
Jitter-Free Co-Processing on a Prototype Exascale Storage Stack

John Bent
john.bent@emc.com

Sorin Faibish
sfaibish@emc.com

Jim Ahrens
ahrens@lanl.gov

Gary Grider
ggrider@lanl.gov

John Patchett
patchett@lanl.gov

Percy Tzelnic
tzelnic@emc.com

Jon Woodring
woodring@lanl.gov

Abstract

In the petascale era, the storage stack used by the ex-
treme scale high performance computing community
is fairly homogeneous across sites. On the compute
edge of the stack, file system clients or IO forwarding
services direct IO over an interconnect network to a
relatively small set of IO nodes. These nodes forward
the requests over a secondary storage network to a
spindle-based parallel file system. Unfortunately, this
architecture will become unviable in the exascale era.

As the density growth of disks continues to out-
pace increases in their rotational speeds, disks are be-
coming increasingly cost-effective for capacity but de-
creasingly so for bandwidth. Fortunately, new storage
media such as solid state devices are filling this gap;
although not cost-effective for capacity, they are so
for performance. This suggests that the storage stack
at exascale will incorporate solid state storage between
the compute nodes and the parallel file systems. There
are three natural places into which to position this
new storage layer: within the compute nodes, the IO
nodes, or the parallel file system. In this paper, we
argue that the IO nodes are the appropriate location
for HPC workloads and show results from a proto-
type system that we have built accordingly. Running
a pipeline of computational simulation and visualiza-
tion, we show that our prototype system reduces total
time to completion by up to 30%.

1 Introduction

The current storage stack used in high performance
computing (HPC) is recently imperiled by trends in
disk technology and harsh economic realities. The
storage requirements in HPC are bursty and pre-
dictable. Although there is a small amount of other
traffic, the vast majority of IO is comprised of fre-
quent checkpoints and infrequent restarts. Although
sites and workloads vary, there are several general

978-1-4673-1747-4/12/$31.00 2012 IEEE

rules of thumb. One, checkpoint and restart work-
loads are highly concurrent due to the tight coupling
of the running jobs. Two, checkpoint frequency is on
the order of a small number of hours. Three, HPC
sites have a minimum required bandwidth in order
to store a checkpoint quickly enough to ensure suffi-
cient forward progress and a minimum required ca-
pacity to store a sufficient number of checkpoints for
a variety of reasons such as time-series analysis and
back-tracking due to computational steering.

Until recently, the number of disks required for ca-
pacity has been larger than the number required for
bandwidth. In other words, buying the number of
disks required for capacity has provided excess band-
width essentially for free. However, disk capacity is
increasing much faster than disk performance. New
technologies such as shingled disks [4] are only ex-
acerbating this trend. The result is that the num-
ber of disks required for capacity has now become
fewer than the number required for bandwidth. Un-
fortunately, purchasing disks for bandwidth is cost-
prohibitive [9]. Solid-state drives (SSDs) however are
cost-effective for bandwidth but cost-prohibitive for
capacity. Clearly, a hybrid hierarchy in which SSDs
are used for checkpoint bursts and disks are used for
checkpoint storage is the answer.

However, it is not immediately obvious whether to
place SSDs inside the compute nodes, inside the stor-
age system, or somewhere in the middle. Although
each placement may be appropriate for some work-
loads, we believe that placement in the middle is
best for HPC. Placement on the compute nodes is
problematic due to computational jitter [17] as any
perturbation caused by asynchronously copying data
from the SSDs to the disks can ripple devastatingly
through the tightly-coupled computation [11]. Place-
ment inside the storage system is also problematic
as it would require a more expensive storage network
matched to the higher bandwidth of the SSDs instead
of being matched to the lower bandwidth of the disks.

Therefore, in this paper we examine a prototype
exascale storage stack built with SSDs placed in spe-

Metalink

P6 P7P2

subdir3/

subdir1@@

subdir4@@

subdir4/

Data flow Metadata flow

subdir1/ subdir2/

openhosts/ metadata/

subdir2@@

plfs_magic

subdir3@@

Burst Buffer 2Burst Buffer 1

CN1 CN2 CN3 CN4

P1P0 P3 P4 P5

checkpoint1/

PLFS Virtual Layer

checkpoint1/ checkpoint1/

Parallel File System

checkpoint1

Figure 1: A Burst Buffer Storage Architecture. Eight processes spread across four compute nodes intersperse

writes into a shared file. By using the PLFS middleware layer, the illusion of a single file is preserved in a manner

completely transparent to the application and the user. Physically however, PLFS transforms the IO to leverage both

the global visibility of the parallel file system as well as the faster performance of the SSDs in the burst buffers.

cialized burst buffers stitched transparently into the
storage stack using a modified version of the PLFS
middleware [6]. Evaluations with a workload of simu-
lation and visualization show a speedup in total time
to completion of up to thirty percent. The remainder
of the paper is as follows: we describe our architec-
ture in Section 2, our results in Section 3, related
work in Section 4, and our conclusions in Section 5.

