
Structuring PLFS for Extensibility

Chuck Cranor
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

chuck@ece.cmu.edu

Milo Polte
WibiData, Inc.

375 Alabama Street
San Francisco CA, 94110
milo@wibidata.com

Garth Gibson
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

garth@cs.cmu.edu

ABSTRACT

The Parallel Log Structured Filesystem (PLFS) [5] was de-
signed to transparently transform highly concurrent, mas-
sive high-performance computing (HPC) N-to-1 checkpoint
workloads into N-to-N workloads to avoid single-file perfor-
mance bottlenecks in typical HPC distributed filesystems.
PLFS has produced speedups of 2-150X for N-1 workloads
at Los Alamos National Lab. Having successfully improved
N-1 performance, we have restructured PLFS for extensibil-
ity so that it can be applied to more workloads and storage
systems. In this paper we describe PLFS’ evolution from
a single-purpose log-structured middleware filesystem into a
more general platform for transparently translating applica-
tion I/O patterns. As an example of this extensibility, we
show how PLFS can now be used to enable HPC applica-
tions to perform N-1 checkpoints on an HDFS-based cloud
storage system.

1. INTRODUCTION
Demanding High Performance Computing (HPC) applica-

tions are typically large physical simulations that compute
for a long time using a large number of compute nodes and
the Message Passing Interface (MPI) subsystem [20]. MPI
also provides group communication synchronization features
such as barriers.
Typically HPC applications protect themselves from fail-

ure by periodically pausing and concurrently writing their
state to a checkpoint file in a POSIX-based distributed filesys-
tem (DFS) such as Lustre [26, 31], PanFS [21, 29], PVFS [17,
16, 24] or GPFS [25]. Checkpoint I/O can be particular-
ity challenging when all processes in the parallel application
write to the same checkpoint file at the same time, an access
pattern known as N-1 writing [5, 23, 6].
An increasing number of clusters are being configured for

data analytics using the Apache Hadoop open source ver-
sion of the Google Internet services tool suite (Google File
System, BigTable, etc.) [10, 8]. Because HPC and Inter-
net services analytics are both big data and big compute

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
PDSW13 November 18, 2013, Denver, CO, USA
Copyright is held by the owner/author(s).
ACM 978-1-4503-2505-9/13/11
http://dx.doi.org/10.1145/2538542.2538564

applications families, it is desirable to be able to mix and
match applications on cluster infrastructure. Prior research
has demonstrated that Hadoop applications can run effi-
ciently on HPC cluster infrastructure [2]. However, cloud
storage systems such as the Hadoop Distributed Filesystem
(HDFS) [27] are not POSIX-based and do not support mul-
tiple concurrent writers to a file. In order to enable the
convergence of HPC and Cloud computing on the same plat-
form, we set out to provide a way to enable HPC applica-
tions to checkpoint their data to a Cloud filesystem, even if
all processes write to the same file.

In this paper we describe how the Parallel Log Structured
Filesystem (PLFS) was restructured to allow extension to
different backend storage, such as HDFS, and to solve differ-
ent workload problems. Our extensible PLFS, for example,
provides HPC applications with the ability to concurrently
write from multiple compute nodes into a single file stored
in HDFS.

2. PLFS
PLFS [5, 23, 7, 6] is an interposing filesystem that sits

between HPC applications and one or more backing filesys-
tems. PLFS has no persistent storage itself. PLFS trans-
parently translates application-level I/O access pattern so
that they perform well with modern DFSs. Neither HPC
applications nor the backing filesystems need to be aware of
or modified for PLFS to be used.

PLFS was developed because HPC parallel filesystems suf-
fer lock convoys and other congestion when a large number
of different client machines are concurrently writing into the
same region of a file. First, all writes to PLFS are sep-
arated out into per-process log files so that each process
writes to its own file rather than to a single shared file.
Second, each node’s output stream is hashed to one of the
backing filesystems, thus spreading a single file’s data. Fi-
nally, individual files in a single directory are distributed
among backing filesystems using hashing. The first two
mechanisms improve the performance of N-1 checkpointing,
and the first works even if only a single backing volume is
available. When applications read data, PLFS must collect
indexing information from all the write logs in order to re-
assemble application data.

