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Abstract—Checkpointing is the predominant storage driver in
today’s petascale supercomputers and is expected to remain as
such in tomorrow’s exascale supercomputers. Users typically pre-
fer to checkpoint into a shared file yet parallel file systems often
perform poorly for shared file writing. A powerful technique to
address this problem is to transparently transform shared file
writing into many exclusively written as is done in ADIOS and
PLFS. Unfortunately, the metadata to reconstruct the fragments
into the original file grows with the number of writers. As such,
the current approach cannot scale to exaflop supercomputers due
to the large overhead of creating and reassembling the metadata.

In this paper, we develop and evaluate algorithms by which
patterns in the PLFS metadata can be discovered and then
used to replace the current metadata. Our evaluation shows that
these patterns reduce the size of the metadata by several orders
of magnitude, increase the performance of writes by up to 40
percent, and the performance of reads by up to 480 percent. This
contribution therefore can allow current checkpointing models to
survive the transition from peta- to exascale.

I. INTRODUCTION

Recent projections by the United States’ Department of
Energy have predicted extremely challenging storage require-
ments for exaflop supercomputers. The primary storage driver
is checkpointing and the current projections specify that
checkpoints of 32 petabytes in size should complete in 300
seconds. The bulk of computational scientists seem to prefer
checkpointing into a single checkpoint file over checkpointing
into a directory containing tens of thousands of checkpoint
fragments [1]. Therefore the performance of shared file writing
is critical for effective HPC.

Unfortunately, many otherwise scalable file systems suffer
poor performance when a large number of concurrent pro-
cesses write to the same file [2]. The most powerful way to fix
this problem is to transparently transform the representation of
a concurrently written file into many exclusively written file
fragments, as is done by ADIOS [3] and PLFS [2]. Recent
PLFS development however has hit a performance wall as
the amount of internal metadata required to reconstruct the
file fragments grows with the number of writers. Current
petascale size checkpoints are challenging and exascale would
be impossible without compressing the internal metadata.

PLFS transparently transforms shared-file writing into log-
structured file-per-process writing. As each process writes to
the logical file, PLFS appends that data to a unique logfile
for that process and creates an index entry in a unique index
file for that process that creates a mapping between the bytes
within the logical file and their physical location within the
logfiles. Therefore, as applications grow in size, the number of
index files, and the number of index entries, grows accordingly.
The overhead of the index creation is slight, but noticeable,

during writes. Read overhead however is much larger; since a
reader might read from any portion of the file, every index file
and every index entry must be read. There is latency overhead
as the on-disk index files are read into an in-memory data
structure and there is the disk capacity overhead as well as the
in-memory footprint. For example, an anonymous application
at Los Alamos National Laboratory (LANL App3) writes a
file of 4 GB and creates aggregated index size of 192 MB for
a run with 64 processes [4]. In this case, when reading the
file with 64 processes, the total memory index footprint is 12
GB since each process has to hold a copy of the whole index.
Earlier work [5] addresses the latency of index read; this paper
extends that work by further reducing the latency as well as
the disk and memory usage. The index compression result of
LANL App3 can be found in Figure 1.
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Fig. 1. Compression rates for the index of real applications and benchmarks
by discovering structures and representing them in a compact way. The
compression rate is represented as (Uncompressed size)/(Compressed size).

We achieve this using a gray-box technique [6] of re-
discovering valuable information which was lost as data
moved across the POSIX interface. In this case, we redis-
cover the structure of the checkpoint using pattern detection.
Checkpoints are typically the conversion of a distributed data
structure into a linear array of bytes. High-level middleware
abstractions such as views within MPI and the data types
within HDF and NetCDF allow the user to describe the
structure of their data structure (e.g. the number and size of
the dimensions in a mesh). The middleware then will use the
restrictive interface of POSIX to store the data structure with a
sequence of writes. Since these writes are storing a structured
data set, they will typically follow a regular pattern. By
discovering the pattern, PLFS can replace the index entry per
write with a single pattern entry describing them all thereby
converting the size of the index from O(n) to a small constant
value. An alternative approach to reduce the metadata would
be to clean the logfiles into a single flat file. However, this



cleaning is expensive and notoriously difficult; additionally,
earlier work [7] has shown that flattening files can lead to
slower read performance.

