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Abstract

Extracting high data bandwidth and metadata rates from

parallel file systems is notoriously difficult. User workloads al-

most never achieve the performance of synthetic benchmarks.

The reason for this is that real-world applications are not as

well-aligned, well-tuned, or consistent as are synthetic bench-

marks. There are at least three possible ways to address this

challenge: modification of the real-world workloads, modifica-

tion of the underlying parallel file systems, or reorganization

of the real-world workloads using transformative middleware.

In this paper, we demonstrate that transformative middleware

is applicable across a large set of high performance computing

workloads and is portable across the three major parallel

file systems in use today. We also demonstrate that our

transformative middleware layer is capable of improving the

write, read, and metadata performance of I/O workloads by

up to 150x, 10x, and 17x respectively, on workloads with

processor counts of up to 65,536.

I. INTRODUCTION

Long running applications on large-scale compute clusters

typically protect themselves from inevitable node failures by

periodically writing out checkpoints to parallel file systems [1].

Extracting high performance from the current generation of

parallel file systems with petascale class supercomputers is

a formidable challenge and exascale class compute platforms

will only make this problem more challenging [2]. Petascale

class machines currently have node counts in the tens of

thousands with hundreds of thousands of processors. Exascale

class compute platforms are anticipated to have node counts in

the hundreds of thousands with millions of processors. Larger

node counts produce larger checkpoint data sets, while at the

same time requiring more frequent checkpoints due to the

increased frequency of node failures. These requirements drive

application checkpoint bandwidth demands ever higher.

Performance degradation in checkpoint-restart workloads

is common due to the high concurrency imposed by these

massively parallel, tightly coupled workloads generated from

applications which write checkpoints in a bulk-synchronous

manner. As we will see, this high degree of concurrency in-

troduces bottlenecks for write bandwidth, read bandwidth, and

metadata rates. These bottlenecks prevent efficient utilization

of the storage hardware and thereby cause significant perfor-

mance degradation. In this paper we show that a reorganization

of the I/O patterns can remove these bottlenecks.

We recognize three ways to reorganize I/O patterns: (1)

modify existing parallel file systems (2) modify applications

(3) interpose a layer of transformative middleware. We define

transformative middleware as a layer of indirection preserving

the user’s view of a file, while transforming the I/O into a

manageable workload for the parallel file system.

Existing parallel file systems are very large software projects

that must support general use cases and ensure data integrity.

In many cases, they support full POSIX compliance, which

is not necessary for HPC checkpoint workloads. Relaxation

of POSIX semantics or reorganization of I/O workloads

within these parallel file systems can negatively impact the

entire range of their supported workloads. Transformative

middleware, on the other hand, can be selectively applied to

only those workloads which need it. Additionally, a layered

approach is easier to implement and to debug since it serves a

narrow focus and is fewer lines of code (LOC). For example,

our implementation of transformative middleware, the Parallel

Log-structured File System (PLFS) [3], is around ten thousand

LOC, whereas all five major parallel file systems Ceph [4],

GPFS [5], Lustre [6], PanFS [7], and PVFS [8], are at

least 200,000 LOC. Lastly, our cluster compute resources,

which includes cluster compute nodes and their high-speed

network interconnect, are largely idle during I/O phases of

computation. Parallel file systems are typically separated from

the cluster compute resources and the high-speed interconnect

network. Cluster compute resources move data to the parallel

storage system using a dedicated storage network, which is

typically much slower than the cluster’s high-speed intercon-

nect network. A middleware layer, residing on cluster compute

nodes, has the ability to leverage resources of the cluster

during I/O phases, an ability the storage sub-system lacks.

Application level changes are prohibitive because every

application would need to be tuned for a particular parallel file

system. Reorganizing I/O patterns requires intimate knowledge

of the complex internal architectures of parallel file systems;

computational scientists do not wish to become parallel file

system experts nor should they. A transformative, transparent

(to application developers), middleware layer can be written

once for a class of applications and compute platforms in-
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Fig. 1: PLFS Architecture PLFS maps the users logical file into a container structure on the underlying parallel file system.

creasing the productivity of computational scientists. Many

applications also use data formatting libraries, such as HDF5

and pNetCDF, which dictate the I/O access patterns of the

application [9], [10] and we are able to intercept the I/O

calls of these data formatting libraries. Finally, changes to

mission critical applications must be carefully vetted, a process

that can be extremely time consuming. Since a transformative

middleware approach can be transparent to the application the

limitations of application level changes are eliminated when

transformative middleware is used.