Each file stored in a PLFS filesystem is mapped to one or
more “container directories.” An example of this is shown in
Figure 1. The figure shows a N-1 checkpoint file called ckpt

being written into a PLFS file by six processes distributed
across three compute nodes. The PLFS virtual layer shown
is backed by three volumes of a DFS. Each process’ blocks

20



Underlying DFSs

131 132

host2 host3

279 281 132 148

host1

PLFS Virtual Layer
/plfs/ckpt

backing volume A backing volume B backing volume C

/VolB/ckpt/host.2/

data logs + index

/VolC/ckpt/host.3/

data logs + indexdata logs + index

/VolA/ckpt/host.1/

Figure 1: PLFS container structure

of data written to the checkpoint file are strided, resulting
in a process’ blocks being logically distributed throughout
the checkpoint file.
PLFS assigns each host writing to the checkpoint file ckpt

a backing volume to store data in. For example, writes from
host1 are mapped to backing volume A. Then within that
volume, each process writing to the checkpoint file is allo-
cated its own private data log file to write to. PLFS keeps
indexing information for all writes so that it can reassemble
the data if it is read. Without the PLFS layer, the appli-
cation would be storing all its data in a single checkpoint
file on a single backing DFS volume. This would result in
poor checkpoint I/O performance due to bottlenecks in the
DFS. However, with PLFS, the checkpoint data is separated
into per-process log files that are distributed across multi-
ple backing volumes allowing the application to better take
advantage of parallelism in the DFS.

3. PLFS ARCHITECTURE EXTENSIBILITY
PLFS, as described above, was originally targeted at im-

proving the performance of N-1 checkpointing for HPC ap-
plications. To use PLFS, applications only need to be config-
ured to store their checkpoint files in PLFS — no application
source code modifications are required. To achieve this level
of transparency, PLFS uses mechanisms such as FUSE [9]
userspace filesystems or a PLFS instance of MPI’s ADIO
layer [28]. In the LDPLFS [30] project, PLFS has been fur-
ther extended to work with the dynamic linker to replace
POSIX C library calls with their PLFS equivalents. These
mechanisms allow us to dynamically change HPC applica-
tion I/O patterns without having to recompile or relink the
applications themselves.
After having successfully shown that PLFS can transpar-

ently improve an HPC application’s I/O pattern for the N-
1 case we generalized the PLFS architecture beyond N-1
checkpoints. PLFS is now a general purpose middleware
filesystem that can transform an application’s I/O access
patterns in a number of new ways. Figure 2 shows how the
PLFS architecture has been extended in three ways to give
it new flexibility in transforming I/O patterns.
First, the PLFS Logical Filesystem interface was inserted

beneath the top-level API used by MPI and FUSE. This

libc, etc.

PLFS high−level API

index API

patternbyte−range distributed

interface

I/O store

hdfsiofslpvfsposix

small

filefile

flat

logical FS interface

container

libhdfs

libjvm

hdfs.jar

HPC Application

fuse mpi
libplfs

MDHIM

w/LevelDB

Figure 2: PLFS extensibility

allows other types of filesystems besides the original log-
based container filesystems to be inserted into PLFS in a
modular way. Two new filesystem types have been added to
PLFS: the Flat Filesystem and the Small File Filesystem.
Both these new filesystems target an N-N workload. Much
like the PLFS Container Filesystem, the Flat Filesystem
spreads files in a PLFS directory out across multiple backing
filesystems to distribute the metadata load, but the Flat
Filesystem does not create container directories or log files,
so it avoids the additional overhead associated with those
files. The Small File Filesystem is a hybrid between the
Flat Filesystem and the Container Filesystem. It combines
all the files written by a single process in a directory into a
log file, thus making inserting new files in a directory fast at
the cost of making reading the directory and file data more
complex.

Second, the I/O Store interface was added to the PLFS
backend interface to allow PLFS Logical Filesystems to use
non-mounted non-POSIX filesystems to store application
data. There are currently four PLFS I/O Store modules in
PLFS: POSIX, PVFS [17], IOFSL [22, 15], and HDFS [27,
3]. The I/O Store interface enables us to transparently di-
vert application data between radically different filesystem
types.