Our main contribution is to propose and evaluate effective
algorithms and representations to discover and describe struc-
tures in unstructured I/O. Although we note that this technique
is useful in a variety of cases such as pattern-aware prefetching
and block pre-allocation, as well as for metadata reduction
within systems such as SciHadoop [8], we demonstrate its
value in this paper exclusively with an evaluation of the
compressibility of the PLFS index.

As shown in Figure 1, which presents the compression
rates for several benchmarks and real applications, we are
able to reduce the size of the index by up to several orders
of magnitude. As we will see in Section V, this structure
discovery also results in performance improvements of up
to 40 percent for writes and up to 480 percent for reads.
We also present a visualization of the write patterns of the
MILC [9] application to illustrate the inherent structure which
our algorithms successfully detect.

I/O access patterns have been studied for decades [1] [10]
[11] [12] [13] [14] [15]. However, the majority of them are
of coarse granularity or they do not provide effective ways to
recognize patterns. A series of other work [16] [17] [18] uses
statistics approaches to detect and represent patterns, which are
lossy and cannot serve our needs for discovering and storing
exact structures.

II. DESIGN OF A PATTERN STRUCTURED PLFS

By default, when an application opens a PLFS file for
writing, PLFS opens two “dropping” files in the underlying
file system for each process involved in the writing of that file.
One is for data written by that process, called a data dropping,
and another is for its associated index. Indices maintain a
mapping from offsets within the PLFS file to the physical
offsets in each data dropping file. When a read request is
performed (e.g. read(fd, off, len) is called), PLFS queries the
index to find where that actual data resides within the data
dropping files. The key variables in a current index entry are:
• logical offset: where the data is, from the application’s

perspective in a single logical file;
• length: number of bytes written;
• physical offset: the physical offset within a contiguous

dropping file;
• chunk id: this is the ID of the dropping file where the

data is.
Figure 2 is an example of how PLFS works today. When an

application makes many small writes, the size of the index will
become correspondingly large. This may result in consumption
of significant amounts of memory when an application reads
a PLFS file due to storing the indices in memory. To use less
memory, an alternate option is to not cache entire index data
but to access them on disk whenever it is necessary. However,
this will be very slow since PLFS has to conduct I/O for each
index access.
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Fig. 2. An example of two processes writing to a traditional PLFS file. If
the application writes a lot of data in small extents, the indices shown can
become very large.

Our design goal is to discover pattern structures in indices
(which can be considered as I/O traces) and represent the map-
ping in a compact way, so that reading takes less time and uses
less space for processing indices. In this paper, we demonstrate
the effectiveness of Pattern Structured PLFS. First, we show
how we reduce the local (per-process) metadata (indices) size
by discovering patterns, and then we further demonstrate how
to achieve even better compression by merging local indices
into a single global one per PLFS file.

In our design, when writing, Pattern Structured PLFS (Pat-
tern PLFS) buffers traditional indices in raw index buffers for
each process. After the buffer is full or at the time of closing, a
structure discovering engine starts processing the raw indices
and puts the generated pattern structure entries to pattern index
buffer and non-pattern ones to non-pattern indices. When an
application reads a file, Pattern PLFS reads indices from files,
merges pattern entries into global ones whenever possible,
and stores the global pattern entries and non-pattern entries
in separate buffers. The contents of the buffers are broadcast
to other processes that are reading the PLFS file.

We chose the design described above based on efficiency
and feasibility. One of the other options is to compress
using both local and global patterns at the time of writing
in ADIO layer. This approach requires communication and
synchronization when writing, which may ruin the biggest
advantage of PLFS - fast writing. It becomes worse when
the application has more write requests and smaller write
extents. Another possibility is to use existing compression
libraries, such as zlib [19], to compress indices in memory,
write compressed data to files, read them into memory and
decompress them. The problem of this is that the eventual
memory footprint is still big, although the I/O time of reading
indices is reduced due to the compression.

