
WineFS: a hugepage-aware file system for persistent

memory that ages gracefully

Rohan Kadekodi
University of Texas at Austin

Saurabh Kadekodi
Carnegie Mellon University

Soujanya Ponnapalli
University of Texas at Austin

Harshad Shirwadkar
Google

Gregory R. Ganger
Carnegie Mellon University

Aasheesh Kolli
Google

Vijay Chidambaram
University of Texas at Austin

VMware Research

Abstract

Modern persistent-memory (PM) file systems perform well
in benchmark settings, when the file system is freshly created
and empty. But after being aged by usage, as will be the nor-
mal mode in practice, their memory-mapped performance
degrades significantly. This paper shows that the cause is
their inability to use 2MB hugepages to map files when aged,
having to use 4KB pages instead and suffering many extra
page faults and TLB misses as a result.
We introduce WineFS, a novel hugepage-aware PM file

system that largely eliminates this effect.WineFS combines a
new alignment-aware allocator with fragmentation-avoiding
approaches to consistency and concurrency to preserve the
ability to use hugepages. Experiments show that WineFS re-
sists the effects of aging and outperforms state-of-the-art
PM file systems in both aged and un-aged settings. For exam-
ple, in an aged setup, the LMDB memory-mapped database
obtains 2× higher write throughput on WineFS compared
to NOVA, and 70% higher throughput compared to ext4-
DAX. When reading a memory-mapped persistent radix tree,
WineFS results in 56% lower median latency than NOVA.

CCS Concepts: • Information systems → Storage class

memory; • Hardware → Non-volatile memory; • Soft-
ware and its engineering→ File systemsmanagement.

Keywords: Persistent Memory, File Systems, Hugepages,
Fragmentation, Aging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483567

Figure 1. Impact of aging. Write bandwidth to memory-mapped
files for three PM FSs on un-aged (left) and aged (right) file sys-
tems stored on Intel Optane PM. For ext4-DAX and NOVA, aging
reduces bandwidth by ≈50% even when the FS is only 60% full. In
contrast, WineFS maintains its high performance whether aged
or not. Section §5.1 details the experimental setup, including the
hardware, aging process on a 100GiB partition and Section §5.3
details the benchmark (sequential writes using memcpy()).

ACM Reference Format:

Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Har-
shad Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay
Chidambaram. 2021. WineFS: a hugepage-aware file system for
persistent memory that ages gracefully. In ACM SIGOPS 28th Sym-
posium on Operating Systems Principles (SOSP ’21), October 26–29,
2021, Virtual Event, Germany. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3477132.3483567

1 Introduction

Persistent memory (PM) refers to storage-class memory that
offers non-volatility, low latency, and high bandwidth [6, 24,
51]. Researchers have developed new file systems to exploit
unique characteristics of PM [16, 25, 28, 40, 44, 49, 50, 53] and
shown excellent performance. Like most file system research,
their evaluations benchmark on newly created file systems.
In reality, most file systems are aged, having undergone

multiple allocations and de-allocations, and highly utilized.
Companies try hard to keep file systems close-to-fully uti-
lized [42] (e.g., Google: “For disk-based storage, we want
to keep disks full and busy to avoid excess inventory and
wasted disk IOPs” [20]). Thus, it is important to ensure that

804

https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/3477132.3483567
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

PM file systems have good performance in the aged and
utilized setting.
Unfortunately, existing PM file systems provide much

lower performance, when aged, for arguably the most per-
formance-critical PM use case: PM-native applications that
memory-map files and directly manipulate PM data [4, 5,
22, 23, 35, 39, 52]. Figure 1 illustrates this effect for two PM
file systems: ext4-DAX [30] and NOVA [49]. When not aged
(Fig. 1a), these file systems provide excellent performance,
accommodating peak bandwidth. But, when aged (Fig. 1b),
they lose a lot of their bandwidth—even when just 60% full,
bandwidth drops by ≈50%.

Drilling down, we trace the difference to whether files are
memory-mapped using 4KB base pages or 2MB hugepages.
Using base pages results in 512× more page faults and TLB
misses. With PM, the cost of handling a page fault (1–2 µs)
is significantly higher than the cost of a 64 byte PM read or
write (100-200 ns). If page faults happen in the critical path,
they reduce performance significantly. Even if the pages are
pre-faulted, the TLBmisses significantly reduce performance,
since they require walking the DRAM page table and caching
page table entries in processor caches (thus reducing cache
space for applications).

Hugepages are used whenever the memory-mapped files
are allocated using aligned 2MB PM extents. When existing
PM file systems are aged, file layouts and free space tend to
be fragmented, preventing use of hugepages. Some sort of de-
fragmentation tool is a tempting option, but is less realistic
for PM file systems than disk-based systems—PM throughput
means that aging will happen much more quickly in PM file
systems, and non-idle-time de-fragmentation would cause
significant performance degradation by competing for PM
bandwidth with foreground application threads.
This paper presents WineFS, a novel hugepage-aware PM

file system designed to ensure that hugepages can almost
always be used for memory-mapped files, even when the
FS is aged and mostly full. Doing so requires a holistic de-
sign that both avoids fragmentation-inducing algorithms
and proactively considers hugepage boundaries during al-
locations. The success of WineFS is clear in Figure 1: aging
causes minimal performance loss even when 90% full.

WineFS is designed, end-to-end, to avoid disruption of
hugepage usage. Many inter-related aspects of a file system,
from allocation policies to crash-consistency schemes to con-
currency, affect its ability to keep using hugepages as it ages.
WineFS uses a novel alignment-aware allocator that tries to
preserve 2MB-aligned 2MB extents that can be mapped us-
ing hugepages. Large allocation requests are satisfied using
aligned extents, while smaller allocations are satisfied using
“holes”. WineFS uses journaling for crash consistency, rather
than the log-structuring popular in system-call-focused PM
file systems [28, 49], to avoid data re-locations that disrupt
its carefully planned layouts. For concurrency, WineFS uses
a per-CPU journal rather than a per-file log (as used in

NOVA), since we observed that a per-file log contributes
to file-system fragmentation.

We evaluate WineFS on Intel Optane DC Persistent Mem-
ory [6] using a variety of micro-benchmarks, macro-bench-
marks, and applications. We measure performance on both
aged file systems (created using Geriatrix [26]) and newly
created file systems. For applications like RocksDB [18],
LMDB [2], and PmemKV [23], that access PM via memory-
mapped files, WineFS outperforms NOVA on an aged setup
by up-to 2× and ext4-DAX by up-to 70%. For applications like
Filebench [46, 48], PostgreSQL [38], and WiredTiger [19],
that access PM via POSIX system calls, WineFS roughly
equals the performance of NOVA and ext4-DAX while pro-
viding the same guarantees, showing that WineFS does not
have to trade system call performance for memory-map
performance. Similar to NOVA, WineFS scales well with in-
creasing number of threads. Across nine tested applications,
WineFS consistently matches or outperforms existing PM file
systems, whether aged or not.

In summary, this paper makes four main contributions:

• It demonstrates that existing PMfile systems providemuch
lower performance for memory-mapped access when aged
(i.e., not freshly formatted).

