
n e w s l e t t e r o n p d l a c t i v i t i e s a n d e v e n t s • f a l l 2 0 1 8

http://www.pdl.cmu.edu/

CONTENTS

PDL CONSORTIUM
MEMBERS

Alibaba Group
Amazon
Datrium
Dell EMC
Facebook
Google
Hewlett Packard Enterprise
Hitachi, Ltd.
IBM Research
Intel Corporation
Micron
Microsoft Research
MongoDB
NetApp, Inc.
Oracle Corporation
Salesforce
Samsung Information Systems America
Seagate Technology
Two Sigma
Veritas
Western Digital

Selected Recent Publications 1

PDL News & Awards........................3

Defenses & Proposals4

continued on page 2

EDITOR
Joan Digney
CONTACTS
Greg Ganger
PDL Director
Bill Courtright
PDL Executive Director
Karen Lindenfelser
PDL Administrative Manager
The Parallel Data Laboratory
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891
tel 412-268-6716
fax 412-268-3010

THE PDL PACKET

http://www.pdl.cmu.edu/Publications/

SELECTED RECENT PUBLICATIONS

Scaling Embedded In-Situ
Indexing with DeltaFS

Qing Zheng, Charles D. Cranor,
Danhao Guo, Gregory R. Ganger,
George Amvrosiadis, Garth A. Gibson,
Bradley W. Settlemyer, Gary Grider &
Fan Guo

SC18, November 11-16, 2018, Dallas,
Texas, USA.

Analysis of large-scale simulation
output is a core element of scientific
inquiry, but analysis queries may expe-
rience significant I/O overhead when
the data is not structured for efficient
retrieval. While in-situ processing
allows for improved time-to-insight
for many applications, scaling in-situ
frameworks to hundreds of thousands
of cores can be difficult in practice.
The DeltaFS in-situ indexing is a new
approach for in-situ processing of
massive amounts of data to achieve ef-
ficient point and small-range queries.
This paper describes the challenges
and lessons learned when scaling
this in-situ processing function to

hundreds of thousands of cores. We
propose techniques for scalable all-
to-all communication that is memory
and bandwidth efficient, concurrent
indexing, and specialized LSM-Tree
formats. Combining these techniques
allows DeltaFS to control the cost of
in-situ processing while maintaining
3 orders of magnitude query speedup
when scaling alongside the popular
VPIC particle-in-cell code to 131,072
cores.

Stratus: Cost-aware Container
Scheduling in the Public Cloud

Andrew Chung, Jun Woo Park &
Gregory R. Ganger

ACM Symposium on Cloud Comput-
ing, 2018 (SoCC’18), Carlsbad, CA
October 11-13, 2018.

Stratus is a new cluster scheduler
specialized for orchestrating batch
job execution on virtual clusters,
dynamically allocated collections of
virtual machine instances on public
IaaS platforms. Unlike schedulers for

conventional clus-
ters, Stratus focuses
primarily on dollar
cost considerations,
since public clouds
provide effectively
unlimited, highly
heterogeneous re-
sources allocated on
demand. But, since

Updated DeltaFS in-situ indexing pipeline design with a new delivery
queue structure, and a multi-way indexing mechanism.

Parallel Scientific App

… …
FIFOShuffle

Send

FIFO
Shuffle
Recv

Shared Underlying Storage

App
Proc

2

Per-Partition Data Log Shared
by all Sub-Partitions

Delivery Queue

3

Sub-Partition Index

App Codefwrite()

1

Sub-Partitions
4

http://www.pdl.cmu.edu/
http://www.pdl.cmu.edu/Publications/
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/deltafs_sc18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/deltafs_sc18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/p121-Chung.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/p121-Chung.pdf

FALL 2018 32 THE PDL PACKET

AWARDS & OTHER PDL NEWSRECENT PUBLICATIONS

October 2018
Best Student Paper at
SoCC ‘18!

C o n g r a t u l a -
tions to An-
dre w Chung
and Jun Woo
Park, who sub-
mitted the Best
Student Paper
to SoCC ‘18.
Their paper at
the Symposium

for Cloud Computing, titled “Stratus:
Cost-aware Container Scheduling in
the Public Cloud,” discusses cost con-
siderations of a new cluster scheduler
specialized to orchestrate batch job
execution on
virtual clusters,
which dynami-
cally allocates
collections of
v i r t u a l m a -
chine instances
on public IaaS
platforms.

September 2018
PDL Alum Wei Dai Winner of
Pittsburgh Business Times 30
under 30 Award!

Wei (David) Dai, who graduated with
his Ph.D. in Machine Learning from
CMU in 2018 has been listed as one
of Pittsburgh’s 30 under 30 by the

Pittsburgh Business Times. Wei is now
the Senior Director of Engineering
at Petuum, where they build scalable
machine learning platforms for en-
terprises to easily create and manage
complex ML workflows.

-- photo credit, Joe Wojcik

July 2018
PDL Team Tests New
File System on Trinity
Supercomputer

A team from the Carnegie Mellon
Parallel Data Lab (PDL) recently com-
pleted work with Los Alamos National
Lab simulating physical phenomena
involving as many as a trillion indi-
vidual particles. Their project used
the Trinity supercomputer to test a
new file system that created a trillion

files in just two minutes, allowing
them to retrieve data one to five thou-
sand times faster than conventional
methods. The team included George
Amvrosiadis, Chuck Cranor, Greg
Ganger, and Ph.D. student Qing
Zheng; the PDL’s Garth Gibson;
and Los Alamos National Lab’s Brad
Settlemyer and Gary Grider. Read the
full article in Wired here.

-- ECE News July 31, 2018

May 2018
Best Paper at SIGMOD 2018!

The Carnegie Mellon Database Group
is pleased to announce that their latest
paper “SuRF: Practical Range Query
Filtering with Fast Succinct Tries”
has won 2018 SIGMOD Best Paper
Award. The paper’s lead author was
CMU CSD Ph.D. Huanchen Zhang.
This work was in collaboration with
CMU professors Dave Andersen
and Andy Pavlo, CMU post-doc Hy-
eontaek Lim,
TUM visiting
scholar Viktor
Leis, Hewlett
Packard Labs’
Distinguished
T e c h n o l o -
gist Kimberly
Keeton, and
Intel Labs’ senior research scientist
Michael Kaminsky.

continued from page 1

continued on page 3

resources are charged-for while al-
located, Stratus aggressively packs
tasks onto machines, guided by job
runtime estimates, trying to make al-
located resources be either mostly full
(highly utilized) or empty (so they can
be released to save money). Simula-
tion experiments based on cluster
workload traces from Google and
Two Sigma show that Stratus reduces
cost by 17–44% compared to state-of-
the-art approaches to virtual cluster
scheduling.

RobinHood: Tail Latency
Aware Caching—Dynamic
Reallocation from Cache-Rich
to Cache-Poor

Daniel S. Berger, Benjamin Berg,
Timothy Zhu, Siddhartha Sen & Mor
Harchol-Balter

13th USENIX Symposium on
Operating Systems Design and
Implementation (OSDI ’18).
October 8–10, 2018, Carlsbad, CA,
USA.

Tail latency is of great importance in
user-facing web services. However,
maintaining low tail latency is chal-
lenging, because a single request to
a web application server results in
multiple queries to complex, diverse
backend services (databases, recom-
mender systems, ad systems, etc.). A
request is not complete until all of its
queries have completed. We analyze a
Microsoft production system and find
that backend query latencies vary by
more than two orders of magnitude
across backends and over time, result-
ing in high request tail latencies.

We propose a novel solution for main-
taining low request tail latency: repur-
pose existing caches to mitigate the
effects of backend latency variability,
rather than just caching popular data.
Our solution, RobinHood, dynami-
cally reallocates cache resources from
the cache-rich (backends which don’t
affect request tail latency) to the cache-
poor (backends which affect request

tail latency). We evaluate RobinHood
with production traces on a 50- server
cluster with 20 different backend
systems. Surprisingly, we find that
RobinHood can directly address tail
latency even if working sets are much
larger than the cache size. In the pres-
ence of load spikes, RobinHood meets
a 150ms P99 goal 99.7% of the time,
whereas the next best policy meets this
goal only 70% of the time.

The Parallel Persistent Memory
Model

Guy E. Blelloch, Phillip B. Gibbons, Yan
Gu, Charles McGuffey & Julian Shun

SPAA ’18, July 16–18, 2018, Vienna,
Austria.

We consider a parallel computational
model, the Parallel Persistent Memory

model, comprised of P processors,
each with a fast local ephemeral mem-
ory of limited size, and sharing a large
persistent memory. The model allows
for each processor to fault at any time
(with bounded probability), and possi-
bly restart. When a processor faults, all
of its state and local ephemeral mem-
ory is lost, but the persistent memory
remains. This model is motivated by
upcoming non-volatile memories that
are nearly as fast as existing random
access memory, are accessible at the
granularity of cache lines, and have the
capability of surviving power outages.
It is further motivated by the obser-
vation that in large parallel systems,
failure of processors and their caches
is not unusual.

