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ABSTRACT 
Power management is a key component of modern data 

center design. Power managers must (1) ensure the cost- and 
energy-efficient utilization of the data center infrastructure, 
(2) maintain availability of the services provided by the 
center, and (3) address environmental concerns associated 
with the center’s power consumption. While several power 
management techniques have been proposed and deployed in 
production data centers, there are still many challenges to 
comprehensive data center power management. This is par-
ticularly true in public cloud environments, where different 
jobs have different priority levels, and where high availability 
is critical. 

One example of the challenges facing public cloud data 
centers involves power capping. As power delivery must be 
highly reliable and tolerate wide variation in the load drawn 
by the data center components, the power infrastructure (e.g., 
power supplies, circuit breakers, UPS) has high redundancy 
and overprovisioning. During normal operation (i.e., typical 
server power demands, and no failures in the center), the 
power infrastructure is significantly underutilized. Power 
capping is a common solution to reduce this underutilization, 
by allowing more servers to be added safely (i.e., without 
power shortfalls) to the existing power infrastructure, and 
throttling power consumption in the infrequent cases where 
the demanded power exceeds the provisioned power capacity 
to avoid shortfalls. However, state-of-the-art power capping 
solutions are (1) not directly applicable to the redundant 
power infrastructure used in highly-available data centers; 
and (2) oblivious to differing workload priorities across the 
entire center when power consumption needs to be throttled, 
which can unnecessarily slow down high-priority work. 

To address this need, we develop CapMaestro, a new 
power management architecture with three key features for 
public cloud data centers. First, CapMaestro is designed to 
work with multiple power feeds (i.e., sources), and exploits 
server-level power capping to independently cap the load on 
each feed of a server. Second, CapMaestro uses a scalable, 
global priority-aware power capping approach, which 
accounts for power capacity at each level of the power 
distribution hierarchy. It exploits the underutilization of 
commonly-employed redundant power infrastructure at each 
level of the hierarchy to safely accommodate a much greater 
number of servers. Third, CapMaestro exploits stranded 
power (i.e., power budgets that are not utilized) in redundant 
power infrastructure to boost the performance of workloads 
in the data center. We add CapMaestro to a real cloud data 
center control plane, and demonstrate the effectiveness of all 
three key features. Using a large-scale data center simulation, 
we demonstrate that CapMaestro significantly and safely 

increases the number of servers for existing infrastructure. We 
also call out other key technical challenges the industry faces 
in data center power management. 

1. INTRODUCTION 
The power distribution infrastructure, which includes 

components such as power supplies, power feeds (i.e., 
sources), and circuit breakers, is a critical part of a data center, 
both in terms of its cost (tens of millions of US dollars) and its 
impact on availability. For highly-available data centers, the 
power distribution infrastructure often relies on redundancy at 
each level of the power distribution hierarchy to ensure 
reliable power delivery, spanning from multiple power 
supplies within individual servers all the way up to multiple 
utility feeds (i.e., external power sources) into the data center. 
This design, which uses N+N redundancy, provides two inde-
pendent sides for the power distribution infrastructure, where 
each server is connected to both sides, and each side connects 
to an independent power feed. N+N redundancy ensures 
continued availability in the event of failure of the power de-
vices on one complete side. 

For a data center with N+N redundancy, a safe yet con-
servative design choice is to ensure that each side of the power 
distribution infrastructure on its own can power the peak (i.e., 
worst-case) power demands of the entire center. This ap-
proach ensures that a failure in the power delivery infrastruc-
ture does not lead to downtime, especially in cases where a 
data center’s total power consumption exhibits wide 
variations, or cannot be anticipated in advance, such as in a 
public cloud. However, it also results in significant overpro-
visioning of power resources during normal operation, as the 
data center’s total power consumption may be much lower 
than its peak power, resulting in underutilized infrastructure. 

Many prior works [1, 3-5, 22-24, 28-31, 39, 40, 42-45] ex-
plore how to reduce overprovisioning for data centers without 
N+N redundancy. These works employ power capping, which 
throttles the amount of power consumed by servers during pe-
riods of peak demand, and, thus, reduces the load on the power 
distribution infrastructure. As a result, a data center can ac-
commodate more servers for a given power distribution infra-
structure than without power capping. With the gradual, 
industry-wide adoption of server power capping, today’s data 
centers have the means to shape power consumption in real 
time, so that potential power excursions (i.e., cases where the 
total load may exceed the maximum power capacity of the 
infrastructure) can be avoided. However, in highly-available 
data centers with N+N redundancy, existing power capping 
based approaches are unable to reduce a significant amount of 
overprovisioning in the power distribution infrastructure, for 
three key reasons. 
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First, in highly-available data centers, a server draws 
power from multiple power supplies, each connected to a 
different power feed (i.e., source), to distribute the load of the 
server across both available feeds. We find that there is typi-
cally an imbalance in the power drawn from each supply. In 
such cases, power capping must ensure that the power 
consumed from each power supply does not exceed the sup-
ply’s assigned power budget. Furthermore, the power load on 
one feed may be different from the load on the other (redun-
dant) feed, due to the addition of non-redundant equipment or 
due to temporary power connectivity issues. This imbalance 
may require different power budgets for each power supply of 
the server. Unfortunately, state-of-the-art server power con-
trollers [5-8] enforce only a single combined budget across all 
power supplies, and cannot ensure that the budgets for indi-
vidual power supplies are respected. This can cause one of the 
power feeds to become overloaded, leading to tripped circuit 
breakers and power loss on the overloaded feed. 

Second, existing power capping solutions are typically 
oblivious to the relative priority of each workload globally 
across the entire data center. State-of-the-art solutions such as 
Dynamo [5] are aware of workload priority, but only within a 
limited local group of servers. As a result of this limited view, 
existing techniques may unnecessarily cap a critical (i.e., 
high-priority) workload in one local group of servers, even 
though lower-priority workloads in another local group 
remain uncapped. 

Third, existing power capping solutions cannot guarantee 
that the power budgets allocated to the individual power 
supplies of a server are fully utilized. This is because a server 
does not equally split its power load across its multiple power 
supplies, and the actual split is an intrinsic property of the 
server that cannot be adjusted at runtime. If the allocated 
power budgets do not match with this inherent power split, 
some of the power budgeted to one supply may not be fully 
utilized. This unutilized budget is known as stranded power.  

To address these challenges, we propose CapMaestro, a 
new power capping architecture for public cloud data centers.  
CapMaestro unlocks the unused power capacity of a highly-
available data center, which is provisioned for peak power and 
redundancy, to power more servers under a fixed power 
budget, while still protecting every level of the power 
infrastructure from overload (and, thus, avoiding data center 
downtime). CapMaestro has three key new features compared 
to state-of-the-art power capping architectures. First, it uses a 
new closed-loop feedback power controller for servers, which 
protects each individual power supply of a server from over-
load. Our new controller manages power consumption at each 
supply in response to the unique power loads and limits ob-
served at each upper-level power infrastructure component, 
and therefore protects the safety of multi-feed, highly-availa-
ble data centers. Second, CapMaestro performs efficient 
global priority-aware budget allocation using a distributed 
algorithm across multiple coordinated power controllers, 
which enables fault-tolerant and scalable power capping. This 
is significantly different from prior power capping solutions, 
which are either priority-unaware or only locally priority-
aware. During a power emergency, CapMaestro shifts the un-
necessary portion of power budgets (i.e., any power greater 

than the minimum needed) for low-priority workloads to high-
priority workloads. As a result, a data center using CapMaes-
tro can house more servers than a data center with state-of-
the-art power capping, while still (1) protecting the high-pri-
ority workloads from being throttled and (2) guaranteeing the 
minimum required performance of low-priority workloads. 
Third, CapMaestro includes an optimization that adjusts the 
server power budgets to shift stranded power to servers that 
are currently throttled and, thus, improves server performance 
without exceeding global power budgets.  

