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Abstract

Intrepid has a very-large, production GPFS storage sys-
tem consisting of 128 file servers, 32 storage controllers,
1152 disk arrays, and 11,520 total disks. In such a large
system, performance problems are both inevitable and
difficult to troubleshoot. We present our experiences, of
taking an automated problem diagnosis approach from
proof-of-concept on a 12-server test-bench parallel-file-
system cluster, and making it work on Intrepid’s storage
system. We also present a 15-month case study, of prob-
lems observed from the analysis of 624 GB of Intrepid’s
instrumentation data, in which we diagnose a variety of
performance-related storage-system problems, in a mat-
ter of hours, as compared to the days or longer with man-
ual approaches.

Tags: problem diagnosis, storage systems, infrastruc-
ture, case study.

1 Introduction
Identifying and diagnosing problems, especially perfor-
mance problems, is a difficult task in large-scale storage
systems. These systems are comprised of many com-
ponents: tens of storage controllers, hundreds of file
servers, thousands of disk arrays, and tens-of-thousands
of disks. Within high-performance computing (HPC),
storage often makes use of parallel file systems, which
are designed to utilize and exploit parallelism across
all of these components to provide very high-bandwidth
concurrent I/O.

An interesting class of problems in these systems is
hardware component faults. Due to redundancy, gener-
ally component faults and failures manifest in degraded
performance. Due to careful balancing of the number
of components and their connections, the degraded per-
formance of even a single hardware component may be
observed throughout an entire parallel file system, which
makes problem localization difficult.

At present, storage system problems are observed and
diagnosed through independent monitoring agents that
exist within the individual components of a system, e.g.,

disks (via S.M.A.R.T. [11]), storage controllers, and file
servers. However, because these agents act indepen-
dently, there is a lack of understanding how a specific
problem affects overall performance, and thus it is un-
clear whether a corrective action is immediately neces-
sary. Where the underlying problem is the misconfigura-
tion of a specific component, an independent monitoring
agent may not even be aware that a problem exists.

Over the past few years, we have been exploring the
use of peer-comparison techniques to identify, locate,
and diagnose performance problems in parallel file sys-
tems. By understanding how individual components may
exhibit differences (asymmetries) in their performance
relative to peers, and, based on the presence of these
asymmetries, we have been able to identify the specific
components responsible for overall degradation in sys-
tem performance.

Our previous work. As described in [17], we automat-
ically diagnosed performance problems in parallel file
systems (in PVFS and Lustre) by analyzing black-box,
OS-level performance metrics on every file server. We
demonstrated a proof-of-concept implementation of our
peer-comparison algorithm by injecting problems during
runs of synthetic workloads (dd, IOzone, or PostMark)
on a controlled, laboratory test-bench storage cluster of
up to 12 file servers. While this prototype demonstrated
that peer comparison is a good foundation for diagnos-
ing problems in parallel file systems, it did not attempt to
tackle the practical challenges of diagnosis in large-scale,
real-world production systems.

Contributions. In this paper, we seek to adapt our pre-
vious approach for the primary high-speed storage sys-
tem of Intrepid, a 40-rack Blue Gene/P supercomputer at
Argonne National Laboratory [21], shown in Figure 1.
In doing so, we tackle the practical issues in making
problem diagnosis work in large-scale environment, and
we also evaluate our approach through a 15-month case
study of practical problems that we observe and identify
within Intrepid’s storage system.

The contributions of this paper are:
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Figure 1: Intrepid, consists of 40 Blue Gene/P racks [2].

• Outlining the pragmatic challenges of making problem
diagnosis work in large-scale storage systems.

• Adapting our proof-of-concept diagnosis approach,
from its initial target of a 12-server experimental clus-
ter, to a 9,000-component, production environment
consisting of file servers, storage controllers, disk ar-
rays, attachments, etc.

• Evaluating a case study of problems observed in In-
trepid’s storage system, including those that were pre-
viously unknown to system operators.

We organize the rest of this paper as follows. We start
with a description of our approach, as it was originally
conceived, to work in a small-scale laboratory environ-
ment (see § 2). We then discuss the challenges of taking
the initial algorithm from its origin in a limited, control-
lable test-bench environment, and making it effective in
a noisy, 9,000-component production system (see § 3).
Finally, we present the new version of our algorithm that
works in this environment, and evaluate its capability to
diagnose real-world problems in Intrepid’s storage sys-
tem (see § 4).

2 In the Beginning . . .
The defining property of parallel file systems is that
they parallelize accesses to even a single file, by strip-
ing its data across many, if not all, file servers and
logical storage units (LUNs) within a storage system.
By striping data, parallel file systems maintain similar
I/O loads across system components (peers) for all non-
pathological client workloads. In our previous work [17],
we hypothesized that the statistical trend of I/O loads,
as reflected in OS-level performance metrics, should (i)
exhibit symmetry across fault-free components, and (ii)
exhibit asymmetries across faulty components. Figure 2
illustrates the intuition behind our hypothesis; the injec-
tion of a rogue workload on a spindle shared with a PVFS
LUN results in a throughput asymmetry between the
faulty and fault-free LUNs, where previously throughput
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Figure 2: Asymmetry in throughput for an injected fault;
provides intuition behind the peer-comparison approach
that serves as a good foundation for our diagnosis [17].

was similar across them.
In the context of our diagnosis approach, peers repre-

sent components of the same type or functionality that
are expected to exhibit similar request patterns. By cap-
turing performance metrics at each peer, and comparing
these metrics across peers to locate asymmetries (peer-
comparison), we expect to be able to identify and local-
ize faults to the culprit peer(s).

To validate our hypothesis, we explored a peer-
comparison-based approach to automatically diagnose
performance problems through a set of experiments on
controlled PVFS and Lustre test-bench clusters [17]. In
summary, these experiments are characterized by:

• Black-box instrumentation consisting of samples of
OS-level storage and network performance metrics.

• Two PVFS and two Lustre test-bench clusters, con-
taining 10 clients and 10 file servers, or 6 clients and
12 file servers, for four clusters in total.

• File servers each with a single, locally-attached stor-
age disk.

• Experiments, both fault-free and fault-injected, ap-
proximately 600 seconds in duration, where each
client runs the same file system benchmark (dd, IO-
zone, or PostMark) as a synthetic workload.

• Fault-injection of approximately 300 seconds in du-
ration, consisting of two storage-related, and two
network-related performance problems.

• A peer-comparison diagnosis algorithm that is able
to locate the faulty server (for fault-injection experi-
ments), and determine which of the four injected prob-
lems is present.

In [17], we evaluate the accuracy of our diagnosis
with true- and false-positive rates for diagnosing the cor-
rect faulty server and fault type (if an injected fault ex-
ists). Although our initial diagnosis algorithm exhibited
weaknesses that contributed to misdiagnoses in our re-
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sults, overall our test-bench experiments demonstrated
that peer-comparison is a viable method for performing
problem diagnosis, with low instrumentation overhead,
in parallel file systems.

3 Taking it to the Field
Following the promising success of our PVFS and Lustre
test-bench experiments, we sought to validate our diag-
nosis approach on Intrepid’s primary high-speed GPFS
file system (we describe GPFS in § 3.2 and Intrepid’s ar-
chitecture in § 3.3).

In doing so, we identified a set of new challenges that
our diagnosis approach would have to handle:

1. A large-scale, multi-tier storage system where prob-
lems can manifest on file servers, storage attachments,
storage controllers, and individual LUNs.

2. Heterogeneous workloads of unknown behavior and
unplanned hardware-component faults, both of which
are outside of our control, that we observe and charac-
terize as they happen.

3. The presence of system upgrades, e.g., addition of
storage units that see proportionally higher loads (non-
peer behavior) as the system seeks to balance resource
utilization.

4. The need for continuous, 24/7 instrumentation and
analysis.

5. Redundant links and components, which also exhibit
changes in load (as compared to peers) when faults
are present, even though the components themselves
are operating appropriately.

6. The presence of occasional, transient performance
asymmetries that are not conclusively attributable to
any underlying problem or misbehavior.

3.1 Addressing these New Challenges
While problem diagnosis in Intrepid’s storage system is
based on the same fundamental peer-comparison process
we developed during our test-bench experiments, these
new challenges still require us to adapt our approach at
every level: by expanding the system model, revisiting
our instrumentation, and improving our diagnosis algo-
rithm. Here we map our list of challenges to the subse-
quent sections of the paper where we address them.

Challenge #2. Tolerating heterogeneous workloads
and unplanned faults are inherent features of our peer-
comparison approach to problem diagnosis. We as-
sume that client workloads exhibit similar request pat-
terns across all storage components, which is a feature
provided by parallel file system data striping for all but
pathological cases. We also assume that at least half
of the storage components (within a peer group) exhibit
fault-free behavior. As long as these assumptions hold,
our peer-comparison approach can already distinguish

problems from legitimate workloads.