2 Design and Implementation

Our design consists of both a new hardware archi-
tecture and a modified software stack. The hard-
ware architecture is relatively straight-forward. In
order to transparently weave the SSDs into the stor-
age stack, we extend the notion of IO nodes [3, 10, 20]
to add buffering to quickly absorb the bursty check-
point workloads; we call these augmented IO nodes
burst buffers. As is typical of IO nodes, we place the
burst buffers within the computational fabric and also
attach them to the secondary storage network.

The modified software stack is a bit more complex.
We extend the PLFS middleware layer [6] to incorpo-
rate the burst buffers. PLFS is a middleware virtual
file system which transparently interposes on applica-
tion IO. This interposition can dramatically improve
write bandwidth by rearranging the workload into
one requiring less locking within the parallel file sys-
tem (PFS). This is primarily achieved by decoupling
writes to a shared logical file into writes to multi-

ple physical files; each physical file is then written by
only a single process. PLFS also maintains metadata
sufficient to reconstruct the logical file for reads.

PLFS stores file data and its metadata into con-
tainers. Containers are implemented as physical di-
rectories on the underlying file system which PLFS
uses as its store. Subdirs within the container dis-
tribute the large number of files within the container
into multiple directories to avoid performance prob-
lems with too many files in a single directory [15].
Since version 2.0 [5], PLFS has used a new abstrac-
tion called metalinks which allow the subdirs to phys-
ically exist in shadow containers. This allows sites
with multiple metadata servers to configure PLFS
such that its load is distributed across them.

By default, PLFS randomly places subdirs; we
modified it to allow each compute node to specify a lo-
cation for its subdirs. In this way, the relatively small
amount of PLFS metadata is stored on the PFS but
the larger amount of file data is stored in the burst
buffers as shown in Figure 1. We then augmented
the PLFS API by adding two functions to allow the
user to control the management of the burst buffers:
one to start an asynchronous copy of the file data
from the shadow subdirs into into the container on
the PFS and a second to remove the shadow subdirs
and their contents.

An important feature of PLFS is that it is transpar-
ent to users and applications and runs with unmodi-
fied programs. Although we preserved this as much as

8 Compute Nodes 2 Burst Buffers Storage 2 File System Blades
• 40 GB RAM
• Dual socket, quad core, 2.8

GHz Intel Nehalem
• Mellanox QDR Infiniband

port

• 128 GB RAM
• Quad socket, 10 core, 3.1

GHz Intel Westmere
• 512 core nVidia Tesla 2090

GPGPU
• 4 Mellanox QDR Infiniband

ports
• 16 Samsung 200 GB SSDs

• EMC VNX 7500
• 24 GB RAM
• 10 Near-Line 2TB 7200

RPM SATA drives
• 4 8gb fiber channel ports

• Lustre 1.8.0
• 16 GB RAM
• Dual socket, quad core, 2.8

GHz Intel Nehalem
• Mellanox QDR Infiniband

port
• 2 8gb fiber channel ports

Table 1: Evaluation System Specifications. The SSDs on the burst buffers were grouped into four RAID-0

arrays, mounted using ext4, and exported via NFS. In all cases, the operating system was 64-bit CentOS 6.0. Both

file system blades ran a Lustre Object Storage Server; one also ran a metadata server which used a local Samsung 200

GB SSD. The fiber channels were directly connected; the other ports used a Mellanox QDR Infiniband switch.

possible, existing interfaces such as POSIX and MPI-
IO do not support burst buffer management: thus we
were forced to modify our simulation to initiate the
asyncronous copy and our visualization to remove the
shadows. Aside from these modifications, the burst
buffers were transparent to the user and the appli-
cation. The files were always accessed via the same
path regardless of the data’s physical location; the
only difference perceivable is a faster bandwidth when
the data is moving to or from the burst buffers.

