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Abstract – We examine the problem of scalable file system
directories, motivated by data-intensive applications requiring
millions to billions of small files to be ingested in a single di-
rectory at rates of hundreds of thousands of file creates every
second. We introduce a POSIX-compliant scalable directory
design, GIGA+, that distributes directory entries over a cluster
of server nodes. For scalability, each server makes only local, in-
dependent decisions about migration for load balancing. GIGA+
uses two internal implementation tenets, asynchrony and even-
tual consistency, to: (1) partition an index among all servers
without synchronization or serialization, and (2) gracefully tol-
erate stale index state at the clients. Applications, however, are
provided traditional strong synchronous consistency semantics.
We have built and demonstrated that the GIGA+ approach scales
better than existing distributed directory implementations, deliv-
ers a sustained throughput of more than 98,000 file creates per
second on a 32-server cluster, and balances load more efficiently
than consistent hashing.

1 Introduction
Modern file systems deliver scalable performance for
large files, but not for large numbers of files [Wheeler
2010; Fikes 2010]. In particular, they lack scalable sup-
port for ingesting millions to billions of small files in a
single directory - a growing use case for data-intensive
applications [Fikes 2010; Ross 2006; Newman 2008]. We
present a file system directory service, GIGA+, that uses
highly concurrent and decentralized hash-based indexing,
and that scales to store at least millions of files in a sin-
gle POSIX-compliant directory and sustain hundreds of
thousands of create insertions per second.

The key feature of the GIGA+ approach is to enable
higher concurrency for index mutations (particularly cre-
ates) by eliminating system-wide serialization and syn-
chronization. GIGA+ realizes this principle by aggres-
sively distributing large, mutating directories over a clus-
ter of server nodes, by disabling directory entry caching in
clients, and by allowing each node to migrate, without no-
tification or synchronization, portions of the directory for
load balancing. Like traditional hash-based distributed in-
dices [Litwin 1996; Fagin 1979; Schmuck 2002], GIGA+
incrementally hashes a directory into a growing number

of partitions. However, GIGA+ tries harder to eliminate
synchronization and prohibits migration if load balancing
is unlikely to be improved.

Clients do not cache directory entries; they cache only
the directory index. This cached index can have stale
pointers to servers that no longer manage specific ranges
in the space of the hashed directory entries (filenames).
Clients using stale index values to target an incorrect
server have their cached index corrected by the incor-
rectly targeted server. Stale client indices are aggressively
improved by transmitting the history of splits of all parti-
tions known to a server. Even the addition of new servers
is supported with minimal migration of directory entries
and delayed notification to clients. In addition, because
99.99% of the directories have less than 8,000 entries
[Dayal 2008; Agrawal 2007], GIGA+ represents small
directories in one partition so most directories will be
essentially like traditional directories.

Since modern cluster file systems have support for data
striping and failure recovery, our goal is not to compete
with all features of these systems, but to offer additional
technology to support high rates of mutation of many
small files.1 We have built a skeleton cluster file sys-
tem with GIGA+ directories that layers on existing lower
layer file systems using FUSE [FUSE]. Unlike the current
trend of using special purpose storage systems with cus-
tom interfaces and semantics [Shvachko 2010; Ghemawat
2003; Beaver 2010], GIGA+ directories use the traditional
UNIX VFS interface and provide POSIX-like semantics
to support unmodified applications.

Our evaluation demonstrates that GIGA+ directories
scale linearly on a cluster of 32 servers and deliver a
throughput of more than 98,000 file creates per second
– outscaling the Ceph file system [Weil 2006] and the
HBase distributed key-value store [HBase], and exceed-
ing peta-scale scalability requirements [Newman 2008].
GIGA+ indexing also achieves effective load balancing
with one to two orders of magnitude less re-partitioning

1OrangeFS is currently integrating a GIGA+ based distributed di-
rectory implementation into a system based on PVFS [Ligon 2010;
OrangeFS].
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than if it was based on consistent hashing [Stoica 2001;
Karger 1997].

In the rest of the paper, we present the motivating use
cases and related work in Section 2, the GIGA+ indexing
design and implementation in Sections 3-4, the evaluation
results in Section 5, and conclusion in Section 6.

2 Motivation and Background
Over the last two decades, research in large file systems
was driven by application workloads that emphasized ac-
cess to very large files. Most cluster file systems provide
scalable file I/O bandwidth by enabling parallel access
using techniques such as data striping [Hartman 1993;
Gibson 1998; Ghemawat 2003], object-based architec-
tures [Gibson 1998; Lustre; Weil 2006; Welch 2008] and
distributed locking [Thekkath 1997; Schmuck 2002; Weil
2006]. Few file systems scale metadata performance by
using a coarse-grained distribution of metadata over multi-
ple servers [PVFS2; Schmuck 2002; Douceur 2006; Weil
2006]. But most file systems cannot scale access to a
large number of files, much less efficiently support con-
current creation of millions to billions of files in a single
directory. This section summarizes the technology trends
calling for scalable directories and how current file sys-
tems are ill-suited to satisfy this call.

2.1 Motivation
In today’s supercomputers, the most important I/O work-
load is checkpoint-restart, where many parallel applica-
tions running on, for instance, ORNL’s CrayXT5 cluster
(with 18,688 nodes of twelve processors each) periodi-
cally write application state into a file per process, all
stored in one directory [Top500 2010; Bent 2009]. Appli-
cations that do this per-process checkpointing are sensi-
tive to long file creation delays because of the generally
slow file creation rate, especially in one directory, in to-
day’s file systems [Bent 2009]. Today’s requirement for
40,000 file creates per second in a single directory [New-
man 2008] will become much bigger in the impending
Exascale-era, when applications may run on clusters with
up to billions of CPU cores [Kogge 2008].

Supercomputing checkpoint-restart, although important,
might not be a sufficient reason for overhauling the cur-
rent file system directory implementations. Yet there are
diverse applications, such as gene sequencing, image pro-
cessing [Tweed 2008], phone logs for accounting and
billing, and photo storage [Beaver 2010], that essentially
want to store an unbounded number of files that are logi-
cally part of one directory. Although these applications
are often using the file system as a fast, lightweight “key-
value store”, replacing the underlying file system with a
database is an oft-rejected option because it is undesir-
able to port existing code to use a new API (like SQL)

and because traditional databases do not provide the scal-
ability of cluster file systems running on thousands of
nodes [Seltzer 2008; Agrawal 2008; Stonebraker 2005;
Abouzeid 2009].