• It exposes that the root cause of the performance degrada-
tion is the failure of these PM file systems to maintain use
of hugepages when aged. (§2)

• It introduces alignment-aware allocation as a key tech-
nique for PM file systems and shows, using WineFS, how
it can be combined with fragmentation-avoiding consis-
tency and concurrency mechanisms to achieve a PM file
system that maintains its memory-mapped file access per-
formance even when aged. (§3)

• It demonstrates with experiments on Intel persistent mem-
ory that it is possible to obtain good performance for ap-
plications using memory-mapped files, whether the file
system is aged or not, without sacrificing performance for
applications using system calls. (§5)

We have made WineFS publicly available at https://github.
com/utsaslab/winefs.

2 Background and Motivation

We present background information on persistent memory
(PM) and how it is accessed by applications. We describe the
overheads involved in memory-mapping a file. We discuss
the benefits provided by hugepages, even when all pages
are pre-faulted. We examine simple solutions for obtaining
hugepages for memory-mapped files, and why these solu-
tions are not satisfactory. We conclude by motivating the
need for a new PM file system that is hugepage-aware.

2.1 Persistent Memory

Persistent memory is a new memory technology from In-
tel [6, 24, 51]. It is similar to DRAM in many respects, being

805

https://github.com/utsaslab/winefs
https://github.com/utsaslab/winefs

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

Figure 2. Memory-mapping overhead. This figure shows the
time taken to memory-map and write a 2MB file, with and without
hugepages. With hugepages, most of the time goes towards copying
data. Without hugepages, two thirds of total time goes towards
handling page faults and setting up page tables. Note that using
hugepages makes writing the file 2× faster.

byte-addressable and attached to the memory bus. It is ac-
cessed via processor load and store instructions, similar to
DRAM. PM reads have 2–3× higher latency than DRAM,
while writes have similar latency. PM read bandwidth is
1/3rd that of DRAM, while write bandwidth is about 0.17×
that of DRAM. Typical PM installations are expected to be
around 6TB per server.
How PM is accessed. Traditional applications designed for
magnetic hard drives and solid state drives can access PM
through POSIX system calls such as read() and write().
This is not the most efficient way to access PM though, as
the cost of trapping into the kernel and software layers like
the Virtual File System (VFS) add significant overhead on
the read and write path. A better way to access PM is to
memory-map a PM file, and access PM directly using pro-
cessor loads and stores. This method cuts out significant
software inefficiencies and allows the application to read
and write at close to device bandwidth. For example, writing
sequentially to a 1GB file is 2× faster using memory-mapped
files compared to system calls; the application spends 11×
more time in the kernel when writing using system calls.

2.2 Performance overhead of memory-mapping

Given the performance benefits of memory-mapping, appli-
cations designed specifically for PM tend to use this method
to access data (key-value stores such as PmemKV [23], Redis-
pmem [5], RocksDB-pmem [4], caching services such as
Memcached [35], Pelikan [52], databases such as Memhive-
PostgreSQL [39], data-structure libraries such as PMDK [22]).
However, memory-mapping a file comes with the overhead
of setting up page table entries so that a virtual address in
the process can point to a location on PM. This overhead di-
rectly depends upon whether hugepages are used to map the
underlying file. We run an experiment where we memory-
map and write to a 2MB file, with and without hugepages.
Figure 2 shows the results: that mapping with hugepages
can reduce the overall time taken by 2×, by reducing the
time taken to handle page faults.
Conditions for obtaining hugepages. Despite the bene-
fits of hugepages, it is challenging for applications using the

Figure 3. Free space fragmentation. Free-space becomes increas-
ingly fragmented as utilization increases in aged NOVA and ext4-
DAX. At 70% utilization, NOVA has close to zero 2MB aligned and
contiguous regions.

memory-mapped access mode to reliably get hugepages. In
order to get a hugepage on a page fault, the underlying file
must be placed on 2MB aligned physical blocks and must
not be fragmented. Even a single byte offset from alignment
forces the operating system to fall back to base pages with a
high page-fault cost.

2.3 Impact of aging on PM application performance

While it is relatively easier for a clean file system to place
files on 2MB aligned and unfragmented regions on PM1, it
becomes increasingly difficult to maintain that alignment
as the file system ages. File system instances are routinely
used for several years at a time [8, 17, 36]. It is well known
that as the file system ages, it suffers file and free space
fragmentation because of the file creations, deletions and
updates causing significant slowdowns [7, 13, 14, 26, 43].
In the context of PM and hugepages, arbitrary free space
fragmentation worsens the problem of obtaining aligned
and contiguous 2MB extents. Figure 3 shows the number of
hugepages available as a file system is aged. We performed
aging using Geriatrix [26], an aging framework to perform
aging. In this experiment 100GB file system partitions of
ext4-DAX and NOVA were subjected to up to 40TB of file
creates and deletes. With increasing utilization both ext4-
DAX and NOVA are unable to maintain aligned 2MB extents.
In fact at about 70% utilization, NOVA had close to zero 2MB
extents left.

We observed that fragmentation of free space due to aging
does not impact the performance of applications that access
PM through POSIX system calls such as read() and write(),
as PM offers similar bandwidth for sequential and random
access of data.
In summary, the performance of applications accessing

PM by mmap-ing files is up-to 2× better than applications
accessing PM through POSIX system calls but can degrade
significantly with age due to fragmentation of free space,
while the performance of applications accessing via POSIX
system calls remains constant and independent of age.
1PMFS and xfs-DAX cannot get hugepages evenwhen they are clean because
unlike ext4-DAX, these file systems completely disregard alignment even
for large extents.

806

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

Figure 4. Overhead due to TLB misses. This figure shows the
CDF of latencies when reading random elements of a large PM array
that has been memory-mapped and pre-faulted. Using hugepages
reduces the number of TLB misses. On a TLB miss, page table
entries are fetched and cached in the processor caches, reducing
cache space for the application. The median latency is 10× higher
when using base pages rather than hugepages, as the array element
that is read has been knocked out of the processor cache by page
table entries.

2.4 Pre-faulting pages

A natural question that arises is: can we simply pre-fault all
of the pages outside the critical path. First, this is simply not
possible for a number of applications (such as LMDB [2])
as they use sparse mappings, allocating space on demand
when they get a page fault. Pre-faulting would lead to un-
acceptable space overhead for these applications. Second,
even if all the pages are pre-faulted, hugepages still provide
a performance benefit by reducing TLB misses. We ran an
experiment where we memory-mapped a file containing a
large array and randomly read elements in the array. The
entire file was pre-faulted, so there were no page faults in
the critical path. Figure 4 shows the results. There is a 10×
reduction in median latency when using hugepages, corre-
sponding to whether the array element that was read was in
the processor cache or not. When using base pages, the array
element was kicked out to make space for page table entries
when handling TLB misses. Thus, even when all pages are
pre-faulted, using hugepages to map files on PM improves
performance.