Finally, for the PLFS Container Filesystem we are im-
plementing a modular indexing API. The initial PLFS Con-
tainer Filesystem uses simple index log records to store data
location. This means that each process wanting to read data
from a PLFS Container file must read all the index records
and merge them together first (when the file is opened for
reading). This causes file open operations to be slow and
can consume excessive memory since each node in the clus-
ter has a complete copy of the index in RAM. The slow
open times can be improved by reading the index in par-
allel and exchanging the index records between nodes over
a high speed interconnect [19], but this does not help the
memory usage problem. The indexing API allows alternate
indexing schemes to be tried. For example, the indexing
module can look for I/O patterns in the index records and
compress them into a compact formular [13, 14]. We are

21



also exploring the use of a distributed index (using MDHIM
range servers [1] built on top of LevelDB [18]).
In addition to these three extensions, the flexible PLFS

framework has also been used to prototype exascale-level
I/O subsystems such as burst buffers [4, 7]. A burst buffer is
a local solid state storage device (SSD) that quickly absorbs
a burst of I/O (e.g. a checkpoint) from an HPC application,
allowing the application to continue processing. After the
burst, the I/O system drains all burst buffers to permanent
backing storage so that they are ready for the next burst.
The PLFS Container Filesystem has been used to proto-
type burst buffers by having each node in a cluster have two
types of backends: a local“shadow”backend for the SSD and
a “canonical” backend for the permanent storage. When a
checkpoint to the SSD is complete, PLFS forks off an asyn-
chronous daemon to drain the burst buffer to the canonical
container without having to involve the application in the
data transfer.
As an example of PLFS’ extensibility, in the rest of this

paper we will examine how the PLFS I/O Store layer we
built can be used to allow HPC applications to perform N-
1 checkpoints to a new filesystem type (HDFS) that they
normally would not be able to use.

4. HDFS I/O STORE LAYER FOR PLFS
Cloud storage systems such as HDFS do not support con-

current writing into one file. Fortuitously, data written to
PLFS files is broken up and separated into log files in a
PLFS container directory. However, the original PLFS as-
sumes that log data files, log index files, and directories can
be accessed through a mounted filesystem using the stan-
dard POSIX I/O system calls. HDFS, designed only to be
accessible through its Java-based API, was not supported.
As shown in Figure 2, our HDFS I/O Store converts the

PLFS I/O Store calls into HDFS API calls and passes them
to libhdfs. The libhdfs library is a thin C JNI-based wrapper
over the Java HDFS API. To use libhdfs, PLFS must be
linked with a Java virtual machine (libjvm) so that it can
make calls to HDFS Java routines stored in the the Hadoop
hdfs.jar file.
We encountered two types of implementation issues when

designing and testing PLFS HDFS. First, we had to adapt
the HDFS API to match the I/O Store interface, and there
were cases where the semantics of the HDFS API did not
line up well with the I/O store interface. Second, using
the HDFS API requires us to pull in the entire Java virtual
execution environment into our application and there were
platform issues associated with that.
There were a number of areas where the HDFS API re-

quired help to match the I/O Store interface. These areas
include:

File group/ownership: HDFS uses text-based user and
group names, while PLFS uses integer-based UIDs and
GIDs, so we had to use the local password and group
file access functions to establish a mapping between
these identities for API functions such as chown.

Object creation mode: The PLFS I/O Store interface fol-
lows the POSIX semantics of allowing an object’s per-
mission to be established when a file or directory is
first created. HDFS does not provide this semantic,
so creating an HDFS object with a given permission

requires two HDFS operations: a create followed by a
chmod operation.

Reading memory mapped files: HDFS does not support
reading files using the mmap memory mapped file inter-
face. Since PLFS only reads and never writes files with
mmap, this interface can be emulated by doing a nor-
mal HDFS read into a a memory buffer allocated with
malloc.

Directory I/O: HDFS does not have a POSIX-like open-

dir, readddir, closedir interface. We emulate this
by caching the entire listing of a directory in memory
when it is opened and performing readdir operations
from this cache.

File truncation: HDFS cannot truncate files to smaller
non-zero lengths. This is ok because PLFS only trun-
cates backend files to size zero. HDFS cannot truncate
files to size zero either, but this operation can be emu-
lated by opening an file for writing. In this case HDFS
discards the old file and creates a new zero length file.