We implement CapMaestro as a scalable control plane 
service. Importantly, our solution is designed to be applicable 
with minimal changes to existing data centers. We use real-
system experiments to demonstrate its effectiveness at power 
capping in a multi-feed data center power infrastructure with 
global priorities. To evaluate the effectiveness of CapMaestro, 
we perform a large-scale data center simulation using server 
load data for a Google data center [27]. We find that, for an 
example shared data center where 30% of the server work-
loads are high priority, CapMaestro enables the data center to 
support 50% more servers than if power capping was not em-
ployed, and supports 20% more servers than a state-of-the-art 
power capping solution [5] that we modified to support 
multiple power feeds. During a worst-case power emergency, 
we show that CapMaestro redistributes power such that the 
power emergency has only a negligible impact on the 
performance of high-priority workloads, compared to their 
performance during normal operation. 

We make the following key innovations in CapMaestro: 
• We show that servers with redundant power feeds do not 

often draw the same load from each power feed, and that 
this imbalanced load can negatively affect power budgeting 
during power capping. 

• We propose CapMaestro, the first global priority-aware al-
gorithm for data center power management that uses 
distributed, coordinated power controllers to enforce power 
limits at all levels of the power infrastructure. 

• We design the first closed-loop feedback power controller 
for servers with multiple power supplies.  

2. BACKGROUND 
In this section, we first review a typical data center power 

infrastructure design, and then discuss power capping 
techniques at the server and data center levels. 

2.1. Data Center Power Delivery 
Figure 1 illustrates the power infrastructure for a typical 

data center. Power from the utility is delivered to the building 
at 12.5kV ( in Figure 1), and is stepped down to 480V for 
distribution. The 480V power then goes through an automatic 
transfer switch (ATS; ), which can switch to an on-site gen-
erator as a power source if the utility feed fails. Another layer 
of transformers () after the ATS steps the voltage down 
further, providing a 3-phase line-to-line voltage of 400V. The 
corresponding line or phase voltage is 230V. Remote Power 
Panels (RPPs; ) are 42-pole boxes containing circuit break-
ers (CBs) that connect to cabinet distribution units (CDUs; 
) in the racks. 3-phase power is delivered to the CDUs from 
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the RPPs. The outlets on the CDU receive power at 230V from 
one of the three phases, and a server power supply () is 
plugged into the outlet. 

At each branch of a distribution point, there are CBs that 
limit the amount of current, to protect the power infrastructure 
and guard against cascading failures to upstream (i.e., higher) 
components due to short circuits and overload conditions. In 
this paper, we use the distribution point power limit to refer to 
the maximum amount of power that the corresponding CB or 
transformer allows. CBs are rated in terms of maximum 
current, but we convert them to their equivalent power values. 
When a CB trips, downstream power delivery is interrupted, 
potentially causing server power outage.  

Redundant power feeds provide higher availability and 
resilience against power interruption. Servers rely on two or 
more power supplies connected to independent power feeds. 
Even if one of the power feeds or supplies fails, the remaining 
keep(s) the server operational. Ideally, power supplies should 
equally share the server power load, but in practice, the server 
load distribution varies from supply to supply. 

Conventional practice in data centers is to not have 
sustained power load exceed 80% of the maximum rating for 
CBs and transformers [21] to avoid risk of damaging the 
power infrastructure. For example, a 30A 3-phase breaker 
may only be loaded to 24 A on each phase. When a power feed 
fails, its power load shifts to the remaining power feed, whose 
CB will see double the load. The server power connections 
must ensure that this doubled load doesn’t exceed 80% of the 
CB rating. Otherwise, the CB may trip during the failure, and 
the servers downstream of the CB will lose power [5]. In our 
example with redundant (dual) 30A feeds, the per-phase load 
on each feed would need to be limited to 12A (40% of 30A) 
to ensure that the load during a failure is limited to 24A (80%). 

In our work, we load CBs up to 80% under normal 
conditions because we employ power capping. When a feed 
fails, the breaker on the redundant feed becomes overloaded 
to 160%. The time it takes for a CB to trip depends on the 
amount of overload. For example, CBs covered under the UL 
489 standard [17] (a widely-adopted industry CB standard) 
will operate for a minimum of 30 seconds before tripping 

when under 160% load [11, 17]. Within that 30-second 
window, our capping solution throttles the associated servers 
to ensure the load comes down to within 80% of the rating, 
which thus avoids tripping the CB and protects the servers 
against downtime. 

2.2. Server Power Capping 
In the past decade, power capping has become a common 

feature in servers to keep the server within a power limit [6, 7, 
8, 25]. Typically, the power controller measures the server 
power and throttles the CPU (scaling its voltage and 
frequency) and other components to enforce the power limit. 
Prior work has shown that such controllers can generally per-
form decisions within a few seconds [6].  

The range of power control can be characterized by 
running the most power-demanding workload at the highest 
and lowest performance states of the server at the highest 
allowed ambient temperature. For a server, Pcap_min is the 
power consumed by the server at the lowest performance 
state, and Pcap_max is the power at the highest performance 
state. Any power budgeted to the server above Pcap_max is 
wasted, as the server never uses the additional power, and a 
budget less than Pcap_min cannot be enforced by a power cap-
ping mechanism. 

Capping server power consumption allows us to directly 
control the power load seen by CBs and transformers. The 
timescale of power capping is an order of magnitude faster 
than the trip time of CBs. This allows server power capping to 
adequately protect against tripping of CBs. 

3. DESIGN GOALS 
CapMaestro addresses three key challenges in leveraging 

server power capping for power management: (1) accounting 
for multiple power feeds (Section 3.1), (2) incorporating 
workload priorities globally in power capping decisions (Sec-
tion 3.2), and (3) capturing and making use of stranded power 
in a redundant power infrastructure (Section 3.1). These chal-
lenges are important to address for highly-available data 
centers but have not been addressed in prior works. 

3.1. Power Capping for Multiple Power Feeds 
and Stranded Power 

The power load across multiple power feeds is not 
perfectly balanced. We observe this at all levels of the 
infrastructure for three reasons. First, servers with multiple 
power supplies do not split their power load equally between 
their power supplies. In our servers with two power supplies, 
there can be as much as a 15% mismatch across the two 
supplies, e.g., the power supply connected to the B-side feed 
can draw 65% of the total server power, as opposed to the ex-
pected 50%. This power mismatch varies from server to server 
and is an intrinsic property of each server (i.e., is independent 
of the workloads), and cannot be adjusted during use. Addi-
tional data is available in our technical report [41]. Second, 
power device failures (e.g., failed power supplies or power 
feeds) may also lead to imbalanced load between different 
power feeds. Third, to increase energy efficiency, some 
servers can put a redundant supply in standby mode (drawing 
no power) when the server load is below a certain level [34]. 

 
Figure 1. Example power distribution infrastructure in a data center. 
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An imbalanced load between different power feeds forces 
power managers to assign and regulate a separate budget for 
each power supply of a server. For example, a server with two 
power supplies (Supplies A and B) may get a budget of 200W 
on Supply A (which is connected to the A-side feed) and only 
100W on Supply B (which is connected to the B-side feed), 
because other servers exert a greater power load on the B-side 
feed, leaving less power available to assign to Supply B. How-
ever, existing server power capping solutions, which only 
limit the combined load across all power supplies, do not 
consider this need for individual per-supply power budgets, 
and therefore may not adequately protect the upstream circuit 
breaker for each power supply. To tackle this challenge, we 
propose a server power controller that enforces an individual 
power budget per supply in Section 4.2. Furthermore, in this 
example, when Supply B’s power budget (100W) is fully con-
sumed, Supply A’s power budget (200W) may not be fully 
consumed, as these power budgets may not match with the 
way that the server’s power load is split between its supplies. 
As a result, some portion of Supply A’s budget would be left 
stranded (i.e. unutilized). It is desirable to reallocate (at least 
some portion of) stranded power to other power-constrained 
servers to improve their performance. To do this, we propose 
a stranded power optimization mechanism in Section 4.4.  

