
Failure Diagnosis of Complex Systems

Soila P. Kavulya1, Kaustubh Joshi2, Felicita Di Giandomenico3,
Priya Narasimhan1

1 Carnegie Mellon University, PA, USA
spertet@ece.cmu.edu,priya@cs.cmu.edu

2 AT&T Labs Research, NJ, USA
kaustubh@research.att.com

3 ISTI-CNR, Pisa, Italy
felicita.digiandomenico@isti.cnr.it

Abstract Failure diagnosis is the process of identifying the causes of
impairment in a system’s function based on observable symptoms, i.e.,
determining which fault led to an observed failure. Since multiple faults
can often lead to very similar symptoms, failure diagnosis is often the first
line of defense when things go wrong - a prerequisite before any correc-
tive actions can be undertaken. The results of diagnosis also provide data
about a system’s operational fault profile for use in offline resilience eval-
uation. While diagnosis has historically been a largely manual process
requiring significant human input, techniques to automate as much of
the process as possible have significantly grown in importance in many
industries including telecommunications, internet services, automotive
systems, and aerospace. This chapter presents a survey of automated
failure diagnosis techniques including both model-based and model-free
approaches. Industrial applications of these techniques in the above do-
mains are presented, and finally, future trends and open challenges in
the field are discussed.

1 Introduction

The issue of diagnosing hardware and software failures to find the underlying
causes has existed for as long as computers have been around. Using the fault,
error, and failure nomenclature of [53], failure diagnosis is the process of identi-
fying the fault that has led to an observed failure of a system or its constituent
components. In any sufficiently large computing system, many types of faults are
often not directly visible for a number of reasons - either due to the character-
istics of the fault itself, due to fault-tolerance mechanisms built into the system
that hide the expression of the fault, or as is most often the case, the lack of
detailed monitoring functionalities that can detect and report on the occurrence
of the fault directly. In some cases, monitoring systems may provide only an
indication that a fault has occurred, but may not provide sufficient information
to precisely locate it.

Failure diagnosis is a technically challenging endeavor because the relation-
ship between faults, failures, and their observable symptoms is a complex one;

single faults often produce multiple symptoms in different parts of a system,
e.g., a misconfiguration fault in a critical network component such as a Dynamic
Host Configuration Protocol (DHCP) server can cause all client computers on
the network to fail; conversely, similar symptoms may be caused by many dif-
ferent types of faults, e.g., the failure of a networked computer to receive an IP
address can have several causes including, but not limited to, packet loss in the
physical network, a client misconfiguration, or a problem with the DHCP server.
As operational systems become more mature, the failures they encounter often
transition from easy to detect “hard failures” that cause a significant impairment
to the system’s primary function, to “soft failures” such as those due to perfor-
mance bottlenecks or transient faults that are much harder to detect. Therefore,
the process of diagnosis often also includes the identification of anomalous con-
ditions that are symptoms of the occurrence of faults.

In addition to its essential role as the precursor to any remediation actions
for maintaining a system’s health at runtime, failure diagnosis also serves sev-
eral important roles in resilience assessment of complex systems. Since it is only
the symptoms of a fault that are usually observed at runtime, diagnosis is es-
sential for the accurate cataloguing of fault occurrences in the field. Conversely,
any data that reports on occurrences of actual system faults is by definition the
product of a diagnostic process, whether it is a simple one (in case of a one-to-one
mapping between faults and symptoms), a complex manual process, or an auto-
matic one. Understanding this process is important for understanding the biases
and limitations of the field data. Diagnosis is also important for discovering new
fault types that can then be used to drive fault injection campaigns as discussed
in Chapter X. In fact, diagnosis is the converse process of fault injection. In
fault injection, one injects faults into a system according to a predefined fault
model in order to analyze the resulting symptoms, or if the system tolerates the
fault, the absence of any symptoms. In diagnosis, one infers the faults from the
observed symptoms. Finally, diagnosis is also important in the emerging field of
online resilience assessment as described in Chapter X. In this area, diagnosis
can be used, under the label of fault localization, to infer the true health of
complex distributed systems, including what components have actually failed,
by eliminating those failure symptoms that are a result of error propagation to
an otherwise operational part of the system.

Due to the complexity of computing systems and difficulty of formalizing
the scope of the diagnosis task itself, diagnosis has historically been a largely
manual process requiring significant human input. However, techniques to auto-
mate as much of the process as possible have significantly grown in importance.
In domains such as communication networks and Internet services, the sheer
scale of modern systems and the high volumes of impairments they face drive
such trends, while in domains such as embedded systems and spacecraft, it is
increasing complexity together with the need for autonomic operation (i.e., self-
healing) when human expertise is not available, that are the drivers. Due to
the diversity of the domains, a variety of failure diagnosis techniques drawing
from diverse areas of computing and mathematics such as artificial intelligence,

machine learning, statistics, stochastic modeling, Bayesian inference, rule-based
inference, information theory, and graph theory have been studied in the liter-
ature. Finally, when automated techniques fail, approaches that assist humans
perform diagnosis more efficiently via the use of visualization aides have also been
widely deployed. While a comprehensive survey of this broad topic can provide
sufficient material for a book of its own, in this chapter, we provide a summary
of the most important techniques, and provide references to more in-depth sur-
veys where available. This chapter is organized as follows: Section 2 discusses
types of problem diagnosis techniques using illustrative examples; Section 3
highlights practical uses of these diagnosis techniques in industrial applications;
Section 4 presents future trends and open challenges in diagnosisx; and Section
5 concludes.

2 Techniques

Automated problem diagnosis techniques localize the most likely sources of a
problem to a set of metrics (e.g., anomalous CPU usage), a set of nodes (e.g.,
anomalous web server), or a type of problem (e.g., using known problem signa-
tures to identify misconfiguration). Operators use the output of automated prob-
lem diagnosis to guide root-cause analysis by analyzing source-code, or hardware
and software settings at the identified culprits. For example, an examination of
the source-code at the web server might show that the anomalous CPU activity
at the web server was due to an infinite loop in a scheduling function. Auto-
mated diagnosis techniques are not perfect and they can either fail to detect a
problem, i.e, false negative, or indict the wrong component, i.e., false positive.
These techniques rely on tuning to minimize the number of false negatives and
false positives generated. Visualization tools complement automated problem
diagnosis tools by allowing operators to visualize anomalies and explore differ-
ent hypotheses on the root-cause of problems. Table 1 provides a summary of
the techniques described in this chapter. For each technique, we first use an il-
lustrative example to highlight its application, before delving into the different
approaches proposed in the research literature. We conclude each discussion with
a critique of the technique that highlights its strengths and limitations.

2.1 Rule-based

Rule-based techniques rely on expert knowledge expressed as a set of predefined
directives, i.e. rules, to diagnose problems. The rules are typically formatted as
a set of if-then statements where the if-part of the rule is called the premise, and
the then-part of the rule is the conclusion. An example of a rule used for diagnosis
is “if CPU utilization exceeds 90% then node is overloaded”. Rule-based tech-
niques for diagnosis typically rely on forward-chaining inference mechanisms [86]
to synthesize results when multiple rules fire. Forward inference processes events,
such as high CPU and memory utilization, and uses the triggered rules to draw
conclusions on the root-cause of the problem.

Table 1. Summary of Diagnosis Techniques

Technique Limitations

Rule-based techniques rely on expert
knowledge expressed as a set of pre-
defined rules to diagnose problems
(Section 2.1).

Rules are human-interpretable and extensible.
However, they cannot diagnose unforeseen prob-
lems, and large knowledge bases are difficult to
maintain.

Model-based techniques define a
mathematical representation of
a system, testing the observed
state against the model to see if it
conforms (Section 2.2).

Model-based techniques are well suited for di-
agnosing application-level problems. However,
building models requires a deep understanding
of the system.

Statistical techniques summarize
and interpret empirical data using
techiques such as correlation, his-
togram comparison and probability
theory, for diagnosis (Section 2.3).

Statistical techniques require little expert knowl-
edge or detailed models on system internals.
However, they have difficulties distinguishing
legitimate changes in behavior (e.g. workload
changes from illegitimate changes (e.g. perfor-
mance problems).

Machine-learning techniques identify
patterns in behavior using clustering,
or use training data to determine if
the system is unhealthy and the likely
cause (Section 2.4).

Machine-learning techniques automatically learn
profiles of system behavior, but can suffer from
the curse of dimensionality that reduces accuracy
when the number of features is large.

Count-and-threshold techniques allow
discrimination between transient and
intermittent faults Section 2.6).

Diagnosis accuracy strongly depends on proper
parameter calibration. However, solutions for pa-
rameter tuning based on rigorous mathematical
formulations and analytical models are available.

Visualization techniques allow oper-
ators to visualize trends in data
and spot anomalous behavior (Sec-
tion 2.5).