In this paper, we explore the transformative middleware ap-

proach to improving real-world application’s I/O performance

with an implementation of one such middleware layer, PLFS.

In our evaluation, we show that this layer of transformative

middleware achieves speedups in the write, read, and metadata

performance of I/O workloads by up to 150x, 10x, and 17x

respectively, on process counts of up 65,536. The rest of the

paper is organized as follows: Section II gives an overview

of the architecture of PLFS and how it relates to current I/O

challenges. Section III demonstrates the write performance of

PLFS across a set of benchmarks. Section IV details read

performance challenges unique to PLFS, solutions to these

challenges, and an evaluation of the read performance of PLFS

with these enhancements. Section V details enhancements of

PLFS designed to improve the metadata performance of I/O

workloads along with an evaluation of their performance. An

evaluation of large-scale read and metadata performance is

presented in Section VI. The related work is presented in

Section VII and the conclusions and future work are presented

in Section VIII.

II. BACKGROUND

Current applications running on large-scale supercomputers,

currently in the petascale era, present challenging patterns of

I/O to parallel file systems. Due to the high rate of failures

on such large machines, applications use checkpointing to

ensure forward progress. Because these applications are very

tightly coupled, the checkpointing workload is necessarily

synchronous: each of the processes in the cooperative job

concurrently saves its state into a logically related object in the

file system. There are two typical I/O patterns that applications

use to checkpoint data: N-1 in which the shared object in

the file system is a single file into which all the processes

concurrently write, and N-N in which the shared object is

typically a single directory into which each of the processes

writes a unique file.

Our previous work has established that three major parallel

file systems, GPFS, Lustre, and PanFS, all achieve up to two

orders of magnitude higher bandwidth for N-N workloads than

for N-1 workloads [3]. PLFS is a layer of transformative

middleware that we developed at the Los Alamos National

Laboratory (LANL), to convert logical N-1 workloads into

physical N-N workloads in order to bridge the performance

gap between these two I/O patterns.

PLFS is middleware that sits between the user application

and a file system that is parallel in our case and is subsequently

referred to as the underlying parallel file system . As illustrated

in Figure 1, PLFS creates a container on the underlying

parallel file system that is a physical directory sharing the same

name as the logical file stored into PLFS. The logical view

of the file matches the I/O access pattern of the application.

Within the container, there are multiple files and directories:

an access file holds ownership and access control information,

a metadir caches information about the logical file size, an

openhost directory contains information about any process that

currently has a PLFS file open for write access, and finally

there are subdirs that contain the process specific data and

index log files.

The log files are the key contribution of PLFS which allow it

to transform N-1 into N-N. Each process writing to the shared
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logical file is redirected transparently to write to a unique

physical file within one of the container’s subdirs. In addition

to decoupling the concurrency by having each process write to

a unique physical file, PLFS also transforms random I/O into

sequential by always appending to the data log file regardless

of the physical offset to which the data is intended. In order to

maintain the users logical view of the file, PLFS also appends

a record of each write to a unique index file for each process.

The major difference between PLFS and current parallel file

systems is that current parallel file systems do a large amount

of work during the write phase of file I/O to place logical

bytes deterministically. Primarily they do so for two main

reasons: one, to serialize writes to the same offsets, and two, to

quickly lookup data offsets for reads. In contrast, PLFS uses

timestamps to resolve writes to the same offsets and defers

the work of creating offset maps until the file is opened for

read access1. In effect, PLFS has deferred the resolution of

the file from the write phase to the read phase. This deferral

introduces several complications for large-scale I/O workloads

and we have investigated and developed solutions to these

complications in this work.

Currently there are two methods for a user to access a PLFS

virtual file system, a mount point on the system that relies

on FUSE [11] to intercept I/O calls, or by directly linking

the PLFS library into the user application. The PLFS mount

accessed through FUSE is the most transparent method for a

user to gain the benefits of PLFS because they need only to

place their files in the PLFS mount point.

To support our analysis of read workloads for this paper,

we have added a third interface to PLFS by implementing a

PLFS driver within the MPI-IO library [12]. MPI provides

an abstract device interface, ADIO [13], that we leverage to

reroute I/O calls to the PLFS library. The MPI-IO layer also

allows us to inherit communicators and job info which enables

us to augment PLFS with several key collective optimizations

as demonstrated in Section IV.