3 Evaluation

To evaluate our design, we built a small proto-
type burst buffer system consisting of eight compute
nodes, two burst buffers, and a PFS. On the compute
nodes, we ran the PLFS client through which the sim-
ulation could checkpoint and restart. The client was
also on the burst buffers in order for the visualiza-
tion to read the checkpoint data. Lustre running on
an EMC VNX 7500 served as our PFS. Hardware
specifications are listed in Table 1 and a depiction is
shown in Figure 2.

The workload consisted of a simulation running
for eight timesteps on the compute nodes. After
each timestep, the simulation checkpointed using the
PLFS driver in the MPI-IO library. Each checkpoint
file was then processed by a visualization program
which accessed the file via POSIX through a FUSE
mount of PLFS.

The simulation was a fluid dynamics model coupled
with a wind turbine model [19] used to study effects of
terrain and turbine placement on other downstream
wind turbines. The software used for the visualiza-
tion was ParaView [1], an open-source, large-scale,
parallel visualization and analysis tool. The visual-
ization analyzed the forces on the wind turbine, the
air flow, and the vortex cores created by the move-
ment of the wind turbine.

We ran the same workload using two configura-
tions. One using the compute nodes and the PFS
but without the burst buffers; the second added the

burst buffers. For the remainder of the paper, we’ll
refer to the first configuration as NoBB and the sec-
ond as WithBB. Using NoBB the visualization was
post-processed: it did not run until the eight com-
putational timesteps and checkpoints were complete.
By adding the burst buffers however, we were able
to co-process the visualizations by running them on
the burst buffers and pipelining them with the simu-
lation. Additionally, the checkpoint latency between
computational timesteps was reduced with WithBB
since the checkpoint bandwidth was increased ap-
proximately 400%. Remember that the checkpoints
were still ultimately saved on the PFS; WithBB
just allowed that slower data movement to be asyn-
chronous and pipelined with the computation.

The results are shown in Figure 3. Notice
that the simulation, checkpoint, and visualization
phases are serialized using NoBB whereas they are
pipelined when using WithBB. These graphs show
that WithBB provides four distinct benefits. First,
the simulation phase finishes about ten percent more
quickly. Second, the complete workload finishes
about thirty percent more quickly. Third, because
the visualization is co-processed instead of post-
processed, computational steering is possible much
earlier (after about four minutes instead of thirty) as
is shown by the elapsed time when the first visual-
ization completes. Finally, since WithBB allows the
visualization and asynchronous copying to the PFS to
be done on the burst buffers, there is no jitter intro-
duced and therefore the compute phase is not slowed
as it might be if the SSDs were placed inside the com-
pute nodes. This can be observed from the duration
of each individual simulation phases (i.e. the widths
for the simulation bars are the same).

We acknowledge that it is not completely fair to
compare NoBB to WithBB since WithBB uses addi-
tional hardware. However, we believe our results are
still valid for several reasons. First, the changing eco-
nomics of disks and SSDs seem to dictate the need
for SSDs in the exascale era. Our work is an impor-
tant early exploration in this area. Additionally, the

Figure 2: Our Prototype Burst Buffer System.

This figure shows the prototype exascale storage system we

built using eight compute nodes in which the wind-turbine

simulation saved checkpoints through PLFS into two burst

buffers. Our visualization program then ran on the burst

buffers and read the wind-turbine data through PLFS as

the data was simultaneously copied onto the parallel file

system. After it was no longer needed, the copy on the

burst buffers was removed in order to reclaim space.

thirty percent speedup that we observe in our work-
load possibly under-represents the potential of burst
buffers because we evaluated only one small workload
that may not be completely reflective of anticipated
exascale workloads.

One reason is that the simulation we used check-
pointed only five percent of the total RAM in the
compute cluster (16 out of 320 GB). Exascale appli-
cations may checkpoint a much larger ratio; there-
fore reductions in checkpoint time will reduce total
time to completion more than we have shown here.
A second reason is that our simulation was config-
ured to checkpoint at a fixed interval of computation.
Figure 3 shows that the simulation checkpointed the
same number of times even though it ran for a shorter
time. In production settings, applications tend to
adjust themselves to checkpoint at a fixed interval
of wallclock time. Therefore, a reduction in check-
point latency will increase computational efficiency
even more than we have shown here.

