
Kahuna: Problem Diagnosis for MapReduce-Based
Cloud Computing Environments

Jiaqi Tan, Xinghao Pan
DSO National Laboratories, Singapore

Singapore 118230

{tjiaqi,pxinghao}@dso.org.sg

Eugene Marinelli, Soila Kavulya, Rajeev Gandhi
and Priya Narasimhan

Electrical & Computer Engineering Dept.

Carnegie Mellon University, Pittsburgh, PA 15213

emarinel@andrew.cmu.edu,{spertet,rgandhi}@ece.cmu.edu, priya@cs.cmu.edu

Abstract—We present Kahuna, an approach that aims to
diagnose performance problems in MapReduce systems. Central
to Kahuna’s approach is our insight on peer-similarity, that nodes
behave alike in the absence of performance problems, and that
a node that behaves differently is the likely culprit of a perfor-
mance problem. We present applications of Kahuna’s insight in
techniques and their algorithms to statistically compare black-
box (OS-level performance metrics) and white-box (Hadoop-
log statistics) data across the different nodes of a MapReduce
cluster, in order to identify the faulty node(s). We also present
empirical evidence of our peer-similarity observations from the
4000-processor Yahoo! M45 Hadoop cluster. In addition, we
demonstrate Kahuna’s effectiveness through experimental eval-
uation of two algorithms for a number of reported performance
problems, on four different workloads in a 100-node Hadoop
cluster running on Amazon’s EC2 infrastructure.

I. INTRODUCTION

Cloud computing is becoming increasingly common, and has

been facilitated by frameworks such as Google’s MapReduce

[1], which parallelizes and distributes jobs across large clus-

ters. Hadoop [2], the open-source implementation of MapRe-

duce, has been widely used at large companies such as Yahoo!

and Facebook [3] for large-scale data-intensive tasks such as

click-log mining and data analysis. Performance problems–

faults that cause jobs to take longer to complete, but do

not necessarily result in outright crashes–pose a significant

concern because slow jobs limit the amount of data that can

be processed. Commercial datacenters like Amazon’s Elastic

Compute Cloud (EC2) charge $0.10-0.80/hour/node, and slow

jobs impose financial costs on users. Determining the root

cause of performance problems and mitigating their impact

can enable users to be more cost-effective.

Diagnosing performance problems in MapReduce environ-

ments presents a different set of challenges than multi-tier web

applications. Multi-tier web applications have intuitive time-

based service-level objectives (SLOs) as they are required to

have low latency. Current state-of-the-art problem-diagnosis

techniques in distributed systems rely on knowing which

requests have violated their SLOs and then identify the root-

causes [4] [5] [6]. However, MapReduce jobs are typically

long-running (relative to web-request processing), with Google

jobs averaging 395 seconds on 394-node clusters [7], or equiv-

alently, 43 node-hours (i.e., with a 43-node cluster, the average

job will run for an hour). These job times are dependent on

the input size and the specific MapReduce application. Thus,

it is not easy to identify the ”normal” running time of a given

MapReduce job, making it difficult for us to use time-based

SLOs for identifying performance problems.

In the Kahuna technique, we determine if a performance

problem exists and identify the culprit nodes, in a MapReduce

system, based on the key insight of peer-similarity among

nodes in a MapReduce system: (1) the nodes (that we loosely

regard as “peers”) in a MapReduce cluster tend to behave

symmetrically in the absence of performance problems, and (2)

a node that behaves differently from its peer nodes, is likely to

be the culprit of a performance problem1. In this paper, (1) we

evaluate the extent to which the peer-similarity insight is true

on Hadoop, the most widely-used open-source MapReduce

system, based on empirical evidence from data from real-world

research jobs on the 4000-processor, 1.5 PB M45 cluster, a

Yahoo! production cluster made available to Carnegie Mellon

researchers, and (2) we investigate the extent to which this

insight can be used to diagnose performance problems, and

contrast these two algorithms based on peer-similarity. We ex-

perimentally evaluate of two of our earlier problem-diagnosis

algorithms based on the peer-similarity insight. These two

algorithms diagnose problems in Hadoop clusters by compar-

ing black-box, OS-level performance metrics [8], and white-

box metrics derived from Hadoop’s logs [9], respectively,

and are examples of algorithms that can be built around the

peer-similarity insight. We refer to them as Kahuna-BB and

Kahuna-WB respectively. We perform extensive evaluation of

these algorithms using multiple workloads and realistically-

injected faults.