2.5 Hugepages without file system support

One solution to obtain hugepages is via defragmentation.
In this context, defragmentation would mean re-alignment
of extents to 2MB boundaries, and not necessarily focus-
ing on its contiguity. One can imagine a user-space utility
for defragmenting memory-mapped files, which would read
the fragmented file, and rewrite it using large allocations.
However, without file system support, it is impossible to
guarantee that large allocation requests are satisfied using
2MB aligned extents. We observe that ext4-DAX and NOVA
do not always use aligned extents when they are available;

this is natural since these file systems optimize for locality
and contiguity, rather than hugepages. For example, in Fig-
ure 1 (b), ext4-DAX has 12k aligned extents available at 60%
utilization, but ends up using only 3k aligned extents, while
the workload requires 8k aligned extents.
One could also imagine a file-system-wide defragmen-

tation utility could be run to reclaim hugepages. However,
existing defragmentation utilities do not aim to recover huge-
pages. Such utilities would consume PM bandwidth when
running in the background. The performance for a given PM
file would only improve if it had been defragmented by the
utility; this could take a lot of time depending on the size of
the file system.

Finally, one could use a file system that always allocates in
sizes of 2MB; the bigallocmode of ext4 does this. However,
this leads to significant space wastage and internal fragmen-
tation, as a large number of user files tend to be small.

2.6 The need for a hugepage-aware PM file system

We believe that it is a better approach to be proactive about
conserving hugepages, rather than reactively defragment-
ing files. We require support from the file system to con-
serve aligned extents. Current PM file systems do not op-
timize for this goal. Some file systems such as Strata [28]
and NOVA [49] make it harder to map files using hugepages
due to their log-structured nature. NOVA could be modified
to become hugepage-aware, but would require non-trivial
changes to its design which would reduce its performance.
For example, dedicating on-PM regions for the per-file jour-
nals would increase the load on garbage collection and its
interference with foreground threads. Changing the copy-
on-write granularity of NOVA to the size of hugepages to
avoid fragmentation would result in increased write as well
as space amplification.

Mature file systems such as ext4-DAX [30] or xfs-DAX [3,
21] have allocators that care more about contiguity than
alignment, which makes them sacrifice hugepages as part
of their design. Additionally, in order to achieve high per-
formance for a wide range of legacy as well as newer PM
applications, the mature file systems would have to change
several fundamental components such as incorporating a
hugepage-aware allocator, devising a conducive on-PM lay-
out, supporting low-cost data atomicity and adding fine-
grained low-cost journaling for crash consistency.
Designing a hugepage-aware PM file system requires re-

visiting all aspects of file system design from the lens of
hugepage-awareness, rather than tweaking one or two as-
pects of an existing file system.

3 WineFS

We present WineFS, a hugepage-aware PM file system. We
present its goals, and an overview of how the system achieves
these goals. We then describe the design choices that lead

807

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

DRAM

PM

LOGICAL

CPU 1

LOGICAL

CPU 2

LOGICAL

CPU 3

ALIGNED
EXTENT POOL

INODE TABLE

JOURNAL

Shared

Locks

UNALIGNED
POOL

ALIGNED
EXTENT POOL

INODE TABLE

JOURNAL

UNALIGNED
POOL

ALIGNED
EXTENT POOL

INODE TABLE

JOURNAL

UNALIGNED
POOL

VIRTUAL FILE SYSTEM

Free

Lists

Metadata

Index

Free

Lists

Metadata

Index

Free

Lists

Metadata

Index

Aligned

hugepage

sized

extent

Unaligned

holes

Data layout on PM

Figure 5. WineFS Architecture. The figure shows the main
components of WineFS. WineFS partitions the file system per
logical CPU for concurrency. Each logical CPU has its own journal,
inode table, and free lists for aligned extents and holes.WineFS uses
DRAM indexes for metadata for efficient directory and resource
lookups. The shared locks in the VFS layer helpWineFS coordinate
its multiple journals.

to hugepage-awareness, and the choices that allow good
performance for applications using POSIX system calls to
access PM.

3.1 Goals

• WineFS should be POSIX-compliant, and must not require
any changes in the application.

• WineFSmust try to provide hugepage-sized extents aligned
at the hugepage boundary for files that arememory-mapped.

• WineFSmust not sacrifice performance of applications that
use POSIX system calls to access PM.

• WineFS must not sacrifice performance when the file sys-
tem is new, either for memory-mapped or system-call
access to PM.

• The design of WineFS must seek to preserve hugepages
wherever possible.

• WineFS must provide strong guarantees such as atomic,
synchronous operations.

3.2 Overview

WineFS achieves these goals through two sets of design
choices. First,WineFS achieves hugepage-awareness through:

• A novel alignment-aware allocator that satisfies large allo-
cation requests using aligned extents, and smaller requests
using unaligned holes.

• Using a PM data layout with contained fragmentation:
metadata structures and journals that are updated in-place.

• Using journaling for crash consistency as it preserves data
layout, even at the cost of writing metadata twice to PM.

• Using per-CPU metadata structures (rather than per-file)
for obtaining concurrent updates.

• Using data journaling to atomically update fileswith aligned
extents, and using copy-on-write to atomically update
holes.
WineFS ensures good performance for applications that

access PM via POSIX system calls through a second set of
design choices. The key observation is this second list is
chosen such that it composes well with first list. For example,
this would not be the case if WineFS had used log-structuring
for accelerating metadata updates. The design choices:
• WineFS uses fine-grained journaling optimized for PM.
• WineFS uses DRAM metadata indexes to accelerate opera-
tions such as directory lookups.
Figure 5 presents an overview of the WineFS architecture

and how all these design choices come together.

3.3 Guarantees

WineFS can be run in two modes: strict mode and relaxed
mode. The default is the strictmode. Themode can be changed
using mount options.
StrictMode. All file system operations, both data operations
and metadata operations, are atomic and synchronous. Upon
completion of each write() system call, the data involved
is guaranteed to be durable. NOVA, SplitFS-strict, and Strata
provide the same guarantees.
Relaxed Mode. All metadata operations such as rename()
are atomic and synchronous. Data operations are not atomic,
and may be partially completed on a crash. ext4-DAX, xfs-
DAX, and PMFS provide the same guarantees.

3.4 hugepage Awareness

We now describe in detail the design choices that make
WineFS a hugepage-aware PM file system.
Data Layout: Controlled Fragmentation. WineFS uses
controlled fragmentation in designing its data layout on PM.
Typically, metadata structures cause significant fragmenta-
tion as they tend to be small. For example, NOVA has a
per-file log that causes fragmentation, using up an aligned
extent. WineFS tries to control the fragmentation caused by
metadata structures, by assigning dedicated locations for
metadata structures. The metadata structures are updated
in-place within these locations. The space in these locations
is recycled for other metadata structures.
Concurrency: Per-CPU data pool and metadata struc-

tures. Closely related to the data layout is how WineFS
achieves concurrency. NOVA achieves high concurrency by
providing a per-file log. While this provides high concur-
rency, it also fragments the free space and uses up aligned
extents. WineFS chooses a different design: per-CPU journal,
data structures, and data and metadata pools. The file system
is partitioned between logical CPUs. Each logical CPU gets
its own journal, inode table, and pool of aligned extents and
unaligned holes. Each CPU maintains free lists in DRAM

808

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

that keeps track of free inodes and extents in its own pool
of inodes and extents. In the common case, an allocation
request arising at a logical CPU can be handled locally, with-
out any communication with other logical CPUs. Since the
unit of parallelism is a logical CPU, rather than a file, this
design provides high concurrency without incurring frag-
mentation. Experimental results show that WineFS scales as
well as NOVA, while being more hugepage-friendly.

