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Abstract

Fault-tolerant storage systems spread data redundantly across atseagé-nodes in an
effort to preserve and provide access to data despite failures. Cinailltdifcreated by
this architecture is the need for a consistent view, across storags;mddlee most recent
update. Such consistency is made difficult by concurrent updateslpgdates made
by clients that fail, and failures of storage-nodes.

This thesis demonstrates a novel approach to achieving scalable, higliiofarant
storage systems by leveraging a set of efficient and scalable, strogsigtemcy protocols
enabled by storage-node versioning. Versions maintained by storalgs-can be used to
provide consistency, without the need for central serialization, angitdesoncurrency.
Since versions are maintained for every update, even if a client failsvagrthrough an
update, concurrency exists during an update, the latest complete vefsimndata-item
being accessed still exists in the system—it does not get destroyed legsebs updates.
Additionally, versioning enables the use of optimistic protocols.

This thesis develops a set of consistency protocols appropriate fstrgoting block-
based storage and metadata services. The block-based storagelgsotoade space-
efficient through the use of erasure codes and made scalable bydoffamork from the
storage-nodes to the clients. The metadata service is made scalable bygthwdiigh
costs associated with agreement algorithms and by utilizing threshold votimgmsio
Fault-tolerance is achieved by developing each protocol in a hybridgeterade fault-
model (a mix of Byzantine and crash storage-nodes can be toleratgdp|eaf tolerating

crash or Byzantine clients, and utilizing asynchronous communication.
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1 Introduction

1.1 Problem definition

Fault-tolerant storage systems (e.g., Petal [Lee and Thekkath 19964dM¢hang et al.
2002], SwiftRAID [Long et al. 1994], and Cheops [Amiri et al. 2000sfhread data re-
dundantly across a set of storage-nodes in an effort to presedveramide access to
data despite failures. Figure 1.1 illustrates the abstract architecture ait-#olarant, or
survivable, distributed storage system. In these types of systems it is cotorbosak
the system (at least logically) into two components or services: a metadaizesand
a data service. To access or update a data-item, a client must obtain mebamldttha
data-item (e.g., where and how it is stored) before it is able to access tééaia it-
self. In order for a storage-system to tolerate failures, both the datanatatiata must
be duplicated across a set of storage-nodes. Thus, an update iompiete once it has
completed successfully at a subset of the storage-nodes. While thisesghevides ac-
cess to data-items and their metadata even when subsets of the storagbavediled,
it does create the difficulty of maintaining a consistent view, across thegstmmades, of
the most recent update. In decentralized systems, this is problem islest&cesince, due
to the lack of a central serialization point, updates may not be issued to thesshget
of storage-nodes as are being read. Without consistency across thfesgorage-nodes,
data loss is possible or even likely.

Although protocols exist for achieving such consistency, they gendadillishort in a
number of areas including fault-tolerance, efficiency, and scalability.€Hsiest solution

to this problem is to introduce a point of serialization. This is typically done biglsgng
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Metadata
nodes

Clients

Figure 1.1 High-level architecture for survivable storage.Spreading data and metadata redun-
dantly across storage-nodes improves its fault-tolerai@eents write and (usually) read data
from multiple storage-nodes and may contact multiple gieraodes to perform metadata opera-
tions.

requests through a primary. However, this typically reduces the scalaljility system
and requires additional protocols to tolerate the failure of the primary. @tbex compli-
cated protocols exist, however they generally require a significant aroboxerhead in
the common case of little or no concurrency. Most studies of distributedggi@ystems
(e.g., [Baker et al. 1991; Noble and Satyanarayanan 1994]) indicatedhcurrency is
uncommon (i.e., writer-writer and writer-reader sharing occurs in weleutébo of oper-
ations). As well, many protocols do not scale in terms of messaging or pfateetead,
or storage-node CPU utilization as number of faults tolerated increases.

This thesis demonstrates a novel approach to achieving scalable, higliofarant
(the ability to tolerate more than a single fault) storage systems by leveragirtgpof se
efficient and scalable, strong consistency protocols enabled by stoate versioning.
Versioning storage-nodes keep a version of every update theyedéai some period of
time). These versions can be used to provide consistency, without tidareentral se-
rialization, and despite concurrency. Since versions are maintaineddior @pdate, even
if a client fails part way through an update, or a reader performs g @ueing an update,
the latest complete version of the data-item being accessed still exists in tamsyis

does not get destroyed by subsequent updates. The problem veitbnieg becomes one
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of the client locating the version it is interested in. The consistency protdesksloped
in this thesis all use logical time as a means of naming versions. Additionallyonerg
enables the use of optimistic protocols. Since older versions are notrittemby new
updates, there is no need to lock the data-item before performing an upitatever,
in these protocols, concurrency may require the client to perform exiri tw find the
set of versions in which they are interested (e.g., those that comprise thieciateplete
update).

In particular, this thesis develops a set of consistency protocols ajgimfm build-
ing block-based storage and metadata services. The block-basegegiortocol is made
space-efficient through the use of erasure codes and made scatatffeoading work
from the storage-nodes to the clients. The metadata storage protocol issoadele
by avoiding the high costs associated with agreement algorithms and by utilizesinth
old voting quorums. Fault-tolerance is achieved by developing each piatoa hybrid
storage-node fault-model (a mix of Byzantine and crashed storages-madebe toler-
ated), capable of tolerating crash or Byzantine clients, and utilizing asymahs com-

munication.

1.2 Thesis statement

Versioning storage-nodes enable the design of a set of scalablergfionsistency pro-
tocols that provide a foundation for constructing scalable, highly faultaotedistributed

storage systems.

1.2.1 Validation

This work is validated through the design and evaluation of three consispeatycols

that have been enabled by versioning storage-nodes. More precisely

(1) It develops and demonstrates a read/write block storage consigtetogol that
enables highly fault-tolerant storage through the use of erasure datiednd ver-

sioning storage-nodes. Its correctness is shown through proohsketc
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(2) It develops and demonstrates a read/conditional-write block protbabhlllows
for stronger read—modify—write consistency semantics. Additionally, tfésibe-
tween tolerating Byzantine clients and erasure coding, as well as tratedfieen

tolerating Byzantine storage-nodes and liveness are discussed.

(3) It extends the read/conditional-write block protocol to supportatmers on mul-
tiple, arbitrary objects and implements a scalable metadata service basedigpon th

and the read/write protocol.

(4) It evaluates a distributed file system that utilizes the scalability and fautatale
of the developed consistency protocols in terms of the number of faults talerate
the maximum throughput the system can sustain, and its performance inlelégra

operation modes (i.e., with concurrency and faults).

1.3 Overview

1.3.1 Consistency protocols

First, the Read/Write protocol (R/W) is developed. It provides strongistency and
fault-tolerance for read/write block storage. Block storage-systems @GS, fibre-
channel) provide the backbone for most current storage solutions.

The R/W protocol works roughly as follows. To perform a write, clientgevime-
stamped fragments to at least a write threshold of storage-nodes. Stader keep
all versions of fragments they are sent. To perform a read, clients fle¢ctatest frag-
ment versions from a read threshold of storage-nodes. The cliemile¢s whether
the fragments comprise a consistent, complete write, based on timestamp qrdsuing
ally, they do. If they do not, additional fragments or historical fragmergsfetched, or
repair is performed, until a consistent, complete write is observed. Onlysesaz fail-
ures (storage-node or client) or read-write concurrency is additavesthead incurred to
maintain consistency.

The second protocol, the Read/Conditional Write protocol (R/CW), estéreR/W
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protocol by only allowing write operations to complete if the object has naigbd since
the last time it was read. Thus, the R/CW protocol is able to provide strongsistency
semantics—similar to read—modify—write, rather than just read—write semantics.
Finally, a Query/Update protocol (Q/U) is developed. It is very similar to theVRR
protocol but adds a few optimizations and extensions. Most notably, Vide® strict
serializability of arbitrary operations through the use of replicated stateinezch
These protocols are developed in detail, evaluated individually, andassadbasis

for building a fault-tolerant, scalable storage-system.

1.3.2 Guiding assumptions

These consistency protocols achieve efficiency and scalability via a catidrirof opti-
mistic operation, versioning, and quorum-style redundancy. As suate, #ne a number
of assumptions that guide the use of versioning and optimism. As well, thesenaraber

of assumptions in the system model for which these protocols are designed.

Optimism and versioning

The scalability features of quorums are well-known [Malkhi et al. 2008pM™Nand Wool
1998], however the use of versioning and optimism is guided by threeléghassump-
tions.

First, we assume that client failures within the duration of an access ptdtocthe
order of milliseconds) should be rare. That is, while we design to toleratet ¢didures
(indeed, arbitrary ones; see below), our protocols optimistically presueyewiiil not
occur, and exploit this assumption heavily in order to improve throughpeatutholds.

Second, we assume that comprehensive object versioning at eactataatade is
efficient. Previous studies have shown that versioning nodes canpeffformance that
is typically within 10% of a non-versioning node [Strunk et al. 2000]. Adl,waodern
disks have the capacity required to version objects comprehensivaiynkStt al. 2000;
Soules et al. 2003].
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Third, we assume that objects exported through the protocols, desigypetly, will
experience low access concurrency. Most file system studies centtiatifile sharing
is rare. For example, our R/CW objects support conditional write opegati@t update
multiple objects atomically. This, in turn, permits us to utilize fine-grained metadata ob-
jects, which reduces access concurrency for these objects. T$amaiate attribute object

can be maintained for each file, rather than including file attributes in direchjegts.

System model

There are a number of system model assumptions that hold for all proteasoped.
The system model is more formally described in Section 3.1, but can be surachasz
follows.

Each data-item is hosted by a static number of storage-nodes; i.e., onedakigeth
has been created, the set of storage-nodes on which that data-itewistas fixed. There
are an arbitrary number of clients in the system. Both storage-nodes antd atiay suffer
Byzantine faults [Lamport et al. 1982].

All protocols are developed within an asynchronous model of time (i.e., sungs
tions are made about message transmission delays or execution rates)elSlaae as-
sumed to be point-to-point, authenticated, and adhere to finite duplicatioramridsis

properties [Aguilera et al. 2000]; see 3.1 for a complete description cfytstern model.

1.3.3 Applying the protocols to the PASIS storage system

The PASIS storage system is layered above the consistency protosohibdd in the
previous subsection. It is split into two components: the PASIS Storages@P8ce and
the PASIS metadata (PMD) service. The storage service may be implemenigpdittsén
the Read/Write or the Read/Conditional Write protocol. The metadata servicbustis
upon the Query/Update protocol since the consistency semantics refpuiredtadata is
more stringent than that for data. Additionally, the Q/U protocol providesitanface to

atomically perform arbitrary operations on multiple metadata objects.
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The R/W protocol underlies the PS service. It provides block granuleedg/write
access to data objects. Data objects are variable length data containedshyaanenique
object identifier. The R/W protocol allows for the use of space-effiaiata encodings.
To demonstrate that our protocol is efficient in practice, we compare ifsrpgance to
BFT [Castro and Liskov 2001; 2002], the Byzantine fault-tolerant rejdid state ma-
chine implementation that Castro and Liskov have made available [Castro alnigjirRes
2003]. Experiments show that the PS scales better than BFT in terms of kettiiza-
tion at the server and in terms of work performed by the server. Expetsnaéso show
that response times of PASIS and BFT are comparable. Additionally, iexgreis show
that the response time graphs of the PASIS R/W prototype are flat as thenohidults
tolerated is scaled up.

Two types of metadata objects are implemented: attributes and directories. #&gribu
objects exist for both directory objects and for files. The attributes maptljite typical
UNIX file permissions. Directory objects hold multiple directory entries. Edotctbry
entry stores the names and access information for the files and directoried within
the storage system. The access information specifies how the named ahjactessed.
If the named object is a file, the access information is specific to the PS senptz
mentation (e.g., where the file is located, the encoding of the file, etc.).

The PMD service is evaluated in the context of a complete file system implemented
as a NFS server. It can use either the PS service to store data, or i camfigured to
store data locally in its local file system. When storing data locally, experimeots sh
that the PMD service’s throughput scales as load (humber of NFSrsgigseéncreased
and response time only gradually increases as the number of faults tolisrataded up.
As well, experiments show that the performance degrades gracefully edreurrency
is introduced, even at very high concurrency levels. Finally, when $edpvice is used
in conjunction with the PMD service in a configuration capable of tolerating glesin
Byzantine fault, the run time of an OpenSSH build is within a factor of two of afaait

tolerant user-level NFS server.
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1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 descabkgrbund and
related work. It is broken into a discussion of atomic read/write objectse@isters) that
pertains to block based storage and a discussion of systems/protoaieaiiproviding
consistency and fault-tolerance for operations performed on arbittgegts. Chapter 3
develops the R/W protocol for block-based storage. The system mauediraints on
the number of storage-nodes, and the implementation and evaluation of thegbiere
described. Chapter 4 describes the R/CW protocol for block baseaystofhe proto-
col is developed similarly to the R/W protocol. Chapter 5 extends the R/CW midimc
provide consistency for operations performed over arbitrary objeetsthe Q/U proto-
col). As well, the chapter describes the design and implementation of the R&BEge
system that utilizes both the Q/U protocol and the R/W to provide strong camgjste
fault-tolerance, and scalability to its clients. The storage system is then eailoderms
of a distributed NFSv3 storage system. The last chapter, Chapter 8udes@nd pro-
vides future directions for this work. Finally, a set of appendices peopitofs of safety

for the consistency protocols developed within.



2 Background and Related Work

This chapter describes background and related work related to theuwdizs of scal-
able and fault-tolerant distributed storage systems. First, the compondntsitiarise a
storage system are described. Second, data encoding schemes thetsad to improve
space-efficiency are introduced. Third, consistency semantics atatpls for tolerating
benign and Byzantine faults are described. Fourth, and lastly, worledela the scala-

bility of metadata services is discussed.

2.1 Storage system overview

Traditionally, disk-based storage systems have been built around alezzgtmonolithic
disk array or mainframe. While these systems have been shown to providergiaa-
bility and performance, they have a number of weaknesses. First, ttiwdraris highly
customized and very expensive to build. Second, these systems aite saede to very
large sizes. Third, the range of faults they are able to handle is limited (enggntxngle,
or possibly double, disk failures).

This thesis describes protocols that can be used to build a Byzantine feudtrt) de-
centralized storage architecture to help solve these problems. First, atitaieByzan-
tine faults cheaper, off-the-shelf, components can be used sincedrardnd software
bugs can be masked by the fault-tolerance provided by the underlyiragstprotocols.
Second, these systems are more scalable in that the addition of new stodsgeyields
improvements in the capacity, throughput or fault-tolerance of the sefided, fault-

tolerance is gained by designing the storage protocols to withstand arlfByasntine)



10 - Efficient, scalable consistency for highly fault-tolerant storage

failures of clients and a limited number of metadata-nodes, and by requiritighimy
(synchrony) assumptions for correctness. However, in this typecbitacture, there is
no centralized control, making it difficult to provide consistency in the fddawts and

concurrency.

2.1.1 File service

This work focuses on developing protocols that can be used to conatdecentralized,
fault-tolerant file based storage-system. Traditional file systems are ms@uf both
metadata and data services. The data service is responsible for storidgtéijenvhile
the metadata service stores data about how and where the file data is stgredigck
pointers within inodes), as well as other metadata that describes the fileafeigutes,
access control information, etc.). Metadata is often stored within the daiaesand is
accessed by recursing through a set of structures rooted at a veelhkacation.

In these systems, fault-tolerance for both the data and metadata can bedgin
distributing the data service in a fault-tolerant manner. Frangipani [Tdibldt al. 1997]
is an example of this type of system. It is a distributed file system that is buileadov
virtual disk interface exported by Petal [Lee and Thekkath 1996] adidtebuted lock
service. Petal can tolerate one or more disk or storage-node failafesgpas the major-
ity of the storage-nodes are up and communicating, and as long as atrieasfptica of
each data-item remains.

Other systems explicitly separate the metadata service from the data seovies- F
ample, NASD [Gibson et al. 1998] demonstrated that by separating metadatsdrom
data access greater scalability could be achieved at a lower cost. Ingfeazng all op-
erations through a centralized file server, NASD eliminated the file semver thhe data
flow path by allowing clients to directly access the data storage-nodes. reasefault-
tolerance the centralized metadata server can be distributed as a faultitezxace. For
example, Farsite [Adya et al. 2002] utilizes a Byzantine fault-tolerant aggatprotocol
(BFT [Castro and Liskov 1998a]) to protect the integrity of its metadata, vettibeving

file data to be stored on a user’s desktop machine.
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Consistency semantics

Consistency semantics can differ for data versus metadata. Most bleek bata ser-
vices, disk drives being the most common, expect whole block updatesa(i.entire

block is always overwritten). On the other hand, metadata services did@naabitrary

data regions to be updated independently (e.g., a single directory entry nedte sl

within a directory).

For block updates, it is sufficient to suppeead—-writeupdate semantics. Read-write
update semantics make no guarantees about the value of the data blockrbittevéme
the block was read and later written. These semantics are sufficient &rditares, since
consistency is guaranteed on a block-level and blocks are usuallyarehiritten as
atomic units. The PASIS read-write (R/W) protocol is described in Chapaerd3oro-
vides the consistency semantics required for block based storage.

In order to support consistent updates to metadata, metadata objectsr@ctprids)
require update operations thrabdifytheir existing contents, rather than blindly overwrit-
ing their previous contents; otherwise, their integrity may not be presdResti—modify—
write semantics guarantee that the data region has not been modified betwadraade
a successive write operation to the same data region. It is also necessapport atomic
updates across multiple objects (e.g., when renaming or moving files fromrestody
to another). Metadata services are often built upon protocols that prowidsistent ac-
cess to objects that can be manipulated through arbitrary operations (t.gushcead
and write operations). In the PASIS metadata service, the undenlgady-conditional
write (R/CW) protocol is described in Chapter 4, while the query/update (Q/utppol,
that extends the R/CW protocol to provide replicated state-machine semanmticthe
metadata service itself is described in Chapter 5.

This thesis describes a set of protocols that provide the consisteneysageg to im-

plement fault-tolerant data and metadata services.
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2.1.2 Storage-system goals

One central goal in the design of storage systems is to simultaneously pedfitieEncy,
scalability, and fault-tolerance. Current storage systems, and theirlyindeprotocols,

fall short in one or more of the following areas:

— High fault-tolerance: To provide access to data in the event of multiple clieliba
server failures (in the case of both crash and Byzantine faults), asegyo tol-
erating only a single failure as can be handled by most other distribute@ystora
systems. First, data must be spread redundantly across the set oestod®s.
Second, no central points of failure should exist. This can be achieyersihg

decentralized consistency protocols with no single points of failure.

— Strong consistency: To provide strong consistency in the face of fai(ofelients
or servers) and concurrent operations (e.g., read-write commyrrevrite-write
concurrency). In decentralized storage systems, where data isl spresss mul-
tiple storage-nodes, it is usually important to ensure that readers ancsvatitays
see a consistent view of data, especially in the face of concurrencfadmas.
Although this is a goal that we want of our storage systems, not all apphcat
quire strong consistency. As well, the consistency semantics requiréacflbvel
storage versus metadata is different. At the metadata level, it is importaneto off

consistency of metadata operations which may span multiple objects.

— Efficiency and scalability: To provide scalable access to data and lovhexds
in the common case of fault-free, concurrency-free operation. Meotpgols ex-
ist for providing consistency, however there is generally a significardust of
overhead regardless of the state of the system (e.g., when conguarahéaults
do not exist). Current protocols are also generally inflexible in dealifigezitly
with different fault models (e.g., crash vs. Byzantine failures, numbédaibfres
to be masked) and system models (e.g., synchronous vs. asynchraruthey

are designed to work for a single fault and timing model. Although designing fo
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the worst case generally provides support for many system and failutelras-
sumptions, efficiency and scalability are always limited to that of the worst cas

environment.

2.2 Data encodings

A common data distribution scheme used in distributed storage systems is replication
in which a writer stores a replica of the new data-item value at each stomgeio
which it sends a write request. Since each storage-node has a compiatednsf the
data-item, the main difficulty is identifying and retaining the most recent instdnice.
often necessary for a reader to contact multiple storage-nodes teeahatiit sees the
most recent instance. Examples of distributed storage systems that usedigis oh-
clude Harp [Liskov et al. 1991], Petal [Lee and Thekkath 1996], BE&tro and Liskov
1998a], and Farsite [Adya et al. 2002].

Alternately, more space-efficient encoding schemes can be used.etthisnspro-
vides an overview of some of the more well-known schemes, such as R&lDsome
other more general, more space-efficient erasure coding schemeshééthschemes,
reads require fragments from multiple servers. Moreover, to decodkathdtem, the set
of fragments read must correspond to the same write operation; thus witeeeancur-

rency can be problematic.

2.2.1 RAID

In order to increase the performance of disk subsystems, data carnigesl sicross a
set of disks. However, as the number of disks in each stripe is increthselikelihood

of a single disk dying and the probability of data loss increases. In 19889@a, et
al. [Patterson et al. 1988] designed Redundant Arrays of Inexmgebiésks (RAID) to

overcome these reliability challenges. They solved the problem by stodngdeant data
in the form of parity on one or more of the disks in the array.

At the present time there are a number of different RAID levels. The naratmn
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are RAID 0, 1, and 5. Combinations of these levels also exist (e.g., RAICRKID 0 is
the simplest, increasing performance by striping data across a set ofslesacthat they
can be read and written in parallel. However, RAID 0 provides no extharrdancy.
RAID 1 provides mirroring of data onto two devices. This scheme can tolasitgle
device failure, however it pays a huge cost in storage capacity—olfflpfthe space is
usable to store data. RAID 5 uses parity with striping to improve space-efficieéike
in RAID 0, data is striped across a set of devices. A parity code is calduateply by
performing an XOR over the blocks within each stripe and is stored onatepdevice.

In RAID 5 the parity block is rotated among the set of the storage devices.

2.2.2 Erasure-coding

The use of erasure codes can greatly improve the space-efficiemeplafating data.
Erasure codes were originally developed for communication channels ireth@rking
community and are sometimes known as forward-error correcting codesuré codes
encode a data-item into a set of fragments and have the property thatilzsst f a
certain size can be used to reconstruct the original data-item. They enighproperty
that they can toleraten simultaneous failures with onlgn extra data-fragments. RAID
schemes can typically only suppont= 1, 2; i.e., they can only tolerate a single or double
disk failure.

In this work the focus is on systematic threshold erasure codes in whicimanfy
the n encoded data-fragments can decode the data-item. Thenfatata-fragments are
stripes of the data-item. The remaining- m code-fragments are generated using poly-
nomial interpolation within a Galois field. As such, each fragmelﬁﬂbe total data size.
Thus, the total size-blowup i§. Replication can be thought of a subset of thesef-N
erasure codes, as could the different RAID schemes; 1 for replication. Examples of
such codes are Reed-Solomon codes [Berlekamp 1968], secrigtgsf&mamir 1979],
information dispersal (IDA) [Rabin 1989], short secret sharingaiezyk 1994], and
“tornado” codes [Luby et al. 2001]. The tradeoff in using erasmdes over RAID like

schemes is the performance cost in generating the code fragments.
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Data block N fragments m fragments Data block
(16KB) (40KB) (16KB) (16KB)

—L

Encode Write Read Decode

Figure 2.1:Example 2-of-5 erasure coding schemein example 2-of-5 erasure code is shown
(i.e., m=2, N =5). The first 2 fragments are stripe fragments, while the ldsa@ments are code
fragments. Each fragment%the total data size. The total storage overheaa i®r N fragments.

An example 2-of-5 erasure code scheme is shown in Figure 2.1. Thealrifita-
item is striped into 2 fragments, with 3 code fragments being generated. iagohehnt is
written to a storage-node. Any 2 fragments can be used to decode thexbdagia-item.

There exists much prior work (e.g., [Agrawal and El Abbadi 1990;liHgrand Ty-
gar 1987; Mukkamala 1994]) that combines erasure coded data withrguaystems to
improve the confidentiality and/or integrity of data along with its availability. Howeve
these systems do not provide consistency (i.e., a synchronization meshaméjuired)
and do not cope with Byzantine clients. Concurrently with our own worlgufid et
al. [Frglund et al. 2004] have developed a decentralized protocbhiarizable erasure

coded read/write registers that utilize a variant of threshold-quorums.

2.3 Consistency semantics

To provide reasonable semantics, storage systems must guaranteadbed see consis-

tent data-item values.

2.3.1 Linearizability

The linearizability of operations is desirable for block-based read-wiiteage. Since
linearizability is only defined for single object operations, it is not suitabl@éscribing
multi-object operations that are sometimes required for metadata updatesizatdity

is described by Herlihy and Wing in [Herlihy and Wing 1990]. Operatiordiaeariz-
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able if their return values are consistent with an execution in which each operiatio
performed instantaneously at a distinct point in time between its invocationcanple-
tion. Frglund et al. [Frglund et al. 2004] have recently developed &{tlased protocol
that provides a variant of linearizability they testmict linearizability[Aguilera and Frol-
und 2003], in which an operation that crashes either takes effect withie Bmited time
frame or not at all.

The R/W protocol, described in Chapter 3, tolerates Byzantine faults afamper of
clients and a limited number of storage nodes while implementing linearizable [Herlihy
and Wing 1990] and wait-free [Herliny 1991] read-write objects. As wibié R/CW
protocol, described in Chapter 4 also implements linearizable objects. In tiscpl,
linearizability is adapted appropriately for Byzantine clients, and wait-fmeeds in the
model of Jayanti et al. [Jayanti et al. 1998]. Since operations peedrby Byzantine

clients have no clear start time, they are excluded from the set of linekriapbrations.

2.3.2 Serializability

The consistency semantic of serializability can pertain to multi-object operattias
are required for updating metadata objects atomically. Traditionally serializabdiy
been defined for transactions within database systems. A sequenceszctians are
serializableif their outcome is equivalent to some sequential execution of the individual
transactions [Papadimitriou 1979]. Strict serializability extends serializabilignsure
that transactions already in the history in serial order (i.e., they have ctdpleemain

in that relative order. This provides a consistency semantic similar to thatafizability.

A serializable execution satisfies tA€ID properties [Haerder and Reuter 1983] (i.e.,
atomicity, consistency, isolation, and durability). The serializability of tratisas can
be ensured through a number of techniques. Typical techniques intluaehase lock-
ing [Gray et al. 1976], in which locks are acquired in one phase andsetkEin a separate
phase; optimistic concurrency control [Kung and Robinson 1981], irchvbperations
within a transaction are performed optimistically, with no locking, and validaticeat

alizability is done at commit time; and timestamp ordering [Bernstein et al. 1980k seth
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protocols timestamps are used to order operations. The query/updateopassecribed

in Chapter 5 implements metadata objects that conform to strict serializability.

2.3.3 Tolerating benign faults

To provide operation atomicity, concurrency and client failures must beatelé A chal-
lenge introduced by concurrency and client failures is partially completéd apera-
tions. Partial writes arise from both write operations in progress and wréeations that
never completed (e.g., failed client).

Common approaches to dealing with partial writes in non-Byzantine-toleyant s
tems are two-phase commit [Gray 1978] and repair (write-back). Tvesghommit pro-
vides failure atomicity (although such protocols may block). Three phasenitoproto-
cols [Skeen and Stonebraker 1983] provide failure atomicity without gdby utilizing
failure detectors and/or recovery mechanisms. Alternately, many noarige-tolerant
systems (e.g., Harp [Liskov et al. 1991] and Petal [Lee and Thekk&]1Serialize
their actions through a primary storage-node, which becomes respoiasibtampleting
the update.