III. WRITE PERFORMANCE

PLFS was originally designed to speed up the write perfor-

mance of checkpointing workloads performing file I/O using

the N-1 pattern. PLFS has proved to be very successful and

a summary of the write performance speedups achieved by

PLFS across a set of N-1 workloads generated by several

applications is shown in Figure 2. By decoupling a file into

non-shared component pieces PLFS eliminated serializations

on the underlying parallel file system that were responsible for

the large performance discrepancy between N-1 and N-N I/O

workloads. PLFS achieved these speedups while maintaining

the logical view of the file.

By transparently transforming the I/O workload to boost

performance, PLFS remains applicable to a wide set of check-

point applications. This performance improvement was also

demonstrated on three major parallel file systems, which all

demonstrated serializations when data was written to these

respective file systems using the N-1 I/O pattern. PLFS was de-

signed for high write performance on checkpointing workloads
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Fig. 2: Summary of write performance results. This graph

demonstrates the write performance improvement PLFS achieves for

N-1 workloads on a set of applications.

and showed high read performance for smaller scale reads, but

an initial push to place PLFS into production revealed some

limitations when high I/O concurrency is used during a read of

a checkpoint file written with a high level of I/O concurrency.

In this work we focus on two important aspects of end to

end I/O performance, read and meta data performance, and

demonstrate our solutions at high levels of I/O concurrency.

IV. READ PERFORMANCE

PLFS, a transformative middleware layer, is write optimized

so one should anticipate that the read performance would

suffer. For PLFS files written and read with lower process

counts, the read performance is surprisingly strong, but for

restarting jobs with large process counts using PLFS, we

discovered that the effective read bandwidth2 of PLFS was

diminishing with job size. As described in Section II, each

process requires index information from every single process

that wrote a checkpoint file. The original design of PLFS kept

processes uncoordinated when a file was written or read.

If a PLFS file is written and then read by N processes, this

workload will require N
2 opens from the underlying parallel

file system. N reader processes are all attempting to open

and read N index files concurrently. With N in the tens of

thousands, this is an extreme demand on the metadata servers

of the underlying parallel file system and uncoordinated read

access of these files on the underlying parallel file system

were the cause of diminishing effective read bandwidth for

large scale restart jobs.

The two solutions3 we developed to mitigate the read issues

presented by the write optimized design of PLFS are to:

• Aggregate the global index on the write close and on

read open broadcast the results of the aggregation from

one process to all processes (Index Flatten)

• Aggregate the global index on read open leveraging all

processes (Parallel Index Read).
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(a) Original PLFS Design (b) Index Flatten (c) Parallel Index Read

Fig. 3: Index Aggregation Techniques The figures above represent the I/O workloads generated on the parallel file system and cluster

interconnect by PLFS during a file open using the original design and our two solutions to improve the read bandwidth of PLFS.

It is important to note that our HPC cluster computer

platforms have high-speed cluster interconnect networks and

compute nodes that are largely idle during checkpoint I/O. The

techniques we developed to improve the read performance of

PLFS share the design goal of leveraging these idle resources

in order to minimize the amount of I/O requests that must be

served by the underlying parallel file system. We transform the

read I/O workload of PLFS, such that redundant I/O requests

to the underlying parallel file system are eliminated.

A. Index Flatten

The Index Flatten solution begins once a file is being written

and has every single write process buffer index information

up to a threshold. If the per-process index ends up being less

than or equal to the threshold on all write processes, then

we aggregate this information when the file is closed. Each

process sends their buffered index to a root process, which

writes the aggregation, global index, of the index information

from all processes to the underlying parallel file system. When

a read job is started a root process reads the global index and

broadcasts the contents of the global index to every process.

This solution is represented by Figure 3b, and it is important

to note that index aggregation takes place during the close of

a newly written file.

During the read of a PLFS file, this solution results in one

file open on the underlying parallel file system the global

index, dramatically reducing concurrent access to the index

files. This approach has the limitation that it may degrade

write performance. Index aggregation is performed when a

newly written file is closed, increasing the close time, which

lowers the effective write bandwidth of PLFS. If a user can

tolerate an impact to the write performance of a file to improve

read performance than they should select this approach. For

example, a user could use the Index Flatten technique if they

plan on writing a file once, but reading it back many times.