A natural question that arises is: how are the per-CPU
journals coordinated? WineFS uses the Virtual File System
(VFS) layer for coordination. The namespace is shared across
all logical CPUs, and VFS provides shared locks for direc-
tory inodes, while WineFS holds locks for file modification
operations such as write() or fallocate(). An inode can
only be locked by one logical CPU at a time. WineFS ensures
that all file system operations that require journaling also
grab inode locks, implying that a file can only be part of one
per-CPU journal at a given time. Different files can be locked
by different CPUs and journaled concurrently.
Allocation: Alignment-Aware Allocation. WineFS uses
a novel alignment-aware allocator. The allocator splits the
entire partition into aligned hugepage-sized extents. Incom-
ing allocation requests are split into requests of hugepage
sizes or below. Large allocation requests (that are hugepage-
sized) are satisfied using an aligned extent. Small allocation
requests, less than the size of a hugepage, are satisfied by
smaller, unaligned extents. If required, a single aligned extent
is broken up to satisfy small allocation requests.
The allocator uses the following policy to decide which

extent to utilize for an allocation request. It always tries to
satisfy the request locally, in the data pool of the same log-
ical CPU where the request was made. If the free-space of
the local data pool is over, it picks an extent from the data
pool of a different logical CPU to satisfy allocation requests,
which is based on the size of allocation request. It chooses an
aligned extent from the data pool of the logical CPU with the
most free aligned extents to satisfy a large (hugepage-sized)
allocation request. It chooses an unaligned extent from the
data pool of the logical CPU with the most free unaligned
extents to satisfy a small allocation request. When the allo-
cated extent is freed, it is inserted back into the free-space
of the original data pool from where it was allocated. It is
then merged with other contiguous free extents in the data
pool and converted to a free aligned extent.
Crash Consistency: Journaling. WineFS chooses to use
journaling for updating file system metadata in an atomic
fashion. There is a fundamental trade-off between using
journaling and copy-on-write or log-structuring. Journaling
results in writing metadata twice, once to the journal and
once in-place. However, journaling preserves the data layout.
In contrast, copy-on-write or log-structuring require only a
single write to PM formetadata. However, copy-on-write will
write metadata throughout the partition, varying its location.

The single write nature of log-structuring is attractive, which
is why it has been adopted in NOVA and Strata. However,
we believe that trading off an extra write for preserving the
data layout is the right trade-off given how small metadata is,
and how important hugepages are for performance. In this
respect, WineFS makes a fundamentally different decision
than NOVA and Strata.
Data Atomicity: Hybrid Techniques. WineFS provides
atomic data updates by default. WineFS uses different tech-
niques to update a file atomically, depending upon how the
file extents are allocated. WineFS uses data journaling to
update aligned extents, preserving their data layout. As a
result, atomically updating a file will not cause it to lose its
hugepages. WineFS uses copy-on-write to update unaligned
extents, with the extents being written to new unaligned
holes provided by the alignment-aware allocator. In this
manner, WineFS strikes a balance between incurring the ex-
tra write for preserving data layout (when it matters), and
using copy-on-write when preserving the data layout does
not matter.

3.5 Ensuring good performance for applications

using POSIX system calls

The design decisions described so farwill preserve hugepages
and help obtain good performance for applications using
memory-mapped files. WineFS also seeks to obtain good
performance for applications using POSIX system calls to
access PM. The techniques WineFS uses to achieve this are
well-known. The challenge lies in adopting techniques that
compose well with the hugepage-aware design decisions,
such that good performance is obtained for applications us-
ing either memory-mapped files or system calls.
Fine-grained journaling. Similar to other PM file systems
such as PMFS and SplitFS, WineFS optimizes journaling for
PM.WineFS uses a per-CPU, fine-grained, undo journal. Each
log entry is only a cache line in size. All metadata operations
inWineFS are synchronous, so the journal entries are immedi-
ately persisted. Since metadata operations are synchronous,
reclaiming journal space can be done immediately once the
operation completes.

WineFS uses undo journaling instead of the redo journaling
used in systems like ext4-DAX or SplitFS. In undo journal-
ing, the old data is first copied to the journal, and then the
new data is updated in place. If there is a crash, the data is
rolled back to the old version using the journal. While undo
journaling and redo journaling are functionally equivalent,
their performance characteristics differ. Redo journaling has
lower latency for writing transactions (no lock to write to
the journal), but higher latency for updating data in place
(need to get a global lock or set of locks). In contrast, undo
journaling has higher latency for writing transactions (need
to get locks to update data in place), but does not incur any
delay once the transaction is committed; the log entries can

809

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

be discarded. WineFS employs undo journaling as it reduces
tail latency and provides more deterministic performance.
DRAM indexes. WineFS uses red-black trees for traversing
directory entries and for maintaining inode free-lists in the
per-CPU allocation group, similar to NOVA. The DRAM
indexes help in fast metadata operations, as opposed to PMFS
that does sequential scanning of directory entries and inode
free-lists causing significant slowdowns.

3.6 Implementation

WineFS is implemented based on the PMFS code base (6K
LOC), and implemented in Linux kernel 5.1. We choose PMFS
to build on, as PMFS is a journaling file system and has
the on-disk layout that helps WineFS achieve all its goals.
It is totally ≈10K LOC. The following optimizations have
been added to the PMFS codebase: (a) PM-optimized per-
CPU journaling: 1K LOC, (b) alignment-aware allocator and
hugepage handling on page faults: 1K LOC, (c) auxiliary
metadata indexes: 700 LOC, (d) NUMA-awareness: 300 LOC,
(e) Crash recovery: 1K LOC, and (f) hybrid data atomicity
mechanism: 500 LOC. We describe some of the additional
implementation details below.
Alignment-awareAllocation. The allocator uses two pools
to help with allocation. One is a pool of free aligned ex-
tents, and the other is a pool of free unaligned extents. These
pools are written to PM on unmount. On a crash, they are
re-initialized by scanning the set of used inodes in the file
system (similar to NOVA).

