
1

A Scalable Priority-Aware Approach to Managing Data Center Server Power

Yang Li+‡ Charles R. Lefurgy+ Karthick Rajamani+ Malcolm S. Allen-Ware+
Guillermo J. Silva+ Daniel D. Heimsoth+ Saugata Ghose‡ Onur Mutlu*‡

+IBM ‡Carnegie Mellon University *ETH Zürich

ABSTRACT
Power management is a key component of modern data

center design. Power managers must (1) ensure the cost- and
energy-efficient utilization of the data center infrastructure,
(2) maintain availability of the services provided by the
center, and (3) address environmental concerns associated
with the center’s power consumption. While several power
management techniques have been proposed and deployed in
production data centers, there are still many challenges to
comprehensive data center power management. This is par-
ticularly true in public cloud environments, where different
jobs have different priority levels, and where high availability
is critical.

One example of the challenges facing public cloud data
centers involves power capping. As power delivery must be
highly reliable and tolerate wide variation in the load drawn
by the data center components, the power infrastructure (e.g.,
power supplies, circuit breakers, UPS) has high redundancy
and overprovisioning. During normal operation (i.e., typical
server power demands, and no failures in the center), the
power infrastructure is significantly underutilized. Power
capping is a common solution to reduce this underutilization,
by allowing more servers to be added safely (i.e., without
power shortfalls) to the existing power infrastructure, and
throttling power consumption in the infrequent cases where
the demanded power exceeds the provisioned power capacity
to avoid shortfalls. However, state-of-the-art power capping
solutions are (1) not directly applicable to the redundant
power infrastructure used in highly-available data centers;
and (2) oblivious to differing workload priorities across the
entire center when power consumption needs to be throttled,
which can unnecessarily slow down high-priority work.

To address this need, we develop CapMaestro, a new
power management architecture with three key features for
public cloud data centers. First, CapMaestro is designed to
work with multiple power feeds (i.e., sources), and exploits
server-level power capping to independently cap the load on
each feed of a server. Second, CapMaestro uses a scalable,
global priority-aware power capping approach, which
accounts for power capacity at each level of the power
distribution hierarchy. It exploits the underutilization of
commonly-employed redundant power infrastructure at each
level of the hierarchy to safely accommodate a much greater
number of servers. Third, CapMaestro exploits stranded
power (i.e., power budgets that are not utilized) in redundant
power infrastructure to boost the performance of workloads
in the data center. We add CapMaestro to a real cloud data
center control plane, and demonstrate the effectiveness of all
three key features. Using a large-scale data center simulation,
we demonstrate that CapMaestro significantly and safely

increases the number of servers for existing infrastructure. We
also call out other key technical challenges the industry faces
in data center power management.

1. INTRODUCTION
The power distribution infrastructure, which includes

components such as power supplies, power feeds (i.e.,
sources), and circuit breakers, is a critical part of a data center,
both in terms of its cost (tens of millions of US dollars) and its
impact on availability. For highly-available data centers, the
power distribution infrastructure often relies on redundancy at
each level of the power distribution hierarchy to ensure
reliable power delivery, spanning from multiple power
supplies within individual servers all the way up to multiple
utility feeds (i.e., external power sources) into the data center.
This design, which uses N+N redundancy, provides two inde-
pendent sides for the power distribution infrastructure, where
each server is connected to both sides, and each side connects
to an independent power feed. N+N redundancy ensures
continued availability in the event of failure of the power de-
vices on one complete side.

For a data center with N+N redundancy, a safe yet con-
servative design choice is to ensure that each side of the power
distribution infrastructure on its own can power the peak (i.e.,
worst-case) power demands of the entire center. This ap-
proach ensures that a failure in the power delivery infrastruc-
ture does not lead to downtime, especially in cases where a
data center’s total power consumption exhibits wide
variations, or cannot be anticipated in advance, such as in a
public cloud. However, it also results in significant overpro-
visioning of power resources during normal operation, as the
data center’s total power consumption may be much lower
than its peak power, resulting in underutilized infrastructure.

Many prior works [1, 3-5, 22-24, 28-31, 39, 40, 42-45] ex-
plore how to reduce overprovisioning for data centers without
N+N redundancy. These works employ power capping, which
throttles the amount of power consumed by servers during pe-
riods of peak demand, and, thus, reduces the load on the power
distribution infrastructure. As a result, a data center can ac-
commodate more servers for a given power distribution infra-
structure than without power capping. With the gradual,
industry-wide adoption of server power capping, today’s data
centers have the means to shape power consumption in real
time, so that potential power excursions (i.e., cases where the
total load may exceed the maximum power capacity of the
infrastructure) can be avoided. However, in highly-available
data centers with N+N redundancy, existing power capping
based approaches are unable to reduce a significant amount of
overprovisioning in the power distribution infrastructure, for
three key reasons.

2

First, in highly-available data centers, a server draws
power from multiple power supplies, each connected to a
different power feed (i.e., source), to distribute the load of the
server across both available feeds. We find that there is typi-
cally an imbalance in the power drawn from each supply. In
such cases, power capping must ensure that the power
consumed from each power supply does not exceed the sup-
ply’s assigned power budget. Furthermore, the power load on
one feed may be different from the load on the other (redun-
dant) feed, due to the addition of non-redundant equipment or
due to temporary power connectivity issues. This imbalance
may require different power budgets for each power supply of
the server. Unfortunately, state-of-the-art server power con-
trollers [5-8] enforce only a single combined budget across all
power supplies, and cannot ensure that the budgets for indi-
vidual power supplies are respected. This can cause one of the
power feeds to become overloaded, leading to tripped circuit
breakers and power loss on the overloaded feed.

Second, existing power capping solutions are typically
oblivious to the relative priority of each workload globally
across the entire data center. State-of-the-art solutions such as
Dynamo [5] are aware of workload priority, but only within a
limited local group of servers. As a result of this limited view,
existing techniques may unnecessarily cap a critical (i.e.,
high-priority) workload in one local group of servers, even
though lower-priority workloads in another local group
remain uncapped.

Third, existing power capping solutions cannot guarantee
that the power budgets allocated to the individual power
supplies of a server are fully utilized. This is because a server
does not equally split its power load across its multiple power
supplies, and the actual split is an intrinsic property of the
server that cannot be adjusted at runtime. If the allocated
power budgets do not match with this inherent power split,
some of the power budgeted to one supply may not be fully
utilized. This unutilized budget is known as stranded power.

To address these challenges, we propose CapMaestro, a
new power capping architecture for public cloud data centers.
CapMaestro unlocks the unused power capacity of a highly-
available data center, which is provisioned for peak power and
redundancy, to power more servers under a fixed power
budget, while still protecting every level of the power
infrastructure from overload (and, thus, avoiding data center
downtime). CapMaestro has three key new features compared
to state-of-the-art power capping architectures. First, it uses a
new closed-loop feedback power controller for servers, which
protects each individual power supply of a server from over-
load. Our new controller manages power consumption at each
supply in response to the unique power loads and limits ob-
served at each upper-level power infrastructure component,
and therefore protects the safety of multi-feed, highly-availa-
ble data centers. Second, CapMaestro performs efficient
global priority-aware budget allocation using a distributed
algorithm across multiple coordinated power controllers,
which enables fault-tolerant and scalable power capping. This
is significantly different from prior power capping solutions,
which are either priority-unaware or only locally priority-
aware. During a power emergency, CapMaestro shifts the un-
necessary portion of power budgets (i.e., any power greater

than the minimum needed) for low-priority workloads to high-
priority workloads. As a result, a data center using CapMaes-
tro can house more servers than a data center with state-of-
the-art power capping, while still (1) protecting the high-pri-
ority workloads from being throttled and (2) guaranteeing the
minimum required performance of low-priority workloads.
Third, CapMaestro includes an optimization that adjusts the
server power budgets to shift stranded power to servers that
are currently throttled and, thus, improves server performance
without exceeding global power budgets.

We implement CapMaestro as a scalable control plane
service. Importantly, our solution is designed to be applicable
with minimal changes to existing data centers. We use real-
system experiments to demonstrate its effectiveness at power
capping in a multi-feed data center power infrastructure with
global priorities. To evaluate the effectiveness of CapMaestro,
we perform a large-scale data center simulation using server
load data for a Google data center [27]. We find that, for an
example shared data center where 30% of the server work-
loads are high priority, CapMaestro enables the data center to
support 50% more servers than if power capping was not em-
ployed, and supports 20% more servers than a state-of-the-art
power capping solution [5] that we modified to support
multiple power feeds. During a worst-case power emergency,
we show that CapMaestro redistributes power such that the
power emergency has only a negligible impact on the
performance of high-priority workloads, compared to their
performance during normal operation.

We make the following key innovations in CapMaestro:
• We show that servers with redundant power feeds do not

often draw the same load from each power feed, and that
this imbalanced load can negatively affect power budgeting
during power capping.

• We propose CapMaestro, the first global priority-aware al-
gorithm for data center power management that uses
distributed, coordinated power controllers to enforce power
limits at all levels of the power infrastructure.

• We design the first closed-loop feedback power controller
for servers with multiple power supplies.

2. BACKGROUND
In this section, we first review a typical data center power

infrastructure design, and then discuss power capping
techniques at the server and data center levels.