A common approach to dealing with concurrency is to suppress it, either via
leases [Gray and Cheriton 1989] or optimistic concurrency control gkamd Robinson
1981]. Ensuring operation atomicity in the face of Byzantine failures of iiegquires
additional work.

An alternate approach to handling both partial writes and concurrencyhaviothe
data stored on storage-nodes be immutable [Reed and Svobodova £88019$83]. By
definition, this eliminates the difficulties of updates for existing data. In doing shifts
the problem up one level; an update now consists of creating a new datarittmodi-
fying the relevant name to refer to it. Decoupling the data-item creation frovisitslity
simplifies both, but making the metadata service fault-tolerant often bringtasame
issues.

For example, SWALLOW [Reed and Svobodova 1980] utilizes immutable obgect

sion logs (or histories) ordered pgeudo timéo guarantee strong consistency (i.e., serial-
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izability) of arbitrary sets of read/write operations performed on a sebjeicts. As well,

the Amoeba File Server [Mullender 1985] utilizes immutable data versions to imptemen
optimistic concurrency control, such that the file system is always kept onsistent
state. More recently, peer-to-peer systems (e.g., Past [Rowstronraadhel 2001] and
CFS [Dabek et al. 2001]), Farsite, and the archival portion of O8tae [Kubiatowicz

et al. 2000] use immutable versions of data to simplify serialization of accesstéo d
Other systems, such as Ivy [Muthitacharoen et al. 2002], use immutaldmwdogs
containing both data and metadata, however Ivy does not implement strosigtency
guarantees for its metadata (or data) in this fashion.

Frglund et al. [Frglund et al. 2004] recently developed a decentratiaasistency
protocol for erasure coded data. Their algorithm relies on a quorurstreaction simi-
lar to threshold-quorums that they call “m-quorums” (any two quorums ie¢eris m
processes). They utilize client generated timestamps to totally order updatesileze
server-side logs to track outstanding requests. Also, as describest, ébeir protocol
provides a variant of linearizability they call strict linearizability [Aguileradafrolund
2003]. However, their protocol does allow for read and write operatiorabort, as such

they forgo strong liveness guarantees.

2.3.4 Tolerating Byzantine faults

Byzantine fault-tolerant protocols for implementing read-write objects usiogums are
described in [Herlihy and Tygar 1987; Malkhi and Reiter 1997; Martial €2002; Pierce
2001]. Of these related quorum systems, only Martin et al. [Martin et @2P&chieve
linearizability in our fault model, and this work is also closest to ours in thaei astype
of versioning. In our protocol, a reader may retrieve fragments faragversions of the
data-item in the course of identifying the return value of a read. Similarlgiersan [Mar-
tin et al. 2002] “listen” for updates (versions) from storage-node# arcomplete write
is observed. Conceptually, our approach differs by clients readisgveasions, versus
listening for future versions broadcast by servers. In our fault tnedpecially in consid-

eration of faulty clients, our protocol has several advantages. Finsprotocol works for
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erasure-coded data, whereas extending [Martin et al. 2002] toreresded data appears
nontrivial. Second, ours provides better message efficiency: [Maréh 2002] involves
a O(N?) message exchange among theservers per write (versus no server-to-server
exchange in our case) over and above otherwise comparable (anditifédamessage
costs. Third, ours requires less computation, in that [Martin et al. 2@@Rjires digital
signatures by clients, which in practice is two orders of magnitude more coatiytiie
cryptographic transforms we employ. Advantages of [Martin et al. 2@@2}that it tol-
erates a higher fraction of faulty servers than our protocol, and date®quire servers
to store a potentially unbounded number of data-item versions. Our patysis of ver-
sioning storage, however, suggests that the latter is a non-issue in @i&ttienk et al.
2000], and even under attack this can be managed using a garbagéaoheechanism
we describe in Section 3.6.

A metadata service, like any deterministic service, can be implemented in a-surviv
able fashion using state machine replication [Schneider 1990], whelteipeaations are
processed by server replicas in the same oraemgic broadcagdt While this approach
supports a linearizable, Byzantine fault-tolerant implementaticangfdeterministic ob-
ject, such an approach cannot be wait-free [Fischer et al. 198%ihi1d4©991; Jayanti
et al. 1998]. Instead, such systems achieve liveness only undegestrdming assump-
tions, such as synchrony (e.g., [Cristian et al. 1995; Pittelli and Garci@i1989; Shri-
vastava et al. 1992]) or partial synchrony [Dwork et al. 1988] (¢@gastro and Liskov
2002; Kihlstrom et al. 2001; Reiter and Birman 1994)), or probabilisticalg.( [Cachin
et al. 2001]). An alternative is Byzantine quorum systems [Malkhi arittRE997], from
which our protocol inherits techniques (i.e., our protocol can be coreside Byzantine
guorum system that uses the threshold quorum construction). Profocslispporting a
linearizable implementation of any deterministic object using Byzantine quoruwes ha
been developed (e.g., [Malkhi et al. 2001]), but also necessaribakerwait-freedom to
do so. Additionally, most Byzantine quorum systems utilize digital signaturéshvarne

computationally expensive.
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2.3.5 Metadata scalability

This section describes work related to building scalable metadata servigesrbls
previous systems have focused on horizontally scaling data serviceglthitee addition
of storage-nodes to obtain high data throughput. However, most sysiitrasdilize a
centralized metadata service or partition metadata across a set of secletba each
piece of metadata is handled by a single metadata server. The formerapjsrbeited
in its ability to scale, and both approaches render a metadata operatioptéhiede a
fault or compromise of the server responsible for it.

For example, NASD [Gibson et al. 1998] and Swift [Cabrera and Ld®@fl] cen-
tralize access to a metadata server. IBM’s Storage Tank [Menon etG8] 20d Lus-
tre [Braam 2004] replace the central metadata server with a clustervefrsepartition-
ing metadata across the servers while supporting server fail-over. iskesome systems
partition certain metadata structures (e.g., the manager map in xFS [Andessoo96]
and the lock table in Frangipani [Thekkath et al. 1997]). Other systeme sk of dis-
tributed protocols that communicate among the metadata servers to providieateep
fault-tolerant metadata service (e.g., Paxos [Lamport 1998] in Fran@pdBFT [Cas-
tro and Liskov 2002] in Farsite [Adya et al. 2002]) and OceanStordi#towicz et al.
2000]. Lastly, in some systems the storage-devices export interfaeetiylto the client
that provide serialized access to the device (e.g., device-served l0GksSiISoltis et al.
1996] and base storage transactions by Amiri et al. [Amiri et al. 2000b])

Survivable file systems have typically focused on the use of Byzantiretéderant
replication to protect the metadata service (e.g., [Deswarte et al. 1994demd examples
such as Farsite [Adya et al. 2002], OceanStore [Kubiatowicz et al)]280d BFS [Castro
and Liskov 2002] employ state machine replication [Schneider 1990] foiptitigose.
While a powerful paradigm, state machine replication suffers from fundeahscaling
limitations. First, all service nodes process all requests, so update kimaugenerally
does not improve with additional nodes. Second, since the message comipieRigyr

underlying agreement protocolsdgn?) with n replicas, the effect of adding nodes can be
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to degrade metadata update throughput. As such, adding replicas towice ggoup is
of limited value: the throughput of read-only operations may improve, buthtioeighput
of update operations at best would remain constant.

Consequently, to allow the metadata service in, e.g., Farsite to scale, the tdmsys
name-space is partitioned across multiple metadata services [Adya et gl.[20@2ver,
partitioning the name-space introduces another difficulty, namely implementingateeta
operations atomically across replica groups, particularly in a manner résdi®&yzan-
tine servers and clients. We are aware of no metadata service implementatexhikaes
this.

Our protocols employ a different paradigm that permits better load-balgo€ire-
guests across servers and linear-or-better message complexity peredieest, and thus
better ability to scale throughput as new servers are added. Ratheratdioming the
name-space, we implement all metadata operations with a single replica gndugzede
via lighter-weight access protocols than those implementing state machinetieplita
the spirit of quorum protocols [Malkhi et al. 2000; Naor and Wool 1998r approach
permits clients to involve only a subset of servers in each operation (witkenversto-
server communication). In particular, each read or update operatiomonéeexecute on
a subset of metadata-nodes. Since all metadata operations are seneddamthreplica
group, our approach can implement any metadata operation atomically.othiusgta-
data objects are, in effect, replicated state machines.

Extending our conditional write protocol to send update operations anective
operation results, rather than sending and receiving whole objectficisr@ffor objects
with large state (e.g., directory objects). The optimistic nature of the conditvarite
protocol distinguishes it from other Byzantine quorum protocols. Hewete protocol
does not achieve the lower bound Mrfor implementing a Byzantine-tolerant replicated
state-machine (i.eN > 4b+ 1 [Malkhi and Reiter 1998a]).

The protocols developed in this thesis are most closely related to threshmidrg
systems (i.e., a majority voting system [Gifford 1979; Thomas 1979]), thaugrap-

proach offers opportunities for exploring use of richer quorum transons (e.g., [Malkhi
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and Reiter 1998a; Malkhi et al. 2000]). In a threshold-quorum sydtegripad [Naor and
Wool 1998; Malkhi et al. 2000] on each storage-node is at least alfieTthis means that
each storage-node must execute requests for at least one half pittations applied to
objects it hosts. True Byzantine quorum systems [Malkhi and Reiter 1988k better
than the one half bound. If Byzantine quorum construction techniquésasithe M-Path
construction [Malkhi et al. 2000] are employed, then the lower boundanhim(\/g).



3 Read/Write Block Protocol

This chapter describes and evaluates a new consistency protocgbéhnates in an asyn-
chronous environment and tolerates Byzantine failures of clients arapstmodes. The
protocol supports a hybrid failure model in which upttstorage-nodes may faifr <t
of these failures can be Byzantine and the remainder can be crash.ofbegbalso sup-
ports use ofn-of-n erasure codes (i.em-of-n fragments are needed to reconstruct the
data), which usually require less network bandwidth (and storage Jstrezefull repli-
cation [Weatherspoon and Kubiatowicz 2002; Wylie et al. 2000].

Briefly, the protocol works as follows. To perform a write, a client deiees the
current logical time (by querying a subset of the storage-nodes) andwthites time-
stamped fragments to at least a threshold quorum of storage-nodexyesStardes keep
all versions of fragments they are sent until garbage collection frees. the perform
a read, a client fetches the latest fragment versions from a thresheldmuof storage-
nodes and determines whether they comprise a completed write; usuallypthéyhey
do not, additional and historical fragments are fetched, and repair magrfeemed, until
a completed write is observed.

The protocol gains efficiency from five features. First, the spafieigafcy of m-of-n
erasure codes can be substantial, reducing communication overhegiflsasitly. Sec-
ond, most read operations complete in a single round trip: reads thatelveete con-
currency or failures (of storage-nodes or a client write) may incuitiadd! work. Most
studies of distributed storage systems (e.g., [Baker et al. 1991; Nobkeedyanarayanan

1994]) indicate that concurrency is uncommon (i.e., writer-writer and wrgader shar-
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ing occurs in well under 1% of operations). Failures, although tolerateght to be rare.
Third, incomplete writes are replaced by subsequent writes or readpéttiarm repair),
thus preventing future reads from incurring any additional cost; whbsexjuent writes
do the fixing, additional overheads are never incurred. Fourth, mottqol processing is
performed by clients, increasing scalability via the well-known principle ofisg work
from servers to clients [Howard et al. 1988]. Fifth, the protocol ontyuiees the use of
cryptographic hashes, rather than more expensive cryptographiitiyes (e.g., digital
signatures).

This chapter describes the protocol in detail, develops bounds fohtiidssin terms
of the number of failures tolerated (i.e., the protocol requires at IéasB+ 1 storage-
nodes), and provides a proof sketch of its safety and liveness. fbibecpl requires at
least 2 - 2b+ 1 storage-nodes (i.e.b4- 1 if t = b). It also describes and evaluates its use
in a prototype storage system called PASIS [Wylie et al. 2000]. To denatagtrat our
protocol is efficient in practice, we compare its performance to BFT [Gastd Liskov
2001; 2002], the Byzantine fault-tolerant replicated state machine implementh#b
Castro and Liskov have made available [Castro and Rodrigues 20Q8}riepents show
that PASIS scales better than BFT in terms of network utilization at the semdema
terms of work performed by the server. Experiments also show thatnespgones of

PASIS and BFT are comparable.

3.1 System model

We describe the system infrastructure in termsl@ntsandstorage-nodesThere areN
storage-nodes and an arbitrary number of clients in the system.

A client or storage-node isorrect in an execution if it satisfies its specification
throughout the execution. A client or storage-node that deviates frospdsification
fails. Both clients and storage-nodes may suffer Byzantine faults. We makesnma-
tions about the behavior of Byzantine storage-nodes and Byzantinésdleeg., we as-

sume that Byzantine storage-nodes can collude with each other and witByaan-
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tine clients). We assume that Byzantine clients and storage-nodes aretabomally
bounded so that we can benefit from cryptographic primitives (i.e.tegypphic hash
functions).

The protocol is developed with a hybrid storage-node failure modelribidurai
and Park 1988]. Under a traditional hybrid failure model, ug gtorage-nodes could
fail, b <t of which may be Byzantine faults; the remainder could only crash. However
we consider a hybrid failure model for storage-nodes that crashesmod@r. The crash-
recovery failure model is a strict generalization of the omission and cadisinéf models.

First, we review the crash-recovery model from Aguilera et al. [Agaikral. 2000].
In a system oh processes, each process can be classified as always-up, dyamiua
eventually-down, or unstable. A process thatlisays-upnever crashes. A process that
is eventually-ugrashes at least once, but there is a time after which it is permanently up.
A process that igventually-dowrcrashes at least once, and there is a time after which
it is permanently down. A process thatuastablecrashes and recovers infinitely many
times. These classifications are further refined: a procegsogif it is either always-up
or eventually-up.

We combine the crash-recovery model with the hybrid failure model as fslltlp
to b storage-nodes may ever be Byzantine; such storage-nodes doccaeterend are
notgood There are at lea®l —t good storage-nodes (whdpe< t). A storage-node that
is not Byzantine is said to bleenign(i.e., benign storage-nodes are either always-up,
eventually-up, eventually-down, or unstable). We assume that stoigs have stable
storage that persists throughout the crash and recovery process.

The protocol tolerates crash and Byzantine clients. As in any practicabgigystem,
an authorized Byzantine client can write arbitrary values to storage eTgtes only
affect the value of the data, but do not compromise the safety (linearizatifitthe
object. A client that does not exhibit a Byzantine failure (it is either comwecrashes) is
benign

We assume an asynchronous model of time (i.e., we make no assumptions akout me

sage transmission delays or the execution rates of clients and storagg-axckpt that it
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is non-zero). We assume point-to-point authenticated channels withrpespgmilar to
those used by Aguilera et al. [Aguilera et al. 2000]. In summary, cHarmtenot create
messageqp creatior), channels may experienéiaite duplication and channels afair
loss The finite duplication property ensures that if benign progesends a message to
benign procesg only a finite number of times, themreceives the message only a finite
number of times. The fair loss property ensures that if benign prqressds infinitely
many messages to good procgsthenq receives infinitely many messages frgm

There are two types adperationsin the protocol —read operationsandwrite op-
erations— both of which operate odata-items Clients perform read/write operations
that issue multiple read/writeequeststo storage-nodes. A read/write request operates
on adata-fragment A data-item isencodedinto data-fragments. Clients may encode
data-items in an erasure-tolerant manner; thus the distinction between datndelata-
fragment. Requests aexecutedy storage-nodes; a correct storage-node that executes a
write requeshoststhat write operation.

Clients may encode data-items in an erasure-tolerant manner; thus the distiretio
tween data-item and data-fragment. We focus here on threshold ecasle® in which
anym of then encoded data-fragments can decode the data-item. Vkeq, the repli-
cation is used. Examples of such codes are replication, Reed-Solomes [8=dlekamp
1968], secret sharing [Shamir 1979], RAID 3/4/5/6 [Patterson et &8} 9nformation
dispersal (IDA) [Rabin 1989], short secret sharing [Krawcz@94], and “tornado” or
LDPC codes [Luby et al. 2001].

Storage-nodes provide fine-grained versioning; correct starages host a version
of the data-fragment for each write request they execute. There idl &wesvn zero
time, 0, and null value,L, which storage-nodes can return in response to read requests.

Implicitly, all stored data is initialized td_ at timeO.
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N Data-fragments
‘ Hashes

Data-item

Figure 3.1:Example of cross checksum generation for 5 data-fragment3o generate a cross
checksum, a cryptographic hash is taken of each data-fragriéese hashes are then concate-
nated, replicated, and stored with each data-fragment.

3.2 Mechanisms

This section describes mechanisms employed for encoding data, prevBggagtine
clients and storage-nodes from violating consistency, and authenticatingesigstorage-
node requests. We assume that storage-nodes and clients are comallitatioumnded

such that cryptographic primitives can be effective.

3.2.1 Erasure codes

We consider only threshold erasure codes in whichmanftheN encoded data-fragments
can decode the data-item; moreover, evamgata-fragments can be used to deterministi-
cally generate the oth& — mdata-fragments. We use a systematic information dispersal
algorithm [Rabin 1989], which stripes the data-item across thenfidsta-fragments and
generates erasure-coded data-fragments for the remainder. Asagbhfragment i%

the total data size. This leads to a total size-blowuf} é6r N fragments. Other threshold
erasure codes (e.g., Secret Sharing [Shamir 1979] and Short Seeming [Krawczyk
1994]) work as well.

3.2.2 Data-fragment integrity

Byzantine storage-nodes can corrupt their data-fragments. As isuhst be possible
to detect and mask up tostorage-node integrity faults. Cross checksums [Gong 1989]
enable read operations to detect corrupt data-fragments. A cryptagraash of each

data-fragment is computed, and the seNofiashes are concatenated to form ¢hess
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Data-fragments | F, | | F,| | F5| | F,

N /N

Date-tems [ |+ [ N

Figure 3.2:Example of a “poisonous write” by a Byzantine client. In this example data-
fragment 5 has been corrupted by a Byzantine client. Decpdiffierent sets of fragments (i.e., 1
and 3 vs. 3 and 5) lead to data-item values that are not egeintallTherefore, it is necessary to
protect good clients from observing differing data valuegten to the same timestamp.

checksunof the data-item. The cross checksum is stored with each data-fragment (i.e
it is replicatedN times), enabling corrupted data-fragments to be detected at read time.
Note, theN? space overhead is small relative to the data size, given reasonablézdata s
(e.g., there is an 8.3% overhead foe= 17, m= 5, and a 16 KB block). An example of

generating a cross checksum is shown in Figure 3.1.

3.2.3 Write operation integrity

Mechanisms are required to prevent Byzantine clients from performingte eperation
that lacks integrity. If a Byzantine client generates arbitrary data-fratsr(eather than
erasure coding a data-item correctly), then each o(m[)esubsets of data-fragments could
“recover” a distinct data-item. Additionally, a Byzantine client could partitiom ¢kt of
N data-fragments into subsets that each decode to a distinct data-item. Tthekse are
similar to poisonous writegor replication, as described by Martin et al. [Martin et al.
2002]. An example of a poisonous write is shown in Figure 3.2.

To protect against such Byzantine client actions, read operations miystebmrn
values that are written correctly (i.e., that aingle-valuedl To achieve this, the cross
checksum mechanism is extended in two ways: validating timestamps combined with

storage-node verification, and validated cross checksums.
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Validating timestamps

To ensure that only a single set of data-fragments can be written at aogllime, the
hash of the cross checksum is placed in the low order bits of the logical tiniesiéote,
the hash is used for space-efficiency; instead, the entire crossstimeaould be placed
in the low bits of the timestamp.

On a write, each storage-node verifies its data-fragment against thesponding
hash in the cross checksum. The storage-node also verifies thatsbebezksum matches
the low-order bits of the validating timestamp. A correct storage-node oelyués write
requests for which both checks pass. Thus, a Byzantine client camaic a correct
storage-node appear Byzantine—only Byzantine storage-nodesttan unverifiable

responses.

Validated cross checksums

Combining storage-node verification with validating timestamps ensures thattdre da
fragments being considered by any read operation were not fabribgtd&yzantine
storage-nodes. To ensure that the client that performed the writetiopeaated correctly,

the cross checksum must be validated by the reader. For the readéid&tevthe cross
checksum, alN data-fragments are required. Given anyata-fragments, the reader can
generate the full set 0ff data-fragments a correct client should have written. The reader
can then compute the “correct” cross checksum from the generateftagaents. If the
generated cross checksum does not match the validated cross chettlesua Byzantine
client performed the write operation. The example in Figure 3.3 shows therstepssary

to perform the validation described above.

Only a single-valued write operation can generate a cross checksuoathbe vali-
dated. Instead of using validated cross checksums, our protocol gselderifiable Se-
cret Sharing [Chor et al. 1985; Feldman 1987]. Verifiable Secratii@hanables storage-
nodes to validate that the client acted correctly on each write requestfradtealidating

the data-item on each read operation).
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N Data-fragments

1
1
1
: Data-item e ez
1
1

Hash intimestamp

Figure 3.3:Verification of a validating cross checksum at read timeThis example shows the
necessary steps to validate a set of 3 fragments at read t#img @& validated cross checksum.
First, the full set of N data-fragments must be regeneraBstond, the cross checksum is com-
puted and validated against the cross checksum that weck Téard, the hash of the cross check-
sum is taken and validated against the hash in the timestamp.

3.2.4 Authentication

Clients and storage-nodes must be able to validate the authenticity of medR&ges
requests and responses are authenticated using HMACs (i.e., clienttoegkshodes
have pair-wise shared secrets). Thus, the channels between clidrg®eage-nodes are
authenticated. We assume some infrastructure is in place to distribute sbareid-s-our

implementation supports an existing Kerberos [Steiner et al. 1988] infcasteu

3.3 Protocol

This section describes our Byzantine fault-tolerant consistency pidtuaioefficiently
supports erasure-coded data-items by taking advantage of versioniagestmdes. It

describes, in detail, the protocol in pseudo-code form.

3.3.1 Overview

At a high level, the protocol proceeds as follows. Logical timestamps & tostotally
order all write operations and to identify data-fragments pertaining to the waitesop-
eration across the set of storage-nodes. For each write, a logical tinpeistaonstructed
by the client that is guaranteed to be unique (given the data and the logicalttimtnéch
the data is being written) and greater than that ofléitest complete writé¢the complete

write with the highest timestamp). This is accomplished by querying storagesrfod
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the greatest timestamp they host, and then incrementing the greatest responder to
verify the integrity of the data, a hash performed over the data-fragmeppisnded to

the logical timestamp. Two clients may arrive at the same logical timestamp only if they
are both writing the same data concurrently to each other. In this case theequiests
generated look identical to each other.

To perform a read operation, clients issue read requests to a sulstetagfe-nodes.
Once at least a read quorum of storage-nodes reply, the client idettifeandidate—
the response with the greatest logical timestamp. The set of read resghasshare
the timestamp of the candidate comprise tamdidate setThe read operationlassi-
fiesthe candidate asomplete repairable or incomplete If the candidate is classified
as complete, the data-fragments, timestamp, and return value are validatdaidfion
is successful, the value of the candidate is returned and the read opésatimmplete;
otherwise, the candidate is reclassified as incomplete. If the candidatesiethas re-
pairable, it is repaired by writing data-fragments back to the original setbofge-nodes
(note, in [Malkhi and Reiter 1998b], repair, for replicas, is refetieds “write-back”).
Prior to performing repair, data-fragments are validated in the same manfogrsacom-
plete candidate. If the candidate is classified as incomplete, the candidateasidd
previous data-fragment versions are requested, and classificagors lamew. Classifi-
cation is performed according to a set of constraints dependent updailtire model
(see Section 3.4). All candidates fall into one of the three classificatives,those cor-

responding to concurrent or failed write operations.

3.3.2 Pseudo-code

The pseudo-code for the protocol is shown in Figures 3.5 and 3.6 yhhiesdL T denotes
logical time andLT. denotes the logical time of the candidate. The {d®4,...,Dn}
denotes th& data-fragments; likewis€S;,. .., Sy} denotes the set & storage-nodes.
In the pseudo-code, the binary operatddenotes string concatenation. Simplicity and
clarity in the presentation of the pseudo-code was chosen over ob\ptoszaations that

are in the actual implementation.
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INITIALTZE() VALIDATE WRITE(LT, D, CC):
100: /x History tuples are(LT, Data, CQ +/ 400: if ((HASH(CC) # LT.Verifier) OR (HASH(D) #
101: /x Historyis stored in stable storage cC[g)) then
102: History:= (0, L, 1) 401: return (FALSE)
) 402: end if
RECEIVEREAD_LATEST() : 403: /+ Accept the write request/
200: /+ Note,Latestis a singleton/ 404: return (TRUE)
201: Latest= (X : X.LT = MAX[History.LT],X € History)
202: SEND(READ_RESPONSE, S, Lates) RECEIVE_TIME REQUEST() :

500: SEND(TIME_RESPONSE, S MAX[History.LT
RECEIVE WRITE REQUEST(LT, D, CC): ( 'S [ yLT))

300: if (VALIDATE WRITE(LT, D, CC)) then RECEIVE READ PREVIOUS(LT):

301:  /x Execute the write requesy 600: PreHistory:= {X : X.LT < LT, X € History}
302:  History:= History U (LT, D, CC) 601: /+ Note, Latestis a singleton:/

303:  SEND(WRITE-RESPONSE, S) 602: Latest:= MAX[PreHistoryLT]

304: end if 603: SEND(READ_RESPONSE, S, Lates)

Figure 3.4:Pseudo-code for storage-nod&.

Storage-node interface

Storage-nodes offer interfaces to write a data-fragment at a spegifialdime; to query
the greatest logical time of a hosted data-fragment; to read the hostedatataeht with
the greatest logical time; and to read the hosted data-fragment with thesglegieal
time at or before some logical time. Each write request a storage-nodeteseceates a
new version of the data-fragment (indexed by its logical timestamp) at thegstarode
(i.e., the storage-node performs comprehensive versioning).