Challenges #1, #3, and #5. Unlike our test-bench,
which consisted of a single storage component type
(PVFS or Lustre file server with a local storage disk), In-
trepid’s storage system consists of multiple component
types (file servers, storage controllers, disk arrays, at-
tachments, etc.), that may be amended or upgraded over
time, and that serve in redundant capacities. Thus, we
are required to adapt our system model to tolerate each of
these features. Since we collect instrumentation data on
file servers (see § 4.1), we use LUN-server attachments
as our fundamental component for analysis. With knowl-
edge of GPFS’s prioritization of attachments for shared
storage (see § 3.3.2), we handle redundant components
(challenge #5) by separating attachments into different
priority groups that are separately analyzed. We han-
dle upgrades (challenge #3) similarly, separating com-
ponents into different sets based on the time at which
they’re added to the system, and perform diagnosis sepa-
rately within each upgrade set (see § 3.3.1). Furthermore,
by knowing which attachments are affected at the same
time, along with the storage system topology (see § 3.3),
we can infer the most likely tier and component affected
by a problem (challenge #1).

Challenge #4. As in [17] we use sadc to collect per-
formance metrics (see § 4.1). To make our use of sadc
amenable to continuous instrumentation, we also use a
custom daemon, cycle, to rotate sadc’s activity files
once a day (see § 4.1.1). This enables us to perform anal-
ysis on the previous day’s activity files while sadc gen-
erates new files for the next day.

Challenge #6. Transient performance asymmetries are
far more common during the continuous operation of
large-scale storage systems, as compared to our short
test-bench experiments. Treatment of these transient
asymmetries requires altering the focus of our analysis
efforts and enhancing our diagnosis algorithm to use per-
sistence ordering (see § 4.3).

3.2 Background: GPFS Clusters
The General Parallel File System (GPFS) [27] is a cluster
and parallel file system used for both high-performance
computing and network storage applications. A GPFS
storage cluster consists of multiple file servers that are
accessed by one or more client nodes, as illustrated for
Intrepid in Figure 3. For large I/O operations, clients
issue simultaneous requests across a local area network
(e.g., Ethernet, Myrinet, etc.) to each file server. To fa-
cilitate storage, file servers may store data on local (e.g.,
SATA) disks, however, in most clusters I/O requests are
further forwarded to dedicated storage controllers, either
via direct attachments (e.g., Fibre Channel, InfiniBand)
or over a storage area network.
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BG/P I/O Nodes
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128 NSD Servers
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1152 LUNs

Storage Array (1 of 16)

Figure 3: Intrepid’s storage system architecture.

Storage controllers expose block-addressable logical
storage units (LUNs) to file servers and store file sys-
tem content. As shown in Figure 4, each LUN consists
of a redundant disk array. Controllers expose different
subsets of LUNs to each of its attached the file servers.
Usually LUNs are mapped so each LUN primarily serves
I/O for one (primary) file server, while also allowing re-
dundant access from other (secondary) file servers. This
enables LUNs to remain accessible to clients in the event
that a small-number of file servers go offline. Controllers
themselves may also be redundant (e.g., coupled “A” and
“B” controllers) so that LUNs remain accessible to sec-
ondary file servers in the event of a controller failure.

The defining property of parallel file systems, includ-
ing GPFS, is that they parallelize accesses to even a sin-
gle file, by striping its data across many (and in a com-
mon configuration, across all) file servers and LUNs. For
example, when performing large, sequential I/O, clients
may issue requests, corresponding to adjacent stripe seg-
ments, round-robin to each LUN in the cluster. LUNs are
mapped to file servers so that these requests are striped to
each file server, parallelizing access across the LAN, and
further striped across the primary LUNs attached to file
servers, parallelizing access across storage attachments.

The parallelization introduced by the file system, even
for sequential writes to a single file, ensures that non-
pessimistic workloads exhibit equal loads across the
cluster, which in turn, should be met with balanced per-
formance. Effectively, just as with other parallel file
systems, GPFS exhibits the characteristics that make
peer-comparison a viable approach for problem diagno-
sis. Thus, when “hot spots” and performance imbalances
arise in a cluster, we hypothesize them to be indicative of
a performance problem. Furthermore, by instrumenting
each file server in the cluster, we can observe the per-
formance of file servers, storage controllers, and LUNs,
from multiple perspectives, which enables us to localize
problems to the components of the cluster where perfor-
mance imbalance is most significant.

C
on

tro
lle

r 
A

(d
d
n
6
a

)
C

on
tr

ol
le

r 
B

(d
d
n
6
b

)

...

...

...

...

...

...

...

...

...

...fs1

fs2

fs3

fs4

fs5

fs6

fs7

fs8

Drawer S

Drawer P

Drawer H

Drawer G

Drawer F

Drawer E

Drawer D

Drawer C

Drawer B

Drawer A

ddn6_lun000 ddn6_lun071

6.00.1

Figure 4: Storage array subarchitecture, e.g., ddn6.

3.3 Intrepid’s Storage System
The target of our case study is Intrepid’s primary stor-
age system, a GPFS file system that consists of 128
Network Shared Disk (NSD) servers (fs1 through
fs128) and 16 DataDirect Networks S2A9900 stor-
age arrays, each with two storage controllers [21]. As
illustrated in Figure 4, each storage array exports 72
LUNs (ddn6_lun000 through ddn21_lun071) for
Intrepid’s GPFS file system, yielding a 4.5 PB file sys-
tem comprised from 1152 LUNs and 11,520 total disks.
At this size, this storage system demands a diagnosis
approach with scalable data volume and an algorithm
efficient enough to perform analysis in real-time with
modest hardware. In addition, because our focus is on
techniques that are amenable to such production envi-
ronments, we require an approach with a low instrumen-
tation overhead.

3.3.1 System Expansion
Of the 72 LUNs exported by each storage array, 48 were
part of the original storage system deployment, while the
other 24 were added concurrently with the start of our in-
strumentation to expand the system’s capacity. Since the
24 LUNs added in each storage array (384 LUNs total)
were initially empty, they observe fewer reads and more
writes, and thus, exhibit non-peer behavior compared to
the original 48 LUNs in each array (768 LUNs total). As
our peer-comparison diagnosis approach performs best
on LUNs with similar workloads, we partition Intrepid
into “old” and “new” LUN sets, consisting of 768 and
384 LUNs respectively, and perform our diagnosis sepa-
rately within each set.
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3.3.2 Shared Storage
Each Intrepid LUN is redundantly attached to eight
GPFS file servers with a prioritized server order-
ing defined in a system-wide configuration. We de-
note these LUN-server attachments with the conven-
tion controller.lun.server, e.g., 6.00.1 or
21.71.128.

GPFS clients, when accessing a LUN, will route
all I/O requests through the highest-priority, presently-
available server defined for that LUN. Thus, when all
servers are online, client I/O requests route through the
primary server defined for a given LUN. If the primary
server is unavailable, requests route through the LUN’s
secondary, tertiary, etc., servers based on those servers
availability.

Since redundant attachments do not have equal prior-
ity for a given LUN, this effectively creates eight system-
wide priority groups consisting of equal-priority LUN-
server attachments, i.e., the first priority-group con-
sists of all primary LUN-server attachments, the second
priority-group consists of all the secondary LUN-server
attachments, etc. Combined with the “system expansion”
division, the total of 9216 LUN-server attachments (1152
LUNs × 8 redundantly attached servers) must be ana-
lyzed in 16 different peer groups (8 priority groups × 2
for “old” vs. “new” LUNs) in total.

4 Making it Work for Intrepid
As we apply our problem-diagnosis approach to large
storage systems like Intrepid’s, our primary objective is
to locate the most problematic LUNs (specifically LUN-
server attachments that we refer to as “LUNs” hence-
forth) in the storage system, which in turn, reflect the
location of faults with greatest performance impact. This
process consists of three stages:

Instrumentation, where we collect performance met-
rics for every LUN (see § 4.1);

Anomaly Detection, where we identify LUNs that ex-
hibit anomalous behavior for a specific window of
time (see § 4.2);

Persistence Ordering, where we locate the most prob-
lematic components by their persistent impact on over-
all performance (see § 4.3).

4.1 Instrumentation
For our problem diagnosis, we gather and analyze OS-
level storage performance metrics, without requiring any
modifications to the file system, the applications or the
OS. As we are principally concerned with problems that
manifest at the layer of NSD Servers and below (see Fig-
ure 3), the metrics that we gather and utilize consist of
the storage-metric subset of those collected in our previ-
ous work [17].

Metric Significance

tps
Number of I/O (read and write) requests made to (a
specific) LUN per second.

rd_sec Number of sectors read from the LUN per second.
wr_sec Number of sectors written to the LUN per second.
avgrq-sz Average size (in sectors) of the LUN’s I/O requests.
avgqu-sz Average number of the LUN’s queued I/O requests.

await
Average time (in milliseconds) that a request waits
to complete on the LUN; includes queuing delay
and service time.

svctm
Average (LUN) service time (in milliseconds) of
I/O requests; does not include any queuing delay.

%util
Percentage of CPU time in which I/O requests are
made to the LUN.