3.2. Global Priority-Aware Power Capping 
In a data center, some workloads can be more important 

than others (e.g., due to different pricing, workload heteroge-
neity, or service function). It is desirable to give sufficient 
power to these important workloads during power emergen-
cies, so that their performance is not impacted. To do this, Fa-
cebook introduces the notion of priority in Dynamo [5], their 
power management system, to characterize the quality of 
power availability offered to different workloads. They assign 
higher priority to more important workloads, and try not to 
throttle them during a power emergency. This notion of prior-
ity is especially important in public clouds, where service level 
agreements (SLAs) are often expressed as the amount of re-
sources (e.g., the number of CPU cores) that a user subscribes 
to, instead of a workload performance metric. This is because 
public cloud operators generally do not have access to user 
code, and are unable to measure performance directly.  

One drawback of existing priority-based power allocation 
schemes, including Dynamo, is that to remain scalable, they 
consider priorities at best only between local groups of servers 
under a single power constraint (e.g., a branch circuit), and do 
not incorporate priority across higher levels of the power dis-
tribution infrastructure (e.g., they do not have a way to man-
age priorities across all of the servers connected to an RPP). 
This limits the ability to truly share power across the entire 
data center. In this work, we want to prioritize important 
workloads globally (across the entire data center) and give 
them sufficient power during a power emergency, by letting 
them borrow power from lower-priority workloads on a 
common power feed, regardless of the location of the physical 
server. 

Figure 2 shows an example with four servers SA, SB, SC, 
and SD under a total power budget of 1240W for a single 
power feed. The servers connect to a power feed of three CBs: 

a top-level CB rated at 1400W, and two child CBs rated at 
750W each, which we call Left CB and Right CB. These four 
servers have an equal power demand of 430W each, and they 
each have Pcap_min = 270W. Suppose SA has high priority, 
while the other servers have low priority (we use 2 priorities 
in this example for illustration; our mechanisms can support 
an arbitrary number of priorities). Table 1 shows how much 
power each server is budgeted under a local priority-aware 
power capping policy, and how power would be budgeted if 
the policy were instead global priority-aware. At the top level, 
the local priority-aware policy splits the total power budget 
equally across the Left and Right CBs, as only the lowest-level 
CBs have the knowledge of and enforce server priorities. 
Therefore, under a total power budget of 1240W, both Left 
CB and Right CB are assigned a power budget of 620W. As 
SB can at most be throttled down to 270W (Pcap_min), SA can 
only receive a power budget of 350W (i.e., 620W – 270W), 
even though it demanded 430W. In contrast, a global priority-
aware policy knows at the top level that one of the servers 
under Left CB has high priority. As a result, the policy 
allocates more power to Left CB, allowing SA to be budgeted 
the full 430W that it demands. A global priority-aware policy 
ensures that a higher priority server is not throttled when lower 
priority servers anywhere in the data center can be capped to 
meet a given power constraint. We introduce a global priority-
aware power capping algorithm in Section 4.3. 

 

4. CAPMAESTRO: DESIGN OVERVIEW 
CapMaestro is a new scalable power management solution 

for data centers that achieves the three design goals described 
in Section 3. At a high level, CapMaestro employs a light-
weight power control framework to efficiently collect power 
demand information and enforce power budgets for each node 
in the power infrastructure hierarchy, including each individ-
ual server power supply (Sections 4.1 and 4.2). CapMaestro 
uses the collected power demand information to determine 
power budgets for each node based on a new global priority-
aware power capping algorithm (Section 4.3). Once global 
priority-aware allocation finishes, CapMaestro optimizes 
stranded power by identifying the nodes where assigned 
power is underutilized, and then reassigning this power where 
it is needed in the hierarchy (Section 4.4).  

Server SA SB SC SD 
Priority (H = high, L = low) H L L L

Power Demand (W) 430 430 430 430
Budget with Local Priority (W) 350 270 310 310

Budget with Global Priority (W) 430 270 270 270
Table 1. Power budget assignments using local per-CB vs. global priorities.

Figure 2. Example power feed with various server priorities. 
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4.1. System Overview 
CapMaestro uses a power control tree that mirrors the 

hierarchy of the power infrastructure. Figure 3 shows how the 
controllers in the tree map to the physical infrastructure com-
ponents. At the bottom of the tree, capping controllers 
manage the power of individual server/IT equipment using the 
built-in server power capping mechanism. At each higher 
level of the tree, we use a power shifting controller that 
distributes the power budget at that level among the nodes fed 
from that distribution point. Each shifting controller is 
mapped to a single physical device, and adheres to (1) the de-
vice’s power limit (e.g., maximum power allowed by a trans-
former, RPP, or CDU), and/or (2) a contractual budget (i.e., 
the maximum total power that a data center has negotiated to 
draw from the utility across all feeds). 

  
To account for redundant power infrastructure, we 

replicate the power control tree for each power feed of the data 
center. We also replicate the power control tree for each phase 
of power delivery to protect each phase independently, since 
loading on each phase is not always uniform. For a data center 
with two power feeds with three phases each, our power 
control framework has six control trees. The shifting 
controllers on one power feed operate independently from 
shifting controllers on the other feed, while each server has a 
single capping controller that is shared across multiple trees. 
For a server with multiple power supplies, its capping 
controller adjusts the frequency/voltage of the entire server, 
affecting the load on all of the server’s power supplies. This 
capping controller that addresses the power budgets for mul-
tiple supplies (from their corresponding trees) by controlling 
the server cap is a novel contribution. 

Each server has a specific priority level. When servers run 
VMs or containers with different priorities, one could set 
server priority based on the priorities of the set of 
VMs/containers assigned to a server or assign VMs/containers 
to servers based on their priorities. A server’s capping 
controller calculates relevant server metrics (e.g., power 

demand), which flow upstream in the control trees to the 
shifting controllers in the next level up. Each shifting 
controller produces priority-based metrics summarizing the 
sub-tree that it controls, based on the metrics that the shifting 
controller receives from its child nodes. To perform global 
priority-aware power capping, a key insight is that we need to 
convey upstream only the metrics summarized by priority 
level, and not individual server metrics for all servers in a sub-
tree. In practice, we expect a data center to have only a small 
number of priority levels (on the order of 10); thus, the 
priority-based summaries provide us with a compact way to 
represent metrics for thousands of servers. This allows the 
shifting controller at the root node to efficiently have a global 
view of the power demand across the entire data center. With 
this view, the root shifting controller easily routes power (by 
assigning power budgets to its child nodes) towards the most 
critical servers by comparing priority-based metrics from each 
of its child nodes, while respecting the power limits of the 
intervening CBs and transformers along the control tree. 
These budgets flow downstream, and are recursively allocated 
until the budgets reach the capping controllers (see 
Sections 4.3 and 4.4 for algorithm details). After a power 
budget is assigned to a capping controller, the controller 
(Section 4.2) ensures that for each power supply of the server, 
the per-supply power budget is not exceeded by the power 
consumption on that supply.  

Our control trees mirror the physical electrical connections 
of the data center, allowing us to model situations unique to 
each data center or portions of it. For example, CapMaestro 
can (1) manage both multiple- and single-corded devices; 
(2) deal with equipment that does not include power capping 
technology, by setting the metrics to assign a fixed maximum 
power for that equipment; (3) capture servers plugged into 
multiple phases of power; and (4) work with power budgets 
based on restrictions aside from physical equipment limits, 
e.g., contractual budgets. 

4.2. Power Supply Budget Enforcement  
To protect the independent power feeds of the redundant 

power infrastructure, we design a proportional-integral 
(PI) [15] feedback controller for CapMaestro that guarantees 
adherence to AC power budgets on the power consumption of 
each power supply in a server. Our controller employs the 
server power capping controls of Intel Node Manager [7], 
which cap only the total DC power of the server. The input to 
our controller is the external AC power budget for each power 
supply. These budgets are determined by the power capping 
algorithm that protects each power feed. The budgets for the 
power supplies of a server may have unequal values, 
depending on the load on each power feed. The controller 
determines the proper DC power cap for the node manager to 
enforce the AC power budgets for all supplies. 

Figure 4 shows our control diagram. First, each control 
iteration calculates an error for each power supply by 
subtracting its measured power from its budget ( in Fig-
ure 4). This error quantifies how much the drawn AC power 
falls short of the assigned AC budget on each power supply. 
Then, the controller selects the minimum error across all 
power supplies (to make the most conservative correction). 