All stored data is initialized td_ at time0, and has a cross checksumlof The zero
time, 0, and the null value,L, are well known values which the clients understand. The
storage-node pseudo-code is shown in Figure 3.4.Hiktry which contains the ver-
sion history for the data-item is kept in stable storage such that it persistg ducrash
and subsequent recovery. Storage-nodes validate write requises éecuting them (to
protect against Byzantine clients). This is performed by the funGtiariDATE_WRITE
called byRECEIVE WRITE REQUEST. The value returned bBECEIVE _READ_LATEST and
RECEIVE READ PREVIQUS, Latestis guaranteed to be unique, since timestamps are unique

(i.e., two distinct write operations cannot have the same timestamp).
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WRITE(Data) :

fragmentsk/
101: {D;,...,Dn} := ENCODE(Data)
102: CC:= MAKE_CROSS_CHECKSUM({Dy,...,Dn})
103: Time:= READ_TIMESTAMP()
104: LT := MAKE_TIMESTAMP(Time CC)
105: DO_WRITE({D4,...,Dn}, LT, CC)

READ_TIMESTAMP() :
200: ResponseSet 0

100: /+ Encode data, construct timestamp, and write dag -

MAKE_CROSS_CHECKSUM({D1,...,Dn}):
300: for all D; € {D3,...,Dn} do

Hi := HASH(D;)

302: end for

303: CC:= H1| .. ‘HN

304: return (CC)

MAKE_TIMESTAMP(Time CC) :
400: LT.Time:= Time

401: LT.Verifier := HASH(CC)
402: return (LT)

201: repeat DO_WRITE({Dy,...,Dn}, LT,CC):

202: forall § €{S,...,S}\ResponseS&do 500: ResponseSet 0

203: SEND(S, TIME_REQUEST) 501: repeat

204: end for 502: forall §€{Si,...,S}\ResponseS&do
205: if (POLL_FOR_RESPONSE() = TRUE) then 503: SEND(S, WRITE_REQUEST, LT, D;, CC)
206: (S LT) := RECEIVE_TIME RESPONSE() 504: endfor ’
207:if (S¢ ResponseS@) then 505: if (POLL_FOR_RESPONSE() = TRUE) then
208: ResponseSet ResponseSet (S LT) 506: (S) := RECEIVE_WRITE_RESPONSE()
2095 end if 507: if (S¢ ResponseS&) then

210: epd if 508: ResponseSet ResponseSet (S)
211: until (JResponseSet N —t) 509: end if

212: return (MAX[ResponseSe&fT.Timg + 1) 510: endif

511: until (|ResponseSet N —t)

Figure 3.5:Client-side write operation pseudo-code.

Write operation

The WRITE operation, shown in Figure 3.5 consists of determining the greatest logical
timestamp, constructing write requests, and issuing the requests to the stodage
First, a timestamp greater than, or equal to, that of the latest complete write sust b
determined. Collectinyl —t responses, on line 211 BREAD_TIMESTAMP, ensures that the
response set intersects a complete write at a correct storage-nocketi&renvironment
is asynchronous, a client can wait for no more tihan t responses. Fewer thaw—t
responses are actually required to observe the timestamp of the latest comniiete
since a single correct response is sufficient; in fact, this boung s+ 1.

Next, theENCODE function, on line 101 ofWRITE, encodes the data-item inkbdata-
fragments. The data-fragments are used to construct a cross cime@iksu the con-
catenation of the hash of each data-fragment (line 102). The fun¢ciki TIMESTAMP,

called on line 104, generates a logical timestamp to be used for the curitnoper-
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ation. This is done by incrementing the high order bits of the greatest austogical
timestamp from th&®esponseSéte., LT.TIME) and appending th¥erifier. The Verifier
is just the hash of the cross checksum.

Finally, write requests are issued to all storage-nodes. Each stooagdssent a spe-
cific data-fragment, the logical timestamp, and the cross checksum. A stoodgevali-
dates the cross checksum with the verifier and validates the data-fragiitietite cross
checksum before executing a write request (i.e., storage-nodegACAIDATE WRITE
listed in their pseudo-code). The write operation returns to the issuing olieetN — t

WRITE_RESPONSE messages are received (line 51DOfWRITE).

Read operation

The read operation, shown in Figure 3.6, iteratively identifies and class#iedidates,
until a repairable or complete candidate is found. Once a repairable oteteropndidate
is found, the read operation validates its correctness and returns théNd&athat the
read operation returns @mestampvalue pair; in practice, a client only makes use of
the value returned.

The read operation begins by isSSuiRIBAD_LATEST commands to all storage-nodes
(via theDO_READ function). Each storage-node responds with the data-fragment, logical
timestamp, and cross checksum corresponding to the greatest timestamgxétiated.

The integrity of each response is individually validated througV#IeIDATE func-
tion, called on line 207 ab0_READ. This function checks the cross checksum against the
Verifierfound in the logical timestamp and the data-fragment against the appro@site h
in the cross checksum.

A second type of validation is performed on read responses (also orOit)err re-
sponses tBEAD_PREV commands, the logical timestamp is checked to ensure it is strictly
less than the timestamp specified in the command. This check ensures that immproper
sponses from Byzantine storage-nodes are not included in the sespen

Since, in an asynchronous system, slow storage-nodes cannotdrerditited from

crashed storage-nodes, oNy-t read responses can be collected (line 21000READ).
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DCI_READ(READ_COMMAND7 LT) :
READ() : 200: ResponseSet 0
100: ResponseSet DO_READ(READ_LATEST, 1) 201: repeat
101: loop 202: forall S €{S,...,Sv}\ ResponseS&do
102: (CandidateSel.Tc) := 203: SEND(S, READ_COMMAND, LT)

SELECT_CS(ResponseSgt 204:  end for

103: if (|CandidateSét> INCOMPLETE then 205:  if (POLL.-FOR-RESPONSE() = TRUE) then
104: /* Complete or repairable write found 206: (S Resp := RECEIVE_READ_RESPONSE()
105: {Dy,...,DN} := GEN_FRAGS(CandidateSet ~ 207: if ((READ_COMMAND = READ_LATEST OR
106: CC := MAKE_CROSS_CHECKSUM({Dy3,...,Dn}) RespLT < LT) AND
107: if (CC = CandidateSe€C) then (S¢ ResponseS&) AND
108: /% Cross checksum is validated */ (VALIDATE(RespD, RespCC, RespLT, 9)))
109: if (|CandidateSet< COMPLETE) then then
110: /* Repair is necessary/ 208: ResponseSet ResponseSet (S Resp
111: DO_WRITE({Ds,...,Dn}, LTe, CO) 209:  endif
112: end if 210:  endif
113: Data:= DECODE({Dy,...,Dn}) 211: until (|ResponseSet N —t)
114: return ((LTc, Data)) 212: return (ResponseSgt
ﬁg enzni? i VALIDATE(D, CC,LT,S):
117:  /* Incomplete or validation failed, loop agaiyi 300: if ((HASH(CC) +# LT.Verifier) OR (HASH(D) #
118: ResponseSet DO_READ(READ_PREV, LT;) CcClg)) then
119: end loop 301: return (FALSE)

302: end if

303: return (TRUE)

Figure 3.6:Client-side read operation pseudo-code.

Since correct storage-nodes perform the same validation beforetexewrite requests,
the only responses that can fail the client’s validation are those fromriipeastorage-
nodes. For every discarded Byzantine storage-node responaddlitional response can
be awaited.

After sufficient responses have been received, a candidate $sifadation is chosen.
The functionSELECT_CS, called on line 102 okEAD, determines the candidate timestamp,
denoted._T¢, which is the greatest timestamp found in the response set. All data-fragments
that shard_T. are identified and returned as the candidate set. At this point, the candidate
set contains a set of validated data-fragments that share a common leeokswm and
logical timestamp.

Once a candidate has been chosen, it is classified as either complei@blepar
incomplete based on the size of tBandidateSefThe rules for classifying a candidate as

INCOMPLETE or COMPLETE are given in the following subsection. If the candidate is classi-
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fied as incomplete, READ_PREV message is sent to each storage-node with its timestamp.
Candidate classification begins again with the new response set.

If the candidate is classified as either complete or repairable, the canditletatains
sufficient data-fragments written by the client to decode the original data-Tie validate
the observed write’s integrity, the candidate set is used to generate achei data-
fragments (line 105 AAEAD). A validated cross checksur@C,qjig, is computed from the
newly generated data-fragments. The validated cross checksum isreahtpahe cross
checksum of the candidate set (line 107r@AD). If the check fails, the candidate was
written by a Byzantine client; the candidate is reclassified as incomplete andatie r
operation continues. If the check succeeds, the candidate was writeendyyect client
and the read enters its final phase. Note that this check either sucaefais for all
correct clients regardless of which storage-nodes are represeith@uthe candidate set.

If necessary, repair is performed: write requests are issued with tlerajed data-
fragments, the validated cross checksum, and the logical timestamp (line R8ADf
Storage-nodes not currently hosting the write execute the write at the lggieal time;
those already hosting the write are safe to ignore it. Finally, the fun®iEa@DE, on
line 113 ofREAD, decodesn data-fragments, returning the data-item.

It should be noted that, even after a write completes, it may be classifiedaisatde
by a subsequent read, but it will never be classified as incompletex&mpde, this could
occur if the read set (dfl —t storage-nodes) does not fully encompass the write set (of

N —t storage-nodes).

3.4 Constraints

The symbolQc denotes a complete write operation: the number of benign storage-nodes
that must execute write responses for a write operation to be complete. MotErtbe
threshold quorums are use@g is a scalar value. To ensure that linearizability and live-
ness are achieve@c andN must be constrained with regard lipt, and each other.

As well, the parametem, used inDECODE, must be constrained. We sketch safety and
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liveness proofs for the protocol in Appendix A.

3.4.1 Read classification

To classify a candidate @9MPLETE, a candidate set of at lea®t benign storage-nodes
must be observed. In the worst case, at nibstembers of the candidate set may be
Byzantine, thus,

|CandidateSet- b > Qc = COMPLETE. (3.1)

To classify a candidate &9ICOMPLETE a client must determine that a complete write
does not exist in the system (i.e., fewer tl@anbenign storage-nodes host the write). For
this to be the case, the client must have queried all possible storage-{hbdd3}, and

must assume that nodes not queried host the candidate in consideration. S

|CandidateSett < Qc = INCOMPLETE. (3.2)

3.4.2 Real repairable candidates

To ensure that Byzantine storage-nodes cannot fabricate a rdpaieatulidate, a candi-

date set of sizé must be classifiable as incomplete. Substitubingto (3.2),

b+t < Qc. (3-:3)

3.4.3 Decodable repairable candidates

Any repairable candidate must be decodable. The lower bound on edmdidts that
are repairable follows from (3.2) (since the upper bound on classigingndidate as

incomplete coincides with the lower bound on repairable):

1<m<Qc—t. (3.4)



38 - Efficient, scalable consistency for highly fault-tolerant storage

| Protocol | Asynchronous repairable |
N 2t+2b+1<N
Qc t+b+1<Qc<N-t-b
m 1<m<Qc—t
Complete |CandidateSét> Qc + b
Incomplete |CandidateSet< Qc —t

Table 3.1:Protocol constraint summary

3.4.4 Write termination

To ensure write operations are able to complete in an asynchronous eneirbim the

face ofb Byzantine storage-nodes,

Qc+b<N-t,Qc <N-t—b. (3.5)

Since slow storage-nodes cannot be differentiated from crashegstandes, onli{ —t
responses can be awaited. As wkliesponses received may be from Byzantine storage-

nodes.

3.4.5 Constraint summary

The summary of constraints is given in Table 3.1. The boundd ¢ire., N > 2t + 2b)
have been shown to be optimal for systems with single round-trip write opesdira-
ham et al. 2004]. A diagram that more intuitively shows the constraimi @shown in

Figure 3.7.

3.5 Implementation

PASIS consists of clients and storage-nodes. Storage-nodes depfeadpnents and their
versions. Clients execute the protocol to read and write data-items.
3.5.1 Storage-node implementation

Storage-nodes use the Comprehensive Versioning File System (C'@e8lef et al.

2003] to retain data-fragments and their versions. CVFS uses a logusadaata or-
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Read set

Write set

Read/write intersection

Figure 3.7:lllustration of constraint on N. This figure shows the intuitive reasoning behind the
constraint on N= 2t +2b+ 1. As shown, a write executes at any-\l storage-nodes, and a read
executes at a set of Nt storage-nodes that has the minimum overlap with the wfite read
only observes the data value on the storage-nodes withimthesection of the read and write.
Since b of these storage-nodes may be Byzantind matching values must be observed. This
leads to an intersection of si2Zb+ 1. Thus, t+ (2b+ 1)+t =N =2t +2b+ 1.

ganization to reduce the cost of data versioning. Experience indicatestaming ev-
ery version and performing local garbage collection comes with minimal iesgiace
cost (a few percent) and that it is feasible to retain complete version hisforiseveral
days [Soules et al. 2003; Strunk et al. 2000].

We extended CVFS to provide an interface for retrieving the logical timestdrap o
data-fragment. Implicitly, each write request creates a new version ofatiaefihgment
(indexed by its logical timestamp) at the storage-node. In addition to data,vade
request contains a cross checksum, a logical timestamp, larkge record Amiri et al.
1999]. The linkage record consists of descriptions of the encodirepsehand addresses
of theN storage-nodes for a specific data-item; it is fixed upon data-item creation.

By default, a read request returns the most current data-fragmesibiveordered by
logical timestamp. Read responses may also contain a limited version historjneonta
ing logical timestamps of previously executed write requests. The versitamhéalows
clients to identify and classify additional candidates without issuing extichnegguests.
Storage-node can also return read responses that contain no dathatheersion histo-

ries, which makes candidate classification more network-efficient.
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3.5.2 Garbage collection

Pruning old versions, or garbage collection (GC), is necessary temreapacity ex-
haustion of the storage-nodes. A storage-node in isolation cannoinitedewhich local
data-fragment versions are safe to garbage-collect, because wripdeteness is a prop-
erty of a set of storage-nodes. A data-fragment version can bagmidollected only
if there exists a later complete write for the corresponding data-item. Stogs can
classify writes by executing the read protocol in the same manner as a cloantvilr, no
data need be returned for protocol members that do not tolerate Byzalsints (since
the cross checksum need not be validated). Linkage records psaffiteent information
for the storage-nodes to know which other nodes host relevant idegarénts.

Garbage collection is implemented in the current prototype and it requireddio a
tional RPCs. We have implemented a heuristic to invoke GC whenever idle time is de-
tected. Periodically, a thread wakes up and checks the system loadsifdteen load is
low, then GC will be invoked. We use a timer-based idle-time detector, asiloeddyy
Golding et al.[Golding et al. 1995]. This type of idle time detector was sutdésased
in cleaning heuristics for LFS, even in heavily loaded systems [Blackwaell. €t995].
We also have a method for invoking GC externally of the system (e.g., by aNG&).

It is usually inefficient to perform GC for every block, since most blocksidt have
old versions that need to be reclaimed (e.g., in a system with a read-hegipad). We
address this by adding a counter to the PASIS per-block metadata to trawkrtitoer of
writes to a block. This counter is incremented during each write operatioreaetlafter
GC has run. If the the block’s write-count rises above certain threshaléntry identi-
fying the block is added to an in-memahnygh-write-counttable. When GC is executed,
it first searches this table. If an entry is found, it is removed and GC isuésd on that
block. If no entries are found, GC can scan the block-space seqlemtithough this
heuristic works, further research into policy issues, such as the pqgeofrequency and

order of garbage collection, is warranted.
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3.5.3 Client implementation

Our client implementation follows the pseudo-code described above. Tin¢ iwlzdule
is accessed through a set of library interface calls. These calls allow@ication to
control the encoding scheme, the threshold values, and the failure and tinoidegls.
The client protocol routines are implemented such that different protacoly members
and thresholds may be specified for different data-items. Likewise, tregstamodes for
any given data-item are also specified via these interfaces, thus diiagheontrol (and
responsibility) for such bootstrapping information; for our experimentsiggea static set
of N storage-nodes. Clients communicate with storage-nodes through a BE®RBRC
interface.

In an asynchronous environment, the client implementation iSSIeéS REQUEST
requests to onliN + b — Q¢ storage-nodes, since this ensures overlap with the latest com-
plete write. To improve the responsiveness of write operations, clients iater the first
Qc + b storage-nodes respond; the remainder of the requests complete inkbecoadl.

To improve the read operation’s performance, omyead requests fetch the lat-
est data pertaining to the data-fragment, while all receive version histtliesmakes
the read operation more network-efficient. The limited data-fragment vehsstory re-
turned by read requests, allows clients to classify earlier writes withouhgadditional
storage-node requests. If necessary, after classification, extrdrdgments are fetched
according to the candidate’s timestamp. Once the data-item is successfulbtedlahd

decoded, it is returned.

3.5.4 Erasure codes

In our erasure coding implementationnif= 1, then replication is employed, otherwise
an information dispersal algorithm [Rabin 1989] is used. Our informatiqredssl imple-
mentation stripes the data-item across the firdiata-fragments (i.e., each data-fragment
is n% of the original data-item’s size). This makes the erasure cayste@matic encoding

Thus, concatenation of the first data-fragments produce the original data-item. These
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stripe-fragmentsare used to generate tltede-fragmentwia polynomial interpolation
within a Galois Field, which treats the stripe-fragments and code-fragmemntsiats

on somem— 1 degree polynomial. Our implementation of polynomial interpolation was
originally based on [Dai 2003] (which conceptually follows [Rabin 198%Je modified

the source to use stripe-fragments and added an implementation of Galoisdfisizks

28 that use lookup tables for multiplication.

Beyond our base erasure code implementation, we implemented secrej $8hamir
1979] and short secret sharing [Krawczyk 1994]. Our implementafishart secret shar-
ing closely follows [Krawczyk 1994], using AES for the cipher. Suchserre codes can
also provide a degree of confidentiality with regard to storage-nodes.

Our implementation of cross checksums closely follows Gong [Gong 1989]. O
implementation uses a publicly available implementation of MD5 [Rivest 1992]lfor a

hashes. Each MD5 hash is 16 bytes long; thus, each cross checkdunigbytes long.

3.6 Evaluation

This section evaluates protocol family performance in the context of thetgpe block

storage system.

3.6.1 Experimental setup

We use a cluster of 20 machines to perform experiments. Each stordgesna dual
1GHz Pentium Il machine with 384 MB of memory and a 9GB Quantum Atlas 10K
disk. Each client is a single processor 2GHz Pentium IV machine. The neschie
connected through a 100Mb switch. All machines run the Linux 2.4.20 Sivtieke

In all experiments, clients keep a fixed number of read and write operatidstsand-
ing; when an operation completes, a new operation is issued immediately. Otiless
wise specified, requests are for random 16 KB blocks. Unless othespecifiedQc and
N are the minimum allowable values for the protocol member, as given in Tablargi1,

mis the maximum allowable value. Authentication costs (i.e., HMAC computations) are
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included in all experiments.

3.6.2 Performance and scalability of PASIS protocol members
PASIS configuration

Each storage-node is configured with 128 MB of data cache, and ringais done
on the clients. Storage-nodes use write-back caching, mimicking availabilitg 1B

of non-volatile RAM. All experiments focus on the protocol costs: the wuylsets fit
into memory and all caches are warmed up beforehand. Results fronespehments
highlight the overheads introduced by the protocol and not those irteadby the disk
system. It is, however, a full system implementation: each storage-nodekedhy a

real persistent data store, and compulsory cache flushes are ddayittee disk system.

Space-efficiency of protocol members

All protocol members can emplayrof-n erasure codes. Increasingimproves space-
efficiency, since each data-fragmentﬁljsthe size of the data-item. Space-efficiency re-
duces the network bandwidth needed, which reduces the response tiperafions.

To perform a write operatioN data-fragments are sent over the network. With each
data-fragment, a cross checksum and linkage record are sent.cRedgethese ardN
times the size of a MD5 digest (16 bytes) addimes the size of a storage-node ID (4
bytes). Thus, the network bandwidth consumed by cross checksumsN$ Bgtes. RPC
headers and arguments consume negligible bandwidth. Thus, the totaltavhdata sent

over the network by a write operation is: 16 KB% +20Bx N2,

Computation costs

Computation costs are incurred to erasure code data. Additional computastnare
incurred to authenticate messages and protect against non-crasestallne majority of

such computation costs are paid by clients in the system, rather than stocege-n
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Erasure coding performance (16KB blocks)
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Figure 3.8:Computational cost of erasure codingBlock size, N, and m dictate the computa-
tional cost of erasure coding.

Erasure coding costsFigure 3.8 shows the trends in the cost of encoding data with our
erasure code implementation. For comparison, the performamééaddl replication (i.e.,
N memcpys) is shown. Lines are shown for fixedvalues of two and three. These lines
illustrate that, as expected, the cost of an erasure code for amigeows linearly with
N, since the number of code-fragments grows wWth

Two other lines are shown in Figure 3.8 to illustrate the interesting impaoofper-
formance: the space-efficiency of an erasure code is inverselppiamal tom whereas
the cost of generating some aggregate amount of code-fragment e fowapl tom. Con-
sider them= % line. For each point on the line, erasure coding generates, in total, 16 KB
of code-fragments, although the number and individual sizes of thefcagments differ.
When generating some aggregate amount of code-fragments, the evasofe coding
grows linearly withm. Form= N — 1, a single code-fragment is needed for each write;
as expected, the cost of generating one fragment decreasehN vgihce the size of the

fragment also decreases (6+).

COMPUTATION COST BREAKDOWN Table 3.2 enumerates the client and storage-node
computation costs for the protocol tolerating one and four Byzantine starade faults
(i,e.,b=t=1andforb=t=4).

CLIENTS: All protocol family members place the majority of the computational work on
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\ | b=t=1 | b=t=4 |
| Storage-node: write operation costs |
Verify timestamp 1.56ps 3.78ps
Verify data-fragment 72.2 29.4
| Client: write operation costs ]
Encode: generatd — m code-fragments 163 546
Generate one code-fragment 54.2 45.5
Generate cross checksum: hasbata-fragments 359 512
Hash one data-fragment 71.2 30.1
Generate validating timestamp 1.60 3.72
| Client: read operation costs \
Verify data-fragments: hasi data-fragments 143 150
Best case decodeemcpy m stripe-fragments 6.84 7.86
Worst case decode: generateode-fragments | 108 228
Validate cross checksum (to tolerate Byz. client$22 1060

45

Table 3.2:Client and storage-node computation costsCosts are broken down for the asyn-
chronous repairable protocol member with Byzantine steragdes for: b=t =1land b=t =4
(N=5 m=2and N= 17, m=5, respectively).

clients in the system. Erasure-coding is done by the client and requireisgaththe
storage-node. The difference in computation costs for the two instafitles protocol
member listed is due to their respective valuedNadnd m. The cost of erasure coding
with regard td\ andm s discussed above. The cost of generating cross checksums grows
with .

Read operations in protocol members with only crash clients are computationally
less demanding than write operations. A read operation requires feskehaf data-
fragments and generation of fewer code-fragments. In the bestlasestripe-fragments
can be concatenated and no code-fragments need be generatedotolomembers that
tolerate Byzantine clients, read operations performs almost the same compagatrate
operations to validate the cross checksum (Ne-; m code-fragments are generated and
N data-fragments hashes are taken).

Short secret sharing can be used in place of our default erastdee Doing so adds
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~550us to the base erasure code costs for encrypting the data-item under$hagkier
and less than 2(s for generating and secret sharing the encryption key (this coshdgpe

onmandN). Both write and read operations incur these costs.

STORAGE-NODES For each write request, a storage-node must verify both the timestamp
and the data-fragment. Validating the data-fragment is rouéhl;e work the client does

in creating the cross checksum. A hash of the cross checksum is takerifyotie hash
within the timestamp. Read requests require no significant computation by thgestor

node (for the protocol).

AUTHENTICATION: Clients and storage-nodes must authenticate each RPC request and
response. Authentication is performed over the RPC header and somarBi@ents.
Cross checksums and data-fragments are not directly included in thetcalien; how-

ever, the validating timestamp is included, and it indirectly authenticates the resnaind

In all cases, authentication of an RPC message requires less.fhasm 2

3.6.3 Performance and scalability comparison with BFT
BFT configuration

We compare the PASIS implementation of our protocol with the BFT library implementa
tion [Castro and Rodrigues 2003] of the BFT protocol for replicated staichines [Cas-
tro and Liskov 1998a], since it is generally regarded as efficient. €haastics provided
by BFT are stronger than those provided by the PASIS read/write plo®icme BFT
implements a Byzantine fault-tolerant replicated state machine, arbitrarytioperare
linearizable, not just block reads and writes (as in PASIS). Additionaléybibunds on
the number of storage-nodes required to tolerate an equivalent nunfaettefare lower
than in PASIS (B+ 1 for BFT as compared withd- 1 in PASIS). However, BFT incurs
the cost of multiple rounds of server communication.

Operations in BFT require agreement among the replicas (storage-mog&sIS).
Agreement is performed in four steps: (i) the client broadcasts recoesitseplicas; (ii)

the primary broadcasts pre-prepare messages to all replicas; (iii) all replicaddasta
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prepare messages to all replicas; and, (iv) all replicas send reptikddothe client and
then broadcast commit messages to all other replicas. Commit messageggieguiked

on the next pre-prepare or prepare message to reduce the numbesszfgee on the
network.Authenticatorslists of MACs, are used to ensure that broadcast messages from
clients and replicas cannot be modified by a Byzantine replica. All clientyegpitas
have public and private keys that enables them to exchange symmetticgreyghy keys
used to create MACs. Logs of commit messages are checkpointed (garblerted)
periodically. View changes, in which a new primary is selected, are ssggdein all
experiments.

An optimistic fast path for read operations (i.e., operations that do not msidifg) is
implemented in BFT. The client broadcasts its request to all replicas. Eplitareeplies
once all messages previous to the request are committed. Only one replisaise full
reply (i.e., the data and digest), and the remainder just send digests tharifgrthe
correctness of the data returned. If the replies from replicas do meeathe client re-
issues the read operation—for the replies to agree, the read-onlystaqust arrive at
2b+ 1 of the replicas in the same order (with regard to other write operations¥skled
read operations perform agreement using the base BFT algorithm.

The BFT configuration does not store data to disk: instead, it storestallrdenem-
ory and accesses it via memory offsets (i.e., we implemented a simple block éeterfa
using BFT). As such, the storage-component of BFT is much faster th@SPstorage
component, which provides true disk-based storage. The differestarage-component
latency can be seen in the BFT vs. PASIS breakdown graph shown ireR3dLo0.

BFT uses UDP connections rather than TCP. BFT’s retransmission polatatis
(i.e., it does not adapt with the detection of congestion as does TCP's yalidycan
only be set at a coarse granularity (milliseconds). We have observeddaias of retrans-
mission at high load when running write workloads using BFT on our LAN.Békeve
this causes the dropoff in write throughput as shown in Figure 3.11. DthetBFT Ii-
brary’s code structure, it would require significant work to changetrtéugsport to use

TCP instead of UDP in order to achieve a fairer comparison.
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Figure 3.9:Mean response time vs. total failures toleratedMean response times of read and
write operations of random 16 KB blocks in PASIS and BFT. diaee shown for PASIS that
correspond to both b=t and b= 1 (a hybrid fault model). Multicast was not used for these BFT
experiments.

The BFT implementation defaults to using IP multicast. In our environment, like
many, IP multicast broadcasts to the entire subnet, thus making it unsuitalsieafed
environments. We found that the BFT implementation code is fairly fragile whigrg uP
multicast in our environment, making it necessary to disable IP multicast in sor@g cas
(where stated explicitly). The BFT implementation authenticates broadcashgesssaa

authenticators, and point-to-point messages with MACs.

Response time

Figure 3.9 shows the mean response time of a single request from a singteaslia
function of tolerated number of storage-node failures. Due to the fragilitheo BFT
implementation withb > 1, IP multicast was disabled for BFT during this experiment.
The focus in this plot is the slopes of the response time lines: the flatter the lineotlee
scalable the protocol is with regard to the number of faults tolerated. Imeiroement, a
key contributor to response time is network cost, which is dictated by the-gfié@ency
of the protocol.

