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ABSTRACT
To enable high performance parallel checkpointing we in-
troduced the Parallel Log Structured File System (PLFS).
PLFS is middleware interposed on the file system stack to
transform concurrent writing of one application file into many
non-concurrently written component files. The promising
effectiveness of PLFS makes it important to examine its
performance for workloads other than checkpoint capture,
notably the different ways that state snapshots may be later
read, to make the case for using PLFS in the Exascale I/O
stack.

Reading a PLFS file involved reading each of its component
files. In this paper we identify performance limitations on
broader workloads in an early version of PLFS, specifically
the need to build and distribute an index for the overall
file, and the pressure on the underlying parallel file system’s
metadata server, and show how PLFS’s decomposed compo-
nents architecture can be exploited to alleviate bottlenecks
in the underlying parallel file system.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management-
File organizations

General Terms
Performance, Design

Keywords
High performance computing, parallel computing, parallel
file systems and IO

1. INTRODUCTION
Parallel I/O for high performance computing platforms is
currently a challenge and the complexity of Exascale com-
pute platforms will push I/O requirements higher. Cur-
rently, application developers must carefully manage their

I/O to achieve high performance from parallel file sytems.
There exists a large body of middleware specifically designed
for high performance parallel I/O but certain I/O workloads
remain a challenge [10] [4]. One particular workload, shared
file checkpointing, is particularly difficult for current gener-
ation parallel file systems and we introduced the Parallel
Log Structured File System (PLFS) at the Los Alamos Na-
tional Laboratory (LANL) in order to decouple a shared file,
which led to large write performance gains [2]. PLFS was
designed for checkpointing workloads, but we envision that
PLFS will be a part of our Exascale I/O stack because it is
capable of transforming logical I/O workloads into physical
I/O workloads tuned for an underlying parallel file system.
The orginal PLFS paper focused on the write performance of
PLFS, and as we began to investigate the read performance
of PLFS it was quickly realized that the original design of
PLFS was causing poor scalability in terms of read perfor-
mance.

The low read performance of PLFS at scale is largely at-
tributed to the architecture of PLFS which requires a logi-
cal write to write a non-shared index and data file. To read
back a file the non-shared index files must be aggregated
and the orginal design of PLFS attempted to aggregate this
information non-collectively. This placed a heavy buden on
the underlying parallel file system which must deal with an
increasing amount of file open operations that is a product
of the number processes that wrote and the number of pro-
cesses that are attempting to read the file. To improve the
read performance of PLFS we designed several collective I/O
strategies that limit the number of open operations, lowering
the concurrent access to files.

Metadata management is another challenge for many cur-
rent parallel file systems and will only become increasingly
difficult with the sheer amount of cores and nodes required
for next generation high performance computers. Current
parallel file systems are challenged by particular metadata
workloads and massive scale file creation in a single directory
is one particular workload that has been identified and stud-
ied [6].Since PLFS allows us to rearrange workloads we also
demonstrate the performance gains possible when detailed
knowledge of the underlying parallel file system is leveraged
to improve metadata performance. Using PLFS we can turn
independent metadata servers into a federated system ca-
pable of improving metadata performance by reducing the
amount of concurrent access to a metadata server.
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A parallel application consisting of six processes on three compute nodes creates an N−1 strided file, checkpoint1.
PLFS preserves the application’s logical view of the file.

checkpoint1

PLFS then creates a container structure on the underlying parallel file system to hold the data for file checkpoint1.
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Figure 1: PLFS Architecture This figure demonstrates how a shared logical file, checkpoint1 is decoupled into component pieces on

the underlying parallel file system. PLFS maps the logical file into a container structure that holds one openhost and metadata directory

and multiple subdirs. The openhost and metadata directories hold information on the processes that have a PLFS file open and the last

logically written offset, respectively. The subdir directories contain the non-shared data files that each process writes and a non-shared

index that maps non-shared data to logical offsets in checkpoint1.The container also holds an access file that holds the user and access

information for the file.