B. Parallel Index Read

Although the Index Flatten technique is successful at re-

ducing concurrent access to index files, write performance

may suffer. Since PLFS is a write optimized file system,

we developed a technique that would attempt to match the

performance of the Index Flatten approach without impacting

write performance. The resulting Parallel Index Read tech-

nique is represented by Figure 3c. This technique has one

process assign work to groups of processes. Each group of

processes has a group leader who assigns work to members

of the group. Each process within a group reads its assigned

subindices and returns information with the subindices to its

respective group leader. The group leaders aggregate indices

within their group and then exchange this information with the

other group leaders. After the group leaders receive all of the

indexing information from all other group leaders they merge

the group leader results into a global index and then broadcast

the global index to every process in their group. This technique

lowers the numbers of opens on the underlying parallel file

system to N and performs index aggregation when a PLFS

file is opened for read access. An MPI ALL TO ALL could

deliver the data within the index files to all processes, but our

approach transforms the data at various levels of the collective

hierarchy, which is not possible with the MPI ALL TO ALL

call.

C. I/O Benchmark Performance Analysis

All of the results in Figure 4 were collected using MPI-IO

Test, a tunable synthetic I/O workload generator developed at

Los Alamos [14]. These results were collected on a production

cluster at Los Alamos. The cluster has 64 nodes each with 16

AMD Opteron cores for a total of 1024 processors. Each node

has 32GB of memory and nodes are interconnected with an

Infiniband network. The cluster is also connected to a 551 TB

Panasas file system through a 10GigE storage network. Each

data point is an average of 10 runs and we have included error
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(d) Write Bandwidth

Fig. 4: Read Scaling Issues These set of graphs compare the original design of PLFS against the collective techniques that were developed

to improve the read performance of PLFS.

bars representing the standard deviation. Each concurrent I/O

stream writes/reads 50 MB in 50Kb increments.

Figure 4a compares the Read Open Time of the Original

PLFS Design versus the two techniques we developed for

this paper with increasing numbers of concurrent I/O streams.

The Read Open Time represents the time to aggregate the

indices within the PLFS container into a global index. Note:

the global index needs is already aggregated with the Index

Flatten approach, it does need to be broadcast to all processes

though. From this figure it is clear that the Parallel Index Read

technique and the Index Flatten technique scale much better

than the Original PLFS Design. We attribute this speed up

to the coordinated access to the parallel file system that both

provide. At process counts of 2048, both of the techniques are

roughly 4x faster than the Original Design in terms of index

aggregation. There are two phases of index aggregation where

this coordination proves to be beneficial. First, we reduce the

number of file opens, which reduces the metadata workload on

the underlying parallel file system. Second, we also coordinate

read access to the indices, which reduces the amount of seek

operations on the underlying parallel file system.

In Figure 4b we compare the read bandwidth of the index

optimization techniques we have developed against the Orig-

inal PLFS Design. Our definition of read bandwidth includes

the time to open and close the file. Since we demonstrated

that the time to open a file for read access varies with these

approaches in Figure 4a, we have chosen to compare the

read bandwidth of all of these approaches. For smaller scale

workloads the read bandwidth is nearly identical for all of

the approaches. At 1024 concurrent I/O streams we see a

divergence in read bandwidth performance with the Index

Flatten technique providing the highest bandwidth. The Index

Flatten technique needs to only distribute the global index

that was generated when the file was closed after it was

written. In contrast, the Parallel Index technique must collect

all of the information that is spread throughout the indices

within the container when a file is opened for read access.

Another observation that we have noticed is that caching is

a factor when there are 1024 concurrent I/O streams. Our

theoretical peak bandwidth is 1.25 GB/s which is exceeded

with all of the approaches. We still see that the Parallel

Index technique and the Index Flatten technique provide much

higher read bandwidth as compared to the Original PLFS

Design. At 2048 concurrent I/O streams the performance of

our index aggregation optimizations becomes closer, but they

share a large performance improvement over the Original

PLFS Design, around 3x faster in terms of Read Bandwidth.

Figures 4c and 4d illustrate the performance implications

of the Index Flatten technique. We have omitted results from

the Parallel Index Read approach because it shares the same

behavior of the Original PLFS Design when a file is closed.

The time to close the file after it has been written is shown in

Figure 4c. The performance is roughly the same until we have

2048 concurrent writers where the Index Flatten technique

has a slightly higher close time and more variance in the

results. Figure 4d compares the write bandwidth of the two
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approaches and we see that the Index Flatten technique has

lower bandwidth with much greater variance at 256 and 2048

concurrent writers. At 256 concurrent writers the Write Close

Time of Index Flatten is slightly lower, but the time to write the

file is also low leading to a noticeably lower writer bandwidth.