II. BACKGROUND: MAPREDUCE & HADOOP

Hadoop [2] is an open-source implementation of Google’s

MapReduce [7] framework that enables distributed, data-

intensive, parallel applications by decomposing a massive job

into smaller (map and reduce) tasks and a massive data-set

into smaller partitions, such that each task processes a different

partition in parallel. Hadoop uses the Hadoop Distributed File

System (HDFS) implementation of the Google Filesystem

1We do not claim the converse: we do not claim that a performance problem
will necessarily result in an asymmetrically behaving node. In fact, we have
observed correlated performance degradations for certain problems, whereby
all of the nodes behave identically, albeit incorrectly.

112978-1-4244-5367-2/10/$26.00 c©2010 IEEE

Hadoop
Hadoop

.

MASTER SLAV
ES

HDFS

Hadoop
TaskTracker

Map
Reduce

DataNode

data
blocks

D
at
aN

od
e

lo
g

Ta
sk
Tr
ac
ke
r

lo
g

sa
dc

ve
ct
or

s

/proc

Hadoop
JobTracker

NameNode
N
am

eN
od
e

lo
g

Jo
bT

ra
ck
er lo
g

sa
dc

ve
ct
or

s

/proc

Fig. 1. Architecture of Hadoop, showing the logs of interest to Kahuna.

Crash with user!level error
4%

Incorrect
value
34%

Hang (task halted)
11%

Performance
Problem (task slow)

20%

Crash with
system!level error

31%

Fig. 2. Manifestations of Hadoop bugs reported in Jan 2007–Feb 2008.

[10], to share data amongst the tasks in the system. HDFS

splits and stores files as fixed-size blocks. Hadoop uses a

master-slave architecture, as shown in Figure 1, with a unique

master node and multiple slave nodes. The master node

typically runs the JobTracker daemon which schedules tasks

belonging to a running job and the NameNode daemon which

manages the HDFS regulates access to files by clients (i.e.,

the executing tasks). Each slave node runs the TaskTracker

daemon which launches and tracks tasks on its local node, as

directed by the remote JobTracker , and the DataNode which

serves data blocks (on its local disk) to HDFS clients. Figure 1

shows the inputs to Kahuna-BB, /proc-based OS perfor-

mance data (sadc-vectors), and to Kahuna-WB, Hadoop’s

TaskTracker and DataNode logs, respectively.

III. PROBLEM STATEMENT

Our primary research question focuses on whether a peer-

similarity based approach can localize performance problems

accurately, even in large clusters. Ancillary questions concern

the analysis of black-box vs. white-box data, and their respec-

tive fault-coverage with respect to their ability to capture the

symptoms of various performance problems.

Motivating evidence. To investigate the impact of perfor-

mance problems on Hadoop, we studied the manifestations

of reported bugs from the Hadoop bug database [11] over

a 14-month period from Jan 2007 to Feb 2008. We found

that 31% of bugs manifested as degraded performance (hangs,

performance problems), and a further 35% of bugs manifested

as crashes (see Figure 2), indicating that performance problems

are an important class of problems to address for diagnosis.

Furthermore, we believe that the impact of performance prob-

lems is underrepresented in the bug database, as those which

do not crash nor halt Hadoop are likely to go unreported.

Goals. Our diagnosis should run transparently to, and not

require any modifications of, both the hosted applications and

Hadoop itself. Our diagnosis should be usable in production

environments, where administrators might not have the luxury

of instrumenting applications for code-level debugging, but

could likely leverage readily available black-box data or ex-

isting native Hadoop logs. Our diagnosis should produce low

false-positive rates, in the face of a variety of workloads for the

system under diagnosis, even if these workloads fluctuate, as

in the case of real-world workloads such as Nutch and Pig.