III. LOCAL PATTERN STRUCTURE

Local pattern structures describe the access behavior of a
single process. For example, a process may write to a file



with (offset, length) pair sequence such as: (0, 4), (5, 4),
(10, 4), (15, 4). This is an example of a typical fixed-stride
pattern and can easily be described in a form (e.g. saying
start offset is 0; stride is 5; length is 4) of smaller size by
checking if the stride is constant. Strided patterns occur when
accessing parts of regular data structure (e.g. odd columns of
a 2-d matrix). A more complex pattern would occur when
accessing discrete parts of an array consisting of complex
data types (e.g. MPI file view with complex data types). To
compress complex pattern, we need an algorithm to identify
the repeating sequences and a structure to represent them
in a compact way. The structure should also allow random
accesses without decoding. The algorithm proposed in this
section can discover complex pattern structures and compress
them. Figure 2 shows an example in which two processes
write into one file with traditional indices. This section uses
this example to show how local pattern structure discovering
works.

Figure 3 is the structure of one pattern entry. Chunk id is
used to find the data dropping file which the pattern is for. Each
logical offset pattern may map to many length and physical
offset patterns. But if you expand patterns to their original
sequences, the number of logical offsets, lengths and physical
offsets represented by a pattern entry are exactly the same.

id: chunk id. It is used to locate the corresponding data
dropping file.
logical: logical offset pattern unit (See Figure 4).
length[]: an array of pattern units
physical[]: an array of pattern units.

Fig. 3. Structure of a pattern index entry.

[i, (d[0], d[1], ...)∧r]

Fig. 4. Pattern unit notation. i is the first element of the original sequence. d[]
(delta) is the repeating part of an array containing the distances of any two
consecutive elements in the original sequence. r is the number of repetitions.
For example, (5, 7, 10, 12, 15) can be represented as [5, (2, 3)∧2].

Based on the sliding window algorithm in [20], we propose
a new algorithm to discover common patterns in data accesses
and store them in a data structure that allows PLFS to conduct
lookups without decompressing the index. To demonstrate it,
Figure 5 gives an example for discovering patterns in logical
offsets of Process 0 in Figure 2. The sequence of logical
offsets (0, 3, 7, 14, 17, 21, 28, ...) are preprocessed to deltas
(3, 4, 7, 3, 4, 7, ...). Two windows move along the deltas to find
repeating subsequences. To represent a pattern of a sequence
of numbers in a compact way, we introduced a structure called
pattern unit, described in Figure 4. The eventual pattern output
in Figure 5 is [0, (3, 4, 7)∧3], [42, (4)∧4].

Suppose w is the window size in algorithm demonstrated
in Figure 5, the time complexity of finding repeating parts
between search window and lookahead window is O(w), since
it is essentially a string searching problem and can be solve
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Fig. 5. An example of local pattern structure discovering.

by the KMP algorithm [21] or similar ones. In addition,
two windows move forward at least by one position, so the
overall time complexity of this pattern recognition algorithm
is O(wn). n is the length of the input sequence.

To compress PLFS mappings, given a sequence of tuples
(i.e. raw index entries) (logical offset, length, physical offset),
they are separated to three arrays, logical offset [], length[],
physical offset []. First, structures in logical offset [] are found
by a structure discovering engine. Then, elements in length[],
physical offset [] are grouped within the arrays, according
to the structures of logical offset [], and their structures are
discovered by group. When PLFS receives a read request, it
looks up the position of the requested offset in logical offset [].
After that, it can find the corresponding values in length[] and
physical offset []. Then, the physical data will be read.

IV. GLOBAL PATTERN STRUCTURE

Global pattern structure is constructed using local pattern
structures. To merge local patterns into global patterns, Pattern
PLFS first sorts all local patterns by their initial logical offsets.
Then it goes through every pattern to check if neighbor
patterns abuts one another. Figure 6 is an example of a global
pattern. At the beginning of it, a group of three processes
(4,7,6) write with a local strided pattern (We call the size
of data shared by the same group of processes a global
stride). After that, (2,8,9) writes the following global stride.
Then (4,7,6) repeats the pattern. Global pattern is essentially
consecutive repeating local patterns. Since local patterns are
repeating, only one local pattern is stored in global pattern
structure and the difference between global and local pattern
is that global pattern maintains a list of chunk IDs instead of
only one chunk id.