We present several results for the
model, using an approach that breaks
a computation into capsules, each of
which can be safely run multiple times.
For the single-processor version we
describe how to simulate any program
in the RAM, the external memory
model, or the ideal cache model with
an expected constant factor overhead.
For the multiprocessor version we
describe how to efficiently implement
a work-stealing scheduler within the
model such that it handles both soft
faults, with a processor restarting, and
hard faults, with a processor perma-
nently failing. For any multithreaded
fork-join computation that is race free,
write-after-read conflict free and has
W work, D depth, and C maximum
capsule work in the absence of faults,
the scheduler guarantees a time bound
on the model of O(W/P

A
 + DP/P

A

[log1
/(Cf)

*W]) in expectation, where P
is the maximum number of proces-
sors, P

A
is the average number, and f

≤ 1/(2C) is the probability a processor
faults between successive persistent
memory accesses. Within the model,
and using the proposed methods, we
develop efficient algorithms for paral-
lel prefix sums, merging, sorting, and
matrix multiply.

RECENT PUBLICATIONS

Putting the “Micro” Back in
Microservice

Sol Boucher, Anuj Kalia, and David G.
Andersen & Michael Kaminsky

2018 USENIX Annual Technical
Conference (USENIX ATC ’18). July
11–13, 2018, Boston, MA.

Modern cloud computing environ-
ments strive to provide users with fine-
grained scheduling and accounting, as

well as seamless scalability. The most
recent face to this trend is the “server-
less” model, in which individual func-
tions, or microservices, are executed
on demand. Popular implementations
of this model, however, operate at a
relatively coarse granularity, occupying
resources for minutes at a time and
requiring hundreds of milliseconds
for a cold launch. In this paper, we
describe a novel design for providing
“functions as a service” (FaaS) that at-

tempts to be truly micro: cold launch
times in microseconds that enable even
finer-grained resource accounting and
support latency-critical applications.
Our proposal is to eschew much of the
traditional serverless infrastructure
in favor of language-based isolation.
The result is microsecond-granularity
launch latency, and microsecond-scale
preemptive scheduling using high-
precision timers.

continued on page 7

Comparison of the P99 request latency
of RobinHood, two production caching
systems, and three stateof-the-art research
caching systems, which we emulated in our
testbed. All systems are subjected to three
load spikes. We draw a dashed line at 150ms,
which is the worst latency under RobinHood.

0 120

0
150
300
450

0
150
300
450

0
150
300
450

0
150
300
450

0
150
300
450

0
150
300
450

Time [min]

R
eq

ue
st

-le
ve

l P
99

 L
at

en
cy

 [m
s]

Production System
s

Research System
s

RobinH
ood

Proposal
O

neR
Fpolicy

M
icrosoft

TAO
++

Facebook
LAM

A++
[40,18]

C
liffhgr++

[25]
FAIR

++
[65,19,85]

60 180

http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/p121-Chung.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/p121-Chung.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/p121-Chung.pdf
https://www.wired.com/story/this-bomb-simulating-us-supercomputer-broke-a-world-record
http://www.pdl.cmu.edu/PDL-FTP/Storage/surf_sigmod18.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/surf_sigmod18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/osdi18-berger.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/osdi18-berger.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/osdi18-berger.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/osdi18-berger.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/PMM.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/PMM.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/atc18-boucher.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/atc18-boucher.pdf

FALL 2018 54 THE PDL PACKET

DEFENSES & PROPOSALSDEFENSES & PROPOSALS

DISSERTATION ABSTRACT:
The Design and
Implementation of a Non-
Volatile Memory Database
Management System

Joy James Prabhu Arulraj
Carnegie Mellon University,, SCS

PhD Defense — July 13, 2018

This dissertation explores the implica-
tions of emergent non-volatile memory
(NVM) technologies for database man-
agement systems (DBMSs). The advent
of NVM will fundamentally change the
dichotomy between volatile memory and
durable storage in DBMSs. These new
NVM devices are almost as fast as DRAM,
but all writes to it are potentially persistent
even after power loss. Existing DBMSs
are unable to take full advantage of this
technology because their internal archi-
tectures are predicated on the assumption
that memory is volatile. With NVM, many
of the components of legacy DBMSs are
unnecessary and will degrade the perfor-
mance of the data intensive applications.

We present the design and implementa-
tion of a new DBMS tailored specifically
for NVM. The dissertation focuses on
three aspects of a DBMS: (1) logging and
recovery, (2) storage management, and
(3) indexing. Our primary contribution
in this dissertation is the design of a new
logging and recovery protocol, called
write-behind logging, that improves the
availability of the system by more than
two orders of magnitude compared to the
ubiquitous write-ahead logging protocol.
Besides improving availability, we demon-
strate that write-behind logging extends
the lifetime and increases the space uti-
lization of the NVM device. Second, we
propose a new storage engine architecture
that leverages the durability and byte-
addressability properties of NVM to avoid
unnecessary data duplication. Third, the
dissertation presents the design of a range
index tailored for NVM that supports
near-instantaneous recovery without
requiring special-purpose recovery code.

DISSERTATION ABSTRACT:
Practical Concurrency Testing
or: How I Learned to Stop
Worrying and Love the
Exponential Explosion

Ben Blum
Carnegie Mellon University, SCS

PhD Defense — October 17, 2018

Concurrent programming presents a
challenge to students and experts alike
because of the complexity of multi-
threaded interactions and the difficulty
to reproduce and reason about bugs.
Stateless model checking is a concur-
rency testing approach which forces a
program to interleave its threads in many
different ways, checking for bugs each
time. This technique is powerful, in
principle capable of finding any nonde-
terministic bug in finite time, but suffers
from exponential explosion as program
size increases. Checking an exponential
number of thread interleavings is not
a practical or predictable approach for
programmers to find concurrency bugs
before their project deadlines.

In this thesis, I develop several new tech-
niques to make stateless model checking
more practical for human use. I have
built Landslide, a stateless model checker
specializing in undergraduate operating
systems class projects. Landslide extends
the traditional model checking algorithm
with a new framework for automatically
managing multiple state spaces accord-
ing to their estimated completion times,
which I show quickly finds bugs should

they exist and also quickly verifies cor-
rectness otherwise. I evaluate Landslide’s
suitability for inexpert use by presenting
the results of many semesters providing
it to students in 15-410, CMU’s Operat-
ing System Design and Implementation
class, and more recently, students in
similar classes at the University of Chi-
cago and Penn State University. Finally,
I extend Landslide with a new concur-
rency model for hardware transactional
memory, and evaluate several real-world
transactional benchmarks to show that
stateless model checking can keep up with
the developing concurrency demands of
real-world programs.

DISSERTATION ABSTRACT:
Framework Design for
Improving Computational
Efficiency and Programming
Productivity for Distributed
Machine Learning

Jin Kyu Kim
Carnegie Mellon University, SCS

PhD Defense — September 26, 2018

Machine learning (ML) methods are
used to analyze data in a wide range of
areas, such as finance, e-commerce,
medicine, science, and engineering,
and the size of machine learning prob-
lems has grown very rapidly in terms
of data size and model size in the era
of big data. This trend drives industry
and academic communities toward dis-
tributed machine learning that scales
out ML training in a distributed system
for completion in a reasonable amount
of time. There are two challenges in
implementing distributed machine
learning: computational efficiency and
programming productivity. The tradi-
tional data-parallel approach often leads
to suboptimal training performance in
distributed ML due to data dependen-
cies among model parameter updates
and nonuniform convergence rates of
model parameters. From the perspec-
tive of an ML programmer, distributed
ML programming requires substantial

development overhead even with high-
level frameworks because they require an
ML programmer to switch to a different
mental model for programming from a
familiar sequential programming model.

The goal of my thesis is to improve the
computational efficiency and program-
ming productivity of distributed ma-
chine learning. In an efficiency study,
I explore model update scheduling
schemes that consider data dependen-
cies and nonuniform convergence
speeds of model parameters to maximize
convergence per iteration and present a
runtime system STRADS that efficiently
execute model update scheduled ML
applications in a distributed system. In
a productivity study, I present familiar
sequential-like programming API that
simplifies conversion of a sequential
ML program into a distributed program
without requiring an ML program-
mer to switch to a different mental for
programming and implement a new
runtime system STRADS-Automatic
Parallelization(AP) that efficiently ex-
ecutes ML applications written in our
API in a distributed system.

THESIS PROPOSAL:
Efficient and Programmable
Distributed Shared Memory
Systems for Machine Learning
Training

Jinliang Wei, SCS
October 5, 2018

Machine learning training involves
frequent and often sparse updates to a
large number of numerical values called
model parameters. Many distributed
training systems have resorted to using
distributed shared memory (DSM) (e.g.
Parameter Server) for efficient sparse
access and in-place updates. Com-
pared to traditional programs, machine
learning applications tolerate bounded
error, which presents opportunities
for trading off learning progress for
higher computation throughput. In this
thesis, I develop efficient and program-
mable distributed learning systems, by
exploiting this trade-off in the design

of distributed shared memory systems,
along with parallelization and static and
dynamic scheduling.