There are several filesystem semantics that HDFS does
not provide, but they do not prevent PLFS from operating.
These semantics include opening a file in read/write mode,
positional write (pwrite) operations, and symbolic link re-
lated operations. Since PLFS is a log structured filesystem,
it does not need or use read/write mode or writing to any lo-
cation of a file other than appending to the end of it. PLFS
also does not require symbolic links in the backend when
used with one backing filesystem (but symbolic links have
been added to HDFS in version 0.23).

In addition to these issues there are two cases where the se-
mantics provided by the HDFS I/O API are unusual. First,
the HDFS API used to create directories (hdfsCreateDi-
rectory) functions like the Unix “mkdir -p” command —
it will create multiple levels of directories at the same time
and will not fail if the directories path give already exists.
Second, the HDFS API used to rename files and directories
(“hdfsRename”) operates more like the Unix “mv” command
than the POSIX rename system call. Attempts to rename a
file or directory to a name of a directory that already exists
causes the object being renamed to be moved into the exist-
ing target directory rather than having the rename operation
fail with a file exists error. This partially breaks PLFS code
that handles concurrent file creation races: PLFS still works
properly but it is not as efficient as it would be in the POSIX
case.

Finally, the HDFS API’s handling of errors is unusual be-
cause part of it is based around Java exceptions. When
HDFS encounters a condition that generates a Java excep-
tion, the C-level libhdfs API returns -1 and does not set a
meaningful error number. These kinds of exception error
occur when trying to perform I/O on an open file that has
been unlinked, a situation allowed in POSIX but not HDFS
(PLFS can ignore the errors in this case).

5. EVALUATION
To evaluate how the HDFS I/O Store module handles

HPC workloads using a Cloud-based storage system, we ran
a series of HPC benchmark runs using the open source File
System Test Suite checkpoint benchmark from LANL [12].
Our hardware testing platform is the PRObE Marmot clus-
ter [11]. Each node in the cluster has dual 1.6GHz AMD

22



1

unit
access

nodes (shifted for read)

nodes

stride

write phase

read phase

checkpoint file

2

0 1 2

0

Figure 3: Checkpoint benchmark operation

Opteron processors, 16GB of memory, Gigabit Ethernet,
and a 2TB Western Digital SATA disk drive. For our tests
we run the 64 bit version of the Ubuntu 10 Linux distribu-
tion.

5.1 File System Test Benchmark
For all of our tests, we configured the benchmark to gen-

erate a concurrently written N-1 checkpoint (Figure 3). In
the first phase of the benchmark each node opens the freshly
created checkpoint file for writing and then waits at a MPI
barrier. Once all nodes are ready, the benchmark starts con-
currently writing checkpoint data. Each node writes a fixed
number of chunks of data and then waits at a MPI barrier
for all writing to complete. Access units are written to the
checkpoint file in strides. Each stride contains one access
unit from each node. Once writing is complete, the nodes
sync data to disk, close the file, and wait at a final barrier
before exiting.
Before starting the read phase we terminate all processes

and unmount the filesystem in order to flush all caches. Af-
ter the filesystem has been remounted and restarted, the
benchmark reads the checkpoint in the same way it was writ-
ten, however we shift the nodes around so that each node
reads data that some other node wrote (rather than data
that it just wrote). This ensures that the benchmark has to
use the network to obtain the data it wants to read.
Each node (of 64) generates 512MB of checkpoint data

for all our tests for a total of 32GB. We used 3 access unit
sizes for our tests: 47001 bytes, 48KB, and 1MB. The 47001
size is a small, unaligned number symptomatic of actual ap-
plications causing the worst problems for file systems. The
48K access unit size is close to the 47001 size, but aligned to
the system page size. The 1MB size is a more disk friendly
access unit size.

5.2 Filesystem Organization
We used two backing filesystems for our tests: PVFS and

HDFS (through PLFS). PVFS is our baseline traditional
HPC distributed filesystem. For PVFS we used the Or-
angeFS 2.4.8 distribution, and for HDFS we used Hadoop
version 0.21.
Each file in PVFS and HDFS is broken down into fixed-

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
ri
te

 b
a
n
d
w

id
th

 (
M

b
y
te

s
/s

)

PVFS-kern-write
PVFS-lib-write
HDFS1-kern-write
HDFS1-lib-write
HDFS3-kern-write
HDFS3-lib-write

Figure 4: Write bandwidths

sized chunks. We configured PVFS to use a chunk size of
64MB to match HDFS. The first chunk of a PVFS file gets
assigned to an arbitrary node, and subsequent chunks are
assigned using round-robin across storage nodes. Unlike
HDFS, PVFS does not replicate data as it is assumed to
be running on top of a RAID-based underlying filesystem.