WineFS breaks down each allocation request internally
into a series of smaller allocation requests, which are smaller
than or equal to the size of a hugepage. The hugepage-sized
requests are satisfied using the pool of free aligned extents.
The smaller requests are satisfied using the pool of free un-
aligned extents.
Aligned extent pool. WineFS maintains a linked list of free
aligned extents in each logical CPU. On getting a hugepage-
sized allocation request, WineFS removes an extent from the
head of the linked list and uses the extent for satisfying the
allocation request. Whenever a free aligned extent is deleted,
it is added to the tail of the linked list of the corresponding
logical CPU.
Unaligned extent pool. WineFS re-uses the implementation
of red-black trees in the linux kernel to keep track of free
unaligned extents in each logical CPU. The red-black tree is
keyed based on block offsets of the free extents. WineFS uses
a first-fit approach to allocate an unaligned extent for small
allocation requests. Whenever an unaligned extent is deleted,
the allocator tries to merge it with its nearby extents. If the
extents can be merged into an aligned extent, it is merged
and tracked in the aligned extent pool.
Journaling. Each thread inWineFS starts a transaction in its
per-CPU journal. Once a transaction is started at a per-CPU

journal, it continues there even if the thread is migrated
away. Each journal transaction contains transaction-entries
64B in size, along with a start and commit entry to mark the
start and end of the transaction.
Transaction entries. Each transaction entry contains the fol-
lowing metadata persisted on PM:

• shared transaction ID: This is an atomic counter shared by
the per-CPU journals, which increments on every transac-
tion create. As a result, a transaction ID is unique across
all the per-CPU journals.

• per-CPU wraparound-counter: Each per-CPU journal con-
tains a wraparound counter, incremented every time that
the journal is wrapped around.

• transaction entry type: This provides information about
the type of log entry, it is either START, COMMIT or DATA.
The START and COMMIT entries are used to mark the
start and end of a journal transaction, while the DATA
entry is used to store system-call specific entries.

Reclaiming journal space. All operations in WineFS are im-
mediately durable, allowing WineFS to reclaim the space in
per-CPU journals that is occupied by the committed trans-
actions. Every journal transaction reserves the maximum
number of log entries that it requires in the per-CPU journal
before starting the transaction. Across all system calls, the
maximum number of log-entries required are 10, occupy-
ing 640 bytes in the journal. If there is not enough space in
the journal, the thread waits till enough space is reclaimed
before starting the journal transaction.
Handling concurrent updates to shared files.When multiple
threads try to modify the same directory by creating files in
a shared directory, the VFS locks the directory inode, and
only one of the threads is allowed to proceed at any given
time. This VFS locking for all the shared metadata updates
ensures that there is only a single uncommitted transaction
for any file/directory on a crash.
Handling thread migrations. WineFS creates a journal trans-
action in its respective per-CPU journal. If the OS scheduler
migrates the thread to another CPU after creating a journal
transaction, WineFS still ensures that the migrated thread
uses the per-CPU journal in which the transaction was cre-
ated, for the duration of the transaction.
Journal Recovery. During recovery, WineFS has to recover
multiple per-CPU journals. Note that transaction IDs are
global across the per-CPU journals.WineFS rolls-back journal
entries across per-CPU journals based on the transaction ID
order. The per-CPU wraparound-counter helps WineFS in
identifying the valid journal entries during recovery.WineFS
rolls-back all the transactions that contain the START log
entry but that don’t have the COMMIT log entry. WineFS
ignores all committed transactions.

810

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

Minimizing remote NUMA accesses Given that PM will
be deployed on multiple NUMA nodes, it is important that
the PM file system try to minimize remote NUMA accesses.
WineFS uses a number of mechanisms to try to reduce remote
NUMA accesses.
The NUMA-awareness strategy of WineFS builds on the

insight that remote writes are more expensive than remote
reads [10, 51]. Thanks to temporal locality, if writes are
routed to the local NUMA node, reads of the newly writ-
ten data in the near future will also be local. We recognize
that it is challenging to prevent all remote accesses, and thus
focus on minimizing remote writes.
Determining the home NUMA node for a process. WineFS as-
signs a home NUMA node to each process when the process
first creates or writes a file. The assigned home NUMA node
is the NUMA node with most free space.
Writes. On each write, WineFS checks if the process is in its
home NUMA node. If required, the process is migrated to its
home NUMA node, and space is allocated from one of the
per-thread allocation groups on that NUMA node. Further
allocations and writes continue at the home NUMA node. If
the home NUMA node runs out of free space, a new home is
selected, and the process is migrated.
Reads. All reads to recently written data will be local since
WineFS ensures the writes happen on the home NUMA node.
Older reads will be remote; WineFS does not migrate the
process to prevent this situation. Thread migrations are ex-
pensive, and the process may access data spread out over
different NUMA nodes causing it to thrash if it is migrated
too often. Instead, WineFS focuses on keeping writes local.
Child process. Children of a process inherit its home NUMA
node, under the assumption that they will be accessing data
written by the parent process.
Crash Recovery and unmount. On a clean unmount, the
data structures maintained in DRAM (e.g., alignment-aware
allocator’s free list, inode free list) are serialized and stored
on PM. On mount, these data structures are deserialized and
reconstructed in memory. If there is a crash, WineFS is first
recovered to a consistent state using the per-CPU journals
as explained above.
Reactively rewriting a file. If WineFS finds on memory-
mapping a file that it is fragmented, it adds it to a list to be
rewritten. A background thread in WineFS later reads the
file and rewrites it using big allocations. A journal transac-
tion is used to atomically delete the old file and point the
directory entry to the new file. This situation may arise if an
application uses small allocations when writing to a file that
will be later memory-mapped. Due to the small allocation
requests,WineFSwould have allocated unaligned holes to the
file. Note that reactive rewriting of files is an extremely rare

operation. Applications that use the memory-mapped inter-
face usually perform occasional large allocations in order to
avoid frequently trapping into the kernel.
Supporting extended attributes for preserving align-

ment of files. Once WineFS provides aligned extents to a
file, it makes this information persistent by using a special ex-
tended attribute. This is useful if a file allocated using aligned
extents is later copied over to another partition or file sys-
tem by a utility such as rsync and cp. Ideally, we would
want the file to retain aligned extents after the move or copy.
Many linux utilities such as rsync and cp will read and copy
extended attributes associated with files. WineFS uses the
extended attributes to communicate alignment information
of files from oneWineFS partition to another (on the same or
different servers) no matter how that file is transferred. For
example, if an aligned file is transferred from a WineFS parti-
tion on server A to a WineFS parition on server B via rsync,
the receiving partition will allocate aligned extents (and not
holes) to the file by referring to its extended attributes, even
though rsync typically copies data using small allocations.
Moreover, WineFS also supports directory level extended
attributes where all files directly within a directory (not its
subdirectories) will inherit alignment information from the
extended attributes of the parent directory.