Our data-collection should impose minimal instrumentation

overheads on the system under diagnosis.

Fault model. Performance problems in Hadoop clusters can

result in jobs taking longer than usual to complete. Such

abnormally long runtimes can be due to environmental factors

on the node (e.g., an external, non-Hadoop workload), due

to causes not specific to the node (e.g., non-deterministically

triggered bugs within Hadoop), or due to data-dependent

issues. The outcome of our diagnosis algorithm is a set of

slave nodes in the cluster that our algorithm has identified as

those that caused the job to take longer than usual to complete.

We do not attempt to predict the normal completion-time of a

given job. Instead, we identify jobs that undergo performance

problems that cause the jobs to take longer to complete than

if the problem were not present, and identify the nodes that

caused the slowdown.

Assumptions. We assume that the target MapReduce system

(i.e., the Hadoop infrastructure and Hadoop jobs) is the

dominant source of activity on every node. We assume that a

majority of the Hadoop slave nodes are problem-free and that

all nodes are homogeneous in hardware. As a part of future

work, we intend to study the peer-similarity principle in the

case of heterogeneous cluster configurations; this is outside

the scope of the current paper.

Non-goals. We currently aim for coarse-grained problem di-

agnosis that localizes problems to the culprit slave node(s).

This differs from finer-grained root-cause analysis that might

aim instead to identify the underlying fault or bug, or offending

line of code. While the presented algorithms can be run online,

we focus on the offline evaluation of collected data. We also

currently do not target master node problems, nor attempt to

predict normal runtimes of a given job.

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 113

IV. EMPIRICAL EVIDENCE OF PEER-SIMILARITY

Over the past year, we have conducted several experiments

with, and analyzed data from, different large-scale MapReduce

systems, including our 100-processor Amazon EC2-based

Hadoop cluster [12] as well as the 4000-processor Yahoo!

M45 production cluster [13]. We experimented with multiple

workloads, such as the simple RandWriter and Sort and

the more realistic Nutch and Pig. We have also analyzed

traces of Hadoop jobs run by other researchers on M45.

We have observed that, in the absence of performance

problems, the slave nodes in a MapReduce cluster tend to

exhibit similar behavior, as measured in any number of ways,

e.g., CPU usage, network traffic, Map-task completion-times,

etc. When we inject a performance problem (or when we

observe a problem in the field, in the case of the M45

traces), we observed further that the slave node on which

the problem originated (the culprit node) deviated from the

other slave nodes in its behavior. These observations held

across multiple traces, multiple experiments, multiple users,

and testbeds. These two empirically-observed insights–peer

similarity under fault-free conditions and peer-divergence in-

dicates a performance problem–form the key motivators of

our Kahuna approach, as described in Section V.

Justification. This observed behavior is intuitive and reason-

able to expect in a MapReduce cluster. Slave nodes typically

process copies of the same task that operate on different

inputs; with each task processing large numbers of records,

the aggregate behavior of slave nodes that we observe would

be similar. In addition, we argue that, for a job to complete

as quickly as possible, nodes (with the same processing capa-

bilities) should spend comparable amounts of time handling

comparable amounts of work, as the system completes its job

only when the slowest node completes. Hence, peer-similarity

amongst (homongeous) nodes is not merely an observed, but

also a necessary, characteristic, for optimal performance.

Supporting evidence. We provide empirical evidence from

traces of real Hadoop jobs in the Yahoo! M45 production

cluster, to support our key insights. We obtained the Hadoop

logs for jobs that were run by researchers (whose data-

intensive jobs range from machine translation to large-scale

data mining) over the five-month period, April–September

2008. The logs spanned 12854 experiments run by 26 users.

Each experiment consisted of multiple Hadoop jobs. Table I

provides a summary of the log statistics. Apart from the

visual inspection of these log traces, we sought to establish,

in a statistical way, that (i) slave nodes performing the same

jobs behave similarly, and (ii) the similarity between nodes is

affected when a job suffers from performance problems.