  
Figure 3. Mapping physical equipment from a single power feed to 

controllers in the power control tree, and to worker VMs. 
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The stranded power optimization mechanism will later shift 
the unused power budgets to other servers for better utilization 
(Section 4.4). Second, the minimum power supply error is 
scaled by the power supply efficiency (k) to transform from 
AC power domain to DC power domain (k can be determined 
from the power supply specification), and then further scaled 
by the number of working (non-faulty) power supplies (M) to 
account for how much DC power the full system power needs 
to be adjusted by (). Third, the scaled error is added to the 
integrator (which stores the previously desired DC cap) to cal-
culate the currently desired DC power cap (). The controller 
then clips the calculated DC power cap based on the maxi-
mum and minimum power values that the controller can cap 
to (), and sends the cap value to the node manager, which 
manages the processor frequency and voltage to meet the DC 
power cap. 

4.3. Global Priority-Aware Power Capping 
CapMaestro’s global priority-aware power capping 

algorithm allocates power budgets across a control tree of 
shifting and capping controllers, respecting the data center 
contractual budgets and the power limits of multiple levels of 
CBs and transformers while safely trying to satisfy as much 
of the power demand of each server. For both non-redundant 
and N+N redundant power distribution infrastructures, each 
control tree runs this algorithm independently.  

Our algorithm runs iteratively, with each iteration consist-
ing of two phases. In the metrics gathering phase, each 
shifting controller receives power allocation requests (and 
other metrics) from its child nodes. These metrics are grouped 
by priority value, which corresponds to the priority level of 
the workloads running on the servers under the child node. 
The shifting controller then aggregates these metrics from all 
its children by priority value, and sends the aggregated metrics 
upstream to its parent node. In the budgeting phase, each 
shifting controller receives its power budget from its parent 
node, and then computes and sends power budgets 
downstream for its child nodes based on the power budget as-
signed to the controller and the priority-based metrics of its 
child nodes. At the bottom, each capping controller receives 
an individual budget for each of its power supplies (from the 
corresponding leaf shifting controller), and uses the method 
discussed in Section 4.2 to set a power cap for the 
corresponding server. 
4.3.1. Metrics Gathering Phase 

CapMaestro computes the following metrics at each node 
(a node may correspond to a shifting or capping controller) at 

level i of the power distribution hierarchy (where level 0 cor-
responds to a server, level 1 corresponds to the per-server cap-
ping controllers, and higher level numbers correspond to shift-
ing controllers): 
• Pcap_min(i, j): the minimum total power budget that must be 

allocated to servers with priority level j under the node. 
• Pdemand(i, j): the total power demand of servers with priority 

level j under the node. 
• Prequest(i, j): the power budget that is requested by servers 

with priority level j under the node. If the node corresponds 
to a capping controller, this will be the power demand of the 
single server governed by the capping controller. If the node 
corresponds to a shifting controller, this may be lower than 
the total power demand of servers with priority level j under 
the node, because the servers may demand more power than 
what the circuit breakers under the node allow. 

• Pconstraint(i): the maximum power budget that can be allo-
cated safely to all servers under the node (no matter what 
their priorities are). This metric is limited by the power limit 
of the node, power limits for downstream shifting 
controllers, and Pcap_max for the downstream capping 
controllers.  

The computation of metrics differs between the capping 
and shifting controllers. At each capping controller, when j 
equals the priority level of the server whose power supply is 
being governed by the controller, we calculate the metrics as: 𝑃௖௔௣_௠௜௡(1, 𝑗) = 𝑟 ×  𝑃௖௔௣_௠௜௡(0) 𝑃ௗ௘௠௔௡ௗ(1, 𝑗) = 𝑟 ×  max൛𝑃ௗ௘௠௔௡ௗ(0),  𝑃௖௔௣_௠௜௡(0)ൟ 𝑃௥௘௤௨௘௦௧(𝑗) = 𝑃ௗ௘௠௔௡ௗ(𝑗) 𝑃௖௢௡௦௧௥௔௜௡௧ = 𝑟 ×  𝑃௖௔௣_௠௔௫(0) 
where r is the fraction of the server load borne by that power 
supply (nominally 1/M, where M is the number of working 
power supplies; we adjust it in practice based on how the load 
is actually split between the working power supplies of the 
server), Pcap_min(0) and Pcap_max(0) are the minimum and 
maximum controllable AC power budgets for the server, and 
Pdemand(0) is the amount of power that workloads running on 
the server consume at full performance (we discuss how to 
estimate this in Section 5). Since the capping controller gov-
erns only one server power supply, its minimum power budget 
depends solely on the minimum power budget for the server. 
When we calculate Pdemand(1, j), we choose the maximum of 
Pdemand(0) and Pcap_min(0), and then scale it with r. This is 
because if the server is running light workloads, Pdemand(0) 
may be less than Pcap_min(0). In this scenario, our power 
capping algorithm needs to ensure that the aggregate power 
budget allocated to the server across its power supplies stays 
within the controllable range; otherwise, the power cap on the 
server may not be enforceable if the server load suddenly 
increases later. For j not equal to the server priority, the 
corresponding metric values are zero.    

At each shifting controller, we calculate the metrics, in 
descending order of priority (i.e., highest priority first), as: 𝑃௖௔௣_௠௜௡(𝑖, 𝑗) = Σ௞𝑃௖௔௣_௠௜௡௞(𝑖 − 1, 𝑗) 𝑃ௗ௘௠௔௡ௗ(𝑖, 𝑗) = Σ௞𝑃ௗ௘௠௔௡ௗ௞(𝑖 − 1, 𝑗) 

Figure 4. Capping controller enforcing budgets on power supplies (PS). 
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𝑃௥௘௤௨௘௦௧(𝑖, 𝑗) = 

min ൞𝑃௟௜௠௜௧ −  ෍ 𝑃௥௘௤௨௘௦௧(𝑖, ℎ)௛வ௝ −  ෍ 𝑃௖௔௣_௠௜௡(𝑖, 𝑙)௟ழ௝ ,
Σ௞ 𝑃௥௘௤௨௘௦௧௞(𝑖 − 1, 𝑗) ൢ 

𝑃௖௢௡௦௧௥௔௜௡௧(𝑖) = min൛𝑃௟௜௠௜௧,  Σ௞𝑃௖௢௡௦௧௥௔௜௡௧௞(𝑖 − 1)ൟ 

where k is a child node iterator; j, h, and l are priority levels; 
and Plimit is the power limit of the shifting controller. For 
Pcap_min and Pdemand, we aggregate the corresponding metrics 
that each of the child nodes k on level i–1 report to the shifting 
controller. To calculate Prequest, we need to consider two fac-
tors. First, for a priority level j, no server with a higher priority 
level h (i.e., h > j) should be capped before a server at priority 
level j. Therefore, servers at priority level j are allowed to re-
quest as much power as they can, provided that all higher-pri-
ority servers get all of the power that they request, and that all 
lower-priority servers have enough power left over to operate 
at their minimum possible power level. We call this the maxi-
mum allowable power request for priority level j. Second, if 
the maximum allowable power request is greater than the ac-
tual sum of power requested by the child nodes at priority 
level j, then the total power request for level j is reduced to the 
actual requested power. We set Pconstraint to the lower of (1) the 
power limit of the current shifting controller and (2) the sum 
of the power limits of the controllers at level i–1. 
4.3.2. Budgeting Phase 

The budgeting phase at each shifting controller distributes 
its power budget among its child nodes in four steps: 
1. Allocate Pcap_min of power to each child. 
2. Iterate over the priority levels (j) from highest priority to 

lowest priority, to further allocate any additional power re-
quested by each child node (i.e., Prequest – Pcap_min). If the 
power remaining in the controller’s budget is not enough 
to meet the power requested for any priority level during 
this step, go to Step 3; else, go to Step 4 after finishing all 
priority levels. 

3. For the last priority level j whose power demand could not 
be completely fulfilled in Step 2, proportionally give the 
remaining budget to each child k based on the amount of 
power that the child demands over its minimum required 
power (Pdemand – Pcap_min). 