At 2048 concurrent I/O streams the write bandwidth is lower

and we also see that the variance of the results is much higher.

The Index Flatten technique must aggregate index information

from multiple processes, whereas the Original PLFS Design

and the Parallel Index Read technique simply close the file.

D. I/O Kernel Performance Analysis

In addition to testing with a synthetic I/O benchmark (IOR),

we also investigate the read performance of PLFS across a

diverse set of I/O kernels derived from five applications that

perform N-1 I/O. LANL 1 and LANL 3 are I/O kernels derived

from applications developed at LANL that are run regularly

on our largest supercomputers, consuming between them a

large portion of the computational cycles at LANL. All of

these results are an average of 10 runs and were collected on

the same cluster that was used in Section IV. These results

were collected using a parallel file system that we did not

have exclusive access to producing some variance across our

results.

PLFS can boost read performance in two key ways; spread-

ing the I/O workload over many storage resources and by

improving pre-fetch opportunities for the underlying parallel

file system. Since PLFS decouples writers we know that a

shared file written by PLFS is able to engage more spindles

in the underlying parallel file system as compared to direct

access to the underlying parallel file system. If the read pattern

matches the write pattern it follows that the read of the PLFS

file will also engage more storage resources. The second

benefit that PLFS presents on a read is the fact that the

decoupled read streams make prefetching on the underlying

parallel file system easier. In the case in which the read pattern

matches the write pattern we know that each process will

read data sequentially from one log-structured PLFS data file

within the container, which is a pattern that is conducive to

prefetching on the underlying parallel file system. If the same

read pattern was read directly from a file on the underlying

parallel file system then multiple readers would be requesting

data from multiple offsets in the same file reducing prefetching

opportunities.

PLFS can also negatively impact read performance because

direct access to the underlying parallel file system does not

need to complete index aggregation. Our solutions have driven

the index aggregation time lower, but it is not a negligible

amount of time. If any application reads a small amount

of data from a file, the index aggregation time could dwarf

the time spent reading the data. This will result in a lower

effective read bandwidth, which is an important metric from

the user standpoint. Although PLFS has this disadvantage

during reads, in our presented benchmarking results PLFS

was able to deliver read bandwidth that matched or exceeded

direct access to the underlying parallel file system. All of the

following results were collected with the Parallel Index Read

aggregation technique, which we have chosen as the default

behavior of PLFS, due to its relatively high read performance

and the fact that index aggregation is conducted when the file

is opened for read access.

1) Pixie 3D: The Pixie 3D benchmark is an I/O kernel

derived from the Pixie 3D MHD (Magneto Hydro-Dynamic)

code [15], is widely used for parallel I/O benchmarking,

and does I/O through the Parallel-NetCDF [10] library. We

compared the performance of PLFS to a direct read from the

underlying parallel file system, (PanFS), using a large data

size (1GB per process) in which all of the Pixie processes

read from a shared file. In Figure 5a we observe that the direct

access to the underlying parallel file system outperforms PLFS

for smaller process counts, but the read performance of PLFS

scales better and outperforms direct access to the underlying

parallel file system for larger process counts. In all cases the

performance of PLFS relative to direct access to the underlying

parallel file system is extremely close.

2) ARAMCO: The Saudi ARAMCO I/O kernel repre-

sents a seismic processing application and uses MPI-IO and

HDF5 [12], [9]. For process counts lower than 300, PLFS is

able to improve the read performance of the Saudi ARAMCO

kernel by up to 8X. However, as the job size grows, di-

rect access to the underlying parallel file system begins to

outperform PLFS. This is because the ARAMCO code is a

strong scaling application which writes the same total amount

of data regardless of processor count. In other words, index

aggregation time will rise as the time spent reading the data

decreases.

3) IOR: The IOR benchmark [16] is a synthetic parallel

I/O benchmark developed at Lawrence Livermore National

Laboratory. We configured it to write and read to a shared file

(i.e. N-1). Each process accessed 50MB in 1MB increments.

In this benchmark PLFS outperforms direct access to the

underlying parallel file system for all process counts by up

to 4.5X. Note that we did have to modify IOR to remove

read-write mode on it’s open. PLFS does not support read-

write access to files accessed by multiple processes at the same

time.

