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ABSTRACT
The I/O bottleneck in high-performance computing is becoming
worse as application data continues to grow. In this work, we
explore how patterns of I/O within these applications can signif-
icantly affect the effectiveness of the underlying storage systems
and how these same patterns can be utilized to improve many as-
pects of the I/O stack and mitigate the I/O bottleneck. We offer
three main contributions in this paper. First, we develop and eval-
uate algorithms by which I/O patterns can be efficiently discovered
and described. Second, we implement one such algorithm to re-
duce the metadata quantity in a virtual parallel file system by up to
several orders of magnitude, thereby increasing the performance of
writes and reads by up to 40 and 480 percent respectively. Third,
we build a prototype file system with pattern-aware prefetching and
evaluate it to show a 46 percent reduction in I/O latency. Finally,
we believe that efficient pattern discovery and description, coupled
with the observed predictability of complex patterns within many
high-performance applications, offers significant potential to en-
able many additional I/O optimizations.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Secondary
storage; D.4.3 [Operating Systems]: File Systems Management—
Access methods

General Terms
Algorithms, Design, Performance

Keywords
I/O; pattern; large-scale storage systems; high performance com-
puting; PLFS; prefetching

1. INTRODUCTION
As scientific applications strive to explore new frontiers with in-

creasingly fine granularities of simulation, high performance com-
puting infrastructure must continue to scale. However, the abil-
ity to scale processing greatly exceeds the ability to scale storage
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I/O and it is increasingly important to extract all available perfor-
mance from the storage hardware. Our earlier work with PLFS [12]
has shown that some patterns of I/O are much more amenable to
high performance than others. Therefore, understanding I/O be-
haviors and taking advantage of their characteristics become a nat-
ural direction of optimizations. Much of the application I/O in this
domain is structured as in checkpoint-restart, which transfers dis-
tributed data structures such as multi-dimensional arrays between
compute node memory and parallel file systems.

However, a typical I/O stack ignores I/O structures as data flows
between these layers. I/O libraries like HDF5 [19], NetCDF [3] and
MPI-IO [40] do store descriptive metadata alongside data, such as
dimension information and data types. But eventually distributed
data structures resolve into simple offset and length pairs in the
storage system, regardless of what initial information was avail-
able. In this study, we propose techniques to rediscover struc-
tures in unstructured I/O and represent them in a lossless and com-
pact way. We recognize great potential in applying these tech-
niques to many scenarios and demonstrate that with metadata com-
paction within the PLFS virtual file system and within a prefetching
FUSE [1] file system we built to help evaluate our ideas. Addition-
ally, we describe a few other potential usages briefly in Section 6.
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Figure 1: Compression rates for indices of real applications and
benchmarks obtained by discovering patterns and representing
them in a compact way. The compression rate is represented as
(Uncompressed Size)/(Compressed Size). Higher is better.

Recent projections by the United States’ Department of Energy
have predicted extremely challenging storage requirements for ex-
aflop supercomputers. The primary storage driver is checkpoint-
ing and the current projections specify that checkpoints of up to
64 petabytes in size should complete in 300 seconds. The bulk of
computational scientists seem to prefer checkpointing into a single
checkpoint file over checkpointing into a directory containing tens
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of thousands of checkpoint fragments [17]. Therefore, the perfor-
mance of shared file writing is critical for effective HPC.

Unfortunately, many otherwise scalable file systems suffer poor
performance when many concurrent processes write to the same
file [12]. The most powerful way to fix this problem is to transpar-
ently transform the representation of a concurrently written file into
many exclusively written file fragments, as is done by ADIOS [26]
and PLFS. However, recent PLFS development has hit a perfor-
mance wall as the amount of internal metadata required to recon-
struct the file fragments grows with the number of writers. Current
petascale size checkpoints are challenging and exascale will be im-
possible without a more compact representation of the metadata.

In this study, we achieve metadata reduction using a gray-box
technique [10] of rediscovering valuable information that was lost
as data moved across the POSIX interface. In this case, we re-
discover the structure of the checkpoint using pattern detection.
Checkpoints are typically the conversion of a distributed data struc-
ture into a linear array of bytes. High-level middleware abstrac-
tions, such as views within MPI and the data types within HDF
and NetCDF, allow the user to describe the structure of their data
(e.g. the number and size of the dimensions in a mesh). The mid-
dleware then will use the restrictive interface of POSIX to store
the data structure using a sequence of writes. Since these writes are
storing a structured data set, they will typically follow a regular pat-
tern. By discovering this pattern, PLFS can replace its index entry
(metadata) per write with a single pattern entry describing all the
writes thereby converting the size of the index from O(n) to a small
constant value. An alternative approach to reduce the metadata
would be to clean the logfiles into a single flat file. However, this
cleaning is expensive and notoriously difficult; additionally, earlier
work [35] has shown, somewhat counter-intuitively, that flattening
files can lead to slower read performance.

As shown in Figure 1, we are able to reduce the size of the PLFS
index by up to several orders of magnitude for various applications
and benchmarks. As we will see in Section 3, this structure dis-
covery also results in performance improvements in PLFS of up
to 40 percent for writes and up to 480 percent for reads. We also
present a visualization of the access patterns of the MILC code [7]
and Pagoda [4] application to illustrate the inherent structure which
our algorithms successfully detect.

In addition to improvements in PLFS metadata, we also evaluate
our idea by implementing a pattern aware prefetching file system.
Prefetching is an important technique to hide I/O latency dependent
on the ability of the storage system to predict future requests. High
layers in I/O stack have richer semantic information which can be
used to raise prediction accuracy. Unfortunately, as described ear-
lier, most of the I/O interfaces lose information as they descend in
the I/O stack. Hints [34] can also enable consequential improve-
ment. However, hints require extra, perhaps significant, effort from
the users and this foreknowledge may not always be available.

Since our techniques can discover patterns at a low level without
requiring the semantic information available at higher levels, they
can be used to predict future requests at a file and block level. To
evaluate this, we have designed and implemented a FUSE based
prefetch system with the pattern detection algorithm proposed in
this paper and tested it with a trace from the real application called
Pagoda. Our results show that the I/O cost is reduced by up to 46%.

Our main contribution is to propose and evaluate effective al-
gorithms and representations to discover and describe pattern in
unstructured I/O. Although we note that this technique is further
useful in a variety of cases such as block pre-allocation, metadata
reduction within systems such as SciHadoop [14], as well as I/O
trace reduction in large scale systems, we demonstrate its value in

this paper exclusively with evaluations of the compressibility of the
PLFS index and the predictability in a prefetching file system.

The rest of the paper is organized as follows. Section 2 describes
the implementation of a pattern structured PLFS in detail. The key
pattern detection algorithms, pattern representations of this paper,
as well as pattern unfolding techniques, are described. Section 3
evaluates the pattern structured PLFS extensively. Section 4 de-
scribes the design details of a pattern prefetching system, which is
evaluated in Section 5. Several other potential uses of the proposed
patterns are discussed in Section 6 and we conclude in Section 8.

