passing through these application servers. Draco
identified both servers affected by the problem. After the
operations team failed over traffic to a backup server, the
number of defects was reduced by 85%. We analyzed the CPU,
memory and network-related metrics on the application servers
and observed that these failures occurred during periods of
heavy load and high CPU usage.

Incident 9: A chronic problem arose when a policy
server in the VoIP network stopped responding to invites from
application servers, and affected 0.4% of calls passing through
the application server. Since records for the policy server were
not present in the master CDRs that we analyzed, Draco
implicated the application servers that were sending invites
to the policy server. An analysis of the performance logs at
the application server indicated that low response rates were an
additional symptom of the problem. Although in this instance,
Draco did not identify the root-cause, our analysis provided
useful clues to operators to help localize the problem. The
incorporation of more server logs, such as policy server and
router logs, would improve our ability to localize problems.

C. Draco’s performance

Depending on the operating mode, Draco takes 2 to 6
minutes to load input data, and from 16 seconds to over 10
minutes to analyze input data comprised of more than 30
million calls; see Table II for details.

In the initial implementation, the tree size was limited
in order to achieve acceptable analysis times. Enabling the
branch-and-bound algorithm described in Section III-C, while
continuing to limit the tree size, resulted in more than a 50%
performance improvement in the analysis time. However, the
branch-and-bound algorithm alone does not provide enough of
a performance gain to allow the restrictions on tree size to be



TABLE I
EXAMPLES OF CHRONICS AT PRODUCTION SYSTEM. DRACO CORRECTLY DIAGNOSED 8 OUT OF 10 INCIDENTS AND RANKED THEM AMONG THE TOP-20

PROBLEMS IDENTIFIED. DRACO ALSO IDENTIFIED ANOMALOUS RESOURCE-USAGE METRICS WHENEVER PERFORMANCE LOGS WERE AVAILABLE.

Examples of problems Type Diagnosed Resource anomalies
1. Customers use wrong codec to send faxes abroad. Configuration X -
2. Customer problem causes recurrent blocked calls at IPBE. Configuration X -
3. Blocked circuit identification codes on trunk group. Configuration X -
4. Problem with customer equipment leads to poor QoS. Configuration X -
5. Congestion at gateway servers due to high call volumes. Contention X CPU/Concurrent sessions
6. Performance problem at application server. Contention X CPU/Memory
7. Debug tracing overloads servers during peak traffic. Contention X CPU
8. Software problem at control server causes blocked calls Software bug X -
9. Policy server not responding to invites from application servers. Software bug Low responses at app. server
10. Power outage and unsuccessful failover causes brief outages. Power -

TABLE II
DRACO’S AVERAGE DATA LOAD TIME, AVERAGE NUMBER OF NODES IN A DIAGNOSIS TREE AND MEAN ANALYSIS TIME TO GENERATE THE TOP 20

DIAGNOSES FOR MORE THAN 30 MILLION CALLS.

Mode Load Time Nodes Analysis Time
Branch & Bound Sampling Restricted
NO NO YES 374 ± 29sec 429 ± 208 524 ± 128sec
YES NO YES 374 ± 29sec 12 ± 5 128 ± 53sec
YES NO NO 374 ± 29sec 36 ± 20 880 ± 124sec
YES YES NO 120 ± 7sec 40 ± 30 16 ± 6sec

removed; doing so caused the analysis times to exceed those
of the initial implementation. Sampling (at the rate of 1/200 of
successful calls), when used in combination with the branch-
and-bound algorithm, does allow the restrictions on tree size
to be lifted while reducing analysis times to a near interactive
level. The reduction of data load time by more than 60% is
another benefit to the use of sampling.

The problem signatures generated when sampling have a
97% match rate when compared to those generated when all
success data is used. Specifically, the analysis of several days’
data yielded 220 problem signatures, but only 214 matching
signatures were produced by the analysis using sampled input.
Of the six unmatched signatures, all but one were ranked either
19th or 20th (out of 20); the exception was ranked 13th.

VII. RELATED WORK

Over the past decade, there have been significant advances
in tools that exploit statistics and machine learning to diagnose
problems in distributed systems. This list is by no means
exhaustive, but we believe it captures the trends in diagnosis.
This section discusses the contributions of these techniques,
and their shortcomings at diagnosing chronics.

