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Abstract

Survivable storage systems mask faults. A protocol family shifts the decision of which types of faults from implementation time to
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exploit data versioning to efficiently provide consistency for erasure-coded data. Members of the protocol family may assume either
a synchronous or asynchronous model, can tolerate hybrid crash-recovery and Byzantine failures of storage-nodes, may tolerate
either crash or Byzantine clients, and may or may not allow clients to perform repair. Additional protocol family members for
synchronous systems under omission and fail-stop failure models of storage-nodes are developed.
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1 Introduction

Survivable, or fault-tolerant, storage systems protect data by spreading it redundantly across a set of storage-
nodes. In the design of such systems, determining which kinds of faults to tolerate and which timing
model to assume, are important and difficult decisions. Fault models range from crash faults to Byzan-
tine faults [16] and timing models range from synchronous to asynchronous. These decisions affect the
access protocol employed, which can have a major impact on performance. For example, a system’s access
protocol can be designed to provide consistency under the weakest assumptions (i.e., Byzantine failures in
an asynchronous system), but this induces potentially unnecessary performance costs. Alternatively, de-
signers can “assume away” certain faults to gain performance. Traditionally, the fault model decision is
hard-coded during the design of the access protocol.

This traditional approach has two significant shortcomings. First, it limits the utility of the result-
ing system—either the system incurs unnecessary costs in some environments or it cannot be deployed in
harsher environments. The natural consequence is distinct system implementations for each distinct fault
model. Second, all data stored in any given system implementation must use the same fault model, either
paying unnecessary costs for less critical data or under-protecting more critical data. For example, temporary
and easily-recreated data incur the same overheads as the most critical data.

In [9], we promote an alternative approach, in which the decision of which faults to tolerate is shifted
from design time to data-item creation time. This shift is achieved through the use of a family of access
protocols that share a common server implementation and client-server interface. A protocol family supports
different fault models in the same way that most access protocols support varied numbers of failures: by
simply changing the number of storage-nodes utilized, and some read and write thresholds. A protocol
family enables a given infrastructure of storage-nodes to be used for a mix of fault models and number of
faults tolerated, chosen independently for each data-item.

The protocol family covers a broad range of fault model assumptions (crash-recovery vs. Byzantine
servers, crash vs. Byzantine clients, synchronous vs. asynchronous communication, client repairs of writes
vs. not, total number of failures) with no changes to the client-server interface or server implementation. Pro-
tocol family members are distinguished by choices enacted in client-side software: the number of storage-
nodes that are written and the logic employed during a read operation.

In this paper, we identify and prove the safety and liveness properties that each member of the protocol
family achieves.

The remainder of this paper is organized as follows. Section 2 describes our protocol family. Section 3
describes the mechanisms employed by the protocol family to protect against Byzantine faults. Section 4
details how asynchronous protocol members are realized within a common software implementation. Sec-
tion 5 develops constraints (e.g., on the minimum number of storage-nodes required) for asynchronous
members. Sections 6 and 7 respectively prove the safety and liveness properties of asynchronous proto-
col family members. As well, the distinct safety and liveness properties of each protocol family member
are identified. Section 8 extends the development of asynchronous protocol members into the synchronous
timing model, yielding the synchronous protocol members. Moreover, additional protocol family members
for synchronous environments that tolerate omission failures and fail-stop failures instead of crash-recovery
failures are developed. Each distinct storage-node failure model for synchronous protocol family mem-
bers leads to distinct constraints (e.g., on the minimum number of storage-nodes required). In Section 9
synchronous protocol members are extended to take advantage of loosely synchronized client clocks. Sec-
tion 10 discusses work related to members of the protocol family.
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2 The protocol family

We describe each protocol family member in terms of N storage-nodes and an arbitrary number of clients.
There are two types of operations — reads and writes. Each read/write operation involves read/write requests
from a client to some number of storage-nodes. We assume that communication between a client and a
storage-node is point-to-point and authenticated; channel reliability is discussed in Section 2.1.2.

At a high level, the protocol proceeds as follows. A data-item is encoded into data-fragments; any
threshold-based erasure code (e.g., replication, secret sharing [26], information dispersal [23], short secret
sharing [15]) could be used. Logical timestamps are used to totally order all write operations and to iden-
tify data-fragments from the same write operation across storage-nodes. For each correct write, a client
constructs a logical timestamp that is guaranteed to be unique and greater than that of the latest complete
write (the complete write with the highest timestamp). A write operation is complete once sufficient benign
(non-Byzantine) storage-nodes have executed write requests. The exact number of storage-nodes that must
execute a write request for a client to know that its write operation is complete differs among protocol mem-
bers. Storage-nodes provide fine-grained versioning; a correct storage-node stores a data-fragment version
(indexed by logical timestamp) for each write request it executes.

To perform a read operation, a client issues read requests to a set of storage-nodes. From the responses,
the client identifies the candidate, which is the data-fragment version returned with the greatest logical
timestamp. The read operation classifies the candidate as complete, incomplete or unclassifiable based on
the number of read responses that share the candidate’s timestamp. If the candidate is classified as complete,
then the read operation is complete; the value of the candidate is returned. If it is classified as incomplete,
the candidate is discarded, another read phase is performed to collect previous versions of data-fragments,
and classification begins anew; this sequence may be repeated. If the candidate is unclassifiable, members
of the protocol do one of two things: repair the candidate or abort the read operation.

2.1 Family members

Each member of the protocol family is characterized by four parameters: the timing model, the storage-node
failure model, the client failure model, and whether client repair is allowed. Eight protocol members result
from the combination of these characteristics, each of which supports a hybrid failure model (crash-recovery
and Byzantine) of storage-nodes.

2.1.1 Timing model

Protocol family members are either asynchronous or synchronous. Asynchronous members rely on no
timeliness assumptions (i.e., no assumptions about message transmission delays or execution rates). In
contrast, synchronous members assume known bounds on message transmission delays between correct
clients/storage-nodes and their execution rates.

2.1.2 Storage-node failure model

Family members are developed with a hybrid storage-node failure model [27]. Under a traditional hybrid
failure model, up to t storage-nodes could fail, b ≤ t of which may be Byzantine faults; the remainder could
only crash. However, we consider a hybrid failure model for storage-nodes that crash and recover.

First, we review the crash-recovery model from Aguilera et al. [1]. In a system of n processes, each pro-
cess can be classified as always-up, eventually-up, eventually-down, or unstable. A process that is always-up
never crashes. A process that is eventually-up crashes at least once, but there is a time after which it is per-
manently up. A process that is eventually-down crashes at least once, and there is a time after which it is
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permanently down. A process that is unstable crashes and recovers infinitely many times. These classifica-
tions are further refined: a process is good if it is either always-up or eventually-up.

We combine the crash-recovery model with the hybrid failure model as follows. Up to b storage-nodes
may ever be Byzantine; such storage-nodes do not recover and are not good. There are at least N − t good
storage-nodes (where b ≤ t). A storage-node that is not Byzantine is said to be benign (i.e., benign storage-
nodes are either always-up, eventually-up, eventually-down, or unstable).

We assume that storage-nodes have stable storage that persists throughout the crash and recover pro-
cess. We assume point-to-point authenticated channels with properties similar to those used by Aguilera et
al. [1]. In summary, channels do not create messages (no creation), channels may experience finite dupli-
cation, and channels are fair loss. The finite duplication property ensures that if benign process p sends a
message to benign process q only a finite number of times, then q receives the message only a finite number
of times. The fair loss property ensures that if benign process p sends infinitely many messages to good
process q, then q receives infinitely many messages from p.

The timing model and storage-node failure model are interdependent. In an asynchronous system,
storage-node crashes are indistinguishable from slow communication. In a synchronous system, storage-
nodes that crash could be detectable via timeouts (i.e., the storage-nodes could fail-stop). However, in a
crash-recovery failure model, the “fact” that a storage-node has timed out cannot be utilized; the timeout
could be from a storage-node that, in the future, may respond. The crash-recovery failure model is a strict
generalization of the omission and crash failure models. Under less general failure models, the lower bound
on the total number of storage-nodes required is reduced for synchronous protocol members. As such,
we consider synchronous protocol members under omission and fail-stop storage-node failure models in
Section 8 .