2. PATTERN STRUCTURED PLFS
PLFS, a virtual parallel file system, is a powerful transformative

I/O middleware layer. By transparently reorganizing shared-file
writing into a separate log-structured file for each process, PLFS
has been shown to improve the performance of many important
HPC applications by several orders of magnitude. In PLFS, we re-
fer to the file that the user writes (and later reads) as the logical file
and the set of files which PLFS creates to store the data within the
logical file as physical files. The user accesses their logical files
through PLFS and PLFS in turn accesses its physical files from a
set of backend file systems such as Lustre, GPFS, PanFS, or Ceph.

2.1 PLFS Index
As each process writes to the shared logical file, PLFS appends

that data to a unique physical logfile (data dropping) for that pro-
cess and creates an index entry in a unique physical index file (index
dropping) which maintains a mapping between the bytes within the
logical file and their physical location within the data droppings.
When a read request (e.g. read(fd, off, len)) is performed, PLFS
queries the index to find where that actual data resides within the
data dropping files. The key variables of a current index entry are:

• logical offset: where the data is, from the application’s per-
spective in a single logical file;

• length: number of bytes written;

• physical offset: this is the physical offset within a contiguous
data dropping file;

• chunk id: the ID of the dropping file where the data resides.

Figure 2 is an example of how PLFS works today. As appli-
cations grow in size, the number of the physical index files, and
the number of index entries within them, grows correspondingly.
This growth introduces overhead in several different ways. The
performance overhead of the index creation is slight, but notice-
able, during writes. Performance overhead for reading however
is much larger; since a reader might read from any portion of the
file, every index file and every index entry must be read. Also,
the sheer quantity of the index entries results in a large footprint
in both memory and on disk. For example, an anonymous applica-
tion at Los Alamos National Laboratory (referred to here as LANL
App 3) writes a file of 4 GB and creates an index size of 192 MB
for each process [11]. In this case, when reading the file with 64
processes, the total memory index footprint is 12 GB since each
process has to hold a copy of the whole index. To use less memory,
an alternate option is to not cache entire index data but to access
them on disk whenever it is necessary. However, this will be very
slow since PLFS has to conduct I/O for each index access. Ear-
lier work [28] addresses the latency of reading the complete index
entries from disk and building the in-memory index structure by ex-
ploiting parallelism within the MPI library. This paper extends that
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Figure 2: An example of two processes writing to a traditional
PLFS file. If the application writes a lot of data in small extents,
the indices shown can become very large.
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Figure 3: Pattern PLFS index framework

work by further reducing the latency as well as the other overheads
by using efficient pattern detection and compact pattern descrip-
tions to reduce the amount of PLFS index information. As shown
in Figure 1, this results in a compression factor of several orders of
magnitude for LANL App 3.

2.2 Architecture
The design goal of Pattern Structured PLFS (Pattern PLFS) [5]

is to discover pattern structures in indices (which can be considered
as I/O traces) and represent the mapping in a compact way, so that
reading takes less time and uses less space for processing indices.
We demonstrate the effectiveness of Pattern PLFS here. First, we
show how we reduce the per-process metadata (indices) size by
discovering local patterns, and then we further demonstrate how
to achieve even better compression by merging local indices into a
single global one per PLFS file.

In our design illustrated in Figure 3, when writing, Pattern PLFS
buffers traditional indices in raw index buffers for each process. Af-
ter the buffer is full or at the time of closing, a pattern discovering
engine starts processing the raw indices and puts the generated pat-
tern structure entries to pattern index buffer and non-pattern ones
to non-pattern indices. At the end, the entries will be written to
pattern index files. The file format is illustrated in Figure 4. The
header stores what type the entries are and the length of them.

Header Entries... Header Entries... Header Entries... ...

Figure 4: Pattern PLFS index file format. The headers indicate
the type and size of the entries following them.
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Figure 5: Read and merge indices to form global indices

When an application reads a file (Figure 5), Pattern PLFS reads
indices from files, merges pattern entries into global ones whenever
possible, and stores the global pattern entries and non-pattern en-
tries in separate buffers. The contents of the buffers are broadcast
to other processes that are reading the PLFS file.

We chose the design described above based on efficiency and
feasibility. One of the other options is to compress using both local
and global patterns at the time of writing in ADIO layer. This ap-
proach requires communication and synchronization when writing,
which may ruin the biggest advantage of PLFS - fast writing. It
becomes worse when the application has more write requests and
smaller write extents. Another possibility is to use existing com-
pression libraries, such as zlib [9], to compress indices in memory,
write compressed data to files, read them into memory and decom-
press them. The problem of this is that the eventual memory foot-
print is still big, although the I/O time of reading indices is reduced
due to the compression.

2.3 Local Pattern Structure
The local pattern structure describes the access behaviors of a

single process. For example, a process may write to a file with a
(offset, length) pair sequence such as: (0, 4), (5, 4), (10, 4), (15, 4).
This is an example of a typical fixed-stride pattern and can easily
be described in some form (e.g. saying start offset is 0; stride is
5; length is 4) of smaller size by checking if the stride is constant.
Strided patterns occur when accessing parts of regular data struc-
ture (e.g. odd columns of a 2-d matrix). A more complex pattern
would occur when accessing discrete parts of an array consisting
of complex data types (e.g. MPI file view with complex data types
or high-dimension data with complex types). To compress com-
plex patterns, we need an algorithm to identify the repeating se-
quences and a structure to represent them in a compact way. The
structure should also allow fast random accesses without decod-
ing. The algorithm proposed in this section can discover complex
pattern structures and compress them. Figure 2 shows an example
in which two processes write into one PLFS file with traditional
indices. This section uses this example to demonstrate how local
pattern structure discovering works.

Figure 6 is the structure of one pattern entry. Chunk id is used
to find the data dropping file for which the pattern is. One logical
offset pattern may map to many length and physical offset patterns.
But if you expand patterns to their original sequences, the num-
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id: chunk id used to locate the corresponding data dropping file
logical: logical offset pattern unit (See Figure 7)
length[]: an array of pattern units representing lengths
physical[]: an array of pattern units representing physical offsets

Figure 6: Structure of a pattern index entry.

[i, (d[0], d[1], ...)∧r]

Figure 7: Pattern unit notation. i is the first element of the
original sequence. d[] (delta) is the repeating part of an array
containing the distances of any two consecutive elements in the
original sequence. r is the number of repetitions. For example,
(5, 7, 10, 12, 15) can be represented as [5, (2, 3)∧2].

ber of logical offsets, lengths and physical offsets represented by a
pattern entry should be exactly the same.