2.1. Data Center Power Delivery
Figure 1 illustrates the power infrastructure for a typical

data center. Power from the utility is delivered to the building
at 12.5kV ( in Figure 1), and is stepped down to 480V for
distribution. The 480V power then goes through an automatic
transfer switch (ATS; ), which can switch to an on-site gen-
erator as a power source if the utility feed fails. Another layer
of transformers () after the ATS steps the voltage down
further, providing a 3-phase line-to-line voltage of 400V. The
corresponding line or phase voltage is 230V. Remote Power
Panels (RPPs; ) are 42-pole boxes containing circuit break-
ers (CBs) that connect to cabinet distribution units (CDUs;
) in the racks. 3-phase power is delivered to the CDUs from

3

the RPPs. The outlets on the CDU receive power at 230V from
one of the three phases, and a server power supply () is
plugged into the outlet.

At each branch of a distribution point, there are CBs that
limit the amount of current, to protect the power infrastructure
and guard against cascading failures to upstream (i.e., higher)
components due to short circuits and overload conditions. In
this paper, we use the distribution point power limit to refer to
the maximum amount of power that the corresponding CB or
transformer allows. CBs are rated in terms of maximum
current, but we convert them to their equivalent power values.
When a CB trips, downstream power delivery is interrupted,
potentially causing server power outage.

Redundant power feeds provide higher availability and
resilience against power interruption. Servers rely on two or
more power supplies connected to independent power feeds.
Even if one of the power feeds or supplies fails, the remaining
keep(s) the server operational. Ideally, power supplies should
equally share the server power load, but in practice, the server
load distribution varies from supply to supply.

Conventional practice in data centers is to not have
sustained power load exceed 80% of the maximum rating for
CBs and transformers [21] to avoid risk of damaging the
power infrastructure. For example, a 30A 3-phase breaker
may only be loaded to 24 A on each phase. When a power feed
fails, its power load shifts to the remaining power feed, whose
CB will see double the load. The server power connections
must ensure that this doubled load doesn’t exceed 80% of the
CB rating. Otherwise, the CB may trip during the failure, and
the servers downstream of the CB will lose power [5]. In our
example with redundant (dual) 30A feeds, the per-phase load
on each feed would need to be limited to 12A (40% of 30A)
to ensure that the load during a failure is limited to 24A (80%).

In our work, we load CBs up to 80% under normal
conditions because we employ power capping. When a feed
fails, the breaker on the redundant feed becomes overloaded
to 160%. The time it takes for a CB to trip depends on the
amount of overload. For example, CBs covered under the UL
489 standard [17] (a widely-adopted industry CB standard)
will operate for a minimum of 30 seconds before tripping

when under 160% load [11, 17]. Within that 30-second
window, our capping solution throttles the associated servers
to ensure the load comes down to within 80% of the rating,
which thus avoids tripping the CB and protects the servers
against downtime.

2.2. Server Power Capping
In the past decade, power capping has become a common

feature in servers to keep the server within a power limit [6, 7,
8, 25]. Typically, the power controller measures the server
power and throttles the CPU (scaling its voltage and
frequency) and other components to enforce the power limit.
Prior work has shown that such controllers can generally per-
form decisions within a few seconds [6].

The range of power control can be characterized by
running the most power-demanding workload at the highest
and lowest performance states of the server at the highest
allowed ambient temperature. For a server, Pcap_min is the
power consumed by the server at the lowest performance
state, and Pcap_max is the power at the highest performance
state. Any power budgeted to the server above Pcap_max is
wasted, as the server never uses the additional power, and a
budget less than Pcap_min cannot be enforced by a power cap-
ping mechanism.

Capping server power consumption allows us to directly
control the power load seen by CBs and transformers. The
timescale of power capping is an order of magnitude faster
than the trip time of CBs. This allows server power capping to
adequately protect against tripping of CBs.

3. DESIGN GOALS
CapMaestro addresses three key challenges in leveraging

server power capping for power management: (1) accounting
for multiple power feeds (Section 3.1), (2) incorporating
workload priorities globally in power capping decisions (Sec-
tion 3.2), and (3) capturing and making use of stranded power
in a redundant power infrastructure (Section 3.1). These chal-
lenges are important to address for highly-available data
centers but have not been addressed in prior works.

3.1. Power Capping for Multiple Power Feeds
and Stranded Power

The power load across multiple power feeds is not
perfectly balanced. We observe this at all levels of the
infrastructure for three reasons. First, servers with multiple
power supplies do not split their power load equally between
their power supplies. In our servers with two power supplies,
there can be as much as a 15% mismatch across the two
supplies, e.g., the power supply connected to the B-side feed
can draw 65% of the total server power, as opposed to the ex-
pected 50%. This power mismatch varies from server to server
and is an intrinsic property of each server (i.e., is independent
of the workloads), and cannot be adjusted during use. Addi-
tional data is available in our technical report [41]. Second,
power device failures (e.g., failed power supplies or power
feeds) may also lead to imbalanced load between different
power feeds. Third, to increase energy efficiency, some
servers can put a redundant supply in standby mode (drawing
no power) when the server load is below a certain level [34].

Figure 1. Example power distribution infrastructure in a data center.

Rack

ATS Generator

UPS

RPP

CDU

Server
Power Supply

Power Supply
Server

Power Supply

Power Supply

UPS

RPP

CDU . . .

. . .

. . .

. . .

Utility ATS

UPS

RPP

CDU

UPS

RPP

CDU. . .

. . .

. . .

Utility

A-Side Power Feed B-Side Power Feed

Transformer
Circuit
Breaker

1

3

4

5

6

2

4

An imbalanced load between different power feeds forces
power managers to assign and regulate a separate budget for
each power supply of a server. For example, a server with two
power supplies (Supplies A and B) may get a budget of 200W
on Supply A (which is connected to the A-side feed) and only
100W on Supply B (which is connected to the B-side feed),
because other servers exert a greater power load on the B-side
feed, leaving less power available to assign to Supply B. How-
ever, existing server power capping solutions, which only
limit the combined load across all power supplies, do not
consider this need for individual per-supply power budgets,
and therefore may not adequately protect the upstream circuit
breaker for each power supply. To tackle this challenge, we
propose a server power controller that enforces an individual
power budget per supply in Section 4.2. Furthermore, in this
example, when Supply B’s power budget (100W) is fully con-
sumed, Supply A’s power budget (200W) may not be fully
consumed, as these power budgets may not match with the
way that the server’s power load is split between its supplies.
As a result, some portion of Supply A’s budget would be left
stranded (i.e. unutilized). It is desirable to reallocate (at least
some portion of) stranded power to other power-constrained
servers to improve their performance. To do this, we propose
a stranded power optimization mechanism in Section 4.4.

3.2. Global Priority-Aware Power Capping
In a data center, some workloads can be more important

than others (e.g., due to different pricing, workload heteroge-
neity, or service function). It is desirable to give sufficient
power to these important workloads during power emergen-
cies, so that their performance is not impacted. To do this, Fa-
cebook introduces the notion of priority in Dynamo [5], their
power management system, to characterize the quality of
power availability offered to different workloads. They assign
higher priority to more important workloads, and try not to
throttle them during a power emergency. This notion of prior-
ity is especially important in public clouds, where service level
agreements (SLAs) are often expressed as the amount of re-
sources (e.g., the number of CPU cores) that a user subscribes
to, instead of a workload performance metric. This is because
public cloud operators generally do not have access to user
code, and are unable to measure performance directly.

One drawback of existing priority-based power allocation
schemes, including Dynamo, is that to remain scalable, they
consider priorities at best only between local groups of servers
under a single power constraint (e.g., a branch circuit), and do
not incorporate priority across higher levels of the power dis-
tribution infrastructure (e.g., they do not have a way to man-
age priorities across all of the servers connected to an RPP).
This limits the ability to truly share power across the entire
data center. In this work, we want to prioritize important
workloads globally (across the entire data center) and give
them sufficient power during a power emergency, by letting
them borrow power from lower-priority workloads on a
common power feed, regardless of the location of the physical
server.

Figure 2 shows an example with four servers SA, SB, SC,
and SD under a total power budget of 1240W for a single
power feed. The servers connect to a power feed of three CBs:

a top-level CB rated at 1400W, and two child CBs rated at
750W each, which we call Left CB and Right CB. These four
servers have an equal power demand of 430W each, and they
each have Pcap_min = 270W. Suppose SA has high priority,
while the other servers have low priority (we use 2 priorities
in this example for illustration; our mechanisms can support
an arbitrary number of priorities). Table 1 shows how much
power each server is budgeted under a local priority-aware
power capping policy, and how power would be budgeted if
the policy were instead global priority-aware. At the top level,
the local priority-aware policy splits the total power budget
equally across the Left and Right CBs, as only the lowest-level
CBs have the knowledge of and enforce server priorities.
Therefore, under a total power budget of 1240W, both Left
CB and Right CB are assigned a power budget of 620W. As
SB can at most be throttled down to 270W (Pcap_min), SA can
only receive a power budget of 350W (i.e., 620W – 270W),
even though it demanded 430W. In contrast, a global priority-
aware policy knows at the top level that one of the servers
under Left CB has high priority. As a result, the policy
allocates more power to Left CB, allowing SA to be budgeted
the full 430W that it demands. A global priority-aware policy
ensures that a higher priority server is not throttled when lower
priority servers anywhere in the data center can be capped to
meet a given power constraint. We introduce a global priority-
aware power capping algorithm in Section 4.3.