Visualization tools allow operators to explore dif-
ferent hypotheses on the root-cause of problems.
However, they do not automatically identify they
source of problems.

Illustrative example Chopstix [8], a lightweight monitoring tool, relies on a small
collection of rules to guide diagnosis in production systems. They describe a
recurrent problem at a production system that caused nodes to crash every 1-7
days. Shortly before such crashes they observed that ssh sessions to nodes would
stall for tens of seconds. They observed that the symptoms of this problem
matched the rule “if combined value of CPU utilization for processes is low, and
scheduling delay is high then kernel bottleneck is likely”. This rule led them to
trace the problem to a tight loop in kernel’s scheduler.

Types of rule-based techniques One approach for representing rules is code-
books [26,94] which map each problem to a unique signature consisting of symp-
toms in both the faulty component where the problem occurs, and related com-
ponents affected by the original problem. The codebook is instantiated as a
dependency matrix where the columns represent the problems, and the rows
represent the symptoms. Problems are uniquely diagnosable if all the columns

are different. Codebooks diagnose the underlying problem by identifying the
closest match to the observed symptoms.

Other diagnosis tools, such as Chopstix [8] and Vertical Profiling [31] rely
on a small collection of rules based on the semantics of the application, and the
underlying behavior of the operating system to map changes in system perfor-
mance on individual nodes to known problems. These tools provide an intuitive
approach for diagnosing problems on individual nodes, however they currently
do not correlate metrics across multiple nodes and do not address problems that
can propagate across the network in distributed systems.

Diagnosis tools that analyze large sets of rules require more sophisticated
techniques, such as expert systems that rely on forward inferencing to synthe-
size results and resolve conflicts when multiple rules fire. These expert systems
allow administrators to cope with the deluge of alarms generated by large-scale
distributed systems. JECTOR [57] presents a specification language for express-
ing rules that captures the timing relationship among correlated events. For
example, alert operator if a link is down and no corresponding link up event oc-
curs within 2 minutes. Commercial tools such as HP Operations Manager [32]
use an optimized Rete algorithm [29] to perform pattern matching on rules in a
scalable manner that is independent of the number of rules.

Limitations Rule-based approaches are prevalent in commercial tools, such
as IBM Tivoli Enterprise Console [34] and HP Operations Manager [32], as
they offer an intuitive approach for expressing system behavior that allows users
to augment the rule-base by developing new rules tailored to their unique op-
erating environments. In addition, rule-based systems do not require profound
understanding of the underlying system architectural and operational principles.
However, rule-based systems suffer from the inability to learn from experience,
and the inability to deal with problems not described within the rule-base. Rule-
based systems are also difficult to maintain because the rules frequently contain
hard-coded network configuration information [86].

2.2 Model-based

Model-based techniques define a mathematical representation of a system, and
test the observed state of the system against the learned model to diagnose
problems. Some models represent the normal operation of the system, and detect
problems whenever the observed system behavior fails to conform to the learned
model. Other techniques generate graphical models of how problems propagate
through the system [6,41,48,50], and exploit this knowledge to infer the source of
the problem. Alternatively, graphical models [40,76] can represent how successes
propagate through the system. These graphical models then analyze patterns of
probe failures and successes to infer the source of the problem. Lastly, graphical
models may represent expected communication patterns within a system and
flag problems whenever these patterns are violated.

Illustrative example Sherlock [6] localizes performance problems in large enter-
prise networks using a graphical model of how errors propagate to infer the source
of the problem. Sherlock’s inference engine learns service-level dependencies by
sniffing packets and detecting which services are likely to be used together, e.g.,
DNS and web service. Sherlock models three types of components: (i) clients
which observe response times delays; (ii) root-cause nodes which are potential
sources of faults in the system; and (iii) meta-nodes which model how errors
propagate through the system. An example of a meta-node is a fail-over node
which requires all nodes in the high-availability group to fail for an error to
propagate. If a client observes a high response time, Sherlock uses the fault-
propagation model to compute the probability that a client observes a set of
symptoms given that a root-cause node is at fault. It outputs a list of root-cause
nodes which best explain the observed symptoms at the client.

Types of model-based techniques Model-based techniques can be classified
into: (i) physical model based techniques which use the physical laws that a system
operates under to model constraints on system behavior; (ii) regression and
queuing models which model relationships between resource consumption and
application behavior; and (iii) graph-theoretic models which exploit knowledge
on how errors or successes propagate in a system to localize problems.

Physical models use models of the physical world, such as the laws of mechanics,
electomagnetics, or chemical kinetics to model system behavior and to determine
when anomalous behavior is present. They typically model continuous cyber-
physical systems in industrial, automotive and aerospace domains whose physics
are well understood, e.g, powertrain [62] and chassis systems [33] in cars. These
systems run in a closed-loop, where sensors monitor the system output, then feed
the data into a controller that signals actuators to adjust control as necessary
to maintain the desired system output. Problems are diagnosed by executing
the physical model alongside the actual system at run-time to detect when the
system fails to conform to the model. The fault model typically associated with
the control-theoretic approach includes sensor faults, actuator faults, and faults
in the mechanical, electromechanical, or hydraulic plant being controlled [52].
Isermann et al. [35] provide a more detailed discussion of these techniques.

Regression and queuing models are useful for workload characterization, capac-
ity planning and detecting performance problems. These models represent re-
lationships between resource consumption and application behavior, and detect
anomalies whenever these relationships are violated.

Some techniques model multi-tier Internet applications as queues, and use
mean-value analysis [58, 91] to predict transaction response times. These tech-
niques use a network of queues to represent how the tiers in the multi-tier applica-
tion cooperate to process requests. Mean-value analysis assumes closed queueing
models in which the number of clients in the system remains constant. However,
it is often difficult in practice to obtain the client session information required
to calibrate closed models for real-world production applications [87].

Real-world production workloads are non-stationary, i.e., the relative fre-
quencies of transaction types changes over time. Queuing approaches which
leverage regression to learn the relationship between resource consumption and
application behavior can be used to predict response times for non-stationary
workloads [19, 46, 87]. These models assume that the system contains a small
number of types of transactions, and that transaction types strongly influence
system resource demands. These models rely on open queues, where clients can
join and leave the system model. Open models facilitate more thorough empiri-
cal validation in production systems than would be possible with closed models
as they do not require client session information [87].

In addition, using queuing theoretic approaches to model transaction mixes
allows these systems to distinguish anomalies from workload changes. Cherkasova
et al [19] use queues to model the relationship between CPU usage and transac-
tion response times for a transaction mix. They also exploit regression to define
an application performance signature that allows them to detect software up-
grades by monitoring changes in the application signature. Stewart et al [87]
model the relationship between multiple physical resources, namely CPU, disk
and network, and response times for a transaction mix. These models need to
be re-trained to cope with new transaction types. They also ignore interaction
effects across transaction types and implicitly assume that queueing is the only
manifestation of congestion.

Graph-theoretic models analyze communication patterns across nodes and pro-
cesses to model the probability that errors, or successes, propagate through the
system. The models may also monitor violations in expected communication
patterns. Graph-theoretic models are useful for diagnosing both correctness and
performance problems in distributed systems. They can be used to detect mul-
tiple independent problems - ranking them by likelihood of occurrence.

SCORE [50] and Shrink [41] localize problems in the IP network by modeling
error propagation patterns in the wide-area networks. Both Shrink and SCORE
model the system as a two-level graph between the IP layer and the underlying
wide-area network. Sherlock [6] and Khanna et al. [48] extend on Shrink and
SCORE to deal with multi-level dependencies and with more complex operators
that capture load-balancing and failover mechanisms. These techniques infer
the root-cause by computing the probability that errors propagate from a set of
possible root-cause nodes to the observation nodes. They indict the root-cause
nodes that best explain the symptoms at the observation nodes, and scale by
assuming that there can only be a small number of concurrent problems in the
system at a given time.

Rish et al. [76] propose an active probing approach that exploits a dependency-
matrix to represent the failed components that each probe, e.g., server ping,
detects. Active probing allows probes to be selected and sent on-demand, in
response to one’s belief about the state of the system. At each step the most in-
formative next probe is computed and sent. As probe results are received, belief
about the system state is updated using probabilistic inference. This process con-
tinues until the problem is diagnosed. They extend their active probing approach

to cope with dynamic systems [75], where problems may occur and disappear,
by maintaining two sets of probes: one set for repair detection to monitor nodes
that are known to have failed, and another set for failure detection to monitor
nodes that are known to be working. Their approach assumes a sequential fault
model in which only one fault or repair can occur at a time. Joshi et al. [40]
use a Bayesian approach to diagnose problems in systems with different types of
monitors, or probes, that have differing coverage and specificity characteristics.
They use a dependency matrix to represent the probability that a monitor de-
tects a failure in a component, and incrementally update their belief about the
set of failed components based on the observed monitor output.