Based on the sliding window algorithm in LZ77 [44], we pro-
pose a new algorithm to discover common patterns in data accesses
and store them in a data structure that allows PLFS to conduct
lookups without decompressing the index. The algorithm is de-
scribed in Algorithm 1. There are three major steps. The first one
is to retrieve the distances (delta[]) of consecutive numbers. The
second one is to move two sliding windows along the delta[] to
find any consecutive repeating subsequences, and place them on a
stack (p). The third one is to put the original starting numbers of
each repeating subsequence back on the pattern stack in order to
form the final patterns. By using the original starting number and
the deltas, any number in the original sequence can be recovered.
To demonstrate the algorithm, Figure 8 gives an example for dis-
covering patterns in logical offsets of Process 0 in Figure 2. The
sequence of logical offsets (0, 3, 7, 14, 17, 21, 28, ...) are prepro-
cessed to deltas (3, 4, 7, 3, 4, 7, ...). Two windows move along the
deltas to find repeating subsequences. To represent a pattern of a
sequence of numbers in a compact way, we introduced a structure
called pattern unit, described in Figure 7. The eventual pattern out-
put in Figure 8 is [0, (3, 4, 7)∧3], [42, (4)∧4].
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delta …....

Figure 8: An example of local pattern structure discovering.

Suppose w is the window size in the algorithm demonstrated
in Algorithm 1 and Figure 8, the time complexity of finding re-
peating parts between the search window and lookahead window is
O(w), since it is essentially a string searching problem and can be
solved using the KMP algorithm [24] or other, similar, algorithms.
According to the while loop of Algorithm 1, two windows move
forward by at least one position in an iteration. The overall time

Algorithm 1: Pattern Detection

Data: A sequence of numbers: q
Result: Pattern of q
/* delta is the distance between

consecutive numbers in q */
for i=0;i<q.length-1;i++ do

delta[i ] = q [i + 1 ]− q [i ]
end
/* container of pattern units */
initialize pattern stack ps;

initialize lookahead window lw on delta[0 ];
initialize search window sw in front of delta[];
while lw is NOT empty do

if ∀k, lw[1:k]==sw[sw .size-k+1:sw .size]
AND lw[1:k] can be merged with the last elements in ps
then

/* merge lw[1:k] to ps.top() */
update ps.top();

lw.moveforwardby(k);
sw.moveforwardby(k);

else
initialize pattern unit p;
p.d = lw.first();
ps.push(p);
lw.moveforwardby(1);
sw.moveforwardby(1);

end
end
foreach p in ps do

p.init = p.d [0]’s corresponding number in q
end

complexity of this pattern recognition algorithm is O(wn). n is
the length of the input sequence.

To compress PLFS mappings, given a sequence of tuples (i.e.
raw index entries) (logical offset, length, physical offset), they are
separated into three arrays by their types: logical_offset [], length[],
physical_offset []. First, patterns in logical_offset [] are found us-
ing a pattern detection engine based on Algorithm1. Then, ele-
ments in length[] are grouped according to patterns found in
logical_offset [], and their patterns are discovered separately by
group. Later, physical_offset [] is processed in the same way. This
procedure is illustrated by an example in Figure 9. Two patterns are
found in logical_offset []. length[] is separated into two groups,
and patterns are detected within each group. Also, elements in
physical_offset [] are grouped and patterns are detected.

Since data has been reorganized, when I/O read requests come
to PLFS, PLFS needs to look up the requested offsets in associated
indices to decide the corresponding physical offsets. The lookup
algorithm is described in Algorithm 2. The basic idea is to find
the position of the biggest logical offset that is not larger than the
request offset, off , in the logical offset pattern, find the correspond-
ing length, len, by the position, check if off falls in (off , len) and
return the corresponding physical offset. For example, when a re-
quest of read(off=29, len=1) comes, suppose we have the patterns
in Figure 9. Because 0 < 29 < 42, the request can only fall within
the pattern starting with 0 (Pattern A). Then:

row = (29− 0)/(3 + 4 + 7) = 2

rem = (29− 0) mod (3 + 4 + 7) = 1
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same way as lengths. Finally, patterns for the same raw entries
are grouped together.

Because 0 < rem ≤ 3, rem falls in the 1st delta in Pattern A’s
logical offsets ([0, (3, 4, 7)∧3]). So the position that off = 29 falls
into is pos = 2 × 3 + 1 = 7 (3 is the number of deltas in the
pattern). We can use pos to find out the logical offset (29), length
(2) and physical offset (16). Then we can check if the requested
data is within the segment and decide the physical offset.

Suppose n is the total number of index entries, the time com-
plexity of traditional PLFS lookup is O(logn) if binary search
is used. The time complexity of the lookup in Algorithm 2 is
O(e.logical .d .size()), since it has to calculate stride and go
through e.logical.d[] to find pos . Fortunately, e.logical .d .size()
is usually not big from what we have seen and the constant factor
in O(e.logical .d .size()) is small (2 ). If m is the number of total
entries, the time complexity of looking up an offset in all indices is
O(logm ∗ delta.size()) when the entries have already been sorted
by their initial offsets. The worst case scenario is that the request
offset is in a hole and PLFS has to check every pattern index entry
to find out. Fortunately, if patterns present, m is very small. To
simplify lookup, special cases such as overlaps and negative strides
should be avoided by sorting and merging entries.

2.4 Global Pattern Structure
Global pattern is constructed using local pattern structures. To

merge local patterns into global patterns, Pattern PLFS first sorts all
local patterns by their initial logical offsets. Then it goes through
every pattern to check if neighbor patterns abuts one another. Fig-
ure 10 is an example of a global pattern. At the beginning of it, a
group of three processes (PID: 4,7,6) write with a local strided pat-
tern (We call the size of data shared by the same group of processes
a global stride). After that, (2,8,9) writes the following global
stride. Then (4,7,6) repeats the pattern. Global pattern is essen-
tially consecutive repeating local patterns. Since local patterns are
repeating, only one local pattern is stored in global pattern structure
and the difference between global and local pattern is that global
pattern maintains a list of chunk IDs instead of only one chunk id.

Assuming each local pattern repeats twice and physical offset
starts at 0, the global pattern structure in Figure 10 can be described

Algorithm 2: Lookup offset in an pattern index entry.

Data: Requested offset: off , a pattern entry (Figure 6): e
Result: if off is inside e, return the corresponding physical

offset and length of a contiguous piece of data
if off < e.logical .init OR off > e.logical .last then

return false ; /* out of range */
end
roff = off − e.logical .init ; /* relative offset */
/* stride of the pattern */
stride = sum(e.logical .d []) ;
/* remainder */
rem = roff % stride
/* num of strides the offset passed */
row = roff /stride;
/* Find the delta that roff fails in */
sum = 0 ;
for col_pos = 0; sum <= rem ;col_pos++ do

sum+ = e.logical .d [col_pos];
end
col_pos = col_pos − 1 ;
pos = col_pos + row ∗ e.logical .d .size();
o_offset = e.logical [pos] ; /* posth offset */
o_length = e.length[pos] ; /* posth length */
if off falls in (o_offset, o_length) then

shift = off − o_offset ;
o_length = o_length − shift ;
o_physical = e.physical [pos] + shift ;
o_chunk_id = e.chunkid ;
return (o_length, o_physical , o_chunk_id);

else
return false;

end

by Figure 12. For many MPI applications, rank numbers are related
to data processing and its data layout, so id’s can be further com-
pressed by patterns if it is necessary.