4. If there is any unallocated power remaining after fulfilling 
all power requests, assign this power to the child nodes up 
to Pconstraint. 
We have rigorously proven that our global priority-aware 

power capping algorithm allows servers with high priority to 
always be throttled after servers with lower priorities, as long 
as the power limits in the data center allow. The proof is avail-
able in our extended technical report [41]. 

4.4. Stranded Power Optimization 
As we discuss in Section 3.1, power loads may be imbal-

anced between different power feeds of a data center. This can 
lead to mismatched power budgets for a server’s power 
supplies, such that a portion of the power budget assigned to 

one of the supplies may be stranded (i.e., unutilized). Ideally, 
a power capping algorithm should reassign this stranded 
power to the budget of another server on the same power feed 
that requested more power than it has currently been budgeted. 

Our stranded power optimization (SPO) mechanism runs 
after CapMaestro performs the global priority-aware power 
capping algorithm. With SPO, CapMaestro does not apply the 
budgets generated by power capping immediately. Instead, 
based on each power supply’s assigned budget, and the inher-
ent distribution of load between the multiple power supplies 
of a server, CapMaestro determines which supplies have 
stranded power, and then reduces the power budgeted to each 
of these supplies to the actual amount that the supply can use 
(i.e., such that no stranded power remains). This frees up the 
stranded power for re-budgeting elsewhere in the feed. Once 
this requested power reduction is complete for all supplies, 
CapMaestro runs the power capping algorithm a second time, 
which shifts the previously-stranded power (now unallocated) 
to servers that were capped before SPO. 

5. IMPLEMENTING CAPMAESTRO 
We implement a prototype of CapMaestro as an integral 

service that can be run in a real cloud data center control 
plane. We group and run the shifting and capping controllers 
of CapMaestro into VMs called worker VMs, as shown in Fig-
ure 3. Our system is flexible in terms of (1) the mapping of 
controllers to worker VMs, and (2) supporting an arbitrary ar-
rangement of a multi-level worker hierarchy. A good mapping 
should be based on (1) the number of servers deployed and 
(2) the configuration of the power distribution hierarchy in the 
data center. 

For a typical multi-rack data center, we envision that the 
data center manager would deploy VMs for (1) rack-level 
workers for each rack of servers, and (2) a room-level worker 
for the entire data center. Each rack-level worker protects its 
assigned rack’s CDU (cabinet distribution unit; see Sec-
tion 2.1). One rack-level worker contains 6 CDU-level shift-
ing controllers (one for each phase, where we have 2 feeds, 
and 3 phases per feed) and 45 capping controllers (one cap-
ping controller for each server in the rack). The worker calcu-
lates the server metrics discussed in Section 4.3 (e.g., power 
demand, minimum power budget, requested power budget), 
communicates with the upstream worker to exchange metrics 
and receive budgets, and assigns power budgets to the server’s 
node manager every control period (8 seconds in our setup). 
The room-level worker protects RPPs (redundant power pan-
els; see Section 2.1), transformers, and the contractual power 
budget that governs all racks. Like the rack-level workers, the 
room-level worker calculates metrics and determines budgets 
every control period (8 seconds). 

For our real-system experiments in Section 6, we deploy 
our CapMaestro prototype across a small test bed with a data 
center control plane. In this case, we use a single worker that 
consists of one capping controller per server, and two levels 
of shifting controllers. The controllers in the single worker 
faithfully execute the entire CapMaestro algorithm. 

Every second, each capping controller reads sensors for 
the server under its control, using the Intelligent Platform 
Management Interface (IPMI) [26]. The sensors include AC 
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power monitors for the two power supplies and the power cap 
throttling level. The power cap throttling level is an Intel Node 
Manager [7] metric that quantifies the current fraction of 
server voltage/frequency throttling. Every 8-second control 
period, the capping controller averages the per-second 
readings and computes the server-level metrics. By averaging 
the readings at this granularity, CapMaestro’s power capping 
controller provides a more stabilized response while still be-
ing fast enough to address failures in the power distribution 
infrastructure. The capping controller then sends the metrics 
to upper-level nodes, and shortly thereafter receives a budget 
to allocate to each power supply. The capping controller sets 
the DC power cap based on this budget by sending the cap to 
the node manager on the server’s baseboard management 
controller [33] via IPMI [26]. The node manager then ensures 
that the server power is within the cap in 6 seconds. In other 
words, a new power cap is set in at most 14 seconds, well 
within the 30-second window during which the infrastructure 
components can tolerate exceeding the power limit if a failure 
occurs (see Section 2.1). 

Each capping controller computes the power demand 
(Pdemand) of its assigned server using a regression method [16]. 
The capping controller uses per-second readings of the server 
power consumption and power cap throttling level over the 
last 16 seconds, and builds a regression model that correlates 
server power to throttling levels. With this model, the control-
ler can estimate the server power at 0% throttling (i.e., the 
maximum power consumed by the server for the workload), 
which it sets as Pdemand. If power is measured during an interval 
when the power cap throttling is set to 0%, then the controller 
uses the actual measured power instead of the regression 
model prediction. 

Overhead and Scalability Analysis. CapMaestro has a 
minimal cost and good scalability. First, our control frame-
work makes use of existing node managers, such as the Intel 
Node Manager [7], to control server power, which are already 
built into the firmware of each server. CapMaestro requires no 
additional overhead to make use of the existing node manager. 
Second, one level up from the servers, we reserve one core per 
rack to run a rack-level worker (each rack has 1260 cores; 
therefore, 1/1260 = < 0.1% overhead), which completes rack 
sensing in 1 second (sensing all nodes in parallel), rack budg-
eting in 10 ms, and capping (i.e., calculating and sending the 
DC power cap to each server) within 1 second. The commu-
nication between this worker and the upstream worker is on 
the order of milliseconds, as we measure in real systems. The 
computation and communication overhead of a rack-level 
worker does not change when we add more racks for large 
data centers, allowing the worker to scale easily to large data 
centers. Third, at the top of our control framework, we reserve 
one core in the data center to run the room-level worker. The 
computation time of a shifting controller grows linearly with 
the number of its child controllers. Given that, and the fact that 
the room-level worker has no capping controllers, we estimate 
the computation time for the room-level worker deployed on 
a large data center with 500 racks to be well under 300 milli-
seconds (500/45 x 10 milliseconds x 2 feeds < 300 millisec-
onds). Hence, the room-level worker scales to realistic data 

center sizes. In summary, CapMaestro uses less than 0.1% of 
the data center’s resources, and can scale well for large data 
centers.  

6. EVALUATION 
We experimentally evaluate each aspect of CapMaestro on 

a real small-scale cloud test bed, demonstrating that it can 
successfully (1) enforce different budgets for multiple power 
supplies of a server using server power capping (Section 6.1), 
(2) perform global priority-aware power capping across 
hierarchical power constraints in the entire data center 
(Section 6.2), and (3) optimize stranded power for redundant 
power feeds (Section 6.3) based on real system experiments. 
Our test bed contains 28-core servers that each run the Apache 
HTTP Server [18] as a representative cloud workload (with a 
separate client cluster running the Apache benchmarking tool 
ab [19], which is not part of our evaluation). Aside from our 
real system experiments, we determine the improvement in 
server capacity under CapMaestro by performing a large-scale 
data center simulation based on characteristics measured from 
our real servers (Section 6.4).  

6.1. Server Power Cap Enforcement 
Figure 5 shows how our controller in Section 4.2 enforces 

power budgets on the individual power supplies (labeled PS1 
and PS2 in the figure) of a representative server from our test 
bed. We make two observations from the figure. First, at the 
beginning of the execution period, the budgets for both 
supplies are higher than the loads, and there is no throttling, 
as each supply is budgeted more than enough power. Second, 
at t=30s, when we lower the budget for PS2 to 200W, the Cap-
Maestro controller prototype responds by computing and 
applying the resulting DC cap for the server that lowers PS2’s 
power down to the new budget. The node manager then 
applies the DC cap to the server, which lowers the server load 
on both PS1 and PS2. Third, at t=110s, when we assign an 
even smaller budget of 150W to PS1 (making it the more 
constrained of the two power supplies), CapMaestro computes 
and applies the corresponding DC cap to bring down the 
server load, which reduces both supplies’ power consumption. 
In both cases, CapMaestro’s power capping controller 
recognizes which of the power supplies has the more 
constrained budget, and ensures that the server load is lowered 
enough so that the power supply loads satisfy the more 

  
Figure 5. Power capping for redundant power supplies (PS1 and PS2).  