Authors of applications seeking lightweight stores for
lots of small data can either rewrite applications to avoid
large directories or rely on underlying file systems to
improve support for large directories. Numerous applica-
tions, including browsers and web caches, use the for-
mer approach where the application manages a large
logical directory by creating many small, intermediate
sub-directories with files hashed into one of these sub-
directories. This paper chose the latter approach because
users prefer this solution. Separating large directory man-
agement from applications has two advantages. First,
developers do not need to re-implement large directory
management for every application (and can avoid writing
and debugging complex code). Second, an application-
agnostic large directory subsystem can make more in-
formed decisions about dynamic aspects of a large direc-
tory implementation, such as load-adaptive partitioning
and growth rate specific migration scheduling.

Unfortunately most file system directories do not cur-
rently provide the desired scalability: popular local file
systems are still being designed to handle little more
than tens of thousands of files in each directory [ZFS-
discuss 2009; NetApp-Community-Form 2010; Stack-
Overflow 2009] and even distributed file systems that run
on the largest clusters, including HDFS [Shvachko 2010],
GoogleFS [Ghemawat 2003], PanFS [Welch 2008] and
PVFS [PVFS2], are limited by the speed of the single
metadata server that manages an entire directory. In fact,
because GoogleFS scaled up to only about 50 million files,
the next version, ColossusFS, will use BigTable [Chang
2006] to provide a distributed file system metadata service
[Fikes 2010].

Although there are file systems that distribute the direc-
tory tree over different servers, such as Farsite [Douceur
2006] and PVFS [PVFS2], to our knowledge, only three
file systems now (or soon will) distribute single large di-
rectories: IBM’s GPFS [Schmuck 2002], Oracle’s Lustre
[Lustre 2010], and UCSC’s Ceph [Weil 2006].

2.2 Related work
GIGA+ has been influenced by the scalability and concur-
rency limitations of several distributed indices and their
implementations.

GPFS: GPFS is a shared-disk file system that uses a
distributed implementation of Fagin’s extendible hashing
for its directories [Fagin 1979; Schmuck 2002]. Fagin’s
extendible hashing dynamically doubles the size of the
hash-table pointing pairs of links to the original bucket
and expanding only the overflowing bucket (by restricting
implementations to a specific family of hash functions)
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[Fagin 1979]. It has a two-level hierarchy: buckets (to
store the directory entries) and a table of pointers (to the
buckets). GPFS represents each bucket as a disk block and
the pointer table as the block pointers in the directory’s
i-node. When the directory grows in size, GPFS allocates
new blocks, moves some of the directory entries from
the overflowing block into the new block and updates the
block pointers in the i-node.

GPFS employs its client cache consistency and dis-
tributed locking mechanism to enable concurrent access
to a shared directory [Schmuck 2002]. Concurrent readers
can cache the directory blocks using shared reader locks,
which enables high performance for read-intensive work-
loads. Concurrent writers, however, need to acquire write
locks from the lock manager before updating the directory
blocks stored on the shared disk storage. When releasing
(or acquiring) locks, GPFS versions before 3.2.1 force
the directory block to be flushed to disk (or read back
from disk) inducing high I/O overhead. Newer releases
of GPFS have modified the cache consistency protocol
to send the directory insert requests directly to the cur-
rent lock holder, instead of getting the block through
the shared disk subsystem [Schmuck 2010; Hedges 2010;
GPFS 2008]. Still GPFS continues to synchronously write
the directory’s i-node (i.e., the mapping state) invalidating
client caches to provide strong consistency guarantees
[Schmuck 2010]. In contrast, GIGA+ allows the mapping
state to be stale at the client and never be shared between
servers, thus seeking even more scalability.

Lustre and Ceph: Lustre’s proposed clustered metadata
service splits a directory using a hash of the directory
entries only once over all available metadata servers when
it exceeds a threshold size [Lustre 2010, 2009]. The effec-
tiveness of this "split once and for all" scheme depends
on the eventual directory size and does not respond to
dynamic increases in the number of servers. Ceph is an-
other object-based cluster file system that uses dynamic
sub-tree partitioning of the namespace and hashes indi-
vidual directories when they get too big or experience too
many accesses [Weil 2006, 2004]. Compared to Lustre
and Ceph, GIGA+ splits a directory incrementally as a
function of size, i.e., a small directory may be distributed
over fewer servers than a larger one. Furthermore, GIGA+
facilitates dynamic server addition achieving balanced
server load with minimal migration.

Linear hashing and LH*: Linear hashing grows a hash
table by splitting its hash buckets in a linear order using a
pointer to the next bucket to split [Litwin 1980]. Its dis-
tributed variant, called LH* [Litwin 1993], stores buckets
on multiple servers and uses a central split coordinator
that advances permission to split a partition to the next
server. An attractive property of LH* is that it does not
update a client’s mapping state synchronously after every
new split.

GIGA+ differs from LH* in several ways. To main-
tain consistency of the split pointer (at the coordinator),
LH* splits only one bucket at a time [Litwin 1993, 1996];
GIGA+ allows any server to split a bucket at any time
without any coordination. LH* offers a complex parti-
tion pre-split optimization for higher concurrency [Litwin
1996], but it causes LH* clients to continuously incur
some addressing errors even after the index stops grow-
ing; GIGA+ chose to minimize (and stop) addressing
errors at the cost of more client state.

Consistent hashing: Consistent hashing divides the
hash-space into randomly sized ranges distributed over
server nodes [Stoica 2001; Karger 1997]. Consistent
hashing is efficient at managing membership changes be-
cause server changes split or join hash-ranges of adjacent
servers only, making it popular for wide-area peer-to-
peer storage systems that have high rates of member-
ship churn [Dabek 2001; Rowstron 2001; Muthitacharoen
2002; Rhea 2003]. Cluster systems, even though they
have much lower churn than Internet-wide systems, have
also used consistent hashing for data partitioning [DeCan-
dia 2007; Lakshman 2009], but have faced interesting
challenges.

As observed in Amazon’s Dynamo, consistent hash-
ing’s data distribution has a high load variance, even after
using “virtual servers” to map multiple randomly sized
hash-ranges to each node [DeCandia 2007]. GIGA+ uses
threshold-based binary splitting that provides better load
distribution even for small clusters. Furthermore, consis-
tent hashing systems assume that every data-set needs to
be distributed over many nodes to begin with, i.e., they do
not have support for incrementally growing data-sets that
are mostly small – an important property of file system
directories.