Figure 3.10 breaks the mean response times of read and write operationg;if)-

ure 3.9, into the costs at the client, on the network, and at the storageordue fl. and
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Figure 3.10Protocol cost breakdown.The bars illustrate the cost breakdown of read and write
operations for PASIS and BFT forsb 1 and b= 4. Each bar corresponds to a single point on

the mean response time graph in Figure 3.9. BFT does not diaeeto disk, as such no server

storage cost is shown for BFT.

b = 4. Since measurements are taken at the user-level, kernel-level timingsstonet-
work protocol processing (including network system calls) are attrittotdee “network”
cost of the breakdowns. To understand the response time measurentestslability of
these protocols, it is important to understand these breakdowns.

PASIS has better response times than BFT for write operations due to tbe- spa
efficiency of erasure codes and the nominal amount of work storadesnperform to
execute write requests. Fbor=4, BFT has a blowup of 18 on the network (due to
replication), whereas our protocol has a blowuplgbf: 3.4x on the network. With IP
multicast the response time of the BFT write operation would improve significairttye
the client would not need to serialize 13 replicas over its link. However, IHgast does
not reduce the aggregate server network utilization of BFT-bfer4, 13 replicas must
be delivered.

PASIS has longer response times than BFT for read operations. Thig edmibuted
to two main factors: First, the PASIS storage-nodes store data in a realditars since
the BFT-based block store keeps all data in memory and accesses biackemory
offsets, it incurs almost no server storage costs. We expect that drgfi&#mentation

with actual data storage would incur server storage costs similar to PASLSdeund
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0.7 ms for a write and 0.4 ms for a read operation, as is shown for PASIShwith
in Figure 3.10). Indeed, the difference in read response time betwe®isRd BFT at
b = 1 is mostly accounted for by server storage costs. Second, for aacptpthe client
computation cost grows as the number of failures tolerated increasassbdbe cost of
generating data-fragments growsNagcreases.

In addition to theb =t case, Figure 3.9 shows one instance of PASIS assuming a
hybrid fault model withb = 1. For space-efficiency, we sat=t + 1. Consequently,
Qc=2t+1 andN =3t + 2. Att = 1, this configuration is identical to the Byzantine-
only configuration. Ag increases, this configuration is more space-efficient than the
Byzantine-only configuration, since it requires 1 fewer storage-nodes. As such, the
response times of read and write operations scale better.

Some read operations in PASIS can require repair. A repair operationpederm
a “write” operation to repair the value before it is returned by the readrdstingly, the
response time of a read that performs repair is less than the sum of tlimsegpmes
of a normal read and a write operation. This is because the “write” operdtiong re-
pair does not need to read logical timestamps before issuing write regqddisonally,
data-fragments need only be written to storage-nodes that do not almeatithe write

operation.

Throughput

Figure 3.11 shows the throughput in 16 KB requests per second astafuaf the num-
ber of clients (one request per client) foe= 1. Read and write operations are evaluated
separately. Sincb = 1 in this experiment, BFT uses multicast (which greatly improves
its network efficiency). PASIS was run in two configurations: one with thestiolds set

to that of the minimum system witlm= 2, N = 5 (write blowup of 25x) and one, more
space-efficient, wittm= 3, N = 6 (write blowup of Z). For these experiments, the data
working set fit within the PASIS storage-node caches. Results indicatethmagh client
load, throughput is limited by the server network bandwidth. If the worketgagere to

exceed the cache size, PASIS would experience capacity misses thdtin@ur disk
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Figure 3.11Throughput vs. number of clients (b = 1). Throughput of read and write operations
of random 16 KB blocks in PASIS and BFT foeld. Each client had one request outstanding. For
PASIS, lines corresponding to both=a2, N = 4 and m= 3,N = 5 are shown. For BFT, multicast
was used.

accesses. At this point, the disk subsystem would become the bottleneck.

At high load, PASIS has greater write throughput than BFT. BFT's writetthhput
peaks at 456 requests per second. But, we observed BFT’s writegtipat drops off
significantly as client load increased; during these drop-offs, werebde large increase
in request retransmissions. We believe that this is due to the use of UDP cuatsz-
grained retransmit policy in BFT’s implementation. The write throughput of BAfgins
to flatten out at 675 requests per secondhies 2 and 806 reqg/sec fan= 3, significantly
outperforming BFT. PASIS provides higher write throughput than BIEEabise server
links become bottlenecks, even though multicast is used.

Even with multicast enabled, each BFT server link sees a full 16 KB replicareas
each PASIS server link se%$ KB. Similarly, due to network space-efficiency, the PASIS
configuration usingn = 3 outperforms the minimal PASIS configuration (806 requests
per second). Both PASIS and BFT have roughly the same network utilizationead
operation (16 KB per operation). To be network-efficient, PASIS vsad witnesses and
BFT uses “fast path” read operations. However, PASIS makes useref storage-nodes
than BFT does servers. As such, the aggregate bandwidth availabkafis is greater

for PASIS than for BFT, and consequently PASIS has a greater readgthput than
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BFT. Although BFT could add servers to increase its read throughputy doivould not
increase its write throughput (indeed, write throughput would likely diogptd the extra

inter-server communication).

BFT vs PASIS scalability summary

For PASIS and BFT, scalability is limited by either the server network utilizaticseorer
CPU utilization. Figure 3.10 shows that PASIS scales better than BFT in botfsider
write operations. Each BFT server receives an entire replica of the whtaeas each
PASIS storage-node receives a data—fragrﬁ-;g:thte size of a replica. The work performed
by BFT servers for each write request grows withn PASIS, the server protocol cost
decreases from 90s forb =1 to 57 us for b = 4, whereas in BFT it increases from
0.80 msto 2.1 ms. The server cost in PASIS decreases bavanseases asincreases,
reducing the size of the data-fragment that is validated. We believe tha¢ier £ost
for BFT increases because the number of messages that must be deothteraservers

increases.

3.6.4 Other results
Garbage collection

We assume a large window of storage version capacity, so garbagdioallesually oc-
curs during idle periods. But, even when it competes with real requestsage collection
is inexpensive. Garbage collection requests are just batched reststegexcept that no
data need be returned for members that do not tolerate Byzantine clierds. Bylzan-
tine clients are tolerated, garbage collection must validate the cross chealdich does

require data-fragments.

Concurrency

Read-write concurrency can lead to client read operations obsempairable writes

or aborting. To explore the effect of concurrency on the system, wesumeamulti-
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client throughput when accessing overlapping block sets. The experaoesists of four
clients, each with four operations outstanding. Each client accessegaohfeight data
blocks, some overlapping with other clients and some not, and no outstaedjngsts
from the same client going to the same block.

At the highest concurrency level—all eight blocks in contention by all tdierwe ob-
served neither significant drops in throughput nor significant ineeasmean response
time. For example, the asynchronous repairable protocol member clagbiigditial
candidate as complete 88.8% of the time, and found repair was neceska8y3% of
the time. Since repair occurs rarely, the effect on average responsartihieroughput is

minimal.

Impact of faults

Storage-node failuresFor clients, storage-node failures have minimal impact on perfor-

mance.

Client crash failures. Client crash failures appear as partially written data. Subsequent
reads may observe these writes as incomplete or unclassifiable. If theycdassifiable,
the read must either abort or attempt repair. Repair adds much of thef pestarming a
write, though, the round-trip to obtain a logical timestamp in an asynchronstensys

not needed.

3.7 Discussion

3.7.1 Byzantine clients

In a storage system, Byzantine clients can write arbitrary values. The fine-grained
versioning (e.g., self-securing storage [Strunk et al. 2000]) facilitiésction, recovery,
and diagnosis from storage intrusions [Strunk et al. 2002]. Once\dised, arbitrarily
modified data can be rolled back to its pre-corruption state.

Byzantine clients can also attempt to exhaust the resources available to $h® PA

protocol. Issuing an inordinate number of write operations could exisdnisige space.
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However, continuous garbage collection frees storage space price tatédst complete
write. If a Byzantine client were to intentionally issue incomplete write operatibies
garbage collection may not be able to free up space. In addition, incompiéts ve-
quire read operations to roll-back behind them, thus consuming client cotiopudend
network resources. In practice, storage-based intrusion detecganifigjton et al. 2003]

is probably sufficient to detect such client actions.

3.7.2 Timestamps from Byzantine storage-nodes

Byzantine storage-nodes can fabricate high timestamps that must be dassiireom-
plete by read operations. Worse, in each subsequent round of apegration, Byzantine
storage-nodes can fabricate more high timestamps that are just a bit smailtrehpme-
vious. In this manner, Byzantine storage-nodes can “attack” the peatfaze of the read
operation, but not its safety. To protect against such denial-ofegeattacks, the read
operation can consider all unigue timestamps, up to a maximulnaf, present in a
ResponseSets candidates before soliciting anottigesponseSeln this manner, each
“round” of the read operation is guaranteed to consider at least orddede from a

correct storage-node and no more tharandidates from Byzantine storage-nodes.

3.7.3 Garbage collection

The proof of liveness (i.e., of wait-freedom) given in Appendix | asssimmebounded
storage capacity. In practice, storage capacity is bounded; if stoapgeity is exhausted,
wait-freedom cannot be guaranteed. Prior experience indicates thied weeks of nor-
mal activity to exhaust the capacity of modern disk systems that version iédl ver
guests [Strunk et al. 2000].

Garbage collection is used to avoid storage exhaustion. In doing sojittesact with
concurrent read operations and concurrent write operations inssa@mner that a read
operation must be retried. Specifically a read operation could classifgauoent write

operation as incomplete, the write operation could then complete, and gadiegtian
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could then delete all previous complete writes. If this occurs, the reacim®s next
round will observe an incomplete write with no previous history. Effectivie read
operation has “missed” the complete write operation that it would have clasagfisuch.
When it discovers this fact, the read operation retries (i.e., restarts bgstog a new
ResponseSetThus, in theory, a read operation faced with perpetual write coacoyr
and garbage collection may never complete. In practice, such perpetesgciion of

garbage collection and read-write concurrency for a given data-itewt igalistic.

3.8 Summary

This chapter has developed an efficient Byzantine-tolerant protocoééding and writ-
ing blocks of data by leveraging the versioning capabilities of storagesdthis proto-
col provides read—write semantics of full data blocks. As such, it is daitathe basis for
the data storage component within a survivable storage system. Thggeabsehapters
develop protocols that can provide more powerful read—modify—writgagéics which
are more suitable for constructing metadata services.

The R/W protocol is made space-efficient through the use of erasdes emd made
scalable (in terms of faults tolerated) by offloading work from the storaapkes to the
clients. The protocol is work-efficient, since additional overheads oobur in cases
of failures or read-write concurrency. Experiments demonstrate thatS2Aa prototype
block storage system that uses the R/W protocol, scales well in the numifeunlisf
tolerated, supports 60% greater write throughput than BFT, and recuigneificantly less

server computation than BFT.
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4 Read/Conditional Write Block Protocol

Unlike data blocks that support read and write (R/W) operations only, raketadbjects
(e.g., directories), in order to preserve their integrity, require updateatipns that mod-
ify their existing contents, rather than those that blindly overwrite their ppsviontents.
For example, two concurrent insertions into a directory using write opesatian result

in one being overwritten by the other. To support such operations, tapehdevelops a
conditional write(CW) operation that performs a write to an object only if the value of
the object has not changed since the client last read it. As such, wda¢fese objects
as read/conditional write (R/CW) objects (vs. R/W). Moreover, read anditional write
operations are linearizable, thus ensuring atomicity for those that succeed

The focus in this chapter is on techniques we have employed in the desig@wf R
objects. The protocol is developed in the context of reading and writihglbjects, or
blocks (as was the R/W protocol). Since storage system data rarelyagdjdr consis-
tency provided by R/CW objects, the next chapter develops a metadateesbased
on an extension to this protocol. The extension provides a more generaliop based
interface that allows for finer-granularity access to objects.

Our R/CW protocols are designed around a hybrid fault model, in whickrdifit
tolerances for Byzantine and benign (crash-recovery) failurebeapecified, so that the
cost of the protocol can be tuned to the number of each type of failurépatéd. The
R/CW protocol, like the R/W protocol, is extremely optimistic: it is optimized for the
common file system workload in which concurrent sharing is low and failaresare.

This optimism leads to a design for the R/CW protocols that, in the common casigeseq
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just a single round of communication to perform a read operation and ditead! round
of communication for a conditional write (that can usually be optimized awhg)ient
failures are encountered, or concurrency is observed, moresaficdmmunication may

be necessary. As well, expensive cryptography, notably digital &iggs is avoided.

4.1 Overview

We describe the system in terma\bEtorage-nodes and an arbitrary number of clients and
objects. Clients perform operations on objects. Storage-nodes Hest mplicas. Note,
this is different from R/W objects which can use erasure coding forespéiiciency. The
impact of using erasure coding is discussed in Section 4.6.1.

The R/CW protocol is comprised oéad operationsand CW operationsBoth read
operations and CW operations issue requests to sets of storage-G¥desquests are
executedy storage-nodes. As in the R/W protocol, logical timestamps are used to totally
order all CW operations and to identify CW requests from the same CWtopeegross
storage-nodes. Each storage-node maintains a replica history, d®spichHistory for
each object it hosts. The replica history contains the entire set of CVésexexecuted on
the object replica, ordered by logical timestamp (pruning the replica histaligésissed

in Section 4.3).

41.1 R/CW semantics

Before describing the R/CW protocol itself, this section describes the sesmanhieved
by the protocol. Conditional-write operations are a form of read—modifigeWRMW)

operation. Read—modify—write semantics [Kruskal et al. 1988] are grotihan read—
write semantics. More generally, as described in [Kruskal et al. 198RMW operation

is equivalent to the atomic execution of the follow function:
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RMW(X, f)
1: temp— X
2: X f(X)
3: return (temp

In this operation, the registeét is read, an operatiofi is performed ornX, and the
resulting transformation is stored back X It has been shown that many other more
powerful operations can be implemented as an RMW operation; e.g., tesegrdtch-
and-add, etc. In a CW operation, an updatXa$ performed only if the value ok has
not changed since it was previously read; thus, the write is conditiondkegpreviously
read value not having changed.

As in the R/W protocol, the protocol is optimistic, thus an operation may be complete,
incomplete, or repairable. Every CW operation is preceded by a readtmpethat iden-
tifies the latest complete candidate. A CW operation is conditioned-on the lateptate
candidate. R/CW semantics ensure that a sicgleditioned-on chairexists from any
candidate back through all previous complete candidates to the initialized.oljece-
fore, no two complete writes can be conditioned on candidates such thatkfiédimed
between the complete write and the conditioned-on candidate overlap. Biguneore
clearly illustrates the conditioned-on chain. R/CW semantics ensure thatritigicoed-
on time of the current candidate “points” at a complete candidate or at a meh+k
initial value. As well, since complete CW operations may only be observegasable,
all repairable candidates must be repaired to maintain the integrity of the coreditom
chain.

One of the main challenges of the R/CW protocol is to protect the integrity of the
conditioned-on chain, especially from Byzantine clients. Byzantine cliesmisnot be
trusted to follow the protocol, thus they may attempt to break the conditionediain ¢
by conditioning on an incorrect value (e.g., an incomplete CW operationtdhadatest

complete CW operation), see Figure 4.1(b). Briefly, to prevent thesarBiye attacks,
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Classification & Object history Classification & Object history
Initial value | 0 Initial value | 0
Complete CW | 1, Complete CW | 1,
Complete CW | 2, Complete CW | 2,

Time

Incomplete CW | 3, Incomplete CW | 3,

2 3

2 2
3 3
Complete CW | 4 Complete CW | 4
5 5

v Complete CW Complete CW

4 4

(a) Valid conditioned-on chain (b) Invalid conditioned-on chain

Figure 4.1:Examples illustrating the conditioned-on chain. For each example, the complete
object history and each version’s classification for a CWegbjis shown. As well, the logical
timestamp for each version is given, as is the logical tirmgHe version on which it conditions
(shown as a subscript to the logical timestamp). Note, the dpéfation at logical time 3 is
incomplete. Since both the version at logical time 2 and 3litam on the version at time 1 (e.g.,
the may have been concurrent), only one version can comgletessfully. Example (a) shows a
valid conditioned-on chain. The version at logical time &jisored. Example (b) shows an invalid
conditioned-on chain. At logical time 4, a (Byzantine) wtigncorrectly conditions on the version
at time 3 even though it is incomplete, thus corrupting theditioned-on chain.

clients must send “proof” with each CW operation supporting their actionh Efient
sends arobject history sefor each CW object being updated. The object history set
contains the replica history of each storage-node that replied during#dephase. As
well, each of the replica histories is “signed” (digital signatures may be, usgdfor
performance we usauthenticatorssee Section 4.2.2) and acts as proof that the client is
acting correctly. The “signed” object history set can then be validataddiyidually by

each storage-node (this validation is discussed in detail in Section 4.3.3).

4.1.2 Read operation overview

At a high level, the R/ICW protocol proceeds as follows. To perform a ogeatation,
a client issues read requests to the set of storage-nodes. AtNeaststorage-nodes
eventually respond to read requests. Due to the failure model and thehagyaus system

model, onlyN —t read responses can be collected by a client. The storage-node returns
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Storage-nodes

LN LN LN LN
oooo oooo oooo oooo

5 5 6 Replica
3 4 i/ o
C 55 > i i 6| Object
4 4 4 I I _ 555> history
3 J J 4:4 set

Client A Client B

Figure 4.2:Read requests and candidate classificationClients A and B perform read oper-
ations in a system that tolerates one benign failure. Stenagdes return object histories. Due
to asynchrony, each client only receives responses fronbaetwf storage-nodes. Each client
constructs an object history set from the object historieghis example, client A classifies the
candidate with logical timestamp 5 as repairable; client Bssifies the candidate with logical
timestamp 6 as incomplete, and 5 as complete.

the replica history in response to a read request.

The client combines the replica histories returned by the storage-noddiserabject
history set (denote@®bjectHistorySt For exampleObjectHistorySéf contains the
replica history returned from storage-no8eClassification is performed on the times-
tamps within the object history set. The purpose of classification is to determéne th
timestamp of the latest complete (successful) update. A CW operation is comptete o
a threshold number of benign storage-nodes have executed CW tedligis thresh-
old permits the R/CW protocol to ensure that no subsequent operatiorettan for
condition-on) a previous object value; as well, it defines classificatidass@ication
identifies acandidate—a candidate is eithezompleteor repairable If the candidate is
complete, then the read operation returns the object value associated witinthidate.

If the candidate is repairable, the client performs a CW operation to readatididate.
Once the repairable candidate is complete, its value is returned.
Aspects of the read operation are illustrated in Figure 4.2. In responsadogquests,

storage-nodes return object histories to the clients. In the example, leadtconstructs
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a different object history set since each client received respdrsasa different subset

of storage-nodes. Classification is performed on the object historynsttelexample,
client A andB classify the candidate with logical timestamp 5 as repairable and complete
respectively. ClienB classified the candidate with logical timestamp 6 as incomplete prior

to classifying 5 as complete. The exact rules for classification are giv@edtion 4.4.

4.1.3 CW operation overview

All CW operations are preceded by a read operation that identifies tlkded®. Recall,
a CW operation is conditioned-on the latest complete candidate (actually, oijtut
history set for which classification yields the candidate). R/ICW semanticseetizat a
single conditioned-on chain exists from any candidate back throughezilqus complete
candidates to the initialized object. Each entry in a replica historylsgical timestamp,
conditioned-on logical timestamp, valutiple. The elements of this tuple are denoted
(LT, LT conditioned Data) and replica histories are initialized {6, O, L ).

The largest timestamp in the object history set is used by the client to create a times
tamp for the CW operation. As discussed later, hashes of the object higtband the
object value are also placed in the timestamp (these hashes ensure thatade@tibns
have a unique timestamp and protect against Byzantine entities). The clidstG&/ re-
guests to all storage-nodes. The CW request contains the timestamp of thpeZation,
the object history set constructed by the preceding read operationankigate (found
from classification of the object history set), and the object value.

Correct storage-nodes execute a CW request only if the timestamp, aatieeplica
history can all be validated. Validation ensures failure atomicity, conceyratomicity,
and, as discussed below, protects against Byzantine entities. If sulffat@rage-nodes
execute CW requests, the CW operation completes; otherwise, it abortspEations
may abort due to concurrency. Since repair is a CW operation, and nagrbef a read
operation, read operations may also abort.

To ensure that only one CW operation completes that is conditioned uptrea@w

operation, darrier may be written to ensure that outstanding concurrent CW operations
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cannot complete. Barriers mark a point in time without inserting a value into #ieray
Thus, a completed barrier written infront of an incomplete value preventsais) the
incomplete operation from ever completing; storage-node validation will fiadlesthe
barrier’s timestamp is larger than the timestamp being conditioned on by the incomplete
operation. Barriers allow CW operations to be issued that may complete indbefa

concurrency or client failure.

4.2 Mechanisms

This section describes various mechanisms employed to guarantee safatythatthe

R/CW protocol.

4.2.1 Validating timestamps

Logical timestamps are structured values with three members: the primary timestamp
(Time), the object history set verifiewérifier OHS), and the value verifieMerifier_Data).

The verifiers are collision-resistant hashes over the object histoapdéhe object’s value
respectively. In comparing two logical timestamps, to determine which is grdastena-

jor timestamps are first compared, and then the verifiers are comparee vBiifers are
guaranteed to be unique (for unigue object values) all timestamps aranteed to be
unique.

The use of the collision-resistant hash cryptographic primitive proteaiastiByzan-
tine entities. Byzantine storage-nodes cannot undetectably corrupswatitten to them,
because the hash of the object’s value is in the timestamp. Byzantine clientt pann
form poisonous writefMartin et al. 2002]. In a poisonous write, a Byzantine client writes
different values to different storage-nodes with the same timestamp. &tooatgs vali-
date the value sent in a CW request with the value verifier. Since in the R/CWcpt
client’s transmit full replicas, as opposed to erasure coded fragments R/ proto-
col, storage-node validation prevents poisonous writes. As well, validatisares that a

Byzantine client cannot make a correct storage-node appear Byzindin only Byzan-
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tine storage-nodes return values that cannot be validated by the client).

4.2.2 Authenticators

To ensure R/CW semantics, the conditioned-on relationship between thervitieeCW
request and the candidate in the object history set must be maintainedomtisaned-
on relationship is validated by a storage-node before it executes a QWgstedror a
storage-node to validate the conditioned-on relationship, it must “know'thieareplica
histories in the object history set are indeed those returned by othegestooges.

Generally, digital signatures are used for such purposes. Howbgéal signatures
are computationally expensive to compute and verify. Keyed cryptograpkh functions
can be evaluated approximately three orders of magnitude faster than sligitatures.
To make Byzantine fault-tolerant agreement efficient, Castro and Liskedauthenti-
catorsin lieu of digital signatures in BFT [Castro and Liskov 1998b]. Authenticatmes
vectors of keyed hashes: tH& element in the vector is used to prove the authenticity of
the message to entiiy To enable authenticators, all pairs of entities that need to prove
message authenticity to one another must share distinct secret keysnitastogs are
not as strong a primitive as signatures: any entity can verify an entiretgignavhereas
only entities in the vector of keyed hashes can validate the authenticatoa(ainat, only
its own entry in the authenticator).

Authenticators are used by storage-nodes in the R/CW protocol to “sgtita his-
tories returned in read responses. If authenticator validation fails, ttegstmode cannot
tell if a Byzantine client corrupted a valid replica history, or if a Byzantineéagie-node
constructed an invalid replica history, since the object history set is catett by the
client. Invalid authenticators are discussed in Section 4.6.2.

During repair, authenticators allow clients with read-only access to antdbjeer-
form repair on the object. In many systems, there is an asymmetry betweerpririte
ileges and read privileges. Authenticators provide sufficient proofaimge-nodes that
the object history set is valid and thus that some candidate is repairablsediently,

storage-nodes can execute “repair” CW requests from read-onihi<lie
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4.3 Protocol

This section pseudo-code for classifying candidates, performingtemmal write opera-
tions, and validating CW requests. As well, read operations and stooalgeagtions are

discussed in detail.

4.3.1 Read operation

Figure 4.3 shows the pseudo-code for the read operation. The reaatiop begins by
issuing read requests to the setb$torage-nodes. Given the asynchronous nature of the
protocol, and the crash-recovery failure model for storage-nodesore tharN —t read
responses are collected.

In response to a read request, the storage-node returns its replicg. Hstbent can
explicitly request a specific version of the object (based on candidasifatation), and
the storage-node returns its value. This functionality is used to implema@eivitnesses
only one storage-node need return the value of its object replica, thear@fstories of
other storage-nodes act as witnessésifPL986] that validate the correctness of the value
(through the object’s value hash).

The client uses the returned replica histories to construcOtbjectHistorySef{cf.
line 100). Recall, each entry in a replica history if@gical timestamp, conditioned-on
logical timestamp, valuetuple. For simplicity of presentation, data corresponding to each
entry in the replica history is returned. However, in practice, only the ddig\associated
with the latest logical timestamp is returned. Optimistically, the latest timestamp is usually
classified as complete and this data is sufficient, otherwise an extra readHtrquis
required to fetch the appropriate data version (as in the R/W protocol).

A storage-node also attaches an authenticator to the replica history its.eiMien
the client constructs the object history gBhjectHistorySeteach replica history in the
set has an authenticator. The client can cache the object history saittwedticators and
use them in a future CW request.

The pseudo-code for the CWO_READ operation is very similar to the code shown
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READ() :

100: ObjectHistorySet= DO_READ()

101: (Candidate Statu$ := CLASSIFY(ObjectHistorySet

102: if (Status= CLASSIFIED_COMPLETE) then

103: return (SUCCESS, (CandidatelL T, CandidateData))

104: else

105: /x Status= CLASSIFIED_REPAIRABLE x/

106: return (CONDITIONAL_WRITE(Candidate CandidatelTcondiioned CandidateData, ObjectHistorySel
107: end if

DO-READ() :

200: ResponseSet 0

201: repeat

202: forall Se{S,...,Sv}\ResponseS&do

203: SEND(S, READ_REQUEST)

204: end for

205: if (POLL-FOR-RESPONSE() = TRUE) then

206: (S, ReplicaHistory := RECEIVE_READ_RESPONSE ()
207: if ((S¢ ResponseS@&) AND VALIDATE(ReplicaHistory = SUCCESS)) then
208: ObjectHistorySef := ReplicaHistory

209: ResponseSet ResponseSet (S)

210: end if

211: endif

212: until (|ResponseSet N —t)
213: return (ObjectHistorySet

CLASSIFY(ObjectHistorySet:
300: (Candidate Coun} := SELECT_CS(ObjectHistorySetL)

301: loop

302: if (Count> COMPLETE) then

303: return ((Candidate CLASSIFIED_COMPLETE))
304: else if(Count> INCOMPLETE) then

305: return ({(Candidate CLASSIFIED REPATRABLE))
306: endif

307: /xIncomplete candidate: find new candidate and loop agdin.
308: (Candidate Count := SELECT_CS(ObjectHistorySetCandidatel.T)
309: end loop

Figure 4.3.Client read and classification pseudo-code.

in the R/W protocol chapter (Figure 3.6). First, theé READ function discards any re-
sponses that cannot be validated (cf. line 207). Since data is assumeddéplicated,
the value verifier (stored in the timestamp) is simply the hash over the data.ds¢ten
ObjectHistorySeis constructed from the set of storage-node responses (cf. line 208)
The client then performs classification on the object history set (cf. lirig. Ithe
pseudo-code for classification is also shown in Figure 4.3. The functiatiiely iden-
tifies and classifies potential candidates until a valid complete or repairatdidate
is found. The functiorBELECT_CS, on line 300, identifies the potential candidate with

the highest timestamp, and s€&andidateaccordingly. The valu€ountreturned from
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SELECT_CS is the count of the number of storage-nodes in@gectHistorySethat host
the potential candidate. Note, only candidates that can be validated withtieevesifier
in the timestamp are chosen; as well, barrier-writes are ignored.