Assuming each local pattern repeats twice and physical
offset starts at 0, the global pattern structure in Figure 6 can
be described by the following:

id[]: [4,7,6,2,8,9,4,7,6,2,8,9]
logical: 1000,(30)∧4
length: 10,(0)∧4
physical: 0,(10)∧4

Of course, there are some more complicated global patterns
that the global pattern structure cannot describe. However, in
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id[]: an array of chunk id indicating the positions of processes
inside the global pattern
logical: a logical offset pattern unit
length: a length pattern unit
physical: a physical offset pattern unit

Fig. 7. Global pattern structure

practice, this simple structure is effective enough and it favors
fast lookups.

To look up an offset in a global pattern, we locate which
row and column the requested offset is in the imaginary global
pattern matrix (e.g. Figure 6). To find the physical offset within
a data dropping file, Pattern PLFS needs to figure out how
much data has been written to file before the piece of data
requested.

V. EVALUATION

A. Setup

For a holistic test, several benchmarks and real applications
were used to test Pattern PLFS. FS-TEST [22] is a synthetic
checkpoint tool from LANL. It can be set to write or read
with N-N (N processes write N files) or N-1 pattern with many
parameters. In addition, we developed a benchmark tool called
MapReplayer, which can replay traces previously collected by
PLFS and show the performance. In order to test structure
discovering from unstructured I/O, Pattern PLFS also ran with
several real applications. The experiments were conducted on
LANL’s RRZ testbed, which has eight cores/16GB RAM per
node. PanFS was used as the underlying parallel file system.

B. FS-TEST
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Fig. 8. Write performance of 512 processes with write size of 4K. (Write
Open/Close Time: lower is better. Write Bandwidth: higher is better.)
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Fig. 9. Performance of uniform read (512 processes) and non-uniform read
(256 processes) with originating write size of 4K. Some of the PLFS 2.2.1
data points are missing because large index took too much memory and PLFS
crashed when allocating memory. (Read Open Time: lower is better. Read
Bandwidth: higher is better.)

FS-TEST has very similar write patterns to many real
checkpoint systems. In this experiment, each FS-TEST process
writes data stridely, which leads to many index entries in
Traditional PLFS (PLFS 2.2.1). The write sizes of all tests
are fixed at 4KB. Large amount of indices take lots of space
in both disks and memory, resulting in bad I/O performance.
Pattern PLFS is expected to reduce index sizes and therefore
improve performance.

As shown in Figure 8(A), write open time of Pattern PLFS
and PLFS 2.2.1 are very close. In (B), we can observe that
write bandwidth of Pattern PLFS is consistently better than
that of Traditional PLFS. The reason for this is that Pattern
PLFS writes much less metadata (structured index entries),
which are much smaller then traditional unstructured index
entries, to disks. It is worth noticing that Pattern PLFS is about
1.5 GB/s faster than Traditional PLFS with 512 processes
and 16K writes per process. As shown in (C), Pattern PLFS
and Traditional PLFS have very similar performance on close,
when PLFS flushes data and closes all opened files. Overall,
Pattern PLFS has better write performance than Traditional
PLFS. In addition, from the experiments we have conducted,
we also see a trend towards growing gap between performance
of Pattern PLFS and Traditional PLFS as the scale becomes
larger.
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Fig. 10. Index memory footprint of 512 processes. Note that the Y axis
shows the per-process memory footprint. For example, an eight-core node
needs more than 48 GB memory to hold index for PLFS 2.2.1 if the number
of originating writes are 256 K.



As shown in Figure 9, Pattern PLFS has much shorter
open time than Traditional PLFS for both uniform and non-
uniform read, since indices are read and processed at read
open time and Pattern PLFS is able to significantly reduce
index size by discovering structures and representing indices
as pattern structures. Figure 10 shows the comparison between
index memory footprint of Pattern PLFS and PLFS 2.2.1. The
reduction of index footprint leads to up to 80 percent and
480 percent higher bandwidth for write (Figure 8) and read
(Figure 9), respectively. The improvement is asymmetrical
because index write is more parallelized than read in PLFS.