Other work: DDS [Gribble 2000] and Boxwood [Mac-
Cormick 2004] also used scalable data-structures for stor-
age infrastructure. While both GIGA+ and DDS use hash
tables, GIGA+’s focus is on directories, unlike DDS’s gen-
eral cluster abstractions, with an emphasis on indexing
that uses inconsistency at the clients; a non-goal for DDS
[Gribble 2000]. Boxwood proposed primitives to simplify
storage system development, and used B-link trees for
storage layouts [MacCormick 2004].

3 GIGA+ Indexing Design
3.1 Assumptions
GIGA+ is intended to be integrated into a modern clus-
ter file system like PVFS, PanFS, GoogleFS, HDFS etc.
All these scalable file systems have good fault tolerance
usually including a consensus protocol for node member-
ship and global configuration [Burrows 2006; Hunt 2010;
Welch 2007]. GIGA+ is not designed to replace member-
ship or fault tolerance; it avoids this where possible and
employs them where needed.
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Figure 1 – Concurrent and unsynchronized data partitioning in GIGA+. The hash-space (0,1] is divided into multiple partitions
(Pi) that are distributed over many servers (different shades of gray). Each server has a local, partial view of the entire index and can
independently split its partitions without global co-ordination. In addition to enabling highly concurrent growth, an index starts
small (on one server) and scales out incrementally.

GIGA+ design is also guided by several assumptions
about its use cases. First, most file system directories start
small and remain small; studies of large file systems have
found that 99.99% of the directories contain fewer than
8,000 files [Dayal 2008; Agrawal 2007]. Since only a few
directories grow to really large sizes, GIGA+ is designed
for incremental growth, that is, an empty or a small di-
rectory is initially stored on one server and is partitioned
over an increasing number of servers as it grows in size.
Perhaps most beneficially, incremental growth in GIGA+
handles adding servers gracefully. This allows GIGA+
to avoid degrading small directory performance; striping
small directories across multiple servers will lead to ineffi-
cient resource utilization, particularly for directory scans
(using readdir()) that will incur disk-seek latency on
all servers only to read tiny partitions.

Second, because GIGA+ is targeting concurrently
shared directories with up to billions of files, caching
such directories at each client is impractical: the directo-
ries are too large and the rate of change too high. GIGA+
clients do not cache directories and send all directory oper-
ations to a server. Directory caching only for small rarely
changing directories is an obvious extension employed,
for example, by PanFS [Welch 2008], that we have not
yet implemented.

Finally, our goal in this research is to complement ex-
isting cluster file systems and support unmodified appli-
cations. So GIGA+ directories provide the strong consis-
tency for directory entries and files that most POSIX-like
file systems provide, i.e., once a client creates a file in a
directory all other clients can access the file. This strong
consistency API differentiates GIGA+ from “relaxed” con-
sistency provided by newer storage systems including
NoSQL systems like Cassandra [Lakshman 2009] and
Dynamo [DeCandia 2007].

3.2 Unsynchronized data partitioning

GIGA+ uses hash-based indexing to incrementally divide
each directory into multiple partitions that are distributed
over multiple servers. Each filename (contained in a direc-
tory entry) is hashed and then mapped to a partition using
an index. Our implementation uses the cryptographic
MD5 hash function but is not specific to it. GIGA+ relies
only on one property of the selected hash function: for
any distribution of unique filenames, the hash values of
these filenames must be uniformly distributed in the hash
space [Rivest 1992]. This is the core mechanism that
GIGA+ uses for load balancing.

Figure 1 shows how GIGA+ indexing grows incremen-
tally. In this example, a directory is to be spread over three
servers {S0,S1,S2} in three shades of gray color. P(x,y]

i
denotes the hash-space range (x,y] held by a partition
with the unique identifier i.2 GIGA+ uses the identifier i
to map Pi to an appropriate server Si using a round-robin
mapping, i.e., server Si is i modulo num_servers. The
color of each partition indicates the (color of the) server
it resides on. Initially, at time T0, the directory is small
and stored on a single partition P(0,1]

0 on server S0. As the
directory grows and the partition size exceeds a threshold
number of directory entries, provided this server knows
of an underutilized server, S0 splits P(0,1]

0 into two by
moving the greater half of its hash-space range to a new
partition P(0.5,1]

1 on S1. As the directory expands, servers
continue to split partitions onto more servers until all have
about the same fraction of the hash-space to manage (ana-
lyzed in Section 5.2 and 5.3). GIGA+ computes a split’s
target partition identifier using well-known radix-based

2For simplicity, we disallow the hash value zero from being used.
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techniques.3

The key goal for GIGA+ is for each server to split inde-
pendently, without system-wide serialization or synchro-
nization. Accordingly, servers make local decisions to
split a partition. The side-effect of uncoordinated growth
is that GIGA+ servers do not have a global view of the
partition-to-server mapping on any one server; each server
only has a partial view of the entire index (the mapping
tables in Figure 1). Other than the partitions that a server
manages, a server knows only the identity of the server
that knows more about each “child” partition resulting
from a prior split by this server. In Figure 1, at time T3,
server S1 manages partition P1 at tree depth r = 3, and
knows that it previously split P1 to create children parti-
tions, P3 and P5, on servers S0 and S2 respectively. Servers
are mostly unaware about partition splits that happen on
other servers (and did not target them); for instance, at
time T3, server S0 is unaware of partition P5 and server S1
is unaware of partition P2.

Specifically, each server knows only the split history
of its partitions. The full GIGA+ index is a complete
history of the directory partitioning, which is the transitive
closure over the local mappings on each server. This full
index is also not maintained synchronously by any client.
GIGA+ clients can enumerate the partitions of a directory
by traversing its split histories starting with the zeroth
partition P0. However, such a full index constructed and
cached by a client may be stale at any time, particularly
for rapidly mutating directories.

3.3 Tolerating inconsistent mapping at clients
Clients seeking a specific filename find the appropriate
partition by probing servers, possibly incorrectly, based
on their cached index. To construct this index, a client
must have resolved the directory’s parent directory entry
which contains a cluster-wide i-node identifying the server
and partition for the zeroth partition P0. Partition P0 may
be the appropriate partition for the sought filename, or it
may not because of a previous partition split that the client
has not yet learned about. An “incorrectly” addressed
server detects the addressing error by recomputing the
partition identifier by re-hashing the filename. If this
hashed filename does not belong in the partition it has,
this server sends a split history update to the client. The

3GIGA+ calculates the identifier of partition i using the depth of the
tree, r, which is derived from the number of splits of the zeroth partition
P0. Specifically, if a partition has an identifier i and is at tree depth r,
then in the next split Pi will move half of its filenames, from the larger
half of its hash-range, to a new partition with identifier i+ 2r . After
a split completes, both partitions will be at depth r+1 in the tree. In
Figure 1, for example, partition P(0.5,0.75]

1 , with identifier i = 1, is at tree
depth r = 2. A split causes P1 to move the larger half of its hash-space
(0.625,0.75] to the newly created partition P5, and both partitions are
then at tree depth of r = 3.
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Figure 2 – Server additions in GIGA+. To minimize the
amount of data migrated, indicated by the arrows that show
splits, GIGA+ changes the partition-to-server mapping from
round-robin on the original server set to sequential on the newly
added servers.

client updates its cached version of the global index and
retries the original request.