This paper details the importance of PLFS for current and
future generation file systems and we offer the following
novel contributions.

• We investigate the relationship between the PLFS ar-
chitecture and the read performance of PLFS

• We develop three collective I/O strategies that improve
the read performance of PLFS.

• We provide a detailed analysis of the read performance
of PLFS under several scientific workloads including
several I/O kernels representing LANL workloads.

• We illustrate the improvement of metadata performance
by leveraging the PLFS architecture to federate a group
of independent metadata servers.

The rest of the paper is organized as follows: Section 2 pro-
vides a summary of the architecture and design of PLFS.
Section 3 details the solutions developed to achieve high read
performance from PLFS. Section 4 examines the read per-
formance of PLFS using I/O kernels. Section 5 explores the
capability of PLFS to ingest detaild file system knowledge to
improve metadata and I/O performance. Section 6 provides
an overview of related work. The conclusion is presented in
Section 7

2. PLFS DESIGN AND ARCHITECTURE
At LANL critical applications performing N-1 I/O were only
able to achieve a small fraction of the available bandwidth
of the parallel file system whereas applications performing
N-N I/O were able to utilize nearly all of the available band-
width. In an N-1 parallel I/O workload N processes read or

write to the same file as contrasted to a N-N workload where
N processes write to N separate files. PLFS was developed
as a virtual file system that is capable of transforming an
N-1 I/O workload into an N-N workload vastly improving
the write bandwidth for applications that perform N-1 I/O.
PLFS was successful at speeding up a set of test applica-
tions by up to 300x and the performance benefits of PLFS
were demonstrated on three underlying parallel file systems
available at LANL: Lustre,GPFS, and Panasas [5][9][12]. A
key design principle of PLFS is that we attempt to keep the
I/O transformation hidden from users. The architecture of
PLFS is highlighted in Figure 1 and a detailed description of
the important design principles and structures that support
the transformation of I/O workloads follows.

PLFS uses a mount point to designate a location for files
that will be transformed on the underlying parallel file sys-
tem. Currently there are three methods for a user to access
a PLFS mount, a mount point on the system that relies on
FUSE to intercept I/O calls, the PLFS ADIO interface of
MPI-IO, and by directly linking the PLFS library to the user
applications. The PLFS mount accessed through FUSE is
the most transparent method for a user to gain the benefits
of PLFS because they need only to place their data files in
the PLFS mount point. FUSE is a framework that allows
the development of userspace file systems [1] and is capabe
of intercepting I/O calls and redirecting them to the PLFS
library. ADIO is an abstract device interface for MPI-IO
that is also able to reroute I/O calls to the PLFS library and
also allows us to inherit communicators and job info from
MPI [11] . PLFS gives each process access to a non-shared
file effectively transforming the N-1 I/O workload into N-N.
PLFS achieves this by creating a container structure on the
underlying parallel file system. The container is a directory



Openers Opens Files Description Shorthand Notation Figure Reference

N N2 N Original PLFS Design N −N2 −N 5(a)
1 N N Index Broadcast 1-N -N 5(b)
1 1 1 Index Flatten 1− 1− 1 5(b)
N N N Parallel Index Read N −N − 1 5(c)

Table 1: Summary of Workload Taxonomy Used

with the same name of the PLFS logical file and contains an
access file and owner file that are used for checking access
control and ownership respectively. The openhost directory
within the container has a record of any processes that cur-
rently have the file open for write access. In PLFS there is no
assumption that every process has the ability to communi-
cate with a library such as MPI, so PLFS achieves some com-
munication through the underlying file system. The metadir
directory within the container serves a similar purpose and
serves as a repository of the last offsets and file sizes seen
by each process which can be used to quickly detemine the
size of a PLFS file.