Under Hadoop, HDFS is normally not used with hardware
RAID. Instead HDFS is configured to write each block of
data to three different servers for fault tolerance. For our
benchmarking we used HDFS in two modes: HDFS3 and
HDFS1. HDFS3 is normal HDFS with 3-way replication,
while HDFS1 is HDFS with the replication factor set to 1 (no
replicas). We included HDFS1 results because that mode of
operation is similar to what PVFS provides (no replicas).
HDFS always writes the first copy of its data to local disk.
HDFS3 sends a second copy to a node randomly chosen from
the same rack and the third copy to a node in a different
rack (sent by the second node). For our experiments, all
nodes were connected to the same switch, so the second and
third nodes are chosen at random.

Both PLFS and PVFS can be used in one of two ways.
First, both filesystem can be accessed through a kernel mount-
point: PVFS provides its own Linux kernel module for this,
while PLFS uses Linux FUSE [9]. Second, PLFS and PVFS
can be used as client libraries to avoid the overhead of rout-
ing data through the kernel. For our benchmark runs, we
have results from PVFS and the HDFS I/O Store under
PLFS using both kernel mount points and library interfaces.
HPC MPI developers typically use its ADIO [28] abstract-
device interface to portably access filesystem client libraries
and avoid kernel module overheads.

5.3 Results
Figure 4 shows the write bandwidths for PVFS and PLFS

with the HDFS I/O Store module under both kernel and
library configurations using access unit sizes of 47001, 48K,
and 1M. The results for each test have been averaged over 5
runs made on our 64 node cluster. The error bars indicate
the standard deviation across the 5 runs.

The plot shows that the HDFS I/O Store can support
concurrent write workloads well with the worst case access
unit size of 47001 bytes. To interpret the numbers, note
that PVFS is one remote copy, HDFS1 is one local (no net-

23



47001 48K 1M
access unit size (bytes)

0

500

1000

re
a
d
 b

a
n
d
w

id
th

 (
M

b
y
te

s
/s

)
PVFS-kern-read
PVFS-lib-read
HDFS1-kern-read
HDFS1-lib-read
HDFS3-kern-read
HDFS3-lib-read

Figure 5: Read bandwidths

work) copy, and HDFS3 is one local and two remote copies.
The HDFS1 bandwidth is limited to around 1450 Mbytes/s
by the speed of the local disk. HDFS3 achieves around 1/3
of the HDFS1 bandwidth due to the extra copying, net-
work transits and disk writing. HDFS write bandwidths are
unaffected by access unit size because PLFS uses buffered
log structured writes so it is disk bottlenecked. The PVFS
bandwidth is limited by the synchronous network at 47001
bytes and increases as more efficient access unit sizes are
used (1M). PVFS write gets much faster with larger access
unit sizes because it does access sized transfers, so a larger
access unit size results in fewer different transfers.
Figure 5 shows the read bandwidths achieved by the bench-

mark after writing the checkpoint file. These results are
also averaged over 5 runs with standard deviation error bars
shown. Note that nodes are shifted for readback so that no
client reads the data it wrote, as shown in Figure 3. This
means that for HDFS1 the data being read will always be
on a remote node.
In the readback, both HDFS1 and HDFS3 do well. For

small access unit sizes HDFS outperforms PVFS. This is be-
cause of the log structured writes that PLFS performs with
HDFS. PVFS does not have the advantage of log grouping
of striped data on readback. For the unaligned 47001 access
unit size versus the 48K access unit size, the main change
is an improvement in the HDFS readback bandwidth under
the kernel mount case. This is because unaligned readback
through the kernel mount must go through the Linux buffer
cache which stores file data in units of memory pages. In
order to fill out the data outside of the 47001 access unit size
to page boundaries, the kernel must fetch checkpoint data
from neighboring blocks in the checkpoint file. This extra
work to align the data to page sized boundaries for the buffer
cache results in a 20% performance loss. The library case is
not affected by this loss because it does not use the Linux
kernel buffer cache.
For HDFS with the large 1M access unit, reading from one

of three copies with HDFS3 is around 20% slower than read-
ing from one copy with HDFS1. This is because with three
copies HDFS has a scheduling choice as to which of the three
copies it reads, where as with HDFS1 it has no choice. The
HDFS1 copy of the checkpoint file is perfectly balanced and
HDFS scheduling cannot make that worse. With HDFS3