Table 1: Black-box, OS-level performance metrics col-
lected for analysis.

In Linux, OS-level performance metrics are made
available as text files in the /proc pseudo file sys-
tem. Table 1 describes the specific metrics that we col-
lect. We use sysstat’s sadc program [15] to periodi-
cally gather storage and network performance metrics at
a sampling interval of one second, and record them in
activity files. For storage resources, sysstat provides us
with the throughput (tps, rd_sec, wr_sec) and la-
tency (await, svctm) of the file server’s I/O requests
to each of the LUNs the file server is attached to. Since
our instrumentation is deployed on file servers, we ac-
tually observe the compound effect of disk arrays, con-
trollers, attachments, and the file server on the perfor-
mance of these I/O requests.

In general we find that await is the best single metric
for problem diagnosis in parallel file systems as it reflects
differences in latency due to both (i) component-level
delays (e.g., read errors) and (ii) disparities in request
queue length, i.e., differences in workload. Since work-
load disparities also manifest in changes in throughput,
instances in which await is anomalous but not rd_sec
and wr_sec indicate a component-level problem.

4.1.1 Continuous Instrumentation
As our test-bench experiments in [17] were of relatively
short duration (∼600 s), we were able to spawn instances
of sadc to record activity files for the duration of our ex-
periments, and perform all analysis once the experiments
had finished and the activity files were completely writ-
ten. For Intrepid, we must continuously instrument and
collect data, while also periodically performing offline
analysis. To do so, we use a custom daemon, cycle,
to spawn daily instances of sadc shortly after midnight
UTC, at which time we are able to collect the previous
day’s activity files for analysis.

Although the cycle daemon performs a conceptually
simple task, we have observed a number of practical is-
sues in deployment that motivated the development of
robust time-management features. We elaborate on our
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experiences with these issues in § 6. To summarize, the
present version of cycle implements the following fea-
tures:

• Records activity files with filenames specified with an
ISO 8601-formatted UTC timestamp of sadc’s start
time.

• Creates new daily activity files at 00:00:05 UTC,
which allows up to five seconds of clock backwards-
correction without creating a second activity file at
23:59 UTC on the previous day.

• Calls sadc to record activity files with a number of
records determined by the amount of time remaining
before 00:00:05 UTC the next day, as opposed to spec-
ifying a fixed number of records. This prevents drifts
in file-creation time due to accumulating clock correc-
tions. It also allows for the creation of shorter-duration
activity files should a machine be rebooted in the mid-
dle of the day.

4.2 Anomaly Detection
The purpose of anomaly detection is to determine which
storage LUNs are instantaneously reflecting anomalous,
non-peer behavior. To do so, we use an improved version
of the histogram-based approach described in [17].

Inevitably, any diagnosis algorithm has configurable
parameters that are based on the characteristics of the
data set for analysis, the pragmatic resource constraints,
the specific analytical technique being used, and the de-
sired diagnostic accuracy. In the process of explaining
our algorithms below, we also explain the intuition be-
hind the settings of some of these parameters.

Overview. To find the faulty component, we peer-
compare storage performance metrics across LUNs to
determine those with anomalous behavior. We analyze
one metric at a time across all LUNs. For each LUN
we first perform a moving average on its metric values.
We then generate the Cumulative Distribution Function
(CDF) of the smoothed values over a time window of
WinSize samples. We then compute the distance between
CDFs for each pair of LUNs, which represents the degree
to which LUNs behave differently. We then flag a LUN
as anomalous over a window if more than half of its pair-
wise CDF distances exceed a predefined threshold. We
then shift the window by WinShi f t samples, leaving an
overlap of WinSize−WinShi f t samples between consec-
utive windows, and repeat the analysis. We classify a
LUN to be faulty if it exhibits anomalous behavior for at
least k of the past 2k−1 windows.

Downsampling. As Intrepid occasionally exhibits a
light workload with requests often separated by periods
of inactivity, we downsample each storage metric to an
interval of 15 s while keeping all other diagnosis parame-
ters the same. This ensures that we incorporate a reason-

able quantity of non-zero metric samples in each com-
parison window to detect asymmetries. It also serves as
a scalability improvement by decreasing analysis time,
and decreasing storage and (especially) memory require-
ments. This is a pragmatic consideration, given that the
amount of memory required would be otherwise pro-
hibitively large1

Since sadc records each of our storage metrics as a
rate or time average, proper downsampling requires that
we compute the metric’s cumulative sum, that we then
sample (at a different rate), to generate a new average
time series. This ensures any work performed between
samples is reflected in the downsampled metric just as it
is in the original metric. In contrast, sampling the metric
directly would lose any such work, which leads to inac-
curate peer-comparison. The result of the downsampling
operation is equivalent to running sadc with a larger
sampling interval.

Moving Average Filter. Sampled storage metrics, par-
ticularly for heavy workloads, can contain a large amount
of high-frequency (relative to sample rate) noise from
which it is difficult to observe subtle, but sustained fault
manifestations. Thus, we employ a moving average filter
with a 15-sample width to remove this noise. As we do
not expect faults to manifest in a periodic manner with
a periodicity less than 15 samples, this filter should not
unintentionally mask fault manifestations.

CDF Distances. We use cumulative histograms to ap-
proximate the CDF of a LUN’s smoothed metric values.
In generating the histograms we use a modified version
of the Freedman-Diaconis rule [12] to select the bin size,
BinSize = 2IQR(x)WinSize−1/3, and number of bins,
Bins = �Range(x)/BinSize� where x contains samples
across all LUNs in the time window. Even though
the generated histograms contain samples from a sin-
gle LUN, we compute BinSize using samples from
all LUNs to ensure that the resulting histograms have
compatible bin parameters and, thus, are compara-
ble. Since each histogram contains only WinSize
samples, we compute BinSize using WinSize num-
ber of observations. Once histograms are gener-
ated for each LUN’s values, we compute for each
pair of histograms P and Q the (symmetric) distance:
d(P,Q) = ∑Bins

i=0 |P(i)−Q(i)|, a scalar value that repre-
sents how different two histograms, and thus LUNs, are
from each other.

Windowing and Anomaly Filtering. Looking at our
test-bench experiments [17], we found that a WinSize
of ∼60 samples encompassed enough data such that
our components were observable as peers, while also

1We frequently ran out of memory when attempting to analyze the
data of a single metric, sampling at 1 s, on machines with 4 GB RAM.
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maintaining a reasonable diagnosis latency. We use a
WinShi f t of 30 samples between each window to ensure
a sufficient window overlap (also 30 samples) so as to
provide continuity of behavior from an analysis stand-
point. We classify a LUN as faulty if it shows anomalous
behavior for 3 out of the past 5 windows (k = 3). This
filtering process reduces many of the spurious anomalies
associated with sporadic asymmetry events where no un-
derlying fault is actually present, but adds to the diag-
nosis latency. The WinSize, WinShi f t, and k values that
we use, along with our moving-average filter width, were
derived from our test-bench experiments as having pro-
viding the best empirical accuracy rates and are similar
to the values we published in [17], while also providing
for analysis windows that are round to the half-minute.
The combined effects of downsampling, windowing, and
anomaly filtering result in a diagnosis latency (the time
from initial incident to diagnosis) of 22.5 minutes.

4.2.1 Threshold Selection
The CDF distance thresholds used to differentiate faulty
from fault-free LUNs are determined through a fault-free
training phase that captures the maximum expected devi-
ation in LUN behavior. We use an entire day’s worth of
data to train thresholds for Intrepid. This is not necessar-
ily the minimum amount of data needed for training, but
it is convenient for us to use since our experiment data is
grouped by days. We train using the data from the first
(manually observed) fault-free day when the system sees
reasonable utilization. If possible, we recommend train-
ing during stress tests that consist of known workloads,
which are typically performed before a new or upgraded
storage system goes into production. We can (and do)
use the same thresholds in on-going diagnosis, although
retraining would be necessary in the event of a system
reconfiguration, e.g., if new LUNs are added. Alterna-
tively we could retrain on a periodic (e.g., monthly) basis
as a means to tolerate long-term changes to LUN perfor-
mance. However, in practice, we have not witnessed a
significant increase in spurious anomalies during our 15-
month study.

To manually verify that a particular day is reasonably
fault-free and suitable for training, we generate, for each
peer group, plots of superimposed awaits for all LUNs
within that peer group. We then inspect these plots to en-
sure that there is no concerning asymmetry among peers,
a process that is eased by the fact that most problems
manifest as observable loads in normally zero-valued
non-primary peer groups. Even if training data is not per-
fectly fault-free (either due to minor problems that are
difficult to observed from await plots, or because no
such day exists in which faults are completely absent),
the influence of faults is only to dampen alarms on the
faulty components; non-faulty components remain unaf-

fected. Thus, we recommend that training data should be
sufficiently free from observable problems that an oper-
ator would feel comfortable operating the cluster indefi-
nitely in its state at the time of training.