There are multiple sub directories (subdirs) that contain the
two data files that correspond to a particular process, the
data and the index file. Each process appends incoming
data to its non-shared data file and also records a map be-
tween the incoming logical offset and the physical offset in
the non-shared data file to the process specific index file [8].
To reduce the amount of concurrent access to a particular
directory we create multiple subdirs within each file con-
tainer and each process uses its hostname as a hash into
a particular subdir. Writing to non-shared data files and
keeping indexing information for the shared file effectively
transforms the N-1 write workload into N-N, but the dis-
tributed indices pose a challenge during a attempt to read
back a PLFS file. Since each process could potentially read
from any logical offset in the PLFS file, each reader must
aggregate the information from every single index file. In
the FUSE case the index is aggregated on a node basis, but
when MPI-IO is used there are N index files, where N is
the number of processes that wrote the file. In the MPI-IO
case of writing and then reading a PLFS file with N pro-
cesses, N readers will attempt to read N indices at the same
time causing concurrent access to N files by N process and
this I/O workload negatively impact the performance of the
underlying parallel file system.

2.1 Read Open Workload Taxonomy
Table 2 summarizes the workload taxonomy that will be
used throughout the Boosting PLFS read performance sec-
tion to describe workloads that are generated on the read
open phase of a PLFS file. For each workload we provide
the openers, opens, files, description, , a shorthand nota-
tion, and reference to figure 2. The openers field describes
the number of processes that are going to generate requests
to the parallel file system. The opens field describes the
amount of open operations that the workload generates on
the underlying parallel file system. The files field is the the
number of files that will be opened during the workload. It
is important to note that each file can be opened multiple
times, therefore we have included the opens field. These
workloads and their relationship to the solutions we devel-

Figure 3: Read open times as a function of process count

This graph illustrates the problem with the original design of

PLFS. As process count is increased the time to open the file

is increasing exponentially.
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Figure 4: Read Open + Write Close Times This graph

represents the time to aggregate the global index with the orginal

design and the solutions we developed. Note: the write close time

is included because the Index Flatten solution conducts work on

a write close.

oped to improve the read bandwidth of PLFS are described
in the following sections.

3. BOOSTING PLFS READ PERFORMANCE
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Figure 2: Index Aggregation Techniques The figures above represent the workloads generated on the parallel file system and cluster

interconnect by PLFS using the original design and our three solutions to improve the read bandwidth of PLFS. In the original design

of PLFS, all processes are required to open all of the index files. In the Index Broadcast/Flatten technique, one process aggregates the

indices and then passes this result over the cluster interconnect to other processes involved in the read operation. This aggregation of

indices can take place on the open for read access(Index Broadcast) or on the close of a newly written PLFS file(Index Flatten). The

parallel index read assigns the reading of subindices processes and then all processes communicate the subindex results over the cluster

interconnect to aggregate the index.
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Figure 5: Read Bandwidth This graph shows the read band-

width of the orginal design of PLFS as compared to the three

solutions we developed to improve the read performance of PLFS.

When PLFS was originally placed and tested on Roadrun-
ner [3][?] during a scheduled maintenance period, we started
to test the read performance of PLFS at large scales. We
quickly noticed that our effective read bandwidths were di-
minishing with increasing process counts and our I/O test
harness was able to provide us with enough information to
determine that the read open times for PLFS files were
quickly growing with the scale of the job and began sur-
passing the pure read times. We repeated these tests on a
smaller scale cluster that we generally have greater access
to and produced figure 3. This confirmed our suspicion that
the read open times were dominating the overall time of
a read operation and we would have to develop a solution
for the high read open times produced by PLFS. The three
solutions we developed are to:

• Aggregate the global index on read open with one pro-
cess and broadcast this result to every other process
(Index Broadcast)

• Aggregate the global index on the write close and on
read open broadcast the results of the aggregation from
one process to all processes (Index Flatten)

• Aggregate the global index on read open leveraging all
processes (Parallel Index Read).