Of course, there are some more complicated global patterns that
the global pattern structure cannot describe. However, in practice,
this simple structure is effective enough and it favors fast lookups.

To look up an offset in a global pattern, Pattern PLFS uses Al-
gorithm 3. The basic idea is to locate which row and column
the requested offset is in the imaginary global pattern matrix (e.g.
Figure 10). To find the physical offset within a data dropping
file, Pattern PLFS needs to figure out how much data has been
written to file before the piece of data requested. For example,
the global stride (gs.size) of Figure 10 is 120 . Stride (s) is 30 .
If the request off is 1250 , r is 250 . Global stride id (gs.id )
is 250/120 = 2 , which indicates off falls in the Global Stride
2. Global stride remainder (gs.rem) is 10 , row = 10/30 = 0 ,
col = (10 mod 30 )/10 = 1 . The logical offset of the data is
1000 + 120 ∗ 2 + 30 ∗ 0 + 10 = 1250 ; length = 10 . Because:

s/length ∗ gs.id + col = (30/10 ) ∗ 2 + 1 = 7 ,

so the chunk id is g .id [7 ] = 7 . Physical offset is

0 + 10 ∗ 4 ∗ 1 + 10 ∗ 0 = 40 .

The most time consuming part of Algorithm 3 is
cnt=g.id[1:p].count(chunkid), where Pattern PLFS has to go from
the first id to the pth and find out how many chunkid there is in
g .id [1 : p]. Fortunately, this can be calculated once with time com-
plexity O(n) (n is the number of local patterns) and cached in the
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Figure 10: An example of global pattern. 4,7,6,2 and so on are
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by a group of processes, i.e. global strides.

id[]: an array of chunk id indicating the positions of processes
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logical: a logical offset pattern unit
length: a length pattern unit
physical: a physical offset pattern unit

Figure 11: Global pattern structure

pattern structure (This can be even faster if g .id [] can be described
by patterns). So the later lookups do not need to calculate it again
and the time complexity becomes O(1). The time complexity of
looking an offset in p global pattern entries in memory is O(logp),
since it has to locate an entry in p entries.

3. PLFS EVALUATION
For a holistic test, several benchmarks and real applications were

used to test Pattern PLFS. FS-TEST [8] is a synthetic checkpoint
tool from LANL. It can be configured to write or read with N-N (N
processes write N files) or N-1 (N processes write N files) pattern
with many parameters. In addition, we developed a benchmark tool
called MapReplayer [20], which can replay traces previously col-
lected by PLFS and show the performance. In order to test pattern
structure discovering from unstructured I/O, several real applica-
tions were ran on top of Pattern PLFS. The experiments were con-
ducted on LANL’s RRZ testbed, which has eight cores/16GB RAM
per node. PanFS was used as the underlying parallel file system.

3.1 FS-TEST
FS-TEST has very similar write patterns to many real check-

point systems. In this experiment, each FS-TEST process writes
data stridely, which leads to many index entries in Traditional PLFS
(PLFS 2.2.1). The write sizes of all tests are fixed at 4KB. Large
amount of indices take lots of space in both disks and memory,
resulting in poor I/O performance. Pattern PLFS is expected to re-
duce index sizes and therefore improve performance.

As shown in Figure 13(A), write open times of Pattern PLFS
and PLFS 2.2.1 are very close. Since there are little differences
between the implementations of Pattern PLFS and PLFS 2.2.1, the
result serves as a sanity check and shows the system’s stability. As
we can see, the results are reasonable and the system is stable. In
Figure 13(B), we can observe that write bandwidth of Pattern PLFS
is consistently better than that of Traditional PLFS. The reason for
this is that Pattern PLFS writes much less metadata (pattern struc-

id[]: [4,7,6,2,8,9,4,7,6,2,8,9]
logical: 1000,(30)∧4
length: 10,(0)∧4
physical: 0,(10)∧4

Figure 12: Global Pattern of Figure 10

Algorithm 3: Lookup offset in an global index pattern entry.

Data: Requested offset: off , a global pattern entry
(Figure 11): g

Result: if off is inside g, return the corresponding physical
offset and length of the contiguous piece of data

/* check if off falls in the range of the
global pattern */

if off < g .logical .init OR off > g .logical .last then
return false

end
r = off − g .logical .i ; /* relative offset */
s = g .logical .d [0 ] ; /* stride */
/* global stride, r is the number of

repetitions in the pattern unit */
gs.size = s ∗ g .logical .r ;
/* which global stride r falls in */
gs.id = r/gs.size

gs.rem = rmodgs.size;
/* row inside a global stride */
row = gs.rem/s ;
/* column inside a stride */
col = (gs.rem%s)/g .length.i ;
if g .logical [gs.id ][row ][col ] is out of the range of g then

return false;
end
p = (s/g .length.i) ∗ gs.id + col − 1 ;
chunkid = g .id [p] ; /* pth local pattern id */
shift = off − g .logical [gs.id ][row ][col ];
/* Num of chunkid in the 1~p id’s */
cnt = g .id [1 : p].count(chunkid)

o_physical_offset = g .physical .i + g .physical .d [0 ]
∗g .physical .r ∗ cnt + g .physical .d [0 ] ∗ row ;

return gs[gs.id ][row ][col ].length − shift ,
o_physical_offset + shift , chunkid ;

ture index entries in Pattern PLFS), which are much smaller than
traditional unstructured index entries, to disks. It is worth noticing
that Pattern PLFS is about 1.5 GB/s faster than Traditional PLFS
with 512 processes and 16K writes per process. As shown in Fig-
ure 13(C), Pattern PLFS and Traditional PLFS have very similar
performance on close, when PLFS flushes data/indices and closes
all opened files. Overall, Pattern PLFS has better write perfor-
mance than Traditional PLFS. In addition, from the experiments
we have conducted, we also see a trend towards growing gap be-
tween performance of Pattern PLFS and Traditional PLFS as the
scale becomes larger.