We measured the similarity among nodes by computing the

absolute value of the Pearson’s pair-wise correlation coeffi-

cient (between 0 and 1, with 1 expressing maximum similarity)

of the average number of Maps/second being executed across

slave nodes during a job across every pair of nodes in each

job. We considered the number of Maps/second, rather than

the number of Reduces/second, because a third of the jobs

TABLE I
SUMMARY OF M45 LOGS.

Number of experiments 12854

Number of users 26

Average jobs per experiment 3.84 ± 20

Average nodes per experiment 21.42 ± 24

Average experiment duration (mins) 19.74 ± 82

Longest running experiment (hours) 23.32

0 200 400 600 800 1000 1200

Time (seconds)

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

node1

node2

node3

slow host has fewer
maps scheduled

M
ap

s/
s

M
ap

s/
s

M
ap

s/
s

Fig. 3. Peer-comparison of Map tasks scheduled across M45 hosts helps to
highlight a slow host in a user’s Hadoop job.

(for this specific user and workload) did not involve any

Reduce tasks. Figure 3 shows a graphical view of the number

of Maps/second being executed on each node. We found

that, for successfully completed jobs, 89% of the nodes in

had correlation coefficients ≥ 0.6 with all of other nodes

involved in the job. On the other hand, for jobs aborted by

the JobTracker, only 43% of the nodes with correlations ≥ 0.6

with other nodes involved in the job. This evidence supports

our insights of peer-similarity amongst slave nodes in fault-

free conditions, while nodes behave much less similarly in jobs

that failed to complete. This is illustrated visually in Figure 3.

V. DIAGNOSIS APPROACH

Based on our key insights in Section IV, we assert that a

node whose behavior differs from the majority of nodes in

the cluster is anomalous and can be a potential source of

a performance problem. To enable us to quantify how sim-

ilar/dissimilar nodes are to each other, we need to define the

notion of “behavior” more concretely.Hence, Kahuna-BB sta-

tistically compares black-box data across nodes, and Kahuna-

WB statistically compares white-box data across nodes.

Black-box instrumentation. We gather and analyze black-

box (i.e., OS-level) performance metrics, without requiring any

modifications to Hadoop, its applications or the OS. We use the

sadc program in the sysstat package [14] to collect 14 OS

metrics, as listed in Table II) from /proc, at a sampling interval

of one second. We denote each vector containing samples of

114 2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference

user % CPU time in user-space

system % CPU time in kernel-space

iowait % CPU time waiting for I/O job

ctxt Context switches per second

runq-sz Number of processes waiting to run

plist-sz Total number of processes and threads

ldavg-1 system load average for the last minute

eth-rxbyt Network bytes received per second

eth-txbyt Network bytes transmitted per second

pgpgin KBytes paged in from disk per second

pgpgout KBytes paged out to disk per second

fault Page faults (major+minor) per second

bread Total bytes read from disk per second

bwrtn Total bytes written to disk per second

TABLE II
GATHERED BLACK-BOX METRICS (SADC-VECTOR).

these 14 metrics, all collected at the same instant of time,

sadc-vector. We use these sadc-vectors as our metric for

diagnosis in Kahuna-BB.

White-box instrumentation. We collect the system logs gen-

erated by Hadoop’s native logging code from the TaskTracker

and DataNode daemons on slave nodes, and use the SALSA

log-analysis technique [9] to extract state-machine views of

the execution of each daemon. Each entry in the log is

treated as an event, and particular events are used to identify

states in the control-flow of each daemon, e.g., Map and

Reduce states in the TaskTracker, and ReadBlock and

WriteBlock states in the DataNode. Sequences of state

executions are then generated, with data-flows between these

states, and durations of each state, for each node in the cluster.

Kahuna-WB compares these durations across slave nodes to

perform its diagnosis.