Once a potential candidate has been chosen, it is classified as either tegprmle
pairable, or incomplete. To classify a potential candid@®@untis compared with the
constant€0MPLETE and INCOMPLETE. The derivation of these constants are described in
Section 4.4.

If the potential candidate is classified as complete, the read operationsreign
value associated with the candidate. If the potential candidate is classifiezbagplete,
SELECT_CS is called again, but with the potential candidate’s timestamp (cf. line 308).
A new potential candidate, with a lower timestamp, is identified. Candidate clasisific
begins again.

If the potential candidate is classified as repairable, the client perfopas.rit does
so0 by issuing a CW operation (shown in Figure 4.5) with the value of the adpaican-
didate, see line 106 in Figure 4.3. If the repairable candidate contains thitilatestamp
observed by the client (i.e., itsT = MAX[ObjectHistorySe}, then the client can attempt
repair by completing the operation at repairable’s logical time. Otherwiseyreebis
needed to block any competing incomplete operations from completing. Whamierb
is needed, a new (higher) logical timestamp is generated. The condition oratinges
(LT conditioned 1S Set to the timestamp of the latest complete write. The latest complete
write is the CW conditioned on by the repairable candidate. If the repaiatperfails,
then the read operation aborts and must be retried. An example of a reqiaigdhires a

barrier-write is shown in Figure 4.4.

4.3.2 CW operation

The pseudo-code for the CW operation is shown in Figure 4.5. First, thealdgnes-
tamp for the CW operatiorn, T, is constructed. The major part b is determined by
incrementing the major part of the largest timestamp inQgectHistorySetThe veri-

fiers are determined by taking the hash of the object history set and that whjee for
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Storage-node histories
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Read nodes 1,2, and 3; 4; | 45 | 4 4y | 45 | 45
Classify 2 repairable; T
Classify 3 incomplete; A gompletg barrier is 51 51 51
Repair requires a barrier. written at time 4. Repair of 2 at tme 5 is
conditioned on version
attime 1.

Figure 4.4:Example of repair requiring a barrier-write. For this setup: N= 4, COMPLETE =
3,INCOMPLETE = 2. The object history is shown at 4 storage-nodes during tlogression of
a read operation. The subscript to each version’s timestaonpesponds to the timestamp on
which the version is conditioned. First, the client clagsfLT 2 as repairable (although it is
actually complete). However, an incomplete operationtexasLT 3. To block this operation from
completing, a barrier is written at L®. Finally, repair is attempted at LE 5, LT¢onditioned= 1.
Note, that the condition on time is the same as the repairabfelidate’s.

the CW operation. It is important to note that every logical timestamp generaeld&st
1 larger than the latest complete write that currently exists in the system.

Before the CW operation is issued with the value, the object history set tkethie
to see if abarrier is needed (cf. line 407). Barriers ensure that multiple CW operations
conditioned-on the same candidate do not complete. A barrier is needey df dne
replica histories in the object history set contain timestamps that are greatéhétaf
the candidate’s timestamp (and are not themselves barriers). If such a timpestasts,
then there may be another CW operation concurrent to this CW operatite. Ibiarrier
completes, then the concurrent CW operation cannot complete.

To create a barrier, the client perform®@WwRITE with the 1 value, a_L verifier,
andLT.Barrier set toTRUE (called abarrier-write). This allows the CW operation to be
executed at storage-nodes that host its barrierDOHERITE function issues CW requests
to all storage-nodes. The object history set is updated with each 1esp@WRITE re-
ceives, line 508. As iDO_READ, the replica history is first validated. However, one should

note that even if the operation failed, the replica history is returned. Thisstlte client
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CONDITIONAL_WRITE(Candidate LT conditioned Data, ObjectHistorySet:

400: /* Construct the logical timestamp for the CW operatioh.
401: LT)atest:= MAX_TIMESTAMP(ObjectHistorySet

402: LT.Time:= LT atest Time+ 1

403: LT.Verifier-OHS:= HASH(ObjectHistorySet

404: LT.Verifier Data:= HASH(Data)

405: LT.Barrier := FALSE

406: /* If necessary, write a barriet/

407: if (LTjaest> CandidatelT) then

408: LTparier:=LT

409: LTparier Verifier.Data:= L

410:  LTparier.Barrier := TRUE

411: (Count ObjectHistorySét:= DO_WRITE(LTparrier, LT conditioned ObjectHistorySetL )
412: if (Count< COMPLETE) then

413: return (ABORT, (L, 0))

414: else

415: /* Re-classify based on returned object history set
416: (Candidatenew Statu$ := CLASSIFY(ObjectHistorySet
417: if (Candidatenew= Candidatg then

418: /* Abort if classification yields different resuty/

419: return (ABORT, (L, 0))

420: end if

421: endif

422: end if

423: /x Perform the CW operation.,/

424: (Count ObjectHistorySet:= DO_WRITE(LT, LT conditiones ObjectHistorySetData)
425: if (Count< COMPLETE) then

426: return (ABORT, (L,0))

427: end if

428: return (SUCCESS, (Data, LT))

DO_WRITE(LT, LT conditioned ObjectHistorySetData) :
500: ResponseSet 0

501: repeat

502: forall Se{S,...,S}\ResponseS&do

503: SEND(S, WRITE_REQUEST, LT, LT conditioned ObjectHistorySetData)
504: end for

505: if (POLL_FOR-RESPONSE() = TRUE) then

506: (S, ReplicaHistory Statu$ := RECEIVE_WRITE_RESPONSE()

507: if ((S¢ ResponseS@&) AND VALIDATE(ReplicaHistory = SUCCESS)) then
508: ObjectHistorySef) := ReplicaHistory

509: ResponseSet ResponseSet (S)

510: if (Status= SUCCESS) then

511: Count:= Count+ 1

512: end if

513: end if

514: endif

515: until (|ResponseSet N —t)
516: return ({Count ObjectHistorySet

Figure 4.5:Client-side CW operation pseudo-code.

to retry a write without performing a read to obtain the latest object historge®n-t
responses have been received (line S8)WRITE returns.

Once the barrier-write has completed successfully it is hecessary wripetfassi-
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Figure 4.6:Example of a barrier-write. For this setup: N= 4, COMPLETE = 3, INCOMPLETE = 2.
The object history is shown at 4 storage-nodes during thgmession of a CW operation. First,
the client classifies L2 as incomplete. Next, it attempts to write a barrier at£13, however the
barrier-write is concurrent with the completion 8f Once the barrier-write completes, the client
re-classifies LT2 as complete. The CW operation is aborted and retried a4, LT conditioned=

2.

fication over the new object history set, line 416. This is necessary, barcer-writes
may be executed at storage-nodes hosting the CW operation that theyiragedrblock
(i.e., an incomplete operation may complete just prior to the execution of therpalfrie
classification yields the same candidate (cf. line 417), the client can petfa value-
write. And, if the value-write completes, then tGandidateis returned (in case the CW
operation is called for repair). If either the barrier-write or value-writendt complete,
then the CW operation aborts, and must be retried (including the read)phagee 4.6

shows an example of a barrier-write that necessitates re-classification.

4.3.3 CW requests at storage-nodes
Receiving CW requests

Pseudo-code describing the reception of a CW request at a stavdgeisishown in
Figure 4.7. First, the request must be validated. Due to the complexity of trafig#

is described fully in the next sub-section. If validation succeeds, theestds inserted
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RECEIVE_WRITE_REQUEST(LT, LTconditioned ObjectHistorySetData) :

600: if (VALIDATE_CW_REQ(LT, LT conditioned ObjectHistorySetData)) then
601: /x Execute the CW requesf

602: Request= (LT, LTconditioned Data)

603: ReplicaHistory.= ReplicaHistoryu Request

604: /x Prune history/

605: if (Data# 1) then

606: PRUNE_HISTORY_SET(ReplicaHistoryLT conditioned
607: endif

608: SEND(WRITE_RESPONSE, S ReplicaHistory SUCCESS)
609: return

610: end if

611: SEND(WRITE_RESPONSE, S, ReplicaHistory FAIL)

612: return

Figure 4.7:Reception of a CW at storage-nodé&.

into the storage-node’s local history, line 603. The request is compadfdue tuple:
(LT, LT conditioned Data).

If an object history set contains a complete candidate, the storage-angeune its
replica history up to the complete candidate’s timestamp (cf. line 606). A validajedt
history set always contains a candidate that is complete (although suckidaia may
be earlier in the object history set than a repairable candidate retummmadcfassifica-
tion); note, the initial timestamp 0 can be considered the earliest complete danditia
versions prior to the latest complete (non-barrier) CW (i.e., prior to the CWgnditioned
can be pruned; however, no pruning occurs on barrier-writes.uSkeof authenticators
obviates the need for distributed garbage collection as was necessagyRitprotocol.
Finally, a response is sent back to the client. Note that the storage-hockd'fistory is
always transmitted in the response. This allows the client to update the oisjiecyIset

and re-perform classification if necessary (e.g., if the CW operatiordjaile

Validating CW requests

Storage-nodes must validate CW requests. If validation succeeds, thgesttode exe-
cutes the CW request: it executes the value-write and updates its replicg losteclude
the CW request. Remember, the replica history is stored in stable storagedhet®the
crash-recovery cycle. If validation fails, the storage-node reject€Waequest.

With the object history set, the storage-node can perform the exact sginadothe



72 - Efficient, scalable consistency for highly fault-tolerant storage

VALIDATE_CW_REQ(LT, LT conditioned ObjectHistorySetData) :

700: /x Validate LT.Time, ensures logical time is always increasifig
701: if (LT.Time# ((MAX_TIMESTAMP[ObjectHistorySeé}.Time+ 1)) then
702: return (FAIL)
703: end if
704: /x Validate authenticators for each history sgt
705: if (VALIDATE_AUTHENTICATORS(ObjectHistorySet= FAIL) then
706: return (FAIL)
707: end if
708: /x Validate verifiersx/
709: if (HASH(Data) # LT.Verifier.Data) then
710: return (FAIL)
711: else if (HASH(ObjectHistorySet+# LT .Verifier OHS) then
712: return (FAIL)
713: end if
714:
715: /+ Perform classification to find latest logical timestamps
716: <|-Tlatestcompnba LTIatestcompntwa LTiatestnb,
LTiatestbarrier, LTiatestni_nb, Classifyatestbarrier) := CLASSIFY(ObjectHistorySet

718: /x Check if a barrier is needed, and not writing a barsiér
719:if ((LTIatestcompntLbd ?é LTIatestnb) AND
((LTiatestbarrier < LTiatestnb) OR (ClassifYatestbarrier 7 COMPLETE)) then
720: /« Barrier is needed, make sure this is a barsiér
721: if (LT.Barrier = FALSE) then
722: return (FAIL)
723: endif
724: else if (LT.Barrier = TRUE) then
725: return (FAIL)
726: end if

728: /x Validate replica acceptance poliey

729: if (MAX[ReplicaHistory > MAX[LTiatestnb, L Tiatestbarrie]) then
730: return (FAIL)

731: end if

733: if (LT.Barrier = FALSE) then
734: /x Validate condition on relationship, conditioning on a coetgl/
735 if ((LTIatestnb = LTIatestcompnb) AND ('—Tconditionedi‘é LTIatechompnb)) then

736: /* Classified complete as latest timestamp, [bldonditionednot conditioned on latest completg
737: return (FAIL)

738: endif

739:

740: /x Validate condition on relationship, performing repair

741: if (((LTIates_t_nb 7é LTIatestcompnb) AND (L_T_Iatestnb = LTIatestni,nb)) AND
(LT.Verifier-Data # LTjatestni.np- Verifier_Data) OR (LT conditioned7 L Tiatestcompnb.ba)) then

742: return (FAIL)
743: endif
744: end if

745: return (SUCCESS)

Figure 4.8:Validation of a CW request at storage-nodeS.

client, and validate that the client is acting correctly. The pseudo-codeafmlation is
shown in Figure 4.8.

First, a sanity check is performed on the primary time within the logical timestamp,



4.3 Protocol . 73

Logical timestamps returned from classifying the object history set osttitage-node:
o LTiatestbarrier: Latest barrier logical timestamp;

LTiatestnb: Latest non-barrier logical timestamp;

LTiatestninb: Latest non-incomplete, non-barrier logical timestamp;

LTiatestcompnb: Latest complete, non-barrier logical timestamp;

LTiatestcompnb.bd: Latest complete, non-barrier, by deduction logical timexgta

Note:LTiatestcompnb.bd = MAX[LTIatestcompnba LTiatestni_nbconditioned

Figure 4.9:Logical timestamps returned from classification.

line 701. Next, the authenticators for the object history set is validatetingf705). Re-
call, the object history set is comprised of history sets from each of thagearodes
queried during the read operation phase. Each of these history setchagsponding
authenticator that must be validated. The impact of failed authenticator vafidstitis-

cussed in Section 4.6.2.

Next, the verifiers, stored within the timestamp, are validated (cf. lines 708): 71
Again, the storage-node is replicating client logic to ensure that the validatiegtamp
is well-formed. The object history set verifier determines the conditiomedlationship
for a the CW operation and the value verifier determines the value of the @vdtagm,
thus limiting the actions a Byzantine client can perform.

By performing classification on the object history set, line 716, the stanage-can
validate that the candidate is the correct candidate, and that the timestampadsrdot ¢
timestamp (since both are deterministic given an object history set). As weltotfags-
node can check to see ibarrier is required (cf. line 719). To make these checks, storage-
node classification returns multiple logical timestamps, each set to a logical timestamp
within the object history set. These timestamps are described within Figure 4.9.

The descriptions of most of the timestamps returned from classification ae cle
However, thelTiatestcompnb.bd timestamp deserves further discussion. As described, this
timestamp represents a version that is complete by deduction. A candidatetmapiste
by deduction is a candidate that is necessarily complete, but has not bserwved as
such. This occurs when a repairable (non-barrier) candiléeobserved (in the object
history set) to have conditioned upon another, earlier, repairablel{aoier) candidat8.

Recall, a complete candidate may be viewed as repairable. Sirceepairable, it has
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passed validation at Qc —t storage-nodes, of which at led3¢ —t — b are benign (see
the constraint derivations for more details, Section 4.4). The only posgéyl¢hatA can
pass validation at a benign storage-node is by conditioning on a completdénaer)
candidate. Thud3 must be complete (by deduction).

Barriers are required to squash pending CW requests (e.g., incompletg€rétions
from failed clients). A barrier is required if there exists any non-bagrrien-complete
CW request that exists within the object history set at a later logical timestammtiya
other complete CW write or barrier operation (i.e., there exists a pending inetn@WV
operation). If theBarrier portion of the logical timestamp is set TRUE, the storage-
node knows that the CW request is part of a barrier-write. The onllgduralidation that
occurs for barrier-writes is that of tleeceptance-checkgainst the replica’s history.

The acceptance-check, line 728 ensures that a CW request hasamekecuted
locally that is later than the latest logical timestamp present within the object hssbry

If the CW is not a barrier-write, the conditioned-on relationship is then vidila
(cf. lines 734 - 743). There are two cases for validation. First, a compéetdidate is
classified as the latest non-barrier. In this case, the conditioned-on timeistaerified
against the latest complete, non-barrier CW (cf. line 735).

Second, a repairable candidate is classified as the latest non-bdrgeis,Tthe latest
non-barrier is the same as the latest non-incomplete, non-barrier opeaiaticdhe latest
non-barrier is not the latest complete, line 741. If the candidate is repgitam vali-
dations are performed. First, the storage-node validates that the ohjeetfor the CW
request is the same as the repairable candidates (this ensures thaatheaeyrs cor-
rectly). Second, the CW’s conditioning on timestamp is checked againstgheable’s
conditioning on timestamp (note, in this casBatestcompnb.bd = LTiatestni_nbconditioned:
this ensures the continuity of the conditioning chain.

A summary of the conditions that hold if storage-node validation succeedg-is p

sented in Figure 4.10. These are derived from the pseudo-coda sh@igure 4.8.
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Postulates that hold if validation succeeds (3 and 4 only hdld iBarrier is FALSE):
i (LTiatestcompnb.bd = LTiatestnb) OR ((LTiatestbarrier > LTiatestnb) AND (Classifyatestbarrier= COMPLETE))
i MAX[ReplicaHistory < MAX|LTatestnb, LTiatestbarried
i if (LTIatesLnb = LTIatestcompnb) then LTconditioned: LTIatestcomp.nb

iv if ((LTIa!e_sLnb # LTiatestcompnb) AND '(|_-Tlatesl.nb = LTiatestni.nb)) then
(LT.Verifier_Data= LTjatestni_nb- Verifier_Data) AND (LT conditioned= L Tiatestcompnb.bd)

Figure 4.10Validation postulates.

4.4 Constraints

This section presents bounds HrandQc, the definition of a complete CW operation (in
terms oft andb), and constraints 080MPLETE andINCOMPLETE. The derivation of con-
straints is similar to that for the protocol for R/W objects in Section 3.4. Therdififees
in bounds arise mainly from the added constraint that repairable canslichatst inter-
sect with complete candidates for the R/CW protocol to be safe. A formaf pfahe
safety and liveness of the R/ICW protocol and its extension to the Q/U ptasogiven

in [Abd-El-Malek et al. 2004].

4.4.1 Read classification rules

Recall that thecandidateis the data-item version, returned by a read request, with the
greatest logical timestamp. The set of read responses that sharedidatels timestamp
are thecandidate setConstraints olCOMPLETE and INCOMPLETE are required to ensure
two properties. The first property is that if a candidate is ever classiedmplete, then
any subsequent read operation observes the complete candidateiegbiepThe second
property is that if candidat& is complete and conditioned-on candidBieany repairable
candidate with a timestamp greater tharither conditioned-om\ or can traverse the
conditioned-on chain back #.

To classify a candidate as complete, a candidate set of atQgabenign storage-
nodes must be observed. In the worst case, at mowmbers of the candidate set may

be Byzantine, thus,

|CandidateSet- b > Qc = COMPLETE = Q¢ + b. (4.1)
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To classify a candidate as incomplete, the candidate must be incomplete (igx., few
thanQc benign storage-nodes have executed the CW). We consider a ruladsifying
incomplete candidates that takes advantade eft responses from storage-nodes. In the
crash-recovery model, eventually, a client is guaranteed to receivadmyg responses—
even though, there may be periods during which more trsiarage-nodes are crashed.
Moreover, a client cannot expect more than this many responses,girtod storage-
nodes may never recover (and in an asynchronous environmehtfailases are unde-

tectable). Thus, the rule for classifying a candidate incomplete is,

|CandidateSgt+t < Qc = INCOMPLETE = Q¢ —t. (4.2)

Candidates that cannot be classified as complete or incomplete are classitipdirable.
Given these constraints @MPLETE and INCOMPLETE, consider the examples illus-
trated in Figure 4.2. In this exampte= 1 andb = 0, SOCOMPLETE = 3, INCOMPLETE = 2,
andN = 4. Since clienfA observes a candidate with timestamp 5 in two replica histories,
and this is not less than the incomplete threshold, it classifies 5 as repaiittidecas

candidate 6 is observed by clieBin one replica history and classified incomplete.

4.4.2 Real repairable candidates

This property ensures that colluding Byzantine storage-nodes abdeuttafabricate a
candidate that a correct client deems repairable. To achieve this prapeaydidate set

of sizeb must be classifiable as incomplete. SubstitutidgndidateSet= b into (4.2),

b+t < Qc. (4.3)

4.4.3 Complete candidate—repairable candidate intersection

This property prevents multiple CW operations conditioned on the same cta(iida
with the samd_Tonditioned Performed by correct clients from completing. A complete

candidate cannot be allowed to co-exist with a repairable candidate.&ooceplete can-
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didate may be observable as repairable, a client may observe two répamalidate’s
(even though one is complete) and not know which candidate to repaie. ‘fttong can-
didate” (i.e., the one that is not complete) is repaired, the condition on chailased.
To achieve this property, it is necessary that a complete candidate axchlae can-
didate intersect at at least one benign storage-node. Thus, fromvteelbounds of re-

pairable and complete candidates,

COMPLETE + INCOMPLETE > N + b,
Qc+b+Qc—t>N+b,

2Qc > N +t. (4.4)

4.4.4 Read setintersection

The intersection between a complete and a candidate §gtloénign storage-nodes must

result in at least a repairable being observed. Thus,

N -+ INCOMPLETE < Qc + COMPLETE,
N+Qc—t <Qc+(Qc+b),

N<Qc+b+t. (4.5)

445 CW termination

A CW operation is defined to be complete once a totaDgtenign storage-nodes have
executed the CW.

There must be sufficient good storage-nodes in the system for a Ckétiopeby a
correct client to complete. A client must terminate after it receNest responses. As
well, up tob responses may be from Byzantine storage-nodes (who lie abouttiexecu
the operation), similar to the R/W protocol (see Section 3.4.4).

However, there is another action a Byzantine storage-node can takeathabt pos-

sible in the R/W protocol. A Byzantine storage-node can lie that it could natéeehe
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CW request because validation failed (e.g., it hosts a CW request with a tnpegtaater
thanLT), see Section 4.3.3. This action requires that a CW operation can complete in the
face ofb storage-nodes that reject the operation. If the reject message aleamtses
the client before some accept message from a benign storage-nodienheill always
abort the CW operation (since in an asynchronous crash-recovetgliit@annot await
all responses). In the case that Byzantine storage-nodes do niail¢ba network, then,
probabilistically, the CW operation will eventually successfully complete.

Thus, for the CW operation to be guaranteed to complete (i.e., for a clienstwesn
that it is possible foQc benign storage-nodes to execute CW requests during the CW

operation),

Qc+b<N—t—b,

Qc<N—t—2b (4.6)

4.4.6 Constraint summaries

Constraints (4.4) and (4.6) lead to a constrainQarthat supersedes (4.3):

Qc+t+2b<N<2Qc—t,
Qc +t+2b < 2Q¢c —t,

2t +2b < Qc. (4.7)

Adding (4.4) and (4.5) leads to a constraintn

2N < 3Qc+b,

N < 3Q‘32+b. (4.8)
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And so, the overall constraints @ andN can be written as,

2t+2b+1<Qc<N-—t—2b;

b
Qc+t+2b<N < MIN [ZQC—t, 3Qc + ]

2

Which leads to the minimal bounds of:

QC:2t+2b+1;

N=3t+4b+ 1.

4.4.7 Improving the bounds on N and Q¢

If we relax the liveness guarantee provided in 4.4.5, the bound$ amdQc can be sig-
nificantly improved. Recall, the bounds presented above arise froramgeaing CW op-
erationsalwaysterminate despite the false rejection of operations by Byzantine storage-

nodes. By relaxing this guarantee, the constrainRerbecomes:

QC+b§N_t7

Qc<N-t—h. (4.9)
Which leads to:

Qc+t+b<N<2Qc—t,
Qc+t+b<2Qc—t,

2t+b< Qc. (4.10)
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So, the overall constraints @ andN are:

2+b+1<Qc<N-t—b;

Qc+t+2b<N < MIN [ZQc—t, 3Qc+b] .

2

And the minimal constraints are:

QC:2t+b—|—l;

N=3t+2b+1

The differences between the two sets of constraints translate to slightlsediffere-
ness properties of write operations that incur no write concurrency fateeof Byzantine
storage-node faults. However, in both cases, safety is never comprbmis

The first derivation (4.6) guarantees that, in the absence of write oemcy, writes
will alwayscomplete. The second derivation (4.9) provides slightly weaker liveness
antees than the first. It provides that in the absence of write concyragnkin the pres-
ence of Byzantine storage-node faults, writegy complete; it depends on whether re-
sponses from Byzantine storage-nodes are in the set ™ theresponses collected by

the client.

4.4.8 Liveness

If multiple CW operations are ongoing, storage-nodes may execute C\i#segor dis-
tinct CW operations and thus prevent any CW operation from completiraudh a sce-
nario, some form of “back off” and retry is required to allow forwardgess. Techniques
such as randomized exponential back off or some form of prioritizedestcqueues at
storage-nodes (if the storage-node “detects” contention) could work.

There is a trade-off between the liveness guarantee of the R/ICW pratoddhe
minimum number of storage-nodes required. In practice, it is probablghviging with

the reduced liveness properties in order to sdvet@rage-nodes. This is especially true,
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since the power of a Byzantine storage-node can be mitigated through gookemy
assumptions (waiting for more responses—within some time bounds), or a&zusgf a
fair network (on which Byzantine entities cannot control message ordetimgler either
assumption, it is likely that responses from a set of benign storagesnati@ventually
be collected, and that the operation will therefore complete. A more thormisghssion

to the malicious rejection of CW operations is given in Section 4.6.3.

449 Safety

Read operations only return the value of the latest complete CW operatieg. arh
linearized after the CW operation whose value they return.

CW operations only complete if they are conditioned on the latest complete CW op-
eration. A complete CW operation is always observed as repairable ofdetemipit is
repairable, its value is written “forward” to a new timestamp preserving thdittoned-

on version chain.

4.5 Protocol scalability

Consider a failure model with= b = 1. The smallest configuration for this failure model
is N = 6, COMPLETE = 5, andINCOMPLETE = 3. Larger configurations, which reduce
the load on any given storage-node, are possible. For example, thigesame failure
model, another valid configurationlié= 9, COMPLETE = 7, andINCOMPLETE = 5. In the
smallest configuration, each storage-node must execute requeétsﬂ‘dne operations
performed. In the larger configuration, each storage-node needratyte requests for
% of the operations performed. Thus, it is possible to add storage-nodes system

to increase its throughput. [fA3storage-nodes are added to the system to improve the
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throughput, then the R/CW constraints (from Section 4.4.7)Afor0, become:

|Quorum = Q¢+ b;
Qc=2t+b+2A+1 (= INCOMPLETE+t);

N=3t+2b+3A+1 (=Qc+t+b+A).

The ability to increase system throughput in this manner is because the RZ&Y pr
col is a threshold (or majority voting [Gifford 1979; Thomas 1979]) Byaquorum
system [Malkhi and Reiter 1998a]. Sindkis bound from above bﬁ%, the greatest
throughput that can be achieved via threshold quorums is.IT&e lower bound on the
load of each storage-node § Intuitively, the load measure indicates the fraction of op-
erations for which each storage-node must execute requests.

If other quorum construction techniques are employed (e.g., the M-Pastrao-
tion [Malkhi et al. 2000]), then the lower bound on Ioad(E\/g). For the scale of
the prototype metadata service, the use of threshold-quorums demonteabenefits
of quorum techniques. The benefits of true quorum constructionh, asithe M-Path

construction, are only prominent once systems are very large.

4.6 Discussion

4.6.1 Erasure codes

Thus far the use of erasure codes within the R/CW protocol has beed &ilie the dis-
cussion. When using erasure coded datantiparameter (used in decode) is constrained
by the bound oINCOMPLETE; thus,m <= Q¢ —t. However, there are two main problems
that arise from the use of erasure coded data.