4 Discussion

Preserving layout is more important than saving ex-

tra writes. File systems such as NOVA and Strata that use
the log-structured approach write metadata only once to the
file system. However, they change the location of metadata
frequently as it is updated.We find that preserving the layout
of files and reducing fragmentation is crucial to obtaining
hugepages in PM file systems. However, preserving the lay-
out using journaling comes at the cost of writing metadata
twice. Given that persistent memory currently has a long
lifetime (a 256 GB Intel PM module can withstand 350 PB of
writes [41]), we believe that the benefits of hugepages are
worth the extra write.
Proactive approach is required tomaintain hugepages.
WineFS shows that by designing the file system to be hugepage-
aware, it is possible to preserve hugepages in the face of aging
and high utilization. We believe this is the right approach,
as it can be implemented at modest additional complexity
without sacrificing performance for applications using sys-
tem calls to access PM. In contrast, reactive approaches like
defragmentation provide only temporary relief before the
file system becomes fragmented again. The defragmentation
utility would need to be run at high frequency to provide
benefits equivalent toWineFS. As with any background main-
tenance task, defragmentation requires IO and steals device
bandwidth from the foreground process. We ran an experi-
ment where we read a fragmented 5GB file and rewrote it
with aligned extents. In parallel, we also ran a foreground

811

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

workload that performed memory-mapped reads on another
file. We observed a slowdown of 25–40% when the defrag-
mentation is going on.
Thoughts on adding hugepage-friendliness to existing

file systems. We initially tried to add hugepage preserva-
tion in ext4-DAX by changing the multi-block allocator to
provide 2MB aligned extents for large allocations. To accel-
erate applications using the system-call access mode, we
changed the journaling mechanism of ext4-DAX to perform
fine-grained journaling instead of relying on the JBD2 jour-
nal. With our changes, ext4-DAX managed to get hugepages
reliably in a clean setup for memory-mapped files. However,
the allocator spent a significant amount of time in searching
for available aligned extents, degrading performance when
aged, compared to the original ext4-DAX.With respect to ap-
plications using system calls to access PM, the performance
increased due to fine-grained journaling, but still suffered
overheads such as ensuring consistency between on-disk
versions of DRAM indexes.

NOVA uses log-structured layout for its metadata, and
contains a per-inode log in the form of a linked list. Although
NOVA tries to allocate aligned extents to large files, it is
incapable of preserving hugepages due to extensive free-
space fragmentation, as shown in Figure 3. NOVA would
need to employ frequent (and expensive) garbage collection
to retain free-space contiguity and alignment, interfering
with foreground application performance.

Our experience shows that hugepage-awareness is an over-
arching concern and not something that can be easily added
to an existing PM file system. When designing WineFS, we
had to incorporate hugepage-awareness in multiple core
components of the file system.
Supporting different hugepage sizes. The size of a huge-
page is not fundamental to the design of WineFS. We used
2MB hugepages in this work since our test machine had only
2MB hugepages available. While WineFS currently has one
allocator for 2MB hugepages, it can have additional allocators
for each hugepage size that can be supported. For example,
since modern kernels and devices support 1GB hugepages,
WineFS could have two alignment-aware allocators, one for
each hugepage size and one hole-filling allocator.
Using different aging profiles. Throughout the paper, we
use the Agrawal aging profile to age all file systems. The
Agrawal profile contains a mix of large (>= 2MB) and small
files (< 2MB). We also experimented with other profiles, and
saw that in some cases, the fragmentation of other file sys-
tems is significantly worse compared to the fragmentation
seen by the Agrawal profile. For example, in another profile
that mimics an HPC environment [47], we see that even
with 50% utilization, only 28% of the free-space is aligned
and unfragmented in ext4-DAX, while more than 90% of
th free-space is aligned and unfragmented in WineFS. De-
pending upon how the file system is aged, the user might

experience more severe performance degradation than what
we show in this work.

5 Evaluation

We seek to answer the following questions:
• Does WineFS handle crashes and metadata updates cor-
rectly? (§5.2)

• What is the read / write throughput of WineFS in an aged
setting? (§5.3)

• What is WineFS performance for applications accessing
PM through memory-mapped files in an aged setting?
(§5.4)

• What is WineFS performance for benchmarks and applica-
tions using system calls to access PM? (§5.5)

• Is WineFS scalable? (§5.6)

5.1 Experimental setup

We use a two-socket machine with 28 cores, 112 threads, and
500GB of Intel Optane DC Persistent Memory module, with
Fedora-30 and Linux 5.1 kernel. We use a single socket on
this machine for our evaluation and disable NUMA aware-
ness in WineFS, because some other file systems such as
NOVA and PMFS are not able to run on multiple NUMA
nodes, while the other file systems do not support NUMA
affinity when run on multiple NUMA nodes. We compare
WineFS with two groups of PM file systems. First, with file
systems providing metadata consistency: Ext4-DAX [34], xfs-
DAX [45], PMFS [40], NOVA-relaxed [49], and SplitFS [25].
WineFS in Relaxed mode provides metadata consistency. Sec-
ond, with file systems providing both data and metadata
consistency:NOVA and Strata [28]. WineFS by default (in
strict mode) provides both data and metadata consistency.
FS aging setup. To reflect PM file systems in the real world,
we use the Geriatrix [26] tool to age evaluated file systems.
Agrawal et al. [7] is one of the widely cited profiles that are
used to measure the performance of aged file systems. We
use the Agrawal profile to represent all the file systems aged
by 165TB of write activity in a 500GB partition caused by
creation and deletion of files, with a mix of small (< 2MB)
and large (>= 2MB) files. 56% of the total capacity is occupied
by large files while the rest is occupied by small files. We use
other profiles as well (e.g., Wang et al. [47]) to avoid over-
fitting our observations to the Agrawal profile. We default
to using the popular aging profiles since there is not much
data published on the aging statistics of PM file systems and
their workloads.
We also increase the utilization of the file system to 75%.

We measure the end-to-end performance applications along
with the number of page faults and cache misses they incur.
We compare with PMFS in a clean FS setup, as PMFS takes
weeks to age under 165 TB of metadata operations. Thus, the
PMFS results provide an upper bound on PMFS performance
when aged.

812

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

5.2 Crash Consistency & POSIX Compliance

Crash consistency. We use a modified form of the Crash-
Monkey framework [37] to test whether WineFS recovers
correctly from crashes. We use the Automatic Crash Explorer
(ACE) to generate workloads with system calls that modify
file-system metadata. For each workload, we use CrashMon-
key to generate crash states corresponding to all possible
re-orderings of in-flight writes inside each system call. The
number of in-flight writes inside each system call were low,
so CrashMonkey was able to exhaustively test crash states.
Finally, we check thatWineFS had always recovered to a con-
sistent state. This exercise was useful in finding minor bugs
in WineFS early during its development. Currently, WineFS
passes all the CrashMonkey tests.
As WineFS uses per-CPU journaling, we also check if

WineFS is crash-consistent for multi-threaded applications.
Note that WineFS shares a single namespace across all its
CPUs. It uses the VFS locks to ensure that only one journal
transaction (across all CPUs) involves each file. As a result,
after a crash, WineFS has at most one per-CPU journal with
pending updates for a given file or directory.WineFS recovers
multiple per-CPU journals by using the global transaction
ID to order different journal entries.
Time to recover. On recovery,WineFSmust reconstruct the
DRAM data structures such as the alignment-aware free-
space allocator and per-CPU inode inuse lists using relevant
metadata on PM. WineFS scans the per-CPU inode tables in
parallel. Note that the recovery time depends on the number
of files, and not the total amount of data in the file system.