VI. DIAGNOSIS ALGORITHMS

For each of the metrics of diagnosis (sadc-vector for Kahuna-

BB and state durations for Kahuna-WB), over a given period

of time, we compare that metric’s values at each node with

the metric’s corresponding values at all of the other nodes. If

the values of metric X at a given node, N, differ significantly

from sufficiently many nodes in the cluster, metric X is said

to indict node N as the culprit, and our algorithms flag the

presence of a performance problem. Kahuna-BB and Kahuna-

WB are similar in their use of a peer-comparison strategy, but

differ in that (i) they operate on different sets of metrics, (ii)

they impose different hypotheses on the data, and (iii) they

can operate independently of each other.

A. Kahuna-WB: White-Box Diagnosis

We assume that state durations of interest have been extracted

from Hadoop’s logs using [9]. Kahuna-WB performs peer-

comparison on the durations of the states extracted through

log analysis, i.e. the Map, Reduce, ReduceCopy and

ReduceMergeCopy states from TaskTracker logs, and the

ReadBlock and WriteBlock states from DataNode logs.

For each state, for a given period of time, we generate a

histogram of the durations of that state for each node, in

order to create an aggregate view of the state’s durations for

that node. Then, for each node, we compare its histogram

for that state’s duration with the corresponding histograms of

every other node in the cluster. We perform this comparison

by computing a statistical measure (square-root of the Jensen-

Shannon divergence [15]) of the distance between histograms.

If a given node’s histogram differs significantly (by more than

a threshold value) from those of a majority of the other nodes,

then, we diagnose the cluster as undergoing a performance

problem with that node being the culprit.

B. Kahuna-BB: Black-Box Diagnosis

Unlike Kahuna-WB, which simply performs a statistical com-

parison across nodes, Kahuna-BB requires a priori training to

summarize system metrics into a small number of behavior

profiles. This enables it to extract meaning out of black-

box data typically devoid of semantic information. Kahuna-

BB is based on two related hypotheses about the behavior

of MapReduce slave nodes from the perspective of black-

box, OS-level performance counters: (i) that MapReduce slave

nodes exhibit a small number of distinct behaviors, and that (ii)

in a short interval of time (say, 1s), the system’s performance

tends to be dominated by one of these behaviors. We then

exploit our peer-similarity insight in Kahuna-BB to incriminate

any node whose dominant distinct behavior differs from those

of a majority of the other nodes in the cluster.

Learning. The K distinct profiles, each of which captures

one of the distinct Hadoop behaviors hypothesized above, are

first learned a priori from fault-free runs of various workloads

(described in Section VII-A). This phase involves collecting

sadc-vectors from these runs, and then using the Expectation-

Maximization (EM) algorithm [16] to cluster these sadc-

vectors into behavior profiles. These profiles have no semantic

meaning, and are used to condense Hadoop’s different behav-

iors into a small number of profiles, as manifested across all

14 elements of the sadc-vectors.

Diagnosis. First, we classify each node’s sadc-vector into

one of the learned K distinct profiles. We then compute the

histograms of these profiles for each node, decayed exponen-

tially with time to weight past behavior less. We then compute

the pairwise distance between the histograms of every pair of

nodes in the cluster in each time period, using a statistical

measure (the square-root of the Jensen-Shannon divergence

[15]). If a specific node’s histogram differs significantly (by

more than a threshold value) from those of a majority of the

other nodes, then we declare the system to be undergoing a

performance problem and indict that node to be the culprit.

VII. EXPERIMENTAL EVALUATION

Each experiment consists of a {problem, workload} pair, with

a Hadoop cluster running a particular workload, with a specific

single fault injected at one of the slave nodes during the

experiment. These injected performance problems increase the

workload’s running time, as compared to the control fault-

free case, as shown in Table IV. We evaluate Kahuna-BB’s

and Kahuna-WB’s ability to detect and localize the injected

performance problems for each Hadoop workload. We selected

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 115

Fault / Workload RandWriter Sort Nutch Pig

Control (none) 0% 0% 0% 0%
CPUHog 7.2% 28.2% 25.1% 11.6%
DiskHog 5.7% 26.6% 10.6% 16.3%
DiskFull 1.4% 4% 0% 0%