Khanna et al. [47] address diagnosis in distributed systems where errors can
propagate across nodes. They track message exchanges between nodes and detect
problems by comparing communication patterns against a rule-base of allowed
state transitions. Pip [73] detects application-specific problems in distributed
systems by allowing programmers to embed expectations about application be-
havior in the source code. Pip detects problems by comparing actual behavior
against expected behavior. Black-box approaches that track message exchanges
are more generic and can be easily applied to new systems, whereas white-box
approaches like Pip are able to diagnose application-specific problems but require
a deeper understanding of system behavior.

Limitations Model-based techniques are well-suited for diagnosing application-
specific problems because they encapsulate semantic knowledge on the expected
behavior of the system. The incorporation of semantic knowledge can also help
them distinguish legitimate changes in behavior, e.g. workload changes, from ille-
gitimate changes due to failures [19,46,87]. However, model-based techniques in
general require a deep understanding of system behavior to construct the mod-
els. Even in cases where automatic model construction is feasible, there is often
a tradeoff between the amount of semantic knowledge the model incorporates
and the fidelity of the diagnosis. For example, graph-theoretic models [6] that
are automatically constructed by examining a system’s communication patterns
can localize a problem to a single node or a small neighborhood of nodes, but
cannot tell what the deeper root cause is. Another disadvantage of model-based
techniques is that they can fail to detect novel problems that were not considered
in the model.

2.3 Statistical

Statistical techniques for diagnosis summarize and interpret empirical data us-
ing techiques such as correlation, histogram comparison and probability theory.
These techniques are data-centric and require little expert knowledge or detailed
models on system internals. Statistical techniques are either: (i) parametric tech-
niques that assume data is drawn from a known distribution, e.g., normal dis-
tribution, or (ii) non-parametric techniques that do not rely on data belonging
to a particular distribution but rather estimate the underlying distribution, e.g.,

using histograms or kernel density estimation. Non-parametric methods make
fewer assumptions than parametric methods, making them more robust and
giving them wider applicability. However, there is a cost - larger sample sizes are
required to draw conclusions with the same degree of confidence as parametric
methods.

Illustrative example Multivariate Adaptive Statistical Filtering (MASF) [15] is
a parametric technique for detecting and visualizing anomalies in data centers.
MASF detects anomalies by tracking deviations from the mean in performance
counters, such as CPU and memory usage. MASF assumes that data is drawn
from a normal distribution and flags an anomaly if a metric exceeds 3 standard
deviations from the mean. To cater for seasonal variations in behavior, such as
heavy load during the day and light load at night, MASF maintains separate
behavioral profiles for computing the mean and standard deviation of each met-
ric. MASF alerts operators to suspicious behavior and allows them to visualize
anomalies, but it does not automatically localize the problem.

Types of statistical techniques Statistical techniques are pervasive in prob-
lem diagnosis literature. Some model-based techniques discussed earlier rely on
statistical techniques, such as correlation and regression, in conjunction with
deep knowledge of the application’s behavior to diagnose problems. In contrast,
the statistical techniques discussed in this section make fewer assumptions about
the application’s behavior. Statistical techniques can be classified as parametric
or non-parametric techniques.

Parametric techniques assume that data is drawn from a known distribution.
Normal distributions are commonly used for anomaly detection and diagnosis
because of their tractablity, and because normality can sometimes be justified
by the central-limit theorem which explains why many distributions tend to be
close to the normal distribution. These techniques typically detect anomalous
behavior by identifying significant deviations from the mean for performance
counters, which they assume follow a normal distribution. However, hardware
failure rates are better modeled using Weibull distributions which capture the
increased failure rates of devices as they age [78,79].

Agarwal et al [1] use change-point detection and problem signatures to de-
tect performance problems in enterprise systems. They detect abrupt changes
in system behavior by monitoring changes to the mean value of performance
counters over consecutive windows of time. This technique does not scale well
if the number of nodes and metrics is large. NetMedic [42] diagnoses propagat-
ing problems in enterprise systems by analyzing dependencies between nodes,
and correlations in state perturbations across processes to localize problems.
NetMedic represents state for each system component as a vector that indicates
whether each metric was anomalous or normal by assuming that each metric
obeys a normal distribution and flagging anomalies based on deviation from the
mean. If two components which depend on each other are anomalous, NetMedic

searches for time periods where the source component’s state is similar to its cur-
rent state, and searches for destination states that have experienced significant
changes in the same period. These destination states are the likely culprits.

Draco [45] performs statistical diagnosis of problems in large Voice-over-IP
(VoIP) systems by comparing differences in the distributions of attributes, such
as hostnames and customer IP addresses, in successful and failed calls. Draco
assumes that these attributes are drawn from a Beta distribution and localizes
problems by identifying attributes that are most correlated with failed calls. By
comparing successes and failures over the same window of time, Draco avoids
the need for separate learning passes, and can thus diagnose problems that have
never been seen before.

Non-parametric techniques assume that data is drawn from an unknown dis-
tribution. Non-parametric techniques estimate the underlying data distribution
using histograms or kernel density estimators, or make generalizations about the
populations from which the samples were drawn, e.g., using correlation.

Histogram-based techniques typically diagnose problems by comparing his-
tograms of performance counters before and during an anomalous period to iden-
tify the metrics most likely to be associated with the problem. Tan et al. [68,89]
diagnose problems in large clusters using histogram-comparison of performance
counters to identify “odd-man-out” behavior. Peer-comparison allows their ap-
proach to be robust to workload changes. However, propagating errors, e.g.,
packet-loss that affects communication across multiple nodes, reduces the accu-
racy of their approach. Shen et al. [81] propose a reference-driven approach to
diagnose performance problems due to configuration changes or upgrades. Their
approach relies on histogram comparison to identify the collection of single-
parameter changes that best explain the performance deviation observed.

Correlation-based techniques analyze historical data to automatically dis-
cover relationships between pairs of metrics that are stable over time [38, 39].
Changes in these learned correlations may signal problems. Correlation can also
be used to automatically discover causal relationships between metrics in dis-
tributed systems. Giza [60] exploits knowledge of the system’s topology to iden-
tify spatial correlations between events. For example, to detect that customers
in Texas are experiencing poor video quality. Next, Giza uses cross correlation
to discover causal relationships between the observed symptoms and root-cause
events. Oliner et al. [67] also use cross correlation to discover causal relationships
between anomaly signals across components. The anomaly signals represent the
changes in the behavior of components over time in terms of resource usage,
message timing or semantics. Project5 [4] records packet traces at each node
and uses message correlation algorithms to automatically extract end-to-end
causal traces for requests, and detect high-latency paths. Correlation-based ap-
proaches can discover spurious relationships depending on the thresholds used
to determine whether a correlation is significant. In addition, correlation-based
approaches do not scale well if the number of nodes and metrics is large because
they search for metric correlations both locally, and remotely between nodes
communicating with each other.

Dimensionality-reduction techniques, e.g., Principal Component Analysis,
can reduce the number of metrics to compare when diagnosing problems by sum-
marizing dominant trends. Xu et al [93] use source-code analysis to apply struc-
ture to console logs and discover dominant historical trends in application state
and message counts using Principal Component Analysis. PeerWatch [43] uses
peer-comparison to detect anomalies in heterogeneous clusters running differ-
ent hardware. Their peer-comparison algorithm uses a dimensionality-reduction
technique known as canonical correlation analysis to normalize performance dif-
ferences due to different hardware, and discover correlations between peers.

Limitations Statistical techniques require little expert knowledge or detailed
models of system internals. The diagnosis techniques can rely on well-established
statistical theories to ground their algorithms, and test that their results are sta-
tistically significant, i.e., unlikely to have occurred by chance alone. For example,
hypothesis tests such as the t-test, allow us to reject the hypothesis that the ob-
served system behavior is consistent with the expected system behavior with a
degree of confidence. When building statistical profiles of behavior, care must
be taken to include sufficient data samples and test assumptions on data dis-
tributions to ensure validity. For example, incorrectly assuming that the data is
drawn from a normal distribution can lead to a high error rate. Since statistical
techniques do not incorporate much semantic knowledge about semantic behav-
ior, they can experience difficulties distinguishing legitimate changes in behavior
such as workload changes from performance problems.

2.4 Machine Learning

Machine learning is a scientific discipline that is concerned with the design and
development of algorithms that allow computers to evolve behaviors based on
training data. Machine-learning techniques borrow heavily from statistical tech-
niques, e.g., data distributions and probability theory. Machine learning relies
on training and cross-validation which involves partitioning a sample of data
into complementary subsets, performing the analysis on one subset called the
training set, and validating the analysis on the other subset called the validation
set or testing set. Cross-validation can provide an estimate of model accuracy.