Thanks to this tolerance to bounded
error, a machine learning program can
often be parallelized without strictly
preserving data dependence. Parallel
workers may thus observe inconsistent
model parameter values compared to a
serial execution. More frequent com-
munication to propagate updates and
fresher parameter values may reduce
such inconsistency, while incurring
higher inter-machine communication
overhead. I present a communication
management mechanism that automates
communication using spare network
bandwidth and prioritizes messages ac-
cording to their importance in order to
reduce error due to inconsistency while
retaining high computation throughput.

When each model update reads and
writes to only a subset of model pa-
rameters, it is possible to achieve an
efficient parallelization while preserv-
ing critical data dependence, exploiting
sparse parameter access. Existing systems
require substantial programmer effort
to take advantage of this opportunity. In
order to achieve dependence-preserving
parallelization without imposing a huge
burden on application programmers,
I present a system Orion that provides
parallel for-loops on distributed shared
memory and parallelizes loops with loop-
carried dependence.

At last, I propose to explore dynamic
scheduling for dynamic control flow in

dataflow systems such as TensorFlow.
In TensorFlow, the computation graph
is statically partitioned and assigned
with computation devices. Static device
placement is suboptimal as the opera-
tors’ load can no longer be determined
statically due to dynamic control flow. A
suboptimal static device placement may
result in imbalanced load and extra com-
munication. It is promising to address
the deficiency of static device placement
by dynamically scheduling operations
based on their load at runtime.

THESIS PROPOSAL:
Low-Latency, Low-Cost
Machine Learning Systems on
Large-Scale, Highly-Distributed
Data

Kevin Hsieh, ECE
August 9, 2018

The explosive advancement of machine
learning (ML) has been the engine of
many important applications. The suc-
cess of an ML-driven application de-
pends on two key factors: low latency and
low cost. However, achieving low-latency
and low-cost ML is particularly challeng-
ing when the ML processes depend on
real-world, large-scale data (e.g., user
activities, pictures, and videos), which
are massive and highly distributed.

In this thesis proposal, we identifiy three
major challenges to achieve low-latency
and low-cost ML on massive and highly-
distributed data. We describe three re-
search directions that address these chal-
lenges with system-level solutions. Our
solutions improve the latency and cost
of ML on masive and highly-distributed
data by one to two orders of magnitude.

First, many ML systems leverage state-
of-the-art deep neural networks (DNNs)
to process large and continuosly growing
data (e.g., videos, audios, pictures) with
the goal to answer “after the fact” que-
ries such as: identify video frames with
objects of certain classes (cars, bags).
However, supporting such queries incurs
high cost at ingest time or high latency at

Larry Rudolph of Two Sigma talks about cloud
computing at the PDL Consortium day of
seminars, May 8, 2018.

continued on page 5

continued from page 4

Andy Pavlo and Geert Bosch (MongoDB)
discuss database research at the 2018 PDL
Retreat. Photo credit, Nicolas Viennot. continued on page 6

FALL 2018 76 THE PDL PACKET

RECENT PUBLICATIONS

continued on page 7 continued on page 8

continued from page 6

Mainstream: Dynamic Stem-
Sharing for Multi-Tenant Video
Processing

Angela H. Jiang, Daniel L.K. Wong,
Christopher Canel, Lilia Tang, Ishan
Misra, Michael Kaminsky, Michael A.
Kozuch, Padmanabhan Pillai, David G.
Andersen & Gregory R. Ganger

2018 USENIX Annual Technical
Conference (USENIX ATC ’18). July
11–13, 2018, Boston, MA.

Mainstream is a new video analysis
system that jointly adapts concurrent
applications sharing fixed edge re-
sources to maximize aggregate result
quality. Mainstream exploits partial-
DNN (deep neural network) compute
sharing among applications trained
through transfer learning from a com-
mon base DNN model, decreasing
aggregate per-frame compute time.
Based on the available resources and
mix of applications running on an
edge node, Mainstream automatically
determines at deployment time the

right trade-off between using more
specialized DNNs to improve per-
frame accuracy, and keeping more
of the unspecialized base model to
increase sharing and process more
frames per second. Experiments with
several datasets and event detection
tasks on an edge node confirm that
Mainstream improves mean event de-
tection F1-scores by up to 47% relative
to a static approach of retraining only
the last DNN layer and sharing all oth-
ers (“Max-Sharing”) and by 87X rela-
tive to the common approach of using
fully independent per-application
DNNs (“No-Sharing”).

Geriatrix: Aging What You See
and What You Don’t See — A
File System Aging Approach
For Modern Storage Systems

Saurabh Kadekodi, Vaishnavh Nagarajan,
Gregory R. Ganger & Garth A. Gibson

2018 USENIX Annual Technical
Conference (USENIX ATC ’18). July
11–13, 2018, Boston, MA.

File system performance on modern
primary storage devices (Flash-based
SSDs) is greatly affected by aging of the
free space, much more so than were
mechanical disk drives. We introduce
Geriatrix, a simple-to-use profile
driven file system aging tool that in-
duces target levels of fragmentation in
both allocated files (what you see) and
remaining free space (what you don’t
see), unlike previous approaches that
focus on just the former. This paper
describes and evaluates the effective-
ness of Geriatrix, showing that it rec-
reates both fragmentation effects bet-
ter than previous approaches. Using
Geriatrix, we show that measurements
presented in many recent file systems
papers are higher than should be ex-
pected, by up to 30% on mechanical
(HDD) and up to 80% on Flash (SSD)
disks. Worse, in some cases, the per-
formance rank ordering of file system
designs being compared are different
from the published results.

DEFENSES & PROPOSALS DEFENSES & PROPOSALS

query time. We present Focus, a system
providing both low-cost and low-latency
queries over large datasets, using video
queries as the case study.

Second, when ML data are highly dis-
tributed (e.g., distributed in many data
centers across the world), massive com-
munication overhead can drastically slow
down an ML system and introduce sub-
stantial cost. To this end, we introduce a
new, general geo-distributed ML train-
ing system, Gaia, that enables efficient
communication between data centers
by dynamically eliminating insignificant
communication while still guaranteeing
the correctness of ML algorithms.

THESIS PROPOSAL:
Rethinking Cross-layer
Abstractions to Enhance
Programmability, Portability,
and Performance

Nandita Vijaykumar, ECE
August 9th, 2018

The last decades have seen tremendous
change and growth across all levels of the
computing stack—applications, program-
ming models, compilers, runtime systems,
and the hardware architecture. These
changes are driven by recent trends, in-
cluding the push towards domain-specific
specialization in hardware and software,
consolidation of multiple applications on
the same platform via system virtualization,
and a new era of data-intensive compu-
tation. Programmability, performance
portability, and resource efficiency have
emerged as critical challenges in harnessing
complex and diverse architectures today to
obtain high performance and energy effi-
ciency. While there is abundant research,
and thus significant improvements, at dif-
ferent levels of the stack that address these
very challenges, the interfaces/abstractions
between the levels of the computing stack
have largely remained the same.

This thesis makes a case for rethinking
the cross-layer abstractions in the new
landscape of fast-evolving hardware and
software. While today the cross-layer
abstractions are primarily designed for
program functionality and correctness, we

explore how richer interfaces can make a
significant difference in how we optimize
for programmability, performance porta-
bility, and resource efficiency across the
computing stack. We propose 4 different
approaches to designing richer abstrac-
tions between the application, system
software, and hardware architecture: (i)
Expressive Memory: A unifying cross-
layer abstraction to express and communi-
cate higher-level program semantics from
the application to the underlying system/
architecture to enhance memory opti-
mization; (ii) The Locality Descriptor:
A cross-layer abstraction to express and
exploit data locality in GPUs; (iii) Zorua:
A framework to decouple the program-
ming model from management of on-chip
resources and parallelism in GPUs; (iv)
Assist Warps: A helper-thread abstrac-
tion to dynamically leverage underutilized
compute/memory bandwidth in GPUs to
perform useful work. We describe each
concept and propose the research ques-
tions to be addressed in this thesis.

THESIS PROPOSAL:
Distribution-based cluster
scheduling

Jun Woo Park, SCS
May 16, 2018

This thesis seeks to propose and evaluate
a scheduler that can leverage full distribu-
tions (e.g.,the histogram of observed run-
times or resource usage) rather than single
point estimates. Knowing point estimates,
such as how long each job will execute,
enables a scheduler to more effectively
pack jobs with diverse time concerns (e.g.,
deadline vs. the-sooner-the-better) and

placement preferences on heterogeneous
cluster resources. But, existing schedulers
use single-point estimates (e.g., mean or
median of a relevant subset of historical
runtimes), and we show that they are
fragile in the face of real-world estimate
error profiles. In particular, analysis of
job traces from three different large-scale
cluster environments shows that, while the
runtimes of many jobs can be predicted
well, even state-of-the-art predictors
have wide error profiles with 8-23% of
predictions off by a factor of two or more.
Instead of reducing relevant history to
a single point, a distribution provides
much more information (e.g., variance,
possible multi-modal behaviors, etc.) and
allows the scheduler to make more robust
decisions. By considering the range of
possible runtimes and resource usage for
a job, and their likelihoods, the scheduler
can explicitly consider various potential
outcomes from each possible scheduling
option and select an option based on op-
timizing the expected outcome.