4 Related Work

Performing visualization and analysis simultaneously
with a running simulation is done using one of two
different techniques, in situ and co-processing. In situ
performs visualization and analysis in the same pro-
cess space as the simulation code, usually through
linked library analysis code. This allows the visual-
ization and analysis to have direct access to simula-
tion memory and to perform computations without
data movement. Several large-scale in situ analysis
libraries have recently emerged [8, 16, 23] as have sev-
eral that are application-specific [2, 21, 24]. Although
in situ avoids a data copy, it can not be pipelined

1000

750

500

250

0

 0 500 1000 1500 2000 2500

Idle

Busy

BW
 (M

B/
s)

CPU

Sim
Ckpt

Viz

(a) Direct to Lustre

1000

750

500

250

0

 0 500 1000 1500 2000 2500

Idle

Busy

Elapsed Time (s)

BW
 (M

B/
s)

CPU

Sim
Burst
Drain

Viz

(b) Using Burst Buffers

Figure 3: Workflow. Both graphs show the elapsed

time running the same workload of eight timesteps of the

wind-turbine simulation, eight checkpoints, and eight vi-

sualizations. The upper graph shows the total time to

completion using the default system without the burst

buffers and post-processed visualization; the lower with

the burst buffers and the co-processing they enable. In

both graphs, the height above the x-axis merely indicates

whether processing is occuring (the differing heights for

the simulation and the visualization are merely to differ-

entiate between the two); the height below the x-axis indi-

cates bandwidth (lower is better).

with the simulation as we have done. Both in situ
and co-processing will be used in exascale.

Other examples of co-processing analyses have
been performed with scientific data staging technolo-
gies, including ADIOS [12] and GLEAN [22]. Our
contribution is an approach which leverages file sys-
tem semantics so that unmodified applications can
use our burst buffer system using standard POSIX
and MPI-IO interfaces.

As opposed to placing storage in the middle as we
have studied here, other work [7, 14] studied similar
workloads in which they place storage on the compute
nodes. Although this was not measured in their work
or ours, we fear this placement can slow down the
foreground computation due to jitter [11, 17].

Another project to use SSDs between the compute
nodes and the storage system [18] also uses SSDs as
a temporary store before migrating data to the PFS.
Unlike our work however, they use SSDs from a sub-
set of the compute nodes that have SSDs attached.
Although this places the SSDs on the compute nodes,
they can choose to use them as burst buffers in order
to avoid jitter. Additionally, our work leverages the
IO nodes in existing HPC architectures which allows
a reduction in the size of the storage network.

Finally, IOFSL [3] aggregates the IO from multiple
compute nodes onto a smaller number of IO nodes.
Similar to our work, SCR [13] has also shown large
checkpoint improvements by bursting checkpoints to
the memory of neighboring nodes and then asyn-
chronously migrating them to the PFS. We believe
that both of these, or similar technologies, are likely
to be included in the exascale storage stack. These
projects are complementary to ours and we are cur-
rently working with both to integrate all three.

5 Conclusion

Economic trends in storage technologies and the stor-
age requirements for exascale computing indicate
that SSDs will be incorporated into the HPC storage
stack. In this paper, we have provided an important
initial exploration of this large design space. Using
commodity hardware, modified HPC file system mid-
dleware, we evaluated our design with a real HPC
workload consisting of simulation and analysis. We
demonstrated that placing SSDs in between the com-
pute nodes and the storage array allow jitter-free co-
processing of the visualization and reduce total time
to completion by up to thirty percent.

We are currently exploring ways to leverage the
burst buffers to enable Map-Reduce style analytics as
well as incorporating pre-staging of data sets into the
scheduler. Additionally, we are developing an analyt-
ical model to help determine the ratio between burst
buffers and compute nodes for large systems. Finally,
we are continuing to test our design and software on
increasingly large system to study its scalability.

References
[1] J. Ahrens, B. Geveci, and C. Law. Paraview: An end user tool for large

data visualization. The Visualization Handbook, pages 717–731, 2005.
[2] J. Ahrens, K. Heitmann, M. Petersen, J. Woodring, S. Williams,

P. Fasel, C. Ahrens, C. Hsu, and B. Geveci. Verifying scientific sim-
ulations via comparative and quantitative visualization. IEEE Computer
Graphics and Applications, 30(6):16–28, 2010.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
and L. Ward. Scalable i/o forwarding framework for high-performance
computing systems. In IEEE International Conference on Cluster Computing,
Cluster 2009, New Orleans, LA, Sept. 2009.