4.2.2 Algorithm Refinements
A peer-comparison algorithm requires the use of some
measure that captures the similarity and the dissimilar-
ity in the respective behaviors of peer components. A
good measure, from a diagnosis viewpoint, is one that
captures the differences between a faulty component and
its non-faulty peer in a statistically significant way. In our
explorations with Intrepid, we have sought to use robust
similarity/dissimilarity measures that are improvements
over the ones that we used in [17].

The first of these improvements is the method of
histogram-bin selection. In [17] we used Sturges’
rule [31] to base the number of histogram bins on
WinSize. Under both faulty and fault-free scenarios (par-
ticularly where a LUN exhibits a small asymmetry),
Sturges’ rule creates histograms where all data is con-
tained in the first and last bins. Thus, the amount of
asymmetry of a specific LUN relative to the variance of
all LUNs is lost and not represented in the histogram. In
contrast, the Freedman–Diaconis rule selects bin size as
a function of the interquartile range (IQR), a robust mea-
sure of variance uninfluenced by a small number of out-
liers. Thus, the number of bins in each histogram adapts
to ensure an accurate histogram representation of asym-
metries that exceeds natural variance.

One notable concern of the Freedman–Diaconis rule
is the lack of a limit on the number of bins. Should
a metric include outliers that are orders of magnitude
larger than the IQR, then, the Freedman–Diaconis rule
will generate infeasibly large histograms, which is prob-
lematic as the analysis time and memory requirements
both scale linearly with the number of bins. While we
found this to not typically be an issue with the await
metric, wr_sec outliers would (attempt) to generate his-
tograms with more than 18 million bins. For diagno-
sis on Intrepid’s storage system, we use a bin limit of
1000, which is the 99th, 91st, and 87th percentiles for
await, rd_sec, and wr_sec respectively, and results
in a worst-case (all generated with 1000 bins) histogram-
computation time that is only twice the average.

The second improvement of this algorithm is its use
of CDF distances as a similarity/dissimilarity measure,
instead of the Probability Density Functions (PDFs) dis-
tances as we used in [17]. Specifically, in [17], we
used a symmetric version of Kullback-Leibler (KL) di-
vergence [9] to compute distance using histogram ap-
proximations of metric PDFs. This comparison works
well when two histograms overlap (i.e., many of their
data points lie in overlapping bins). However, where two
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Date.Hour: Value PG:LUN-server
20110417.00: 7 2:18.61.102 6 2:15.65.74 5 2:11.55.48 5 2:12.48.49
20110417.01: 14 2:15.65.74 9 2:16.51.84 8 1:6.39.8 8 1:10.03.36
20110417.02: 19 2:15.65.74 17 2:16.51.84 15 2:10.50.35 15 2:21.56.121
20110417.03: 25 2:16.51.84 15 2:15.65.74 14 2:21.56.121 13 2:10.50.35
20110417.04: 33 2:16.51.84 20 2:15.65.74 15 2:21.56.121 13 2:10.50.35
20110417.05: 41 2:16.51.84 22 2:15.65.74 13 2:19.53.110 10 1:16.30.87

Figure 5: Example list of persistently anomalous LUNs. Each hour (row) specifies the most persistent anomalies
(columns of accumulator value, peer-group, and LUN-server designation), ordered by decreasing accumulator value.

Feature Test Bench Intrepid Rationale

Separating upgraded components � �
Tolerates weighted I/O on recently added
storage capacity; addresses challenge #3.

Fundamental component for analysis LUNs LUN-server attachments
Provides views of LUN utilization across re-
dundant components; improves problem lo-
calization; addresses challenges #1 and #5.

cycle daemon � �
Enables continuous instrumentation with
sadc; addresses challenge #4.

Downsampling � 1 s → 15 s
Tolerates intermittent data, reduces resource
requirements; addresses challenge #1.

Histogram bin selection Sturges’ rule Freedman–Diaconis rule
Provides accurate representation of asym-
metries; improves diagnostic accuracy.

Distance metric KL Divergence (PDF) Cumulative Distance (CDF)
Accurate distance for non-overlapping his-
tograms; improves diagnostic accuracy.

Persistence Ordering � �
Highlight components with long-term prob-
lems; addresses challenge #6.

Table 2: Improvements to diagnosis approach as compared to previous work [17].

histograms are entirely non-overlapping (i.e., their data
points lie entirely in non-overlapping bins in distinct re-
gions of their PDFs), the KL divergence does not include
a measure of the distance between non-zero PDF regions.
In contrast, the distance between two metric CDFs does
measure the distance between the non-zero PDF regions,
which captures the degree of the LUN’s asymmetry.

4.3 Persistence Ordering
While anomaly detection provides us with a reliable ac-
count of instantaneously anomalous LUNs, systems of
comparable size to Intrepid with thousands of analyzed
components, nearly always exhibit one or more anoma-
lies for any given time window, even in the absence of an
observable performance degradation.

Motivation. The fact that anomalies “always exist” is a
key fact that requires us to alter our focus as we graduate
from test-bench experiments to performing problem di-
agnosis on real systems. In our test-bench work, instan-
taneous anomalies were rare and either reflected the pres-
ence of our injected faults (which we aimed to observe),
or the occurrence of false positive (which we aimed to
avoid). However, in Intrepid, “spurious” anomalies (even
with anomaly filtering) are common enough that we sim-
ply cannot raise alarms on each. It is also not possible to
completely avoid the alarms through tweaking of analy-
sis parameters (filter width, WinSize and WinShi f t, etc.).

Investigating these spurious anomalies, we find that

many are clear instances of transient asymmetries in our
raw instrumentation data, due to occasional but regular
events where behavior deviates across LUNs. Thus, for
Intrepid, we focus our concern on locating system com-
ponents that demonstrate long-term, or persistent anoma-
lies, because they are suggestive of possible impending
component failures or problems that might require man-
ual intervention in order to resolve.

Algorithm. To locate persistent anomalies, it is nec-
essary for us to order the list of anomalous LUNs by a
measure of their impact on overall performance. To do
so, we maintain a positive-value accumulator for every
LUN in which we add one (+1) for each window where
the LUN is anomalous, and subtract one (−1, and only if
the accumulator is > 0) for each window where the LUN
is not. We then present to the operator a list of persis-
tently anomalous LUNs that are ordered by decreasing
accumulator value, i.e., the top-most LUN in the list is
that which has the most number of anomalous windows
in its recent history. See Figure 5 for an example list.

4.4 Revisiting our Challenges
Table 2 provides a summary of the changes to our ap-
proach as we moved from our test-bench environment
to performing problem diagnosis in a large-scale storage
system. This combination of changes both adequately
addresses the challenges of targeting Intrepid’s storage
system, and also improves the underlying algorithm.
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Analysis Step Runtime Memory
Extract activity file contents (dump) 1.8 h < 10 MB
Downsample and tabulate metrics (table) 7.1 h 1.1 GB
Anomaly Detection (diagprep) 49 m 6.1 GB
Persistence Ordering (diagnose) 1.6 s 36 MB
Total 9.7 h 6.1 GB

Table 3: Resources used in analysis of await, for the
first four peer groups of the 2011-05-09 data set.

4.5 Analysis Resource Requirements
In this section, we discuss the resources (data volume,
computation time, and memory) requirements for the
analysis of Intrepid’s storage system.

Data Volume. The activity files generated by sadc at
a sampling interval of 1 s, when compressed with xz [8]
at preset level -1, generate a data volume of approxi-
mately 10 MB per file server, per day. The median-size
data set (for the day 2011-05-09) has a total (includes all
file servers) compressed size of 1.3 GB. In total, we have
collected 624 GB in data sets for 474 days.

Runtime. We perform our analysis offline, on a sep-
arate cluster consisting of 2.4 GHz dual-core AMD
Opteron 1220 machines, each with 4 GB RAM. Table 3
lists our analysis runtime for the await metric, when
utilizing a single 2.4 GHz Opteron core, for each step of
our analysis for the first four peer groups of the median-
size data set. Because each data set (consisting of 24
hours of instrumentation data) takes approximately 9.7 h
to analyze, we are able to keep up with data input.

We note that the two steps of our analysis that domi-
nate runtime—extracting activity file contents (which is
performed on all metrics at once), and downsampling
and tabulation of metrics (includes await only)—take
long due to our sampling at a 1 s interval. We use the
1 s sample rate for archival purposes, as it is the highest
sample rate sadc supports. However, we could sample
at a 15 s rate directly and forgo the downsampling pro-
cess, which reduces the extraction time in Table 3 by a
factor of 15 and tabulation time to 31 m, yielding a total
runtime of approximately 1.4h.

Algorithm Scalability. Our CDF distances are gener-
ated through the pairwise comparison of histograms is
O(n2) where n is the number of LUNs in each peer
group. Because our four peer groups consist of two sets
of 768 and 384 LUNs, and our CDF distances are sym-
metric, we must perform a total of 736,128 histogram
comparisons for each analysis window. In practice, we
find that our CDF distances are generated quickly, as il-
lustrated by our Anomaly Detection runtime of 49 m for
192 analysis windows (24 hours of data). Thus, we do
not see our pairwise algorithm to be an immediate threat
to scalability in terms of analysis runtime. We have also
proposed [17] an alternative approach to enable O(n)

scalability, but found it unnecessary for use in Intrepid.