PacketLoss1 0% 0% 0% 0%
PacketLoss5 0% 23.2% 30.1% 0%

PacketLoss50 0% 89.8% 116.5% 561.1%
HANG-1036 1% 12.8% 99.4% 37.0%
HANG-1152 0% 24.4% 44.0% 6.6%
HANG-2080 0% 23.7% 6.1% 0.5%

TABLE IV
IMPACT OF INJECTED PROBLEMS ON PERFORMANCE OF EACH

WORKLOAD. WE REPORT THE PERCENTAGE SLOWDOWN OF THE

COMPLETION TIME OF EACH JOB RELATIVE TO THE “CONTROL” CASE.

these injected problems to cover both (i) resource-contention

(CPU, disk, network) problems, as well as (ii) Hadoop bugs

that result in performance slowdowns or hangs.

A. Experimental Setup

We collected and analyzed traces from Hadoop clusters run-

ning on virtual machines on the Amazon EC2 virtual data-

center. Each node consisted of an “extra-large” node instance

on EC2, with 4 dual-core Intel Xeon-class CPUs, 15GB of

memory, and 1.6TB of Elastic Block Store (EBS) storage [12].

We collected traces from 10-, 25-, 50- and 100-node Hadoop

clusters. We collected both black-box, OS-level performance

counters throughout the experiment, and white-box Hadoop

logs at the end of each experiment for offline processing.

Black-box data collection incurred an overhead of less than

1% CPU utilization; white-box data-collection did not require

additional effort as Hadoop generates logs by default.

Workloads. To evaluate the effectiveness of Kahuna on a

variety of workloads, we collected traces of Hadoop under

four different workloads: two simple benchmarks that are

packaged with Hadoop (Sort , RandWriter), and two

Hadoop applications (Nutch, Pig) commonly used in real-

world installations. These are described below:

• RandWriter: Write-intensive workload that generated 24

GB of random data on each task

• Sort : Read/Write workload that sorts 5 GB of randomly-

ordered records generated by RandWriter. Sort and

RandWriter are common Hadoop benchmarks

• Nutch: Distributed web-crawler for Hadoop, in use

at several companies [3], representative of a real-world,

fluctuating workload typical of many Hadoop workloads

• Pig: High-level language for expressing data analysis

programs [17], that is compiled into Hadoop programs,

typical of a sophisticated, multi-job Hadoop workload

Fault Injection. Table III describes the faults that we injected

into one of the slave nodes in each experiment, and our

fault-injection methodology. These faults trigger performance

problems reported on the Hadoop users’ mailing list or on

the Hadoop bug database [11]. The faults studied were inten-

tionally selected to induce performance problems, specifically

those that caused Hadoop jobs to take longer to complete

Fig. 4. Results for all problems on Nutch for all cluster sizes.

Fig. 5. Results for all problems on Pig for all cluster sizes.

than expected, as compared with our control (i.e. fault-free)

experiments. Table IV captures the impact of these injected

faults on the job-completion times of the four workloads.

VIII. RESULTS

For each experimental trace, we analyzed the trace-data using

both Kahuna-WB and Kahuna-BB, each of which returned a

list of nodes it indicted as culprits. We evaluated this outcome

as follows: an indictment of the fault-injected node was a true-

positive, an indictment of any other node was a false-positive

(FP), and a failure to indict the fault-injected node was a

false-negative (FN). The true-positive (TP) and false-positive

rates (∈ [0.0,1.0], with T P = 1.0,FP = 0.0 representing a

perfect diagnosis) are presented here for 10 fault-induced

experimental runs for each {problem, workload} pair. These

results are computed for a specific threshold (for Kahuna-BB

and Kahuna-WB) for each {workload, cluster-size} pair.