First, additional mechanisms are required to ensure that Byzantine cliemistqeer-
form poisonous writes (see Section 4.2.1). Detection of poisonous wiiiteis the R/CW
protocol hinges upon storage-nodes validating the data value assoititelde CW op-

eration with its verifier (the hash present in the timestamp). On the other handight
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is responsible for the detection of poisonous writes in the R/W protocol twitiizes
erasure coding). As described in Section 3.2.3, the client detects posamites through
the regeneration of aM data-fragments, from which the cross checksum is recomputed
and verified. For this approach to work in the R/CW protocol, the client whalg to
perform this validation on each value contained within the conditioned-oim etisthe
way back to the initial value (or until an agreed upon “correct” value, erng, that had
been decided upon through garbage collection); this is impractical. Osépibgis to
use some type of verifiable sharing scheme (e.g., Verifiable Secret §li@hor et al.
1985; Feldman 1987]), in which storage-nodes are able to validate theityaigeach
CW operation; however, these schemes are currently very computatiandllypace in-
efficient.

The other limitation of using erasure coded data is that it requires the clientrio ¢
pute (and erasure code) the update before transmitting it to the stordge-rAs will be
discussed in Chapter 5, the R/CW protocol is extended to support aybiparations
that are executed solely on the storage-node; e.g., if a CW object implemdineca
tory, the client need only transmit the name it wishes to insert—the storage dums
the work of inserting the name into the directory. This approach implementsatsulic
state-machines, as such it is not amenable to erasure coding.

Regardless of the limitations, erasure coding within the R/CW protocol may still be
useful depending on the application’s requirements. If the system maodeltpiprevents
Byzantine clients from performing poisonous writes and if block storagegsired, the

R/CW protocol provides stronger semantics than does the R/W protocol.

4.6.2 Invalid authenticators

If the authenticator does not pass validation at a storage-node, thgesturde cannot
tell if a Byzantine storage-node is involved, or if a Byzantine client cded@ correct
authenticator (or object history set). Digital signatures do not have tbidgm. As such,
the storage-node can “reject” the CW request, and place the onus dietitéaretry the

R/CW operation using digital signatures. Other options include allowing thagaenode



84 - Efficient, scalable consistency for highly fault-tolerant storage

to reject the CW request outright (this gives a Byzantine storage-nedgmther to force a
CW operation to abort) or allowing storage-nodes to perform a reactiperto directly

validate the object history set (this could requd@?) messages in limited situations).

4.6.3 Storage-nodes rejecting CW requests

Byzantine storage-nodes may arbitrarily reject CW requests (based tailtite of object
history set validation). As discussed in Section 4.4.8, a tradeoff in reglticenliveness
of the protocol versus the constraints MrandQc exists. With the reduction in liveness
Byzantine storage-nodes may be able to force clients to abort.

In addition to the 'solutions’ described previously (also in Section 4.4.8),the.,
increased constraints dw and the assumption of a fair network, a third solution exists.
This solution requires storage-nodes to provide sufficient evidence ifotim of a valid
object history set that supersedes the rejected CW request.

To provide this evidence, the storage-node must be modified in a humberyst w
First, the replica history returned by storage-nodes in response toegaests must in-
clude the client ID of the client who issued the read request. The stocdg-should
generate the authenticator over ff@ientID, ReplicaHistory tuple. Second, upon suc-
cessfully executing a CW request, the storage-node should retain thet bigjory set
on which the CW is based. Third, in response to a rejected CW requesbthgesnode
should reply with the set of “signedClientID, ReplicaHistory tuples as evidence that
the rejected CW request is being rejected correctly.

Unfortunately, authenticators do not allow the client to directly validate the re-
turned replica histories; signatures do not have this problem. If usingermtith-
tors, the client must validate the returned replica histories by sending thenadtu
(ClientID, ReplicaHistory tuple to the storage-node that originally authenticated the tu-
ple. One additional modification must now be placed on storage-nodespilrsytrack
the client IDs of all read operations (these logs can be purged similargmrugsruning,
as well this modification is not needed if using digital signatures). This motiificés

required for the storage-node to validate that the client ID present inutneraticated
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tuple is indeed correct. The use of the client ID ensures that a Byzamtiregye-nodes
cannot “reuse” replica histories, sent to them from correct clientghitrarily reject re-
quests (i.e., a client must have performed the read that resulted in the reisticey).
This prevents Byzantine storage-nodes from generating arbitraifyatée replica histo-
ries. Once enough replica histories have been validated the client adnwieether or
not the request was rejected appropriately.

For example: witlN =3t+2b+ 1, Qc=2t + b+ 1, thenCOMPLETE = 2t +2b+ 1
andINCOMPLETE =t + b+ 1: For a storage-node to correctly accept a CW request at time
T it would have to have observed an object history set with at le@4LETE logical
timestamps of tim@. Of those replica histories, validations fratBMPLETE —t can be
awaited. Of the validations that occur, at mbsbay fail due to Byzantine storage-nodes,
COMPLETE —t — b pass validation. Sinc€0MPLETE —t —b =1t + b+ 1 = INCOMPLETE,
Byzantine storage-nodes can make complete operations appear toilkehiepRejecting

a CW operation on the basis of hosting a repairable at a later timestamp is a Valid ac

4.7 Evaluation

Since the R/CW protocol provides consistency more suitable to a metadatzedban
a block store, the majority of the evaluation is presented in the next chapgterdwhe
R/CW protocol is extended for use in a metadata service). However, th& gfGtocol
is not precluded from being used as a block based storage protocal, brief evalua-
tion of the protocol response time, when providing consistency for thageaf erasure
coded data, is described below. Results pertaining to system througbpcyency, and
scalability are presented in the Chapter 5.

The experimental setup is as follows. A rack of Intel P4 2.66 GHz machiitbs w
1 GB of memory were used for the experiment. Each storage-node utilizedieated
33.6 GB Seagate Cheetah 10K RPM SCSI disk. All nodes are conneabeditha single
gigabit Ethernet switch.

Figure 4.11 shows the mean response time of read and write operationsasiiier
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Figure 4.11Mean response time vs. total failures .This figure shows the mean response of the
R/CW protocol when using erasure coded data. Separate direshown for reads vs. writes, as
well plots for b=t,N =5t +1 and b=1,N =3t + 3, as t is scaled up, are shown. A block size,
before erasure coding, of 16 KB was used.

of tolerated failures (t) is increased. Separate plotdbfert andb = 1, with N = 3t +
2b+1 m=t+b+1 are shown. Recall, the total storage blowup for erasure coded blocks
is rmn A block size of 16 KB, before encoding, was used for all data points.

As can be seen the slope of thead operation response time lines are very flat; this
is similar to the slope of reads performed by the R/W protocol. This is becaads are
space preserving; only 16 KB of data is ever transferred. Eaclatpeis issued to alN
storage-nodes, however, reads request ordiata-fragments, the rest are read witnesses.
As in the R/W protocol, read witnesses, can validate the returned datadmg through
the hash of the cross checksum stored within the timestamp.

As is expected, the slope of theite operation response times are steeper than those
of the reads, since writes are not space preserving. As well, theatiffein response time

between thd =t and theb = 1 write operation lines grow faster than it does for reads.
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This is due to the rapid growth & atb =t. As N increases, so does client computa-
tion time (to perform the encoding), as do communication costs. An incredseaiso
reduces network efficiency since smaller packets are being transmittedgeariamber
of storage-nodes; recall, each data-fragment is of #i,zeo asN increases, so doeans,
thus data-fragment size is reduced.. The space-efficiency of bothdiaksost the same;
for example, withh =t = 4: N = 21 andm = 9 the total blowup is 37.3 KB, while with
b=1t=4:N= 12 andm= 6 the total blowup is 32 KB.

4.8 Summary

This chapter has developed a novel protocol that provides linearizadfilRyCW opera-
tions. A conditional write operation performs a write to an object only if theevalthe
object has not changed since the object was last read. The R/CW grtaseful for
providing consistency of updates to metadata objects, although it can als@bevide
consistency of block updates. The R/CW protocol provides read—maudifte semantics.
It has been shown that many more powerful operations can be built with/Rkman-
tics than with RW semantics (e.g., test-and-set). These operations ard wiidding
fault-tolerant metadata services.

The R/CW protocol shares many features with the R/W protocol. It is ded@oeind
a hybrid fault model; it is extremely optimistic, optimized for low concurrencyl iris
enabled by storage-node versioning. However, in order to fully tol&yantine clients,
replication must be employed. As well, the constraintsNoand Q¢ are higher. This
chapter also showed that the R/CW protocol scales well as the numbeitsfttderated
is increased and when using erasure coded data. The next chajgiedseihe R/CW
protocol into a query/update protocol and shows how a scalable metadaieesand

storage-system can be built.
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5 Metadata Service

Scalability is a primary focus of many networked storage systems, includirgN&ib-
son et al. 1998], Lustre [Braam 2004], and many recent SAN file sypteducts. These
systems all share a common design: a distinct metadata service managindke stita
lection of data storage servers. A similar high-level architecture is shredcent re-
search systems like Farsite [Adya et al. 2002] and Pond [Rhea et &, 2dtch logically
separate metadata management from data storage.

For all of these systems, scalability and fault-tolerance of the metadataesarec
key challenges. The most common fault-tolerance solutions are agreelgerithans
that perform state machine replication (e.g., using a protocol like [BranbaTaueg
1985]). Unfortunately, such an approach does not scale as replieadded. To make
this approach scale, it is common to partition metadata across separate metagata s
(or replica sets). Unfortunately, unlike with data, this solution often comesantikible
change in semantics: loss of ability to perform atomic operations, sucha@mnecacross
directories stored on distinct metadata servers.

This chapter develops an alternate design for survivable, scalablejatetervices
that maintains strong semantics. The architecture of this system is shown ne Bidu
Our PASIS metadata servi¢gMD) is “survivable” in that it relies on few assumptions
about the environment in which it runs: it is designed to withstand arbitfyygan-
tine [Lamport et al. 1982]) failures of clients and a limited number of metadadas)
and requires no timing (synchrony) assumptions for correctnessditicad it is “scal-

able” in that the addition of new metadata-nodes yields improvements in theityapac
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Metadata

Clients

Figure 5.1Architecture of scalable storage systemsTraditionally, the focus of scalable storage
systems has been scaling read—write storage to improveghgut, capacity, or fault-tolerance.
The PASIS metadata service scales in a similar fashiorhiitaighput, capacity, or fault-tolerance
can be improved by adding more metadata-nodes. Note thahétadata and storage processes
can execute on the same hardware, even though the picturmastdesigns have them logically
separated.

throughput or fault-tolerance of the service; we refer to this as “hotascalability”.
The PASIS metadata service is constructed of metadata objects that utilize e R/C

protocol described in Chapter 4. While the R/CW protocol focused atinmgand writing
entire objects, this chapter extends the R/CW protocol to allow for more glensryand
updateoperations. These operations provide access to objects at a finefegity (e.g.,
reading/inserting directory entries vs. reading/writing full directories)kiias 5.2.1
and 5.2.2). In addition, atomic updates across multiple objects are requigedmev-
ing a file from one directory to another requires that the removal andtimsdye per-
formed atomically on the source and destination directories. Thus, a singi#iooal
write operation that can modify multiple objects and can be conditioned on asstijpé
these objects being unchanged is introduced in Section 5.2.3. Howesr gkiensions
do not fundamentally alter how the R/CW protocol behaves. The boundsms t&f N

and the thresholds remain the same, as does the optimistic nature of the paoit sl
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guarantees, all while avoiding expensive cryptography.

Moreover, by avoiding heavyweight agreement protocols, the PASt&da& service
offers horizontal scalability that has not yet been achieved for sisetmace. Our proto-
cols derive from threshold voting protocols [Gifford 1979; Thomas99ih such an
approach, only subsets (i.e., a majority) of metadata-nodes need besaattesomplete
an operation. As such, metadata-nodes can be added to improve capamitghput, or
fault-tolerance. Moreover, the threshold voting approach employedeaxtended to
guorum systems that offer greater throughput scalability [Malkhi et@002Naor and
Wool 1998].

5.1 Overview

Metadata objects are a type of R/CW object that provide metadata-specifiadete
Read operations of R/CW objects are extended tgumry operations of metadata ob-
jects; read operations read the R/W object, whereas query operationstree result of

a deterministic read-only function performed on the metadata object. CWtmpearaf
R/CW obijects are extended to bpdateoperations of metadata objects; CW operations
send an object replica in each request, whereas update operatioke ndeterministic
function on the metadata object.

Since each metadata node performs the operation on its replica, metadata objec
provide replicated state machine [Schneider 1990] semantics. Thesetissnpaevent
Byzantine clients from corrupting the state of metadata objects, since atbgmta veri-
fied by the metadata servers. For example, metadata-nodes can prByeanéne client
from inserting an existing name into a directory object, because the metauti#a-can
only be manipulated by the appropriate operations (and the results canifiexvey the
metadata-node).

Two optimizations have been implemented to improve the efficiency of metadata ob-
jects. First, operations can be performed on metadata objects optimisticallydwnge

only the operation and object history set to metadata-nodes; entire obgeatsnot be
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transmitted across the network, thus reducing bandwidth. This is optimisticdmeda
the metadata-node does not host the candidate version on which thé@pérao be
performed, the metadata-node must re-sync its replica of the objecir{nggan addi-
tional round-trip). Second, large metadata objects are broken into bliiksids in the
reduction of bandwidth when syncing large replicas. When replica valussbe fetched,

only modified portions of the replica need be sent.

5.2 Metadata operations

To perform operations correctly, metadata-nodes must perform thratagreon the ver-
sion of the object replica that corresponds to the latest complete candidate.the
R/CW protocol, the metadata-node requires the object history set to cldmsifpmplete
candidate. As such, metadata operations build closely upon the R/CW prdevet-
oped in the previous chapter. However, instead of shipping the dates\@hgeresults of
client-side operations), the operations themselves are transmitted.

Metadata operations can be performed atomically on multiple objects. Since some
operations span metadata objects, to provide failure atomicity it is necesgaayfaom
these operations on multiple objects atomically. For exantleame removes a file from
one directory object and adds it to another directory object.

This subsection describes two classes of metadata operafioais.operations and

updateoperations. As well, multi-object operations are discussed.

5.2.1 Query operations

Like read operations on R/CW objects, query operations on metadata cdnjeatpti-
mistic and complete in a single round in the common case. However, unlike read op
ations on R/CW objects, query operations do not return the contents ofitine eb-
ject. This has a number of subtle implications. First, read witnesses (ash@elscr Sec-
tion 4.3.1) cannot be used for the results of query operations, sincalteverifier (i.e.,

the object’s hash) does not validate such results. Second, since tkeveaifier is com-
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QUERY (Operation :

100: (ObjectHistorySetQueryResultSgt= D0_QUERY(Operation QUERY_LATEST, L)
101: (Candidate Statu$ := CLASSIFY(ObjectHistorySet

102: /x Iterate through returned object history s¢t

103: CandidateResultSet 0

104: for all (M; € MetadataNodeSgto

105: /x Add results from responses whose latest element matchesrttielates /
106: if MAX[ObjectHistorySdM;|] = Candidatethen

107: CandidateResultSet CandidateResultSetQueryResultSav; |

108: endif

109: end for

110: /+ Perform voting on the set of matching data results, need b-+thimat responses/
111: (Count Data) := VOTE(CandidateResultSet

112:if (Count< b+ 1) then

113: /xIfless than b+1 results match, redo the query at the canidatestamps/
114: CandidateResultSet DO_QUERY(Operation QUERY_LTIME, Candidatel T)
115: (Count Data) := VOTE(CandidateResultSgt

116: end if

117: /« If classification yields a complete candidate, return anyefrhatching votes/
118: if (Status= CLASSIFIED_COMPLETE) then

119: return (SUCCESS, (Candidatel T, Data))

120: else

121: /x Status= CLASSIFIED_REPAIRABLE, perform repair/

122: return (REPAIR_OPERATION(Operation Candidate Candidatel T conditiones ObjectHistorySel
123: end if

Figure 5.2:Client query pseudo-code.

puted over the entire object, it can not be used to validate the data assediitedead
response; instead, a voting scheme must be used.

The pseudo code for a read operation is shown in Figure 5.2. To pedaquery
operation, the metadata-node returns its replica history as well as theakegdtquery
operation applied to the latest version of the object replica (cf. line 10@® client iden-
tifies the candidate by performing classification on the object history set, eri0d.
Once the candidate is classified as complete, the client must determine thefésalt
guery operation. Since only results pertaining to the latest timestamp in a replisa’
tory are returned, the set of results corresponding to the candidatestdime must be
constructed (cf. line 107).

The client then counts the votes in this set of results, see line 111. Matasobs
from b+ 1 metadata-nodes are sufficient “votes” for a client to use the resulo@se,
more thanb + 1 object histories are required to identify the latest complete candidate.
Since query operation results are returned optimistically based on the latsisihvhosted

by the metadata-node, it is possible that no response attains a suffigigmtnof “votes”.
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If this is the case, the client performs the query metadata operation aticsiirmestamp
(the candidate’s timestamp); see line 114. Finally, if the candidate is classsfieoha
plete, the result of the “voting” can be returned. Otherwise, repair idetkeSince the
client does not hold a full copy of the object, repair is more complicated teacritbed in
the R/CW protocol and will be discussed later in the context of multi-objeatadipas.
As an optimization if the query operation results are large, some metadats-cantde

act as witnesses by returning a hash of the operation’s result. Votinthearbe per-
formed over the resultant set of hashes. Since the result of most gpergtions are
small, the tradeoff between the computation time required to perform the hastdrige
transmitting and comparison of the data value is in favor of the latter. (An &rocapay

be thereaddir operation as it returns a large number of directory entries).

5.2.2 Update operations

The CW operation of the R/ICW protocol is extended for metadata objects ta@afr
date operations (e.gsetattr would update the attributes for an object). As in query op-
erations, update operations do not transmit the object’s new data valy¢hewoperation
to be applied to the replica and the object history set is sent. Allowing the metaaidts
to perform update operations locally ensures the validity of the update. the iR/CW
protocol, updates are conditioned on the latest complete candidate, whieteisthed
through classification of the object history set. Similar to query operatidiest count
“votes” on the results returned from the update operations.

If a metadata-node does not host the candidate, then it cannot safedynpéine
operation. In this case, the metadata-node must synchronize its objé Bpfetching
the state associated with the latest candidate. Object replica synchronigatisoussed
in Section 5.3.2.

Since the client does not have a local copy of the metadata object to updateot
construct the timestamp of the update operation (specifically, the verifierg itintles-
tamp). However, the timestamp can be constructed deterministically from the bisjec

tory set and the resulting value of the updated metadata object. Since metadashave
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all of this information, they can be relied upon to deterministically construct thestime
tamp of the update operation (and it can be returned as part of the réhatalculated

timestamp is then inserted into the replica’s history.

5.2.3 Multi-object operations

Since all metadata object replicas are stored on the same set of metadsda-thed
metadata-nodes can locally lock the set of object replicas being openaded Thus,
a metadata-node can perform validation for each object replica addess®e operation,
and then, only if validation passes for all objects, execute the operatiis.approach
of validation has similarities to the validation phase performed in optimistic comayrre
control [Kung and Robinson 1981]. However, one extra step is redtr the validation
of multi-object update operations. To prevent malicious clients from exegdifferent
operations across different objects at different metadata-nodesasheof the operation
(including it's arguments and the set of objects the operation operatesiapjuded in
the logical timestamp. This fixes the result of a multi-object update operatiorptecéis
timestamp.

Multi-object operations complicate repair. Pseudo-code for the repaiutif-object
operations is shown in Figure 5.3. If a repairable candidate is identifieql thieeclient
must request the operation that resulted in the repairable candidate €éc20i@). Note
that, since barrier-writes are always followed by an update operatieynned not be re-
paired. In response to tiREAD_OPERATION query, a metadata-node returns the operation
and the object replica histories for all objects updated by the operatior aptcified
logical timestamp. Recall, tr@ERY operation requireb+ 1 votes to return a result. The
client constructs an object history set for each object updated by #matogn by issu-
ing aREAD_HISTORIES query operation containing the object history sets of interest (cf.
line 206).

Next, a check is made to verify if a barrier-write across the sets of objegisred
(cf. line 207). If a barrier is required then the client performs a bawigte conditioned-

on these object history sets (cf. line 208). If the barrier-write compléhesclient re-
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REPATR_OPERATION(ObjectLT):

200: RepairOperation= QUERY ((READ_OPERATION, Object LT))
201: /« Iterate through all objects in the returned operatign
202: ObjectSet=10

203: for all (O; € RepairOperationdo

204: ObjectSet= ObjectSet O;

205: end for

206: ObjectHistorySets= QUERY((READ_HISTORIES, ObjectSel)
207: if (BARRIER_NEEDED(ObjectHistorySefs= TRUE) then
208: (ObjectHistorySetsStatus := UPDATE((BARRIER_OPERATION, ObjectSet, ObjectHistorySets
209: if (Status=FAIL) then

210: return FAIL
211: endif
212: end if

213: (Candidate Statu$ := REPAIR_NEEDED(ObjectHistorySets
214: if (Status= FALSE) then

215: return (FAIL)

216: end if

217: Status= UPDATE(RepairOperationObjectHistorySets
218: return (Status

Figure 5.3:Client multi-obj repair pseudo-code.

constructs the object history sets and performs reclassification to ethsureepair is
still required. A few cases exist in which repair is not required—the mbstoos is
when the operation being repaired has completed (or has been repaedther client).
More subtle cases are discussed a little later. If the client determines tlaat iseptill

required, an update operation corresponding the operation that is tphieed is per-
formed, line 217.

As mentioned repair may not be necessary for a few reasons. Usuatlii}, bie the
case that the histories returned from the barrier-write indicate th&RdipairOperation
has completed (or been repaired by another client). However, it is p@$sitsome ob-
jects involved in a multi-object operation to be classified as repairable antsdthbe
classified as incomplete (depending on the client’'s system view). If this isaes @ is
not possible to repair all the candidates involved in the multi-object operdtanclient
can deduce, since some candidates involved in the multi-object operatimcangplete,
that no candidate involved in the multi-object operation is complete (thus safebsr
sifying the repairable candidate as incomplete). Likewise, by sending thedf sbject
history sets for all objects updated by the multi-object operation to the metaddéss,

the metadata-nodes can reach the same conclusion and allow such tepairatidates
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Object A Object B
ololoTlo olololo a) Update (A, B) fails at timestamp 1
10 10 10 1o
'0 0 0‘ 0 b) ReadHistory (A) 1 classified incomplete
\ 104 10
olololo C) Update (A) completes at timestamp 2
1o ] 10
2y[24]2
olololo 0 (0 0 0‘ d) Query (B), 1 classified repairable
- ReadOp (B, 1) returns Update (A, B)
10| 1o L 191 10) - ReadHistory (&), 2 classified complete
212 12 - Client deduces B, 1 is incomplete
0] 40| 40

Figure 5.4Example of multi-object repair. For this setup: N=4, COMPLETE = 3, INCOMPLETE =

2. (a) Initially an update operation is performed on Objectadd B. However, it fails part-way
through. (b) A read history operation is issued to read thgothistory set associated with Object
A. Logical timestamp 1 is classified as incomplete. (c) Aratgis performed, and completes, on
Object A at logical time 2 (conditioned on timestamp 0). (djukry operation is performed on
Object B. Logical timestamp 1 is classified as repairablaestiepair must be performed. First, the
operation resulting in the version at timestamp 1 must bel.réareturns the original operation
that updated Objects A and B. The history of Object A is thewl @nd classified. Object A’s
timestamp 2 is classified as complete. From this, the cliantdeduce that Object B’s version at
time 1 could never have completed (otherwise Object A'dareet 2 would have conditioned on
time 1).

to be over-written.

Similarly, it may be the case that some objects (in a multi-object operation) agpear
complete, while others appear incomplete or repairable. Again, the cliemhatatiata-
nodes can come to the same conclusion by examining the object history sath obgect

involved in the repair. Figure 5.4 shows an example of how multi-object remaks.

5.2.4 Summary

This section as described a number of extensions to the R/CW protocoh#idés query
and update operations to be performed against metadata objects. Irfstbants trans-

mitting entire objects, query and update operations can be used to pegerations that
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Figure 5.5:Example metadata operations. Metadata objects support query and update opera-
tions. Both types of metadata operations may need to perfpair. The requests a client sends to
metadata-nodes to perform metadata operations are sh@yi@Query operations may complete
in a single round trip. If insufficient results are returnedthe candidate’s timestamp, a second
request is sent to collect results at the candidate’s tiaragt (b) For update operations, a client
first requests replica histories to identify the candiddtben, the client issues the update opera-
tion with an object history set constructed from replicathiges returned by a recent querfc)

To perform repair a client requires the operation that reedlin the candidate. Since operations
may span multiple objects, metadata-nodes potentiallymatnany replica histories.

are executed by each metadata-node. When metadata-nodes perg@opbrtions they
are able verify the integrity of the request and the result. Query opesatguire an ob-
ject history set constructed from the replica histories returned by atrquery operation.
To increase efficiency, object history sets can be cached by clierttsgBery and update
operations may require repair.

Figure 5.5 describes query, updates, and repair operations. Fidi{eg Blustrates
the requests and replies a client exchanges with a metadata-node tonpadoiery op-
eration. Figure 5.5(b) illustrates the requests and responses a clidranges with a
metadata-node to perform an update operation. Figure 5.5(c) illustratesgirests and

responses a client exchanges with a metadata-node to perform repair.
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5.3 Improving efficiency

Two additional considerations for metadata objects are presented withiethiisns The
first is an optimization to handle large metadata objects. The second detailpraacp

to efficiently synchronize object replicas.

5.3.1 Breaking large objects into blocks

Metadata objects could be very large (e.g., a directory object with thosigdriides). To
efficiently handle large metadata objects, metadata object replicas carkba briw fixed
sized blocks. Even though the metadata object replica is broken into bloetadata
operations still occur atomically on the metadata object.

If metadata objects can be stored in a structured fashion, update opgredioibe
implemented to be considerate of block boundaries (e.g., not allowing diyesmtitnies
to span blocks). In so doing, the number of blocks modified by an updataign can
be minimized. If the state of metadata objects cannot be stored in a structshéohfa
then techniques like those used in the Low Bandwidth File System [Muthitaehatal.
2001] could be employed to minimize the number of “chunks” that a metadataeupda
operation modifies.

The value verifier of the logical timestamp for a CW operation on a large metadata
object is a collision-resistant hash of the list of the replica’s block hasHes cost of
generating the verifier is linear in the number of blocks that comprise thetobjec

extremely large objects, Merkle hash trees [Merkle 1987] should bed=yesl.

5.3.2 Object synchronization

Since update operations only execute at a subset of metadata-nodgspssiisle for
some metadata-nodes to become “out-of-sync” (i.e., to not host the mest cemplete
candidate). To perform an update operation, the metadata-node eethérgersion of
the object at the candidate’s timestamp. A metadata-node can “sync” its odgjéica by

fetching the value corresponding to the latest complete candidate directiyainother
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metadata-node. There is enough information in the object history set fondtedata-
node to know which other metadata-nodes host the candidate. As well, theataetende
can validate the correctness of the object value received with the vériffex candidate’s
timestamp.