These three techniques are outlined in the following sections
and they all share the common property of reducing the
amount of I/O requests that are directed to the underlying
parallel file system. They all also leverage the high speed
cluter interconnect to some degree and reduce the amount of
concurrent access to files as compared to the original design
of PLFS. The current solutions to reduce read open times
of a PLFS file that we have implemented are collective and
assume that the user is accessing PLFS through the ADIO
interface of MPI-IO. All of the techniques to reduce the read
open time need to know all processes that are attempting to
access a PLFS file and require a method of communication
amongst this group of processes and MPI-IO provides this
functionality. We are currently investigating a method to
get job information and communication methods amongst
PLFS FUSE mount points across different nodes and reserve
this for future work.

3.1 Read Open Workload Taxonomy
Table 2 summarizes the workload taxonomy that will be
used throughout the Boosting PLFS read performance sec-
tion to describe workloads that are generated on the read
open phase of a PLFS file. For each workload we provide
the openers, opens, files, description, , a shorthand nota-
tion, and reference to figure 2. The openers field describes
the number of processes that are going to generate requests
to the parallel file system. The opens field describes the



amount of open operations that the workload generates on
the underlying parallel file system. The files field is the the
number of files that will be opened during the workload. It
is important to note that each file can be opened multiple
times, therefore we have included the opens field. These
workloads and their relationship to the solutions we devel-
oped to improve the read bandwidth of PLFS are described
in the following sections.

3.2 Index Broadcast
PLFS improves write bandwidths by transparently mapping
an N-1 workload into N-N by giving each process access to a
non shared file. Each process must also write an index that
maps logical writes to physical locations, which is required
to read the information in a PLFS file. This architectural
design improves write bandwidths for challenging I/O pat-
terns, but presents a challenge when a read occurs. Any
process could potentially read from any logical position in
the file which could map to any of the non-shared data files
that are created by PLFS on a write. PLFS was originally
designed with a shared-nothing approach and this allowed
PLFS to achieve the high write performance, but sticking
to the shared-nothing approach on a read meant that each
process attempts to read every single index file that is cre-
ated on the write. If a PLFS file is written and read by N
processes, this will produce the N − N2 − N workload on
the parallel file system, which is represented by figure 2a.
This workload requires the parallel file system to handle N2

opens because N processes are all attempting to open N
files. This in turn, places an extreme demand on the meta-
data servers of the parallel file system when we attempt to
read a file with a large amount of proceses that was previ-
ously written by a large amount of processes. This burden
that was placed on the parallel file system was the culprit
for the exponentially increasing read open times that are a
function of job size.

To remedy this problem we decided to assign one process to
read all of the scattered indices, combine them, and broad-
cast this result to every other process. This collective so-
lution is illustrated in figure 2b and it is important to note
that the index aggregation takes place when a file is opened
for read access. This appoach is possible with the ADIO in-
terface of PLFS because we are using MPI and we can have
the root process of the MPI job read all of the scattered
sub-indices. Every other rank will wait for a broadcast of
the global index while the root process merges the scattered
sub-indices in-memory and then broadcasts this result to
every other process involved in the current MPI job. This
effectively morphs the orginal workload into the 1−N −N
workload which has one process reading the N indices so
that the parallel file system now only has to deal with N
file opens. This approach has a clear advantage over the
N − N2 − N workload because there is not concurrent ac-
cess to the N index files from multiple nodes.

3.3 Index Flatten
When a PLFS file is written, each process must write the
index information for each write issued through PLFS and
ideally the data size of each write operation should be large
enough to amortize the cost of writing the index information.
For the index flatten solution for the low read bandwidth of
PLFS, as a file is written, we hold all of the index informa-

tion in a buffer of a fixed size. If the index ends up being
less than or equal to the fixed buffer size on all processes
then we aggregate all of the subindices from all processes
involved in the write operation to the root process when
the user attempts to close the file. The root process then
merges all of the subindices and writes out one global index
to the underlying parallel file system containing information
from all of the merged subindices. This solution is also rep-
resented by figure 2b, but it is important to note that the
index aggregation takes place during the close of a newly
written file.