The drawback of allowing inconsistent indices is that
clients may need additional probes before addressing re-
quests to the correct server. The required number of
incorrect probes depends on the client request rate and
the directory mutation rate (rate of splitting partitions). It
is conceivable that a client with an empty index may send
O(log(Np)) incorrect probes, where Np is the number of
partitions, but GIGA+’s split history updates makes this
many incorrect probes unlikely (described in Section 5.4).
Each update sends the split histories of all partitions that
reside on a given server, filling all gaps in the client index
known to this server and causing client indices to catch
up quickly. Moreover, after a directory stops splitting
partitions, clients soon after will no longer incur any ad-
dressing errors. GIGA+’s eventual consistency for cached
indices is different from LH*’s eventual consistency be-
cause the latter’s idea of independent splitting (called
pre-splitting in their paper) suffers addressing errors even
when the index stops mutating [Litwin 1996].

3.4 Handling server additions
This section describes how GIGA+ adapts to the addition
of servers in a running directory service.4

When new servers are added to an existing configu-
ration, the system is immediately no longer load bal-
anced, and it should re-balance itself by migrating a mini-
mal number of directory entries from all existing servers
equally. Using the round-robin partition-to-server map-
ping, shown in Figure 1, a naive server addition scheme
would require re-mapping almost all directory entries
whenever a new server is added.

4Server removal (i.e., decommissioned, not failed and later replaced)
is not as important for high performance systems so we leave it to be
done by user-level data copy tools.
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Figure 3 – GIGA+ experimental prototype.

GIGA+ avoids re-mapping all directory entries on ad-
dition of servers by differentiating the partition-to-server
mapping for initial directory growth from the mapping for
additional servers. For additional servers, GIGA+ does
not use the round-robin partition-to-server map (shown
in Figure 1) and instead maps all future partitions to the
new servers in a “sequential manner”. The benefit of
round-robin mapping is faster exploitation of parallelism
when a directory is small and growing, while a sequen-
tial mapping for the tail set of partitions does not disturb
previously mapped partitions more than is mandatory for
load balancing.

Figure 2 shows an example where the original configu-
ration has 5 servers with 3 partitions each, and partitions
P0 to P14 use a round-robin rule (for Pi, server is i mod
N, where N is number of servers). After the addition of
two servers, the six new partitions P15-P20 will be mapped
to servers using the new mapping rule: i div M, where
M is the number of partitions per server (e.g., 3 parti-
tions/server).

In GIGA+ even the number of servers can be stale at
servers and clients. The arrival of a new server and its
order in the global server list is declared by the cluster
file system’s configuration management protocol, such
as Zookeeper for HDFS [Hunt 2010], leading to each
existing server eventually noticing the new server. Once it
knows about new servers, an existing server can inspect its
partitions for those that have sufficient directory entries
to warrant splitting and would split to a newly added
server. The normal GIGA+ splitting mechanism kicks in
to migrate only directory entries that belong on the new
servers. The order in which an existing server inspects
partitions can be entirely driven by client references to
partitions, biasing migration in favor of active directories.
Or based on an administrator control, it can also be driven
by a background traversal of a list of partitions whose size
exceeds the splitting threshold.

4 GIGA+ Implementation
GIGA+ indexing mechanism is primarily concerned with
distributing the contents and work of large file system
directories over many servers, and client interactions with
these servers. It is not about the representation of directory

entries on disk, and follows the convention of reusing
mature local file systems like ext3 or ReiserFS (in Linux)
for disk management found as is done by many modern
cluster file systems [Shvachko 2010; Welch 2008; Lustre;
Weil 2006; PVFS2].

The most natural implementation strategy for GIGA+
is as an extension of the directory functions of a cluster
file system. GIGA+ is not about striping the data of huge
files, server failure detection and failover mechanism, or
RAID/replication of data for disk fault tolerance. These
functions are present and, for GIGA+ purposes, adequate
in most cluster file systems. Authors of a new version of
PVFS, called OrangeFS, and doing just this by integrating
GIGA+ into OrangeFS [OrangeFS; Ligon 2010]. Our goal
is not to compete with most features of these systems, but
to offer technology for advancing their support of high
rates of mutation of large collections of small files.

For the purposes of evaluating GIGA+ on file system
directory workloads, we have built a skeleton cluster file
system; that is, we have not implemented data striping,
fault detection or RAID in our experimental framework.
Figure 3 shows our user-level GIGA+ directory prototypes
built using the FUSE API [FUSE]. Both client and server
processes run in user-space, and communicate over TCP
using SUN RPC [Srinivasan 1995]. The prototype has
three layers: unmodified applications running on clients,
the GIGA+ indexing modules (of the skeletal cluster file
system on clients and servers) and a backend persistent
store at the server. Applications interact with a GIGA+
client using the VFS API ( e.g., open(), creat() and
close() syscalls). The FUSE kernel module intercepts
and redirects these VFS calls the client-side GIGA+ in-
dexing module which implements the logic described in
the previous section.

4.1 Server implementation
The GIGA+ server module’s primary purpose is to syn-
chronize and serialize interactions between all clients and
a specific partition. It need not “store” the partitions, but
it owns them by performing all accesses to them. Our
server-side prototype is currently layered on lower level
file systems, ext3 and ReiserFS. This decouples GIGA+
indexing mechanisms from on-disk representation.

Servers map logical GIGA+ partitions to directory ob-
jects within the backend file system. For a given (huge)
directory, its entry in its parent directory names the "ze-
roth partition", P(0,1]

0 , which is a directory in a server’s
underlying file system. Most directories are not huge and
will be represented by just this one zeroth partition.

GIGA+ stores some information as extended attributes
on the directory holding a partition: a GIGA+ directory
ID (unique across servers), the the partition identifier Pi
and its range (x,y]. The range implies the leaf in the direc-
tory’s logical tree view of the huge directory associated

6



with this partition (the center column of Figure 1) and
that determines the prior splits that had to have occurred
to cause this partition to exist (that is, the split history).