A. Kahuna-BB: Black-box diagnosis

Figures 4, 5, 6, and 7 show the TP and FP rates for each

{fault,workload} pair. The bar graphs are grouped by injected

fault, and each set of 4 bars shows results for the 10-, 25-,

50-, and 100-node clusters respectively. In general, Kahuna-

BB was successful at diagnosing most injected faults on

116 2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference

[Source] Reported Failure [Problem Name] Problem-Injection Methodology

[Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted
from running master and slave daemons on same machine

[CPUHog] Emulate a CPU-intensive task that consumes 70%
CPU utilization

[Hadoop users’ mailing list, Sep 26 2007] Excessive messages logged
to file during startup

[DiskHog] Sequential disk workload wrote 20GB of data to
filesystem

[HADOOP-2956] Degraded network connectivity between DataN-
odes results in long block transfer times

[PacketLoss1/5/50] 1%,5%,50% packet losses by drop-
ping all incoming/outcoming packets with probabilities of
0.01,0.05,0.5

[HADOOP-1036] Hang at TaskTracker due to an unhandled excep-
tion from a task terminating unexpectedly. The offending TaskTracker
sends heartbeats although the task has terminated.

[HANG-1036] Revert to older version and trigger bug by
throwing NullPointerException

[HADOOP-1152] Reduces at TaskTrackers hang due to a race con-
dition when a file is deleted between a rename and an attempt to call
getLength() on it.

[HANG-1152] Simulated the race by flagging a renamed file as
being flushed to disk and throwing exceptions in the filesystem
code

[HADOOP-2080] Reduces at TaskTrackers hang due to a miscalcu-
lated checksum.

[HANG-2080] Deliberately miscomputed checksum to trigger
a hang at reducer

TABLE III
INJECTED PROBLEMS, AND THE REPORTED FAILURES THAT THEY SIMULATE. HADOOP-XXXX REPRESENTS A HADOOP BUG-DATABASE ENTRY.

Fig. 6. Results for all problems on RandWriter for all cluster sizes.

Fig. 7. Results for all problems on Sort for all cluster sizes.

all workloads, achieving high TP rates and low FP rates.

We candidly discuss deviations where and why Kahuna-BB

performed less than satisfactorily.

PacketLoss: The PacketLoss1 problem was generally not

diagnosed on all workloads, as compared to other problems,

because Hadoop uses TCP, which provides some resilience

against minor packet losses. The diagnosis of more severe

packet losses had high TP rates, indicating we could detect

the problem. However, the high FP rates indicated that we

regularly indicted wrong nodes, due to the correlated nature

of the problem since a packet loss on one node (e.g. due to

a flaky NIC) can also register as a problem on other nodes

communicating with it. Also, the PacketLoss problem was

less successfully detected on RandWriter because its jobs

largely involved disk I/O but minimal network communication.

HANG-2080, HANG-1152: The HANG-2080 and HANG-

1152 problems affect the Reduce stage of computation. Since

the RandWriter workload has no Reduce tasks, these hang

problems have less impact on it (as shown in Table IV) than

on Sort and Pig, which have relatively long Reduces.

We could not diagnose the problem on the Nutch workload

as it affected a majority of the nodes in the cluster, so that

peer-comparison failed to diagnose this problem.

DiskFull: The DiskFull problem was not diagnosed success-

fully on the Pig workload, with relatively low TP rates. In

this problem, the node with a full disk would use remote

DataNodes rather than its local one to perform operations,

so that workloads which perform more disk operations would

be more greatly impacted. However, the Pig job in our

experiments was largely compute-intensive, and less disk-

intensive, so that the drop in disk activity on the problematic

node did not cause the disk activity of that node to deviate

significantly from those of other nodes.

B. Kahuna-WB: White-box diagnosis

Kahuna-WB diagnosis was performed with the durations of

each of the following states: ReadBlock and WriteBlock

states on the DataNode, and the Map, Reduce, ReduceCopy

and ReduceMergeCopy states on the TaskTracker. We

found that diagnosis using the Map state was most effective;

we summarize the results for diagnosis using all other states

due to space constraints. The Map state was more effective

for diagnosis as our candidate workloads spent the majority

of their time in the Map state, while only Sort and

Pig had significant Reduce tasks, so that the Map state

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 117

118 2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 119