This solution produces the 1 − 1 − 1 workload on a read
and requires one process to read one file, which results in
one open on the parallel file system dramatically reducing
concurrent access to files. This approach is an improvement
over the Index Broadcast technique, but it has the disadvan-
tage that it degrades the write performance of a file because
the index aggregation is performed on the write close. This
approach has to be used with caution because it reduces
the effective write bandwidth because merging scattered in-
dices and writing is conducted during the close of a newly
written PLFS file. Since PLFS was originally designed as
a write optimized checkpointing file system we decided to
allow users the choice in selecting this technique. If they
can tolerate an impact to the write performance of a file
to improve read performance than they should select this
approach. For example, a user could use Index Flatten if
they plan on archiving a PLFS file because the servers re-
sponsible for moving data into archival storage are limited in
number and processing power and would only be required to
open one global index. Index Flatten reduced the amount of
concurrent access to files on the underlying parallel file sys-
tem required to read a PLFS file, but we also realized that
we were not utilizing the parallelism and the high speed in-
terconnect available on our cluster computer systems. This
realization led to the final collective index aggregation tech-
nique, the Parallel Index Read.

3.4 Parallel Index Read
Although the Index Flatten technique was successful at re-
ducing concurrent access to files, the cost to achieve this
reduction was incurred when the file was written. PLFS is a
write optimized file system so we decided to develop a tech-
nique that would match the performance of the Index Flat-
ten approach but not impact the write performance of PLFS.
The Parallel Index Read technique was our approach that
met these particular design goals. This approach has one
processor assign work to groups of processes. Each group of
processes has a group leader who assigns work to members
of the group. Once each process is done reading its assigned
subindices it passes its result to its respective group leader.
The group leaders aggregate subindices within their group
and then exchange this information with the other group
leaders. After the group leaders receive all of the index-
ing information from all other group leaders they merge the
group leader results into a global index and then broadcast
the global index to every process in their group.This allowed
us to produce a N −N −N workload, but unlike the Index
Flatten operation every process opens one subindex and the
results are communicated among the processes through the
cluster interconnect. Figure 2c illustrates this technique and
it should be noted that most of the index aggregation work



takes place on the cluster nodes and interconnect as opposed
to the parallel file system. Since our cluster interconnect is
typically much faster than the parallel file system and the
cluster nodes are underutilized during I/O phases it seemed
natural to leverage these resources.

3.5 Performance Analysis
Figure 4 compares the index aggregation times of the orginal
design of PLFS to all three solutions that we developed to
reduce the amount of concurrent access to files on the under-
lying parallel file system. The results were generated with a
synthetic I/O workload tool developed at LANL. The Index
Broadcast technique was able to improve the performance
of PLFS by 2.2X and this improvement is largely attributed
to the reduction in concurrent access. The root process re-
sponsible for aggregating indices is doing the same amount
of work that each process had to complete in the original
design. The difference is that there is no longer conncurrent
access to all of the subindex files by all of the processes at-
tempting to read the file. The Index Flatten solution was
able to improve the performance of PLFS by 3.2X and is an
improvement over the Index Broadcast technique because
processes have in-memory index information that is passed
to the root process. This is a contrast to the Index Broad-
cast technique which is required to access index information
that is in files on the parallel file system. The Index Flatten
solution needs to open one file on the parallel file system
to access all of the index information and then broadcasts
this result to all processes minimizing concurrent access to
the global index file on the parallel file system. The Paral-
lel Index Read technique aggregates the index on the read
open phase of file access and is an improvement over the
Index Broadcast technique because the work of aggregating
sub-indices is spread amongst processes attempting to read
the PLFS file. This approach was able to improve the per-
formance of PLFS by 3.5X and is the best solution when
looking at the index aggregation time. The important thing
to note is that all of the solutions developed to improve the
read bandwidth scale linearly with the number of processes
as opposed to the orginal design which scaled exponentially
in terms of the amount of open operations on the parallel
file system.