Illustrative example Cohen et al. [21] describe an approach for automatically
extracting signatures of system behavior so that operators can identify and
quantify recurrent problems, e.g., slowdowns due to insufficient database con-
nections. They use Service-Level Objective (SLO) violations to identify periods
of time where the system was behaving abnormally and use tree augmented
Bayesian networks (TANs) to determine which metrics are most correlated with
the anomalous periods. They build signatures of the anomalous periods using
metric attribution as follows: 1 indicates a metric is selected by model and at-
tributed to failure, -1 indicates a metric is selected by model but not attributed
to failure, and 0 indicates a metric was not selected by model (irrelevant). They

cluster the signatures based on a purity score which indicates what fraction of
signatures in the cluster are associated with failures. Clusters with greater purity
provide more confidence in the signature. They found that the metric attribution
gives better results than using raw metric values. They also found that they can
leverage signatures from different sites to identify or rule out recurrent problems.

Types of machine learning techniques Diagnosis algorithms that rely on machine
learning can be categorized into two broad categories namely: (i) unsupervised
learning which identifies patterns in unlabeled data typically through clustering,
and (ii) supervised learning which infer a function that best classifies successful
and failed states from labeled data.

Unsupervised learning identifies patterns in unlabeled data typically through
clustering, and detects unexpected outlier data points that might be indicators
of failures.

Kiciman and Fox [49] uses probabilistic context-free grammars to model the
causal paths in the system. The grammar rules represent the probability that
one component calls another. They identify anomalous causal paths by measur-
ing the difference between the probability of the observed transition and the
expected probability of the transitions that make up the causal path. Magpie [7]
uses a string-edit-distance comparison to group together requests with similar
behaviour, from the perspective of request structure, synchronization points and
resource consumption. The representative requests from each clusters allow them
to construct concise workload models and detect outlier requests.

Supervised learning uses labeled data of successful and failed states to learn
which metrics are most correlated with failed states, or to identify signatures of
recurrent problems from a database of known problems.

Metric attribution approaches localize problems by identifying resource-usage
metrics or components that are highly correlated with failed states. They allow
operators to sift through the hundreds or thousands of metrics available in their
system and narrow down the handful of metrics that yield insight to the cause
of the problem and its location and guide operators in performing more detailed
root-cause analysis. Once the operators determine the root-cause, they can then
annotate the output of metric attribution with the root-cause and build the
database of known problems used by signature-based approaches.

Pinpoint [17] and MinEntropy [18] localize components highly correlated with
failed requests using data clustering [17] or decision trees [18]. They represent
requests using a matrix where each row is a client request, and columns are
components. An additional column indicates whether the request was successful
or failed. The matrix serves as input into the machine learning algorithm. These
approaches detect problems that result in changes in the causal flow of requests
such as exceptions. More recently, Spectroscope [77] categorizes requests based
on functionality, e.g., read or write requests, and applies data clustering to re-
quests in each category to identify outliers due to changes in causal flows or
request durations. Some limitations of these approaches are that they cannot

distinguish between sets of components that are tightly coupled and are always
used together, and they require requests to be independent of each other. If a
request corrupts state and affects subsequent requests, the non-independence
of requests makes it difficult to detect the real faults because the subsequent
requests may fail while using a different set of components [17].

Cohen et al. [20] use tree augmented Bayesian networks to determine which
resource-usage metrics are most correlated with the anomalous periods. They
proposed an extension [96] to their work that uses ensembles of Bayesian models
to adapt to changing workloads and infrastructure.

Signature-based approaches allow system administrators to identify recurrent
problems from a database of known problems. Signature-based approaches have
wide applicability because studies have shown that typically half, and as much
as 90% of software failures are due to recurrent problems [25]. Research has
centered on how to represent and retrieve signatures of known problems from
the database of known problems. However, these approaches do not fare well at
automatically identifying problems that have not previously been diagnosed.

Yuan et al. [95] learn signatures of known problems in standalone systems by
analyzing sequences of system calls. They target problems that have the same
manifestation, e.g., a web page may fail to load due to different underlying root
causes such as an invalid IP address or an unplugged network cable. Analyzing
system calls allows them to distinguish between problems that might be indis-
tinguishable when analyzing resource usage data. They use multi-class Support
Vector Machines to learn signatures of problems. However, their approach does
not address distributed systems.

Cohen et al. [21] and Bodik et al. [9] generate signatures of recurrent problems
in distributed systems by using the discrete feature vectors obtained through
metric attribution. They found that using discrete values to represent signatures
performs better than using real-valued metrics. In addition, they found that they
can leverage signatures learned at one geographical location to diagnose problems
in data centers at a different location.

Duan et al [25] present an approach that can be used for both known prob-
lems, and problems that have not previously been seen. They use a supervised
approach (decision trees or signature databases) to identify recurrent problems.
If the current failure does not match the annotated failures in the database, they
compare it to the healthy data to identify features that are correlated with the
failure. They then select multiple instances of the same failure which they can
present to the system administrator to annotate.

Limitations Machine-learning techniques automatically learn profiles of system
behavior, for example, using clustering to identify signatures of known problems.
Machine-learning can also help localize problems by identifying resource-usage
metrics or components that are highly correlated with failed states. However,
these techniques can suffer from the curse of dimensionality that reduces accu-
racy when the number of features is large. Additionally, they are also susceptible
to overfitting, a phenomenon in which the learner learns features of the evidence

that are circumstantial rather than those that actually define the relationship be-
tween the faults and their effects. Over-fitted models generalize poorly, and can
fail when presented with evidence that is only slightly different from the one on
which the model was trained. Finally, because machine learning techniques learn
a direct mapping between the symptoms and underlying root causes without an
intermediate structural model of the system, lengthy retraining is required when-
ever the system behavior changes significantly. Furthermore, previously learned
models often have to be thrown away during the period of retraining, leaving
the system vulnerable to any problems. Therefore, machine learning techniques
may not be appropriate for systems that are upgraded frequently.

2.5 Visualization

Automated diagnosis tools might not always be available, and when available
they occasionally miss the true root-cause and typically reduce the search space
to a small number of likely culprits [59]. Visualization tools allows operators
to cope with these scenarios by: (i) summarizing data trends, (ii) supporting
interactive graphs that allow operators to explore different hypotheses on the
root-cause of problems, and (iii) integrating output from automated diagnosis
tools.

Visualization tools [30, 83, 85] provide an array of simple graphs, e.g. line
plots, barcharts, and histograms, to display trends in performance counters such
as CPU utilization. They use simple statistical tests such as the deviation from
the mean to flag outliers, and use color to highlight these outliers. LiveRAC
[63] is a visualization system that supports the analysis of large collections of
system management timeseries data consisting of hundreds of parameters across
thousands of network devices. LiveRAC provides high information density using
a reorderable matrix of charts, with semantic zooming that dynamically adapts
different aspects of each chart based on available space.

Magpie [7], X-trace [28], and Dapper [83] are primarily tools for tracing causal
request paths, but they also offer support for visualizing requests whose causal
structure or duration is anomalous. Artemis [23] provides a pluggable framework
for distributed log collection, data analysis, and visualization. Mochi [90] is a
log-analysis based debugging tool that visualizes both the flow of data and the
flow of control for a large-scale parallel processing framework known as Hadoop.
NetClinic [59] visualizes data from computer networks using directed graphs, and
presents suggested diagnostics for observed problems by incorporating output
from an automated analytic reasoning engine [42].

2.6 Count-and-threshold techniques

Physical faults are distinguished by their nature and duration of impact as be-
ing permanent or temporary [5]. Permanent faults may lead to error whenever
the component is activated; the only way to handle such faults is to remove the
affected component. Temporary faults can be internal (usually known as inter-
mittent) or external (transient). The former are caused by some internal part

deviating from its specified behavior. After their first appearance, they usually
exhibit a relatively high occurrence rate and, eventually, tend to become per-
manent. On the other hand, transient faults, often manifesting the encountered
interferences as noise-pulses on the communication channels, cannot be easily
traced to a defect in a particular part of the system and, normally, their adverse
effects tend to disappear. In industries like transportation and telecommunica-
tions, where operating with permanently faulty modules would carry high risks
or costs, it is common that modules, disconnected because they were considered
faulty, are later proved to be free from permanent faults when tested during
repair operations. Therefore, treating transient faults as permanent has a high
cost for these industries. A good discrimination between transient and inter-
mittent/permanent faults solves two important problems: i) prevents the undue
removal of nodes affected by transient faults, thus avoiding unnecessary depletion
of system resources; and ii) helps to maintain the correct coverage of the sys-
tem fault hypotheses (i.e., the assumption on the number of faults tolerated by
the core system protocols within a given time window) by keeping in operation
nodes not permanently faulty. Considering that most perturbations encountered
are transient [22, 82], the issue of proper diagnosis of transients is a significant
issue of interest.