Memory Utilization. Table 3 also lists the maximum
amount of memory used by each step of our analysis.
We use the analysis process’ Resident Set Size (RSS)
plus any additional used swap memory to determine
memory utilization. The most memory-intensive step of
our analysis is Anomaly Detection. Our static memory
costs come from the need to store the tabulated raw met-
rics, moving-average-filtered metrics, and a mapping of
LUNs to CDF distances, each of which uses 101 MB of
memory. Within each analysis window, we must gener-
ate histograms for each of the 2,304 LUNs in all four
of our peer groups. With a maximum of 1000 bins,
all of the histograms occupy at most 8.8 MB of mem-
ory. We also generate 736,128 CDF distances, which oc-
cupy 2.8 MB per window. However, we must maintain
the CDF distances across all 192 analysis windows for a
given 24-hour data set, comprising a total of 539 MB.
Using R’s [25] default garbage collection parameters,
we find that the steady-state memory use while gener-
ating CDF distances to be 1.1 GB. The maximum use of
6.1 GB is transient, happening at the very end when our
CDF distances are written out to file. With these memory
requirements, we are able to analyze two metrics simul-
taneously on each of our dual-core machines with 4 GB
RAM, using swap memory to back the additional 2–4 GB
when writing CDF distances to file.

Diagnosis Latency. Our minimum diagnosis latency,
that is, the time from the incident of an event to the time
of its earliest report as an anomaly is 22.5 minutes. This
figure is derived from our (i) performing analysis at a
sampling interval of 15 s, (ii) analyzing in time windows
shifted by 30 samples, and (iii) requiring that 3 out of
the past 5 windows exhibits anomalous behavior before
reporting the LUN itself as anomalous:

15 s/samples×30 samples/window×3windows = 22.5m

This latency is an acceptable figure for a few reasons:

• As a tool to diagnose component-level problems when
a system is otherwise performing correctly (although,
perhaps at suboptimal performance and reduced avail-
ability), the system continues to operate usefully dur-
ing the diagnosis period. Reductions in performance
are generally tolerable until a problem can be resolved.

• This latency improves upon current practice in In-
trepid’s storage system, e.g., four-hour automated
checks of storage controller availability and daily
manual checks of controller logs for misbehavior.

• Gabel et al. [13], which targets a similar problem of
finding component-level issues before they grow into
full-system failures, uses a diagnosis interval of 24
hours, and thus, considers this latency an acceptable
figure.
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In circumstances where our diagnosis latency would
be unacceptably long, lowering the configurable parame-
ters (sample interval, WinShi f t, and Anomaly Filtering’s
k value) will reduce latency with a potential for increased
reports of spurious anomalies, which itself may be an ac-
ceptable consequence if there is external indication that
a problem exists, for which we may assist in localiza-
tion. In general, systems that are sensitive to diagnosis
latency may benefit from combining our approach with
problem-specific ones (e.g., heartbeats, SLAs, threshold
limits, and component-specific monitoring) so as to com-
plement each other in problem coverage.

5 Evaluation: Case Study
Having migrated our analysis approach to meeting the
challenges of problem diagnosis on a large-scale system,
we perform a case study of Intrepid over a 474-day pe-
riod from April 13th, 2011 through July 31st, 2012. We
use the second day (April 14th, 2011) as our only “train-
ing day” for threshold selection.

In this study we analyze both “old” and “new” LUN
sets, for the first two LUN-server attachment priority
groups. This enables us to observe “lost attachment”
faults both with zero/missing data from the lost attach-
ment with the primary file server (priority group 1), and
with the new, non-peer workload on the attachment with
the secondary file server (priority group 2). We note that,
although we do not explicitly study priority groups 3–8,
we have observed sufficient file server faults to require
use of tertiary and subsequent file server attachments.

5.1 Method of Evaluation
After collecting instrumentation data from Intrepid’s file
servers, we perform the problem diagnosis algorithm de-
scribed in § 4.2 on the await metric, generating a list of
the top 100 persistently anomalous LUNs for each hour
of the study.

In generating this list, we use a feedback mechanism
that approximates the behavior of an operator using this
system in real-time. For every period, we consider the
top-most persistent anomaly, and if it has sufficient per-
sistence (e.g., an accumulator value in excess of 100,
which indicates that the anomaly has been present for
at least half a day, but lower values may be accepted
given other contextual factors such as multiple LUNs
on the same controller exhibiting anomalies simultane-
ously), then, we investigate that LUN’s instrumentation
data and storage-controller logs to determine if there is
an outstanding performance problem on the LUN, its
storage controller, file-server attachments, or attached
file servers.

At the time that a problem is remedied (which we
determine through instrumentation data and logs, but
would be recorded by an operator after performing the

restorative operation), we zero the accumulator for the
affected LUN to avoid masking subsequent problems
during the anomaly’s “wind-down” time (the time during
which the algorithm would continually subtract one from
the former anomaly’s accumulated value until zero is
reached). For anomalies that persist for more than a few
days before being repaired, we regenerate the persistent-
anomaly list with the affected LUNs removed from the
list, and check for additional anomalies that indicate a
second problem exists concurrently. If a second problem
does exist, we repeat this process.

5.2 Observed Incidents
Using our diagnosis approach, we have uncovered a vari-
ety of issues that manifested on Intrepid’s storage system
performance metrics (and that, therefore, we suspect to
be performance problems). Our uncovering of these is-
sues was done through our independent analysis of the
instrumentation data, with subsequent corroboration of
the incident with system logs, operators, and manual in-
spection of raw metrics. We have grouped these incidents
into three categories.

5.2.1 Lost Attachments
We use the lost attachments category to describe any
problem whereby a file server no longer routes I/O for a
particular LUN, i.e., the attachment between that LUN-
server pair is “lost”. Of particular concern are lost pri-
mary (or highest priority) attachments as it forces clients
to reroute I/O through the secondary file server, which
then sees a doubling of its workload. Lost attachments
of other priorities may still be significant events, but they
are not necessarily performance impacting as they are in-
frequently used for I/O. We observe four general prob-
lems that result in lost attachments: (i) failed (or simply
unavailable) file servers, (ii) failed storage controllers,
(iii) misconfigured components, and (iv) temporary “bad
state” problems that usually resolve themselves on re-
boot.

Failed Events. Table 4 lists the observed down file-
server and failed storage-controller events. The incident
time is the time at which a problem is observed in in-
strumentation data or controller logs. Diagnosis latency
is the elapsed time between incident time and when we
identify the problem using our method of evaluation (see
§ 5.1). Recovery latency is the elapsed time between
incident time and when our analysis observes the prob-
lems to be recovered by Intrepid’s operators. Device is
the component in the system that is physically closest to
the origin of the problem, while the incident’s observed
manifestation is described in description. In particular,
“missing data” refers to instrumentation data no longer
being available for the specified LUN-server attachment
due to the disappearance of the LUN’s block device on
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Diagnosis Recovery
Incident Time Latency Latency Device Description
2011-07-14 00:00 1.0 h 25.8 d ddn19a Controller failed on reboot; missing data on 19.00.105.
2011-08-01 19:00 17.0 h 8.9 d fs16 File server down; observed load on secondary (fs9).
2011-08-15 07:31 29 m 16.5 d fs24 File server down; observed load on secondary (fs17).
2011-09-05 03:23 8.6 h 18.5 d ddn20b Controller manually failed; missing data on 20.00.117.
2011-09-11 03:22 11.6 h 35.6 h fs25 File server down; observed load on secondary (fs26).
2011-10-03 03:09 12.9 h 42.5 d ddn11a Controller failed on reboot; observed load on secondary (fs41).

2011-10-17 16:57 22.1 h 28.0 d ddn12a,20a,21a
Controllers manually failed; observed loads on secondaries
(fs53,115,125).

2012-06-14 22:26 7.6 h 3.9 d ddn8a Controller manually failed; observed load on secondary (fs20).

Table 4: Storage controller failures and down file server lost attachment events.

Diagnosis Recovery
Incident Time Latency Latency Device Description

2011-05-18 00:21 39 m 49.9 d fs49,50,53,54

Extremely high await (up to 103 s) due to ddn12 resetting all LUNs,
results in GPFS timeouts when accessing some LUNs, which remain
unavailable until the affected file servers are rebooted; observed “0”
await on 12.48.49.

2011-08-08 19:36 8.4 h 21.9 h ddn19a
Servers unable to access some or all LUNs due to controller mis-
configuration (disabled cache coherency); observed “0” await on
19.50.107.

2011-11-14 19:41 7.6 h 3.9 d ddn14,18
Cache coherency fails to establish between coupled controllers af-
ter reboot, restricting LUN availability to servers; missing data on
14.41.67 and 18.37.103.