THESIS PROPOSAL:
Improving ML Applications
in Shared Computing
Environments

Aaron Harlap, ECE
May 16, 2018

Statistical machine learning (ML) has
become a powerful building block for
modern services, scientific endeavors
and enterprise processes. We focus on
the major subset of ML approaches that
employ iterative algorithms to determine
model parameters that best fit a given set
of input data. Such algorithms iterate
over the input data, refining their cur-
rent best estimate of the parameter values
to converge on a final solution.

The expensive computations required for
training ML applications often makes it de-
sirable to run them in a distributed manner
in shared computing environments (e.g
Amazon EC2, Microsoft Azure, in-house
shared clusters). Distributed training of
ML applications commonly require the
resources involved to maintain parameter

data (solution state), evenly distribute
work, synchronize progress and com-
municate amongst each other in order for
the ML application to function effectively.

Shared computing environments introduce
a number of challenges including uncor-
related performance jitter, heterogeneous
resources, transient resources and limited
bandwidth. In our work we focus on im-
proving the efficiency, reducing cost and
reducing runtime of training ML applica-
tions in shared computing environments by
addressing the challenges described.

THESIS PROPOSAL:
Towards Space-Efficient
High-Performance In-Memory
Search Structures

Huanchen Zhang,CS
April 30, 2018

continued from page 5

This thesis seeks to address the challenge
of building space-efficient yet high- per-
formance in-memory search structures,
including indexes and filters, to allow
more efficient use of memory in OLTP
databases. We show that we can achieve
this goal by first designing fast static
structures that leverage succinct data
structures to approach the information-
theoretic optimum in space, and then
using the “hybrid index” architecture
to obtain dynamicity with bounded and
modest cost in space and performance.

To obtain space-efficient yet high-per-
formance static data structures, we first
in- troduce the Dynamic-to-Static rules
that present a systematic way to convert
existing dynamic structures to smaller
immutable versions. We then present the
Fast Succinct Trie (FST) and its applica-
tion, the Succinct Range Filter (SuRF),

to show how to leverage theories on suc-
cinct data structures to build static search
structures that consume space close to
the information-theoretic minimum
while performing comparably to uncom-
pressed indexes. To support dynamic
operations such as inserts, deletes, and
updates, we introduce the dual-stage hy-
brid index architecture that preserves the
space efficiency brought by a compressed
static index, while amortizing its perfor-
mance overhead on dynamic operations
by applying modifications in batches.

In the proposed work, we seek oppor-
tunities to further shrink the size of in-
memory indexes by co-designing the in-
dexes with the in-memory tuple storage.
We also propose to complete the hybrid
index work by extending the techniques
to support concurrent indexes.

continued from page 3

Greg Ganger and Micheal Abd-El-Malek
(PDL alumnus, now with Google) catch up
at the 2018 PDL Retreat. Photo credit, Nicolas
Viennot.

http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/atc18-jiang.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/atc18-jiang.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/atc18-jiang.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-kadekodi.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-kadekodi.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-kadekodi.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-kadekodi.pdf

FALL 2018 98 THE PDL PACKET

continued from page 7

RECENT PUBLICATIONSRECENT PUBLICATIONS

continued on page 9

continued from page 8

continued on page 10

Cavs represents a dynamic structure as a
dynamic input graph G (left) and a static
vertex function F (right).

Geriatrix will be released as open
source software with eight built-in
aging profiles, in the hopes that it
can address the need created by the
increased performance impact of file
system aging in modern SSD-based
storage.

Cavs: An Efficient Runtime
System for Dynamic Neural
Networks

Shizhen Xu, Hao Zhang, Graham
Neubig, Wei Dai, Jin Kyu Kim, Zhijie
Deng, Qirong Ho, Guangwen Yang &
Eric P. Xing

2018 USENIX Annual Technical
Conference (USENIX ATC ’18). July
11–13, 2018, Boston, MA.

Recent deep learning (DL) models are
moving more and more to dynamic
neural network (NN) architectures,
where the NN structure changes for
every data sample. However, existing
DL programming models are inef-
ficient in handling dynamic network
architectures because of: (1) substantial
overhead caused by repeating dataflow
graph construction and processing ev-
ery example; (2) difficulties in batched
execution of multiple samples; (3) in-
ability to incorporate graph optimiza-
tion techniques such as those used in
static graphs. In this paper, we present
“Cavs”, a runtime system that over-
comes these bottlenecks and achieves
efficient training and inference of dy-
namic NNs. Cavs represents a dynamic
NN as a static vertex function F and a
dynamic instance-specific graph G. It
avoids the overhead of repeated graph
construction by only declaring and
constructing F once, and allows for the
use of static graph optimization tech-
niques on pre-defined operations in F.
Cavs performs training and inference
by scheduling the execution of F fol-
lowing the dependencies in G, hence
naturally exposing batched execution
opportunities over different samples.
Experiments comparing Cavs to state-
of-the-art frameworks for dynamic
NNs (TensorFlow Fold, PyTorch and

DyNet) demonstrate the efficacy of our
approach: Cavs achieves a near one
order of magnitude speedup on train-
ing of dynamic NN architectures, and
ablations verify the effectiveness of our
proposed design and optimizations.

Litz: Elastic Framework for
High-Performance Distributed
Machine Learning

Aurick Qiao, Abutalib Aghayev, Weiren
Yu, Haoyang Chen, Qirong Ho, Garth
A. Gibson & Eric P. Xing

2018 USENIX Annual Technical
Conference (USENIX ATC ’18). July
11–13, 2018, Boston, MA.

Machine Learning (ML) is an in-
creasingly popular application in the
cloud and data-center, inspiring new
algorithmic and systems techniques
that leverage unique properties of
ML applications to improve their
distributed performance by orders
of magnitude. However, applications
built using these techniques tend to
be static, unable to elastically adapt
to the changing resource availability
that is characteristic of multi-tenant
environments. Existing distributed
frameworks are either inelastic, or
offer programming models which
are incompatible with the techniques
employed by high-performance ML
applications.

Motivated by these trends, we present
Litz, an elastic framework supporting
distributed ML applications. We cat-
egorize the wide variety of techniques

employed by these applications into
three general themes — stateful work-
ers, model scheduling, and relaxed
consistency — which are collectively
supported by Litz’s programming
model. Our implementation of Litz’s
execution system transparently enables
elasticity and low-overhead execution.
We implement several popular ML
applications using Litz, and show that
they can scale in and out quickly to
adapt to changing resource availability,
as well as how a scheduler can leverage
elasticity for faster job completion
and more efficient resource alloca-
tion. Lastly, we show that Litz en-
ables elasticity without compromising
performance, achieving competitive
performance with state-of-the-art
non-elastic ML frameworks.

A Case for Packing and
Indexing in Cloud File Systems

Saurabh Kadekodi, Bin Fan, Adit
Madan, Garth A. Gibson & Gregory R.
Ganger

10th USENIX Workshop on Hot Top-
ics in Cloud Computing, July 9, 2018,
Boston, MA.

Small (kilobyte-sized) objects are the
bane of highly scalable cloud object
stores. Larger (at least megabyte-sized)
objects not only improve performance,
but also result in orders of magnitude
lower cost, due to the current opera-
tion-based pricing model of commod-
ity cloud object stores. For example, in
Amazon S3’s current pricing scheme,
uploading 1GiB data by issuing 4KiB
PUT requests (at 0.0005 cents each)
is approximately 57X more expensive
than storing that same 1GiB for a
month. To address this problem, we
propose client-side packing of small
immutable files into gigabyte-sized
blobs with embedded indices to iden-
tify each file’s location. Experiments
with a packing implementation in Al-
luxio (an open-source distributed file
system) illustrate the potential ben-

efits, such as simultaneously increasing
file creation throughput by up to 60X
and decreasing cost to 1/25000 of the
original.

Tributary: Spot-dancing for
Elastic Services with Latency
SLOs

Aaron Harlap, Andrew Chung, Alexey
Tumanov, Gregory R. Ganger & Phillip
B. Gibbons

2018 USENIX Annual Technical
Conference. July 11–13, 2018 Boston,
MA, USA.

The Tributary elastic control system
embraces the uncertain nature of
transient cloud resources, such as
AWS spot instances, to manage elastic
services with latency SLOs more ro-
bustly and more cost-effectively. Such
resources are available at lower cost,
but with the proviso that they can be
preempted en masse, making them
risky to rely upon for business-critical
services. Tributary creates models of
preemption likelihood and exploits the
partial independence among different
resource offerings, selecting collec-
tions of resource allocations that satisfy
SLO requirements and adjusting them
over time, as client workloads change.

Although Tributary’s collections are
often larger than required in the ab-
sence of preemptions, they are cheaper
because of both lower spot costs and
partial refunds for preempted resourc-
es. At the same time, the often-larger
sets allow unexpected workload bursts
to be absorbed without SLO violation.
Over a range of web service workloads,
we find that Tributary reduces cost
for achieving a given SLO by 81–86%
compared to traditional scaling on
non-preemptible resources, and by
47–62% compared to the high-risk
approach of the same scaling with spot
resources.