2.1.3 Client failure model

Each member of the protocol family tolerates crash client failures and may additionally tolerate Byzantine
client failures. We refer to non-Byzantine clients as benign (i.e., benign clients are either correct or crash).
Crash failures during write operations can result in subsequent read operations observing an incomplete or
unclassifiable write operation.

As in any general storage system, an authorized Byzantine client can write arbitrary values to storage.
Byzantine failures during write operations can additionally result in a write operation that lacks integrity;
the decoding of different sets of data-fragments could lead to clients observing different data-items. Mech-
anisms for detecting any such write operation performed by a Byzantine client are described in Section 3.
These mechanisms successfully reduce Byzantine actions to either being detectable or crash-like, allowing
Byzantine clients to be tolerated without any change to the thresholds.

The timing model and client failure model are interdependent. In an asynchronous system, readers
cannot distinguish read-write concurrency from a crash failure during a write operation. In a synchronous
system, readers can distinguish read-write concurrency from a crash failure during a write operation (by
issuing multiple read requests separated in time by the known bound on write operation duration). However,
in this paper, we do not consider synchronous protocol members that take advantage of this information.

2.1.4 Client repair

Each member of the protocol family either allows, or does not allow, clients to perform repair. Repair enables
a client that observes an unclassifiable (i.e., repairable) candidate during a read operation to perform a write
operation, which ensures that the candidate is complete, before it is returned (see Section 4.2.2).

In systems that differentiate write privileges from read privileges, client repair may not be possible.
Non-repair protocol members allow read operations to abort. Reads can be retried at either the protocol or
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Timing model Client failure Repairability Safety Liveness

Asynchronous Crash-only Repairable Linearizable [12] Wait-free [10, 14]

Non-repair Linearizable with read aborts [22] Single-client wait-free

Byzantine Repairable Byzantine-operation linearizable Wait-free

Non-repair Byzantine-operation linearizable

with read aborts

Single-client wait-free

Synchronous Crash-only Repairable Linearizable Wait-free

Non-repair Linearizable with read aborts Single-client wait-free

Byzantine Repairable Byzantine-operation linearizable Wait-free

Non-repair Byzantine-operation linearizable

with read aborts

Single-client wait-free

Table 1: Safety and liveness properties of protocol family members. For details on safety guarantees see

Section 6.1. For details on liveness guarantees see Section 7.1.

application level. At the protocol level, concurrency is often visible in the timestamp histories—an aborted
read could be retried until a stable set of timestamps is observed. Other possibilities include requiring
action by some external agent or blocking until a new value is written to the data-item (as in the “Listeners”
protocol of Martin et al. [19]).

2.2 Protocol guarantees

Each member of the protocol family has distinct safety and liveness properties. In Table 1, the guarantees
made by protocol family members are summarized. Safety guarantees are discussed in Section 6.1 and
Liveness guarantees are discussed in Section 7.1. The safety and liveness properties achieved are for the
hybrid crash-recovery failure model of storage-nodes. Since the hybrid crash-recovery failure model is a
strict generalization of the hybrid omission failure model and hybrid crash failure model, these safety and
liveness properties hold in less general storage-node failure models. The liveness guarantees assume no
storage exhaustion on storage-nodes.

3 Mechanisms

This section describes mechanisms employed for encoding data, and preventing Byzantine clients and
storage-nodes from violating consistency. We assume that storage-nodes and clients are computationally
bounded such that cryptographic primitives can be effective. Specifically, we make use of collision-resistant
hash functions. As well we assume that communication is authenticated.

3.1 Erasure codes

We consider only threshold erasure codes in which any m of the N encoded data-fragments can decode the
data-item. Moreover, every m data-fragments can be used to deterministically generate the other N −m
data-fragments. Example threshold erasure codes are replication, Shamir’s secret sharing [26], Rabin’s
information dispersal [23], and Krawczyk’s short secret sharing [15].
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3.2 Data-fragment integrity

Byzantine storage-nodes can corrupt their data-fragments, which we informally refer to as an “integrity
fault”. As such, it must be possible to detect and mask up to b storage-node integrity faults. Cross check-
sums [6] are used to detect corrupt data-fragments: a cryptographic hash of each data-fragment is computed,
and the set of N hashes are concatenated to form the cross checksum of the data-item. The cross checksum
is stored with each data-fragment, enabling corrupted data-fragments to be detected by clients performing
read operations (see Section 4.2.2).

3.3 Write operation integrity

Mechanisms are required to prevent Byzantine clients from performing a write operation that lacks integrity.
If a Byzantine client generates random data-fragments (rather than erasure coding a data-item correctly),
then each of the

(N
m

)

subsets of data-fragments could “recover” a distinct data-item. This attack is similar to
poisonous writes for replication, as described by Martin et al. [19]. To protect against such Byzantine client
actions, read operations must only return values that are written correctly (i.e., that are single-valued). To
achieve this, the cross checksum mechanism is extended in three ways:

Validating timestamps. To ensure that only a single set of data-fragments can be written at any logical
time, the hash of the cross checksum is placed in the low order bits of the logical timestamp. Note, the
hash is used for space-efficiency; instead, the entire cross checksum could be placed in the low bits of the
timestamp.

Storage-node verification. On a write, each storage-node verifies its data-fragment against the correspond-
ing hash in the cross checksum. The storage-node also verifies that the cross checksum matches the low-
order bits of the validating timestamp. A correct storage-node only executes write requests for which both
checks pass. Thus, a Byzantine client cannot make a correct storage-node appear Byzantine—only Byzan-
tine storage-nodes can return unverifiable responses.

Validated cross checksums. Combined, storage-node verification and validating timestamps ensure that
the data-fragments being considered by any read operation were not fabricated by Byzantine storage-nodes.
To ensure that the client that performed the write operation acted correctly, the cross checksum must be
validated by the reader. For the reader to validate the cross checksum, all N data-fragments are required.
Given any m data-fragments, the reader can generate the full set of N data-fragments a correct client should
have written. The reader can then compute the “correct” cross checksum from the generated data-fragments.
If the generated cross checksum does not match the validated cross checksum, then a Byzantine client
performed the write operation. Only a single-valued write operation can generate a cross checksum that can
be validated.

4 The protocol family design

This section presents the protocol family design in the form of pseudo-code with supporting text for explana-
tion. The pseudo-code relies on some new terms. The symbol, ts, denotes logical timestamp and, tscandidate,
denotes the logical timestamp of the candidate. The set, {D1, . . . ,DN}, denotes the N data-fragments; like-
wise, {S1, . . . ,SN} denotes the N storage-nodes. A cross checksum is denoted CC. The operator ‘|’ denotes
concatenation.

The symbols, COMPLETE and INCOMPLETE, used in the read operation pseudo-code, are defined in
Section 5. The rules for classifying an operation as complete or incomplete differ among protocol family
members.
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INITIALIZE() :
1: /∗ Each member of the history is a 〈 logical time, data value, cross checksum 〉 triple ∗/
2: /∗ History is stored in stable storage ∗/
3: History := 〈0, ⊥, ⊥〉

RECEIVE TIME REQUEST() :
1: SEND(TIME RESPONSE, S, MAX[History.ts])

RECEIVE WRITE REQUEST(ts, D, CC) :
1: if (VALIDATE(ts, D, CC)) then
2: /∗ Execute the write request ∗/
3: History := History ∪ 〈ts, D, CC〉
4: SEND(WRITE RESPONSE, S)
5: end if

VALIDATE(ts, D, CC) :
1: if ((HASH(CC) 6= ts.Verifier) OR (HASH(D) 6= CC[S])) then
2: return (FALSE)
3: end if
4: /∗ Accept the write request ∗/
5: return (TRUE)

RECEIVE READ LATEST() :
1: /∗ Note, Latest is a singleton ∗/
2: Latest := (X : X .ts = MAX[History.ts],X ∈ History)
3: SEND(READ RESPONSE, S, Latest)

RECEIVE READ PREVIOUS(ts) :
1: PreHistory := {X : X .ts < ts, X ∈ History}
2: /∗ Note, Latest is a singleton ∗/
3: Latest := (X : X .ts = MAX[PreHistory.ts], X ∈ PreHistory)
4: SEND(READ RESPONSE, S, Latest)

Figure 1: Pseudo-code for storage-node S.