10 20 30 40 50 60
Node number

0

500

1000

T
o
ta

l 
s
iz

e
 o

f 
d
a
ta

 s
e
rv

e
d
 (

M
B

)

HFDS1
HDFS3

Figure 6: HDFS1 and HDFS3 I/O access patterns

two of the three copies are randomly placed, so the HDFS
scheduler can force itself into unbalanced I/O patters (shown
by amount of data served per node in Figure 6).

For readback with a 1MB access unit size, the PVFS band-
width is about the same as the write bandwidth. For HDFS,
reading 1MB does not go as fast as PVFS, though the library
version of HDFS comes close. HDFS has the added overhead
of an extra data copy between the the HDFS Java virtual
machine and the PLFS code, and in the case of HDFS1-
kernel the FUSE implementation may not be as efficient
as the PVFS VFS kernel module. In addition to this, the
HDFS3 bandwidth also suffers from the excess scheduler
freedom relative to HDFS1.

The performance of the benchmark under HDFS when it is
directly linked to the PLFS library (described above) should
be close to the kind of performance HPC applications would
see when using HDFS with the PLFS ADIO interface under
MPI. This is because the PLFS ADIO module is built on
top of the PLFS library API, thus avoiding the overheads of
going through FUSE and potential problems with the kernel
buffer cache when the access unit size is not a multiple of
the virtual memory page size.

6. CONCLUSIONS
It might seem that HPC’s use of concurrently written

checkpoint files would be incompatible with the single-writer,
immutable file semantics offered by Hadoop’s HDFS Cloud
filesystem. In fact, the mechanisms needed to support con-
currently written files, and most of the rest of the POSIX
API suite commonly used by HPC, can be provided by us-
ing PLFS’ Container filesystem. In this paper we present an
adaptation of PLFS’s storage layer to the particulars of the
HDFS client API as an example of the extensions possible
with our restructured PLFS code base. Using an abstraction
architecture, PLFS is both fast and extensible.

7. ACKNOWLEDGMENTS
The work in this paper is based on research supported in

part by the Los Alamos National Laboratory under subcon-
tract number 54515 and 153593 (IRHPIT), by the National
Science Foundation under awards CNS-1042537 and CNS-
1042543 (PRObE), and by the Qatar National Research
Fund under award number NPRP 09-1116-1-172 (Qloud).

24



8. REFERENCES
[1] MDHIM: Multi-Dimensional Hashed Index

Metadata/Middleware.
https://github.com/mdhim/mdhim-tng/.

[2] R. Ananthanarayanan, K. Gupta, P. Pandey,
H. Pucha, P. Sarkar, M. Shah, and R. Tewari. Cloud
analytics: Do we really need to reinvent the storage
stack? In Proceedings of the 1st USENIX Workshop
on Hot Topics in Cloud Computing (HOTCLOUD
’2009), San Diego, CA, USA, June 2009.

[3] Apache. Welcome to hadoop distributed filesystem!
http://hadoop.apache.org/hdfs/.

[4] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett,
P. Tzelnic, and J. Woodring. Jitter-Free Co-Processing
on a Prototype Exascale Storage Stack. In IEEE
Conference on Massive Data Storage, April 2012.

[5] J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate.
Plfs: a checkpoint filesystem for parallel applications.
In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, pages 1–12, New York, NY, USA, 2009.
ACM.

[6] J. Bent and G. Grider. Usability at Los Alamos
Nation Lab. In U.S. Department of Energy Best
Practices Workshop on File Systems and Archives,
September 2011.

[7] J. Bent, G. Grider, B. Kettering, A. Manzanares,
M. McClelland, A. Torres, and A. Torrez. Storage
Challenges at Los Alamos National Lab. In IEEE
Conference on Massive Data Storage, April 2012.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A Distributed Storage System
for Structured Data. In USENIX OSDI 2006, Seattle
WA, Nov. 2006.