4. CAPMAESTRO: DESIGN OVERVIEW
CapMaestro is a new scalable power management solution

for data centers that achieves the three design goals described
in Section 3. At a high level, CapMaestro employs a light-
weight power control framework to efficiently collect power
demand information and enforce power budgets for each node
in the power infrastructure hierarchy, including each individ-
ual server power supply (Sections 4.1 and 4.2). CapMaestro
uses the collected power demand information to determine
power budgets for each node based on a new global priority-
aware power capping algorithm (Section 4.3). Once global
priority-aware allocation finishes, CapMaestro optimizes
stranded power by identifying the nodes where assigned
power is underutilized, and then reassigning this power where
it is needed in the hierarchy (Section 4.4).

Server SA SB SC SD
Priority (H = high, L = low) H L L L

Power Demand (W) 430 430 430 430
Budget with Local Priority (W) 350 270 310 310

Budget with Global Priority (W) 430 270 270 270
Table 1. Power budget assignments using local per-CB vs. global priorities.

Figure 2. Example power feed with various server priorities.

Top CB (Limit: 1400W)

Left CB (Limit: 750W) Right CB (Limit: 750W)

SA
High Priority

SB
Low Priority

SC
Low Priority

SD
Low Priority

1240W Budget

5

4.1. System Overview
CapMaestro uses a power control tree that mirrors the

hierarchy of the power infrastructure. Figure 3 shows how the
controllers in the tree map to the physical infrastructure com-
ponents. At the bottom of the tree, capping controllers
manage the power of individual server/IT equipment using the
built-in server power capping mechanism. At each higher
level of the tree, we use a power shifting controller that
distributes the power budget at that level among the nodes fed
from that distribution point. Each shifting controller is
mapped to a single physical device, and adheres to (1) the de-
vice’s power limit (e.g., maximum power allowed by a trans-
former, RPP, or CDU), and/or (2) a contractual budget (i.e.,
the maximum total power that a data center has negotiated to
draw from the utility across all feeds).

To account for redundant power infrastructure, we

replicate the power control tree for each power feed of the data
center. We also replicate the power control tree for each phase
of power delivery to protect each phase independently, since
loading on each phase is not always uniform. For a data center
with two power feeds with three phases each, our power
control framework has six control trees. The shifting
controllers on one power feed operate independently from
shifting controllers on the other feed, while each server has a
single capping controller that is shared across multiple trees.
For a server with multiple power supplies, its capping
controller adjusts the frequency/voltage of the entire server,
affecting the load on all of the server’s power supplies. This
capping controller that addresses the power budgets for mul-
tiple supplies (from their corresponding trees) by controlling
the server cap is a novel contribution.

Each server has a specific priority level. When servers run
VMs or containers with different priorities, one could set
server priority based on the priorities of the set of
VMs/containers assigned to a server or assign VMs/containers
to servers based on their priorities. A server’s capping
controller calculates relevant server metrics (e.g., power

demand), which flow upstream in the control trees to the
shifting controllers in the next level up. Each shifting
controller produces priority-based metrics summarizing the
sub-tree that it controls, based on the metrics that the shifting
controller receives from its child nodes. To perform global
priority-aware power capping, a key insight is that we need to
convey upstream only the metrics summarized by priority
level, and not individual server metrics for all servers in a sub-
tree. In practice, we expect a data center to have only a small
number of priority levels (on the order of 10); thus, the
priority-based summaries provide us with a compact way to
represent metrics for thousands of servers. This allows the
shifting controller at the root node to efficiently have a global
view of the power demand across the entire data center. With
this view, the root shifting controller easily routes power (by
assigning power budgets to its child nodes) towards the most
critical servers by comparing priority-based metrics from each
of its child nodes, while respecting the power limits of the
intervening CBs and transformers along the control tree.
These budgets flow downstream, and are recursively allocated
until the budgets reach the capping controllers (see
Sections 4.3 and 4.4 for algorithm details). After a power
budget is assigned to a capping controller, the controller
(Section 4.2) ensures that for each power supply of the server,
the per-supply power budget is not exceeded by the power
consumption on that supply.

Our control trees mirror the physical electrical connections
of the data center, allowing us to model situations unique to
each data center or portions of it. For example, CapMaestro
can (1) manage both multiple- and single-corded devices;
(2) deal with equipment that does not include power capping
technology, by setting the metrics to assign a fixed maximum
power for that equipment; (3) capture servers plugged into
multiple phases of power; and (4) work with power budgets
based on restrictions aside from physical equipment limits,
e.g., contractual budgets.

4.2. Power Supply Budget Enforcement
To protect the independent power feeds of the redundant

power infrastructure, we design a proportional-integral
(PI) [15] feedback controller for CapMaestro that guarantees
adherence to AC power budgets on the power consumption of
each power supply in a server. Our controller employs the
server power capping controls of Intel Node Manager [7],
which cap only the total DC power of the server. The input to
our controller is the external AC power budget for each power
supply. These budgets are determined by the power capping
algorithm that protects each power feed. The budgets for the
power supplies of a server may have unequal values,
depending on the load on each power feed. The controller
determines the proper DC power cap for the node manager to
enforce the AC power budgets for all supplies.

Figure 4 shows our control diagram. First, each control
iteration calculates an error for each power supply by
subtracting its measured power from its budget ( in Fig-
ure 4). This error quantifies how much the drawn AC power
falls short of the assigned AC budget on each power supply.
Then, the controller selects the minimum error across all
power supplies (to make the most conservative correction).

Figure 3. Mapping physical equipment from a single power feed to

controllers in the power control tree, and to worker VMs.

Shifting
Controller

Shifting
Controller

Shifting
Controller

Capping
Controller

Shifting
ControllerATS

UPS

RPP

CDU

Server
Power Supply

Power Supply

UPS

RPP

CDU . . .

. . .

. . .

. . .

Transformer

Circuit
Breaker

Contractual Budget

Room-Level
Worker VM

Rack-Level
Worker VM

6

The stranded power optimization mechanism will later shift
the unused power budgets to other servers for better utilization
(Section 4.4). Second, the minimum power supply error is
scaled by the power supply efficiency (k) to transform from
AC power domain to DC power domain (k can be determined
from the power supply specification), and then further scaled
by the number of working (non-faulty) power supplies (M) to
account for how much DC power the full system power needs
to be adjusted by (). Third, the scaled error is added to the
integrator (which stores the previously desired DC cap) to cal-
culate the currently desired DC power cap (). The controller
then clips the calculated DC power cap based on the maxi-
mum and minimum power values that the controller can cap
to (), and sends the cap value to the node manager, which
manages the processor frequency and voltage to meet the DC
power cap.

4.3. Global Priority-Aware Power Capping
CapMaestro’s global priority-aware power capping

algorithm allocates power budgets across a control tree of
shifting and capping controllers, respecting the data center
contractual budgets and the power limits of multiple levels of
CBs and transformers while safely trying to satisfy as much
of the power demand of each server. For both non-redundant
and N+N redundant power distribution infrastructures, each
control tree runs this algorithm independently.

Our algorithm runs iteratively, with each iteration consist-
ing of two phases. In the metrics gathering phase, each
shifting controller receives power allocation requests (and
other metrics) from its child nodes. These metrics are grouped
by priority value, which corresponds to the priority level of
the workloads running on the servers under the child node.
The shifting controller then aggregates these metrics from all
its children by priority value, and sends the aggregated metrics
upstream to its parent node. In the budgeting phase, each
shifting controller receives its power budget from its parent
node, and then computes and sends power budgets
downstream for its child nodes based on the power budget as-
signed to the controller and the priority-based metrics of its
child nodes. At the bottom, each capping controller receives
an individual budget for each of its power supplies (from the
corresponding leaf shifting controller), and uses the method
discussed in Section 4.2 to set a power cap for the
corresponding server.
4.3.1. Metrics Gathering Phase

CapMaestro computes the following metrics at each node
(a node may correspond to a shifting or capping controller) at

level i of the power distribution hierarchy (where level 0 cor-
responds to a server, level 1 corresponds to the per-server cap-
ping controllers, and higher level numbers correspond to shift-
ing controllers):
• Pcap_min(i, j): the minimum total power budget that must be

allocated to servers with priority level j under the node.
• Pdemand(i, j): the total power demand of servers with priority

level j under the node.
• Prequest(i, j): the power budget that is requested by servers

with priority level j under the node. If the node corresponds
to a capping controller, this will be the power demand of the
single server governed by the capping controller. If the node
corresponds to a shifting controller, this may be lower than
the total power demand of servers with priority level j under
the node, because the servers may demand more power than
what the circuit breakers under the node allow.

• Pconstraint(i): the maximum power budget that can be allo-
cated safely to all servers under the node (no matter what
their priorities are). This metric is limited by the power limit
of the node, power limits for downstream shifting
controllers, and Pcap_max for the downstream capping
controllers.