By inducing a crash inWineFSwith 675GB of data,WineFS
recovered in 7.8s. In this experiment, there were 3.5M files
in the partition that was recovered.
POSIX compliance. We use Linux POSIX file system test
suite [27] to test if WineFS meets POSIX standards. WineFS
passes all the tests. This is important because it means ap-
plications will obtain the expected POSIX behavior from
WineFS without the need for application modifications.
5.3 Read and Write Throughput

Weanalyze the throughput of WineFSwithmicro-benchmarks
capturing sequential/random read/write workloads. We age
the file systems as described in the experimental setup and
then run experiments.
Performance for memory-mapped access. We memory-
map a 50GB file and use memcpy() to perform reads and
writes in sequential and random order. WineFS has the high-
est throughput across all aged PM file systems: WineFS out-
performs NOVA by 2.6× on sequential and random writes,
and by 2.3× on sequential reads, and by 2.7× on random
reads, as shown in the Figure-6(a). WineFS spends about 3%
of the total time on handling page faults while NOVA spends
60% of the time handling faults. WineFS has comparable per-
formance with the best performing PM file systems in a

Figure 6. Read and write throughput for system calls and

memory-mapped access. This figure shows the throughput of
sequential and random reads and writes in different file systems.
There is a fsync() after every 10 operations. POSIX strong in-
dicates data consistency while POSIX weak indicates metadata
consistency. ext4-DAX and xfs-DAX suffer from high overheads in
appends due to costly fsync(). Across all these workloads,WineFS
matches or betters the performance of the best PM file system. Good
performance on memory-mapped workloads is due to hugepage-
awareness, while good performance on system-call workloads is
due to fine-grained journaling and DRAM indexing.

clean, unaged setting since all file systems are able to map
files using hugepages.
Performance for system-call access. We start with an
empty file and append data at 4KB granularity until it fills
50% of the free space. We perform reads and in-place writes
at 4KB granularities in sequential and random order. Overall,
WineFS has equal or better throughput compared to other
file systems on reads and writes, as shown in Figures 6(b),
6(c). On writes, WineFS outperforms NOVA by up-to 25%,
as NOVA has to add new log entries, invalidate older en-
tries, and update its DRAM indexes for handling overwrites.
Further, WineFS and NOVA perform better than Strata on
writes as Strata has to perform expensive data copies from
its per-process logs to the shared PM region for making data
visible to other processes.
Summary. These results show that WineFS achieves ex-
cellent read and write throughput, regardless of whether
memory-mapped files or system calls are used. It validates
that the design choices made to increase memory-mapped
and system-call access modes work well together.

5.4 Performance for memory-mapped access mode

We evaluate WineFS using data stores like RocksDB, LMDB,
and PmemKV, and persistent data structures like the adaptive
radix tree (P-ART). The configurations of these applications
are shown in Table 1. We continue to use the aged file system
setting.

813

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

Figure 7. Performance on aged file systems. This figure shows the performance of different file systems when aged to 75% using
Geriatrix [26]. Overall, WineFS outperforms all other file systems by up-to 70% compared to ext4-DAX in PmemKV, and up-to 2× compared
to NOVA on LMDB. The file systems with metadata consistency guarantees are shown in (a), (b) and (c) whereas the file systems with data
and metadata consistency guarantees are shown in (d), (e), (f). Note: we do not compare with PMFS as it was unable to age successfully.

Application & Workload Description

Evaluating memory-mapped access mode

YCSB [15] on RocksDB [4] Data retreival & maintenance
LMDB [2] fillseqbatch Memory-mapped database
PmemKV [23] fillseq PMDK key-value store
P-ART [29] lookup PM data structure

Evaluating system-call access mode

Varmail [46] 16 threads, 1M files
Fileserver [46] 50 threads, 500K files
Webserver [46] 100 threads, 500K files
Webproxy [46] 100 threads, 1M files
PostgreSQL [38] pgbench rw 32 threads, 60GB database
WiredTiger [19] fillrandom MongoDB’s default engine
WiredTiger [19] readrandom MongoDB’s default engine

Table 1. Applications used in evaluation. Macrobenchmarks
and real-world applications used to evaluate PM file systems.

YCSB on RocksDB. We run RocksDB configured to use
memory-mapped reads and writes, with hugepages enabled
and a memory cap of 64GB. We run the industry-standard
YCSB workloads on RocksDB with 60GB dataset consisting
of 50M keys and operations. We report RocksDB throughput
on all file systems in the Figure 7(a).WineFS provides the best
throughput, outperforming ext4-DAX and NOVA by up-to
50% on average across all YCSB workloads. RocksDB incurs
the least page faults on WineFS. On other PM file systems,
RocksDB incurs up-to 56× higher number of page faults, as
shown in the Table 2.
LMDB. We run LMDB [2], a btree-based memory-mapped
database, with db_bench benchmark’s fillseqbatch work-
load with 50M keys. This workload batches and writes 1KB
sized key-value pairs sequentially, which according to LMDB
is its best-performing workload [31]. LMDB does on-demand
allocations and zero-outs pages on page faults by using
ftruncate() instead of fallocate() for the allocations.
This reduces space-amplification, but leads to costly page
faults. WineFS outperforms ext4-DAX by 54% and NOVA by
2×, as shown in Figure 7(b). LMDB running onWineFS incurs
200× and 250× lower page faults in comparison to ext4-DAX
and NOVA, as shown in the Table 2.

Figure 8. Latency distribution for P-ART lookups. The figure
shows the latency distribution for lookups on the P-ART persistent
radix tree. The tree is memory-mapped and pre-faulted before the
lookups. WineFS results in 56% lower median latency compared
to the other PM file systems as WineFS leads to lower TLB misses
and LLC cache misses.

PMemKV. We run PMemKV [23], a key-value store from In-
tel that uses 128MBmemory-mapped files for storing data on
PM.We configure PMemKV’s cmap concurrent engine to run
with 16 threads. We run the write-only fillseq workload
that sequentially inserts keys with 4KB-sized values. In this
workload, PmemKV creates a PM pool using fallocate(),
and keeps extending the pool as it gets used up by creating
more files and allocating them via fallocate(). PMemKV
gets the best performance on WineFS, which is 20% higher
than on NOVA, 70% higher than on ext4-DAX, and 45%

higher than xfs-DAX, as shown in the Figure 7(c). The num-
ber of page faults incurred by PMemKV on all PMfile systems
are shown in Table 2. NOVA does the allocations and zero-
out of pages on fallocate() while the page fault routine
only sets up page tables. On the other hand, ext4-DAX does
zero-out of pages on a page fault and not fallocate(), mak-
ing page faults more expensive in ext4-DAX. As a result, the
performance of NOVA is better than ext4-DAX even though
NOVA suffers from higher number of page faults compared
to ext4-DAX.

814

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

YCSB LMDB PmemKV

Load A A B C D E F fillseqbatch fillseq

WineFS 1.59 Mn 3.83 Mn 3.83 Mn 1.34 Mn 1.36 Mn 0.48 Mn 4.85 Mn 0.06 Mn 0.01 Mn

ext4-DAX 11.85× 17.86× 6.20× 10.60× 18.36× 45.38× 14.57× 205× 292×
xfs-DAX 28.26× 23.24× 7.04× 11.21× 20.27× 56.38× 17.70× 280× 455×
SplitFS 16.46× 20.52× 6.73× 10.93× 19.94× 50.58× 16.15× 208× 296×
NOVA 32.03× 1.57× 7.65× 1.05× 23.23× 1.15× 22.30× 261× 399×

Table 2. Page faults. This table shows the number of page faults incurred by different applications on aged file systems. OverallWineFS
suffers from the least amount of page faults, up-to 450× lower than the other file systems.