4.1 Storage-node design

Storage-nodes expose the same interface, regardless of the protocol member being employed—write and
read requests for all protocol members are serviced identically. Each write request a storage-node executes
creates a new version of the data-fragment (indexed by its logical timestamp) at the storage-node (i.e., the
storage-node performs comprehensive versioning).

All stored data is initialized to ⊥ at time 0, and has a cross checksum of ⊥. The zero time, 0, and the
null value, ⊥, are well known values which the clients understand.

The storage-node pseudo-code is shown in Figure 1. The History which contains the version his-
tory for the data-item is kept in stable storage such that it persists during a crash and subsequent recov-
ery. Storage-nodes validate write requests before executing them (to protect against Byzantine clients).
This is performed by the function VALIDATE called by RECEIVE WRITE REQUEST. The value returned by
RECEIVE READ LATEST and RECEIVE READ PREVIOUS, Latest, is guaranteed to be unique, since times-
tamps are unique (i.e., two distinct write operations cannot have the same timestamp).

4.2 Client design

Clients do most of the work, including the execution of the consistency protocol and the encoding and
decoding of data-items. The client module provides a block-level interface for reading and writing to higher-
level software.

4.2.1 Write operation
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WRITE(Data) :
1: /∗ Encode data, construct timestamp, and write data-fragments ∗/
2: Time := READ TIMESTAMP()
3: {D1, . . . ,DN} := ENCODE(Data)
4: CC := MAKE CROSS CHECKSUM({D1, . . . ,DN})
5: ts := MAKE TIMESTAMP(Time,CC)
6: DO WRITE({D1, . . . ,DN}, ts, CC)

READ TIMESTAMP() :
1: ResponseSet := /0
2: repeat
3: for all Si ∈ {S1, . . . ,SN}\ResponseSet.S do
4: SEND(Si, TIME REQUEST)
5: end for
6: if (POLL FOR RESPONSE() = TRUE) then
7: 〈S, ts〉 := RECEIVE TIME RESPONSE()
8: if (S /∈ ResponseSet.S) then
9: ResponseSet := ResponseSet ∪ 〈S, ts〉

10: end if
11: end if
12: until (|ResponseSet| = N − t)
13: return (MAX[ResponseSet.ts.Time]+1)

MAKE CROSS CHECKSUM({D1, . . . ,DN}) :
1: for all Di ∈ {D1, . . . ,DN} do
2: Hi := HASH(Di)
3: end for
4: CC := H1| . . . |HN

5: return (CC)

MAKE TIMESTAMP(Time,CC) :
1: ts.Time := Time
2: ts.Verifier := HASH(CC)
3: return (ts)

DO WRITE({D1, . . . ,DN}, ts, CC) :
1: ResponseSet := /0
2: repeat
3: for all Si ∈ {S1, . . . ,SN}\ResponseSet.S do
4: SEND(Si, WRITE REQUEST, ts, Di, CC)
5: end for
6: if (POLL FOR RESPONSE() = TRUE) then
7: 〈S〉 := RECEIVE WRITE RESPONSE()
8: if (S /∈ ResponseSet.S) then
9: ResponseSet := ResponseSet ∪ 〈S〉

10: end if
11: end if
12: until (|ResponseSet| = N − t)

Figure 2: Client-side write operation pseudo-code.

The write operation pseudo-code is shown in Figure 2. The WRITE operation consists of determining
the greatest logical timestamp, constructing write requests, and issuing the requests to the storage-nodes.

First, a timestamp greater than, or equal to, that of the latest complete write is determined by the
READ TIMESTAMP function on line 2 of WRITE. Responses are collected, and the highest timestamp is
identified, incremented, and returned.

In each iteration of the loop which checks the variable ResponseSet in READ TIMESTAMP, additional
TIME REQUEST messages are sent to those storage-nodes from which no response has yet been received.
Under the crash-recovery failure model, the client must repeatedly send requests until sufficient responses
are received to implement a reliable channel. During each iteration of the loop, the client polls to deter-
mine if any responses have been received. Only a single response from each storage-node is added to the
ResponseSet. Once N − t responses are collected, the function returns. Remember, there are at least N − t
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READ(Repair) :
1: ReadResponseSet := DO READ(READ LATEST, ⊥)
2: loop
3: 〈CandidateSet, tscandidate〉 := CHOOSE CANDIDATE(ReadResponseSet)
4: if (|CandidateSet| ≥ COMPLETE) then
5: /∗ Complete candidate: return value ∗/
6: if (VALIDATE CANDIDATE SET(CandidateSet)) then
7: Data := DECODE(CandidateSet)
8: return (〈tscandidate, Data〉)
9: end if

10: else if (|CandidateSet| ≥ INCOMPLETE) then
11: /∗ Unclassifiable candidate found: repair or abort ∗/
12: if (Repair = TRUE) then
13: if (VALIDATE CANDIDATE SET(CandidateSet) then
14: {D1, . . . ,DN} := GENERATE FRAGMENTS(CandidateSet)
15: DO WRITE({D1, . . . ,DN}, tscandidate, CCvalid)
16: Data := DECODE({D1, . . . ,DN})
17: return (〈tscandidate, Data〉)
18: end if
19: else
20: return (ABORT)
21: end if
22: end if
23: /∗ Incomplete candidate or validation failed: loop again ∗/
24: ReadResponseSet := DO READ(READ PREVIOUS, tscandidate)
25: end loop

DO READ(READ COMMAND, ts) :
1: ResponseSet := /0
2: repeat
3: for all Si ∈ {S1, . . . ,SN}\ResponseSet.S do
4: SEND(Si, READ COMMAND, ts)
5: end for
6: if (POLL FOR RESPONSE() = TRUE) then
7: 〈S, Response〉 := RECEIVE READ RESPONSE()
8: if (VALIDATE(Response.D, Response.CC, Response.ts, S) = TRUE) then
9: if (READ COMMAND 6= READ PREVIOUS) OR Response.ts < ts then

10: if (S /∈ ResponseSet.S) then
11: ResponseSet := ResponseSet ∪ 〈S, Response〉
12: end if
13: end if
14: end if
15: end if
16: until (|ResponseSet| = N − t)
17: return (ResponseSet)

VALIDATE(D, CC, ts, S) :
1: if ((HASH(CC) 6= ts.Verifier) OR (HASH(D) 6= CC[S])) then
2: return (FALSE)
3: end if
4: return (TRUE)

VALIDATE CANDIDATE SET(CandidateSet)

1: if (ByzantineClients = TRUE) then
2: {D1, . . . ,DN} := GENERATE FRAGMENTS(CandidateSet)
3: CCvalid := MAKE CROSS CHECKSUM({D1, . . . ,DN})
4: if (CCvalid = CandidateSet.CC) then
5: return (TRUE)
6: else
7: return (FALSE)
8: end if
9: end if

10: return (TRUE)

Figure 3: Client-side read operation pseudo-code.
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good storage-nodes that, eventually, will be up.
Next, the ENCODE function, on line 3, encodes the data-item into N data-fragments. Hashes of the data-

fragments are used to construct a cross checksum (line 4). The function MAKE TIMESTAMP, called on line 5,
generates a logical timestamp for the write operation by combining the hash of the cross checksum and the
time determined by READ TIMESTAMP.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent a specific data-
fragment, the logical timestamp, and the cross checksum. The write operation returns to the issuing client
once enough WRITE RESPONSE replies are received (line 12 of DO WRITE).

4.2.2 Read operation

The pseudo-code for the read operation is shown in Figure 3. The read operation iteratively identifies and
classifies candidates until either a complete or repairable candidate is found or the operation aborts due to
insufficient information (only non-repair members can abort). Before a repairable or complete candidate is
returned, the read operation validates its correctness.

The read operation begins by issuing READ LATEST requests to all storage-nodes (via the DO READ

function). Each storage-node responds with the data-fragment, logical timestamp, and cross checksum
corresponding to the highest timestamp it has executed. The integrity of each response is individually
validated by the VALIDATE function, line 8 of DO READ. This function checks the cross checksum against
the validating timestamp and the data-fragment against the appropriate hash in the cross checksum. Since
correct storage-nodes perform the same validation before executing write requests, only responses from
Byzantine storage-nodes can fail the reader’s validation. A second type of validation is performed on read
responses on line 9. For responses to READ PREVIOUS commands, the logical timestamp is checked to ensure
it is strictly less than the timestamp specified in the command. This check ensures that improper responses
from Byzantine storage-nodes are not included in the response set. The read operation does not “count”
detectably Byzantine responses towards the N − t total responses collected for the response set. Since N − t
storage-nodes are good (by assumption), and the Byzantine storage-node is not good, this action is safe.