The computation of metrics differs between the capping
and shifting controllers. At each capping controller, when j
equals the priority level of the server whose power supply is
being governed by the controller, we calculate the metrics as: 𝑃௖௔௣_௠௜௡(1, 𝑗) = 𝑟 × 𝑃௖௔௣_௠௜௡(0) 𝑃ௗ௘௠௔௡ௗ(1, 𝑗) = 𝑟 × max൛𝑃ௗ௘௠௔௡ௗ(0), 𝑃௖௔௣_௠௜௡(0)ൟ 𝑃௥௘௤௨௘௦௧(𝑗) = 𝑃ௗ௘௠௔௡ௗ(𝑗) 𝑃௖௢௡௦௧௥௔௜௡௧ = 𝑟 × 𝑃௖௔௣_௠௔௫(0)
where r is the fraction of the server load borne by that power
supply (nominally 1/M, where M is the number of working
power supplies; we adjust it in practice based on how the load
is actually split between the working power supplies of the
server), Pcap_min(0) and Pcap_max(0) are the minimum and
maximum controllable AC power budgets for the server, and
Pdemand(0) is the amount of power that workloads running on
the server consume at full performance (we discuss how to
estimate this in Section 5). Since the capping controller gov-
erns only one server power supply, its minimum power budget
depends solely on the minimum power budget for the server.
When we calculate Pdemand(1, j), we choose the maximum of
Pdemand(0) and Pcap_min(0), and then scale it with r. This is
because if the server is running light workloads, Pdemand(0)
may be less than Pcap_min(0). In this scenario, our power
capping algorithm needs to ensure that the aggregate power
budget allocated to the server across its power supplies stays
within the controllable range; otherwise, the power cap on the
server may not be enforceable if the server load suddenly
increases later. For j not equal to the server priority, the
corresponding metric values are zero.

At each shifting controller, we calculate the metrics, in
descending order of priority (i.e., highest priority first), as: 𝑃௖௔௣_௠௜௡(𝑖, 𝑗) = Σ௞𝑃௖௔௣_௠௜௡௞(𝑖 − 1, 𝑗) 𝑃ௗ௘௠௔௡ௗ(𝑖, 𝑗) = Σ௞𝑃ௗ௘௠௔௡ௗ௞(𝑖 − 1, 𝑗)

Figure 4. Capping controller enforcing budgets on power supplies (PS).

1
2 3 4

7

𝑃௥௘௤௨௘௦௧(𝑖, 𝑗) =

min ൞𝑃௟௜௠௜௧ − ෍ 𝑃௥௘௤௨௘௦௧(𝑖, ℎ)௛வ௝ − ෍ 𝑃௖௔௣_௠௜௡(𝑖, 𝑙)௟ழ௝ ,
Σ௞ 𝑃௥௘௤௨௘௦௧௞(𝑖 − 1, 𝑗) ൢ

𝑃௖௢௡௦௧௥௔௜௡௧(𝑖) = min൛𝑃௟௜௠௜௧, Σ௞𝑃௖௢௡௦௧௥௔௜௡௧௞(𝑖 − 1)ൟ

where k is a child node iterator; j, h, and l are priority levels;
and Plimit is the power limit of the shifting controller. For
Pcap_min and Pdemand, we aggregate the corresponding metrics
that each of the child nodes k on level i–1 report to the shifting
controller. To calculate Prequest, we need to consider two fac-
tors. First, for a priority level j, no server with a higher priority
level h (i.e., h > j) should be capped before a server at priority
level j. Therefore, servers at priority level j are allowed to re-
quest as much power as they can, provided that all higher-pri-
ority servers get all of the power that they request, and that all
lower-priority servers have enough power left over to operate
at their minimum possible power level. We call this the maxi-
mum allowable power request for priority level j. Second, if
the maximum allowable power request is greater than the ac-
tual sum of power requested by the child nodes at priority
level j, then the total power request for level j is reduced to the
actual requested power. We set Pconstraint to the lower of (1) the
power limit of the current shifting controller and (2) the sum
of the power limits of the controllers at level i–1.
4.3.2. Budgeting Phase

The budgeting phase at each shifting controller distributes
its power budget among its child nodes in four steps:
1. Allocate Pcap_min of power to each child.
2. Iterate over the priority levels (j) from highest priority to

lowest priority, to further allocate any additional power re-
quested by each child node (i.e., Prequest – Pcap_min). If the
power remaining in the controller’s budget is not enough
to meet the power requested for any priority level during
this step, go to Step 3; else, go to Step 4 after finishing all
priority levels.

3. For the last priority level j whose power demand could not
be completely fulfilled in Step 2, proportionally give the
remaining budget to each child k based on the amount of
power that the child demands over its minimum required
power (Pdemand – Pcap_min).

4. If there is any unallocated power remaining after fulfilling
all power requests, assign this power to the child nodes up
to Pconstraint.
We have rigorously proven that our global priority-aware

power capping algorithm allows servers with high priority to
always be throttled after servers with lower priorities, as long
as the power limits in the data center allow. The proof is avail-
able in our extended technical report [41].

4.4. Stranded Power Optimization
As we discuss in Section 3.1, power loads may be imbal-

anced between different power feeds of a data center. This can
lead to mismatched power budgets for a server’s power
supplies, such that a portion of the power budget assigned to

one of the supplies may be stranded (i.e., unutilized). Ideally,
a power capping algorithm should reassign this stranded
power to the budget of another server on the same power feed
that requested more power than it has currently been budgeted.

Our stranded power optimization (SPO) mechanism runs
after CapMaestro performs the global priority-aware power
capping algorithm. With SPO, CapMaestro does not apply the
budgets generated by power capping immediately. Instead,
based on each power supply’s assigned budget, and the inher-
ent distribution of load between the multiple power supplies
of a server, CapMaestro determines which supplies have
stranded power, and then reduces the power budgeted to each
of these supplies to the actual amount that the supply can use
(i.e., such that no stranded power remains). This frees up the
stranded power for re-budgeting elsewhere in the feed. Once
this requested power reduction is complete for all supplies,
CapMaestro runs the power capping algorithm a second time,
which shifts the previously-stranded power (now unallocated)
to servers that were capped before SPO.

5. IMPLEMENTING CAPMAESTRO
We implement a prototype of CapMaestro as an integral

service that can be run in a real cloud data center control
plane. We group and run the shifting and capping controllers
of CapMaestro into VMs called worker VMs, as shown in Fig-
ure 3. Our system is flexible in terms of (1) the mapping of
controllers to worker VMs, and (2) supporting an arbitrary ar-
rangement of a multi-level worker hierarchy. A good mapping
should be based on (1) the number of servers deployed and
(2) the configuration of the power distribution hierarchy in the
data center.

For a typical multi-rack data center, we envision that the
data center manager would deploy VMs for (1) rack-level
workers for each rack of servers, and (2) a room-level worker
for the entire data center. Each rack-level worker protects its
assigned rack’s CDU (cabinet distribution unit; see Sec-
tion 2.1). One rack-level worker contains 6 CDU-level shift-
ing controllers (one for each phase, where we have 2 feeds,
and 3 phases per feed) and 45 capping controllers (one cap-
ping controller for each server in the rack). The worker calcu-
lates the server metrics discussed in Section 4.3 (e.g., power
demand, minimum power budget, requested power budget),
communicates with the upstream worker to exchange metrics
and receive budgets, and assigns power budgets to the server’s
node manager every control period (8 seconds in our setup).
The room-level worker protects RPPs (redundant power pan-
els; see Section 2.1), transformers, and the contractual power
budget that governs all racks. Like the rack-level workers, the
room-level worker calculates metrics and determines budgets
every control period (8 seconds).

For our real-system experiments in Section 6, we deploy
our CapMaestro prototype across a small test bed with a data
center control plane. In this case, we use a single worker that
consists of one capping controller per server, and two levels
of shifting controllers. The controllers in the single worker
faithfully execute the entire CapMaestro algorithm.

Every second, each capping controller reads sensors for
the server under its control, using the Intelligent Platform
Management Interface (IPMI) [26]. The sensors include AC

8

power monitors for the two power supplies and the power cap
throttling level. The power cap throttling level is an Intel Node
Manager [7] metric that quantifies the current fraction of
server voltage/frequency throttling. Every 8-second control
period, the capping controller averages the per-second
readings and computes the server-level metrics. By averaging
the readings at this granularity, CapMaestro’s power capping
controller provides a more stabilized response while still be-
ing fast enough to address failures in the power distribution
infrastructure. The capping controller then sends the metrics
to upper-level nodes, and shortly thereafter receives a budget
to allocate to each power supply. The capping controller sets
the DC power cap based on this budget by sending the cap to
the node manager on the server’s baseboard management
controller [33] via IPMI [26]. The node manager then ensures
that the server power is within the cap in 6 seconds. In other
words, a new power cap is set in at most 14 seconds, well
within the 30-second window during which the infrastructure
components can tolerate exceeding the power limit if a failure
occurs (see Section 2.1).

Each capping controller computes the power demand
(Pdemand) of its assigned server using a regression method [16].
The capping controller uses per-second readings of the server
power consumption and power cap throttling level over the
last 16 seconds, and builds a regression model that correlates
server power to throttling levels. With this model, the control-
ler can estimate the server power at 0% throttling (i.e., the
maximum power consumed by the server for the workload),
which it sets as Pdemand. If power is measured during an interval
when the power cap throttling is set to 0%, then the controller
uses the actual measured power instead of the regression
model prediction.