On the Diversity of Cluster
Workloads and its Impact on
Research Results

George Amvrosiadis, Jun Woo
Park, Gregory R. Ganger, Garth A.
Gibson, Elisabeth Baseman & Nathan
DeBardeleben

2018 USENIX Annual Technical Con-
ference (ATC ‘18), Boston, MA, July
11-13, 2018.

Six years ago, Google released an in-
valuable set of scheduler logs which
has already been used in more than
450 publications. We find that the

scarcity of other data sources, however,
is leading researchers to overfit their
work to Google’s dataset characteris-
tics. We demonstrate this overfitting
by introducing four new traces from
two private and two High Performance
Computing (HPC) clusters. Our
analysis shows that the private cluster
workloads, consisting of data analytics
jobs expected to be more closely related
to the Google workload, display more
similarity to the HPC cluster work-
loads. This observation suggests that
additional traces should be considered
when evaluating the generality of new
research.

To aid the community in moving
forward, we release the four analyzed
traces, including: the longest publicly
available trace spanning all 61 months
of an HPC cluster’s lifetime and a trace
from a 300,000-core HPC cluster,
the largest cluster with a publicly
available trace. We present an analysis
of the private and HPC cluster traces
that spans job characteristics, workload
heterogeneity, resource utilization,
and failure rates. We contrast our find-
ings with the Google trace character-
istics and identify affected work in the
literature. Finally, we demonstrate the

gather sca�er

pu
sh

pu
ll

Internal
Data Path

External
Data Path

Input
Output

Childsum
LSTM

h0 c0

h1 c1

x c
f1

f0

Chain

Tree

u|i O

LSTMht-1 ct-1

xt ct

f

u|i O

GRUht-1 ct-1

xt ct

f

u ht
O

ht

h

f

On Both
Data Path

Figures (b) and (c) show how Tributary and AutoScale handle a sample workload respectively. Figure (a) is the legend for (b) and (c), color-coding
each allocation. The black dotted lines in (b) and (c) signify the request rates over time. At minute 15, the request rate unexpectedly spikes and
AutoScale experiences “slow” requests until completing integration of additional resources with 3. Tributary, meanwhile, had extra resources
meant to address preemption risk in C, providing a natural buffer of resources that is able to avoid “slow” requests during the spike. At minute
35, when the request rate decreases, Tributary terminates B, since it believes that B has the lowest probability of getting the free partial hour.
It does not terminate D since it has a high probability of eviction and is likely to be free; it also does not terminate C since it needs to maintain
resources. AutoScale, on the other hand, terminates both 2 and 3, incurring partial cost. At minute 52, the request rate increases and Tributary
again benefits from the extra buffer while AutoScale misses its latency SLO. In this example, Tributary has less “slow” requests and achieves
lower cost than AutoScale because AutoScale pays for 3 and for the partial hour for both 1 and 2 while Tributary only pays for A and the partial
hour for B since C and D were preempted and incur no cost.

Eviction

Termination

8 c4.large in us-west-2c

2 c4.2xlarge in us-west-2a

4 c4.xlarge in us-west-2a

4 c4.xlarge in us-west-2c

(a) Legend

Alloc B

Alloc C

R
at

e
of

 R
eq

ue
st

s

Alloc A

Alloc D

Time (min)

Alloc C

6030

Alloc Eo

Alloc D

(b) Tributary

Alloc 2

Alloc 3

R
at

e
of

 R
eq

ue
st

s

Alloc 1

Time (min)

Alloc 3
6030

Alloc 4A

(c) AutoScale

http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-xu-shizhen.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-xu-shizhen.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/atc18-xu-shizhen.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/litz-atc-2018.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/litz-atc-2018.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/litz-atc-2018.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/CMU-PDL-17-105.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/CMU-PDL-17-105.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/harlap-usenix-atc-2018.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/harlap-usenix-atc-2018.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/harlap-usenix-atc-2018.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/cloudstudy_atc18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/cloudstudy_atc18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/cloudstudy_atc18.pdf

FALL 2018 1110 THE PDL PACKET

RECENT PUBLICATIONSRECENT PUBLICATIONS

continued from page 10

continued on page 11

continued on page 12

continued from page 9

importance of dataset plurality and di-
versity by evaluating the performance
of a job runtime predictor using all
four of our traces and the Google trace.

Mosaic: Enabling Application-
Transparent Support for
Multiple Page Sizes in
Throughput Processors

Rachata Ausavarungnirun, Joshua
Landgraf, Vance Miller, Saugata
Ghose, Jayneel Gandhi, Christopher J.
Rossbach & Onur Mutlu

ACM SIGOPS Operating System Re-
view - Special Topics, Vol. 52, Issue
1, July 2018

Contemporary discrete GPUs support
rich memory management features
such as virtual memory and demand
paging. These features simplify GPU
programming by providing a virtual
address space abstraction similar to
CPUs and eliminating manual mem-
ory management, but they introduce
high performance overheads during
(1) address translation and (2) page
faults. A GPU relies on high degrees
of thread-level parallelism (TLP) to
hide memory latency. Address transla-
tion can undermine TLP, as a single
miss in the translation lookaside buffer
(TLB) invokes an expensive serialized
page table walk that often stalls mul-
tiple threads. Demand paging can also
undermine TLP, as multiple threads
often stall while they wait for an ex-
pensive data transfer over the system
I/O (e.g., PCIe) bus when the GPU
demands a page. In modern GPUs, we
face a trade-off on how the page size
used for memory management affects
address translation and demand pag-
ing. The address translation overhead
is lower when we employ a larger page
size (e.g., 2MB large pages, compared
with conventional 4KB base pages),
which increases TLB coverage and thus
reduces TLB misses. Conversely, the
demand paging overhead is lower when
we employ a smaller page size, which
decreases the system I/O bus transfer
latency. Support for multiple page sizes

can help relax the page size trade-off
so that address translation and demand
paging optimizations work together
synergistically. However, existing page
coalescing (i.e., merging base pages
into a large page) and splintering (i.e.,
splitting a large page into base pages)
policies require costly base page migra-
tions that undermine the benefits mul-
tiple page sizes provide. In this paper,
we observe that GPGPU applications
present an opportunity to support
multiple page sizes without costly data
migration, as the applications perform
most of their memory allocation en
masse (i.e., they allocate a large num-
ber of base pages at once). We show
that this en masse allocation allows us
to create intelligent memory allocation
policies which ensure that base pages
that are contiguous in virtual memory
are allocated to contiguous physical
memory pages. As a result, coalescing
and splintering operations no longer
need to migrate base pages.

We introduce Mosaic, a GPU memory
manager that provides application-
transparent support for multiple page
sizes. Mosaic uses base pages to transfer
data over the system I/O bus, and al-
locates physical memory in a way that
(1) preserves base page contiguity and
(2) ensures that a large page frame
contains pages from
only a single memory
protection domain.
We take advantage of
this allocation strategy
to design a novel in-
place page size selec-
tion mechanism that
avoids data migration.
This mechanism al-
lows the TLB to use
large pages, reduc-
ing address transla-
tion overhead. Dur-
ing data transfer, this
mechanism enables
the GPU to transfer
only the base pages
that are needed by the
application over the
system I/O bus, keep-

ing demand paging overhead low. Our
evaluations show that Mosaic reduces
address translation overheads while
efficiently achieving the benefits of de-
mand paging, compared to a contem-
porary GPU that uses only a 4KB page
size. Relative to a state-of-the-art GPU
memory manager, Mosaic improves
the performance of homogeneous
and heterogeneous multi-application
workloads by 55.5% and 29.7% on
average, respectively, coming within
6.8% and 15.4% of the performance
of an ideal TLB where all TLB requests
are hits.

The Locality Descriptor:
A Holistic Cross-Layer
Abstraction to Express Data
Locality in GPUs

Nandita Vijaykumar, Eiman Ebrahimi,
Kevin Hsieh, Phillip B. Gibbons & Onur
Mutlu

The 45th International Symposium
on Computer Architecture - June 2-6,
ISCA 2018. Los Angeles, California,
USA.

Exploiting data locality in GPUs is
critical to making more efficient use
of the existing caches and the NUMA-

based memory hierarchy expected in
future GPUs. While modern GPU
programming models are designed to
explicitly express parallelism, there is
no clear explicit way to express data
locality—i.e., reuse-based locality to
make efficient use of the caches, or
NUMA locality to efficiently utilize a
NUMA system. On the one hand, this
lack of expressiveness makes it a very
challenging task for the programmer to
write code to get the best performance
out of the memory hierarchy. On the
other hand, hardware-only architec-
tural techniques are often suboptimal
as they miss key higher-level program
semantics that are essential to effec-
tively exploit data locality.