C. Real Applications

We explored writes of several real applications to see if
there are any patterns and if Pattern PLFS can discover them.
It is really nice that PLFS indices are essentially write traces,
by which we can plot and see the patterns if they exist.

1) MILC: MILC is a LQCD application that is widely used
to solve real physics problems and to benchmark supercom-
puters [9] [23]. Figure 11 shows the write patterns of three
I/O configurations for saving the same data. All of them are
N-1 writes, which are ideal cases for PLFS. In Figure 11 (A),
each MILC process writes small fix-size pieces of data with
2-d strided pattern (stride sizes vary). In (B), each process
writes to one contiguous portion of the file. The difference
between (C) and (B) is that in (C) each process also writes
a header at the beginning of the file. The compression rates
of (A) (B) and (C) are 37.0, 3.0 and 3.6, respectively. (A) has
better compression rate since it has more writes and they have
patterns. Pattern PLFS was able to compress by discovering
local and global patterns. The other two are both simple and
most of the compressions came from using global pattern.
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Fig. 11. MILC write patterns. In-memory index compression rates by Pattern
PLFS (higher is better): (A):37.0;(B):3.0;(C):3.6

2) Pagoda: Pagoda [24] stands for Parallel Analysis of
GeOscience DAta. It is a set of PnetCDF-based tools and
APIs that have been developed to mitigate the I/O bottleneck
of GCRM (Global Cloud Resolving Model) data analysis,
whose scale can be PB’s per year. Pagoda conducts N-1 write
stridely, which generates a great amount of index entries. By
discovering structures out of unstructured writes, Pattern PLFS
achieve a compression rate of 2.9 in a typical run.

D. Replay

By using MapReplayer, we were able to replay the I/O
behaviors of various benchmarks and real applications. The
compression rates are already shown in Figure 1. NERSC Pat-
tern I/O [25] is a benchmark in which each process writes with
a single fixed-stride pattern. By the local and global pattern

structure discovering techniques described in this paper, they
can be represented as one global pattern and index size is
significantly reduced. Each process of LANL App 3 writes
with 2-D strided. Pattern PLFS was able to represent them
by one single pattern entry in memory. In LANL App 2 MPI
I/O collective and LANL App 2 Independent, each process
writes with different strides in different periods of time.
The compression was achieved by local pattern compression.
Pattern PLFS has better compression rate for LANL App 2
I/O library since the application’s own I/O library arranged
data to be written with fixed-stride pattern, which made global
pattern compression possible. LANL App 1 writes with 2-D
strided pattern and global pattern was found. Most of FLASH
writes are random, which makes it hard to compress. Each
BTIO process writes with a 2-d strided pattern and they are
combined to a single global pattern in memory. To sum up,
traditional PLFS does not handle these applications very well,
while pattern PLFS can discover structures and be able to
shrink their index sizes.

VI. OTHER POSSIBLE USE CASES

Discovering structure in unstructured I/O and represent-
ing structure in a compact and lossless way are promising
techniques and have the potential for being applied in other
systems. Two examples are pre-fetching and pre-allocation
of blocks in file systems. These eager techniques both use
predictions of future access to predictively perform expensive
operations asynchronously ahead of time. Our pattern detec-
tion of complex access patterns can improve their predictive
abilities. Another example is SciHadoop in which the ratio
of metadata (keys, which are dimensional information) to
data can be high, thereby causing tremendous overhead when
transferring this metadata [26]. Our technique can be applied
to shrink the size of these keys and eventually reduce overhead
by using discovered structures to represent keys.

VII. CONCLUSION

The era of big data and exascale is nigh and is pushing I/O
to its limit. Knowing the structure of I/O can improve perfor-
mance but discovery is not straightforward. This paper pro-
poses efficient and practical techniques to discover structures
from unstructured I/O operations, thereby enabling powerful
I/O optimizations. We applied these techniques within PLFS
to compress its internal metadata using structured patterns. We
demonstrated several orders of magnitude improvement in the
size of the metadata and corresponding improvements in write
performance up to 40 percent and in read performance of up
to 480 percent.
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