Overhead and Scalability Analysis. CapMaestro has a
minimal cost and good scalability. First, our control frame-
work makes use of existing node managers, such as the Intel
Node Manager [7], to control server power, which are already
built into the firmware of each server. CapMaestro requires no
additional overhead to make use of the existing node manager.
Second, one level up from the servers, we reserve one core per
rack to run a rack-level worker (each rack has 1260 cores;
therefore, 1/1260 = < 0.1% overhead), which completes rack
sensing in 1 second (sensing all nodes in parallel), rack budg-
eting in 10 ms, and capping (i.e., calculating and sending the
DC power cap to each server) within 1 second. The commu-
nication between this worker and the upstream worker is on
the order of milliseconds, as we measure in real systems. The
computation and communication overhead of a rack-level
worker does not change when we add more racks for large
data centers, allowing the worker to scale easily to large data
centers. Third, at the top of our control framework, we reserve
one core in the data center to run the room-level worker. The
computation time of a shifting controller grows linearly with
the number of its child controllers. Given that, and the fact that
the room-level worker has no capping controllers, we estimate
the computation time for the room-level worker deployed on
a large data center with 500 racks to be well under 300 milli-
seconds (500/45 x 10 milliseconds x 2 feeds < 300 millisec-
onds). Hence, the room-level worker scales to realistic data

center sizes. In summary, CapMaestro uses less than 0.1% of
the data center’s resources, and can scale well for large data
centers.

6. EVALUATION
We experimentally evaluate each aspect of CapMaestro on

a real small-scale cloud test bed, demonstrating that it can
successfully (1) enforce different budgets for multiple power
supplies of a server using server power capping (Section 6.1),
(2) perform global priority-aware power capping across
hierarchical power constraints in the entire data center
(Section 6.2), and (3) optimize stranded power for redundant
power feeds (Section 6.3) based on real system experiments.
Our test bed contains 28-core servers that each run the Apache
HTTP Server [18] as a representative cloud workload (with a
separate client cluster running the Apache benchmarking tool
ab [19], which is not part of our evaluation). Aside from our
real system experiments, we determine the improvement in
server capacity under CapMaestro by performing a large-scale
data center simulation based on characteristics measured from
our real servers (Section 6.4).

6.1. Server Power Cap Enforcement
Figure 5 shows how our controller in Section 4.2 enforces

power budgets on the individual power supplies (labeled PS1
and PS2 in the figure) of a representative server from our test
bed. We make two observations from the figure. First, at the
beginning of the execution period, the budgets for both
supplies are higher than the loads, and there is no throttling,
as each supply is budgeted more than enough power. Second,
at t=30s, when we lower the budget for PS2 to 200W, the Cap-
Maestro controller prototype responds by computing and
applying the resulting DC cap for the server that lowers PS2’s
power down to the new budget. The node manager then
applies the DC cap to the server, which lowers the server load
on both PS1 and PS2. Third, at t=110s, when we assign an
even smaller budget of 150W to PS1 (making it the more
constrained of the two power supplies), CapMaestro computes
and applies the corresponding DC cap to bring down the
server load, which reduces both supplies’ power consumption.
In both cases, CapMaestro’s power capping controller
recognizes which of the power supplies has the more
constrained budget, and ensures that the server load is lowered
enough so that the power supply loads satisfy the more

Figure 5. Power capping for redundant power supplies (PS1 and PS2).

Throttling refers to power cap throttling.

100

200

300

400

500

0 50 100 150 200

Po
w

er
(W

)

Time (seconds)

PS1: Budget
PS1: Power
PS2: Budget
PS2: Power

0

20

40

60

80

100

100

200

300

400

500

0 100 200

Th
ro

tt
lin

g A
m

ou
nt

 (%
)

Ca
pp

ed
 D

C
Po

w
er

 (W
)

Time (seconds)

DC Cap

Throttling

9

constrained budget. Overall, the power settles to within 5% of
the assigned budgets within two control periods (16 seconds).

6.2. Comparison of Power Capping Policies
To evaluate the benefits of global priority-aware power

capping, we set up four real servers using the hierarchy shown
in Figure 2. We run experiments on these servers to represent
the conceptual example that we describe in Section 3.2, where
we need to budget power to a combination of high-priority and
low-priority servers. In our setup, all four servers are powered
by a single power feed, to emulate a power failure scenario in
a redundant power infrastructure where a second power feed
has failed (which necessitates power capping). Each server
consumes an average of 420W without power capping, and
has a minimum power consumption (Pcap_min) of 270W. Server
SA is assigned high priority, and the other three servers (SB,
SC, and SD) are assigned low priority.

We evaluate the power allocated to each server under three
different power capping polices: No Priority, Local Priority
(a version of the state-of-the-art Dynamo [5] mechanism that
supports redundant power feeds), and Global Priority (i.e.,
our policy under CapMaestro). A No Priority power capping
policy, after guaranteeing that each server receives at least
Pcap_min, distributes the remaining power proportionally to
each server based on the server’s value of Pdemand – Pcap_min.
Our version of the Local Priority capping policy enforces the
notion of priority only at the lowest controller level, while the
higher-level controllers distribute power to each branch using
a No Priority policy. To implement the Local Priority policy,
we extend Facebook’s Dynamo [5] to support power budget
assignments and capping for a redundant power infrastructure.
Our Global Priority policy in CapMaestro enforces a common
priority system at every power controller (Section 4.3). For all
three policies, we set the total power budget of the servers to
1240W. Since this does not cover the full 1680W demanded
by all four of the servers, each policy needs to perform some
form of power capping.

Table 2 shows the power budgets assigned by these three
policies to each of the four servers (SA, SB, SC, and SD) when
the workloads are in a steady state. We observe that our Global
Priority policy for CapMaestro lets the high-priority server SA
consume 419W, which is very close to its full power demand
(420W). In contrast, the Local Priority and No Priority poli-
cies cannot allocate the full power to SA despite its high pri-
ority. In particular, the Local Priority policy recognizes prior-
ities in only a local group, and so it can allocate power from
SB to SA to alleviate the capping of SA’s workload, but it
cannot allocate power from SC and SD. The Global Priority
policy can redistribute power to SA from all three other serv-
ers. This allows the workload running on SA to achieve a
higher throughput and lower latency with Global Priority than
with the Local Priority or No Priority policies.

Figure 6a shows the measured throughput of each server,
normalized to an ideal baseline where no power capping takes
place (where the throughput is defined as the number of que-
ries completed per second). We make two observations from
the figure. First, for SA, the No Priority policy results in 18%
lower throughput (and 21% higher average latency) relative to

the uncapped performance of SA, while the Local Priority pol-
icy results in 13% lower throughput (and 15% higher latency).
With the Global Priority policy, SA achieves the same
throughput (and latency) as if it were uncapped. Second, the
improved throughout for SA under Global Priority comes with
only a small reduction in throughput for the other three serv-
ers. We conclude that Global Priority is an effective method
to maximize the throughput of higher-priority jobs that may
exist anywhere in the data center.

Figure 6b shows the total power consumption that we
measure at the top, left, and right circuit breakers (CBs) under
our Global Priority policy. We observe that the total power
consumption is below the respective limits of the top CB
(1240W), and of the left and right CBs (750W). This
demonstrates that our policy can successfully redistribute
power while ensuring that the actual power consumption
respects power limits and budgets in the data center, which in
turn guarantees power safety.

6.3. Impact of Stranded Power Optimization
To demonstrate CapMaestro’s Stranded Power Optimiza-

tion (SPO), we connect four servers (SA, SB, SC, and SD) to
two redundant power feeds (X-side and Y-side), as shown in
Figure 7a. Server SA has high priority, while the other three
servers have low priority. We disconnect the Y-side supply of
SA and the X-side supply of SB. SC and SD draw power from
both power feeds (albeit unequally due to the inherent power
split mismatch of each power supply belonging to a server).
Each power feed is given a budget of 700W (i.e., the total
budget is 1400W), and the rating for the top and bottom CBs
is set at 1400W each in order to provide N+N power delivery
in the event of a power failure. We set the rating of the left and
right CBs to 750W each.

 (a) Server throughput after capping (b) CB power

Figure 6. (a) Server throughput after power capping policies, normalized to
uncapped server throughput; (b) Power at each CB under Global Priority.

0.0

0.2

0.4

0.6

0.8

1.0

SA SB SC SD

No
rm

al
ize

d
Th

ro
ug

hp
ut

No Priority
Local Priority
Global Priority

0.82 0.87 1.00

0

250

500

750

1000

1250

1500

0 50 100 150

Po
w

er
(W

)

Time (seconds)

Top CB
Left CB
Right CB

Server SA SB SC SD
Priority (H = high, L = low) H L L L
Power Demand (W) 420 413 417 423
Budget with No Priority (W) 314 306 311 316
Budget with Local Priority (W) 344 274 314 317
Budget with Global Priority (W) 419 276 275 275

Table 2. Server power budgeted by each power capping policy.

10

Table 3 shows the allocated power budgets and the aver-
age power measured at each server on the X-side and Y-side
power feeds, under different power capping policies. For
Global Priority power capping without SPO, SC and SD
receive a power budget of 164W and 187W, respectively, on
the Y-side. However, SC and SD actually use only 137W and
158W, respectively, from the Y-side, due to the lower amount
of power budgeted by the X-side feed, which brings down to-
tal power consumption. This leaves 27W and 29W stranded
on the Y-side feed for SC and SD, respectively. If we apply
CapMaestro’s SPO mechanism (i.e., Global Priority w/ SPO),
the mechanism lowers SC’s and SD’s Y-side power budgets
to 132W and 155W to match the actual power consumed by
the servers, and SPO shifts 67W of underutilized power to SB
to reduce the amount of capping needed on SB.