In this work, we propose the Local-
ity Descriptor, a crosslayer abstrac-
tion to explicitly express and exploit
data locality in GPUs. The Locality
Descriptor (i) provides the software
a flexible and portable interface to
optimize for data locality, requiring no
knowledge of the underlying memory
techniques and resources, and (ii)
enables the architecture to leverage
key program semantics and effectively
coordinate a range of techniques (e.g.,
CTA scheduling, cache management,
memory placement) to exploit locality
in a programmer-transparent man-
ner. We demonstrate that the Locality
Descriptor improves performance by
26.6% on average (up to 46.6%) when
exploiting reuse-based locality in the

cache hierarchy, and by 53.7% (up to
2.8X) when exploiting NUMA locality
in a NUMA memory system.

Picking Interesting Frames in
Streaming Video

Christopher Canel, Thomas Kim, Giulio
Zhou, Conglong Li, Hyeontaek Lim,
David G. Andersen, Michael Kaminsky
& Subramanya R. Dulloor

SysML’18, February 15–16, 2018,
Stanford, CA.

As video camera deployments proliferate
in the smart cities of the future [2], soft-
ware systems are faced with the increasing
challenge of determining which seg-
ments of data are relevant. For resource-
constrained edge nodes, limited network
bandwidth back to the datacenter prevents
sending entire video streams.

This paper presents a new application-
independent interesting frame (IF)
detection algorithm for identifying
relevant frames in streaming video. We
envision this IF detector as a prepro-
cessing step in a larger video analytics
pipeline where the expensive compu-
tation occurs later (similar to the way
Bloom filters can guard expensive data
structures). Given a target frame rate
(or, equivalently, a target bandwidth),
the algorithm decides which frames
are the most generally interesting
and therefore should be processed by
downstream applications or forwarded

to the datacenter. We decide how
“interesting” a frame is based on its
semantic difference from other frames.
The IF detection algorithm uses a hi-
erarchy of filters to trade off between
end-to-end latency and aggressive
decimation. The algorithm strives to
maximize the semantic diversity of the
selected frames. Compared to simply
choosing frames at a fixed interval, the
IF detector better handles bursty events
in the stream.

Query-based Workload
Forecasting for Self-Driving
Database Management
Systems

Lin Ma, Dana Van Aken, Ahmed Hefny,
Gustavo Mezerhane, Andrew Pavlo &
Geoffrey J. Gordon

SIGMOD/PODS ‘18 International
Conference on Management of Data
Houston, TX, USA, June 10-15, 2018.

The first step towards an autonomous
database management system (DBMS)
is the ability to model the target ap-
plication’s workload. This is necessary
to allow the system to anticipate future
workload needs and select the proper
optimizations in a timely manner.
Previous forecasting techniques model
the resource utilization of the queries.
Such metrics, however, change when-
ever the physical design of the database

Overview of the proposed holistic cross-layer abstraction. The goal
is to connect program semantics and programmer intent (1) with
the underlying architectural mechanisms (2). By doing so, we enable
optimization at different levels of the stack: (i) as an additional knob
for static code tuning by the programmer, compiler, or autotuner (3),
(ii) runtime software optimization (4), and (iii) dynamic architectural
optimization (7) using a combination of architectural techniques.
This abstraction interfaces with a parallel GPU programming
model like CUDA (5) and conveys key program semantics to the
architecture through low overhead interfaces (6).

Interface to Application

Caches

Interface to Architecture

Prefetcher CTA
Scheduler

Memory
Placement

Program Semantics &
Programmer Intent

. . .

Runtime Optimization

Optimization by Programmer/
Compiler/Profiler

A Cross-Layer
Abstraction for
Data Locality

1

2

3

4

5

Dynamic Architectural
Optimization 7

6
Software

Hardware

System architecture and detection accuracy when varying the buffer size and selectivity. Figures b and c demonstrate that for various buffer
sizes andselectivities, the IF detector consistently achieves superior shotcoverage compared to uniform sampling.

Detec�on
Algorithm

Frames

Feature
Vectors

Interes�ng
Frames

(fine-grained)

Interes�ng
Frames

Frame
BufferDNN

Level 0

Level 1

Interes�ng
Frames

(coarse-grained)Level 2

(a)

16 32 64 128

Buffer Size (frames)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

�o
n

of
Sh

ot
s

De
te

ct
ed

Varying Buffer Size, with 3 Levels
and Selec�vity of 0.25

IF Detector
Uniform Sampling

(b)

0.0625
0.125

0.25 0.5
Selec�vity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

�o
n

of
Sh

ot
s

De
te

ct
ed

Varying Selec�vity, with 3 Levels
and Buffer Size of 64 frames

IF Detector
Uniform Sampling

(c)

http://www.pdl.cmu.edu/PDL-FTP/NVM/17micro_mosaic.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/17micro_mosaic.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/17micro_mosaic.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/17micro_mosaic.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/ldesc.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/ldesc.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/ldesc.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/ldesc.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/canel-sysML18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/canel-sysML18.pdf
http://www.pdl.cmu.edu/PDL-FTP/Database/sigmod18-ma.pdf
http://www.pdl.cmu.edu/PDL-FTP/Database/sigmod18-ma.pdf
http://www.pdl.cmu.edu/PDL-FTP/Database/sigmod18-ma.pdf
http://www.pdl.cmu.edu/PDL-FTP/Database/sigmod18-ma.pdf

FALL 2018 1312 THE PDL PACKET

RECENT PUBLICATIONSRECENT PUBLICATIONS

continued from page 12

continued on page 13 continued on page 14

(a) Hit rate, cost saving, and revenue impact
for naive fixed refresh rate, heuristic-based
cache, and proposed prediction-based cache.
For all the numbers the higher the better.
(b) Hit rate, cost saving, and revenue impact
for prediction-based cache with different
feature sets. The corresponding net profit
impacts are: $29.8 to $93.4 million, $34.6 to
$105.0 million, and $35.2 to $106.1 million.
(c) Hit rate, cost saving, and revenue impact
for prediction-based cache with different
training data. The corresponding net profit
impacts are: $34.3 to $104.2 million, $34.9 to
$105.5 million, and $35.2 to $106.1 million.

and the hardware resources change,
thereby rendering previous forecasting
models useless.

We present a robust forecasting frame-
work called QueryBot 5000 that allows
a DBMS to predict the expected arrival
rate of queries in the future based
on historical data. To better support
highly dynamic environments, our ap-
proach uses the logical composition of
queries in the workload rather than the
amount of physical resources used for
query execution. It provides multiple
horizons (short- vs. long-term) with
different aggregation intervals. We
also present a clustering-based tech-
nique for reducing the total number
of forecasting models to maintain.
To evaluate our approach, we com-
pare our forecasting models against
other state-of-the-art models on three
real-world database traces. We imple-
mented our models in an external
controller for PostgreSQL and MySQL
and demonstrate their effectiveness in
selecting indexes.

A Case for Richer Cross-layer
Abstractions: Bridging the
Semantic Gap with Expressive
Memory

Nandita Vijaykumar, Abhilasha Jain,
Diptesh Majumdar, Kevin Hsieh,
Gennady Pekhimenko, Eiman
Ebrahimi, Nastaran Hajinazar, Phillip B.
Gibbons & Onur Mutlu

45th International Symposium on
Computer Architecture (ISCA), Los
Angeles, CA, USA, June 2018.

This paper makes a case for a new
cross-layer interface, Expressive
Memory (XMem), to communicate
higher-level program semantics from
the application to the system software
and hardware architecture. XMem
provides (i) a flexible and extensible
abstraction, called an Atom, enabling
the application to express key program
semantics in terms of how the pro-
gram accesses data and the attributes
of the data itself, and (ii) new cross-

layer interfaces to
make the expressed
higher-level infor-
mation available to
the underlying OS
and architecture.
By providing key
information that is
otherwise unavail-
able, XMem exposes
a new, rich view of
the program data to
the OS and the dif-
ferent architectural
components that
optimize memory
system performance
(e.g., caches, mem-
ory controllers).

By bridging the se-
mantic gap between
the application and
the underlying memory resources,
XMem provides two key benefits. First,
it enables architectural/system-level
techniques to leverage key program
semantics that are challenging to pre-
dict or infer. Second, it improves the
efficacy and portability of software
optimizations by alleviating the need
to tune code for specific hardware
resources (e.g., cache space). While
XMem is designed to enhance and
enable a wide range of memory opti-
mizations, we demonstrate the benefits
of XMem using two use cases: (i) im-
proving the performance portability of
software-based cache optimization by
expressing the semantics of data locality
in the optimization and (ii) improving
the performance of OS-based page
placement in DRAM by leveraging the
semantics of data structures and their
access properties.

Building a Bw-Tree Takes More
Than Just Buzz Words
Ziqi Wang, Andrew Pavlo, Hyeontaek
Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky & David G. Andersen

SIGMOD/PODS ‘18 International
Conference on Management of Data
Houston, TX, USA — June 10-15, 2018.

In 2013, Microsoft Research proposed
the Bw-Tree (humorously termed the
“Buzz Word Tree”), a lock-free index
that provides high throughput for trans-
actional database workloads in SQL
Server’s Hekaton engine. The Bw-Tree
avoids locks by appending delta record
to tree nodes and using an indirection
layer that allows it to atomically update
physical pointers using compare-and-
swap (CaS). Correctly implementing
this techniques requires careful atten-
tion to detail. Unfortunately, the Bw-
Tree papers from Microsoft are missing
important details and the source code
has not been released.