Throttling refers to power cap throttling. 
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constrained budget. Overall, the power settles to within 5% of 
the assigned budgets within two control periods (16 seconds). 

6.2. Comparison of Power Capping Policies 
To evaluate the benefits of global priority-aware power 

capping, we set up four real servers using the hierarchy shown 
in Figure 2. We run experiments on these servers to represent 
the conceptual example that we describe in Section 3.2, where 
we need to budget power to a combination of high-priority and 
low-priority servers. In our setup, all four servers are powered 
by a single power feed, to emulate a power failure scenario in 
a redundant power infrastructure where a second power feed 
has failed (which necessitates power capping). Each server 
consumes an average of 420W without power capping, and 
has a minimum power consumption (Pcap_min) of 270W. Server 
SA is assigned high priority, and the other three servers (SB, 
SC, and SD) are assigned low priority.  

We evaluate the power allocated to each server under three 
different power capping polices: No Priority, Local Priority 
(a version of the state-of-the-art Dynamo [5] mechanism that 
supports redundant power feeds), and Global Priority (i.e., 
our policy under CapMaestro). A No Priority power capping 
policy, after guaranteeing that each server receives at least 
Pcap_min, distributes the remaining power proportionally to 
each server based on the server’s value of Pdemand – Pcap_min. 
Our version of the Local Priority capping policy enforces the 
notion of priority only at the lowest controller level, while the 
higher-level controllers distribute power to each branch using 
a No Priority policy. To implement the Local Priority policy, 
we extend Facebook’s Dynamo [5] to support power budget 
assignments and capping for a redundant power infrastructure. 
Our Global Priority policy in CapMaestro enforces a common 
priority system at every power controller (Section 4.3). For all 
three policies, we set the total power budget of the servers to 
1240W. Since this does not cover the full 1680W demanded 
by all four of the servers, each policy needs to perform some 
form of power capping. 

Table 2 shows the power budgets assigned by these three 
policies to each of the four servers (SA, SB, SC, and SD) when 
the workloads are in a steady state. We observe that our Global 
Priority policy for CapMaestro lets the high-priority server SA 
consume 419W, which is very close to its full power demand 
(420W). In contrast, the Local Priority and No Priority poli-
cies cannot allocate the full power to SA despite its high pri-
ority. In particular, the Local Priority policy recognizes prior-
ities in only a local group, and so it can allocate power from 
SB to SA to alleviate the capping of SA’s workload, but it 
cannot allocate power from SC and SD. The Global Priority 
policy can redistribute power to SA from all three other serv-
ers. This allows the workload running on SA to achieve a 
higher throughput and lower latency with Global Priority than 
with the Local Priority or No Priority policies. 

Figure 6a shows the measured throughput of each server, 
normalized to an ideal baseline where no power capping takes 
place (where the throughput is defined as the number of que-
ries completed per second). We make two observations from 
the figure. First, for SA, the No Priority policy results in 18% 
lower throughput (and 21% higher average latency) relative to 

the uncapped performance of SA, while the Local Priority pol-
icy results in 13% lower throughput (and 15% higher latency). 
With the Global Priority policy, SA achieves the same 
throughput (and latency) as if it were uncapped. Second, the 
improved throughout for SA under Global Priority comes with 
only a small reduction in throughput for the other three serv-
ers. We conclude that Global Priority is an effective method 
to maximize the throughput of higher-priority jobs that may 
exist anywhere in the data center. 

Figure 6b shows the total power consumption that we 
measure at the top, left, and right circuit breakers (CBs) under 
our Global Priority policy. We observe that the total power 
consumption is below the respective limits of the top CB 
(1240W), and of the left and right CBs (750W). This 
demonstrates that our policy can successfully redistribute 
power while ensuring that the actual power consumption 
respects power limits and budgets in the data center, which in 
turn guarantees power safety.   

6.3. Impact of Stranded Power Optimization 
To demonstrate CapMaestro’s Stranded Power Optimiza-

tion (SPO), we connect four servers (SA, SB, SC, and SD) to 
two redundant power feeds (X-side and Y-side), as shown in 
Figure 7a. Server SA has high priority, while the other three 
servers have low priority. We disconnect the Y-side supply of 
SA and the X-side supply of SB. SC and SD draw power from 
both power feeds (albeit unequally due to the inherent power 
split mismatch of each power supply belonging to a server). 
Each power feed is given a budget of 700W (i.e., the total 
budget is 1400W), and the rating for the top and bottom CBs 
is set at 1400W each in order to provide N+N power delivery 
in the event of a power failure. We set the rating of the left and 
right CBs to 750W each. 

 
 (a) Server throughput after capping (b) CB power 

Figure 6. (a) Server throughput after power capping policies, normalized to 
uncapped server throughput; (b) Power at each CB under Global Priority. 
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Table 2. Server power budgeted by each power capping policy. 
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Table 3 shows the allocated power budgets and the aver-
age power measured at each server on the X-side and Y-side 
power feeds, under different power capping policies. For 
Global Priority power capping without SPO, SC and SD 
receive a power budget of 164W and 187W, respectively, on 
the Y-side. However, SC and SD actually use only 137W and 
158W, respectively, from the Y-side, due to the lower amount 
of power budgeted by the X-side feed, which brings down to-
tal power consumption. This leaves 27W and 29W stranded 
on the Y-side feed for SC and SD, respectively. If we apply 
CapMaestro’s SPO mechanism (i.e., Global Priority w/ SPO), 
the mechanism lowers SC’s and SD’s Y-side power budgets 
to 132W and 155W to match the actual power consumed by 
the servers, and SPO shifts 67W of underutilized power to SB 
to reduce the amount of capping needed on SB. 

Figure 7b shows the throughput of the four servers without 
and with SPO. We make two observations from the figure.  
First, as a result of the redistribution of stranded power under 
SPO, SB approaches its uncapped throughput, as shown in 
Figure 7b. In contrast, without SPO, SB has a 12% lower 
throughput (and 14% higher latency) relative to its uncapped 
performance. As we see in Figure 7c, with SPO, the Y-side 
feed of the data center consistently uses the full budgeted 
power throughput the entire execution time. This additional 
power usage allows SB to maintain the higher throughput 
shown in Figure 7b. Second, after SPO runs, the throughputs 
of SC and SD remain unchanged from the throughput before 
SPO. This confirms that the power that SPO identified as 
stranded was not being used by the servers. We conclude that 
SPO is an effective mechanism to redistribute power stranded 
by some servers in a way that boosts the throughput of other 
servers in a data center. 

6.4. Data Center Capacity Improvement 
We perform large-scale simulations to study the number 

of servers that a data center can support when CapMaestro is 
employed under different conditions, compared to state-of-
the-art power management policies. We consider both (1) typ-
ical-case conditions, where the servers experience normal 
load and where both feeds in the power infrastructure are fully 
operational; and (2) worst-case conditions, where all servers 
request maximum power and one entire power feed is down. 

Data Center Configuration. Our simulations model a 
production data center infrastructure (shown in Figure 1), us-
ing the parameters summarized in Table 4. The data center has 
2 three-phase power feeds (X-side and Y-side), 4 transform-
ers, 36 RPPs, and 324 CDUs, for a total of 162 racks (two 
CDUs, one from each feed, power one rack). We designate 
30% of the servers as high-priority, selecting the servers at 
random throughout the data center (we perform sensitivity 
studies on the fraction of high-priority servers in our technical 
report [41]). We load the circuit breakers and transformers to 
80% of their maximum rated power. The contractual budget 
for the data center is 700kW per phase, or 2.1MW in total. We 
use 95% loading for this contractual budget, and reserve 5% 
as a margin to tolerate errors (e.g., server parameter error, 
power measurement error). Without employing a power 
management system, each phase of the CDU can serve at most 
8 servers (700kW x 95% / 162 CDUs / 490W per server = 8.4 
servers) at peak power demand, resulting in a total of 3888 
servers deployed in the data center. 