Figure 7b shows the throughput of the four servers without
and with SPO. We make two observations from the figure.
First, as a result of the redistribution of stranded power under
SPO, SB approaches its uncapped throughput, as shown in
Figure 7b. In contrast, without SPO, SB has a 12% lower
throughput (and 14% higher latency) relative to its uncapped
performance. As we see in Figure 7c, with SPO, the Y-side
feed of the data center consistently uses the full budgeted
power throughput the entire execution time. This additional
power usage allows SB to maintain the higher throughput
shown in Figure 7b. Second, after SPO runs, the throughputs
of SC and SD remain unchanged from the throughput before
SPO. This confirms that the power that SPO identified as
stranded was not being used by the servers. We conclude that
SPO is an effective mechanism to redistribute power stranded
by some servers in a way that boosts the throughput of other
servers in a data center.

6.4. Data Center Capacity Improvement
We perform large-scale simulations to study the number

of servers that a data center can support when CapMaestro is
employed under different conditions, compared to state-of-
the-art power management policies. We consider both (1) typ-
ical-case conditions, where the servers experience normal
load and where both feeds in the power infrastructure are fully
operational; and (2) worst-case conditions, where all servers
request maximum power and one entire power feed is down.

Data Center Configuration. Our simulations model a
production data center infrastructure (shown in Figure 1), us-
ing the parameters summarized in Table 4. The data center has
2 three-phase power feeds (X-side and Y-side), 4 transform-
ers, 36 RPPs, and 324 CDUs, for a total of 162 racks (two
CDUs, one from each feed, power one rack). We designate
30% of the servers as high-priority, selecting the servers at
random throughout the data center (we perform sensitivity
studies on the fraction of high-priority servers in our technical
report [41]). We load the circuit breakers and transformers to
80% of their maximum rated power. The contractual budget
for the data center is 700kW per phase, or 2.1MW in total. We
use 95% loading for this contractual budget, and reserve 5%
as a margin to tolerate errors (e.g., server parameter error,
power measurement error). Without employing a power
management system, each phase of the CDU can serve at most
8 servers (700kW x 95% / 162 CDUs / 490W per server = 8.4
servers) at peak power demand, resulting in a total of 3888
servers deployed in the data center.

Load. For typical-case conditions, we use a load profile

released by Google [27] as our typical load. This load profile,
shown in Figure 8, contains the distribution of average CPU
utilization in a shared data center over time. For worst-case
conditions, all servers have 100% CPU utilization.

Simulation Methodology. In our simulations, we vary the
total number of servers deployed in the data center by

Contractual Budget 700kW per phase, split over two feeds
Transformers 2 per feed, rated at 420kW each

Remote Power Panels (RPPs) 9 per transformer, rated at 52kW each
Cabinet Distribution Units 9 per RPP, rated at 6.9kW each

Servers 6–45 per rack; idle power = 160W,
Pcap_min = 270W, Pcap_max = 490W

Table 4. Simulated data center parameters.

 (a) Power feed organization (b) Server throughput normalized to uncapped throughput (c) Power used by the Y-side feed

Figure 7. Stranded power optimization evaluation.

SA SB SC SD

700W
Budget

Top CB
(Limit: 1400W)

Left CB
(Limit: 750W)

Right CB
(Limit: 750W)

700W
Budget

Bottom CB
(Limit: 1400W)

Left CB
(Limit: 750W)

Right CB
(Limit: 750W)

X-Side
Feed

Y-Side
Feed 0.0

0.2

0.4

0.6

0.8

1.0

SA SB SC SD
No

rm
al

ize
d

Th
ro

ug
hp

ut

No Priority Local Priority
Global Priority w/o SPO Global Priority w/ SPO

0.88
>0.99

500

550

600

650

700

750

0 50 100 150

Po
w

er
(W

)

Time (seconds)

without SPO
with SPO

Server SA SB SC SD
Priority (H = high, L = low) H L L L

Demand (W) 414 415 433 439
Global Priority
w/o SPO (W)

Budget 415/0 0/346 152/164 132/187
Consumption 413/0 0/348 156/137 135/158

Global Priority
w/ SPO (W)

Budget 416/0 0/413 152/132 132/155
Consumption 413/0 0/412 153/134 133/156

Table 3. Server power budgets and actual power consumption for our
stranded power studies (power listed as X-side/Y-side). Red italics indicate
that a server has stranded power (i.e., more power budgeted than consumed).

11

changing the number of servers in each rack (from 6 to 45),
while keeping the rest of the infrastructure constant. This al-
lows us to study how the workloads are capped under a differ-
ent total number of servers. For typical-case simulations, we
perform 20k Monte Carlo simulations for each server count,
per power management policy evaluated. For each typical-
case simulation, we select an average CPU utilization for all
servers in the data center from the distribution in Figure 8, and
vary the CPU utilization of each server randomly around the
average value using a normal distribution. For worst-case sim-
ulations, we perform 1k Monte Carlo simulations for each
server count, as we find that our results converge much earlier
for worst-case conditions due to the constant CPU utilization.

We determine each server’s power demand (which must
fall somewhere between its idle power and maximum power)
using the server’s assigned CPU utilization. We calculate how
CPU utilization correlates to power consumption using a
power model from prior work [2]. We allocate a power budget
to each server using one of the three power management pol-
icies discussed in Section 6.1: No Priority, Local Priority, and
Global Priority. Our simulation selects which servers are high-
priority at random for each simulation.

Metrics. To quantify how power capping affects
performance, we define a metric that we call the cap ratio,
which is the fraction of a server’s dynamic power demand
(i.e., non-idle power) that is capped by the assigned budget: 𝐶𝑎𝑝 𝑅𝑎𝑡𝑖𝑜 = 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐵𝑢𝑑𝑔𝑒𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑒𝑟𝑣𝑒𝑟 𝐼𝑑𝑙𝑒 𝑃𝑜𝑤𝑒𝑟

 The cap ratio provides us with an application-neutral way
of characterizing the maximum impact on performance
imposed by capping (the actual impact will be lower, as power
consumption is linear or superlinear with performance). A
lower cap ratio is better.

 Results. Figure 9 shows the maximum number of servers
that can be deployed under each of the three evaluated power
management policies, under both typical-case and worst-case
conditions, for a data center set up using the parameters in Ta-
ble 4. Our goal is to increase server count while negligibly
impacting both (1) the average performance of all servers
during typical-case conditions, and (2) the average
performance of high-priority servers during worst-case con-
ditions. We consider anything less than a 1% average cap ratio
across the servers to be a negligible performance impact. We
make three observations from the figure.

First, under typical-case conditions, all three policies can
support the same maximum number of servers (6318 servers
in total). This is because while the three policies differ in terms
of how they handle high-priority servers, our cap ratio crite-
rion for typical-case conditions does not differentiate between
high-priority and low-priority servers. In the typical case, a
data center should ideally be able to avoid capping most, if not
all, of its servers.

Second, under worst-case conditions, CapMaestro’s
Global Priority policy supports 50% more servers than the No
Priority policy, and 20% more servers than Local Priority.
During worst-case conditions, a significant amount of power
capping needs to take place to bring the power load to within
the rated limits of each component of the power distribution
infrastructure. Both Dynamo and CapMaestro work to mini-
mize the impact that this capping has on high-priority servers,
while still allowing low-priority servers to make forward pro-
gress. However, CapMaestro has the ability to make global
power capping decisions, and can redistribute power effi-
ciently across multiple levels of the power distribution hierar-
chy. As a result, CapMaestro’s Global Priority policy can sup-
port a much greater number of machines than the Local Prior-
ity policy based on Dynamo [5].

Third, CapMaestro’s Global Priority policy can maintain
most of the servers that a failure-free power infrastructure can
support. In an ideal case where the power delivery infrastruc-
ture guarantees that no one component would fail, the data
center could support all 6318 servers possible under typical-
case conditions. The Global Priority policy can support 92.3%
of the total ideal server count, by supporting up to 5832 serv-
ers. In contrast, the No Priority and Local Priority policies
support only 61.5% and 76.9% of the total ideal server count.

Figure 10 shows how the average cap ratio changes under
each of the three evaluated power management policies as we
increase the number of servers. The x-axis shows the number
of servers, and the y-axis shows the corresponding cap ratios

 (a) Cap ratio for all servers (b) Cap ratio for high-priority servers

Figure 10. Average cap ratio for all servers and high-priority servers during a worst-case power emergency.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 1K 2K 3K 4K 5K 6K 7K 8K

Ca
p

Ra
tio

Number of Servers

No Priority
Local Priority
Global Priority

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 1K 2K 3K 4K 5K 6K 7K 8K

Ca
p

Ra
tio

Number of Servers

No Priority
Local Priority
Global Priority

 Figure 8. Distribution of Figure 9. Total servers deployable
 average CPU utilization [27]. (30% of servers are high-priority).