4) MADBENCH: The MadBench parallel I/O bench-

mark [17], a cosmic microwave background radion simulation,

was developed at Lawrence Berkeley National Laboratory and

is based on the MADspec code. The benchmark by default

runs the entire simulation, but we ran only the I/O phase that

writes out a file and the phase that reads it back in its entirety.

As we did for IOR, we modified it to convert all opens in read-

write mode to opens in read-only mode. In Figure 5d, we again

observe improved read performance when using PLFS.

5) LANL 1: LANL 1 is an I/O kernel representing a

mission critical scientific code developed at LANL and is a

weak scaling application. We ran the benchmark such that

each individual write and read were in five hundred thousand

byte increments (approximately 500K). Since this application

also writes data in an N-1 strided fashion the performance

improvements are due to better distributions of data across file
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(f) LANL 3

Fig. 5: Experimental Results. This collection of graphs represents the read performance of PLFS across a diverse set of I/O kernels derived

from five applications and one synthetic benchmark (IOR).

system resources and increased opportunities for prefetching.

This leads to increased read performance for all process counts

with a maximum speedup of 10X when 384 processes are

used.

6) LANL 3: LANL 3 is an I/O kernel representing another

important application in use at LANL. Using MPI-IO hints, we

enabled collective buffering [18] for this application since by

default it performs writes and reads in 1024 byte increments.

This application performs strong scaling I/O to a shared file

and the total amount of data written was 32 GB for this test.

As seen in Figure 5f, the performance of PLFS is similar to

the underlying parallel file system. The interesting observation

in this graph is the fact that PLFS slightly outperforms the

underlying parallel file system for the largest scale. With

collective buffering there are a fixed amount of nodes that

write data with a fixed buffer size, so the index size stays

the same with a strong scaling application using collective

buffering. Since the index size has not grown any larger but

we have improved opportunities for prefetching by decoupling

the writes and reads we observe that PLFS outperforms the

underlying parallel file system for the largest process counts.

V. META DATA PERFORMANCE

As we have discussed, large-scale N-1 workloads suffer

poor performance from parallel file systems due to bottlenecks

incurred while N processes concurrently write to a single

shared object. On the other hand, N-N workloads achieve much

higher performance because they write to unique objects. This
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Fig. 6: PLFS Federated Metadata Servers This figure highlights

how the architecture of PLFS allows us to spread the subdirs within

PLFS containers across different namespaces managed by multiple

metadata servers.

in fact is how PLFS achieves its speedups: by transforming N-

1 workloads into N-N.

However, N-N workloads are themselves not entirely free

from concurrency bottlenecks. Although their write phase is,

their create phase is not. Interestingly, the create phase of an
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Fig. 7: Metadata Performance Graphs For these set of graphs we compare the metadata performance of PLFS with varying numbers of

metadata servers.

N-N workload is very similar to the write phase on an N-1

workload: massive concurrent writes to a shared object, which

is a file in the case of N-1 writes and a directory in the case

of N-N creates. The obvious solution to this problem is to use

multiple metadata servers and to decouple the concurrency

similar to the approach in GIGA+ [19]. GIGA+ demonstrated

that large-scale concurrent access to a single directory is not

scalable. We differ from GIGA+ in the fact that we use a static

technique to spread the I/O workload over a set of directories.

Although distributed metadata servers have long been dis-

cussed [20], the reality is that current production parallel file

systems do not transparently spread workloads across multiple

metadata domains. PanFS does have multiple metadata servers

but the division between them is rigid; the realm of each must

be mounted as a separate file system so there is no ability to

spread the workload within any one directory across multiple

metadata servers.

To address this limitation, we augmented PLFS with feder-

ated metadata management in two ways. The first technique

distributes entire PLFS containers across a set of metadata

servers whereas the second distributes the subdirs within the

containers across metadata servers. The second technique is

represented by Figure 6. Both techniques aim to address the

metadata bottleneck in large-scale N-N workloads: the first for

application generated N-N workloads and the second for the

physical N-N workloads created by PLFS’s transformation of

logical N-1 workloads. Federated metadata management can

be used to glue multiple file systems together and reduce the

concurrent access to a single directory, which is applicable to

many file systems.

Our first set of results were collected with the previous

cluster and we had each process open and close multiple files

within separate threads. This approximates a large-scale N-N

job and our results for these tests are presented in Figure 7.