 
Load. For typical-case conditions, we use a load profile 

released by Google [27] as our typical load. This load profile, 
shown in Figure 8, contains the distribution of average CPU 
utilization in a shared data center over time. For worst-case 
conditions, all servers have 100% CPU utilization. 

Simulation Methodology. In our simulations, we vary the 
total number of servers deployed in the data center by 

Contractual Budget 700kW per phase, split over two feeds 
Transformers 2 per feed, rated at 420kW each 

Remote Power Panels (RPPs) 9 per transformer, rated at 52kW each 
Cabinet Distribution Units 9 per RPP, rated at 6.9kW each 

Servers 6–45 per rack; idle power = 160W, 
Pcap_min = 270W, Pcap_max = 490W 

Table 4. Simulated data center parameters. 

    
 (a) Power feed organization (b) Server throughput normalized to uncapped throughput (c) Power used by the Y-side feed 

Figure 7. Stranded power optimization evaluation. 
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changing the number of servers in each rack (from 6 to 45), 
while keeping the rest of the infrastructure constant. This al-
lows us to study how the workloads are capped under a differ-
ent total number of servers. For typical-case simulations, we 
perform 20k Monte Carlo simulations for each server count, 
per power management policy evaluated. For each typical-
case simulation, we select an average CPU utilization for all 
servers in the data center from the distribution in Figure 8, and 
vary the CPU utilization of each server randomly around the 
average value using a normal distribution. For worst-case sim-
ulations, we perform 1k Monte Carlo simulations for each 
server count, as we find that our results converge much earlier 
for worst-case conditions due to the constant CPU utilization. 

We determine each server’s power demand (which must 
fall somewhere between its idle power and maximum power) 
using the server’s assigned CPU utilization. We calculate how 
CPU utilization correlates to power consumption using a 
power model from prior work [2]. We allocate a power budget 
to each server using one of the three power management pol-
icies discussed in Section 6.1: No Priority, Local Priority, and 
Global Priority. Our simulation selects which servers are high-
priority at random for each simulation. 

Metrics. To quantify how power capping affects 
performance, we define a metric that we call the cap ratio, 
which is the fraction of a server’s dynamic power demand 
(i.e., non-idle power) that is capped by the assigned budget: 𝐶𝑎𝑝 𝑅𝑎𝑡𝑖𝑜 = 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐵𝑢𝑑𝑔𝑒𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑒𝑟𝑣𝑒𝑟 𝐼𝑑𝑙𝑒 𝑃𝑜𝑤𝑒𝑟 

 The cap ratio provides us with an application-neutral way 
of characterizing the maximum impact on performance 
imposed by capping (the actual impact will be lower, as power 
consumption is linear or superlinear with performance). A 
lower cap ratio is better. 

 Results. Figure 9 shows the maximum number of servers 
that can be deployed under each of the three evaluated power 
management policies, under both typical-case and worst-case 
conditions, for a data center set up using the parameters in Ta-
ble 4. Our goal is to increase server count while negligibly 
impacting both (1) the average performance of all servers 
during typical-case conditions, and (2) the average 
performance of high-priority servers during worst-case con-
ditions. We consider anything less than a 1% average cap ratio 
across the servers to be a negligible performance impact. We 
make three observations from the figure.  

First, under typical-case conditions, all three policies can 
support the same maximum number of servers (6318 servers 
in total). This is because while the three policies differ in terms 
of how they handle high-priority servers, our cap ratio crite-
rion for typical-case conditions does not differentiate between 
high-priority and low-priority servers. In the typical case, a 
data center should ideally be able to avoid capping most, if not 
all, of its servers. 

Second, under worst-case conditions, CapMaestro’s 
Global Priority policy supports 50% more servers than the No 
Priority policy, and 20% more servers than Local Priority. 
During worst-case conditions, a significant amount of power 
capping needs to take place to bring the power load to within 
the rated limits of each component of the power distribution 
infrastructure. Both Dynamo and CapMaestro work to mini-
mize the impact that this capping has on high-priority servers, 
while still allowing low-priority servers to make forward pro-
gress. However, CapMaestro has the ability to make global 
power capping decisions, and can redistribute power effi-
ciently across multiple levels of the power distribution hierar-
chy. As a result, CapMaestro’s Global Priority policy can sup-
port a much greater number of machines than the Local Prior-
ity policy based on Dynamo [5]. 

Third, CapMaestro’s Global Priority policy can maintain 
most of the servers that a failure-free power infrastructure can 
support. In an ideal case where the power delivery infrastruc-
ture guarantees that no one component would fail, the data 
center could support all 6318 servers possible under typical-
case conditions. The Global Priority policy can support 92.3% 
of the total ideal server count, by supporting up to 5832 serv-
ers. In contrast, the No Priority and Local Priority policies 
support only 61.5% and 76.9% of the total ideal server count. 

Figure 10 shows how the average cap ratio changes under 
each of the three evaluated power management policies as we 
increase the number of servers. The x-axis shows the number 
of servers, and the y-axis shows the corresponding cap ratios 

 
 (a) Cap ratio for all servers (b) Cap ratio for high-priority servers 

Figure 10. Average cap ratio for all servers and high-priority servers during a worst-case power emergency. 
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for all servers (Figure 10a) and for high-priority servers (Fig-
ure 10b), under a worst-case power emergency (i.e., an entire 
side of the power infrastructure has failed). We make two ob-
servations from the figure. First, the cap ratios grow with the 
number of servers deployed in the data center. For the priority-
aware policies, high-priority servers are throttled last, only af-
ter all low-priority servers are throttled. Therefore, the high-
priority servers have a lower cap ratios under these policies 
compared to the cap ratio for all servers. Second, as we see in 
Figure 10b, high-priority servers perform better under Global 
Priority than under Local Priority. This is because Global 
Priority lets high-priority servers take power from low-
priority servers even when the servers fall under different 
shifting controllers. In contrast, the Local Priority policy can 
only redistribute power among servers under the same shifting 
controller. 

We conclude that CapMaestro, with its global priority-
aware power capping, effectively supports a much greater 
number of servers for a given power distribution infrastruc-
ture. Thus, CapMaestro significantly reduces the impact of a 
failure in the power distribution infrastructure compared to 
state-of-the-art mechanisms.  

Sensitivity Studies.  We perform several sensitivity 
studies on how CapMaestro performs as we change key data 
center parameters, including (1) the fraction of servers that are 
high-priority, (2) the value of Pcap_min (i.e., the minimum 
power that can be budgeted to each server), and (3) the con-
tractual budget of the data center. We find that Global Priority 
outperforms Local Priority and No Priority under most sce-
narios. Due to space limitations, we provide details on these 
studies in our extended technical report [41]. 

7. DISCUSSION: OPEN CHALLENGES 
Aside from the challenges that we successfully tackle in 

this work, there are a number of open challenges that remain 
against the comprehensive adoption of power management for 
public cloud data centers. We provide a brief discussion of 
these challenges, with the hope of motivating future work in 
these and other related areas. 

Limited Availability of Power Capping.  Existing 
power capping controllers, such as the Intel Node Manager [7] 
and RAPL [46], control server power only through processor 
and memory throttling. In a data center, we ideally want to 
monitor and control the total system power, including storage 
devices, networking, and coprocessors such as GPUs and 
FPGAs. These components may consume significant amounts 
of power in contemporary systems. While some prior 
works [12, 13] study the power behavior of individual com-
ponents in data centers, a comprehensive integration of power 
control for acceleration components into a server power con-
troller does not yet exist. As part of a comprehensive solution, 
there is a need to provide dynamic power control for storage 
and networking equipment, as these components have at best 
only limited control today. 