To sync a large metadata object, a metadata-node requests the hash &) (or the
candidate object from another metadata-node that hosts the candidateltid verifier
in the timestamp validates the correctness of the hash list returned. Givesstihédh for
the candidate object version, the metadata-node can request only thiedaie blocks.

The hashes in the hash list validate each block of the metadata object.

5.4 PASIS metadata objects

The PASIS metadata service (PMD service) exports a number of metagetésokach
type of metadata object consists of internal state and provides a set whitéséic oper-
ations that can be performed on the object, as described in Section 5.3 08eratons
span multiple objects—for example, a rename operation is performed on & pae®@
tory objects. Others may be read-only. This subsection describes figa défour types
of metadata objects: directory objects, attribute objects, lock/lease objedELthoriza-
tion objects. Directory and attribute objects are fully implemented. Lock anadrazd
tion objects are designed but not yet implemented. Implementation details afodjrec
and attribute objects are described within this section. The implementation of tbe PM
service, in the context of a distributed NFS framework, is described itidbes.5.

The design of the PASIS metadata objects focuses on minimizing the access-con
rency experienced by any one metadata object. Reducing the amourdaié wgoncur-
rency experienced by metadata objects improves the efficiency of thelyingdR/CW

protocol actions.
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5.4.1 Attribute objects

An attribute object exists for each file stored in the PASIS storage seiieeattribute
object contains the per-file information expected by the clients (e.g., the &iv&rsand

the NFS clients). In our implementation, these attributes map directly to typical UNIX
file attributes (e.gmode, 1ink count, uid, gid, size, mtime, ctime, etc.).

There is a tradeoff between storing attributes in separate objects vergng shem
within their parent directory entry. If stored within the directory, operatitmat access
attributes and directories need only access a single metadata object. IHosteriag
attributes within directory entries increases the false sharing of the diyaatigct for any
operation that operates on the attributes without operating on the direetgrggétattr
andgetattr). Since there may be many files managed by each directory object, the read
and update traffic for these attributes could generate frequent centaccesses to the
directory object. Additionally, hard links (i.e., multiple names for the same objaot)at

be easily supported if attributes are stored within directory entries.

5.4.2 Directory objects

Directory objects store the names and access information for files and athetodes.
Access information specifies how the named object can be accessedfeig the ob-
jects are located and their encodings, not access control informatio@)adcess infor-
mation for directories is PMD service specific. The access informationlésrif storage
service specific. For example, if the R/W protocol is being used as thecptatnderly-
ing the storage-service, the access information will contain the protocaineers (e.g.,
N, m, Qc, etc.) and the encoding scheme being used (e.g., replication, IDA, etc.).
The attributes of a directory are stored in the directory object itself—aratpat-
tribute object is not used. Since most operations that access a direbjecy also access
the directory’s attributes, this design decision does not contravenestymdmal of sepa-
rating objects to minimize access concurrency. Indeed, directories maigténein own

attribute information allows for greater efficiency at the storage-nodecaseadthe net-
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work: object histories need only be maintained (and returned) for thetdigeobjects.
On the other hand, since files can use a separate storage-serviaopraittoibutes and
data must be updated independently.

The directory object, since it may be large, is stored as a collection of b(geles
Section 5.3.1). The directory object block size is 4 KB, in our implementatiorimfile
structure is used in the implementation of the directory objects; it is just a listexftdity
entries. Each directory entry is (@ame, acce$gair. The access information encodes
the object’s ID, the set of node IDs that host the named object, and tkenscWwhich
describes the encoding of the object (e.g., the replication factor). Tjeetancoding
is specific to the service owning the named object (i.e., either the PMD or thESPAS
storage-service).

To look up a name in the directory object, a linear search of its directory srigrie
performed. When entries are added to the directory object, care is taeaitosplitting
them across block boundaries. When entries are deleted, no compagtisfoisned, but
the free space created may be used for future entry insertions. Stangaovements
to directory implementations, such as using b-trees to avoid linear searchingd, be

applied.

5.4.3 Lock (lease) objects

Lock objects provide serialization points. Locks are not needed for raetadject con-
sistency, since the Q/U protocol ensures that all metadata operationsatomically.
However, lock objects may be desired by clients wishing to control accesdatdo As
such the design and implementation of the lock objects is dependent on théyuyse-
viding the ability to implement lock objects using the Q/U protocol, locks are gtegdn
to have the same fault-tolerance, consistency, and scalability guarastiesmaetadata.
If lock objects are implemented in this manner, the storage service must be able to
validate locks presented to it. Recall, the storage service is implemented by etdistiof
storage-nodes. We envision three possible scenarios for lock validaiiet) capabilities

are generated as the result of lock operations; these capabilities cariflagh\by storage-
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nodes (as in NASD [Gibson et al. 1998]). Second, all accesses ttottagys service are
serialized through the metadata service. Third, each storage-nodes/edfth access
before performing it; i.e., each storage-node issues a query operattonRdD service
that returns the lock status.

There are two basic uses of lock/lease objects in distributed file systems: tmimain
client cache consistency within the storage service and to provide appiidatking
of data (i.e., file locking). To maintain client cache consistency, clients musotiged
of changes to cached data. In such an approach, callbacks from thdatzeservice
would be needed to notify holders of cached data that the data is stale. Taimdae
fault-tolerance of the system, the application server ought to waib ferl callbacks
before acting; however, since caching is done for performanceanctness, it is safe
to invalidate cache entries based on a single callback.

Since fault-tolerant systems should not rely on potentially faulty clients toselea
locks, lock objects should provide lease semantics. Achieving lease sesnaatfigres
that locks timeout. The R/CW protocol is developed in an asynchronousl mbtiee,
so that invalid timing assumptions cannot break the properties provided /@&
protocol. In practice, loosely synchronized clocks are common anded wssely, can

expire acquired locks.

5.4.4 Authorization objects

Authorization objects manage the privileges associated with metadata objeets.are
two standard approaches to managing privileges: access control [&tsYAnd capabili-
ties. ACLs manage privileges on a per-object basis whereas capabilitegmarivileges
on a per-client/user basis. Either approach to privilege managemeneé¢anplemented
with authorization objects. An authorization object can be associated withnegiadata
object, and operations on the metadata object will only be performed if dzekor
Authorization objects may be needed for the storage service as well. Vatidsitim-

thorization objects can occur similarly to the validation of locks. For examplesttinage

service can perform a read of the authorization object before permititagtol be read or
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Figure 5.6:PASIS storage system.Components of the PASIS storage system are shown above.
The PASIS storage system is split into two components: at@ied a set of storage-nodes. The
client implements an NFSv3 server. The NFS server condistASIS metadata (PMD) com-
ponent and a PASIS storage (PS) component. A single NFSrderable to support multiple
concurrent NFS clients. Alternatively, the NFS server maynounted via loop-back on the same
machine as the NFS client.

written. Or, the application server can provide a capability to the storagiesdo read

or write specific data.

5.5 Storage-system implementation

This section describes the metadata objects and storage service that ecimpnso-
totype file system. For the storage service in the prototype file system, weaifAth
SIS read—write protocol from Chapter 3. The PASIS storage seriAesgérviceruns
on storage-nodes (similar in nature to the metadata-nodes the PMD sengoemu An
example configuration is shown in Figure 5.6. Each NFS server interactsneiiata
objects implemented by the PMD service, as well as data objects stored withitothe s
age service. Many distinct NFS servers exporting the same file system caagperate

concurrently against the PMD service and PS service.
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| Operation | Type | Objects | Description |
readhist Query Attr. or Dir. Read object history
create Update Attr. & Dir. Create a file
remove Update Attr. & Dir. Remove a file
mkdir Update Dir. & Dir. Create a directory
rmdir Update Dir. & Dir. Remove a directory
symlink Update Dir. & Attr. Create a symbolic link
readlink Query Directory Read a symbolic link
getattr Query Attribute Read file attributes
setattr Update Attribute Write file attributes
lookup Query Directory Read file’s access info.
readdir Query Directory Read entire directory
rename Update 2 Dir. & 2 Attr. or 3 Dir. Move a file/directory
link Update Dir. & Attr. Create a hard link

Table 5.1:Implemented PMD service operations.

5.5.1 Metadata operations

Table 5.1 lists the set of metadata operations that are currently implementedriyithe
service. The operations are inspired by NFS, but are generic enosgipport many file
system instances. THgpe field specifies whether the operation is an update or query op-
eration. Example query operations inclugetattr, lookup, readdir, andreadlink.
The Object field specifies the number and types of metadata objects on which that oper-
ation operates. In the case of operations that span multiple objects, momnthameta-
data object is listed. For examplesmove modifies the parent directory object and the
link_count attribute stored within the file’s attribute object.

As can be seen, many operations operate on directory objects. Mangsef dper-
ations modify directory attributes as well as modifying directory entries (exgate,
remove, etc.), thus justifying our design decision to encapsulate attributes within the di-

rectory object.

5.5.2 PMD metadata-nodes

The metadata-nodes use the Comprehensive Versioning File System)[Sdas et al.
2003] to store data objects and their versions. The query/update extetsithe R/CW
protocol, as described in Section 5.3, have been implemented, as havesgh@uwoniza-

tion and multi-object repair. Additionally, each metadata operation descritebia 5.1
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has been fully implemented.

CVFS objects

On the metadata-node, each metadata object is associated with three CVES. anje
CVFS object is used to store the metadata object’s internal state (e.g., tergistuc-
ture). Attributes are stored within the extended attribute field of this CVFS tibjete
tributes. Another CVFS object stores the metadata object’s history, whileittestbres
a hash tree computed over the object’s internal state (to support larggsplsiee Sec-
tion 5.3.1). The metadata object’s history and internal state are versiomsgigrupdate.
These versions can be garbage collected once the metadata-nodeesladsifier update
operation as complete (i.e., on the next successful update of the metapeti. dtote,

completed barrier operations do not result in this version history compaction

Object histories

Along with the metadata object’s history, query operations optimistically returmnethe
sult of the operation performed on the latest version of the metadata’'sdhtate (as
described in Section 5.2.1). A special query operatiesdhist, is used to read only an
object’s history. Batching ofeadhist results is supported (i.e., history from multiple
objects can be returned by a single call). As well, all update operationsedlsm the
history associated with each object present in the operation. This higtorgeccached
by clients to reduce the number of read history queries. Each metadaayeoeratebl
authenticators over the object histories using HMACs based on pair-wisastric keys.
We use a publicly available implementation of MD5 for all hashes [Rivest [LExth
HMAC is 16 bytes long.

Object locking

Upon receiving an update operation, the metadata-nodes locally loclobpattt replica

accessed by the operation. When locking an object’s replica, care is takmeserve
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operation ordering at that storage-node. This can help preventessery object syncing
from occurring when objects are executed out-of-order, as is ibescin the following
example.

Imagine the following sequence of operations pending at a single metauZtaan
the same time: 1¢reate (a, /), 2)create (b, /), 3) setattr (b). It should be noted,
that, if a correct client performed the operations, it is only possible feratjpns (2) and
(3) to be pending concurrently if operation (2) has completed sucdlyssifia operation
(3) is conditioned on (2); this can occur on a slow storage-node, simngeacsubset of
the updates need to complete for the operation to complete, but updatesamitied
everywhere. If only object locking is performed without preservingragion ordering:
operation (1) locks the '/’ directory; operation (2) blocks on the lock tgithe '/ direc-
tory; operation (3) attempts thetattr although thecreate has not yet completed on

this metadata-node—in this case object syncing would attempt the create.

Update operation validation

After each replica within the operation has been locked, each objectyhsbis vali-
dated. Once validation has successfully completed (for all objects), the@ipperation
is performed. Validation is the same as for the R/CW protocol, with two excepnss,
since the conditioned-on timestamp is calculated from the object history seé(piasby
the client), no validation is performed on the condition-on timestamp (line 735 &hd 7
of Figure 4.8). Second, since update operations are transmitted, asedpjoofull data
objects in the R/CW protocol, there is Merifier_Datato validate. However, if repair is
being performed, metadata-nodes must validate that the correct opésalieimg per-
formed. To do this the operation hash is compared to the repairable cardajseation
hash; recall, the operation hash is stored within the timestamp.

If the operation completes successfully, a hash is generated over lica'sayppdated
contents and is added to the object’s hash tree. Each replica history iedpdth the
new timestamp computed from a hash of the object’s hash tree, the operhtish;sand

the hash of the object history set (which was used to validate the opera®described
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in Section 5.2.2).

Object name unigueness

Each object within the PMD service is given a unique object ID (OID). wike, each file
stored by the storage service is also identified by an OID. Object IDst@medswithin
directory entries to uniquely identify the file or directory to which the entry isdahk
Within the PASIS storage system, OIDs are similar to the inode numbers useadby tr
tional file systems (or filehandles used by NFS). However, unlike traditid@systems,
OIDs are not be centrally assigned. This complicates the validation pedoduoméng
object creation.

In the PASIS storage system, the client is responsible for generating bit2G@.
The client generates a 256 bit random number that it uses as the Olxli€hethen
performs a read history query operation on the newly generated Oéddm#tadata-node
hosts the OID, it returns the replica history associated with the OID, if nom#tadata-
node returns a specialll replica history(a history with a single timestamp of 0). As
well, the history of the parent directory object is also read.

When performing areate or amkdir operation, the metadata-node validates the
object history set to ensure that the create OID’s latest complete timestantpasfeate
operation succeeds (i.e., it receives successful responseXtoprb metadata-nodes),
the client is ensured that the OID it generated is globally unique. If a copaiation fails
(i.e., is classifiable as incomplete), the metadata-node is free to accepteaaperation
from a different client of the same OID; since the latest complete timestamp is til0
null history entry remains part of the replica’s history until it is pruned bylasequent
update operation that observes a completed create. Validation is similar feptiieof a
create operation: 0 must be the latest complete timestamp; and the operatiaf tesh
repair operation must match the operation hash stored within the repairailiel @i@'s
timestamp.

To remove an OID (e.g., throughualink or armdir operation), the replica history

associated with the OID must be reset to the initial null value. Thus, the Olblydi@e
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once a remove operation has completed successfully.

5.5.3 PMD clients

A client library has been implemented to facilitate interfacing with the PMD service.
The library’s interface consists of the set of metadata operation seraitse(with the
exception ofreadhist, which is not exported externally). The implementation of the

guery and update operations follows the presentation in Section 5.3.

NFS server

A NFSv3 server has been implemented that uses the client library. All NFSlatataper-
ations have been mapped to PMD service operations. NFS data operfilteaesi(i/write)
are mapped to calls within the storage-service. There is a one-to-one mdjghimeen
NFES filehandles and PASIS OIDs.

Some NFS operations require multiple PMD operations. For example, therésis a d
connect between the arguments of the Nln$ink operation and the PMBnlink op-
eration. The NFSinlink operation takes a filename and a directory file handle as argu-
ments, while the PMRinlink operation requires an additional argument, the filename’s
OID. The filename’s OID maps to the attributes of the file, which may be updated b
the unlink (e.g., the link count would be decremented). In order to perthisrupdate
operation, validation must be performed over the object’s history set., Thei€ID of
the filename’s attributes is required to construct its object history set. foheya PMD
lookup is performed prior to the unlink operation. Additionally, during the PMD unlink

operation, the metadata-node validates that the flename matches the Ol®ipasse

Client history caching

To reduce the number of read history operations, object history setsaahed by the
client. Every metadata operation request in the PMD service returns aaréysitory

from each metadata-node executing the request. Histories are retuemeidithe request
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fails to execute. Since histories are cached, they may become out-obidstide A stale
replica history will cause the request to fail validation at the metadata-modevhich
the replica history originated (see line 728 in Figure 4.8). An up-to-dateaepistory
is returned by the metadata in response to receiving a stale history; thudietitecan

update its cache and retry the operation.

Retry and concurrency

Although the NFS server locks each filehandle associated with eachioperethe PMD
client, operations may still abort due to concurrency. Thus, operattonisenecessary.
Upon retry, new object histories must be obtained and classified. Thatmpeis based
upon these new histories. Many different policies regarding backoffatry may be im-
plemented to avoid retrying operations concurrently. This is particularlyaetean the
face of repair, since repairs issued concurrently may cause liveldtleyf execute at
metadata-nodes in an interleaved order that prevents any repair fropiatong success-
fully. This work does not focus on the policies regarding backoff a&td/y however it is

discussed further in the evaluation section.

5.5.4 Storage service

The PMD service is one part of a complete system, the storage servicesaaqplication
server complete the system. In the case of a file server application, theretislexibility
in how the metadata objects are used to provide file services. For exampkg,docess
privileges, and client caching of stored files involve the PMD servicethadstorage
service. This subsection briefly describes the selection of a storageeser

The interface and access protocol used by the storage service ieiep of the
protocol that underlies the metadata service. For example, the storaigesaay use
either a block based (e.g., iISCSI or Fibre Channel) or an object bastxtplrto access
storage. However, some coordination is required in the design of the rteetdgjacts and

the interfaces provided by the storage service. For example, if objectdilge in a flat
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namespace rather than blocks) are exported by the storage servineettuata objects
need not implement inodes or other structures to track block allocations.

Although we reject partitioning the namespace as a means to scale the metadata se
vice, partitioning data for the storage service is reasonable. A storaggrsyeed not
provide any guarantees about operations performed across multiplebjietss; as such,
partitioning is an appropriate technique for stored data. Partitioning allovesetit files
to have different performance and reliability properties (e¢/gmp need not be highly

replicated).

Implementation

The PASIS read—write protocol, described in Chapter 3, underliestatage service. It
provides block granularity read/write access to objects. The R/W pratoswides strong
consistency (linearizability of block read/write operations) and fault-tokaf erasure
coded data (e.g., data encoded with Rabin’s information dispersal [R88B])1A PS
service, implemented using the R/W protocol, can be relied upon to serializzafises
to stored data. Such an approach is suitable for an application that cominaisreency
itself. Alternately, locks could be provided by the PMD service so that tipdicgtion
does not need to provide concurrency control. Our PS service impletioanddso uses
CVEFS as its backing store; storage-nodes can either run collocated wittateeteodes
or not.

Another option is to use the R/CW protocol. The R/CW protocol offers sepagn-
sistency semantics in that writes not based on the most current versiorewéjdcted.
This has the nice property that the application server can implement vely caehe
consistency (since writes based on stale reads will be rejected by thgesgmavice).
However, these semantics come at an increased cost in tefshamd space-efficiency.
Instead, the versioning capability of the R/W protocol could be used tadeastrong
consistency across the entire file system through the use of immutable filagsGliat
write files through the PS service could be required to update the associatadata

attribute object with the version of the latest completed write operation; thusiegs
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consistency between the data and the attributes. However, this requidaesaaltansfers

to be serialized through the metadata.

5.6 Evaluation

5.6.1 Experimental setup

All experiments are performed on a rack of 30 Intel P4 2.66 GHz machiiteslw:B
of memory. Each computer has two 33.6G Seagate Cheetah 10K RPM SC8tidésk
and an Intel Gb Ethernet NIC. The computers are connected with ar24poswitch.
Debian testing Linux kernel 2.4.22 is installed.

Many experiments use NFS servers as clients to the PMD service, whils atrar
municate directly to through the PMD library interface. Multiple NFS servezsabte to
access the same PMD service simultaneously. The NFS servers are moambegpback
on the same machines as the NFS client. The NFS servers implement the NB®w+3 pr
col. The NFS servers use buffer cache of 128 MB. Unless othernpessfied, the buffer
cache is write-through and data is expired after 10 seconds. No attrioutestadata is
cached by the NFS servers.

The storage-nodes use CVFS as the backing data store. Each stodegkeas a fron-
tend that communicates with CVFS over IPC. Each CVFS instance uses a5 baffér
cache. All experiments show results using write-back caching at thegstatales, mim-
icking availability of 16 MB of non-volatile RAM. This allows us to focus experimeon

the overheads introduced by the protocol and not those introducee ljsthsubsystem.

5.6.2 Cryptography performance

Authenticators are HMACs, based on MD5 hashes, taken over objdotiéss In the
common case, the object history will have one or two entries. An object hisfithn two
timestamp entries is 112 bytes in size. It takes Ju830 generate a single entry in the
authenticator vector. For a very large object history, with 32 entries ghesamtry in the

authenticator vector takes L& to generate.
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Directory objects are implemented with 4 KB blocks (the large objects optimization).
On update operations, MD5 hashes of modified blocks are taken. Ssichsiake 24.4s
to generate over a full block. However, the hash is only taken over theeatifinrtion of

the block.

5.6.3 PMD micro-benchmarks

This subsection describes a number of micro-benchmarks performéttatiee PMD
service. No file data is involved for any of these experiments, they onlythesPMD
service. The first set of experiments examine NFS micro-benchmarkseldond set ex-
amines the impact of concurrency on PMbBeate operations and the third set examines

the impact of a fault on the response time distribution of a rucrekte operations.

PMD NFS micro-benchmarks

All the PMD operations described in Table 5.1 have been implemented. Mdke of
NFSv3 operations map to corresponding PMD service operations, althedgw re-
quire multiple PMD operations. NFS micro-benchmarks were performedsigaime of
the NFS metadata operations. The mean response times for these operatitediin
Table 5.2. The PMD service was configured to tolerate one Byzantine thaelefore six
storage nodes were used. In addition to the end-to-end response tittne RWD service,
the response times as observed by the PMD storage-nodes are also listed.

The response time for thereate operation represents a create that occurs within a
directory comprised of a single block. Due to the implementation of directoryctshja
linear search is performed to ensure the name being inserted into the dirdoés not
exist; thus, the larger the directory is in size, the longer the create takesviké the
performance of theeaddir operation is also dependent upon the size of the directory
(since each directory block is being transmitted back to the client). Thus esuits for
readdir are shown: one for a small directory containing 5 entries and one foga lar

directory containing 500 entries.
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| Operation | PMD end-to-end (ms) [ PMD time on S-N (ms) |
create (in a single block) 1.73 1.00 ‘
getattr 0.34 0.02
link 1.05 0.71
lookup 0.74 0.26
readdir (small) 0.79 0.06
readdir (large) 1.38 0.09
remove 1.48 0.60
rename 2.83 1.19
setattr 0.58 0.22
readhist 0.72 0.09

Table 5.2:Micro-benchmarks of NFS operations.

Concurrency

The impact of concurrency is examined in the context of Pé#Bate operations. Three
graphs show the results of performing PMbeate operations with varying degrees of
concurrency witht = 1,b = 0,N = 4. Two clients simultaneously perform create opera-
tions within a set of shared directories. Recalleate is a multi-object operation. In this
experimental setup, the parent directory is the source of concurrBmirycrease the like-
lihood of concurrency the set of shared directories is decreaseéde®ach run. In each
run, each client randomly picks a directory to use as the parent hytrthece operation.
Each client has only one outstanding request at a time. Care was takdly mvrlap
the execution of both clients.

The first graph, Figure 5.7(a), shows the mean response time and staledétion
as concurrency is increased. The “None” bar represents a run ixites directories
and only one client (i.e., there is no concurrency). It is not surprisingathshe amount
of concurrency increases, so does the response time as does trerd@denation. As
concurrency is increased, repair and barrier operations becomecomraon, as do the
number of operations that must be retried due to stale object historiesaEkagh con-
currency levels (two clients sharing two directories), the mean responsartiirstandard
deviations are within a factor of two or three of a run with no concurrency.

The second graph, Figure 5.7(b), shows the total number of barrikregair op-
erations attempted at each concurrency level. These counts are nodnalite total

number of create operations performed. Again, as concurrency eaiset, the number
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Figure 5.7:Concurrency experiments. These three graphs show the results of performing
create operations with varying degrees of concurrency. Two cliinultaneously perform cre-
ate operations into a fixed set of directories. For each operaeach client randomly picks a
parent directory from the directory set. To increase therdegf concurrency the directory set
size is decreased between each run. (a) Shows the mean sedjpoe and its standard deviation
as concurrency is increased. (b) Shows the total number ofdvaand repair operations per-
formed at each concurrency level normalized to the numberezte operations issued by the
client. (c) Shows the total number of times an operation w@ted due to stale object histories,
again normalized to the number of create operations.

of barrier and repair operations also increase. It is interesting to ndtth#ra is a large
step increase from the very low concurrency configurations (“Naref “16”) to the
higher concurrency levels (“4” and “2").

The third graph, Figure 5.7(c), shows the number of total operations diimgjuepairs
and barriers) that are rejected due to stale object histories. Recall, thecelgdes replica
histories returned by recent operations to construct the object higtbfgreaa subsequent
update operation. As well, every operation returns an updated repltoayhieven if that
operation failed). Examining the steep increase in stale object histories arhbigh
concurrency levels, one notices that there is often a race between tobdnts trying to
repair the same parent directory. Both clients try to write barriers, butaratient quite
succeeds in completing a barrier (since the barrier is rejected from atxflibe nodes
because the other client just wrote its barrier there). This observatjaires the designer
to carefully consider the back-off and repair policies when using optimistiiopols that

can result in livelock. More work is required in this area.
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Tolerating faults

This experiment shows the impact of a fault occurring at a random paiingla run
of create operations. The system was configured with 1, b= 0, N = 4 and a single
client that performed uniquereate operations continuously into one of sixteen directo-
ries (picked at random). The client had only a single request outstgradirthere is no
concurrency. Each run lasted for 10 seconds. Randomly duringfaaltinduced run,
one of the storage-nodes was killed. Seven fault-induced runs wei@med. There
were no correctness problems present in any of the fault-inducedThasemainder of
this subsection quantifies the performance consequences of running faited server.

Figure 5.8 shows the mean response time and standard deviation of a sittgleeta
run and the accumulation of the response times from the seven fault-indutgdTihe
mean response time for the fault-free run is 2.17ms with a standard deviafioBdwfs.
The mean response time across all fault-induced runs is 2.47ms with a stadedation
of 0.35ms. Although the standard deviations of the fault-free and the $mtleinduced
runs are similar, the standard deviation of each individual fault-induaedvas between
0.52ms and 0.66ms. In general, fault-induced runs with a higher meamsssfime also
had a higher standard deviation. Runs with higher mean response timesatrally
have a larger number of outlier response times (response 1ndass).

In a fault-free run, the client only waits for the fastést-t responses. Once a fail-
ure has occured, the client still waits fidir—t responses, but there are now oiNy-t
servers, so it is waiting for all responses (rather than the fastesetsiib$hus, varia-
tions in individual storage-node response times are not masked. Thuisrdasdor the
observed increases in the averages and standard deviations afsespoes within the

fault-induced runs.