We have chosen to only examine N-N workloads because they

represent the heaviest metadata load that PLFS can generate,

since each file create requires container creation. These two

graphs represent the open and close time, respectively, for a

simulated large-scale N-N job. The open and close phases of

the file operations are where the metadata workload is heaviest

and all of our reported open times include file creation times.

In Figure 7a we see that the open time for files is improved

with increasing metadata servers (MDS). We expect to see

lower open times as the number of meta data servers is

increased because we are spreading the workload across more

hardware. When we compare the N-N performance of PLFS

against the underlying parallel file system we see that PLFS

with six and nine MDS outperforms direct access to the

underlying parallel file system. Note that in our results PLFS-X

represents PLFS configured with X MDS. Although PLFS has

the burden of container creation for each file, this is offset by

the performance benefits of federated metadata servers. Figure

7b presents the results of increasing MDS and its impact on

the close time of files. As we increase the amount of MDS

our close time goes down as expected, but we are no longer

able to outperform direct access to the underlying parallel file

system. Closing a file is a lightweight task as compared to file

creation and this is reflected in the fact that the underlying

parallel file system outperforms PLFS in all cases.

VI. LARGE SCALE RESULTS

Although all of our previous results have demonstrated

the performance improvements of our index aggregation opti-

mizations and strategies to boost metadata performance, we

have decided to included large-scale test results to further

validate our techniques. The results of large-scale testing are

demonstrated in Figure 8 and we have included tests that focus

on the read and metadata performance of the approaches we

have introduced in this work. We do not include any write

performance numbers because PLFS has proven to have high

write performance with large process counts. These results

were collected on our latest large-scale supercomputer, Cielo,

which is a Cray XE6 machine with 8894 nodes and 142,304

compute cores interconnected with a Cray Gemini network.

Each node has 32 GB of memory and the cluster is connected

to a 10PB Panasas parallel file system. Cielo is currently #6 on

the top 500 list of supercomputer sites, achieving just over a
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Fig. 8: Large-scale Results For these set of graphs we ran large-scale tests on a production cluster at LANL.

petaflop in sustained computing performance. Note that in all

of these results each process resides on a non-shared compute

core of our cluster.

Figure 8a demonstrates the read performance of PLFS and

our underlying parallel file system using our synthetic I/O

workload generator at large-scales of up to 65536 processors.

In practice we see the best bandwidth from our underlying

parallel file system with N-N workloads and have omitted N-1

workloads that read directly from the underlying parallel file

system. With all of these results we see that for N-1 workloads

PLFS achieves read performance that is close to or exceeds the

underlying parallel file system. N-1workloads read with PLFS

outperform the underlying parallel file system for all process

counts except for 2048. N-N read workloads using PLFS are

close to or exceed the underlying parallel file system across all

process counts. These results were collected using the Parallel

Index Read technique and 10 federated MDS.

To validate our metadata performance results for large-scale

concurrent jobs we ran a set of experiments on Cielo using up

to 32,768 processes. We evaluated PLFS federated metadata

management with both N-N and N-1 workloads. In each case,

we compare the performance of PLFS using one, ten, and

twenty MDS, denoted by PLFS-1, and PLFS-10, respectively.

In Figure 8b we present the N-N write open time. As explained

previously container creation for N-N workloads is metadata

intensive and we see that PLFS using one MDS performs

poorly. Increasing the MDS count to 10 improves open times

significantly. In an N-N workload PLFS creates a container for

each file, so it is important that we distributed these containers

across multiple MDS.

The N-1 write open results are presented in Figure 8c. For

smaller scales there is not much of an improvement in the

metadata performance when using multiple MDS. In this case

we are only creating one PLFS container that all processes

share, so a single MDS is not overwhelmed with file creation

requests at small scale. As process count is increased we again

observe that PLFS with 10 MDS outperforms PLFS with 1

metadata server.

A comparison of the performance of PLFS-10 to direct

access to the underlying parallel file system is presented

in Figure 8d. In this graph it is clear that federated meta

data management within PLFS is capable of improving the

metadata performance of N-N workloads. Direct access to the

underlying parallel file system is only capable of using one

metadata server and higher process counts require more file

creations. PLFS with federated metadata management spreads

the metadata workload across multiple directories boosting

metadata performance. This leads to reduced open times when

PLFS is used for all process counts with a maximum speed

up of 17X when the workload is ran with 32768 processors.