The read performance is shown in Figure 14. Uniform read uses
the same number of processes as the originating write, while non-
uniform read uses a different number. As shown in Figure 14, Pat-
tern PLFS has much shorter open time than Traditional PLFS for
both uniform and non-uniform reads, since indices are read and
processed at read open time and Pattern PLFS is able to signif-
icantly reduce index size by discovering patterns and representing
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Figure 13: Write performance of 512 processes with write size of 4K. Write Open/Close Time: lower is better. Write Bandwidth:
higher is better. Please note that the scale of X axis is K. So 16 represents 16× 1024 = 16384 writes.
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Figure 14: Performance of uniform read (512 processes) and non-uniform read (256 processes) with originating write size of 4K.
Some of the PLFS 2.2.1 data points are missing because large index took too much memory and PLFS crashed when allocating
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Figure 15: Index memory footprint of 512 processes. Note that
Y axis shows the per-process memory footprint. For example,
an eight-core node needs more than 48 GB memory to hold in-
dex for PLFS 2.2.1 if the number of originating writes is 256 K.

indices as compact pattern structures. Please note that the unit of X-
axis is "K". For example, 256 represents 256 × 1024 = 262144
writes per process. One entry of index is 56 bytes. One copy
of the whole index is 256 × 1024 × 512PE × 56bytes = 7GB .
If there are 8 processes per node, the node needs to hold 7 × 8
= 56 GB of indices in memory. The combined metadata from all
processes takes large memories and prevents PLFS 2.2.1 from func-
tioning, which is the reason why its data points are missing. Fig-
ure 15 shows the comparison between index memory footprint of

Pattern PLFS and PLFS 2.2.1. The overall index size of PLFS 2.2.1
on disk is the same as the size per process on memory, since each
process has to hold the whole index. The overall index size of Pat-
tern PLFS on disk is bigger than its index size on memory. This is
because the indices on memory have been compressed with global
patterns. The on-disk index size of Pattern PLFS is 3MB and on-
memory one is 6KB, both of which are significantly smaller than
the sizes of PLFS 2.2.1. The reduction of index leads to up to 80
percent and 480 percent higher bandwidth for write (Figure 13) and
read (Figure 14), respectively. The improvement is asymmetrical
because index write is more parallelized than read in PLFS.

3.2 Real Applications
We explored writes of several real applications to see if there are

any patterns and if Pattern PLFS can discover them. In addition,
it is really nice that PLFS indices are essentially write traces, by
which we can plot and see the patterns if they exist.

3.2.1 The MILC Code
The MILC code is an implementation of LQCD (lattice quantum

chromodynamics) and it is widely used to solve real physics prob-
lems and to benchmark supercomputers [7, 21, 6]. Figure 16 shows
the write patterns of three I/O configurations for saving the same
data. All of them are N-1 writes, which are ideal cases for PLFS.
In Figure 16 (A), each MILC process writes small fix-size pieces
of data with a 2-d strided pattern (stride sizes vary). In (B), each
process writes to one contiguous portion of the file. The difference
between (C) and (B) is that in (C) each process also writes a header
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at the beginning of the file. The compression rates of (A), (B) and
(C) are 37.0, 3.0 and 3.6, respectively. (A) has a better compression
rate since it has more writes and they have patterns. Pattern PLFS
was able to compress by discovering local and global patterns. The
other two are both simple and most of the compressions came from
using global pattern.

3.2.2 Pagoda
Pagoda [4] stands for Parallel Analysis of GeOscience DAta. It

is a set of PnetCDF-based tools and APIs that have been developed
to mitigate the I/O bottleneck of GCRM (Global Cloud Resolving
Model) data analysis, whose scale can be PB’s per year. Pagoda
conducts N-1 write stridely, which generates a great amount of in-
dex entries. By discovering patterns out of unstructured writes,
Pattern PLFS achieved a compression rate of 2.9 in a typical run.

3.3 Replay
By using MapReplayer, we were able to replay the I/O behav-

iors of various benchmarks and real applications. The compres-
sion rates are already shown in Figure 1. NERSC Pattern I/O [2]
is a benchmark in which each process writes with a single fixed-
stride pattern. By the local and global pattern structure discovering
techniques described in this paper, they can be represented as one
global pattern and index size is significantly reduced. Each process
of LANL App 3 writes with a 2-D strided pattern. Pattern PLFS
was able to represent them by one single pattern entry in memory.
In LANL App 2 MPI I/O collective and LANL App 2 Indepen-
dent, each process writes with different strides in different periods
of time. The compression was achieved by the local pattern com-
pression. Pattern PLFS has better compression rate for LANL App
2 I/O library since the application’s own I/O library arranged data
to be written with fixed-stride pattern, which made global pattern
compression possible. LANL App 1 writes with 2-D strided pattern
and global pattern was found. The FLASH traces used were col-
lected by FUSE-based PLFS. For FUSE’s own performance con-
cerns, it may split large requests to smaller requests, which breaks
the pattern of FLASH and makes it hard to find patterns. Actually,
I/O requests of FLASH have patterns and we believe the patterns
can be detected by our techniques. Each BTIO process writes with
a 2-d strided pattern and they are combined to a single global pat-
tern in memory. To sum up, traditional PLFS does not handle these
applications very well, while Pattern PLFS can discover structures
and be able to shrink their index sizes.

4. PATTERN-AWARE PREFETCHING
Typical applications involve both I/O and computation; they read

data from file systems into memory and then manipulate that data.
For example, scientific applications need to read data generated by
simulations for subsequent analysis, or read checkpoints to resume
after interruptions. Visualization applications need to read large
amounts of saved data structures, process them, and render them
visually for analysis in a timely manner. In these cases, large read
latency can result in intolerable delays. Prefetching is an effective
way of reducing the I/O latency. This technique predicts future
data that will be used by the application and makes it available
in memory before it is requested by the application. The process
of prefetching can overlap computation with I/O so that the I/O
latency, while unchanged, does not affect the users’ experience.

The accuracy of prediction is important for prefetching. Inaccu-
rate predictions will introduce overhead without any corresponding
benefit. Accurate predictions which are not made quickly enough
also do not provide benefit. Even more challenging is that prefetch-
ing the right data too early can also degrade performance since the

data occupies memory and prevents it from being used for other
purposes. Even though it is challenging, prefetching with simple
readahead [25, 37] is implemented in almost all storage systems
and has been shown to provide large benefits for applications which
do sequential reading. Unfortunately, many applications, especially
scientific ones, present I/O patterns [31, 16, 13] that do not appear
sequential at the storage system.

For example, Pagoda and MILC read data with patterns of vary-
ing strides as is shown for Pagoda in Figure 20. This is due to the
fact that they read from different segments of their files where each
segment contains data of different types. These patterns are reg-
ular, but not sequential, so simple readahead prefetch algorithms
cannot provide benefit. However, the pattern detection algorithm
proposed in this paper can discover the patterns and predict their
future I/O requests.

4.1 System Overview

Prefetch
Thread

Pattern
Detector

Prefetch
Manager

Prefetch
Cache

File System

Application

Main Thread

Control Flow
Data Flow

FUSE

Figure 17: Prefetch Framework

To test the ability of patterns to allow prefetching for nonsequen-
tial, but regular, I/O patterns, we have designed and implemented
a pattern-aware prefetching file system using FUSE. This provides
a simple mechanism by which we can intercept, inspect, and for-
ward I/O requests to another file system. In our case, as we observe
the requests, we attempt to detect patterns, and use any detected
patterns to prefetch data for predicted future reads.