Specification and Standardization Gaps.  We find that 
many available power measurement and power capping tools 

do not provide specifications for measurement and control ac-
curacy, and do not guarantee responsiveness. Despite the lack 
of available information, these specifications are important for 
data center designers to take into account, as the specifications 
affect the margins that designers need to allocate to each 
power management component in the data center. A related 
issue is the limited standardization of power control interfaces 
across vendors. This can make the complexity of interfacing 
and controlling data center equipment from different vendors 
intractable.  

Limited Emphasis on Power Infrastructure Topology.  
The physical topology of the power infrastructure is im-
portant, as it poses unique constraints on power management 
solutions. Unfortunately, this topology is neglected by many 
works. The physical topology of the power infrastructure is an 
essential factor in the performance of CapMaestro (e.g., we 
are the first to consider the redundant feeds in highly-available 
data centers). For future work, we observe that there are no 
common tools for expressing the physical power topology, or 
for validating a power topology at runtime. For example, wir-
ing mistakes are possible when we connect servers to the 
power infrastructure (e.g., a wire is not plugged into the cor-
rect outlet). There is a need to develop a cost-effective ap-
proach to finding such errors in the topology (other than man-
ual cable tracing), or for tolerating such power topology mis-
takes in power management solutions. 

Coordination of Job Scheduling with Power Manage-
ment.  Our work considers the priority of jobs in power man-
agement decisions. In the future, we believe that it is desirable 
to more tightly integrate job schedulers, which are highly 
aware of workload priorities, with power managers. Such in-
tegration would allow dynamic priorities of different servers 
(as the jobs running on each server change over time) to be 
communicated to the power management algorithm quickly, 
allowing for proactive (as opposed to reactive) power budget-
ing. On a related note, since existing mechanisms cap power 
per server, this either requires (1) the scheduler to co-locate 
jobs of similar priority on a physical server; or (2) researchers 
to develop a new mechanism that can cap power for individual 
“virtual partitions” of a server, where each job has its own vir-
tual partition, and where each virtual partition can be assigned 
its own power budget. While there is research in this space 
[22], there is no standardized adoption across the industry to 
leverage these ideas in cloud data centers. 

Crossing Provider–User Boundaries for Energy Sav-
ings.  While public cloud providers strive to save energy to 
reduce their operating costs, cloud users, particularly for high-
performance applications, are often wary of enabling energy-
saving mechanisms (such as dynamic frequency scaling) that 
have potential to impact their application’s performance if not 
managed carefully. In such cases, providers typically turn off 
the energy-saving features, and pass on the higher cost of op-
erations to users (e.g., higher prices for VM flavors with 
“guaranteed” performance). Providers need to make the ben-
efits of energy savings visible to users, and preferably share 
these benefits with users (e.g., by lowering prices), to incen-
tivize the adoption of energy saving mechanisms. Two issues 
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prevent cloud providers from making these benefits visible to 
users. First, most public cloud environments share a single 
server with multiple users, but per-user power metering on a 
server does not currently exist. Second, performance-aware 
energy-saving solutions that can be adopted in the public 
cloud (without requiring hooks from the user’s workload to 
the cloud provider’s energy management knobs) have re-
ceived limited attention to date. 

8. RELATED WORK 
To our knowledge, this work is the first to (1) propose a 

mechanism to manage power in data centers with multiple 
power feeds; (2) design a global priority-aware power 
capping system that enables high-priority servers to borrow 
power from a low-priority server anywhere in the data center; 
and (3) reallocate the stranded power that exists in redundant 
power infrastructure to servers that need it. 

Server & Data Center Power Capping.  Power 
capping first appears in server products in 2006 [1]. Around 
the same time, Fan et al. [2] observe that data centers rarely 
consumed their maximum peak power, and could allow up to 
39% more servers in the same power infrastructure without 
throttling. They recommend using power capping as a safety 
valve, using some amount of throttling to allow for the 
deployment of an even greater number of servers. Several later 
works on data center power capping [3, 4, 5, 10, 11, 14, 20, 
32, 42-45] propose to effectively increase the server capacity 
of data centers. For example, Wang et al. [4] propose a hier-
archical power capping mechanism to protect power infra-
structure while adding more servers to data centers. Face-
book’s Dynamo [5] extends this work by considering more 
practical aspects of data center infrastructure, such as circuit 
breaker characteristics and workload-aware capping actions. 
All of these works rely on server power capping [6-8] as the 
underlying mechanism to control power consumption in a data 
center. However, these server power capping mechanisms 
control only the sum of power consumption across all power 
supplies of a server, and cannot enforce separate power caps 
on individual power supplies. Therefore, they are inadequate 
to protect upstream power feeds in redundant power 
topologies (see Section 3.1). As a result, prior data center 
power capping methods [3, 4, 5, 10, 11, 14, 20, 32, 42-45], 
which rely solely on traditional server power capping 
mechanisms and do not have the context of the redundant 
power topology, cannot safely control highly-available data 
centers with multiple power feeds, which is one of the 
important challenges we tackle in this paper. Unlike all of 
these prior works, our mechanism also effectively utilizes the 
power that is stranded due to imbalanced load between 
different power feeds in redundant power infrastructure (see 
Section 6.3). This is different from the stranded power utilized 
by prior work [9], which is caused by imbalanced load 
between different CBs in a single-feed power infrastructure, 
and which is harnessed in a different way. 

Priority-Aware Power Capping.  Prior works include 
some notion of prioritizing the power budgets in capping 
controllers [1, 4, 5]. However, such priorities are local to a 

single controller. For example, in Dynamo, the workloads are 
known in advance and have assigned priorities, and the 
priority-aware mechanism works only at the leaf controller 
level, which covers at most “a few hundred” servers [5]. Our 
proposed solution provides the ability for multiple levels of 
the capping hierarchy to capture the priority of all child nodes, 
enabling the consideration of all servers’ priorities across the 
entire data center for smarter capping decisions. 

Other Mechanisms to Increase Server Capacity and 
Power Efficiency.  Kontorinis et al. [35] propose using 
energy storage devices to shave peak power demand and allow 
an increase in server capacity. Wang et al. [36], Hsu et al. [37], 
and Wallace et al. [38] propose to efficiently use the power 
infrastructure capacity by performing power-aware workload 
scheduling, in a way that boosts the capacity of each server. 
These methods are orthogonal to ours, and can be combined 
with our proposal to further increase power efficiency. 
However, using only these methods (i.e., without CapMaes-
tro) may not be cost-effective to increase the server capacity 
of a data center. Energy storage devices such as those used by 
Kontorinis et al. [35] come with additional cost and space 
needs, and may need to be replaced after a certain number of 
charge/discharge cycles. In addition, an energy-storage-only 
solution cannot handle power peaks that last longer than a few 
hours. Power-aware workload scheduling [36, 37, 38] puts ad-
ditional requirements on workloads, such as requiring them to 
be short-lived [36], repetitive [38], or bear a power consump-
tion pattern lasting several days [37]. In contrast, CapMaestro 
is designed for existing power infrastructures and can tolerate 
arbitrary workload characteristics. 

To optimize power efficiency, Bai et al. [47] propose a 
voltage regulator efficiency-aware power management policy, 
and Kondguli and Huang [48] propose a power-efficient turbo 
boosting strategy. These works are complementary to ours. 

9. CONCLUSION 
We present CapMaestro, a new, distributed power man-

agement mechanism that uses server power capping effec-
tively to manage the power across an entire data center. Cap-
Maestro is designed to work for redundant power infrastruc-
tures in a global priority-aware manner, and it protects against 
oversubscription at every level of the power distribution 
hierarchy, while allowing stranded power in the hierarchy to 
be reallocated to servers that need it. We evaluate a prototype 
of CapMaestro on real cloud servers to validate its guarantees, 
and simulate its performance on a large-scale data center 
environment. We find that for a typical data center where 30% 
of randomly-selected servers are high-priority, CapMaestro 
supports 50% more servers than a data center without power 
capping, and 20% more servers than a data center that uses a 
state-of-the-art power capping mechanism modified to sup-
port redundant power feeds. We discuss a number of remain-
ing important challenges in power management for public 
clouds, with the hope of inspiring future work in the area. 
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