VII. RELATED WORK

Transformative Approaches There are several transformative

I/O middleware layers currently developed for HPC

environments. Reaching Exascale I/O performance is
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likely to rely on these middleware layers capable of managing

parallel I/O workloads [21]. Work has been conducted on

matching the user view of parallel I/O to optimized workloads

on a parallel file system [22], but PLFS takes this further

and attempts to mask I/O workload and system configuration

parameters from users. The Scalable Checkpoint restart

library speeds the checkpointing bandwidth of applications

by writing data to memory on neighboring nodes, but is

limited to N-N workloads [23]. I/O forwarding is a promising

technique capable of aggregating I/O in order to present

efficient access patterns to parallel file systems [24], but may

require additional I/O infrastructure to be viable. GIGA+ is

a project that efficiently manages large-scale file ingestion

to a single directory, which represents a heavy meta data

workload [19], but is a dynamic approach. Since we are

focused with large-scale checkpointing workloads we can

spread the I/O workload across multiple directories with

static hashing techniques. DataStager is an asynchronous I/O

service layer that is designed to handle checkpoint workloads,

we differ with our focus on achieving high I/O performance

during explicit I/O phases in order to avoid the introduction

of jitter into computation phases [25].

Collective I/O Collective I/O was introduced as a method

to improve the performance of parallel storage systems, by

implementing buffering and prefetching for distributed I/O

requests [18]. These techniques proved beneficial, but the

logical partitioning of the file can cause a large amount of

data movement. This work was further improved to adjust the

logical partitioning of a file, so that locking on the underlying

parallel file system would be minimized [26]. PLFS is

an improvement in that it eliminates locking without data

movement and also eliminates the requirement of user defined

tuning parameters. The collective I/O project most similar

to PLFS is the Adaptable I/O System (ADIOS) from Oak

Ridge National Laboratory [27]. ADIOS is an I/O library and

API for scientific codes that efficiently groups scientific array

data and is capable of writing the data in a log-structured

format. Unlike PLFS, ADIOS provides an API similar to the

HDF-5 and parallel netCDF data formatting libraries, and not

a POSIX interface [10], [9].

Large Scale Storage Systems The previous related work

is all attempting to manage the problems that large-scale

concurrent access to a storage system present. Another

community, large-scale distributed systems, have also faced

storage concurrency issues but their solutions are vastly

different. Large-scale distributed storage systems have been

developed by Google and they have chosen to abandon

POSIX interfaces and relax POSIX semantics in order to

achieve large-scale concurrency [28]. PLFS hasn’t abandoned

a POSIX interface, but rather chosen to relax POSIX write

semantics to achieve independence on the write phase.

Google has also developed a distributed key/value store that

is implemented on top of their file system and there now exist

several distributed key-value stores [29], [30], [31]. The trend

shows that to achieve large scale concurrency storage systems

should be application aware. In our community it may not

be economically feasible to build and design custom storage

solutions, so transformative I/O libraries are an attractive

alternative.

VIII. CONCLUSIONS

In this work we augmented our write-optimized transforma-

tive middleware layer, PLFS in order to gain large increases

in read bandwidth and metadata rates. We then demonstrated

the power and flexibility of transformative I/O by improving

the write, read, and metadata performance of I/O workloads

by 150x, 10x, 17x respectively, on processor counts of up

to 65,536 in an HPC I/O stack. The complexity of current

and planned parallel file systems leads us to believe that

transformative I/O libraries will continue to be part of future

storage system stacks. These libraries, developed by storage

systems researchers, keep detailed knowledge of the underly-

ing parallel file system hidden from users. The flexibility of

these libraries leads us to believe that similar techniques may

have implications beyond HPC.

Although not the focus of this paper, we presented brief

arguments for why transformative I/O is well-placed in mid-

dleware as opposed to being embedded in the applications or

within parallel file systems. We are mere years away from

the exascale era. Due to their complexity, these sorts of data

transformations will not make their way into parallel file

systems in time. We anticipate that middleware will play a

key role in the I/O stack of exascale systems and hope that

our contributions in this paper will inform their design4.

NOTES

1Note that PLFS does assume that the clocks on the cluster are synchro-
nized; however large scientific workloads do not typically overwrite data so
this assumption is not problematic in practice.

2The effective read bandwidth includes the open, read, and close time in
the bandwidth calculation.

3Both of these solutions assume the use of the MPI-IO interface, which
we leverage for coordination

4LA-UR-12-10085
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