2012-03-05 17:50 3.2 h 4.2 d fs56
GPFS service not available after file server reboot, unknown reason;
observed loads on secondary (fs49).

2012-05-10 03:00 9.0 h 4.7 d ddn16b
LUNs inaccessible from fs84,88, unknown reason; fixed on con-
troller reboot; missing data on 16.59.84.

2012-06-13 03:00 3.0 h 8.7 d ddn11a
LUNs inaccessible from fs42,45,46, unknown reason; missing
data on 11.69.46.

Table 5: Misconfigured component and temporary “bad state” lost attachment events.

that file server, while a “0” value means the block device
is still present, but not utilized for I/O.

The lengthy recovery latency for each of these failed
events is due to the fact that all (except for fs25) re-
quired hardware replacements to be performed, usually
during Intrepid’s biweekly maintenance window, and
perhaps even after consultation and troubleshooting of
the component with its vendor. At present, Intrepid’s
operators discover these problems with syslog moni-
toring (for file servers) and by polling storage-controller
status every four hours. Our diagnosis latency is high
for file-server issues as we depend on the presence of
a workload to diagnose traffic to the secondary attach-
ment. Normally these issues would be observed sooner
through missing values, except the instrumentation data
itself comes from the down file server, and so, is miss-
ing in its entirety at the time of the problem (although
the missing instrumentation data is a trivial sign that the
file server is not in operation). In general, failed events,
although they can be diagnosed independently, are im-
portant for analysis because they are among the longest-
duration, numerous-LUN-impacting problems observed
in the system.

Misconfiguration and Bad State Events. Table 5 lists
the observed misconfiguration and temporary “bad state”

events that result in lost attachments. We explain the
two cache-coherency events as follows: Each storage ar-
ray consists of two coupled storage-controllers, each at-
tached to four different file servers, and both of which
are able to provide access to attached disk arrays in the
event of one controller’s failure. However, when both
controllers are in healthy operation, they may run in ei-
ther cache-coherent or non-coherent modes. In cache-
coherent mode, all LUNs may be accessed by both con-
trollers (and thus, all eight file servers) simultaneously,
as they are expected to by the GPFS-cluster configura-
tion. However, should the controllers enter non-coherent
mode (due to misconfiguration or a previous controller
problem), then they can only access arrays “owned” by
the respective controller, restricting four of the eight file
servers from accessing some subset of the controllers’
LUNs.

Cascaded Failure. The most interesting example in
the “bad state” events is the GPFS timeouts of May 18th,
2011, a cascaded failure that went unnoticed by Intrepid
operators for some time. Until the time of the incident,
the ddn12 controllers were suffering from multiple, fre-
quent disk issues (e.g., I/O timeouts) when the controller
performed 71 “LUN resets”. At this time, the controller
delayed responses to incoming I/O requests for up to
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Faultfree LUNs

Jittery ddn12
LUNs

Figure 6: I/O wait time jitter experienced by ddn12
LUNs during the May 17th, 2011 drawer error event.

103 s, causing three of the file servers to timeout their
outstanding I/Os and refuse further access to the affected
LUNs. Interestingly, while the controller and LUNs re-
main in operation, the affected file servers continue to
abandon access for the duration of 50 days until they are
rebooted, at which point the problem is resolved. This
particular issue highlights the main benefit of our holis-
tic peer-comparison approach. By having a complete
view of the storage system, our diagnosis algorithm is
able to locate problems that otherwise escape manual de-
bugging and purpose-specific automated troubleshooting
(i.e., scripts written to detect specific problems).

5.2.2 Drawer Errors
A drawer error is an event where a storage controller
finds errors, usually I/O and “stuck link” errors on many
disks within a single disk drawer. These errors can
become very frequent, occurring every few seconds,
adding considerable jitter to I/O operations (see Fig-
ure 6). Table 6 lists four observed instance of drawer
errors, which are fairly similar in their diagnosis char-
acteristics. Drawer errors are visible to operators as a
series of many verbose log messages. Operators resolve
these errors by forcibly failing every disk in the drawer,
rebooting the drawer, then reinserting all the disks into
their respective arrays, which are recovered quickly via
journal recovery.

5.2.3 Single LUN Events
Single LUN events are instances where a single LUN ex-
hibits considerable I/O wait time (await) for as little as
a few hours, or as long as many days. Table 7 lists five
such events although as many as 40 have been observed
to varying extents during our analysis.

These events can vary considerably in their behavior,
and Table 7 provides a representative sample. Occa-
sionally, the event will be accompanied by one or more
controller-log messages that suggests that one or more
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Figure 7: Sustained I/O wait time experienced by
21.34.124 during the June 25th single LUN event.

spindles in the LUN’s disk array is failing, e.g., the June
18th event is accompanied with a message stating that
the controller recovered an “8 + 2” parity error. Sin-
gle LUN events may correspond to single-LUN work-
loads, and thus, would manifest in one of the throughput
metrics (rd_sec or wr_sec) in addition to await.
Conversely, the June 25th event in Table 7 manifests in
await in the absence of an observable workload (see
Figure 7), perhaps suggesting that there is a load internal
to the storage controller or array that causes externally-
visible delay. Unfortunately, since storage-controller
logs report little on most of our single LUN events, it
is difficult to obtain a better understanding of specific
causes of these events.

5.3 Alternative Distance Measures
Our use of CDF distances as the distance measure for our
peer-comparison algorithm is motivated by its ability to
capture the differences in performance metrics between
a faulty component and its non-faulty peer. Specifically,
CDF distances capture asymmetries in a metric’s value
(relative to the metric’s variance across all LUNs), as
well as asymmetries in a metric’s shape (i.e., a periodic
or increasing/decreasing metric vs. a flat or unchanging
metric). The use of CDF distances does require pairwise
comparison of histograms, and thus, is O(n2) where n
is the number of LUNs in each peer group. While we
have demonstrated that the use of pairwise comparisons
is not an immediate threat to scalability (see § 4.5), it
is illustrative to compare CDF distances to alternative,
computationally-simpler, O(n) distance measures.

The two alternative distance measures we investigate
are median and thresh. For both measures, we use the
same Anomaly Detection and Persistence Ordering al-
gorithms as described in § 4.2 and § 4.3, including
all windowing, filtering, and their associated parame-
ters. For each time window, instead of generating his-
tograms we use one of our alternative measures to gen-
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Diagnosis
Incident Time Latency Duration Device Description
2011-05-17 20:30 3.5 h 3.9 h ddn12 Jittery await for 60 LUNs due to frequent “G” drawer errors.
2011-06-20 18:30 1.5 h 48.8 h ddn12 Jittery await for 37 LUNs due to frequent “G” drawer errors.
2011-09-08 02:00 12.0 h 27.0 h ddn19 Jittery await for 54 LUNs due to frequent “A” drawer errors.
2012-01-16 19:30 3.5 h 24.0 h ddn16 Jittery await for 11 LUNs due to frequent “D” drawer errors.

Table 6: Drawer error events.

Diagnosis
Incident Time Latency Duration Device Description
2011-06-18 08:00 18.0 h 10.5 d 15.37.78 Sustained above average await; recovered parity errors.
2011-08-18 20:00 26.0 h 79.0 h 19.12.109 Sustained above average await; until workload completes.
2011-09-25 04:00 20.0 h 4.3 d 11.12.45 Sustained above average await; unknown reason.
2012-04-19 12:00 38.0 h 7.2 d 9.04.29 Sustained above average await; unknown reason.
2012-06-25 16:00 8.0 h 6.6 d 21.34.124 Sustained await in absence of workload; unknown reason.

Table 7: Single LUN events.

erate, for each LUN, a scalar distance value from the
set of WinSize samples. For median, we generate a
median time-series, m by computing for each sample,
the median value across all LUNs within a peer group.
We then compute each LUN’s scalar distance as the
sum of the distances between that LUN’s metric value
x and the median value for each of the WinSize samples:
d(x,m) = ∑WinSize

i=0 |x(i)−m(i)|. We then flag a LUN as
anomalous over a window if its scalar distance exceeds
a predefined threshold, which is selected using the ap-
proach described in § 4.2.1.

We follow the same procedure for thresh, except that
each LUN’s scalar “distance” value is calculated sim-
ply as the maximum metric value x among the WinSize
samples: d(x) = maxx(i) |WinSize

i=0 . Here, thresh is neither
truly a measure of distance, nor is it being used to per-
form peer-comparison. Instead we use the thresh mea-
sure to implement the traditional “metric exceeds alarm-
threshold value” within our anomaly detection frame-
work, i.e., an anomalous window using thresh indi-
cates that the metric exceeded twice the highest-observed
value during the training period for at least one sample.