Figure 5 plots the read performance of the orginal design
of PLFS as compared to the solutions we devised to reduce
concurrent access to files on the parallel file system. These
results were also collected using LANL’s synthetic I/O work-
load generator. Again looking at larger scales it is evident
that the orginal design degrades read performance as the
scale is increased. The highest read bandwidth achieved is
the Index Flatten operation, which improve read bandwidth
by 1.8X for 768 processes. The Index Flatten operation
shows the largest gain in terms of read bandwidth because
the read bandwidth number does not include the index ag-
gregation penalty incurred on the write close of the file. The
Parallel Index Read approach has the second highest read
bandwidth and improves the peformance of the original de-
sign of PLFS slightly less than 1.8X. The Index Broadcast
technique has a performance gain of 1.6X and is not ex-
pected to scale as well as the Parallel Index Read approach.
The improvement in terms of read bandwidth of all our so-
lutions grows with the number of processes and illustrates
the importance of reducing the amount of concurrent ac-

cess to files on the underlying parallel file system. Since the
Parallel Index Read approach was capable of achieving read
bandwidth close to the performance of Index Flatten with-
out incurring a penalty on the write phase of a PLFS file we
have chosen this as the default behavior of PLFS accessed
through ADIO and all of our results in the read analysis use
this default.

4. PLFS READ ANALYSIS
As LANL high performance computing users started to test
PLFS it was noticed that they were using PLFS, a write op-
timized parallel file system, as a general purpose file system.
PLFS is heavily write optimized and we realized that an
analysis of the read performance across several I/O kernels
was missing from our original work. The initial investiga-
tion into the read performance of PLFS lead to the index
aggregation solutions presented in Section 3. Once we were
satisfied with our results generated from our synthetic I/O
tool it was decided that a test of the read performance of
PLFS would not be complete without results from a set of
parallel I/O benchmarks that represent a variety of parallel
I/O workloads. We have also included results from the read
performance of two I/O kernels that represent applications
in heavy use at LANL.

4.1 Pixie 3D
The Pixie 3D benchmark is an I/O kernel derived from the
Pixie 3D MHD (Magneto Hydro-Dynamic) code [7] and
is widely used for parallel I/O benchmarking. We com-
pared the performance of PLFS to the underlying parallel
file system (PanFS) using three data sizes: small (16MB
per process), medium (128MB per process), and large (1GB
per process). It is important to note that this benchmark
is reading from a shared file. From figure 6a we can see
that PLFS outperforms the underlying parallel file system
by a modest amount for all process counts when the data
size is small. For the medium sized file we see that PanFS
outperforms PLFS for smaller process counts, but the read
performance of PLFS surpasses PanFS for the large process
counts. The large data size follows a pattern that is similar
to the medium sized file. (PNETCDF4 mention)

When PLFS writes a shared file each write is placed in a log
file on a per process basis. When reading back a shared file
these log structured files allow the underlying parallel file
system to perform read ahead and caching more efficiently.
The problem with PLFS is that there is a penalty to ag-
grete the scattered indices and this penalty is reduced when
either the raw read time is longer (larger files) or the size
of the index is small (ratio of data written to index size is
low). Although PanFS and PLFS differ slightly depending
on the amount or processes used and the size of data the
read performance of PLFS is close enough to PanFS that
we consider this a strong result for our write optimized file
system.