The framework of our pattern-aware file system is shown in Fig-
ure 17. It is a simple layer between applications and a standard
underlying file system such as ext3. For write workloads, our layer
merely forwards all writes to the underlying file system. For read
workloads, however, our layer will attempt pattern-aware prefetch-
ing; reads which were correctly predicted and prefetched will be
satisfied from the cache of our layer but reads which were not pre-
dicted will necessarily be forwarded to the underlying file system.

Our layer is comprised of several main components. The Pattern
Detector records read requests and detects their patterns. It is mod-
ularized so that any pattern detection algorithm may be plugged
into it. The Prefetch Manager receives pattern information from
the Pattern Detector and predicts future requests based on these
patterns. It sends requests for predicted future requests to our Pre-
fetch Thread, which is in charge of fetching data from file systems
into our Prefetch Cache. When read requests are received from the
application, our pattern-aware FUSE file system will check the Pre-
fetch Cache. If the data is not in the cache, it will issue I/O calls to
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Figure 16: MILC write patterns. In-memory index compression rates by Pattern PLFS (higher is better): (A):37.0;(B):3.0;(C):3.6

the underlying file system and wait for the data. Otherwise, it will
return data to the application from the Prefetch Cache immediately
without again fetching data from the file system. Since moving data
within memory is much faster than moving from disk to memory,
I/O latency is reduced.

4.2 Pattern Detection and Prediction
To discover patterns for prefetching, the Pattern Detector peri-

odically tries to find patterns from the recent request history us-
ing the algorithm described in Algorithm 1 and Figure 8. Then,
the prefetch is conducted using prediction based on current pattern.
For example, if the current offset pattern detected is [0, (3, 4, 7)∧2]
(pattern unit, Figure 7), the Prefetch Manager can predict future re-
quests that may follow it. In this example, the next three request
offsets predicted should be 31, 35, 42, as explained below.

0 + (3 + 4 + 7)× 2 + 3 = 31

0 + (3 + 4 + 7)× 2 + 3 + 4 = 35

0 + (3 + 4 + 7)× 2 + 3 + 4 + 7 = 42

For more advanced predictions, the patterns can be organized
as nodes of a tree structure as shown by the example in Figure 18.
This multi-level pattern tree can be built by using Algorithm 1 mul-
tiple times. For the first time, the input is a sequence of numbers.
Starting from the second time, the input is the sequence of patterns
found from the previous time. In the tree structure, child patterns
are represented as pattern unit (Figure 7) without i. The parent
pattern has a full pattern unit describing the pattern of i of its chil-
dren. I/O libraries using multi-level data layout or I/O operations
in complex embedded loops may produce recursive patterns. The
tree structured pattern is suitable for these cases.

Pattern #1 Pattern #2 Pattern #3

Pattern #4

...

Accessed with pattern #1

Accessed with pattern #2

Accessed with pattern #3

File

Figure 18: Pattern Tree. Pattern #1, #2 and #3 repeat as a whole
and they form the bigger pattern #4.

4.3 Markov Model Prediction Algorithm
Since Markov model prediction [31] is an important related work

to the pattern detection proposed in this paper, we briefly describe
it here and compare its performance with the pattern detection al-
gorithm of this paper in Section 5.

A Markov model can be represented as an N × N matrix M .
Mi,j is the probability of transition from state i to state j. The
probability of transition from state i to any states is determined only
by state i. To build a Markov model for read requests, a file should
be divided to data blocks of equal size and each block is assigned a
block number. The block numbers are used to represent the states
in the Markov matrix. For example, if blocks 2, 3, 6, 7, 10, 11 are
read by an application, the corresponding Markov matrix will be
the one in Figure 19. To predict by the model, when a read request
for block 3 comes, the Markov model will predict the next request
to be block 6 because M3 ,6 = 1 .
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Figure 19: Markov Matrix

5. PREFETCH EVALUATION
The evaluation of our prefetch system is based on a trace-driven

approach. We developed FUSE-Tracer and Trace-Replayer, which
are publicly available with our pattern-aware prefetching FUSE file
system [20]. FUSE-Tracer records fine-granularity I/O requests
with information such as hostname, offset, length, PID, operation
start time, operation end time. It is very easy to use and it does
not require recompilation of the application to be traced or any li-
braries. To use FUSE-Tracer, all you need to do is mount FUSE-
Tracer on a directory and file operations performed on the mount
will be recorded to a file. Trace-Replayer then is a tool that re-
plays the traces collected by FUSE-Trace; it also provides some
extra functionality such as adding fixed computational delays be-
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tween I/O operations. This allows us to easily vary the ratio of I/O
to computation to study how much latency is required in order for
pre-fetching to be beneficial.
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Figure 20: Pagoda I/O Requests. Only initial offsets of the re-
quests are plotted. The graph shows the requests may have
more complex patterns than simple strided ones.

5.1 Trace-Driven Simulation
To evaluate the prefetch system, we collected traces of Pagoda

by FUSE-Tracer and replayed them using Trace-Replayer on the
mount point of the prefetch system. Figure 20 shows the I/O re-
quests of one Pagoda process. We replayed the Pagoda trace and
the results are shown in Figure 21.
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Figure 21: Pagoda I/O cost from the user’s perspective.

To compare the performance of prefetching, we replayed Pagoda
traces on different types of FUSE prefetching systems. The X
axis in Figure 21 indicates the type of the FUSE application. No-
Prefetch is basic vanilla FUSE that does not have any prefetch ca-
pabilities enabled. Linux-Readahead has the Linux built-in reada-
head functionality enabled. Markov-Prefetch uses Markov predic-
tion proposed by Oly and Reed [31]. Since the Markov predic-
tion [31] cannot work on the parts of the file that have not been
read, we had to run the replayer more than once to build the model
and then use it for prefetching. In the initial execution, the Markov
pattern detector collects read requests and builds the Markov model
with no prefetch being conducted. In the non-initial executions, the
Markov model was used to predict future requests and prefetching
was then conducted.

Pattern-Prefetch uses the pattern detection algorithm proposed
in this paper. Since the prediction is not limited to the regions
that have been read, prefetching in Pattern-Prefetch works with all
reads. As a result, there is only one box showing its performance
in Figure 21. In Perfect-Prefetch, the Prefetch Manager loads the
I/O trace that is also used by the replayer and uses it for prediction,
which means the prefetch manager knows exactly what will be read
by the replayer. In this case, the prediction accuracy is 100 percent.

The Y axis in Figure 21 is the I/O time that users observe and
less is better. It includes the time spent on I/O by the application,
pattern detection, and prefetch management (e.g. communicating
with prefetch helper thread), but does not include the time spent on
the Prefetch Thread, since it is overlapped with the computation of
the replayer or main thread of FUSE. Because the interfere from
prefetching to computation is ignorable in this test case, the reduc-
tion of I/O time leads to the reduction of the overall execution time.