A. End-to-end Tracing

Some diagnostic tools [3], [5], [11], [20] analyze end-to-end
request traces and localize components highly correlated with
failed requests using data clustering [3], [20] or decision trees
[5], [11]. They detect problems that result in changes in the
causal flow of requests [11], [20], performance degradation
[20], or error codes [5]. These techniques have typically been
used to diagnose infrastructural problems, such as database
faults and software bugs (e.g infinite loops and exceptions)
which lead to a marked perturbation of a subset of requests.

In principle, techniques such as decision trees should fare
well at diagnosing both major outages and chronics. However,
decision trees did not fare well at diagnosing chronics when we
applied them to our dataset. The decision tree’s bias towards
building short trees led to the pruning of relevant features when
diagnosing problems due to complex triggers. In addition,
the small number of calls affected by chronics coupled with
the presence of multiple independent chronics degraded the
performance of the decision tree.

B. Signature-based

Signature-based diagnosis tools [4], [6], [7] allow system
administrators to identify recurrent problems from a database
of known problems. These techniques typically rely on
Service-Level Objectives (SLOs) to identify periods of time
where the system was behaving abnormally, and apply ma-
chine learning algorithms to determine which resource-usage
metrics are most correlated with the anomalous periods. These
techniques can diagnose problems due to complex triggers by
localizing the problem to a small set of metrics. However, they
do not address multiple independent problems as they assume
that a single problem occurs at a given instance of time.
Chronic conditions might also go undetected by the SLOs
because they are not severe enough to violate the thresholds.

C. Graph-theoretic

Graph-theoretic techiques analyze communication patterns
across processes to track the probability that errors [2], [9],
or successes (e.g., probes [18]) propagate through the system.
Sherlock [2] builds models of node behavior, and diagnoses
problems by computing the probability that errors propagate
from a set of possible root-cause nodes. NetMedic [9] uses
a statistical approach to diagnose propagating problems in



enterprise systems. These techniques can detect multiple
independent problems—ranking them by likelihood of occur-
rence. However, they do not address problems due to complex
triggers as they assume that the root-cause of the problem
stems from a single component. In addition, since chronics do
not severely perturb system performance they can be included
in the profiles of normal behavior learned from historical
data—causing chronics to go undetected.

D. Event correlation

Event correlation has been used to discover causal rela-
tionships between alarms across components in supercomput-
ers [17], IPTV networks [15], and enterprise networks [22].
These techniques support diagnosis of multiple independent
problems, and might be applicable in our system when there
are resource-contention problems due to overload within the
service provider’s network. However, most of the chronics
we have observed are due to customer-site problem such
as misconfigurations, and operators at the ISP lack access
to customer-site data other than names of the customer—
therefore event-correlation might not be possible. Draco local-
izes these chronics by analyzing data that is causally-related
with each call rather than alarm signals across the network.

VIII. CONCLUSION

This work introduces chronics—small problems in large
distributed systems that significantly degrade user experience
because they persist undiagnosed for lengthy periods of time—
and describes Draco, a diagnosis engine that identifies and
localizes them. We showed through examples of real chronics
in the VoIP platform of a major ISP why they are notoriously
difficult to diagnose: their small size makes setting alarm
thresholds tricky, there are many of them active concurrently
even when the system as a whole is mostly functional, their
symptoms often overlap with each other, they are triggered by
complex corner cases involving multiple conditions, and they
they persist for lengthy periods and can get absorbed into the
system’s definition of what is normal.

Draco addresses these issues through a variety of tech-
niques: a) using top-down diagnosis starting with abnormal
user interactions to identify failures rather than relying on
bottom-up alarms based on server logs, b) statistically iden-
tifying root-causes by comparing bad interactions with good
ones from the same interval of time rather than relying on
thresholds or on historical data from good intervals of time,
c) a branch-and-bound procedure to identify complex triggers
comprised of conjunctions of multiple attributes, and d) greedy
filtering of failures explained by already identified problems
to discover additional concurrent problems.

Draco has been deployed on a major VoIP platform serving
millions of users and handling tens of millions of calls a
day, and is being successfully used by its operations team.
We provide examples of real chronics that Draco has helped
identify, and through injection of synthetic failures on a dataset
obtained from the production system, have shown that for
datasets with tens of million of calls, it can provide coverage

levels as high as 97% with false positives as low as 4%,
and can do so while providing near-interactive performance of
< 1 second per chronic all while running on a single server
machine with middle of the range hardware.
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