Illustrative example A generic class of online low-overhead count-and-threshold
mechanisms, called alpha-count, has been initially proposed in [11] and later
enriched with a double threshold in [12]. It is characterized by: a) tunability
through internal parameters, to warrant wide adaptability to a variety of sys-
tem requirements; b) generality with respect to the system in which they are
intended to operate, to ensure wide applicability; c) simplicity of operation to
allow high analyzability through analytical models and to be implementable
as small, low-overhead and low-cost modules, suitable especially for embedded,
real-time, dependable systems. In its basic formulation, an error counter is asso-
ciated to each component, which is incremented when the component fails and
decremented when it delivers a correct service. When the value of the counter
exceeds a given threshold value , the component is diagnosed as affected by a
permanent or an intermittent fault.

Heuristic mechanisms The importance of distinguishing transient faults, so that
they can be dealt with specifically, is testified by the wide range of solutions
proposed, although with reference to specific systems (e.g., [3,36,55,65,84], just
to mention a few). Most of these solutions are based on more or less simple
heuristic mechanisms. One commonly used method, for example, in several IBM
mainframes [84], is to count the number of error events: too many events in
a given time frame would signal that the component needs to be removed. In
TMR MODIAC, the architecture proposed in [65], two failures experienced in
two consecutive operating cycles by the same hardware component that is part
of a redundant structure make the other redundant components consider it as
definitively faulty. Another architecture using similar mechanisms, designed for
distributed ultra-dependable control systems, is described in [51]. In this case, a

combination of diversified design, temporal redundancy and comparison schema
is used to obtain a detailed determination of the nature of faults. Counting
mechanisms are also used to solve the so called 2-2 splits, i.e., to determine the
correct value among four proposals in a quadruple modular redundancy (QMR)
system when there is a tie. In [3], a list of suspect processors is generated during
the redundant executions; a few schemes are then suggested for processing this
list, e.g., assigning weights to processors that participate in the execution of a
job and fail to produce a matching result and taking down for diagnostics those
whose weight exceeds a certain threshold. Other approaches do, instead, concen-
trate on off-line analysis of system error logs, and therefore are not applicable
on-line. In [55], some heuristics, collectively named Dispersion Frame Technique,
for fault diagnosis and failure prediction are developed and applied to system
error logs taken from a large Unix-based file system. The heuristics are based on
the inter-arrival patterns of the failures (which may be time-varying). For exam-
ple, there is the 2-in-1 rule, which warns when the time of inter-arrival of two
failures is less than one hour, and the 4-in-1 rule, which fires when four failures
occur within a 24-hour period. In [36], an error rate is used to build up error
groups and simple probabilistic techniques are then recursively applied to dis-
cern similarities (correlations) which may point to common causes (permanent
faults) of a possibly large set of errors.

Other count-and-threshold solutions In [10], a methodology and an architectural
framework for handling multiple classes of faults (namely, hardware-induced soft-
ware errors in the application, process and/or host crashes or hangs, and errors
in the persistent system stable storage) in a COTS and legacy-based application
have been defined. Also, a generic FDIR (Fault Detection followed by Isola-
tion and system Reconfiguration) framework for integrating existing distributed
diagnosis approaches with a count-and-threshold algorithm is proposed in [80].

Formulation based on Bayesian inference Another direction of research has ad-
dressed a rigorous mathematical formulation of diagnosis based on Bayesian
inference [71]. Bayesian inference provides a standard procedure for an observer
who needs to update the probability of a conjecture on the basis of new obser-
vations. Therefore, after a new observation is provided by the error detection
subsystem, the on-line diagnosis procedure produces an updated probability of
the module being affected by a permanent fault. This leads to an optimal diag-
nosis algorithm, in the sense that fault treatment decisions based on its results
would yield the best utility among all alternative decision algorithms using the
same information. This higher accuracy with respect to simple heuristics comes
at the cost of higher computational complexity.

Formulation based on Hidden Markov Models A formalization of the diagno-
sis process, addressing the whole chain constituted by the monitored compo-
nent, the deviation detector and the state diagnosis through Hidden Markov
Models has been proposed in [24], with the goal of developing high accuracy
diagnosis processes based on probabilistic information rather than on merely

intuitive criteria-driven heuristics. Because of its high generality and accuracy,
the proposed approach could be usefully employed: i) to evaluate the accuracy of
low-cost on-line processes to be adopted as appropriate and effective diagnostic
means in real system applications; ii) for those diagnostic mechanisms equipped
with internal tunable parameters, to assist the choice of the most appropriate
parameter setting to enhance effectiveness of diagnosis; and iii) to allow direct
comparison of alternative solutions.

Limitations The accuracy of diagnosis performed through threshold-based
mechanisms strongly depends on proper calibration of the mechanism param-
eters, namely the threshold’s value and the function adopted to update the
counter. Actually, proper setting of the mechanism’s parameters is fundamental
to trade between accuracy and promptness, which are the typical contrasting
requirements to be satisfied in fault discrimination, that is:

– To signal, as quickly as possible, all components affected by permanent or
intermittent faults. Gathering information to discriminate between transient
and intermittent faults takes time, thus giving rise to a longer fault latency.
This increases the chances of catastrophic failure and also increases the re-
quirements on the error processing subsystem in fault tolerant systems.

– To avoid signaling components that are not affected by permanent or inter-
mittent faults. In fact, depriving the system of resources that can still do
valuable work may be even worse than relying on a faulty component.

Practitioners have long used expertise and trial-and-error approach to tune
their systems. However, solutions based on rigorous mathematical formulations,
such as alpha-count and its variants, are amenable to high analyzability of the
parameters tuning through analytical models. Therefore, the system designer is
equipped with a systematic, predictable, and repeatable way to identify a proper
setting, taking into account requirements of the targeted application field.

3 Industrial Applications

In this section we summarize the use of the previously described diagnosis tech-
niques in several industrial applications ranging from large scale telecommuni-
cations infrastructures, to Internet services, to embedded systems and the auto-
motive industry, to aerospace and unmanned spacecraft.

3.1 Telecommunications

The telecommunications industry has long operated some of the largest scale
distributed systems in use - from digitally switched phone networks and Inter-
net backbones, to high-speed cellular networks and Internet Protocol Television
(IPTV) deployments. The high resilience requirements of these systems have
led to widespread deployment of diagnosis techniques by telecom operators. [86]
provides a survey of diagnosis techniques for communication systems.

Work in the telecom domain has traditionally revolved around alarms pro-
duced by network elements, and trouble ticket systems [54] that track and coor-
dinate troubleshooting. The use of rule-based expert systems for troubleshooting
was common - as early as 1990, Wright et al. [92] survey a list of 40 rule-based
expert system in use within the telecom industry. More recently, codebook-
based approaches [26, 94] have been used to correlate alarms across many net-
work devices to a single “root cause” alarm that the operators can investigate.
SCORE [50] uses a model of how IP links are routed over an underlying opti-
cal network to localize optical layer failures (e.g., fiber-cuts) based on IP layer
loss measurements. rcc [27] uses static analysis to detect faults in BGP router
configurations by checking them against a high-level correctness specification.

However, such knowledge-based techniques often fail to capture emergent
behaviors that are rife in highly heterogenous telecom networks. Therefore, in-
creasing attention is being devoted to “knowledge-free” techniques such as sta-
tistical methods and machine learning. Giza [60] uses spatial (i.e., in the same
geographical neighborhood) and temporal correlations between network alarms
in a large IPTV network to determine the true root cause of network outages that
result in many alarms across different layers (e.g., video, TCP, IP). Draco [45]
performs statistical comparisons between successful and dropped calls in a large
voice-over-IP (VoIP) service to identify features that discriminate the failures.
Mahimkar et al. [61] perform statistical comparisons of various performance
metrics such as CPU utilization and loss of network elements before and after
upgrades to identify problems that result from upgrades.

3.2 Internet Services and Data Centers

Diagnosis in data center applications has centered on interactive applications in
Internet Services [17, 21, 49, 77] and enterprise systems [6, 42, 95], and batch ap-
plications in data-intensive computing [68, 89, 93]. Interactive applications typ-
ically have well-established Service Level Objectives, e.g., 99% of Internet re-
quests should be serviced within 4 seconds, to ensure high-availability. Some
techniques use metric attribution [9, 17, 21, 77] localize problems by identify-
ing resource-usage metrics or components that are highly correlated with failed
states. Signature-based techniques [9, 21, 25, 95] have been used to diagnose re-
current problems by generating signatures of known problems using techniques
such as metric attribution. Regression and queuing models [19,46,87] detect per-
formance problems in Internet services by modeling the relationships between
performance counters, e.g, CPU utilization and application response times, and
detecting performance anomalies whenever these relationships are violated.