5.2 Discussion
Linux-Readahead is slightly better than No-Prefetch, because the

read offsets were increasing most of the time. Reading several KBs
ahead had positive effects. However, it is limited. The initial ex-
ecutions of Markov-Prefetch do not have prefetch, so the results
are very close to the No-Prefetch ones. The Markov-Prefetch non-
initial executions, which are with prefetching, have shorter I/O time
than the initial tests. In the Markov model, there are several key
parameters that need to be tuned in order to achieve good perfor-
mance. Inappropriate parameters may degrade performance. For
example, if block size is too small, the Markov matrix will use too
much memory and disk space. When the block size is reduced to
one byte, the Markov model is essentially equal to records of every
single requests. Loading and storing the model can be slow. In ad-
dition, the prediction speed can be negatively affected. If the block
size is too large, many read requests can fall into one block, which
makes prediction inaccurate. We picked the optimal 8KB as the
blocking for Markov model after inspecting the trace. On average,
the non-initial executions of Markov-Prefetch reduces No-Prefetch
I/O time by 18%.

Pattern-Prefetch can reduce I/O latency regardless of whether it
is the initial execution or non-initial execution, since it is based on
latest patterns detected. The patterns are mostly related to strides,
not positions within the file. In addition, according to the evaluation
on PLFS metadata, it is already proved that the pattern representa-
tion proposed in this paper is compact. So less memory is taken
for the purpose of prefetching. The pattern information stored in
memory for prefetching is less than 1 KB, while the Markov model
for the 250 MB file is 0.6 MB both on memory and disk. The
Markov model will also be larger when the file is larger. In ad-
dition to the advantage of compact pattern representation, the fu-
ture read requests predicted by Pattern-Prefetch are (offset, length)
pairs, which allows it to prefetch the exact data requested without
any unnecessary data. On average, Pattern-Prefetch reduces No-
Prefetch I/O time by 46%.

6. OTHER POSSIBLE USE CASES
Discovering patterns within unstructured I/O and representing

them compactly and losslessly are promising techniques and can
be applied in other systems. One such example is pre-allocation of
blocks in file systems. This eager technique, similar to prefetch-
ing, uses predictions of future accesses to optimistically perform
expensive operations ahead of time. Our pattern detection of com-
plex access patterns can improve these predictive abilities. Another
example, in SciHadoop, the ratio of metadata (keys, which are di-
mensional information) to data can be very high, thereby incurring
tremendous latency when it is transferred [15]. Our technique can
be applied to shrink the size of these keys and eventually reduce
overhead by using these discovered structures to represent keys.
Finally, as HPC continues to grow to extreme scales, tracing I/O is
increasingly challenging due to the size of the traces. Lossy tech-
niques such as sampling are one way to reduce the size of the traces;
our patterns could do so without loss and make it feasible to under-
stand I/O behaviors at very large scale with fine granularity.

34



7. RELATED WORK
Our study in this paper involves data compression and pattern

recognition. A related work is LZ77 [44], which compresses by
describing repeating occurrences of data with the uncompressed
single copy. It uses sliding windows to discover repeating data
and uses length-distance pairs to encode the data. The drawback
of LZ77 is that it does not allow random accesses to input. To
decode, it has to start from the beginning of the input. In addi-
tion, it does not address the special characteristics I/O requests.
Our approach takes advantage of repeating strides of I/O requests
with patterns and builds patterns locally (intra-process) and glob-
ally (inter-process). The compact representation of pattern allows
fast random accesses without decoding.

I/O access patterns have been studied for decades [17, 32, 39,
38, 33, 29, 16, 43]. By various approaches, these studies record
and analyze I/O behaviors by statistics, such as the counts of I/O
request sizes in different ranges, number of files, I/O interface/li-
brary usage, bandwidth over time and so on. However, the majority
of studies are of coarse granularity or they do not provide effective
ways to recognize fine patterns.

Madhyastha et al. use feedforward neural network and hidden
Markov models separately to classify I/O accesses patterns [27].
The classifications are used to guide file system policies. Both
of the methods used are based on statistics models. These mod-
els are not lossless and cannot serve our need for recovering exact
mapping for PLFS. In reference [31], in order to prefetch, Markov
model is built to predict future accesses. Again, Markov model is
based on statistics and not accurate for storing mappings. It can-
not serve as index in PLFS. As a prefetch approach, Markov model
proposed in [31] cannot predict in the file regions that have not
been accessed. In addition, for the regions that are accessed many
times, the predict accuracy decreases. More details are discussed
in Section 4 and Section 5.

ScalaTrace [30] allows very concise tracing of MPI applications
by intra- and inter-node compression techniques. It compresses
MPI events with identical parameters in loops. However, the tech-
niques only focus on communications and do not provide a way to
deal with I/O. ScalaIOTrace [42] extends ScalaTrace to I/O. But it
inherits most of ScalaTrace techniques and does not provide any
techniques to detect I/O patterns either.

Byna et al. proposed an access pattern notation, I/O Signature,
to guide prefetching [16]. Although the notation is general to rep-
resent a broad categories of patterns, the paper fails to present any
effective algorithm to discover access patterns or any practical im-
plementation of the notation. Application-level hints can be used to
guide prefetching. The hints are provided by users [34], generated
by speculative execution [18] or special programming toolkits [41,
36]. They may put significant burden on the users in some cases.
In addition, they are not sophisticated enough to recognize the I/O
patterns and are not as universal as our approach.

In previous work [22], He et al. proposed an approach to reor-
ganize data to make data accesses larger and more sequential. To
locate the reorganized data, a simple remapping index was used.
However, it is not able to describe sophisticated mapping and pat-
tern recognition algorithm is not studied. In [23], high-level usage
patterns are used to conduct prefetching. However, high-level I/O
libraries are required.

8. CONCLUSION
The era of big data and exascale is nigh and is pushing I/O to

its limits. Knowledge of I/O’s structure can improve performance
but its discovery is not trivial. In this paper, we have developed
efficient and practical techniques to discover structures from seem-
ingly unstructured I/O operations, thereby enabling powerful I/O
optimizations. We applied these techniques within a virtual paral-
lel file system, PLFS, to compress its internal metadata by up to
several orders of magnitude with corresponding improvements in
write and read performance of up to 40% and 480% respectively.
We also applied the techniques to implement a prefetch system us-
ing pattern detection to predict future I/O requests. The evaluation
with a trace of a real application shows it can reduce I/O latency by
46%, more than doubling the increase shown in prior work which
used Markov modeling. We hope, and expect, that these techniques
will enable many further I/O optimizations to extend HPC comput-
ing into the exascale era and beyond.