To associate an entry in a cached index (a partition) with
a specific server, we need the list of servers over which
partitions are round robin allocated and the list of servers
over which partitions are sequentially allocated. The set
of servers that are known to the cluster file system at the
time of splitting the zeroth partition is the set of servers
that are round robin allocated for this directory and the
set of servers that are added after a zeroth partition is split
are the set of servers that are sequentially allocated.5

Because the current list of servers will always be avail-
able in a cluster file system, only the list of servers at the
time of splitting the zeroth server needs to be also stored
in a partition’s extended attributes. Each split propagates
the directory ID and set of servers at the time of the zeroth
partition split to the new partition, and sets the new parti-
tion’s identifier Pi and range (x,y] as well as providing the
entries from the parent partition that hash into this range
(x,y].

Each partition split is handled by the GIGA+ server by
locally locking the particular directory partition, scanning
its entries to build two sub-partitions, and then transac-
tionally migrating ownership of one partition to another
server before releasing the local lock on the partition [Sin-
namohideen 2010]. In our prototype layered on local
file systems, there is no transactional migration service
available, so we move the directory entries and copy file
data between servers. Our experimental splits are there-
fore more expensive than they should be in a production
cluster file system.

4.2 Client implementation
The GIGA+ client maintains cached information, some
potentially stale, global to all directories. It caches the cur-
rent server list (which we assume only grows over time)
and the number of partitions per server (which is fixed)
obtained from whichever server GIGA+ was mounted on.
For each active directory GIGA+ clients cache the cluster-
wide i-node of the zeroth partition, the directory ID, and
the number of servers at the time when the zeroth parti-
tion first split. The latter two are available as extended
attributes of the zeroth partition. Most importantly, the
client maintains a bitmap of the global index built accord-
ing to Section 3, and a maximum tree-depth, r = dlog(i)e,
of any partition Pi present in the global index.

Searching for a file name with a specific hash value,
H, is done by inspecting the index bitmap at the offset j

5The contents of a server list are logical server IDs (or names) that are
converted to IP addresses dynamically by a directory service integrated
with the cluster file system. Server failover (and replacement) will bind
a different address to the same server ID so the list does not change
during normal failure handling.

determined by the r lower-order bits of H. If this is set
to ‘1’ then H is in partition Pj. If not, decrease r by one
and repeat until r = 0 which refers to the always known
zeroth partition P0. Identifying the server for partition Pj
is done by lookup in the current server list. It is either
jmodN, where N is the number of servers at the time the
zeroth partition split), or jdivM, where M is the number
of partitions per server, with the latter used if j exceeds
the product of the number of servers at the time of zeroth
partition split and the number of partitions per server.

Most VFS operations depend on lookups; readdir()
however can be done by walking the bitmaps, enumer-
ating the partitions and scanning the directories in the
underlying file system used to store partitions.

4.3 Handling failures
Modern cluster file systems scale to sizes that make fault
tolerance mandatory and sophisticated [Ghemawat 2003;
Welch 2007; Braam 2007]. With GIGA+ integrated in a
cluster file system, fault tolerance for data and services
is already present, and GIGA+ does not add major chal-
lenges. In fact, handling network partitions and client-
side reboots are relatively easy to handle because GIGA+
tolerates stale entries in a client’s cached index of the
directory partition-to-server mapping and because GIGA+
does not cache directory entries in client or server pro-
cesses (changes are written through to the underlying
file system). Directory-specific client state can be recon-
structed by contacting the zeroth partition named in a
parent directory entry, re-fetching the current server list
and rebuilding bitmaps through incorrect addressing of
server partitions during normal operations.

Other issues, such as on-disk representation and disk
failure tolerance, are a property of the existing cluster file
system’s directory service, which is likely to be based
on replication even when large data files are RAID en-
coded [Welch 2008]. Moreover, if partition splits are
done under a lock over the entire partition, which is how
our experiments are done, the implementation can use a
non-overwrite strategy with a simple atomic update of
which copy is live. As a result, recovery becomes garbage
collection of spurious copies triggered by the failover ser-
vice when it launches a new server process or promotes
a passive backup to be the active server [Burrows 2006;
Hunt 2010; Welch 2007].

While our architecture presumes GIGA+ is integrated
into a full featured cluster file system, it is possible to
layer GIGA+ as an interposition layer over and indepen-
dent of a cluster file system, which itself is usually layered
over multiple independent local file systems [Ghemawat
2003; Shvachko 2010; Welch 2008; PVFS2]. Such a lay-
ered GIGA+ would not be able to reuse the fault tolerance
services of the underlying cluster file system, leading to
an extra layer of fault tolerance. The primary function
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File creates/second
File System in one directory

GIGA+ Library API 17,902
(layered on Reiser) VFS/FUSE API 5,977

Local Linux ext3 16,470
file systems Linux ReiserFS 20,705

Networked NFSv3 filer 521
file systems HadoopFS 4,290

PVFS 1,064

Table 1 – File create rate in a single directory on a single
server. An average of five runs (with 1% standard deviation).

of this additional layer of fault tolerance is replication
of the GIGA+ server’s write-ahead logging for changes
it is making in the underlying cluster file system, detec-
tion of server failure, election and promotion of backup
server processes to be primaries, and reprocessing of the
replicated write-ahead log. Even the replication of the
write-ahead log may be unnecessary if the log is stored
in the underlying cluster file system, although such logs
are often stored outside of cluster file systems to improve
the atomicity properties writing to them [Chang 2006;
HBase]. To ensure load balancing during server failure re-
covery, the layered GIGA+ server processes could employ
the well-known chained-declustering replication mecha-
nism to shift work among server processes [Hsaio 1990],
which has been used in other distributed storage systems
[Lee 1996; Thekkath 1997].

5 Experimental Evaluation
Our experimental evaluation answers two questions: (1)
How does GIGA+ scale? and (2) What are the tradeoffs
of GIGA+’s design choices involving incremental growth,
weak index consistency and selection of the underlying
local file system for out-of-core indexing (when partitions
are very large)?

All experiments were performed on a cluster of 64 ma-
chines, each with dual quad-core 2.83GHz Intel Xeon
processors, 16GB memory and a 10GigE NIC, and Arista
10 GigE switches. All nodes were running the Linux
2.6.32-js6 kernel (Ubuntu release) and GIGA+ stores par-
titions as directories in a local file system on one 7200rpm
SATA disk (a different disk is used for all non-GIGA+ stor-
age). We assigned 32 nodes as servers and the remaining
32 nodes as load generating clients. The threshold for
splitting a partition is always 8,000 entries.