4.2 ARAMCO
The Saudi ARAMCO is an I/O kernel for the seismic pro-
cessing map using MPI-IO and HDF5. For process counts
lower than 300 PLFS is able to improve the read perfor-
mance of the Saudi ARAMCO kernel by up to 8X. The
ARAMCO I/O benchmark writes a fixed size of data re-
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Figure 6: Experimental Results. This collection of graphs represents the read performance of PLFS across a diverse set of parallel

I/O benchmarks.

gardless of the amount of processes (8GB). For larger pro-
cess counts PanFS is 1.2X faster than PLFS. The ARAMCO
I/O benchmark writes a fixed size of data regardless of the
amount of processes. The large speedup in I/O at small
scales when using PLFS is due to several factors. The first
factor is that with smaller process counts there are less in-
dex files. Since each process writes one large set of data
every subindex will be the same size, increasing the number
of processes increases the number of subindexes. The sec-
ond reason is that the workload presented to the underlying
parallel file system is conducive to read ahead. Withouth
PLFS each process will attempt to read at offsets scattered
throughout one file. Since PLFS decouples the file on the
write phase when the file is subsequently read each process
reads from one file in logically increasing offsets.

4.3 LANL Anonymous 3
LANL anonymous 3 is an I/O kernel representing a heav-
ily used application at Los Alamos. Collective buffering is
turned on for this application because the application tries
to write/read 1024 bytes per operation resulting in low per-
formance from PLFS and the underlying parallel file system.
This benchmark also writes and reads from a shared file and
writes 4GB for the small tests and 32GB for the large tests.
PanFS and PLFS have similar performance numbers with a
couple of interesting observations. PLFS has a lower read
performance for both data sizes when 128 processes are used.
PLFS has a certain amount of overhead incurred when the
index has to be aggregated and if the amount of data actu-
ally read is not enough to amortize the cost of reading the
index our performace will be lower than the underlying par-
allel file system. The read performance of PLFS and PanFS
is roughly the same for all other process counts. The one
exception being that the smaller file written to PanFS lev-
els off after 256 process while every other test has slighlty
increasing bandwidth.

4.4 IOR
The IOR benchmark is a parallel I/O bechmarking utility
developed at the Lawrence Livermore National Laboratory
(LLNL). The benchmark has many configurable options and
we chose to run IOR writing and reading to a shared file.
We also configured each process to write 50MB and write
and read in 1MB increments. IOR writes the file in a seg-
mented manner meaning that each process has data in one
region of the file. In this benchmark PLFS outperforms
PanFS for all process counts. PLFS is able to improve the
read performance of PanFS by up to 4.5X. This can also
be explained by the fact that read ahead for the underlying
parallel file system is difficult because each process accesses
data in completely different regions of the file. Although
we are reading one logical file, in PLFS the reading takes
place in separate files meaning that readahead takes place
on every single non-shared data file.

5. FEDERATED MDS
One of the downsides of PLFS is that if a user decides to
run an N-N workload through PLFS there is a performance
penalty associated container structure creation of a file ac-
cessed through PLFS. We realized that this penalty was
largely incurred by metadata servers having to create the
files and directories that make up a container. The PanFS
storage system that we currently have assigns a metadata
manager on a per volume basis. Typically we have users
of the parallel file system spread across multiple volumes
to spread the metadata workload. Realizing that the PLFS
subdirs within the container could potentially be placed on
any volume we decided to make plfs storage space across all
volumes, which is illustrated in figure 7.

Once the storage space for PLFS on each volume was set in
place a slight modification was made to the PLFS library
to hash a subdir to a specific volume. This allowed us to
aggregate the metadata performance of multiple metadata
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Figure 8: Federated Metadata Server Results This collection of graphs represents the performance gains possible when we leverage

the PLFS middleware layer to federate metadata servers on our underlying parallel file system.

PLFS

User Application: ACCESS FOO

FUSE ADIO

Container FOO

subdir0 subdir1 subdir2

mdsX mdsY mdsZ

Parallel File System

Software Layers

Figure 7: PLFS Federated Metadata Servers This figure

highlights how the architecture of PLFS allows us to map PLFS

container subdirectories (subdirs) to metadata servers that man-

age separate namespaces.

servers creating a federated metadata server system.

6. RELATED WORK
7. CONCLUSIONS
I will be a nice summary of our contributions.
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