After sufficient responses have been received, a candidate for classification is chosen. The function
CHOOSE CANDIDATE, on line 3 of READ, determines the candidate timestamp, denoted tscandidate, which is the
greatest timestamp in the response set. All data-fragments that share tscandidate are identified and returned as
the candidate set. At this point, the candidate set contains a set of data-fragments that share a common cross
checksum and logical timestamp.

Once a candidate has been chosen, it is classified as either complete, unclassifiable (repairable), or
incomplete. If the candidate is classified as incomplete, a READ PREVIOUS message is sent to each storage-
node with the candidate timestamp. Candidate classification begins again with the new response set.

If the candidate is classified as complete or repairable, the candidate set is constrained to contain suffi-
cient data-fragments (see Section 5) to decode the original data-item. At this point the candidate is validated.
This is done through the VALIDATE CANDIDATE SET call on line 6 (for complete candidates) or line 13 (for
repairable candidates) of READ.

For family members that do not tolerate Byzantine clients, this call is a no-op returning TRUE.
Otherwise, the candidate set is used to generate the full set of data-fragments, as shown in line 2 of
VALIDATE CANDIDATE SET. A validated cross checksum, CCvalid, is then computed from the newly gener-
ated data-fragments. The validated cross checksum is compared to the cross checksum of the candidate set
(line 4 of VALIDATE CANDIDATE SET). If the check fails, the candidate was written by a Byzantine client;
the candidate is reclassified as incomplete, and the read operation continues. If the check succeeds, the
candidate was written correctly and the read enters its final phase. Note that this check either succeeds or
fails for all correct clients, regardless of which storage-nodes are represented within the candidate set.
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If necessary and allowed, repair is performed: write requests are issued with the generated data-
fragments, the validated cross checksum, and the logical timestamp (line 15 of READ). Storage-nodes not
currently hosting the write execute the write at the given logical time; those already hosting the write are
safe to ignore it.

Finally, the function DECODE recovers the data-item from any m data-fragments. The read operation
returns a logical timestamp, data-item value pair. However, the client likely only makes use of the data-item
value.

5 Protocol constraints

To ensure the desired safety and liveness properties are achieved, a number of constraints must hold. For
each member protocol, N and m are constrained with regard to b and t (from the hybrid model of storage-
node failure). N is the number of storage-nodes in the system and m is the “decode” parameter of an m-of-n
erasure code (note, n always equals N in our system).

We develop the protocol constraints under the asynchronous timing model. Synchronous protocol
members are considered in Section 8.

5.1 Write operation definitions

We introduce the symbol QC in the definition of a complete write operation.

COMPLETE WRITE OPERATION: A write operation is defined to be complete once a total of QC benign
storage-nodes have executed the write.

Clearly, for a write operation to be durable,

t < QC. (1)

5.2 Read classification rules

Recall that the candidate is the data-item version, returned by a read request, with the greatest logical
timestamp. The set of read responses that share the candidate’s timestamp are the candidate set.

To classify a candidate as complete, a candidate set of at least QC benign storage-nodes must be ob-
served. In the worst case, at most b members of the candidate set may be Byzantine, thus,

|CandidateSet|−b ≥ QC, so COMPLETE = QC +b. (2)

To classify a candidate as incomplete, the candidate must be incomplete (i.e., fewer than QC benign
storage-nodes have executed the write). We consider a rule for classifying incomplete writes that takes
advantage of N − t responses from storage-nodes. In the crash-recovery model, eventually, a client is
guaranteed to receive this many responses—even though, there may be periods during which more than
t storage-nodes are crashed. Moreover, in an asynchronous timing model, a client cannot expect more than
this many responses, since up to t storage-nodes may never recover. The general rule for classifying a
candidate incomplete is,

|CandidateSet|+ t < QC, so INCOMPLETE = QC − t. (3)

Basically, each storage-node that does not respond must be assumed to be benign, and to have executed the
write operation.

There are candidates that cannot be classified as complete or incomplete. These candidates are termed
unclassifiable/repairable. Repairable protocol family members initiate repair of such candidates, thus com-
pleting them. Non-repair protocol family members abort upon encountering unclassifiable candidates.

10



Protocol Repairable Non-repair

N 2t +2b+1 ≤ N 3t +3b+1 ≤ N

QC t +b+1 ≤ QC t +b+1 ≤ QC

QC ≤ N − t −b QC ≤ N −2t −2b

m 1 ≤ m ≤ QC − t 1 ≤ m ≤ QC +b

Table 2: Protocol family constraint summary

5.3 Protocol properties

This section develops two sets of constraints: one for repairable and one for non-repair protocol members.
These constraints hold for asynchronous protocol members under a hybrid crash-recovery–Byzantine model
of storage-node failure with Byzantine clients. The constraints do not change if clients only crash. A
summary of the constraints for the protocol family is presented in Table 2. Constraints for each protocol
family member are derived to satisfy a number of desired properties:

WRITE COMPLETION: This property ensures that write operations by correct clients can complete.

REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: This property ensures that colluding Byzantine
storage-nodes are unable to fabricate a candidate that a correct client deems unclassifiable/repairable or
complete.

CLASSIFIABLE COMPLETE CANDIDATES: This property is only relevant for non-repair protocol members;
it ensures that Byzantine storage-nodes cannot make all read operations abort. Consider an isolated correct
client that performs a write operation and then a read operation (i.e., the client does not fail and there is
no concurrency). This property ensures that the read operation will return the value written by the write
operation regardless of storage-node failures.

DECODABLE CANDIDATES: m must be constrained so that complete candidates can be decoded. Moreover,
m must be constrained further for repairable protocol members so that repairable candidates can be decoded.

5.4 Repairable constraints

WRITE COMPLETION: There must be sufficient good storage-nodes in the system for a write operation by
a correct client to complete. A client must terminate after it receives N − t responses. As well, up to b
responses may be Byzantine. Thus, for the write operation to complete (i.e., for QC benign storage-nodes to
execute write requests),

QC ≤ N − t −b. (4)

REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: To ensure that Byzantine storage-nodes cannot fab-
ricate an unclassifiable/repairable candidate, a candidate set of size b must be classifiable as incomplete.
Substituting |CandidateSet| = b into (3),

b+ t < QC. (5)

DECODABLE REPAIRABLE CANDIDATES: Any repairable candidate must be decodable. The classification
rule for incomplete candidates (cf. (3)) gives the upper bound on m, since a candidate that is not incomplete
must be repairable:

1 ≤ m ≤ QC − t. (6)
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CONSTRAINT SUMMARY:

QC + t +b ≤ N;

t +b+1 ≤ QC ≤ N − t −b;

1 ≤ m ≤ QC − t.

5.5 Non-repair constraints

Some of the repairable constraints apply to non-repair protocol members. Both the write completion and
real unclassifiable/repairable candidates constraints hold (constraints (4) and (5), respectively). However,
the write completion constraint is superceded by the classifiable complete candidates constraint.

CLASSIFIABLE COMPLETE CANDIDATES: For this property to hold, a read operation must observe at least
QC +b responses from benign storage-nodes—sufficient responses to classify the candidate as complete (cf.
(2)). A write operation by a correct client may only complete at N − t storage-nodes (due to asynchrony
or benign crashes); a subsequent read operation may not observe responses from t benign storage-nodes
(again, due to asynchrony or benign crashes). These sets of t storage-nodes that do not respond to the write
operation and subsequent read operation could be disjoint sets (since storage-nodes can crash, then recover,
or because of asynchrony). Further, b observed responses may be Byzantine. So,

QC +b ≤ ((N − t)− t)−b,

QC ≤ N −2t −2b. (7)

DECODABLE COMPLETE CANDIDATES: A candidate classified as complete, (2), must be decodable:

1 ≤ m ≤ QC +b. (8)

The upper bound on m is greater than QC, even though QC defines a complete write operation. The counter-
intuitive upper bound on m follows from the fact that a write operation that is complete, may become unclas-
sifiable due to storage-node failures. Given this, only when a write operation is complete and classifiable
as such, need it be decodable. However, there is some practical value to constraining m ≤ QC. In a system
with failed storage-nodes, a system administrator could make the judgement call that a write operation is
complete—so long as m ≤ QC the system administrator could then force the reconstruction of the data.