We used the synthetic mdtest benchmark [MDTEST]
(used by parallel file system vendors and users) to insert
zero-byte files in to a directory [Hedges 2010; Weil 2006].
We generated three types of workloads. First, a concur-
rent create workload that creates a large number of files
concurrently in a single directory. Our configuration uses
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Figure 4 – Scalability of GIGA+ FS directories. GIGA+ di-
rectories deliver a peak throughput of roughly 98,000 file cre-
ates per second. The behavior of underlying local file system
(ReiserFS) limits GIGA+’s ability to match the ideal linear scal-
ability.

eight processes per client to simultaneously create files
in a common directory, and the number of files created
is proportional to the number of servers: a single server
manages 400,000 files, a 800,000 file directory is created
on 2 servers, a 1.6 million file directory on 4 servers, up
to a 12.8 million file directory on 32 servers. Second,
we use a lookup workload that performs a stat() on
random files in the directory. And finally, we use a mixed
workload where clients issue create and lookup requests
in a pre-configured ratio.

5.1 Scale and performance
We begin with a baseline for the performance of vari-
ous file systems running the mdtest benchmark. First
we compare mdtest running locally on Linux ext3 and
ReiserFS local file systems to mdtest running on a sep-
arate client and single server instance of the PVFS cluster
file system (using ext3) [PVFS2], Hadoop’s HDFS (using
ext3) [Shvachko 2010] and a mature commercial NFSv3
filer. In this experiment GIGA+ always uses one partition
per server. Table 1 shows the baseline performance.

For GIGA+ we use two machines with ReiserFS on
the server and two ways to bind mdtest to GIGA+: di-
rect library linking (non-POSIX) and VFS/FUSE linkage
(POSIX). The library approach allows mdtest to use
custom object creation calls (such as giga_creat())
avoiding system call and FUSE overhead in order to com-
pare to mdtest directly in the local file system. Among
the local file systems, with local mdtest threads generat-
ing file creates, both ReiserFS and Linux ext3 deliver high
directory insert rates.6 Both file systems were configured
with -noatime and -nodiratime option; Linux ext3
used write-back journaling and the dir_index option
to enable hashed-tree indexing, and ReiserFS was config-
ured with the -notail option, a small-file optimization

6We tried XFS too, but it was extremely slow during the create-
intensive workload and do not report those numbers in this paper.
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that packs the data inside an i-node for high performance
[Reiser 2004]. GIGA+ with mdtest workload generat-
ing threads on a different machine, when using the library
interface (sending only one RPC per create) and ReiserFS
as the backend file system, creates at better than 80% of
the rate of ReiserFS with local load generating threads.
This comparison shows that remote RPC is not a huge
penalty for GIGA+. We tested this library version only to
gauge GIGA+ efficiency compared to local file systems
and do not use this setup for any remaining experiments.

To compare with the network file systems, GIGA+
uses the VFS/POSIX interface. In this case each VFS
file creat() results in three RPC calls to the server:
getattr() to check if a file exists, the actual creat()
and another getattr() after creation to load the cre-
ated file’s attributes. For a more enlightening comparison,
cluster file systems were configured to be functionally
equivalent to the GIGA+ prototype; specifically, we dis-
abled HDFS’s write-ahead log and replication, and we
used default PVFS which has no redundancy unless a
RAID controller is added. For the NFSv3 filer, because
it was in production use, we could not disable its RAID
redundancy and it is correspondingly slower than it might
otherwise be. GIGA+ directories using the VFS/FUSE in-
terface also outperforms all three networked file systems,
probably because the GIGA+ experimental prototype is
skeletal while others are complex production systems.

Figure 4 plots aggregate operation throughput, in file
creates per second, averaged over the complete concurrent
create benchmark run as a function of the number of
servers (on a log-scale X-axis). GIGA+ with partitions
stored as directories in ReiserFS scales linearly up to
the size of our 32-server configuration, and can sustain
98,000 file creates per second - this exceeds today’s most
rigorous scalability demands [Newman 2008].

Figure 4 also compares GIGA+ with the scalability of
the Ceph file system and the HBase distributed key-value
store. For Ceph, Figure 4 reuses numbers from experi-
ments performed on a different cluster from the original
paper [Weil 2006]. That cluster used dual-core 2.4GHz
machines with IDE drives, with equal numbered separate
nodes as workload generating clients, metadata servers
and disk servers with object stores layered on Linux ext3.
HBase is used to emulate Google’s Colossus file system
which plans to store file system metadata in BigTable
instead of internally on single master node[Fikes 2010].
We setup HBase on a 32-node HDFS configuration with a
single copy (no replication) and disabled two parameters:
blocking while the HBase servers are doing compactions
and write-ahead logging for inserts (a common practice
to speed up inserting data in HBase). This configuration
allowed HBase to deliver better performance than GIGA+
for the single server configuration because the HBase ta-
bles are striped over all 32-nodes in the HDFS cluster.

50,000

100,000

150,000

200,000

250,000

(N
u

m
b

e
r 

o
f 

fil
e

s 
 c

re
a

te
d

 p
e

r 
se

co
n

d
)

 

8 servers

16 servers

32 servers

5,000

10,000

15,000

20,000

25,000

1 2 3 4 5 6 7 8

In
st

a
n

ta
n

e
o

u
s 

 T
h

ro
u

g
h

p
u

t

Running Time (seconds)

1 server

2 servers

4 servers

Figure 5 – Incremental scale-out growth. GIGA+ achieves
linear scalability after distributing one partition on each avail-
able server. During scale-out, periodic drops in aggregate create
rate correspond to concurrent splitting on all servers.

But configurations with many HBase servers scale poorly.
GIGA+ also demonstrated scalable performance for the

concurrent lookup workload delivering a throughput of
more than 600,000 file lookups per second for our 32-
server configuration (not shown). Good lookup perfor-
mance is expected because the index is not mutating and
load is well-distributed among all servers; the first few
lookups fetch the directory partitions from disk into the
buffer cache and the disk is not used after that. Section
5.4 gives insight on addressing errors during mutations.

5.2 Incremental scaling properties
In this section, we analyze the scaling behavior of the
GIGA+ index independent of the disk and the on-disk
directory layout (explored later in Section 5.5). To elim-
inate performance issues in the disk subsystem, we use
Linux’s in-memory file system, tmpfs, to store directory
partitions. Note that we use tmpfs only in this section,
all other analysis uses on-disk file systems.

We run the concurrent create benchmark to create a
large number of files in an empty directory and measure
the aggregate throughput (file creates per second) contin-
uously throughout the benchmark. We ask two questions
about scale-out heuristics: (1) what is the effect of split-
ting during incremental scale-out growth? and (2) how
many partitions per server do we keep?