0

2000

4000

6000

8000

Typical Case Worst CaseTo
ta

l S
er

ve
rs

 D
ep

lo
ye

d

No
Priority

Local
Priority

Global
Priority

3888
4860

58326318

12

for all servers (Figure 10a) and for high-priority servers (Fig-
ure 10b), under a worst-case power emergency (i.e., an entire
side of the power infrastructure has failed). We make two ob-
servations from the figure. First, the cap ratios grow with the
number of servers deployed in the data center. For the priority-
aware policies, high-priority servers are throttled last, only af-
ter all low-priority servers are throttled. Therefore, the high-
priority servers have a lower cap ratios under these policies
compared to the cap ratio for all servers. Second, as we see in
Figure 10b, high-priority servers perform better under Global
Priority than under Local Priority. This is because Global
Priority lets high-priority servers take power from low-
priority servers even when the servers fall under different
shifting controllers. In contrast, the Local Priority policy can
only redistribute power among servers under the same shifting
controller.

We conclude that CapMaestro, with its global priority-
aware power capping, effectively supports a much greater
number of servers for a given power distribution infrastruc-
ture. Thus, CapMaestro significantly reduces the impact of a
failure in the power distribution infrastructure compared to
state-of-the-art mechanisms.

Sensitivity Studies. We perform several sensitivity
studies on how CapMaestro performs as we change key data
center parameters, including (1) the fraction of servers that are
high-priority, (2) the value of Pcap_min (i.e., the minimum
power that can be budgeted to each server), and (3) the con-
tractual budget of the data center. We find that Global Priority
outperforms Local Priority and No Priority under most sce-
narios. Due to space limitations, we provide details on these
studies in our extended technical report [41].

7. DISCUSSION: OPEN CHALLENGES
Aside from the challenges that we successfully tackle in

this work, there are a number of open challenges that remain
against the comprehensive adoption of power management for
public cloud data centers. We provide a brief discussion of
these challenges, with the hope of motivating future work in
these and other related areas.

Limited Availability of Power Capping. Existing
power capping controllers, such as the Intel Node Manager [7]
and RAPL [46], control server power only through processor
and memory throttling. In a data center, we ideally want to
monitor and control the total system power, including storage
devices, networking, and coprocessors such as GPUs and
FPGAs. These components may consume significant amounts
of power in contemporary systems. While some prior
works [12, 13] study the power behavior of individual com-
ponents in data centers, a comprehensive integration of power
control for acceleration components into a server power con-
troller does not yet exist. As part of a comprehensive solution,
there is a need to provide dynamic power control for storage
and networking equipment, as these components have at best
only limited control today.

Specification and Standardization Gaps. We find that
many available power measurement and power capping tools

do not provide specifications for measurement and control ac-
curacy, and do not guarantee responsiveness. Despite the lack
of available information, these specifications are important for
data center designers to take into account, as the specifications
affect the margins that designers need to allocate to each
power management component in the data center. A related
issue is the limited standardization of power control interfaces
across vendors. This can make the complexity of interfacing
and controlling data center equipment from different vendors
intractable.

Limited Emphasis on Power Infrastructure Topology.
The physical topology of the power infrastructure is im-
portant, as it poses unique constraints on power management
solutions. Unfortunately, this topology is neglected by many
works. The physical topology of the power infrastructure is an
essential factor in the performance of CapMaestro (e.g., we
are the first to consider the redundant feeds in highly-available
data centers). For future work, we observe that there are no
common tools for expressing the physical power topology, or
for validating a power topology at runtime. For example, wir-
ing mistakes are possible when we connect servers to the
power infrastructure (e.g., a wire is not plugged into the cor-
rect outlet). There is a need to develop a cost-effective ap-
proach to finding such errors in the topology (other than man-
ual cable tracing), or for tolerating such power topology mis-
takes in power management solutions.

Coordination of Job Scheduling with Power Manage-
ment. Our work considers the priority of jobs in power man-
agement decisions. In the future, we believe that it is desirable
to more tightly integrate job schedulers, which are highly
aware of workload priorities, with power managers. Such in-
tegration would allow dynamic priorities of different servers
(as the jobs running on each server change over time) to be
communicated to the power management algorithm quickly,
allowing for proactive (as opposed to reactive) power budget-
ing. On a related note, since existing mechanisms cap power
per server, this either requires (1) the scheduler to co-locate
jobs of similar priority on a physical server; or (2) researchers
to develop a new mechanism that can cap power for individual
“virtual partitions” of a server, where each job has its own vir-
tual partition, and where each virtual partition can be assigned
its own power budget. While there is research in this space
[22], there is no standardized adoption across the industry to
leverage these ideas in cloud data centers.

Crossing Provider–User Boundaries for Energy Sav-
ings. While public cloud providers strive to save energy to
reduce their operating costs, cloud users, particularly for high-
performance applications, are often wary of enabling energy-
saving mechanisms (such as dynamic frequency scaling) that
have potential to impact their application’s performance if not
managed carefully. In such cases, providers typically turn off
the energy-saving features, and pass on the higher cost of op-
erations to users (e.g., higher prices for VM flavors with
“guaranteed” performance). Providers need to make the ben-
efits of energy savings visible to users, and preferably share
these benefits with users (e.g., by lowering prices), to incen-
tivize the adoption of energy saving mechanisms. Two issues

13

prevent cloud providers from making these benefits visible to
users. First, most public cloud environments share a single
server with multiple users, but per-user power metering on a
server does not currently exist. Second, performance-aware
energy-saving solutions that can be adopted in the public
cloud (without requiring hooks from the user’s workload to
the cloud provider’s energy management knobs) have re-
ceived limited attention to date.

8. RELATED WORK
To our knowledge, this work is the first to (1) propose a

mechanism to manage power in data centers with multiple
power feeds; (2) design a global priority-aware power
capping system that enables high-priority servers to borrow
power from a low-priority server anywhere in the data center;
and (3) reallocate the stranded power that exists in redundant
power infrastructure to servers that need it.

Server & Data Center Power Capping. Power
capping first appears in server products in 2006 [1]. Around
the same time, Fan et al. [2] observe that data centers rarely
consumed their maximum peak power, and could allow up to
39% more servers in the same power infrastructure without
throttling. They recommend using power capping as a safety
valve, using some amount of throttling to allow for the
deployment of an even greater number of servers. Several later
works on data center power capping [3, 4, 5, 10, 11, 14, 20,
32, 42-45] propose to effectively increase the server capacity
of data centers. For example, Wang et al. [4] propose a hier-
archical power capping mechanism to protect power infra-
structure while adding more servers to data centers. Face-
book’s Dynamo [5] extends this work by considering more
practical aspects of data center infrastructure, such as circuit
breaker characteristics and workload-aware capping actions.
All of these works rely on server power capping [6-8] as the
underlying mechanism to control power consumption in a data
center. However, these server power capping mechanisms
control only the sum of power consumption across all power
supplies of a server, and cannot enforce separate power caps
on individual power supplies. Therefore, they are inadequate
to protect upstream power feeds in redundant power
topologies (see Section 3.1). As a result, prior data center
power capping methods [3, 4, 5, 10, 11, 14, 20, 32, 42-45],
which rely solely on traditional server power capping
mechanisms and do not have the context of the redundant
power topology, cannot safely control highly-available data
centers with multiple power feeds, which is one of the
important challenges we tackle in this paper. Unlike all of
these prior works, our mechanism also effectively utilizes the
power that is stranded due to imbalanced load between
different power feeds in redundant power infrastructure (see
Section 6.3). This is different from the stranded power utilized
by prior work [9], which is caused by imbalanced load
between different CBs in a single-feed power infrastructure,
and which is harnessed in a different way.

Priority-Aware Power Capping. Prior works include
some notion of prioritizing the power budgets in capping
controllers [1, 4, 5]. However, such priorities are local to a

single controller. For example, in Dynamo, the workloads are
known in advance and have assigned priorities, and the
priority-aware mechanism works only at the leaf controller
level, which covers at most “a few hundred” servers [5]. Our
proposed solution provides the ability for multiple levels of
the capping hierarchy to capture the priority of all child nodes,
enabling the consideration of all servers’ priorities across the
entire data center for smarter capping decisions.

Other Mechanisms to Increase Server Capacity and
Power Efficiency. Kontorinis et al. [35] propose using
energy storage devices to shave peak power demand and allow
an increase in server capacity. Wang et al. [36], Hsu et al. [37],
and Wallace et al. [38] propose to efficiently use the power
infrastructure capacity by performing power-aware workload
scheduling, in a way that boosts the capacity of each server.
These methods are orthogonal to ours, and can be combined
with our proposal to further increase power efficiency.
However, using only these methods (i.e., without CapMaes-
tro) may not be cost-effective to increase the server capacity
of a data center. Energy storage devices such as those used by
Kontorinis et al. [35] come with additional cost and space
needs, and may need to be replaced after a certain number of
charge/discharge cycles. In addition, an energy-storage-only
solution cannot handle power peaks that last longer than a few
hours. Power-aware workload scheduling [36, 37, 38] puts ad-
ditional requirements on workloads, such as requiring them to
be short-lived [36], repetitive [38], or bear a power consump-
tion pattern lasting several days [37]. In contrast, CapMaestro
is designed for existing power infrastructures and can tolerate
arbitrary workload characteristics.

To optimize power efficiency, Bai et al. [47] propose a
voltage regulator efficiency-aware power management policy,
and Kondguli and Huang [48] propose a power-efficient turbo
boosting strategy. These works are complementary to ours.