Acknowledgments
The authors are thankful to Michael Lang (Los Alamos National
Laboratory) and Adam Manzanares (California State University,
Chico) for their help toward this study. The authors are also grate-
ful to all the anonymous reviewers for their constructive comments
and suggestions, which improve the quality of this paper. This work
was performed at the Ultrascale Systems Research Center (USRC)
at Los Alamos National Laboratory, supported by the U.S. Depart-
ment of Energy DE-FC02-06ER25750. The publication has been
assigned the LANL identifier LA-UR-13-22371.

9. REFERENCES
[1] Filesystem in Userspace. http://fuse.sourceforge.net/.
[2] National Energy Research Scientific Computing Center.

https://outreach.scidac.gov/.
[3] NetCDF website.

http://www.unidata.ucar.edu/software/netcdf/.
[4] Pagoda website. https://svn.pnl.gov/gcrm/wiki/Pagoda.
[5] Pattern PLFS.

https://github.com/junhe/plfs/tree/complexindex.
[6] SPEC MPI2007 Benchmark Description.

http://www.spec.org/auto/mpi2007/Docs/104.milc.html.
[7] The MIMD Lattice Computation (MILC) Collaboration.

http://www.physics.utah.edu/ detar/milc/.
[8] LANL FS-TEST, 2012.

http://institutes.lanl.gov/data/software/.
[9] zlib, 2012. http://zlib.net/.

[10] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau.
Information and control in gray-box systems. In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 43–56, Banff, Canada, October
2001.

[11] J. Bent. PLFS maps, 2012.
http://www.institutes.lanl.gov/plfs/maps.

[12] J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate. PLFS:
A checkpoint filesystem for parallel applications. In
Proceedings of the 2009 ACM/IEEE conference on
Supercomputing, page 21. ACM, 2009.

[13] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis. BORG:
block-reORGanization for self-optimizing storage systems.

35



In Proccedings of the 7th conference on File and storage
technologies, pages 183–196. USENIX Association, 2009.

[14] J. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn,
N. Polyzotis, and S. Brandt. Scihadoop: Array-based query
processing in hadoop. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, page 66. ACM, 2011.

[15] J. Buck, N. Watkins, G. Levin, A. Crume, K. Ioannidou,
S. Brandt, C. Maltzahn, and N. Polyzotis. Sidr: Efficient
structure-aware intelligent data routing in scihadoop.
Technical report, UCSC.

[16] S. Byna, Y. Chen, X. Sun, R. Thakur, and W. Gropp. Parallel
I/O prefetching using MPI file caching and I/O signatures. In
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, page 44. IEEE Press, 2008.

[17] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross. Understanding and improving
computational science storage access through continuous
characterization. ACM Transactions on Storage (TOS),
7(3):8, 2011.

[18] F. Chang and G. Gibson. Automatic i/o hint generation
through speculative execution. Operating systems review,
33:1–14, 1998.

[19] HDF5. http://www.hdfgroup.org/HDF5/.
[20] J. He. JIOPAT: I/O Pattern Study Toolkit.

http://junhe.github.io/jiopat/.
[21] J. He, J. Kowalkowski, M. Paterno, D. Holmgren, J. Simone,

and X.-H. Sun. Layout-aware scientific computing: a case
study using milc. In Proceedings of the Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems in
conjunction with ACM/IEEE SuperComputing 2011, 2011.

[22] J. He, H. Song, X. Sun, Y. Yin, and R. Thakur. Pattern-aware
file reorganization in mpi-io. In Proceedings of the sixth
workshop on Parallel Data Storage, pages 43–48. ACM,
2011.

[23] J. He, X.-H. Sun, and R. Thakur. Knowac: I/o prefetch via
accumulated knowledge. In Proceedings of the IEEE
International Conference on Cluster Computing, pages
429–437, Beijing, China, September 2012.

[24] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[25] Linux. http://www.kernel.org/.
[26] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin.

Flexible io and integration for scientific codes through the
adaptable io system (adios). In Proceedings of the 6th
international workshop on Challenges of large applications
in distributed environments, pages 15–24. ACM, 2008.

[27] T. Madhyastha and D. Reed. Learning to classify parallel
input/output access patterns. Parallel and Distributed
Systems, IEEE Transactions on, 13(8):802–813, 2002.

[28] A. Manzanares, J. Bent, M. Wingate, and G. Gibson. The
power and challenges of transformative i/o. In IEEE Cluster
2012, Beijing, China, September 2012.

[29] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and
M. Best. File-Access Characteristics of Parallel Scientific
Workloads. 1995.

[30] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R.
de Supinski. Scalatrace: Scalable compression and replay of
communication traces for high-performance computing.
Journal of Parallel and Distributed Computing,
69(8):696–710, 2009.

[31] J. Oly and D. Reed. Markov model prediction of i/o requests
for scientific applications. In Proceedings of the 16th
international conference on Supercomputing, pages
147–155. ACM, 2002.

[32] B. Pasquale and G. Polyzos. A static analysis of i/o
characteristics of scientific applications in a production
workload. In Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, pages 388–397. ACM, 1993.

[33] B. Pasquale and G. Polyzos. Dynamic i/o characterization of
i/o intensive scientific applications. In Proceedings of the
1994 ACM/IEEE conference on Supercomputing, pages
660–669. ACM, 1994.

[34] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In SOSP,
pages 79–95, 1995.

[35] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, M. Wingate, et al. ...
and eat it too: high read performance in write-optimized hpc
i/o middleware file formats. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, pages 21–25. ACM,
2009.

[36] P. J. Rhodes, X. Tang, R. D. Bergeron, and T. M. Sparr.
Iteration aware prefetching for large multidimensional
scientific datasets. In Proc. of the 17th international
conference on Scientific and statistical database
management (SSDBM), pages 45–54, 2005.

[37] E. Shriver, C. Small, and K. Smith. Why does file system
prefetching work. In Proceedings of the 1999 USENIX
Annual Technical Conference, volume 27, 1999.

[38] H. Simitci and D. A. Reed. A comparison of logical and
physical parallel i/o patterns. International Journal of High
Performance Computing Applications, 12(3):364–380, 1998.

[39] E. Smirni and D. Reed. Lessons from characterizing the
input/output behavior of parallel scientific applications.
Performance Evaluation, 33(1):27–44, 1998.

[40] R. Thakur, W. Gropp, and E. Lusk. On implementing mpi-io
portably and with high performance. In Proceedings of the
sixth workshop on I/O in parallel and distributed systems,
pages 23–32. ACM, 1999.

[41] S. VanDeBogart, C. Frost, and E. Kohler. Reducing seek
overhead with application-directed prefetching. In
Proceedings of USENIX Annual Technical Conference, 2009.

[42] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scalable
i/o tracing and analysis. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, pages 26–31. ACM,
2009.

[43] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur. Pattern-direct
and layout-aware replication scheme for parallel i/o systems.
In Proceeding of the 27th IEEE International Parallel &
Distributed Processing Symposium (IPDPS’2013). IEEE,
2013.

[44] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. Information Theory, IEEE Transactions
on, 23(3):337–343, 1977.

36