Batch applications in data-intensive computing have more diverse runtimes
[44]. Peer-comparison techniques [64,68,89] diagnose problems by exploiting the
parallelism inherent in these applications to compare behavior across compo-
nents and detect “odd-man-out” behavior. The distributed nature of data cen-
ter applications facilitates the use of graphical models to analyze communication
patterns across nodes (or processes) to model the probability that errors [48],

or successes [76] propagate through the system. Log analysis [66, 67, 93] and
rule-based techniques [8,31,32] are also widely used in data center applications.

3.3 Embedded Systems

Embedded systems are computer systems designed to do one or a few dedicated
functions, often with real-time computing constraints. Embedded systems are
present in a large variety of systems such as consumer electronics (e.g., mo-
bile phones), and automotive safety-critical systems (e.g., anti-lock braking, and
drive-by-wire systems). Lanigan et al. [52] provides a comprehensive survey of
failure diagnosis in automative systems.

Preparata et al. [72] proposed the Preparata, Metze, and Chien (PMC) model
to identify faulty components by collating results of diagnostic tests across a
distributed system. Heuristic mechanisms based on thresholds have been also
adopted, such as [65] in railway control systems. Serafini et al. [80] distinguish
between healthy nodes from unhealthy nodes in time-triggered automotive sys-
tems by applying penalties and rewards to the collated diagnostic tests. The
penalty counter is increased when a node’s entry in the consistent health vector
indicates a fault, otherwise the reward counter is increased according to the crit-
icality of the node. When the reward threshold for a node is crossed, the penalty
counter for that node is reset to zero. When the penalty threshold for a node is
crossed, the node is diagnosed as faulty. Peti et al. [70] introduce Out-of-norm
Assertions (ONAs) as a way to correlate fault effects in the three dimensions of
value, time and space. They use ONAs to describe fault patterns that discrim-
inate between different types of faults, i.e., wearouts, massive transient faults,
and connector faults in automotive systems. Other diagnosis techniques for em-
bedded systems rely on physical models to diagnose problems in powertrain [62]
and chassis systems such as braking [33] in cars.

3.4 Aerospace

Stroupe et al. [88] and Patton [69] provide a detailed survey on diagnosis in
aerospace systems. Livingstone is a model-based system, developed at NASA
Ames, used to autonomously control the New Millennium Deep Space One Probe
(DS 1) [88]. Livingstone accepts a model of the components of a complex system
such as a spacecraft or chemical plant and infers from it the overall behavior
of the system. From this, Livingstone monitors the operation of the system,
diagnoses its current state, determines if sensor readings are implausible, and
recommends actions to put the system into a desired state even in the face of
failures. MARPLE is an expert system that relies on a model-based technique
known as constraint suspension to diagnose problems [88]. Constraint suspension
views the system to be monitored as a network of black-box components and
places constraints on the behavior of each component. When observed behavior
violates these constraints, MARPLE suspends the components in the network,
one at a time until it finds a component that can account for all the inconsistent

values at the nodes. MARPLE has been demonstrated to work for the NASA
LRC Space Station Freedom (SSF) power system testbed.

Kalman filtering [14] is a state and parameter estimation technique that fuses
data from different sensors together to produce an accurate estimate of the true
system state. Jayakumar and Das [37] use a single Kalman filter, driven by the
motor shaft velocity sensor, to diagnose problems in a flight control system.
They diagnose incipient sensor faults using structured residuals that are gener-
ated using the Kalman filter estimates. Patton [69] discusses the use of filters to
diagnose faults in flight control systems. At the moment, the analytic redun-
dancy provided by model-based approaches cannot be used to replace hardware
redundancy due to the safety-critical nature of aerospace applications. However,
analytical redundancy can be used to suppress some levels of replication, e.g.,
to replace quadruple by triplex schemes [69].

4 Future Trends and Challenges

Despite the tremendous progress that has been made in automated fault diag-
nosis, many open problems remain. Below, we enumerate a few such problems
that may serve to inspire new contributions in the field.

4.1 Online Recovery and Self Healing

The eventual outcome of any automated diagnosis technique is the identification
and removal of any impairments to a system’s proper operation. Therefore, a
natural evolution of diagnosis is the construction of “self-healing” systems that
can automatically perform recovery actions upon the outcome of an online diag-
nosis procedure to remove faults. Self-healing is relatively risk-free either when
the fault detection and diagnosis mechanisms are highly accurate, or when the
recovery actions do not impose any penalties if applied wrongly. For example,
JAGR [16] presents an autonomous self-recovering Enterprise Java Bean (EJB)
application server that allows recovery using quick microreboots of components.
The basic philosophy in that work is to make recovery mechanisms cheap enough
that they can be liberally applied without consequences even if diagnosis pro-
duces poor outcomes. When recovery actions are not cheap, self-healing becomes
a risky proposition because wrong diagnosis can lead to poor recovery decisions.

[40] propose a decision theoretic framework using Partially Observable Markov
Decision Processes (POMDPs) to reason about recovery decisions of different
costs under uncertain fault diagnoses. They combine the decision algorithm with
a graph-theoretic diagnosis algorithm to determine when components of a multi-
tier Enterprise system should be rebooted using the results of end-to-end system
tests. [56] propose a model-free approach for choosing recovery actions by using
reinforcement learning to learn the effectiveness of previously executed actions
as a function of the observable symptoms. However, none of these techniques are
sufficient when faced with unanticipated problems due to emergent behavior.

4.2 Automatic Model Construction

Although model-based techniques have several advantages such as the ability to
predict error propagation, the ability to provide semantically meaningful diag-
noses, and the ability to cope with structural system changes without the need
to relearn, they require detailed and accurate models that have to be constantly
updated. There is some literature on automatically constructing system mod-
els, primarily those suitable for graph-theoretic approaches, but also some on
learning queuing-theoretic models. Examples include work on automatic deter-
mination of component dependencies by system perturbation (e.g., [13]), work
on dependency generation via passive observation (e.g., [4], [74], [2]), approaches
based on statistical clustering (e.g., [18]), and approaches to learn the param-
eters of queuing models using statistical regression [87]. However, all of these
techniques are only suitable for learning models of a system during normal op-
erations. Learning the dependencies of a system that may be exercised during
fault modes is an open problem whose solution is likely to require a combination
of static analysis (to discover all dependencies) along with runtime measurement
(to identify those dependencies which are explained by normal behaviors).

4.3 Cross Domain and Cross Layer Diagnosis

In many domains such as internet services and telecommunications, large systems
are increasingly built as a composition of multiple horizontal “technology layers”
and vertical “administrative domains”. For example, consider a typical internet
application constructed using the Java runtime and its libraries, hosted in a
Tomcat application server running on a Linux OS inside a virtual machine that
runs on a Windows host running in a rack in a particular data center of a
cloud provider. For communication with a backend database, it uses the Simple
Object Access Protocol (SOAP) that runs over HTTPS (secure HTTP) that runs
over an IP virtual private network that is provisioned over an Ethernet service
provided by an Internet Service Provider (ISP) that provisions it as a tunnel
over an MPLS (multi-protocol label-switching) backbone network. In addition,
this application uses the Bing mapping service from Microsoft, obtains analytics
support from Google Analytics, and uses PayPal as a payment service. Each of
these services also run on very similar infrastructure layers, and depending on
which cloud provider the application users, some of these services may also share
a data-center and/or network provider with the application.

In such a highly layered and highly silo’ed setup, faults can occur in each
of the technology layers or third party providers the service uses. Furthermore,
symptoms of lower layer problems (e.g., packet loss on the MPLS network) can
translate into symptoms in higher layers (slow response from database server).
Seemingly independent third party providers may have common dependencies -
e.g., they use the same cloud provider, resulting in correlated failures. No single
layer or administrative domain may have sufficient information to completely
determine the root cause of a fault occurring in the system. These complications
make diagnosis a challenging task. Although there has been some preliminary

work on combining information across technology layers (e.g., [50,60]), compre-
hensive approaches that can take a whole system view when performing diagnosis
are still elusive.

5 Conclusions

Diagnosis of failures occurring in systems in the field is an important aspect
of system resilience and its assessment. In this chapter, we provided a broad
overview of automated techniques for fault diagnosis ranging from knowledge-
based techniques that encode expert knowledge in the form of rules or system
models to model-free techniques that rely on statistical correlations, regression,
and machine learning to perform some aspects of the diagnosis task without
any prior human knowledge. We provided examples of industrial applications
in which automated diagnosis has proven to be a valuable tool for ensuring
and evaluating resilience. Today, while these mainly include telecommunications
and Internet services that have to deal with issues of scale and automotive and
aerospace systems that have to deal with the absence of human expertise when
problems occur, automated diagnosis is poised to make a foray into an increas-
ingly number of domains ranging from software debugging tools to agents that
help troubleshoot configuration problems in personal computer systems. Finally,
we review some of the open problems in this area - these include the need to
deal with problems that occur due to emergent, unpredictable behaviors, and the
need for recovery techniques to automatically act upon the output of diagnosis
algorithms.