Figure 5 shows the first 8 seconds of the concurrent
create workload when the number of partitions per server
is one. The primary result in this figure is the near linear
create rate seen after the initial seconds. But the initial
few seconds are more complex. In the single server case,
as expected, the throughput remains flat at roughly 7,500
file creates per second due to the absence of any other
server. In the 2-server case, the directory starts on a single
server and splits when it has more than 8,000 entries in
the partition. When the servers are busy splitting, at the
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Figure 6 – Effect of splitting heuristics. GIGA+ shows that
splitting to create at most one partition on each of the 16 servers
delivers scalable performance. Continuous splitting, as in clas-
sic database indices, is detrimental in a distributed scenario.

0.8-second mark, throughput drops to half for a short
time.

Throughput degrades even more during the scale-out
phase as the number of directory servers goes up. For
instance, in the 8-server case, the aggregate through-
put drops from roughly 25,000 file creates/second at
the 3-second mark to as low as couple of hundred cre-
ates/second before growing to the desired 50,000 cre-
ates/second. This happens because all servers are busy
splitting, i.e., partitions overflow at about the same time
which causes all servers (where these partitions reside)
to split without any co-ordination at the same time. And
after the split spreads the directory partitions on twice the
number of servers, the aggregate throughput achieves the
desired linear scale.

In the context of the second question about how many
partitions per server, classic hash indices, such as ex-
tendible and linear hashing [Fagin 1979; Litwin 1980],
were developed for out-of-core indexing in single-node
databases. An out-of-core table keeps splitting partitions
whenever they overflow because the partitions correspond
to disk allocation blocks [Gray 1992]. This implies an
unbounded number of partitions per server as the table
grows. However, the splits in GIGA+ are designed to par-
allelize access to a directory by distributing the directory
load over all servers. Thus GIGA+ can stop splitting after
each server has a share of work, i.e., at least one partition.
When GIGA+ limits the number of partitions per server,
the size of partitions continue to grow and GIGA+ lets the
local file system on each server handle physical allocation
and out-of-core memory management.

Figure 6 compares the effect of different policies for the
number of partitions per server on the system throughput
(using a log-scale Y-axis) during a test in which a large di-
rectory is created over 16 servers. Graph (a) shows a split
policy that stops when every server has one partition, caus-
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Figure 7 – Load-balancing in GIGA+. These graphs show the
quality of load balancing measured as the mean load deviation
across the entire cluster (with 95% confident interval bars). Like
virtual servers in consistent hashing, GIGA+ also benefits from
using multiple hash partitions per server. GIGA+ needs one to
two orders of magnitude fewer partitions per server to achieve
comparable load distribution relative to consistent hashing.

ing partitions to ultimately get much bigger than 8,000
entries. Graph (b) shows the continuous splitting policy
used by classic database indices where a split happens
whenever a partition has more than 8,000 directory entries.
With continuous splitting the system experiences periodic
throughput drops that last longer as the number of parti-
tions increases. This happens because repeated splitting
maps multiple partitions to each server, and since uniform
hashing will tend to overflow all partitions at about the
same time, multiple partitions will split on all the servers
at about the same time.

Lesson #1: To avoid the overhead of continuous split-
ting in a distributed scenario, GIGA+ stops splitting a di-
rectory after all servers have a fixed number of partitions
and lets a server’s local file system deal with out-of-core
management of large partitions.

5.3 Load balancing efficiency
The previous section showed only configurations where
the number of servers is a power-of-two. This is a spe-
cial case because it is naturally load-balanced with only a
single partition per server: the partition on each server is
responsible for a hash-range of size 2r-th part of the total
hash-range (0,1]. When the number of servers is not a
power-of-two, however, there is load imbalance. Figure 7
shows the load imbalance measured as the average frac-
tional deviation from even load for all numbers of servers
from 1 to 32 using Monte Carlo model of load distribu-
tion. In a cluster of 10 servers, for example, each server is
expected to handle 10% of the total load; however, if two
servers are experiencing 16% and 6% of the load, then
they have 60% and 40% variance from the average load
respectively. For different cluster sizes, we measure the
variance of each server, and use the average (and 95%
confidence interval error bars) over all the servers.
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Figure 8 – Cost of splitting partitions. Using 4, 8, or 16 parti-
tions per server improves the performance of GIGA+ directories
layered on Linux ext3 relative to 1 partition per server (better
load-balancing) or 32 partitions per server (when the cost of
more splitting dominates the benefit of load-balancing).

We compute load imbalance for GIGA+ in Figure 7(a)
as follows: when the number of servers N is not a power-
of-two, 2r < N < 2r+1, then a random set of N−2r par-
titions from tree depth r, each with range size 1/2r, will
have split into 2(N−2r) partitions with range size 1/2r+1.
Figure 7(a) shows the results of five random selections
of N− 2r partitions that split on to the r+ 1 level. Fig-
ure 7(a) shows the expected periodic pattern where the
system is perfectly load-balanced when the number of
servers is a power-of-two. With more than one partition
per server, each partition will manage a smaller portion
of the hash-range and the sum of these smaller partitions
will be less variable than a single large partition as shown
in Figure 7(a). Therefore, more splitting to create more
than one partition per server significantly improves load
balance when the number of servers is not a power-of-two.

Multiple partitions per server is also used by Amazon’s
Dynamo key-value store to alleviate the load imbalance in
consistent hashing [DeCandia 2007]. Consistent hashing
associates each partition with a random point in the hash-
space (0,1] and assigns it the range from this point up to
the next larger point and wrapping around, if necessary.
Figure 7(b) shows the load imbalance from Monte Carlo
simulation of using multiple partitions (virtual servers)
in consistent hashing by using five samples of a random
assignment for each partition and how the sum, for each
server, of partition ranges selected this way varies across
servers. Because consistent hashing’s partitions have
more randomness in each partition’s hash-range, it has
a higher load variance than GIGA+ – almost two times
worse. Increasing the number of hash-range partitions sig-
nificantly improves load distribution, but consistent hash-
ing needs more than 128 partitions per server to match
the load variance that GIGA+ achieves with 8 partitions
per server – an order of magnitude more partitions.

More partitions is particularly bad because it takes
longer for the system to stop splitting, and Figure 8 shows
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Figure 9 – Cost of using inconsistent mapping at the clients.
Using weak consistency for mapping state at the clients has a
very negligible overhead on client performance (a). And this
overhead – extra message re-addressing hops – occurs for initial
requests until the client learns about all the servers (b and c).

how this can impact overall performance. Consistent hash-
ing theory has alternate strategies for reducing imbalance
but these often rely on extra accesses to servers all of the
time and global system state, both of which will cause
impractical degradation in our system [Byers 2003].