[9] FUSE: Filesystem in Userspace.
http://fuse.sourceforge.net/.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. SIGOPS Oper. Syst. Rev.,
37(5):29–43, 2003.

[11] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
PRObE: A Thousand-Node Experimental Cluster for
Computer Systems Research. In USENIX ;login:,
volume 38, June 2013.

[12] G. Grider, J. Nunez, and J. Bent. LANL MPI-IO Test.
http://institutes.lanl.gov/data/software/, July
2008.

[13] J. He, J. Bent, A. Torres, G. Grider, G. Gibson,
C. Maltzahn, and X.-H. Sun. Discovering Structure in
Unstructured I/O. In Parallel Data Storage Workshop,
November 2012.

[14] J. He, J. Bent, A. Torres, G. Grider, G. Gibson,
C. Maltzahn, and X.-H. Sun. I/O Acceleration with
Pattern Detection. In ACM Symposium on
High-Performance Parallel and Distributed
Computing, June 2013.

[15] D. Kimpe, K. Mohror, A. Moody, B. V. Essen,
M. Gokhale, R. Ross, and B. de Supinski. Integrated
In-System Storage Architecture for High Performance
Computing. In International Workshop on Runtime
and Operating Systems for Supercomputers, Venice,

Italy, June 2012.

[16] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms,
and W. Allcock. I/O performance challenges at
leadership scale. In Proceedings of the ACM/IEEE
Conference on Supercomputing, 2009.

[17] R. Latham, N. Miller, R. Ross, and P. Carns. A
Next-generation Parallel File System for Linux
Clusters. In Linux World, January 2004.

[18] LevelDB: A Fast and Lightweight Key/Value Database
Library. http://code.google.com/p/leveldb/.

[19] A. Manzanares, J. Bent, M. Wingate, and G. Gibson.
The Power and Challenges of Transformative I/O. In
IEEE Cluster, September 2012.

[20] MPI Forum. Message Passing Interface.
http://www.mpi-forum.org/.

[21] D. Nagle, D. Serenyi, and A. Matthews. The panasas
activescale storage cluster: Delivering scalable high
bandwidth storage. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 53,
Washington, DC, USA, 2004. IEEE Computer Society.

[22] K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and
Y. Ishikawa. Optimization Techniques at the I/O
Forwarding Layer. In IEEE International Conference
on Cluster Computing, pages 312–321, Heraklion,
Crete, September 2010.

[23] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan,
M. Wingate, and M. Wolf. ...And Eat It Too: High
Read Performance in Write-Optimized HPC I/O
Middleware File Formats. In Parallel Data Storage
Workshop, Portland, OR, November 2009.

[24] PVFS2. Parallel Virtual File System, Version 2.
http://www.pvfs.org.

[25] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In FAST ’02
Conference on File and Storage Technologies,
Monterey CA, Jan. 2002.

[26] P. Schwan. Lustre: Building a file system for
1,000-node clusters. In Proceedings of the 2003 Linux
Symposium, July 2003.

[27] K. Shvachko, H. Huang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In 26th IEEE
MSST, Lake Tahoe NV, May 2010.

[28] R. Thakur, W. Gropp, and E. Lusk. An
abstract-device interface for implementing portable
parallel-i/o interfaces. In Proceedings of the 6th
Symposium on the Frontiers of Massively Parallel
Computation, pages 180–187. IEEE, 1996.

[29] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou.
Scalable performance of the panasas parallel file
system. In FAST’08: Proceedings of the 6th USENIX
Conference on File and Storage Technologies, pages
1–17, Berkeley, CA, USA, 2008. USENIX Association.

[30] S. Wright, S. Hammond, S. Pennycook, I. Miller,
J. Herdman, and S. Jarvis. LDPLFS: Improving I/O
Performance Without Application Modification. In
IEEE International Parallel and Distributed
Processing Symposium, 2012.

[31] W. Yu, J. Vetter, R. S. Canon, and S. Jiang.
Exploiting lustre file joining for effective collective io.

25



In CCGRID ’07: Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and
the Grid, pages 267–274, Washington, DC, USA, 2007.
IEEE Computer Society.

26