[4] A. Amer, D. D. E. Long, E. L. Miller, J.-F. Pris, and T. Schwarz. Design
issues for a shingled write disk system. In 26th IEEE Symposium on Massive
Storage Systems and Technologies, MSST 2010, May 2010.

[5] J. Bent et al. Plfs 2.0. sourceforge.net/projects/plfs/files/.
[6] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,

M. Polte, and M. Wingate. PLFS: a checkpoint filesystem for parallel
applications. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, SC ’09, pages 21:1–21:12, New York, NY,
USA, 2009. ACM.

[7] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. I. Joy. Evaluating
the Benefits of An Extended Memory Hierarchy for Parallel Streamline
Algorithms. In Proceedings of the IEEE Symposium on Large-Scale Data Analysis
and Visualization, LDAV. IEEE Press, 2011.

[8] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. Geve-
cik, M. Rasquin, and K. E. Jansen. The ParaView coprocessing library:
A scalable, general purpose in situ visualization library. In 2011 IEEE
Symposium on Large Data Analysis and Visualization (LDAV), pages 89–96.
IEEE, Oct. 2011.

[9] G. Grider. Speed matching and what economics will allow. HEC-FSIO
2010, Aug. 2010.

[10] G. Grider, H. Chen, J. Nunez, S. Poole, R. Wacha, P. Fields, R. Mar-
tinez, P. Martinez, S. Khalsa, A. Matthews, and G. A. Gibson. Pas-
cal - a new parallel and scalable server io networking infrastructure for
supporting global storage/file systems in large-size linux clusters. In
IPCCC’06, pages –1–1, 2006.

[11] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf. Managing variability in the io performance
of petascale storage systems. In SC ’10: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, New York, NY,
USA, 2010. ACM.

[12] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS). In Proceedings of the 6th international workshop on Challenges of large
applications in distributed environments, CLADE ’08, page 1524, New York,
NY, USA, 2008. ACM.

[13] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem. In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[14] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing checkpoint per-
formance with staging io and ssd. In Proceedings of the 2010 International
Workshop on Storage Network Architecture and Parallel I/Os, SNAPI ’10, pages
13–20, Washington, DC, USA, 2010. IEEE Computer Society.

[15] S. V. Patil, G. A. Gibson, S. Lang, and M. Polte. GIGA+: Scalable
Directories for Shared File Systems. In Petascale Data Storage Workshop at
SC07, Reno, Nevada, Nov. 2007.

[16] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H. Shen,
T. Lee, and A. Chaudhuri. Scalable parallel building blocks for custom
data analysis. In 2011 IEEE Symposium on Large Data Analysis and Visualiza-
tion (LDAV), pages 105–112. IEEE, Oct. 2011.

[17] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of asci q. In Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, SC ’03, pages 55–, New York, NY, USA, 2003. ACM.

[18] R. Prabhakar, S. S. Vazhkudai, Y. Kim, A. R. Butt, M. Li, and M. Kan-
demir. Provisioning a multi-tiered data staging area for extreme-scale
machines. In Proceedings of the 2011 31st International Conference on Distributed
Computing Systems, ICDCS ’11, pages 1–12, Washington, DC, USA, 2011.
IEEE Computer Society.

[19] E. K. Rodman R. Linn. Determining effects of turbine blades on fluid
motion, 05 2011.

[20] G. Shipman, D. Dillow, S. Oral, and F. Wang. The spider center wide
file system: From concept to reality. Cray User Group Conference, May
2009.

[21] A. Tikhonova, C. Correa, and K. Ma. Visualization by proxy: A novel
framework for deferred interaction with volume data. Visualization and
Computer Graphics, IEEE Transactions on, 16(6):1551–1559, 2010.

[22] V. Vishwanath, M. Hereld, and M. E. Papka. Toward simulation-time
data analysis and I/O acceleration on leadership-class systems. In 2011
IEEE Symposium on Large Data Analysis and Visualization (LDAV), pages 9–14.
IEEE, Oct. 2011.

[23] B. Whitlock, J. Favre, and J. Meredith. Parallel in situ coupling of
simulation with a fully featured visualization system. In Eurographics
Symposium on Parallel Graphics and Visualization, pages 100–109, 2011.

[24] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heit-
mann. In situ sampling of a Large Scale particle simulation for inter-
active visualization and analysis. Computer Graphics Forum, 30(3):1151–
1160, June 2011.