Since having more partitions per server always im-
proves load-balancing, at least a little, how many par-
titions should GIGA+ use? Figure 8 shows the concurrent
create benchmark time for GIGA+ as a function of the
number of servers for 1, 4, 8, 16 and 32 partitions per
server. We observe that with 32 partitions per server
GIGA+ is roughly 50% slower than with 4, 8 and 16 par-
titions per server. Recall from Figure 7(a) that the load-
balancing efficiency from using 32 partitions per server is
only about 1% better than using 16 partitions per server;
the high cost of splitting to create twice as many partitions
outweighs the minor load-balancing improvement.

Lesson #2: Splitting to create more than one partition
per server significantly improves GIGA+ load balancing
for non power-of-two numbers of servers, but because of
the performance penalty during extra splitting the overall
performance is best with only a few partitions per server.

5.4 Cost of weak mapping consistency
Figure 9(a) shows the overhead incurred by clients when
their cached indices become stale. We measure the per-
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Figure 10 – Effect of underlying file systems. This graph shows the concurrent create benchmark behavior when the GIGA+
directory service is distributed on 16 servers with two local file systems, Linux ext3 and ReiserFS. For each file system, we show two
different numbers of partitions per server, 1 and 16.

centage of all client requests that were re-routed when run-
ning the concurrent create benchmark on different cluster
sizes. This figure shows that, in absolute terms, fewer
than 0.05% of the requests are addressed incorrectly; this
is only about 200 requests per client because each client
is doing 400,000 file creates. The number of address-
ing errors increases proportionally with the number of
partitions per server because it takes longer to create all
partitions. In the case when the number of servers is a
power-of-two, after each server has at least one partition,
subsequent splits yield two smaller partitions on the same
server, which will not lead to any additional addressing
errors.

We study further the worst case in Figure 9(a), 30
servers with 16 partitions per server, to learn when ad-
dressing errors occur. Figure 9(b) shows the number of
errors encountered by each request generated by one client
thread (i.e., one of the eight workload generating threads
per client) as it creates 50,000 files in this benchmark.
Figure 9(b) suggests three observations. First, the index
update that this thread gets from an incorrectly addressed
server is always sufficient to find the correct server on the
second probe. Second, that addressing errors are bursty,
one burst for each level of the index tree needed to cre-
ate 16 partitions on each of 30 servers, or 480 partitions
(28 < 480 < 29). And finally, that the last 80% of the
work is done after the last burst of splitting without any
addressing errors.

To further emphasize how little incorrect server address-
ing clients generate, Figure 9(c) shows the addressing
experience of a new client issuing 10,000 lookups after
the current create benchmark has completed on 30 servers
with 16 partitions per server.7 This client makes no more

7Figure 9 predicts the addressing errors of a client doing only
lookups on a mutating directory because both create(filename)
and lookup(filename) do the same addressing.

than 3 addressing errors for a specific request, and no
more than 30 addressing errors total and makes no more
addressing errors after the 40th request.

Lesson #3: GIGA+ clients incur neglible overhead (in
terms of incorrect addressing errors) due to stale cached
indices, and no overhead shortly after the servers stop
splitting partitions. Although not a large effect, fewer
partitions per server lowers client addressing errors.

5.5 Interaction with backend file systems
Because some cluster file systems represent directories
with equivalent directories in a local file system [Lustre]
and because our GIGA+ experimental prototype repre-
sents partitions as directories in a local file system, we
study how the design and implementation of Linux ext3
and ReiserFS local file systems affects GIGA+ partition
splits. Although different local file system implemen-
tations can be expected to have different performance,
especially for emerging workloads like ours, we were
surprised by the size of the differences.

Figure 10 shows GIGA+ file create rates when there
are 16 servers for four different configurations: Linux
ext3 or ReiserFS storing partitions as directories, and 1
or 16 partitions per server. Linux ext3 directories use
h-trees [Cao 2007] and ReiserFS uses balanced B-trees
[Reiser 2004]. We observed two interesting phenomenon:
first, the benchmark running time varies from about 100
seconds to over 600 seconds, a factor of 6, and second,
the backend file system yielding the faster performance is
different when there are 16 partitions on each server than
with only one.

Comparing a single partition per server in GIGA+ over
ReiserFS and over ext3 (left column in Figure 10), we
observe that the benchmark completion time increases
from about 100 seconds using ReiserFS to nearly 170
seconds using ext3. For comparison, the same bench-
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mark completed in 70 seconds when the backend was the
in-memory tmpfs file system. Looking more closely at
Linux ext3, as a directory grows, ext3’s journal also grows
and periodically triggers ext3’s kjournald daemon to
flush a part of the journal to disk. Because directories are
growing on all servers at roughly the same rate, multiple
servers flush their journal to disk at about the same time
leading to troughs in the aggregate file create rate. We
observe this behavior for all three journaling modes sup-
ported by ext3. We confirmed this hypothesis by creating
an ext3 configuration with the journal mounted on a sec-
ond disk in each server, and this eliminated most of the
throughput variability observed in ext3, completing the
benchmark almost as fast as with ReiserFS. For ReiserFS,
however, placing the journal on a different disk had little
impact.

The second phenomenon we observe, in the right col-
umn of Figure 10, is that for GIGA+ with 16 partitions
per server, ext3 (which is insensitive to the number of
partitions per server) completes the create benchmark
more than four times faster than ReiserFS. We suspect
that this results from the on-disk directory representation.
ReiserFS uses a balanced B-tree for all objects in the file
system, which re-balances as the file system grows and
changes over time [Reiser 2004]. When partitions are
split more often, as in case of 16 partitions per server, the
backend file system structure changes more, which trig-
gers more re-balancing in ReiserFS and slows the create
rate.

Lesson #4: Design decisions of the backend file system
have subtle but large side-effects on the performance of a
distributed directory service. Perhaps the representation
of a partition should not be left to the vagaries of whatever
local file system is available.

6 Conclusion
In this paper we address the emerging requirement for
POSIX file system directories that store massive number
of files and sustain hundreds of thousands of concurrent
mutations per second. The central principle of GIGA+
is to use asynchrony and eventual consistency in the dis-
tributed directory’s internal metadata to push the limits of
scalability and concurrency of file system directories. We
used these principles to prototype a distributed directory
implementation that scales linearly to best-in-class per-
formance on a 32-node configuration. Our analysis also
shows that GIGA+ achieves better load balancing than
consistent hashing and incurs a neglible overhead from
allowing stale lookup state at its clients.
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