This paper has two contributions:
First, it is the missing guide for how
to build a lock-free Bw-Tree. We
clarify missing points in Microsoft’s
original design documents and then
present techniques to improve the
index’s performance. Although our
focus here is on the Bw-Tree, many
of our methods apply more broadly to
designing and implementing future
lock-free in-memory data structures.
Our experimental evaluation shows
that our optimized variant achieves

1.1–2.5× better performance than the
original Microsoft proposal for highly
concurrent workloads. Second, our
evaluation shows that despite our im-
provements, the Bw-Tree still does not
perform as well as other concurrent
data structures that use locks.

Better Caching in Search
Advertising Systems with
Rapid Refresh Predictions

Conglong Li, David G Andersen, Qiang
Fu, Sameh Elnikety & Yuxiong He

Proceedings of the 2018 World Wide
Web Conference on World Wide Web.

To maximize profit and connect us-
ers to relevant products and services,
search advertising systems use sophis-
ticated machine learning algorithms
to estimate the revenue expectations
of thousands of matching ad listings
per query. These machine learning
computations constitute a substantial
part of the operating cost, e.g., 10%
to 30% of the total gross revenues. It
is desirable to cache and reuse previ-
ous computation results to reduce this
cost, but caching introduces approxi-
mation which comes with potential
revenue loss. To maximize cost savings
while minimizing the overall revenue
impact, an intelligent refresh policy
is required to decide when to refresh
the cached computation results. The
state-of-the-art manually-tuned re-
fresh heuristic uses revenue history to
assign different refresh frequencies.
Using the gradient boosting regression
tree algorithm with well selected fea-
tures, we introduce a rapid prediction
framework that provides refresh deci-
sions at higher accuracy compared to
the heuristic. This enables us to build
a prediction-based refresh policy and
a cache achieving higher profit without
manual parameter tuning. Simulations
conducted on the logs from a major
commercial search advertising system
show that our proposed cache design
reduces the negative revenue impact
(0.07x), and improves the cost savings
(1.41x) and the net profit (1.50~1.70x)

compared to the state-of-the-art
manually-tuned heuristic-based cache
design.

Practical Bounds on Optimal
Caching with Variable Object
Sizes

Daniel S. Berger, Nathan Beckmann &
Mor Harchol-Balter

ACM Proceedings on Measurement
and Analysis of Computing Systems.
Vol. 2, No. 2, Article 32. June 2018.

Many recent caching systems aim to

improve miss ratios, but there is no
good sense among practitioners of
how much further miss ratios can be
improved. In other words, should the
systems community continue working
on this problem?

Currently, there is no principled
answer to this question. In practice,
object sizes often vary by several orders
of magnitude, where computing the
optimal miss ratio (OPT) is known
to be NP-hard. The few known re-
sults on caching with variable object
sizes provide very weak bounds and are
impractical to compute on traces of
realistic length.

We propose a new method to compute
upper and lower bounds on OPT. Our
key insight is to represent caching as a
min-cost flow problem, hence we call
our method the flow-based offline opti-
mal (FOO). We prove that, under sim-
ple independence assumptions, FOO’s
bounds become tight as the number of
objects goes to infinity. Indeed, FOO’s
error over 10M requests of production
CDN and storage traces is negligible:
at most 0.3%. FOO thus reveals, for
the first time, the limits of caching
with variable object sizes. While FOO
is very accurate, it is computationally
impractical on traces with hundreds
of millions of requests. We therefore
extend FOO to obtain more efficient
bounds on OPT, which we call practical
flow-based offline optimal (PFOO).We
evaluate PFOO on several full produc-
tion traces and use it to compare OPT
to prior online policies. This analysis
shows that current caching systems are
in fact still far from optimal, suffering
11–43% more cache misses than OPT,
whereas the best prior offline bounds
suggest that there is essentially no room
for improvement.

Architecture Overview – An instance of a Bw-Tree with its internal
logical links, Mapping Table links, and an ongoing CaS operation on
the leaf Delta Chain.

Inner

Inner

Mapping
Table

Δ

Inner

Δ

Δ

Inner
Delta
Chain

Δ Leaf
Delta
Chain

N1 P1

Leaf

Inner node
Physical link Logical link

Delta nodeLeaf node

new
CaS

old

ID Ptr

N2 P2

Ni Pi

Nj Pj

NiN2

Nj

Separator
items

K2 Ki

K1

K1 K4 K5 K6

V1 V4 V5 V6

Data
itemsLeafNk Pk

Kk

Nk

K7

V7

Ki K8
N8

Fixed refresh
Heuristic

-based
Predictio

n-based

0

20

40

60

80

100

% 40
.1

21
.4

45
.1

30
.7

17
.0 24
.2

-5
.1
6

-0
.2
9

-0
.0
2

Hit rate Cost saving Revenue impact

Top-3 features Top-15 features All featu
res

0

20

40

60

80

100

%

44
.1

45
.2

45
.1

21
.7

24
.0

24
.2

-0
.1
4

-0
.0
4

-0
.0
2

Hit rate Cost saving Revenue impact

Three days bef
ore

Two days bef
ore

One day befo
re

0

20

40

60

80

100

%

44
.7

45
.3

45
.1

23
.9

24
.1

24
.2

-0
.0
5

-0
.0
3

-0
.0
2

Hit rate Cost saving Revenue impact

(a)

(c)

(b)

continued from page 11

http://www.pdl.cmu.edu/PDL-FTP/BigLearning/xmem.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/xmem.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/xmem.pdf
http://www.pdl.cmu.edu/PDL-FTP/BigLearning/xmem.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/sigmod18-wang.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/sigmod18-wang.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/2018PracticalBound_SIGMETRICS.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/2018PracticalBound_SIGMETRICS.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/2018PracticalBound_SIGMETRICS.pdf

FALL 2018 1514 THE PDL PACKET

connectivity (e.g., in drones), and
real-time requirements, but leads to
resource limitations. Thus, optimal
video application performance re-
quires tuning to the resources available
[13, 2, 14, 4, 7]. However, application
developers may be unable to predict
easily what resources will be available
when the application is deployed,
particularly in “multi-tenant” envi-
ronments where the set of concur-
rently deployed applications may vary.
Instead, individual application devel-
opers typically develop their models
in isolation, assuming either infinite
resources or a predetermined set of
static resources. When a number of
such individually-tailored models are
run concurrently, resource competi-
tion forces the video stream to be ana-
lyzed at a lower frame rate— leading to
unsatisfactory results for the running
applications, as frames are dropped
and events in those frames are missed.

The Mainstream video processing
system enables efficient execution of
multiple independently-developed
and incrementally-deployed video
analysis applications on a given video
stream. Mainstream shares execution
of concurrent DNNs, yet does not rely
on applications’ DNNs to be trained
collectively. Therefore, Mainstream
provides collaborative execution, even
when development and training data
are not centralized in one organization.

USENIX Confer-
ence on File and
Storage Technolo-
gies (FAST), Oak-
land, CA, February
2018.

Solid-state drives
(SSDs) are used
in a wide array of
computer systems
today, including
in datacenters and
enterprise serv-
ers. As the I/O
demands of these
systems continue to
increase, manufac-
turers are evolving
SSD architectures
to keep up with
this demand. For
example, manu-
facturers have in-
troduced new high-
bandwidth inter-
faces to replace the
conventional SATA
host–interface pro-
tocol. These new
interfaces, such as the NVMe proto-
col, are designed specifically to enable
the high amounts of concurrent I/O
bandwidth that SSDs are capable of
delivering.

While modern SSDs with sophisticated
features such as the NVMe protocol are
already on the market, existing SSD
simulation tools have fallen behind,
as they do not capture these new fea-
tures. We find that state-of-theart SSD
simulators have three shortcomings
that prevent them from accurately
modeling the performance of real
off-the-shelf SSDs. First, these simu-
lators do not model critical features
of new protocols (e.g., NVMe), such
as their use of multiple application-
level queues for requests and the
elimination of OS intervention for
I/O request processing. Second, these
simulators often do not accurately
capture the impact of advanced SSD
maintenance algorithms (e.g., garbage

RECENT PUBLICATIONS

continued from page 14

RECENT PUBLICATIONS

continued from page 13

continued on page 15

Implicit Decomposition for
Write-Efficient Connectivity
Algorithms

Naama Ben-David, Guy E. Blelloch,
Jeremy T. Fineman, Phillip B. Gibbons,
Yan Gu, Charles McGuffey & Julian
Shun

2018 International Parallel and Dis-
tributed Processing Symposium (IP-
DPS ‘18). May 21-25, 2018, Vancou-
ver, BC, Canada.