CONSTRAINT SUMMARY:

QC +2t +2b ≤ N;

t +b+1 ≤ QC ≤ N −2t −2b;

1 ≤ m ≤ QC +b.

6 Proof of safety

This section presents a proof that our protocol implements linearizability [12] as adapted appropriately for
a fault model admitting operations by Byzantine clients.

6.1 Safety guarantees

Intuitively, linearizability requires that each read operation return a value consistent with some execution
in which each read and write is performed at a distinct point in time between when the client invokes the
operation and when the operation returns. The adaptations necessary to reasonably interpret linearizability
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in our context arise from the fact that Byzantine clients need not follow the read and write protocols and that
read operations may abort in non-repair member protocols. We consider four distinct safety guarantees:

Linearizability. Repairable protocol members with crash-only clients achieve linearizability as originally
defined by Herlihy and Wing [12].

Byzantine-operation linearizability. Read operations by Byzantine clients are excluded from the set of
linearizable operations. Write operations are only included if they are well-formed (i.e., if they are single-
valued as in Section 3).

Write operations by Byzantine clients do not have a well-defined start time. Such operations are con-
current to all operations that begin before they complete and to all operations that are also performed by
Byzantine clients. A Byzantine client can write “back in time” by using a lower logical timestamp than a
benign client would have used. Since write operations by Byzantine clients are concurrent to all operations
that started before it completed, they can be linearized just prior to some concurrent write operation (if there
is one). Such a linearization ensures that the Byzantine “back in time” write operation has no effect since
the value written is never returned by a read operation.

In summary, there are two types of Byzantine write operations that are of concern: writes that are not
well-formed and “back in time” writes. In the case that the Byzantine write operation is not well-formed,
read operations by benign clients exclude it from the set of linearized operations. In the case that the
Byzantine write operation is “back in time”, the protocol family achieves something similar, in that such
Byzantine write operations are linearized so that they have no effect.

Linearizability with read aborts. Non-repair protocol members allow reads to abort due to insufficient
classification information: aborted reads are excluded from the set of linearizable operations. Such members
achieve “linearizability with read aborts”, which is similar to Pierce’s “pseudo-atomic consistency” [22].
That is, the set of all write operations and all complete read operations is linearizable.

Byzantine-operation linearizability with read aborts. For non-repair protocol members that tolerate
Byzantine clients, the safety property is the combination of Byzantine-operation linearizability and lin-
earizability with read aborts.

6.2 Proof

Because return values of reads by Byzantine clients obviously need not comply with any correctness criteria,
we disregard read operations by Byzantine clients in reasoning about linearizability, and define the duration
of reads only for those executed by benign clients only.

DEFINITION 1 A read operation executed by a benign client begins when the client invokes READ locally.
A read operation executed by a benign client completes when this invocation returns 〈timestamp,value〉. A
read operation by a benign client that crashes before the read completes, does not complete.

Before defining the duration of write operations, it is necessary to define what it means for a storage-
node to accept and then execute a write request.

DEFINITION 2 Storage-node S, accepts a write request with data-fragment D, cross checksum CC, and
timestamp ts upon successful return of the function VALIDATE(ts, D, CC) at the storage-node.

DEFINITION 3 Storage-node S, executes a write request once the write request is accepted. An executed
write request is stored in stable storage.

It is not well defined when a write operation by a Byzantine client begins. Therefore, we settle for
merely a definition of when writes by Byzantine clients complete.
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DEFINITION 4 A write operation with timestamp ts completes once QC benign storage-nodes have executed
write requests with timestamp ts.

In fact, Definition 4 applies to write operations by benign clients as well as “write operations” by
Byzantine clients. In this section, we use the label wts as a shorthand for the write operation with timestamp
ts. In contrast to Definition 4, Definition 5 applies only to write operations by benign clients.

DEFINITION 5 wts begins when a benign client invokes the WRITE operation locally that issues a write
request bearing timestamp ts.

LEMMA 1 Let c1 and c2 be benign clients. If c1 performs a read operation that returns 〈ts1,v1〉, c2 performs
a read operation that returns 〈ts2,v2〉, and ts1 = ts2, then v1 = v2.

Proof: Since ts1 = ts2, each read operation considers the same verifier. Since each read operation
considers the same verifier, each read operation considers the same cross checksum (remember, a collision
resistant hash function is employed). A read operation does not return a value unless the cross checksum
is valid and there are more than b read responses with the timestamp (since only candidates classified as
repairable or complete are considered). Thus, only a set of data-fragments resulting from the erasure-
coding of the same data-item that are issued as write requests with the same timestamp can validate a cross
checksum. As such, v1 and v2 must be the same. 2

Let vts denote the value written by wts which, by Lemma 1, is well-defined. We use rts to denote a read
operation by a benign client that returns 〈ts,vts〉.

DEFINITION 6 Let o1 denote an operation that completes (a read operation by a benign client, or a write
operation), and let o2 denote an operation that begins (a read or write by a benign client). o1 precedes o2 if
o1 completes before o2 begins. The precedence relation is written as o1 → o2. Operation o2 is said to follow,
or to be subsequent to, operation o1.

LEMMA 2 If wts → wts′ , then ts < ts′.

Proof: A complete write operation executes at at least QC benign storage-nodes (cf. Definition 4).
Since wts → wts′ , the READ TIMESTAMP function for wts collects N−t TIME RESPONSE messages, and so wts′

observes at least b + 1 TIME RESPONSE messages from benign storage-nodes that executed wts (remember,
t +b < QC for all asynchronous protocol family members). As such, wts′ observes some timestamp greater
than or equal to ts and constructs ts′ to be greater than ts. A Byzantine storage-node can return a logical
timestamp greater than that of the preceding write operation; however, this still advances logical time and
Lemma 2 holds. 2

OBSERVATION 1 Timestamp order is a total order on write operations. The timestamps of write operations
by benign clients respect the precedence order among writes.

LEMMA 3 If some read operation by a benign client returns 〈ts,vts〉, with vts 6= ⊥, then wts is complete.

Proof: For a read operation to return value vts, the value must have been observed at at least QC + b
storage-nodes (given the complete classification rule for candidate sets). Since, at most b storage-nodes are
Byzantine, the write operation wts has been executed by at least QC benign storage-nodes. By definition, wts

is complete. 2

OBSERVATION 2 The read operation from Lemma 3 could have performed repair before returning. In a
repairable protocol member, a candidate that is neither classifiable as incomplete or complete is repaired.
Once repaired, the candidate is complete.
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DEFINITION 7 wts is well-formed if ts.Verifier equals the hash of cross checksum CC, and for all i ∈
{1, . . . ,N}, hash CC[i] of the cross checksum equals the hash of data-fragment i that results from the erasure-
encoding of vts.

LEMMA 4 If wts is well-formed, and if wts → rts′ , then ts ≤ ts′.

Proof: Since wts is well-formed it can be returned by a read operation. By Lemma 3, read operations
only return values from complete write operations. As such, rts′ must either return the value with timestamp
ts or a value with a greater timestamp. Therefore, ts ≤ ts′. 2

OBSERVATION 3 It follows from Lemma 4 that for any read rts, either wts → rts and wts is the latest complete
write that precedes rts, or wts 6→ rts and rts 6→ wts (i.e., wts and rts are concurrent).

OBSERVATION 4 It also follows from Lemmas 3 and 4 that if rts → rts′ , then ts ≤ ts′. As such, there is a
partial order ≺ on read operations by benign clients defined by the timestamps associated with the values
returned (i.e., of the write operations read). More formally, rts ≺ rts′ ⇐⇒ ts < ts′.

Since Lemma 2 ensures a total order on write operations, ordering reads according to the timestamps of
the write operations whose values they return yields a partial order on read operations. Lemma 4 ensures that
this partial order is consistent with precedence among reads. Therefore, any way of extending this partial
order to a total order yields an ordering of reads that is consistent with precedence among reads. Thus,
Lemmas 2 and 4 guarantee that this totally ordered set of operations is consistent with precedence. This
implies the natural extension of linearizability to our fault model (i.e., ignoring reads by Byzantine clients
and the begin time of writes by Byzantine clients); in particular, it implies linearizability as originally defined
by Herlihy [12] for repairable protocol family members if all clients are benign.