References

1. M. K. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. Anerousis, and L. B. Mum-
mert. Problem determination in enterprise middleware systems using change point
correlation of time series data. In IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 471–482, Vancouver, Canada, April 2006.

2. S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham. E2eprof: Automated
end-to-end performance management for enterprise systems. In IEEE Conference
on Dependable Systems and Networks, pages 749–758, June 2007.

3. P. Agrawal. Fault tolerance in multiprocessor systems without dedicated redun-
dancy. IEEE Transanctions on Computers, 37:358–362, 1988.

4. M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.
Performance debugging for distributed system of black boxes. In ACM Symposium
on Operating Systems Principles, pages 74–89, Bolton Landing, NY, October 2003.

5. A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

6. P. Bahl, R. Chandra, A. G. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang.
Towards highly reliable enterprise network services via inference of multi-level
dependencies. In ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), pages 13–24, Kyoto,
Japan, August 2007.

7. P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request
extraction and workload modelling. In USENIX Symposium on Operating Systems
Design and Implementation, pages 259–272, San Francisco, CA, December 2004.

8. S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson. Lightweight, high-
resolution monitoring for troubleshooting production systems. In USENIX Sympo-
sium on Operating Systems Design and Implementation, pages 103–116, San Diego,
CA, December 2008.

9. P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen. Fingerprint-
ing the datacenter: automated classification of performance crises. In European
conference on Computer systems (EuroSys), pages 111–124, Paris, France, April
2010.

10. A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L. Romano. Effective fault treat-
ment for improving the dependability of cots and legacy-based applications. IEEE
Transactions on Dependable and Secure Computing, 1:223–237, 2004.

11. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni. Discrim-
inating fault rate and persistency to improve fault treatment. In IEEE FTCS
International Symposium on Fault-Tolerant Computing, pages 354–362, 1997.

12. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni. Threshold-
based mechanisms to discriminate transient from intermittent faults. IEEE Trans-
actions on Computers, 49:230–245, 2000.

13. A. Brown, G. Kar, and A. Keller. An active approach to characterizing dy-
namic dependencies for problem determinination in a distributed environment. In
IFIP/IEEE International Symposium on Integrated Network Management, pages
377–390, Seattle, WA, May 2001.

14. R. G. Brown and P. Y. C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering. John Wiley and Sons, USA, 1997.

15. J. P. Buzen and A. W. Shum. MASF – multivariate adaptive statistical filtering.
In International Computer Measurement Group Conference, pages 1–10, Nashville,
TN, December 1995.

16. G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. JAGR: An autonomous
self-recovering application server. In Autonomic Computing Workshop, pages 168–
177, 25 June 2003.

17. M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint: Problem deter-
mination in large, dynamic, internet services. In IEEE Conference on Dependable
Systems and Networks, pages 595–604, Bethesda, MD, June 2002.

18. M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure diagnosis using
decision trees. In IEEE International Conference on Automatic Computing, pages
36–43, New York, NY, May 2004.

19. L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni. Anomaly? appli-
cation change? or workload change? Towards automated detection of application
performance anomaly and change. In IEEE Conference on Dependable Systems
and Networks, pages 452–461, Anchorage, Alaska, June 2008.

20. I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons. Correlating in-
strumentation data to system states: A building block for automated diagnosis and
control. In USENIX Symposium on Operating Systems Design and Implementa-
tion, pages 231–244, San Francisco, CA, December 2004.

21. I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Capturing,
indexing, clustering, and retrieving system history. In ACM Symposium on Oper-
ating Systems Principles, pages 105–118, Brighton, United Kingdom, Oct 2005.

22. C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro,
23:14–19, 2003.

23. G. F. Cretu-Ciocarlie, M. Budiu, and M. Goldszmidt. Hunting for problems with
Artemis. In USENIX Workshop on Analysis of System Logs, San Diego, CA,
December 2008.

24. A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna. Hidden
Markov models as a support for diagnosis: Formalization of the problem and syn-
thesis of the solution. In IEEE Symposium on Reliable Distributed Systems, pages
245–256, Leeds, UK, October 2006.

25. S. Duan and S. Babu. Guided problem diagnosis through active learning. In IEEE
International Conference on Automatic Computing, pages 45–54, Chicago, IL, June
2008.

26. EMC. Automating root cause analysis: EMC Ionix codebook correlation technol-
ogy vs. rule-based analysis. Technical Report h5964, EMC, November 2009.

27. N. Feamster and H. Balakrishnan. Detecting BGP configuration faults with static
analysis. In USENIX Symposium on Networked Systems Design and Implementa-
tion, pages 43–56, Boston, MA, May 2005.

28. R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-Trace: A pervasive
network tracing framework. In USENIX Symposium on Networked Systems Design
and Implementation, pages 271–284, Cambridge, MA, April 2007.

29. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(4):17–37, 1982.

30. Ganglia. Ganglia monitoring system, 2007. http://ganglia.info.

31. M. Hauswirth, A. Diwan, P. Sweeney, and M. Hind. Vertical profiling: Under-
standing the behavior of object-oriented applications. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 251 –
269, Vancouver, BC, Canada, October 2004.

32. Hewlett Packard. HP operations manager, 2010. http://www.

managementsoftware.hp.com.

33. K. Huh, K. Han, D. Hong, J. Kim, H. Kang, and P. Yoon. A model-based fault
diagnosis system for electro-hydraulic brake. SAE Technical Paper Series 2008-01-
1225, SAE International, Warrendale, PA, USA, April 2008.

34. IBM. Tivoli Enterprise Console, 2010. http://www.ibm.com/software/tivoli/

products/enterprise-console.

35. R. Isermann. Model-based fault-detection and diagnosis - status and applications.
Annual Reviews in Control, 29(1):71–85, 2005.

36. R. K. Iyer, L. T. Young, and P. V. K. Iyer. Automatic recognition of intermittent
failures: An experimental study of field data. IEEE Transactions on Computers,
39:525–537, 1990.

37. M. Jayakumar and B. Das. Diagnosis of incipient sensor faults in a flight control
actuation system. In SICE-ICASE, 2006. International Joint Conference, pages
3423 –3428, Busan, Korea, October 2006.

38. G. Jiang, H. Chen, K. Yoshihira, and A. Saxena. Ranking the importance of
alerts for problem determination in large computer systems. In IEEE International
Conference on Automatic Computing, pages 3–12, Barcelona, Spain, June 2009.

39. M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward. System monitoring
with metric-correlation models: problems and solutions. In IEEE International
Conference on Automatic Computing, pages 13–22, Barcelona, Spain, June 2009.

40. K. R. Joshi, W. H. Sanders, M. A. Hiltunen, and R. D. Schlichting. Automatic
model-driven recovery in distributed systems. In IEEE Symposium on Reliable
Distributed Systems, pages 25–38, Orlando, Florida, October 2005.

http://ganglia.info
http://www.managementsoftware.hp.com
http://www.managementsoftware.hp.com
http://www.ibm.com/software/tivoli/products/enterprise-console
http://www.ibm.com/software/tivoli/products/enterprise-console

41. S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A Tool for Failure Diagnosis in
IP Networks. In ACM SIGCOMM Workshop on mining network data (MineNet-
05), Philadelphia, PA, August 2005.

42. S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl. Detailed
diagnosis in enterprise networks. In ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIGCOMM),
pages 243–254, Barcelona, Spain, August 2009.

43. H. Kang, H. Chen, and G. Jiang. PeerWatch: a fault detection and diagnosis
tool for virtualized consolidation systems. In IEEE International Conference on
Automatic Computing, pages 119–128, Washington, DC, June 2010.

44. S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces from
a production MapReduce cluster. In IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, pages 94–103, Melbourne, Australia, May
2010.

45. S. P. Kavulya, K. Joshi, M. Hiltunen, S. Daniels, R. Gandhi, and P. Narasimhan.
Practical experiences with chronics discovery in large telecommunications systems.
In ACM Workshop on Managing Systems via Log Analysis and Machine Learning
Techniques (SLAML), Cascais, Portugal, October 2011.

46. T. Kelly. Detecting performance anomalies in global applications. In USENIX
WORLDS, San Francisco, CA, December 2005.

47. G. Khanna, M. Y. Cheng, P. Varadharajan, S. Bagchi, M. P. Correia, and P. Veris-
simo. Automated rule-based diagnosis through a distributed monitor system. IEEE
Transactions on Dependable and Secure Computing, 4(4):266–279, 2007.

48. G. Khanna, I. Laguna, F. A. Arshad, and S. Bagchi. Distributed diagnosis of fail-
ures in a three tier e-commerce system. In IEEE Symposium on Reliable Distributed
Systems, pages 185–198, Beijing, China, October 2007.