The future of main memory ap-
pears to lie in the direction of new
technologies that provide strong
capacity-to-performance ratios, but
have write operations that are much
more expensive than reads in terms
of latency, bandwidth, and energy.
Motivated by this trend, we propose
sequential and parallel algorithms to
solve graph connectivity problems
using significantly fewer writes than
conventional algorithms. Our primary
algorithmic tool is the construction of
an o(n)-sized implicit decomposition
of a bounded-degree graph G, which
combined with read-only access to G
enables fast answers to connectivity
and biconnectivity queries on G. The
construction breaks the linear-write
“barrier”, resulting in costs that are
asymptotically lower than conventional
algorithms while adding only a mod-
est cost to querying time. For general
non-sparse graphs, we also provide the
first o(m) writes and O(m) operations
parallel algorithms for connectivity
and biconnectivity. These algorithms
provide insight into how applications
can efficiently process computations
on large graphs in systems with read-
write asymmetry.

MQSim: A Framework for
Enabling Realistic Studies
of Modern Multi-Queue SSD
Devices

Arash Tavakkol, Juan Gómez-Luna,
Mohammad Sadrosadati, Saugata
Ghose & Onur Mutlu

collection), as they do not properly or
quickly emulate steady-state condi-
tions that can significantly change the
behavior of these algorithms in real
SSDs. Third, these simulators do not
capture the full end-to-end latency of
I/O requests, which can incorrectly
skew the results reported for SSDs that
make use of emerging non-volatile
memory technologies. By not accu-
rately modeling these three features,
existing simulators report results that
deviate significantly from real SSD
performance.

In this work, we introduce a new
simulator, called MQSim, that ac-
curately models the performance of
both modern SSDs and conventional
SATA-based SSDs. MQSim faithfully
models new high-bandwidth protocol
implementations, steady-state SSD
conditions, and the full end-to-end

latency of requests in modern SSDs.
We validate MQSim, showing that it
reports performance results that are
only 6%-18% apart from the mea-
sured actual performance of four real
state-of-the-art SSDs. We show that by
modeling critical features of modern
SSDs, MQSim uncovers several real
and important issues that were not
captured by existing simulators, such
as the performance impact of inter-
flow interference. We have released
MQSim as an open-source tool, and
we hope that it can enable researchers
to explore directions in new and dif-
ferent areas.

Rateless Codes for Near-Perfect
Load Balancing in Distributed
Matrix-Vector Multiplication

Ankur Mallick, Malhar Chaudhari &
Gauri Joshi

arXiv:1804.10331v2 [cs.DC] 30 Apr
2018

Large-scale machine learning and data
mining applications require computer
systems to perform massive computa-
tions that need to be parallelized across
multiple nodes, for example, massive
matrix-vector and matrix-matrix
multiplication. The presence of strag-
gling nodes – computing nodes that
unpredictably slowdown or fail – is a
major bottleneck in such distributed
computations. We propose a rateless
fountain coding strategy to alleviate the
problem of stragglers in distributed
matrix-vector multiplication. Our al-
gorithm creates a stream of linear com-
binations of the m rows of the matrix,
and assigns them to different worker
nodes, which then perform row-vector
products with the encoded rows. The
original matrix-vector product can be
decoded as soon as slightly more than
m row-vector products are collectively
finished by the nodes. This strategy en-
ables fast nodes to steal work from slow
nodes, without requiring the master to
perform any dynamic load-balancing.
Compared to recently proposed fixed-
rate erasure coding strategies which

ignore partial work done by straggling
nodes, rateless coding achieves sig-
nificantly lower overall delay, as well
as small computational and decoding
overhead.

Dynamic Stem-Sharing for
Multi-Tenant Video Processing

Angela Jiang, Christopher Canel,
Daniel Wong, Michael Kaminsky,
Michael A. Kozuch, Padmanabhan
Pillai, David G. Andersen & Gregory R.
Ganger

SysML 18, February 15–16, 2018.
Stanford, CA.

Video cameras are ubiquitous, and
their outputs are increasingly ana-
lyzed by sophisticated, online DNN
inference-based applications. The
ever-growing capabilities of video
and image analysis techniques cre-
ate new possibilities for what may be
gleaned from any given video stream.
Consequently, most raw video streams
will be processed by multiple analysis
pipelines. For example, a parking lot
camera might be used by three differ-
ent applications: reporting open park-
ing spots, tracking each car’s parking
duration for billing, and recording any
fender benders.

In this paper, we focus on shared
processing on edge devices; process-
ing video near the camera addresses
issues such as bandwidth, intermittent

Timing diagram for a 4 kB read request in (a) NAND-flash and (b) 3D
XPoint MQ-SSDs.

Enqueue I/O job
in the SQ

�m
e

Request
processing

ONFI data
Xfer (TONFI Xfer)

I/O job Xfer
over PCIe 5

Fl
as

h
re

ad
(T

Fl
as

h
Re

ad
)

Response data
Xfer over PCIe

Highest contribu�on
to end-to-end latency

6

32

7

1 Read request
Xfer to chip

4

MQ-SSD
HIL

Host
Memory

MQ-SSD
Firmware

User
Applica�on

NAND flash
Chip

(a) NAND flash memory

3D
 X

po
in

t r
ea

d
(T

3D
Xp

oi
nt

 R
ea

d)

MQ-SSD
HIL

Host
Memory

MQ-SSD
Firmware

Enqueue I/O job
in the SQ

�m
e

Request
processing

User
Applica�on

3D Xpoint
Chip

I/O job Xfer
over PCIe

5

Response data
Xfer over PCIe

Highest contribu�on
to end-to-end latency

6

3

2

7

1

Read request
Xfer to chip

4

Fast data
Xfer (TFast Xfer)

(b) 3D XPoint memory

continued on page 16

Mainstream improves application quality
(average F1- score) relative to both (a) no
sharing between applications (Nosharing)
and (b) sharing all layers but the last one
(Max-sharing).

Garth Gibson talks about his 25 years with
the PDL at the 2018 PDL Retreat. Photo
credit, Allyson Lowe.

http://www.pdl.cmu.edu/PDL-FTP/NVM/ESA2017.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/ESA2017.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/ESA2017.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/18fast_mqsim.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/18fast_mqsim.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/18fast_mqsim.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/18fast_mqsim.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/jiang-sysML18.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/jiang-sysML18.pdf

16 THE PDL PACKET

continued from page 15

RECENT PUBLICATIONS

Efficient Multi-Tenant
Inference on Video using
Microclassifiers

Giulio Zhou, Thomas Kim, Christopher
Canel, Conglong Li, Hyeontaek Lim,
David G. Andersen, Michael Kaminsky
& Subramanya R. Dulloor

SysML’18, February 15–16, 2018,
Stanford, CA.

This paper addresses a growing chal-
lenge in processing video: The scaling
challenge presented by the combina-
tion of an increasing number of video
sources (cameras) and an increasing
number of heavy-weight DNN-based
applications (which we term “que-
ries”) to be run on each source. As a
running example, we draw from an
environmental and traffic monitor-
ing deployment at CMU, one feed
from which is depicted at right. This
feed supports applications such as car
and pedestrian counting, open park-
ing spot detection, train detection (in
support of an environmental moni-
toring research project attempting to
determine locomotive emissions), and
observing if building lights are left
on. These cameras are deployed using
a mix of the high-speed campus net-
work, and a lower-speed/higher-cost
cable modem deployment on power
poles in the area.

SuRF: Practical Range Query
Filtering with Fast Succinct
Tries

Huanchen Zhang, Hyeontaek Lim,
Viktor Leis, David G. Andersen, Michael
Kaminsky, Kimberly Keeton & Andrew Pavlo

SIGMOD’18, June 10–15, 2018,
Houston, TX, USA.

We present the Succinct Range Fil-
ter (SuRF), a fast and compact data
structure for approximate membership
tests. Unlike traditional Bloom filters,
SuRF supports both single-key lookups
and common range queries: open-
range queries, closed-range queries,
and range counts. SuRF is based on a
new data structure called the Fast Suc-
cinct Trie (FST) that matches the point
and range query performance of state-
of-the-art order-preserving indexes,
while consuming only 10 bits per trie
node. The false positive rates in SuRF
for both point and range queries are
tunable to satisfy different application
needs. We evaluate SuRF in RocksDB
as a replacement for its Bloom filters to
reduce I/O by filtering requests before
they access on-disk data structures.
Our experiments on a 100 GB dataset
show that replacing RocksDB’s Bloom
filters with SuRFs speeds up open-seek
(without upper-bound) and closed-
seek (with upper-bound) queries by

up to 1.5× and 5× with a modest cost
on the worst-case (all-missing) point
query throughput due to slightly higher
false positive rate.

2017 PDL Workshop and Retreat.

An example of deriving SuRF variations from
a full trie.

S

l

G

A M O

l O P

D S

Full Trie

S

l

G

A M O

SuRF-Base

S

l

G

A M O

SuRF-Real

" O P

S

l

G

A M O

SuRF-Hash

H(SIGAI)[0]
H(SIGMOD)[0]

H(SIGOPS)[0]

http://www.pdl.cmu.edu/PDL-FTP/associated/zhou-sysML18.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/zhou-sysML18.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/zhou-sysML18.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/surf_sigmod18.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/surf_sigmod18.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/surf_sigmod18.pdf