9. CONCLUSION
We present CapMaestro, a new, distributed power man-

agement mechanism that uses server power capping effec-
tively to manage the power across an entire data center. Cap-
Maestro is designed to work for redundant power infrastruc-
tures in a global priority-aware manner, and it protects against
oversubscription at every level of the power distribution
hierarchy, while allowing stranded power in the hierarchy to
be reallocated to servers that need it. We evaluate a prototype
of CapMaestro on real cloud servers to validate its guarantees,
and simulate its performance on a large-scale data center
environment. We find that for a typical data center where 30%
of randomly-selected servers are high-priority, CapMaestro
supports 50% more servers than a data center without power
capping, and 20% more servers than a data center that uses a
state-of-the-art power capping mechanism modified to sup-
port redundant power feeds. We discuss a number of remain-
ing important challenges in power management for public
clouds, with the hope of inspiring future work in the area.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive

feedback.

14

REFERENCES
[1] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-Level

Power Management for Dense Blade Servers”, in ISCA, 2006.
[2] X. Fan, W. Weber, and L. Barroso, “Power Provisioning for A

Warehouse-Sized Computer”, in ISCA, 2007.
[3] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,

“No "Power" Struggles: Coordinated Multi-Level Power Management
for the Data Center”, in ASPLOS, 2008.

[4] X. Wang, M. Chen, C. Lefurgy, and T. Keller, “SHIP: A Scalable
Hierarchical Power Control Architecture for Large-Scale Data
Centers”, in TPDS, 2012.

[5] Q. Wu, Q. Deng, L. Ganesh, C. H. Hsu, Y. Jin, S. Kumar, B. Li, J.
Meza, and Y. J. Song, “Dynamo: Facebook’s Data Center-Wide Power
Management System”, in ISCA, 2016.

[6] C. Lefurgy, X. Wang and M. Allen-Ware, “Power Capping: A Prelude
to Power Shifting”, in Cluster Computing, 2008.

[7] Intel Corp., “Intel® Intelligent Power Node Manager 3.0 External
Interface Specification Using IPMI”, Document Number 332200-
001US, March 2015.

[8] Intel Corp., “Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B: System Programming Guide, Part 2”, Document
Number 253669-060US, Sept. 2016.

[9] L. Ganesh, J. Liu, S. Nath, and F. Zhao, “Unleash Stranded Power in
Data Centers with RackPacker”, in WEED, 2009.

[10] A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, S. Sankar, “The
Need for Speed and Stability in Data Center Power Capping”, in IGCC,
2012.

[11] X. Fu, X. Wang, and C. Lefurgy, “How Much Power Oversubscription
is Safe and Allowed in Data Centers?”, in ICAC, 2011.

[12] M. G. Khatib, Z. Bandic, “PCAP: Performance-Aware Power Capping
for the Disk Drive in the Cloud”, in FAST, 2016.

[13] M. H. Santriaji, H. Hoffmann, “GRAPE: Minimizing Energy for GPU
Applications with Performance Requirements”, in MICRO, 2016.

[14] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A.
Baldini, “Statistical Profiling-Based Techniques for Effective Power
Provisioning in Data Centers”, in EuroSys, 2009.

[15] K.J. Åström, and T. Hägglund, Advanced PID Control, The
Instrumentation, Systems and Automation Society, 2006.

[16] M. Govindan, C. Lefurgy, and A. Dholakia, “Using On-Line Power
Modeling for Server Power Capping”, in WEED, 2009.

[17] UL LLC, “UL 489: Molded-Case Circuit Breakers, Molded-Case
Switches, and Circuit Breaker Enclosures”, 13th edition, Oct. 2016.

[18] Apache Software Foundation, “Apache HTTP Server Project”,
https://httpd.apache.org/

[19] Apache Software Foundation, “ab - Apache HTTP Server
Benchmarking Tool”, https://httpd.apache.org/docs/2.4/programs/
ab.html

[20] R. Azimi, M. Badiei, X. Zhan, N. Li, and S. Reda, “Fast Decentralized
Power Capping for Server Clusters”, in HPCA, 2017.

[21] National Fire Protection Assn., “NFPA 70: National Electrical Code”,
2017.

[22] H. Lim, A. Kansal, and J. Liu, “Power Budgeting for Virtualized Data
Centers”, in USENIX ATC, 2011.

[23] D. Wang, S. Govindan, A. Sivasubramaniam, A. Kansal, J. Liu, and B.
Khessib, “Underprovisioning Backup Power Infrastructure for
Datacenters”, in ASPLOS, 2014.

[24] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing
Throughput of Overprovisioned HPC Data Centers Under a Strict
Power Budget”, in SC, 2014.

[25] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques”,
in ASPLOS, 2016.

[26] Intel Corp., HP Inc., NEC Corp., Dell Inc., “Intelligent Platform
Management Interface (IPMI) Specification v2.0 Rev. 1.1”, 2013.

[27] L. A. Barroso, J. Clidaras, and U. Hölzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale
Machines, 2nd edition, Morgan Claypool, 2013.

[28] M. Alian, A. H. M. O. Abulila, L. Jindal, D. Kim and N. S. Kim,
“NCAP: Network-Driven, Packet Context-Aware Power Management
for Client-Server Architecture”, in HPCA, 2017.

[29] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars,
“PowerChief: Intelligent Power Allocation for Multi-Stage
Applications to Improve Responsiveness on Power Constrained CMP”,
in ISCA, 2017.

[30] Y. Li, D. Wang, S. Ghose, J. Liu, S. Govindan, S. James, E. Peterson,
J. Siegler, R. Ausavarungnirun, and O. Mutlu, “SizeCap: Efficiently
Handling Power Surges in Fuel Cell Powered Data Centers”, in HPCA,
2016.

[31] C. Li, R. Zhou, and T. Li, “Enabling Distributed Generation Powered
Sustainable High-Performance Data Center”, in HPCA, 2013.

[32] Z. Tang, H. Zhou, Y. Zhu, R. Tian and J. Yao, “Quantitative
Availability Analysis of Hierarchical Datacenter Under Power
Oversubscription”, in SMARTCOMP, 2017.

[33] Super Micro Computer, Inc., “Embedded BMC/IPMI User’s Guide
Revision 2.0”, 2012.

[34] M. Muccini and W. Cook, “Power Consumption Reduction: Hot
Spare”, Dell Inc., white paper, 2012.

[35] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E.
Pettis, D. Tullsen, T. S. Rosing, “Managing Distributed UPS Energy
for Effective Power Capping in Data Centers”, in ISCA, 2012.

[36] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu, L. Huang,
X. Jin, W. Xu, “Increasing Large-Scale Data Center Capacity by
Statistical Power Control”, in EuroSys, 2016.

[37] C. Hsu, Q. Deng, J. Mars, L. Tang, “SmoothOperator: Reducing Power
Fragmentation and Improving Power Utilization in Large-Scale
Datacenters”, in ASPLOS, 2018.

[38] S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M.
E. Papka, Z. Lan, “A Data Driven Scheduling Approach for Power
Management on HPC Systems”, in SC, 2016.

[39] P. E. Bailey, A. Marathe, D. K. Lowenthal, B. Rountree, and M.
Schulz, “Finding the Limits of Power-Constrained Application
Performance”, in SC, 2015.

[40] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz, “Dynamic
Power Sharing for Higher Job Throughput”, in SC, 2015.

[41] Y. Li, C. R. Lefurgy, K. Rajamani, M. S. Allen-Ware, G. J. Silva, D.
D. Heimsoth, S. Ghose, and O. Mutlu. “CapMaestro: Exploiting Power
Redundancy, Data Center-Wide Priorities, and Stranded Power for
Boosting Data Center Performance”, IBM Research Report RC25680,
Mar. 2018. https://domino.research.ibm.com/library/cyberdig.nsf/
1e4115aea78b6e7c85256b360066f0d4/25c5c8ba95611f29852582eb0
058ca52

[42] R. Sakamoto, T. Cao, M. Kondo, K. Inoue, M. Ueda, T. Patki, D.
Ellsworth, B. Rountree, and M. Schulz, “Production Hardware
Overprovisioning: Real-World Performance Optimization Using an
Extensible Power-Aware Resource Management Framework”, in
IPDPS, 2017.

[43] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de
Supinski, “Exploring Hardware Overprovisioning in Power-
Constrained, High Performance Computing”, in ICS, 2013.

[44] T. Patki, D. K. Lowenthal, B. L. Rountree, M. Schulz, and B. R. de
Supinski, “Economic Viability of Hardware Overprovisioning in
Power-Constrainted High Performance Computing”, in E2SC, 2016.

[45] Z. Zhang, M. Lang, S. Pakin, and S. Fu, “Trapped Capacity:
Scheduling under A Power Cap to Maximize Machine-Room
Throughput”, in E2SC, 2014.

[46] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le,
“RAPL: Memory Power Estimation and Capping”, in ISLPED, 2010.

[47] Y. Bai, V. W. Lee, and E. Ipek, “Voltage Regulator Efficiency Aware
Power Management”, in ASPLOS, 2017.

[48] S. Kondguli and M. Huang, “A Case for a More Effective, Power-
Efficient Turbo Boosting”, in TACO, 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