5.6.4 PMD service macro-benchmarks

We use the Postmark benchmark [Katcher 1997] to benchmark the penfoenoé the

PMD service. Postmark is a metadata intensive benchmark and provides infa-
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Figure 5.8:Response time distributions of a fault-free and multiple failt-induced runs. This
figure shows the mean and standard deviation of responss fona fault-free run and multiple
fault-induced runs for thereate operation. At a random point during each of the other runs, th
PMD process on one of the storage-nodes is killed. As can d&re, see mean response time for
the fault-induced runs is higher than in the fault-free rédthough the standard deviations are
almost the same (between the fault-free and the all fadit:éed runs), the standard deviation in
a single fault-induced run is higher than the standard dgeiain the fault-free run.

mation about the performance of the PMD service. Postmark was designesbsure
the performance of a file system used for electronic mail, netnews, andassl ser-
vices. Postmark is comprised of two phases: (i) ind¢heationphase, it creates a large
number of small randomly-sized files (between 512 B and 9 KB); and, (ii)enréns-
action phase, it performs a specified number of transactions. Each transeotisists
of two sub-transactions, with one being a create or delete and the othgrabedad or
append. Three Postmark configuration parameters are important toparmegnt:files
(determines the creation phaseansactiongdetermines the transaction phase), dird
rectories(determines degree of access contention). Results from Postmarlinesypisr

are given in transactions per second over both phases.
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PMD service base throughput

The first experiment determines the maximum throughput of the PMD sefitiee?MD
service is configured to tolerate a single benign metadata-node fault aadiBe clients:
t=1,b=0, andN = 4. Postmark is run on an increasing number of NFS servers to
determine the maximum throughput of the PMD service in this configurationn3ore
that the PMD service is as loaded as possible, the NFS server usesttmagesfor the
storage service. Postmark is designed to benchmark a single NFS stowewer, it is
being used to benchmark a decentralized service behind an NFS intekasach, we
“scale” the number of files, transactions, and directories for each Pdgifes server
down, as we scale the number of Postmarks/NFS servers up. This is doméntain a
consistent working set across runs. Each NFS server runs Postmaatiferent directory
of the PMD service. The working set fits within the cache on the metadatsnod

Figure 5.9 shows the throughput of the PMD service with up to 16 distinct NFS
servers. For a single NFS server, Postmark is configured for 32@68actions, 1024
files, and 64 directories. Each NFS server has a single Postmark bakalumagainst
it. The Postmark configuration is scaled down as the number of clients is sgalétus
keeping the working set size the same. For example, with 16 NFS senastsnatk
scales down to 2048 transactions, 64 files, and 4 directories. The PMiBessaturates

just below 350 transactions per second.

Scaling fault-tolerance

In this experiment we evaluate the impact on throughput of adding metaddés-to
scale the fault-tolerance of the PMD service. A single NFS server rumasgnark with
a configuration of 4096 transactions, 128 files, and 1 directory gexsei@ad (note this
configuration for Postmark differs from the above experiment).

This experiment is performed with two configurationsbanign configuration in
which the number of crash recovery failures tolerated is scaled fresrl tot = 3,

while b = 0; and, aByzantineconfiguration in which the number of Byzantine failures
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Figure 5.9:Postmark throughput vs. client load. This graph compares the total system through-
put of a Postmark workload as the number of NFS servers (PNHhts)) increase in fault-free
operation. Each client runs a single instance of Postmaikiegt a NFS server mounted via loop-
back on the same machine. The sets of bars represent a catfiguwith b=0,t =1, N =4and
b=1t=1N=6.

tolerated is scaled fromm=t =1 tob =1t = 3. Figure 5.10 demonstrates that as the
number of failures tolerated scales, the responsiveness of the PMiDeskr fairly flat

for the benign configuration and degrades only moderately for the Bipeaconfigura-

tion. This degradation is expected, for a number of reasons. First, mgyography is
being performed by metadata-nodes (e.g.,lder 3 authenticators are comprised of 16
entries, sincé\ = 5b+ 1). Second, all storage-nodes are being communicated with, thus
the communication costs grow &kincreases. Additionally, this experiment shows the
performance cost of a fully Byzantine-tolerant system is not prohib{titéeast for low

values ofb).
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Figure 5.10Postmark run time vs. total failures tolerated (t). This graph compares the runtime
of a Postmark workload as the number of tolerated faultsqt¥daled upward. The two lines
represent a wholly crash environment with=0, while the other represents a wholly Byzantine
environment with b=t.

Scaling throughput using threshold quorums

Recall, Section 4.5 describes techniques that can be used to scale theéssistmughput

by adding storage-nodes. For example, the smallest configuratiornt with b = 1 is

N = 6, COMPLETE = 5, andINCOMPLETE = 3. It is possible to increase the bounds on the
R/CW constraints in the following way: by addindA3o N, 2A must be added tQc,
COMPLETE, and INCOMPLETE. Thus, asA increases the lower bound on the load of the
system isZ.

This experiment validates this hypothesis foe= 0 to A = 7. Table 5.3 shows the
experimental setup for the threshold quorum based experiment. Thesthitdttolumn
showsA. The second column shows the valueNofcorresponding to thah value (for
t=1b=1 N =6+ 3A). The third column shows the size of each threshold quorum.

The threshold quorum represents the set of storage-nodes a singlewllieommunicate
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A N Threshold Percentage of reqs each Normalized system throughput (to
quorum size storage-node executes A=0

0 6 5 2 =833% 1

1 9 7 L =778% 1.07

2 12 9 & =75% 111

3 15 11 1 =733% 1.14

4 18 13 1 =722% 1.15

5 21 15 o =714% 1.17

6 24 17 3+ =708% 1.18

7 27 19 3 =704% 1.18

Table 5.3 Threshold quorum experiment parameters p =t = 1). This table shows the derived
parameters when using theshold quorums. The first columwsshoThe second column shows
the value of N. The third column shows the size of each thigsfumrum (Quorum = Q¢ + b).
The fourth column gives the quorum load of each storage-(icelethe fraction of operations for
which a storage-node must execute a request). Lastly, thedifumn shows the calculated system
throughput normalized to the throughputff 0.

with. Note, that ad\ increases, the ratio of the size of the threshold quorushdecreases.
For threshold quorums to work without requiring frequent repair oraitggncing, it is
necessary for all clients accessing a data-item to interact with that dataéhiteagh the
same quorum. If many distinct quorums are used to update/or query a aatadfir
and/or object syncing will be necessary (this is not always the casesfaatige-nodes
are always updated—as is the default in all other experiments wher8). The fourth
column shows the expected load of a single storage—nodef’éﬁ’é‘,‘\;“—sue). Column five
shows the expected system throughput normalize-t0.

Figure 5.11 shows the throughput of the PMD service when using a thidegtiorum
construction, ad increases. The throughput is normalized to the throughput obtained at
A = 0. Two curves are plotted on the graph. The first line shows the calculatmeghput
(see column 5 in Table 5.3). The second line shows the maximum throughpoedtta
by running a heavy weight synthetic update operation containing a 4 KiBreegt and a
10 ms storage-node think time.

To measure the throughput, many clients, each with multiple outstanding queries o
updates are employed. The reported throughput measurements asafaraied system
(i.e., adding more clients does not increase throughput) We employ arsaticategy
based on a deterministic function of the object ID. Such an access stra®gys in

updates for a given object preferentially accessing the same quorumh@ereferred
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Figure 5.11:Throughput of threshold quorum system vs.A. This graph shows the normalized
system throughput dsis increased. Throughput is normalized to that\cf 0. See Table 5.3 for a
description of the relationship betweAnN, and throughput. Two curves are shown. The first line
shows the calculated throughput as described in Table 518.sBcond line shows the throughput

attained when running a 4KB update operation.

qguorumn). Accessing a service that is implemented by an ensemble of Q/U objects, via
each objects preferred quorum, approximates a traditional quorurssastategy. As
can be seen, the synthetic update line closely follows the calculated thrduginge.

An additional experiment was run using a recursive threshold cotistnud/alkhi
et al. 1997]. For the recursive threshold construction (withb), N = (5b+ 1)2+1 and
|Quorum = (4b+ 1)2*1 (i.e., A indicates recursion depth). With=b=1 (A=1,N =
36, |Quorum = 25), the achieved throughput, normalizedie- 0, was 119 versus 20

for the normalized theoretical throughput.

5.6.5 PASIS file system: SSH-build

The SSH-build benchmark was constructed as a replacement for the Andrew file sys-

tem benchmark [Howard et al. 1988]. This experiment also demonstragesffect of
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Figure 5.12Run time of SSH build for Linux, PMD, and PMD + PS.

the PMD service operating in unison with the PS service. This benchmasist®of
three phases: unpacking the OpenSSH archive, runtiagigure, and compiling the
OpenSSH binaries. The unpack phase stresses metadata operatides oh\arying
sizes by uncompressing and untaring the OpenSSH (v3.8pl) tar ar€higeonfigure
phase consists of the automatic generation of header files and Makefiieh,imvolves
building various small programs that check the existing system configurdtmnbuild
phase compiles, links, and removes temporary files. This last phase is thébmten-
sive, but it also generates a large number of object files and a fewtexdes. Figure 5.12
shows the runtime of th@SH-build benchmark for four configurations.

None of the NFS configurations use the synchronous mount option.\t¢oyed NFS
configurations use a 128 MB write-back cache with no data expiration tineefirgt set
of bars show a user-level NFSv3 server that stores files in the lotalfix system.
The second set of bars show the performance of the same user-leSgBNserver just
described, however the data is stored across the network to a single dB§e-node.

This shows the overhead of using CVFS across an additional networkHimkever,
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in this configuration metadata is treated as data (i.e., attributes and directoeg @mné
stored within data blocks). The third set of bars show the cost of usirRABES metadata
service (witht = b = 1,N = 6) storing file data in the local file system. The fourth, and
last, set of bars show tt#SH-build benchmark run against the complete PASIS metadata
and storage service. Both the metadata and storage service are aahfigpint = b = 1;

N = 6 for the metadata service aihtl= 5 for the storage service. As can be seen there
is almost a 2x performance difference between an user-level NF8rsgith no fault-
tolerance and an NFS server backed by a Byzantine fault-tolerant rteetauth storage
service that provides strong consistency. The majority of the overhehgtito the extra
communication required (11 storage-nodes in the PMD+PS case vs. 1 tyitheuwvell

there is a non-zero cost in our CVFS and storage-node implementations.

5.7 Summary

This chapter describes the PASIS metadata (PMD) service. It useshqumrum-style
query/update (Q/U) protocol to provide horizontal scalability for metadetas enjoyed
for data in scalable storage systems. The PMD service extends the reditdécal write
protocol, described in Chapter 4, to support more general query atataipperations.
These operations provide access to objects at a finer-granularitydhdodak-based pro-
tocols (e.g., reading/inserting directory entries vs. reading/writing fulttbréees). In ad-
dition, atomic updates across multiple objects are supported.

Similar to the other protocols developed thus far, the Q/U protocol uses optimism
and versioning to achieve efficiency while tolerating asynchronous cofcations and
Byzantine failures of clients and servers. Experiments with a decentraliz&dile ser-
vice demonstrate feasibility and efficiency. As well, performance undewoency and
faults is examined. Experiments also show that threshold quorum constsicam be
used to significantly increase throughput without requiring the partitioniriljeometa-

data service.



6 Conclusions and Future Work

6.1 Conclusion

This thesis has demonstrated a novel approach to achieving scalablg faightolerant
storage systems by leveraging a set of efficient and scalable, strosgtemcy proto-
cols enabled by storage-node versioning. These consistency geotmtieve efficiency
and scalability via a combination of optimistic operation, versioning, and quatyla-
redundancy.

Three consistency protocols have been developed that offer vasgim@ntics use-
ful for building different components within a survivable, decentraliggdage-system.
The first protocol, the read/write protocol (R/W), provides read—wetaantics of full
data blocks. This protocol is suitable as the basis for the data storage mentpathin
a survivable storage system, since most block based data services akpde block
updates.

The second protocol, the read/conditional-write (R/CW) protocol, previded—
modify—write semantics of full data blocks. While this protocol also assumekbimr
data objects) are read and written as atomic units, it offers stronger ntsiguaran-
tees. These semantics guarantee that the data region has not been rhetlifesh a read
and a successive write operation to the same data region.

The third protocol, the query/update (Q/U) protocol, extends the R/CW grbto
more fully support the semantics required by metdata. In order to pretbereensistency
of metadata, metadata objects (e.g., directories) require update operatibmsottify

existing contents (such as inserting a new directory entry), rather tremwvieting their
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previous contents. As well, metadata usually requires atomic update opsratimss
multiple metadata objects (e.g., when performing a rename, or moving files). /the Q
protocol provides for the serializability of multiple, arbitrary operations uigifothe use

of replicated state machines.

These protocols were developed in detail, evaluated individually, artassa basis
for building a fault-tolerant, scalable storage-system. Results show th&ABES file
system configured to tolerate one Byzantine fault is within a factor of two ingtbigonse
time unpacking, configuring, and building OpenSSH as compared to aplicated user-
level NFS server. The storage service component of the file systeng, th&irR/W pro-
tocol, was shown to scale well in terms of both throughput and responsesimarber
of faults tolerated is scaled up. As well, it performs well when compared tgzarine
fault-tolerant agreement protocol (BFT) and by offloading work freterage-nodes to
clients increases its scalability. Results also show that the PASIS metadate sesing
the query/update protocol, scales with as the number clients is increasegpande time
increases slightly as the number of faults tolerated is scaled up. Addition&lysth of
quorum thresholds enables the system’s throughput to scale close to rtitedounds
and it is expected that other quorum constructions can further inctleasgstem’s scal-

ability.

6.2 Contributions

This main contribution of this thesis is the design and evaluation of three corwiste

protocols that have been enabled by versioning storage-node® ddwsibutions are:

(1) The development and demonstration of a read/write block storagstEmty pro-
tocol that enables highly fault-tolerant storage through the use ofrerasded data

and versioning storage-nodes. Its correctness is shown throughgbedches.

(2) The development and demonstration of a read/conditional-write blot&qwi that

allows for stronger read—-modify—write consistency semantics. Additionedige-
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offs between tolerating Byzantine clients and erasure coding, as weldeoffs

between tolerating Byzantine storage-nodes and liveness have beesséis.

(3) The extention of the read/conditional-write block protocol (in the guggate pro-
tocol) to support operations on multiple, arbitrary objects and the implementation
of a scalable metadata service based upon the query/update and theite g

tocol.

(4) The evaluation of a distributed file system that utilizes the scalability art fau
tolerance of the developed consistency protocols in terms of the numbaults f
tolerated, the maximum throughput the system can sustain, and its perfermanc

degraded operation modes (i.e., with concurrency and faults).

6.3 Future directions

While this thesis has demonstrated the feasibility of using versioning stocgesto
provide consistency through the use of scalable, optimistic protocols, dénerenany
tradeoffs and design decisions that remain unanswered.

There exist additional system models that use stronger assumptions te rigngu
constraints (in terms dfl, Qc, andm) of the protocol in use. For example, we have devel-
oped a family of R/W protocols that enable the client to choose between hrsyrocis
or asynchronous timing model, Byzantine or crash fault models (for bothtsliend
storage-nodes), and repair or non-repair [Goodson et al. 2008}e is a tradeoff be-
tween when to use which of the protocol family members. Additionally, alterm&ivit
models could be examined. The focus, in the work so far, has been amtyz and crash
faults. Additional fault models between these two extremes exist. For examgis, ap-
plications may not require the expensive cost of Byzantine faults, lquireeprotection
from integrity or value faults, which may lead to lower constraints. As well;omiuding
Byzantine faults may be considered.

For the block-based protocols there is the tradeoff between when to eiskffer-

ent encoding schemes. There exists the option to increase spacexefficieincreasing
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the m parameter. However, increasingalso requires an increase Mand Qc, which
requires communicating with a larger number of storage-nodes and thsstéehidjher
disk head utilization. Different workloads may require different configjons and en-
coding schemes (e.g., the use of replication over the striping of data, oortitgration

of replication and erasure coding). Identifying the correct confiipmao use for each
application is an interesting problem. Similarly, different quorum constructiame dif-
ferent properties in terms of load and scalability. Thus, knowing when tsitran be-
tween different quorum constructions could prove to be of greatfthénghe system.
Additionally, an examination of the availability and reliability of the system whengiusin
different encoding schemes can be made.

There are also a number of protocol optimizations that can be used. &opéx au-
thenticators could be used the R/W protocol to enable garbage collectionutittemneed
for storage-nodes to communicate. Additionally, write withesses may be usedd¢ase
space-efficiency in many of the protocols. Similar to read witnesses, writesgiés hold
only a timestamp with no data, but have the ability to vote for a specific piece obgata
use of the data hash contained within the timestamp.

In terms of the file system, a number of tradeoffs and open questions exastdr
to provide true file sharing between clients, the issue of client cache exatyemust
be addressed. There are traditional methods such as locks and létdsés writhout)
callbacks that solve this problem. However, synchrony assumptiongtareitroduced
to detect clients who fail while holding locks. The impact of these assumptimres ot
been examined. As well, a fully functional file system requires the enfogoe of access
control. While an overview of lock/lease and access control objects isasssed, they
have not been implemented. Lastly, a thorough examination of the tradeasfged in
desiging a storage-service can be made (e.g., the use of the R/W praiotnd R/CW

protocol in providing the storage-service).
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A Read/write safety and liveness

A.1 Proof of safety

This section presents a proof that our protocol implements linearizabilitylifijeand

Wing 1990] as adapted appropriately for a fault model admitting operatipBybantine

clients.

A.1.1 Safety guarantees

Intuitively, linearizability requires that each read operation return a ensistent with
some execution in which each read and write is performed at a distinct pdimérbe-
tween when the client invokes the operation and when the operation refinadapta-
tions necessary to reasonably interpret linearizability in our contextfamisethe fact that
Byzantine clients need not follow the read and write protocols and thatapaidtions

may abort in non-repair member protocols. We consider four distinctysgirantees:
Linearizability

Repairable protocol members with crash-only clients achieve linearizabildyigiaally
defined by Herlihy and Wing [Herlihy and Wing 1990].

Byzantine-operation linearizability

Read operations by Byzantine clients are excluded from the set of linbliaperations.

Write operations are only included if they are well-formed (i.e., if they arelsiaglued
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as in Section 3.2).

Write operations by Byzantine clients do not have a well-defined start timzh Su
operations are concurrent to all operations that begin before theyletmrand to all
operations that are also performed by Byzantine clients. A Byzantine damniwvrite
“back in time” by using a lower logical timestamp than a benign client would hagd.us
Since write operations by Byzantine clients are concurrent to all opesdtia started
before it completed, they can be linearized just prior to some concurréetaperation
(if there is one). Such a linearization ensures that the Byzantine “back irfi wmiie
operation has no effect since the value written is never returned byl apesation.

In summary, there are two types of Byzantine write operations that arenckow:
writes that are not well-formed and “back in time” writes. In the case that ttzaiine
write operation is not well-formed, read operations by benign clients exdlufiom
the set of linearized operations. In the case that the Byzantine writetigpeis “back
in time”, the protocol family achieves something similar, in that such Byzantine write

operations are linearized so that they have no effect.

A.1.2 Proof

Because return values of reads by Byzantine clients obviously needmgly with any
correctness criteria, we disregard read operations by Byzantine dheetzsoning about
linearizability, and define the duration of reads only for those executdxtbign clients

only.

DEFINITION 1 A read operation executed by a benign clibaginswhen the client in-
vokesREAD locally. A read operation executed by a benign clieainpletesvhen this
invocation returngtimestampvalue. A read operation by a benign client that crashes

before the read completes, does not complete.

Before defining the duration of write operations, it is necessary to defiagit means

for a storage-node tacceptand therexecutea write request.
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DEFINITION 2 Storage-nod8&, acceptsa write request with data-fragmeDt cross check-
sumCC, and timestamgs upon successful return of the functiéALIDATE WRITE(ts, D, CC)

at the storage-node.

DEFINITION 3 Storage-nodéS, executesa write request once the write request is ac-

cepted. An executed write request is stored in stable storage.

It is not well defined when a write operation by a Byzantine client begiherdfore,

we settle for merely a definition of when writes by Byzantine clients complete.

DEFINITION 4 A write operation with timestamgs complete®nceQc benign storage-

nodes have executed write requests with timestemp

In fact, Definition 4 applies to write operations by benign clients as well agewr
operations” by Byzantine clients. In this section, we use the lakeds a shorthand for
the write operation with timestamis. In contrast to Definition 4, Definition 5 applies

only to write operations by benign clients.

DEFINITION 5 wis beginswhen a benign client invokes thi@ITE operation locally that

issues a write request bearing timestamsp

LEMMA 1 Let ¢ and ¢ be benign clients. If cperforms a read operation that returns

(ts1,v1), Cx performs a read operation that returris,, vo), and tg = tsy, then = v».

Proof. Sincets; = tsp, each read operation considers the same verifier. Since each
read operation considers the same verifier, each read operationarsribie same cross
checksum (remember, a collision resistant hash function is employedadtopeeration
does not return a value unless the cross checksum is valid and thener¢harb read
responses with the timestamp (since only candidates classified as repairabtepbete
are considered). Thus, only a set of data-fragments resulting froerésare-coding of
the same data-item that are issued as write requests with the same timestamp es valid

a cross checksum. As such,andv, must be the same. O
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Let vis denote the value written bys which, by Lemma 1, is well-defined. We use

rs to denote a read operation by a benign client that ret(tengs).

DEFINITION 6 Leto; denote an operation that completes (a read operation by a benign
client, or a write operation), and let denote an operation that begins (a read or write by
a benign client)o; precedes gif 0, completes before, begins. The precedence relation

is written aso; — 0,. Operatioro, is said to follow, or to be subsequent to, operatign

LEMMA 2 If Wis — Wiy, then ts< tS.

Proof: A complete write operation executes at at l€gsbenign storage-nodes (cf. Def-
inition 4). Sincew;s — Wiy, theREAD_TIMESTAMP function forws collectsN —t TIME_RESPONSE
messages, and s@y observes at leadi+ 1 TIME RESPONSE messages from benign
storage-nodes that executeg, (remembert + b < Q¢ for all asynchronous protocol
family members). As suchy,y observes some timestamp greater than or equaland
constructds’ to be greater thats. A Byzantine storage-node can return a logical times-
tamp greater than that of the preceding write operation; however, this stilhads logical

time and Lemma 2 holds. O

OBSERVATION 1 Timestamp order is a total order on write operations. The timestamps

of write operations by benign clients respect the precedence ordeganmies.

LEMMA 3 If some read operation by a benign client returts vis), with us # L, then

Ws is complete.

Proof. For a read operation to return valug, the value must have been observed at
at leastQc + b storage-nodes (given the complete classification rule for candidate sets)
Since, at mosb storage-nodes are Byzantine, the write operatigrhas been executed

by at leasQ¢ benign storage-nodes. By definitiomg is complete. O

OBSERVATION 2 The read operation from Lemma 3 could have performed repair be-
fore returning. In a repairable protocol member, a candidate that is neitfssifiable as

incomplete or complete is repaired. Once repaired, the candidate is complete.
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DEFINITION 7 wisiswell-formedf ts.Verifierequals the hash of cross checkso@ and
foralli € {1,...,N}, hashCC]i] of the cross checksum equals the hash of data-fragment

i that results from the erasure-encodingef

LEMMA 4 If wis is well-formed, and if w — g, then ts< ts.

Proof. Sincews is well-formed it can be returned by a read operation. By Lemma 3,
read operations only return values from complete write operations. As sgcmust
either return the value with timestangor a value with a greater timestamp. Therefore,

ts< tg. m|

OBSERVATION 3 It follows from Lemma 4 that for any reag, eitherwis — ri andws
is the latest complete write that precedgsor wis /4 I andris 4~ Wis (i.€.,Wis andrs are

concurrent).

OBSERVATION 4 It also follows from Lemmas 3 and 4 thatrif — riy, thents < ts.
As such, there is a partial order on read operations by benign clients defined by the
timestamps associated with the values returned (i.e., of the write operatiohs\ieae

formally, ri < rg <= ts< ts.

Since Lemma 2 ensures a total order on write operations, ordering recaisliag
to the timestamps of the write operations whose values they return yields a petgal
on read operations. Lemma 4 ensures that this partial order is consigteptecedence
among reads. Therefore, any way of extending this partial order to laoraker yields
an ordering of reads that is consistent with precedence among reads. Jgmmas 2
and 4 guarantee that this totally ordered set of operations is consistergresdtbdence.
This implies the natural extension of linearizability to our fault model (i.e., igmom@ads
by Byzantine clients and the begin time of writes by Byzantine clients); in partjdula
implies linearizability as originally defined by Herlihy [Herlihy and Wing 1990j the

read/write protocol if all clients are benign.
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A.2 Proof of liveness

This section presents the proof of the liveness properties of protocuobers.

A.2.1 Liveness guarantees

There are two distinct liveness guarantees: wait-freedom and siligigwait-freedom.

These guarantees hold so long as the storage capacity on storagdsooteexhausted.

Wait-freedom

Wait-freedom is a desirable liveness property [Herlihy 1991]. Infdiynachieving wait-
freedom means that each client can complete its operations in finitely manyrsteps
gardless of the actions performed or failures experienced by othetsclieor a formal

definitions see [Herlihy 1991].

Unbounded storage capacity

In the proof of liveness for read operations, we assume that stoiedgs have unbounded
storage capacity (i.e., that the entire version history back to the initial vahtdime0 is
available at each storage-node). To prevent capacity exhaustioe,garbage collection
mechanism is required. Garbage collection reduces the liveness afpestions. A read
operation that is concurrent to write operations and to garbage collectypnohabserve
a complete candidate. The read operation can observe a series of inteooguididates
that complete and are garbage collected within the duration of the readiopehasuch
a situation, the read operation would obselveat some timestamp other th@from
storage-nodes, indicating that the client has “skipped” over a compldéie ayperation.
The read operation then must be retried. The implementation details of gadibagtion

and its impact on liveness properties is given in Section 3.7.3.

A.2.2 Proof

All liveness properties hinge on the following lemma.
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LEMMA 5 All operations eventually receive at least-N responses.

Proof. In the crash-recovery model, there are at lédistt good storage-nodes (i.e.,
storage-nodes that are always-up or eventually-up). By definitimnteally, all good
storage-nodes will be up. Since all requests to storage-nodes, lfesrtscare retried until
N —t responses are received, eventudlly; t responses will be received (SEAD_TIMESTAMP,

DO_WRITE, andDO_READ). d

OBSERVATION 5 It is possible for progress to be made throughout the duration of a run,
not just once all good storage-nodes are up. Lemma 5 guaranteesdehatatly N —t
responses will be received. During any period in whHith t storage-nodes are up, oper-
ations may receivbl —t responses and thus complete. In fact, responses can be collected,
over time, fromN —t storage-nodes, during a period in which fewer thinat storage-

nodes are ever up (but during which some storage-nodes crasbraedacover).

Asynchronous repairable

The asynchronous repairable protocol member provides a strong$is@noperty, namely
wait-freedom [Herlihy 1991; Jayanti et al. 1998]. Informally, eackragion by a correct
client completes with certainty, even if all other clients fail, provided that at imesrvers

suffer Byzantine failures and no more thiagervers are not good.

LEMMA 6 A write operation by a correct client completes.

Proof. A write operation by a correct client waits fof —t responses from storage-
nodes before returning. By Lemma [8,—t responses can always be collected. Since,
Qc < N—t—Db(cf. (3.5) in Section 3.4) for repairable protocol members, tNent >
Qc + b. Since at mosb storage-nodes are Byzantine, then at l€gstbenign storage-

nodes execute write requests, which completes the write operation. O

LEMMA 7 A read operation by a correct client completes.
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Proof. GivenN —t READ_RESPONSE messages, a read operation classifies a candidate
as complete, repairable, or incomplete. The read completes if a candidatesiieda
as complete. As well, the read completes if a candidate is repairable. Repaii-is in
ated for repairable candidates—repair performs a write operation, vidyidtemma 6
completes—which lets the read operation complete. In the case of an incontipéete,
read operation traverses the version history backwards, until a conglegpairable
candidate is discovered. Traversal of the version history terminatestflogical time0

is encountered &)¢ storage-nodes. O