49. E. Kiciman and A. Fox. Detecting application-level failures in component-based
internet services. IEEE Transactions on Neural Networks: Special Issue on Adap-
tive Learning Systems in Communication Networks, 16(5):1027– 1041, September
2005.

50. R. R. Kompella, J. Yates, A. G. Greenberg, and A. C. Snoeren. IP fault localization
via risk modeling. In USENIX Symposium on Networked Systems Design and
Implementation, pages 57–70, Boston, MA, May 2005.

51. J. Lala and L. Alger. Hardware and software fault tolerance: A unified architectural
approach. In IEEE FTCS International Symposium on Fault-Tolerant Computing,
pages 240–245, 1988.

52. P. E. Lanigan, S. Kavulya, T. E. Fuhrman, P. Narasimhan, and M. A. Salman.
Diagnosis in automotive systems: A survey. Technical Report CMU-PDL-11-110,
Carnegie Mellon University PDL, May 2011.

53. J. C. Laprie. Dependable computing: Concepts, limits, challenges. In IEEE In-
ternational Symposium on Fault-Tolerant Computing: Special Issue, pages 42–54,
1995.

54. L. Lewis and G. Dreo. Extending trouble ticket systems to fault diagnostics. IEEE
Network, 7(6):44–51, November 1993.

55. T. Y. Lin and D. P. Siewiorek. Error log analysis: Statistical modeling and heuristic
trend analysis. IEEE Transactions on Reliability, 39:419–432, 1990.

56. M. Littman, N. Ravi, E. Fenson, and R. Howard. An instance-based state repre-
sentation for network repair. In 19th National Conference on Artificial Intelligence
(AAAI 2004), pages 287–292, July 2004.

57. G. Liu, A. Mok, and E. Yang. Composite events for network event correlation.
In International Symposium on Integrated Network Management, pages 247 –260,
Boston, MA, May 1999.

58. X. Liu, J. Heo, and L. Sha. Modeling 3-tiered web applications. In International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), pages 307–310, Atlanta, GA, September 2005.

59. Z. Liu, B. Lee, S. Kandula, and R. Mahajan. NetClinic: Interactive visualization
to enhance automated fault diagnosis in enterprise networks. In IEEE Conference
on Visual Analytics Science and Technology, pages 131–138, Salt Lake City, UT,
October 2010.

60. A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao.
Towards automated performance diagnosis in a large IPTV network. In ACM Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 231–242, Barcelona, Spain, August 2009.

61. A. A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
J. Emmons. Detecting the performance impact of upgrades in large operational
networks. In ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 303–314, August
2010.

62. G. McCullough, N. McDowell, and G. Irwin. Fault diagnostics for internal com-
bustion engines – current and future technologies. SAE Technical Paper Series
2007-01-1603, SAE International, April 2007.

63. P. McLachlan, T. Munzner, E. Koutsofios, and S. C. North. LiveRAC: Interactive
visual exploration of system management time-series data. In Conference on Hu-
man Factors in Computing Systems, CHI, pages 1483–1492, Florence, Italy, April
2008.

64. A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. Problem diagnosis in large-
scale computing environments. In International Conference on High Performance
Computing, Networking, Storage and Analysis, page 88, Tampa, FL, November
2006.

65. G. Mongardi. Dependable computing for railway control systems. In 3rd IFIP
International Working Conference on Dependable Computing for Critical Applica-
tions, pages 255–277, 1993.

66. A. Oliner and J. Stearley. Bad words: Finding faults in Spirit’s syslogs. In 8th IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2008),
pages 765–770, Lyon, France, May 2008.

67. A. J. Oliner, A. V. Kulkarni, and A. Aiken. Using correlated surprise to infer
shared influence. In IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 191–200, Chicago, IL, July 2010.

68. X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Blind Men and the
Elephant: Piecing together Hadoop for diagnosis. In International Symposium on
Software Reliability Engineering (ISSRE), Mysuru, India, November 2009.

69. R. Patton. Fault detection and diagnosis in aerospace systems using analytical
redundancy. Computing Control Engineering Journal, 2(3):127 –136, May 1991.

70. P. Peti, R. Obermaisser, and H. Kopetz. Out-of-Norm Assertions. In 11th IEEE
Real Time and Embedded Technology and Applications Symposium (RTAS ’05),
pages 280–291, San Francisco, CA, March 2005.

71. M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico. Optimal discrimi-
nation between transient and permanent faults. In 3rd IEEE International Sympo-
sium on High-Assurance Systems Engineering (HASE ’98), pages 214–223, 1998.

72. F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment prob-
lem of diagnosable systems. IEEE Transactions on Electronic Computing, EC-
16(6):848–854, December 1967.

73. P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat.
Pip: Detecting the unexpected in distributed systems. In USENIX Symposium
on Networked Systems Design and Implementation, pages 115–128, San Jose, CA,
May 2006.

74. P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat. Wap5:
black-box performance debugging for wide-area systems. In WWW ’06: Proceedings
of the 15th international conference on World Wide Web, pages 347–356, New
York, NY, USA, 2006. ACM Press.

75. I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, and K. Her-
nandez. Adaptive diagnosis in distributed systems. IEEE Transactions on Neural
Networks, 16(5):1088–1109, September 2005.

76. I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik. Real-time problem
determination in distributed systems using active probing. In IEEE/IFIP Network
Operations and Management Symposium, pages 133–146, Seoul, South Korea, April
2004.

77. R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman, M. Stroucken,
W. Wang, L. Xu, and G. R. Ganger. Diagnosing performance changes by com-
paring request flows. In USENIX Symposium on Networked Systems Design and
Implementation, pages 43–56, Boston, MA, March 2011.

78. B. Schroeder and G. Gibson. A large-scale study of failures in high-performance
computing systems. In IEEE Conference on Dependable Systems and Networks,
pages 249–258, Philadelphia, PA, June 2006.

79. B. Schroeder and G. A. Gibson. Disk failures in the real world: What does an
MTTF of 1, 000, 000 hours mean to you? In USENIX Conference on File and
Storage Technologies, pages 1–16, San Jose, CA, February 2007.

80. M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis and recovery: On the
choice and impact of tuning parameters. IEEE Transactions on Dependable and
Secure Computing, 4(4):295–312, 2007.

81. K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance anomaly
identification. In ACM Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 85–96, Seattle, WA, June 2009.

82. D. P. Siewiorek and R. S. Swarz. Reliable computer systems (3rd ed.): design and
evaluation. A. K. Peters, Ltd., 1998.

83. B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhagy. Dapper, a large-scale distributed systems tracing
infrastructure. Technical Report dapper-2010-1, Google, April 2010.

84. L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding. Design for fault-tolerance
in system es/9000 model 900. In in Proc. 22nd IEEE FTCS International Sympo-
sium on Fault-Tolerant Computing, pages 38–47, 1992.

85. Splunk Inc. Splunk: The IT Search Company, 2005. http://www.splunk.com.
86. M. Steinder and A. S. Sethi. A survey of fault localization techniques in computer

networks. Science of Computer Programming, 53(2):165–194, July 2004.
87. C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for performance

prediction. In European conference on Computer systems (EuroSys), pages 31–44,
Lisbon, Portugal, March 2007.

88. A. W. Stroupe, S. Singh, R. Simmons, T. Smith, P. Tompkins, V. Verma, R. Vitti-
Lyons, and M. Wagner. Technology for autonomous space systems. Technical Re-

http://www.splunk.com

port CMU-RI-TR-00-02, Carnegie Mellon University, Robotics Institute, Septem-
ber 2001.

89. J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. SALSA: Analyzing
Logs as State Machines. In USENIX Workshop on Analysis of System Logs, San
Diego, CA, December 2008.

90. J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. Mochi: Visual Log-
Analysis Based Tools for Debugging Hadoop. In USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), San Diego, CA, June 2009.

91. B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N. Tantawi. An
analytical model for multi-tier internet services and its applications. In ACM
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),
pages 291–302, Banff, Alberta, Canada, June 2005.

92. J. R. Wright and G. T. Vesonder. Expert systems in telecommunications. Expert
Systems with Applications, 1(2):127 – 136, 1990.

93. W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting large-scale
system problems by mining console logs. In ACM Symposium on Operating Systems
Principles, pages 117–132, Big Sky, MT, October 2009.

94. S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust
event correlation. Communications Magazine, IEEE, 34(5):82–90, May 1996.

95. C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma. Au-
tomated known problem diagnosis with event traces. In European conference on
Computer systems (EuroSys), pages 375–388, April 2006.

96. S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox. Ensembles of models
for automated diagnosis of system performance problems. In IEEE Conference on
Dependable Systems and Networks, pages 644–653, Yokohoma, Japan, July 2005.

	Failure Diagnosis of Complex Systems
	Soila P. Kavulya, Kaustubh Joshi, Felicita Di Giandomenico, Priya Narasimhan