Performing a meaningful comparison of the median
and thresh measures against CDF distances is challeng-
ing with production systems like Intrepid, where our
evaluation involves some expert decision making and
where we lack ground-truth data. For example, while the
events enumerated in Tables 4–7 represent the most sig-
nificant issues observed in our case study, we know there
exists many issues of lesser significance (especially sin-
gle LUN events) that we have not enumerated. Thus it
is not feasible to provide traditional accuracy (true- and
false-positive) rates as we have in our test-bench experi-
ments. Instead, we compare the ability of the median and
thresh measures to observe the set of events discovered
using CDF distances (listed in Tables 4–7), by following
the evaluation procedure described in § 5.1 for the days
during which these events occur.

Event Type CDF Median Thresh
Controller failure 5 5 5
File server down 3 2 3
Misconfiguration / bad state 6 6 5
Drawer error 4 3 4
Single LUN 5+ 2 1

Table 8: Number of events observed with each distance
measure (CDF distances, median, and thresh).

5.3.1 Comparison of Observations
Table 8 lists the number of we events observe with the
alternative distance measures, median and thresh, as
compared to the total events observed with CDF dis-
tances. Both median and thresh measures are able to ob-
serve all five failed storage-controller events, as well as
most down file-server and misconfiguration/“bad state”
events. Each of these events are characterized by missing
data on the LUN’s primary attachment, and the appear-
ance of a load on the LUN’s normally-unused secondary
attachment. Unlike CDF distances, neither median nor
thresh measures directly account for missing data, how-
ever these events are still observed through the presence
of secondary-attachment loads. As the non-primary at-
tachments of LUNs are rarely used, these secondary-
attachment loads are significant enough to contribute to
considerable distance from the (near zero) median and
to exceed any value observed during fault-free training.
Both measures are also able to observe most drawer er-
rors as these events exhibit considerable peak await
that exceed both the median value and the maximum-
observed value during training.

Controller Misconfiguration. For the August 8th,
2011 controller misconfiguration event, a zero await
value is observed on the affected LUNs’ primary attach-
ments for the duration of the event, which is observed by
the median measure. However, this particular event also
results in zero await on the LUNs’ secondary attach-
ments, which are also affected, pushing the load onto the
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LUNs’ tertiary attachments. As we only analyze each
LUN’s first two priority groups, the load on the tertiary
attachment (and the event itself) goes unobserved. Thus,
the thresh measure requires analysis of all priority groups
to locate “missing” loads that are otherwise directly ob-
served with peer-comparison-based measures.

Single LUN Events. Two single LUN events go un-
observed by median as their manifestations in increased
await are not sufficiently higher than their medians to
result in persistent anomalies. Four of the events go un-
observed by thresh as await never exceeds its maxi-
mum value observed during training, except during the
June 25th, 2012 incident on a (normally-unused) sec-
ondary attachment where sustained await is observed
in absence of a workload.

5.3.2 Server Workloads.

The remaining three events that escape observation by
median (a down file-server, drawer error, and single LUN
events) are each due to the same confounding issue. As
described in § 3.3.2, shared storage is normally priori-
tized such that GPFS clients only use the highest-priority
available attachment. However, workloads issued by
GPFS file servers themselves preferentially make use of
their own LUN attachments, regardless of priority, to
avoid creating additional LAN traffic. Thus, for server-
issued workloads, we observe loads on each (e.g., 48) of
the server’s attachments, which span all priority groups,
as well as loads on each (e.g., 720) of the primary attach-
ments for LUNs that are not directly attached to those
servers. Such workloads, if significant enough, would
result in anomalies on each (e.g., 42) of the non-primary
attachments.

In practice, Intrepid’s storage system does not run
significant, long-running workloads on the file servers,
so this complication is usually avoided. The excep-
tion is that GPFS itself occasionally issues very low-
intensity, long-running (multiple day) workloads from
an apparently-random file server. These workloads are
of such low intensity (throughput < 10 kB/s, await <
1.0 ms, both per LUN) that their await values rarely ex-
ceed our CDF distance algorithm’s histogram BinSizes,
and thus, are regarded as noise. However, server-
workload await values on non-primary attachments do
exceed the (zero) median value, and thus, do contribute
to median anomalies. The result is that the presence of
a server workload during an analysis window often ex-
hibits a greater persistence value than actual problems,
which confounds our analysis with the median measure.
Thus, reliable use of the median measure requires an
additional analysis step to ignore anomalies that appear
across all attachments for a particular file server.

Event Type Median (h) Thresh (h)
Controller failure −7, 0, 5, 9, 12 −10, 0, 4, 5, 9
File server down 0, 1 −8, 0, 6
Misconfiguration / bad state −8, −3, 0, 4, 6, 7 −3, −1, 0, 3, 7
Drawer error −2, −1, 5 −2, −2, −1, 0
Single LUN −5, 6 −4

Table 9: Differences in diagnosis latencies for events ob-
served with alternative measures, as compared to CDF.

5.3.3 Comparison of Latencies
Table 9 lists the differences in diagnosis latencies for
events observed with the alternative distance measures,
median and thresh, as compared to the diagnosis laten-
cies observed with CDF distances. Negative values indi-
cate that the alternative measure (median or thresh) ob-
served the event before CDF distances, while positive
values indicate that the alternative measure observed the
event after. Differences are indicated in integer units as
our reporting for the case study is hourly (see Figure 5).

With a mean 1.6 h and median 0.5 h increased latency
for median, and a mean 0.2 h and median 0 h increased
latency for thresh, diagnosis latency among all three dis-
tance measures are comparable. However, for specific
events, latencies can vary as much as twelve hours be-
tween measures, suggesting that simultaneous use of
multiple measures may be helpful to reduce overall di-
agnosis latency.

6 Experiences and Insights
In preparing for our case study of Intrepid’s storage sys-
tem, we made improvements to our diagnosis approach
to address the challenges outlined in § 3. However, in
the course of our instrumentation and case study, we en-
countered a variety of pragmatic issues, and we share our
experiences and insights with them here.

Clock synchronization. Our diagnosis algorithm re-
quires clocks to be reasonably synchronized across file
servers so that we may peer-compare data from the same
time intervals. In our test-bench experiments [17], we
used NTP to synchronize clocks at the start of our ex-
periments, but disabled the NTP daemon so as to avoid
clock adjustments during the experiments themselves.
Intrepid’s file servers also run NTP daemons; however,
clock adjustments can and do happen during our sadc
instrumentation. This results in occasional “missing”
data samples where the clock adjusts forward, or the oc-
casional “repeat” sample where the clock adjusts back-
wards. When tabulating data for analysis, we represent
missing samples with R’s NA (missing) value, and re-
peated samples are overwritten with the latest recorded
in the activity file. In general, our diagnosis is insensitive
to minor clock adjustments and other delays that may re-
sult in missing samples, but it is a situation we initially
encountered in our table script.
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Discussion on timestamps. Our activity files are
recorded with filenames containing a modified2 ISO
8601-formatted [19]3 UTC timestamp that corresponds
to the time of the first recorded sample in the file. For ex-
ample, fs1-20110509T000005Z.sa.xz is the ac-
tivity file collected from file server fs1, with the first
sample recorded at 00:00:05 UTC on 2011-05-09. In
general, we recommend the use of ISO 8601-formatted
UTC timestamps for filenames and logging where possi-
ble, as they provide the following benefits:

• Human readable (as opposed to Unix time).
• Ensures lexicographical sorting (e.g., of activity files)

preserves the chronological order (of records).
• Contains no whitespace, so is easily read as a field by

awk, R’s read.table, etc.
• Encodes time zone as a numeric offset; “Z” for UTC.

With regard to time zones, ISO 8601’s explicit encod-
ing of them is particularly helpful in avoiding surprises
when interpreting timestamps. It is an obvious problem if
some components of a system report different time zones
than others without expressing their respective zones in
timestamps. However, even when all components use the
same time zone (as Intrepid uses UTC), offline analysis
may use timestamp parsing routines that interpret times-
tamps without an explicit time-zone designation in the
local time zone of the analysis machine (which, in our
case, is US Eastern).

A more troubling problem with implicit time zones
is that any timestamp recorded during the “repeating”
hour of transition from daylight savings time to stan-
dard time (e.g., 1 am CDT to 1 am CST) are ambigu-
ous. Although this problem happens only once a year, it
causes difficulty in correlating anomalies observed dur-
ing this hour with event logs from system components
that lack time zone designations. Alternatively, when
when components do encode time zones in timestamps,
ISO 8601’s use of numeric offsets makes it easy to con-
vert between time zones without needing to consult a
time zone database to locate the policies (e.g, daylight
savings transition dates) behind time-zone abbreviations.

In summary, ISO 8601 enables easy handling of hu-
man readable timestamps without having to work-around
edge cases inevitable when performing continuous in-
strumentation and monitoring of system activity. “Sec-
onds elapsed since epoch” time (e.g., Unix time) works
well as a non-human readable alternative as long as the
epoch is unambiguous. sadc records timestamps in
Unix time, and we have had no trouble with them.

2We remove colons to ensure compatibility with file systems that
use colons as path separators.

3RFC 3339 is an “Internet profile of the ISO 8601 standard,” that we
cite due to its free availability and applicability to computer systems.