OBSERVATION 5 Note, Lemma 4 does not address reads that abort (it only addresses reads that return a
value). Read operations that abort are excluded from the set of operations that are linearized.

7 Proof of liveness

This section presents the proof of the liveness properties of protocol members.

7.1 Liveness guarantees

There are two distinct liveness guarantees: wait-freedom and single-client wait-freedom. These guarantees
hold so long as the storage capacity on storage-nodes is not exhausted.

Wait-freedom. Wait-freedom is a desirable liveness property [10]. Informally, achieving wait-freedom
means that each client can complete its operations in finitely many steps regardless of the actions performed
or failures experienced by other clients. For a formal definitions see [10].

Single-client wait-freedom. In non-repair protocol members, wait-freedom is not achieved. This is because
read operations may abort due to concurrency or the failure of other clients. The strongest statement about
the liveness of non-repair member protocols is that a single correct client is wait-free. I.e., in a system which
is comprised of a single correct client that performs operations sequentially, all operations are wait-free. The
write operations of all protocol members are wait-free; it is only the read operation for which the weaker
single-client wait-freedom is required.

Unbounded storage capacity. In the proof of liveness for read operations, we assume that storage-nodes
have unbounded storage capacity (i.e., that the entire version history back to the initial value ⊥ at time 0
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is available at each storage-node). To prevent capacity exhaustion, some garbage collection mechanism is
required. Garbage collection reduces the liveness of read operations. A read operation that is concurrent to
write operations and to garbage collection may not observe a complete candidate. The read operation can
observe a series of incomplete candidates that complete and are garbage collected within the duration of the
read operation. In such a situation, the read operation would observe ⊥ at some timestamp other than 0 from
storage-nodes, indicating that the client has “skipped” over a complete write operation. The read operation
then must be retried. The implementation details of garbage collection and its impact on liveness properties
is given in [8].

7.2 Proof

All liveness properties hinge on the following lemma.

LEMMA 5 All operations eventually receive at least N − t responses.

Proof: In the crash-recovery model, there are at least N − t good storage-nodes (i.e., storage-nodes
that are always-up or eventually-up). By definition, eventually, all good storage-nodes will be up. Since
all requests to storage-nodes, from clients, are retried until N − t responses are received, eventually, N − t
responses will be received (see READ TIMESTAMP, DO WRITE, and DO READ). 2

OBSERVATION 6 It is possible for progress to be made throughout the duration of a run, not just once all
good storage-nodes are up. Lemma 5 guarantees that eventually N − t responses will be received. During
any period in which N − t storage-nodes are up, operations may receive N − t responses and thus complete.
In fact, responses can be collected, over time, from N− t storage-nodes, during a period in which fewer than
N − t storage-nodes are ever up (but during which some storage-nodes crash and some recover).

7.2.1 Asynchronous repairable

The asynchronous repairable protocol member provides a strong liveness property, namely wait-freedom [10,
14]. Informally, each operation by a correct client completes with certainty, even if all other clients fail, pro-
vided that at most b servers suffer Byzantine failures and no more than t servers are not good.

LEMMA 6 A write operation by a correct client completes.

Proof: A write operation by a correct client waits for N − t responses from storage-nodes before re-
turning. By Lemma 5, N − t responses can always be collected. Since, QC ≤ N − t −b (cf. (4) in Section 5)
for repairable protocol members, then N − t ≥ QC +b. Since at most b storage-nodes are Byzantine, then at
least QC benign storage-nodes execute write requests, which completes the write operation. 2

LEMMA 7 A read operation by a correct client completes.

Proof: Given N − t READ RESPONSE messages, a read operation classifies a candidate as complete,
repairable, or incomplete. The read completes if a candidate is classified as complete. As well, the read
completes if a candidate is repairable. Repair is initiated for repairable candidates—repair performs a write
operation, which by Lemma 6 completes—which lets the read operation complete. In the case of an incom-
plete, the read operation traverses the version history backwards, until a complete or repairable candidate is
discovered. Traversal of the version history terminates if ⊥ at logical time 0 is encountered at QC storage-
nodes. 2
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7.2.2 Asynchronous non-repair

Like the asynchronous repairable member, write operations of the asynchronous non-repair member are
wait-free. Indeed, Lemma 6 holds, since QC ≤ N − 2t − 2b ≤ N − t − b for the asynchronous non-repair
member (cf. (7) in Section 5).

Read operations of the asynchronous non-repair member may abort (i.e., return ⊥ at some time greater
than 0). However, we can make a limited statement about the liveness of read operations.

LEMMA 8 In a system comprised of a single correct client, all read operations complete.

Proof: Write operations by the correct client are executed by at least N − t − b benign storage-nodes.
Since QC ≤ N−2t−2b, then at least QC +b of the benign storage-nodes that execute the write operation are
in the candidate set of a subsequent read operation. A candidate set of size QC +b is classified as complete.
Therefore, read operations complete. 2

8 Synchronous protocol family members

In this section we consider the constraints on N, QC, and m for synchronous members of the protocol
family. We consider the constraints under three related failure models: crash-recovery, omission, and fail-
stop. The crash-recovery failure model is a strict generalization of the omission and fail-stop failure models.
The omission failure model is a strict generalization of the fail-stop failure model. Synchronous protocol
members differ from asynchronous in that there are distinct constraints for each failure model. The lower
bound on N decreases as the storage-node failures tolerated become less general. We maintain a hybrid
failure model, in that b storage-nodes may be Byzantine, and t ≥ b storage-nodes may have omissions (or,
may fail-stop).

8.1 Crash-recovery

In a synchronous protocol member, it is possible to wait for responses from all storage-nodes (where
TIMEOUT may be the response). Thus, if more than N − t storage-nodes are up, the read classification rule
has more information with which to classify incomplete candidates. To classify a candidate as incomplete,
the candidate must be incomplete (i.e., fewer than QC benign storage-nodes have executed the write). Let
f be the number of storage-nodes that have timed out. Since operations retry requests until N − t responses
are received, 0 ≤ f ≤ t. In synchronous members, the rule for classifying a candidate incomplete is,

|CandidateSet|+ f < QC, so INCOMPLETE = QC − f , (9)

Basically, each storage-node that has timed out must be assumed to be benign, and to have executed the
write operation.

In the case that t storage-nodes timeout in a system, then (9) is identical to (3). However, if fewer than
t storage-nodes timeout, then (9) has more information with which to classify candidates as incomplete.

The ability to better classify incomplete candidates is the major difference between asynchronous and
synchronous protocol members in the crash-recovery model. Specifically, the constraints on N, QC, and m,
listed in Table 2 apply to the synchronous crash-recovery protocol members. As well, the safety proof given
in Section 6 and liveness proofs given in Section 7 applies.
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Protocol Omission repairable Omission non-repair Fail-stop repairable Fail-stop non-repair

N 2t +1 ≤ N 2t +b+1 ≤ N t +b+1 ≤ N t +2b+1 ≤ N

QC t +1 ≤ QC t +1 ≤ QC t +1 ≤ QFS
C t +1 ≤ QFS

C

QC ≤ N − t QC ≤ N − t −b QFS
C ≤ N −b QFS

C ≤ N −2b

m 1 ≤ m ≤ QC − t 1 ≤ m ≤ QC 1 ≤ m ≤ QFS
C − t 1 ≤ m ≤ QFS

C − t +b

Table 3: Synchronous protocol family members constraint summary

DO WRITE({D1, . . . ,DN}, ts, CC) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, WRITE REQUEST, ts, Di, CC)
3: end for
4: ResponseSet := /0
5: repeat
6: ResponseSet := ResponseSet ∪ RECEIVE WRITE RESPONSE(S)
7: until (|ResponseSet| = N OR TIMEOUT)

Figure 4: Synchronous implementation of DO WRITE with reliable channels.

8.2 Less general failure models

A distinguishing feature of the omission and fail-stop failure models, compared to the crash-recovery model,
is that the locations of failures are fixed. That is, N − t storage-nodes are always-up. There are no storage-
nodes that are eventually-up—no more than t storage-nodes may experience failures of any kind.

The constraints on N, m, and QC for synchronous protocol members under the omission and fail-stop
failure models are given in Table 3. Notice that the definition of QC is modified for the fail-stop failure
model (thus, the term QFS

C ).