Absence of data. One of the surprising outcomes of
our case study is that the absence of, or “missing data”
where it is otherwise expected among its peers, is the pri-
mary indication of problem in five (seven if also includ-
ing “0” data) of the studied events. This result reflects
on the effectiveness of peer-comparison approaches for
problem diagnosis as they highlight differences in behav-
ior across components. In contrast, approaches that rely
on thresholding of raw metric values may not indicate
that problems were present in these scenarios.

Separation of instrumentation from analysis. Our
diagnosis for Intrepid’s storage system consists of sim-
ple, online instrumentation, in conjunction with more
complex, offline analysis. We have found this separa-
tion of online instrumentation and offline analysis to be
beneficial in our transition to Intrepid. Our instrumen-
tation, consisting of a well-known daemon (sadc), and
a small, C-language auditable tool (cycle), have few
external dependencies and negligible overhead, both of
which are important properties to operators considering
deployment on a production system. In contrast, our
analysis has significant resource requirements and exter-
nal dependencies (e.g., the R language runtime and asso-
ciated libraries), and so is better suited to run on a ded-
icated machine isolated from the rest of the system. We
find that this separation provides an appropriate balance
in stability of instrumentation and flexibility in analysis,
such that, as we consider “near real-time” diagnosis on
Intrepid’s storage system, we prefer to maintain the ex-
isting design instead of moving to a full-online approach.

7 Future Work
While our persistence-ordering approach works well to
identify longer-term problems in Intrepid, there is a class
of problems that escapes our current approach. Occa-
sionally, storage controllers will greatly delay I/O pro-
cessing in response to an internal problem, such as the
“LUN resets” observed on ddn12 in the May 18th, 2011
cascaded failure event. Although we observed this par-
ticular incident, in general, order-of-magnitude increases
in I/O response times are not highlighted as we ignore
the severity of an instantaneous anomaly. Thus, the de-
velopment of an ordering method that factors in both the
severity of instantaneous anomaly, as well as persistence,
would be ideal in highlighting both classes of problems.

We also believe we could improve our current
problem-diagnosis implementation (see § 5.1) to further
increase its utility for systems as large as Intrepid. For
instance, problems in storage controllers tend to mani-
fest in a majority of their exported LUNs, and thus, a
single problem can be responsible for as many as 50 of
the most persistent anomalies. Extending our approach
to recognize that these anomalous LUNs are a part of
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the same storage controller, and thus, manifest the same
problem, would allow us to collapse them into a single
anomaly report. This in turn, would make it consider-
ably easier to discover multiple problems that manifest
in the same time period. Combining both of these im-
provements would certainly help us to expand our prob-
lem diagnosis and fault coverage.

8 Related Work
Problem Diagnosis in Production Systems. Gabel et
al. [13] applies statistical latent fault detection using
machine (e.g., performance) counters to a commercial
search engine’s indexing and service clusters, and finds
that 20% of machine failures are preceded by an in-
cubation period during which the machine deviates in
behavior (analogous to our component-level problems)
prior to system failure. Draco [18] diagnoses chron-
ics in VoIP operations of a major ISP by, first, heuris-
tically identifying user interactions likely to have failed,
and second, identifying groups of properties that best ex-
plain the difference between failed and successful inter-
actions. This approach is conceptually similar to ours in
using a two-stage process to identify that (i) problems
exists, and (ii) localizing them to the most problematic
components. Theia [14] is a visualization tool that an-
alyzes application-level logs and generates visual signa-
tures of job performance, and is intended for use by users
to locate and problems they experience in a production
Hadoop cluster. Theia shares our philosophy of provid-
ing a tool to enable users (who act in a similar capacity to
our operators) to quickly discover and locate component-
level problems within these systems.

HPC Storage-System Characterization. Darshan [6]
is a tool for low-overhead, scalable parallel I/O charac-
terization of HPC workloads. Darshan shares our goal of
minimal-overhead instrumentation by collecting aggre-
gate statistical and timing information instead of traces
in order to minimize runtime delay and data volume,
which enables it to scale to leadership-class systems and
be used in a “24/7”, always-on manner. Carns et al. [5]
combine multiple sources of instrumentation including
OS-level storage device metrics, snapshots of file system
contents characteristics (file sizes, ages, capacity, etc.),
Darshan’s application-level I/O behavior, and aggregate
(system-wide) I/O bandwidth to characterize HPC stor-
age system use and behavior. These characterization
tools enable a better understanding of HPC application
I/O and storage-system utilization, so that both may be
optimized to maximize I/O efficiency. Our diagnosis ap-
proach is complementary to these efforts, in that it lo-
cates sources of acute performance imbalances and prob-
lems within the storage system, but assumes that appli-
cations are well-behaved and that the normal, balanced

operation is optimal.

Trace-Based Problem Diagnosis. Many previous ef-
forts have focused on path-based [1, 26, 3] and
component-based [7, 20] approaches to problem diagno-
sis in Internet Services. Aguilera et al. [1] treats com-
ponents in a distributed system as black-boxes, inferring
paths by tracing RPC messages and detecting faults by
identifying request-flow paths with abnormally long la-
tencies. Pip [26] traces causal request-flows with tagged
messages that are checked against programmer-specified
expectations. Pip identifies requests and specific lines
of code as faulty when they violate these expectations.
Magpie [3] uses expert knowledge of event orderings
to trace causal request-flows in a distributed system.
Magpie then attributes system-resource utilizations (e.g.
memory, CPU) to individual requests and clusters them
by their resource-usage profiles to detect faulty requests.
Pinpoint [7, 20] tags request flows through J2EE web-
service systems, and, once a request is known to have
failed, identifies the responsible request-processing com-
ponents.

In HPC environments, Paradyn [22] and TAU [30]
are profiling and tracing frameworks used in debug-
ging parallel applications, and IOVIS [23] and Dinh [10]
are retrofitted implementations of request-level tracing
in PVFS. However, at present, there is limited request-
level tracing available in production HPC storage deploy-
ments, and thus, we concentrate on a diagnosis approach
that utilizes aggregate performance metrics as a readily-
available, low-overhead instrumentation source.

Peer-comparison Based Approaches. Ganesha [24]
seeks to diagnose performance-related problems in
Hadoop by classifying slave nodes, via clustering of
performance metrics, into behavioral profiles which are
then peer-compared to indict nodes behaving anoma-
lously. While the node-indictment methods are sim-
ilar, our work peer-compares a limited set of perfor-
mance metrics directly (without clustering). Bodik et
at. [4] use fingerprints as a representation of state to gen-
erally diagnose previously-seen datacenter performance
crises from SLA violations. Our work avoids using
previously-observed faults, and instead relies on fault-
free training data to capture expected performance devi-
ations and peer-comparison to determine the presence,
specifically, of storage performance problems. Wang
et al. [32] analyzes metric distributions to identify RU-
BiS and Hadoop anomalies in entropy time-series. Our
work also avoids the use of raw-metric thresholds by us-
ing peer-comparison to determine the degree of asymme-
try between storage components, although we do thresh-
old our distance measure to determine the existence of a
fault. PeerWatch [16] peer-compares multiple instances
of an application running across different virtual ma-
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chines, and uses canonical correlation analysis to filter
out workload changes and uncorrelated variables to find
faults. We also use peer-comparison and bypass work-
load changes by looking for performance asymmetries,
as opposed to analyzing raw metrics, across file servers.

Failures in HPC and Storage Systems. Studies of
HPC and storage-system failures motivate our focus on
diagnosing problems in storage-system hardware com-
ponents. A study of failure data collected over nine-years
from 22 HPC systems at Los Alamos National Labora-
tory (LANL) [28] finds that hardware is the largest root
cause of failures at 30–60% across the different systems,
with software the second-largest contributor at 5–24%,
and 20–30% of failures having unknown cause. The
large proportion of hardware failures motivates our con-
centration on hardware-related failures and performance
problems. A field-based study of disk-replacement data
covering 100,000 disks deployed in HPC and commer-
cial storage systems [29] finds an annual disk replace-
ment rate of 1–4% across the HPC storage systems,
and also finds that hard disks are the most commonly
replaced components (at 18–49% of the ten most fre-
quently replaced components) in two of three studied
storage systems. Given that disks dominate the num-
ber of distinct components in the Intrepid storage sys-
tem, we expect that disk failures and (intermittent) disk
performance problems comprise a significant proportion
of hardware-related performance problems, and thus, are
worthy of specific attention.

9 Conclusion

We presented our experiences of taking our problem di-
agnosis approach from proof-of-concept on a 12-server
test-bench cluster, and making it work on Intrepid’s pro-
duction GPFS storage system. In doing so, we analyzed
2304 different component metrics across 474 days, and
presented a 15-month case study of problems observed in
Intrepid’s storage system. We also shared our challenges,
solutions, experiences, and insights towards performing
continuous instrumentation and analysis. By diagnosing
a variety of performance-related storage-system prob-
lems, we have shown the value of our approach for di-
agnosing problems in large-scale storage systems.
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