8.2.1 Reliable channels

Under the omission and fail-stop failure models, we assume reliable channels. Under the crash-recovery
model, we implement reliable channels by repeatedly sending requests to sets of storage-nodes until suf-
ficient responses are received. It is easier to think about the synchronous omission and fail-stop protocol
members by assuming reliable channels.

The assumption of reliable channels affects the implementation of the functions READ TIMESTAMP,
DO WRITE, and DO READ. The change of implementation is trivial. We illustrate the modified implementa-
tion with the function DO WRITE in Figure 4. The functions READ TIMESTAMP and DO READ are similarly
modified.

Since the channels are assumed to be reliable, messages to the storage-nodes are sent just once (cf.
line 2). Responses are collected until a total of N responses are collected, or until the TIMEOUT for the
synchronous system is reached (cf. line 7). If the loop exits because TIMEOUT is reached, by assumption,
the response set has at least N− t members. Strictly speaking, the second half of the function which collects
responses to the write requests is unnecessary. It may be useful for the client to know which storage-
nodes acknowledge the write requests, and which have timed out; however, because of the reliable channels,
DO WRITE could return after line 3.

8.3 Omission failure model

A storage-node that experiences an omission failure either does not receive, or does not send a message [21].
A client that “observes” an omission, in that the storage-node did not reply within the synchronous bound
of channel delay and processing delay, receives a timeout. Given that no more than t storage-nodes may
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fail, a client is guaranteed to receive N responses, no more than t of which are timeouts. If a client receives
a timeout from some storage-node, then some other client, in a subsequent request, may receive a response
from the storage-node. This is the nature of omission failures.

Under the omission failure model, the definition of a complete write operation is the same as in the
crash-recovery model. However, the classification rule for a complete candidate is modified to take advan-
tage of observed failures. Defining f , as above, as the number of timeouts received, if f > t −b, then there
are at most t − f Byzantine storage-nodes in the candidate set. For example, if f = t, then all responses re-
ceived, that are not timeouts, are from correct storage-nodes. To reason about this ability in the constraints,
we introduce b̂, which is defined as follows:

b̂ =

{

b if f ≤ t −b;
t − f if f > t −b.

(10)

In a synchronous model with omission failures, the complete classification rule is,

|CandidateSet|− b̂ ≥ QC, so COMPLETE = QC + b̂. (11)

The incomplete classification rule is the same as in the crash-recovery model,

|CandidateSet|+ f < QC, so INCOMPLETE = QC − f . (12)

The more responses received by a client, the “better” it can classify incomplete candidates, since f is lower.

8.3.1 Repairable protocol member constraints

WRITE COMPLETION: There must be sufficient correct storage-nodes in the system for a write operation to
complete. Since only t storage-nodes may fail, and since correct storage-nodes always reply to clients, then

QC ≤ N − t. (13)

REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: No additional constraints are necessary to ensure that
Byzantine storage-nodes cannot fabricate repairable candidates. Consider (12), the incomplete classification
rule under omission failures in synchronous systems. If b Byzantine storage-nodes fabricate a candidate,
then at most t −b storage-nodes timeout. Substituting f = t −b into (12), we have |CandidateSet|+ t−b <
QC. Since, |CandidateSet| ≤ b, then this becomes t < QC (which is redundant, given (1), the write durability
constraint). So long as the candidate set has b or fewer members, it is classified as incomplete; therefore,
Byzantine storage-nodes cannot fabricate a repairable candidate.

DECODABLE REPAIRABLE CANDIDATES: If t storage-nodes do not respond, then the classification rule for
incomplete, (12), leads to the threshold for repairable candidates,

1 ≤ m ≤ QC − t. (14)

CONSTRAINT SUMMARY:

QC + t ≤ N;

t +1 ≤ QC ≤ N − t;

1 ≤ m ≤ QC − t.
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8.3.2 Non-repair protocol member constraints

The above real unclassifiable candidate constraint holds for the non-repair protocol member (i.e., t < QC).
The write completion constraint is superceded by the classifiable complete candidates constraint.

CLASSIFIABLE COMPLETE CANDIDATES: For this property to hold, a read operation must observe at least
QC + b responses from correct storage-nodes—sufficient responses to classify the candidate as complete.
Since b̂ may equal b in the complete classification rule, (11), and since a write operation may only receive
responses from N − t storage-nodes, then

QC +b ≤ N − t,

QC ≤ N − t −b. (15)

DECODABLE COMPLETE CANDIDATES: A candidate classified as complete, (11), must be decodable. Since,
if f = t, b̂ = 0, it is possible to classify something as complete with a candidate set with only QC members,

1 ≤ m ≤ QC. (16)

CONSTRAINT SUMMARY:

QC + t +b ≤ N;

t +1 ≤ QC ≤ N − t −b;

1 ≤ m ≤ QC.

8.4 Fail-stop failure model

A storage-node that experiences a fail-stop failure, crashes in such a manner that it takes no further action
and its failure is detectable [25]. In a synchronous system, this means that clients can detect that a storage-
node has failed—although Byzantine storage-nodes can appear fail-stopped to some clients and up to other
clients. Under the fail-stop failure model, the definition of a complete write operation is modified from that
of the crash-recovery model (and omission model).

COMPLETE WRITE OPERATION: A write operation is defined to be complete once a total of QFS
C benign

storage-nodes have executed write requests or have fail-stopped.
The change in definition of a complete write operation affects the classification rules for complete and

incomplete candidates:

|CandidateSet|+ f −b ≥ QFS
C , so COMPLETE = QFS

C − f +b; (17)

|CandidateSet|+ f < QFS
C , so INCOMPLETE = QFS

C − f . (18)

For the complete classification rule, it is assumed that up to b of the responses could be from Byzantine
storage-nodes (such storage-nodes could by lying about a value or pretending to be fail-stopped). For the
incomplete classification rule, it is assumed that all observed fail-stop responses are from benign storage-
nodes.

8.4.1 Repairable protocol member constraints

WRITE COMPLETION: There must be sufficient benign storage-nodes in the system for a write operation to
complete. Since only b storage-nodes may be Byzantine, and the remainder are benign,

QFS
C ≤ N −b. (19)
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REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: For reasons similar to the omission failure model, the
write durability constraint (t < QFS

C ) is sufficient for ensuring that Byzantine storage-nodes cannot fabricate
repairable candidates. Specifically, if b Byzantine storage-nodes fabricate a candidate, then at most t − b
storage-nodes fail-stop, so from (18), we have |CandidateSet|+ t −b < QFS

C . And, since QFS
C > t, we have,

|CandidateSet| ≤ b. Therefore Byzantine storage-nodes cannot fabricate a repairable candidate.

DECODABLE REPAIRABLE CANDIDATES: Given f = t failures, an operation can be classified as repairable
with as few as QFS

C − t members in the candidate set, thus,

1 ≤ m ≤ QFS
C − t. (20)

CONSTRAINT SUMMARY:

QFS
C +b ≤ N;

t +1 ≤ QFS
C ≤ N −b;

1 ≤ m ≤ QFS
C − t.

8.4.2 Non-repair protocol member constraints

The bound on the above write completion constraint is superceded by the classifiable complete candidates
constraint.

CLASSIFIABLE COMPLETE CANDIDATES: For this property to hold, a read operation must observe at least
QFS

C − f + b responses that match. Considering the case of f = 0 leads to the lower bound on N. If f =
0, then QFS

C + b responses must match. Since up to b storage-nodes can lie, then there must be at least
QFS

C +b+b ≤ N storage-nodes to ensure this property.

QFS
C +b+b ≤ N,

QFS
C ≤ N −2b. (21)

DECODABLE COMPLETE CANDIDATES: A candidate classified as complete, (17), must be decodable. Since,
f may be as great as t,

1 ≤ m ≤ QFS
C − t +b. (22)

CONSTRAINT SUMMARY:

QFS
C +2b ≤ N;

t +1 ≤ QFS
C ≤ N −2b;

1 ≤ m ≤ QFS
C − t +b.

9 Synchronous members with synchronized clocks

Protocols to achieve approximate clock synchronization in today’s networks are well known, inexpensive,
and widely deployed [20]. In this section, we consider the use of synchronized clocks for synchronous pro-
tocol family members. Synchronized clocks and weakening safety allow the write operation to be performed
in a single phase, rather than in two phases. Specifically, there is no need to determine the “current” logical
time by sending requests to storage-nodes; the local clock time is used. Thus, line 2 of the function WRITE

in Figure 2 becomes Time := READ LOCAL CLOCK(), and the function READ TIMESTAMP is not needed.
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9.1 Clock skew

The use of client clock synchronization introduces clock skew (i.e., clocks are not perfectly synchronized—
they are synchronized to within some bound, the skew). Since there may be skew among client clocks,
the definition of operation duration must be modified; this weakens the safety guarantee. Specifically, we
extend the definition of when a write operation begins, to accommodate that, within the clock skew, write
operations may be linearized “out of order”.

From Lemma 2, we observed that the timestamp order is a total order on write operations. We define
τ to be the maximum skew between the clocks of any two correct clients. For synchronous members with
synchronized clocks, we redefine when a benign client begins a write operation (cf. Definition 5):

DEFINITION 8 wts begins τ before a benign client invokes the WRITE operation locally that issues a write
request bearing timestamp ts.

Consider two clients, A and B, whose clocks differ in that A’s clock is τ less than B’s clock. It is
necessary to extend the begin time of a write operation to accommodate the case when B invokes a write
operation less than τ before A invokes a write operation. If B executes write requests at QC benign storage-
nodes before A invokes its write operation, then B’s write operation is complete when A’s write operation
begins. However, A’s write operation will be linearized before B’s write operation—it is linearized “out of
order”.

9.2 Byzantine clients

Using purely logical time, the begin times of write operations by Byzantine clients is undefined. As dis-
cussed in Section 6.1, this allows such write operations to be linearized just prior to some other write
operation such that no read operation observes them (i.e., such that they have no effect). Write operations by
Byzantine clients that are “back-in-time” in synchronous members with synchronized clocks can be treated
similarly.

Byzantine clients that write “into the future” require additional logic during the read operation to handle
correctly. A correct client must ignore (classify as incomplete) candidates with a timestamp greater than τ
in the future relative to its local clock. No correct client can perform a write operation which a subsequent
read operation by a correct client observes as being greater than τ in the future relative to its local clock.

If storage-nodes, as well as clients, have synchronized clocks, then storage-nodes can reject write
requests that are “into the future” (i.e., greater than τ in the future relative to its local clock). Given storage-
nodes with synchronized clocks, no additional client logic is necessary on a read operation; Byzantine clients
cannot write “into the future”.

Moreover, storage-nodes could reject “back in time” write requests. The bound on transmission delay
and processing time is used to define a “back in time” write request. Let φ be the maximum delay due to
message transmission, sender processing after reading its local clock, and receiver processing before reading
its local clock. Thus, a storage-node can reject a “back in time” write request if the timestamp of the request
is more than τ+φ in the past relative to its local clock. By assumption/definition, only Byzantine clients can
issue write requests which correct storage-nodes reject. Note that a storage-node with a clock that is out of
synchronization is considered to be Byzantine.

10 Related work

We review work related to the concept of protocol families, access protocols, and survivable storage systems
(including quorum systems and erasure-coded systems) in [9]. Here, we focus on work related to the failure
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models employed and the subsequent safety and liveness properties achieved by members of the protocol
family (especially in the context of Byzantine clients).

We note that the protocol family was developed in the context of the PASIS survivable storage sys-
tem project [28, 9, 7]. Since storage-nodes actually have finite capacity, a garbage collection mechanism
is needed. Discussion of some implementation details of garbage collection and its impact on liveness
properties is given in [8].

10.1 Failure models

We consider many failure models. We make use of a hybrid failure model for storage-nodes [27]. However,
we move beyond a mix of crash and Byzantine failures to allow for a mix of crash-recovery, omission or
fail-stop failures and Byzantine failures. The crash-recovery model was introduced by Aguilera, Chen, and
Toueg [1]. The omission failure model was introduced by Perry and Toueg in [21]. The fail-stop failure
model was introduced by Schlichting and Schneider [24, 25]. The Byzantine failure model was introduced
by Lamport, Shostak, and Pease [16]. Backes and Cachin have also considered the “hybridization” of
Byzantine faults with a crash-recovery model for reliable broadcast [3].

The protocol family we have developed is not adaptive with regard to the faults tolerated—each family
member tolerates a static failure model. This is in clear contrast to work by Chen, Hiltunen, and Schlicht-
ing [13, 5] in which (fault-tolerant) systems are developed that gracefully adapt to changes in the execution
environment or user requirements by switching the protocols employed. Adaptive techniques for Byzan-
tine quorum systems were developed by Alvisi, Malkhi, Pierce, Reiter, and Wright [2]. The application
of adaptive fault thresholds to Byzantine quorum systems could inform future extensions of our protocol
family.

10.2 Safety, liveness, and Byzantine clients

To provide reasonable storage semantics a system must guarantee that readers see consistent answers. For
shared storage systems, this usually means linearizability [12] of operations. Jayanti refined the notion of
wait-freedom to address fault-tolerant shared objects [14].

Although we focus on achieving wait-freedom, we also had to consider what we called single-client
wait-freedom (see Section 6.1). It is similar to, but weaker than, obstruction-freedom [11] by Herlihy,
Luchango, and Moir. Obstruction-freedom guarantees progress once concurrency subsides. Single-client
wait-freedom guarantees progress once concurrency subsides only if all clients are correct (assuming clients
retry if a read operation aborts in non-repair protocol members).

In synchronous fail-stop protocol members, the safety and liveness guarantees are not pure. Charron-
bost, Toug, and Basu identify safety and liveness properties that are not pure in [4]. Such properties can
become true because of failures. Our definition of a complete write operation for synchronous fail-stop pro-
tocol members is clearly not pure: We include benign storage-nodes that have fail-stopped in the definition
of QFS

C (see Section 8.4).
Pierce extended linearizability to include the possibility of read aborts: pseudo-regular semantics [22].

If a reader sees either a consistent answer or aborts, it achieves pseudo-regular semantics. Trivial solutions
(i.e., readers always aborting) are excluded by identifying specific conditions under which a read operation
must return a value. The liveness guarantee of protocol members that allow aborts, linearizability with read
aborts, is very similar to Pierce’s pseudo-regular semantics.

Write operations in the protocol family by Byzantine clients do not have a well-defined start time
and are thus concurrent to all preceding operations. Members of the protocol family linearize writes by
Byzantine clients, if they are “back in time”, just prior to some other write operation so that they have
no effect. Other work does not directly discuss Byzantine clients that write “back in time”. Malkhi and
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Reiter in [18] use an “echo” protocol to ensure that write operations are well-formed (“justified” in their
terminology). The echo protocol requires an additional phase—indeed, the protocol employs three phases:
get time, propose (echo), and commit. The benefit of the echo protocol is two-fold. First, it appears that
Byzantine clients could be prevented from writing “back in time”, since the propose message includes signed
get time responses. However the server logic presented in [18] does not directly address “back in time”
writes. Indeed, the prior work of Malkhi and Reiter in [17], indicates that “back in time” write operations by
Byzantine clients are treated in a manner similar to the protocol family (Section 3.2 of [17] states that each
server modifies its value and timestamp only if the timestamp received is greater than the latest timestamp
received—i.e., “back in time” writes are treated as if they have no effect). Second, the echo phase ensures
that a Byzantine client is sending the same value to each server. Adding an echo phase to the protocol family
could allow the begin time of write operations to be defined, but would not achieve the second benefit, since
the protocol family allows values to be erasure-coded.

Martin, Alvisi, and Dahlin in [19] use a different approach for dealing with Byzantine clients in the
Minimal Byzantine Storage protocol. To deal with Byzantine clients, Martin et al. depart from the traditional
quorum communication pattern and allow inter-server communication. Whenever a correct server receives
a write request, it stores the value and then broadcasts the value to other servers. Treating the data as the low
bits of the timestamp, all correct servers can “agree” on the latest value written, even if a Byzantine client
sends different data with the same timestamp to each server. Again, Byzantine clients writing “back in time”
is not directly discussed (in terms of its ramifications on linearizability). However, the protocol appears to
guarantee a similar property to the protocol family: “back in time” writes have no effect.

Linearizability is not well defined in the context of Byzantine clients. We believe that there may be
many useful variations of linearizability with Byzantine clients. Unfortunately, the useful variations may
depend on the approach taken by the protocol.
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