Figure 9. Performance of applications using POSIX system calls on clean file systems. WineFS has equal or better than the best
file system in a clean file system setup. Performance of file systems in the relaxed mode (metadata consistency) is in (a), (b) and (c) and in the
strict mode (data + metadata consistency) is in (d), (e) and (f).

Persistent radix tree. We study the performance of the
persistent adaptive radix tree, P-ART [29], onWineFS. P-ART
creates a PM pool using the vmmalloc library and pre-faults
this region during initialization to avoid page faults in the
critical path. We insert 60M keys to the index; page-table
mappings are setup during inserts. We then perform 60M
lookups of a hot-set of 125K unique keys in random order.
The lookups don’t suffer from page faults as page-tables are
already setup. Figure 8 shows that the median latency of
WineFS is 35% lower than ext4-DAX and 60% lower than
NOVA. WineFS suffers 400× fewer LLC misses and 2× lower
TLB misses compared to the next-best ext4-DAX.
Performance on newly created file system. We repeat
all the above-mentioned experiments on newly created PM
file systems. In general, PM file systems find it easier to map
files with hugepages on a new file system. For the sake of
brevity, we do not report the results. We find that all file
systems perform similarly in a clean setup, with WineFS
performing up-to 30% better compared to ext4-DAX and 35%
compared to NOVA on YCSB Load A. WineFS outperforms
PMFS by 80% in LMDB as PMFS does not get hugepages even
in a clean file system setup. WineFS outperforms xfs-DAX
by up-to 35% for reasons similar to PMFS. Across all these
applications, WineFS gets the best performance or matches

the performance of the best PM file system. This indicates
that the design of WineFS is effective for memory-mapped
files even on a newly created file system.

5.5 Performance for system-call access mode

We now evaluate WineFS on macro-benchmarks and applica-
tions that access PM via system calls. Aging does not impact
system call performance on PM. We therefore use newly
created file systems for these experiments.
Filebench. We use the Filebench [46, 48] macrobenchmark
to evaluateWineFS. We use the varmail, fileserver, webserver,
and webproxy benchmarks, with configurations as shown
in the Table 1. These benchmarks emulate the I/O behavior
of several real-world applications.

WineFS and NOVA-relaxed outperform ext4-DAX by up-to
5×. Ext4-DAX and xfs-DAX perform poorly on varmail due
to costly fsync() operations and metadata overheads. Al-
though SplitFS outperforms ext4-DAX due to faster appends,
it inherits low scalability for creates and deletes as it relies
on ext4-DAX’s JBD2 journal. The poor metadata structures,
directory traversals, and inode free-lists, limit PMFS’s perfor-
mance on metadata-heavy workloads like varmail. WineFS
outperforms existing file systems on other Filebench mac-
robenchmarks, as shown in the Figure 9 (a) and (d).

815

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

Figure 10. Microbenchmark: Scalability. WineFS throughput
scales with increasing #threads on metadata-heavy workloads.

PostgreSQL. We use PostgreSQL [38] database and run the
read-write workload of pgbench suite (similar to TPC-B).
WineFS outperforms NOVA by 15%, as shown in Figure 9 (b),
(e). The performance improvements trace back to overwrites.
NOVA has to delete per-inode log entries, add new entries
for handling overwrites, and update DRAM indexes to reflect
the new data. WineFS only modifies the inode in a journal
transaction to point to the newly allocated blocks.
WiredTiger. We useWiredTiger [19], a key-value store that
MongoDB uses by default, and run the FillRandom and the
ReadRandomworkloadswith 1KB sized values. In FillRandom,
WiredTiger on WineFS performs 60% faster than on NOVA,
and outperforms ext4-DAX by 20%, as shown in Figure 9 (c),
(f).WineFS outperforms NOVA because WiredTiger appends
data at unaligned offsets and NOVA forces these appends to
a new 4KB page to ensure data atomicity, causing high write
amplification. NOVA copies the data in the partial block to
the new block and then appends new data.WineFS continues
to append to partially full blocks without having to copy old
data like NOVA, while ensuring data atomicity via journaling.
In ReadRandom, WiredTiger’s throughput remains the same
across different file systems.
Other utilities. We evaluate WineFS using kernel compila-
tion, tar, and rsync. Linux kernel compilation (v5.6; using 64
threads) takes similar time across all PM file systems.WineFS
has comparable performance as its competitors across all
utilities; we omit further details due to space constraints.

5.6 Scalability

We measure the scalability of WineFS using a multi-threaded
system call workload: we create a file, append at 4KB gran-
ularities, fsync, and unlink in each thread. Figure 10 shows
the results.WineFS andNOVAhave the best scalability. NOVA
achieves its scalability through per-inode logs which have
the side effect of fragmenting free space (and reducing per-
formance for memory-mapped files).WineFS achieves similar
scalability by using per-CPU fine-grained journals that min-
imize the fragmentation. ext4-DAX and xfs-DAX have low
scalability as they use a stop-the-world approach on fsync()
to flush the journal to PM. SplitFS inherits low scalability as
it runs atop ext4-DAX. Finally, PMFS scales well due to its

fine-grained journaling. All the file systems plateau beyond
16 thread due to the scalability bottlenecks in the VFS layer.

5.7 Resource Consumption

WineFS consumes memory for its DRAM metadata indexes
(e.g., red-black trees used for directory indexing, keeping
track of free extents and inode free lists). It also additionally
consumes CPU time to execute background activity such as
journal space reclamation and retroactive rewriting of files.
Memory usage. WineFS uses a per-directory RB-tree to in-
dex the directory entries. The directory entries are hashed
and stored, requiring less than 64B of memory per entry.
Filling an entire 500GB partition of PM (used in our evalua-
tion) with small 4KB files requires less than 10GB of DRAM.
The memory usage of other DRAM metadata indexes such
as the alignment-aware allocator and inode free lists is in-
significant compared to the per-directory RB-tree, and can
be safely assumed to be less than 1GB.
CPU utilization. WineFS uses a background thread to re-
claim space occupied by committed transactions in the per-
CPU journals, and uses another background thread in case of
reactive re-writing of files to get hugepages. We expect the
re-writing of files to be extremely rare (as discussed in §3.6),
and in the common case, not utilizing a thread.

5.8 Summary

Overall, we show that WineFS achieves its goals (§3.1). It
conserves hugepages and provides excellent performance
for applications using memory-mapped files. It does not
sacrifice performance for applications using system calls to
access PM, performing equal to or better than the state-of-
the-art PM file systems. It provides atomic, synchronous data
and metadata operations. It achieves these properties while
being POSIX-compliant and not requiring any changes to
the application.

6 Related Work

We now place WineFS in the context of prior work. While
WineFS builds on awealth of prior research,WineFS is the first
hugepage-aware file system that achieves good performance
for applications using memory-mapped files or system calls
to access PM.
Hugepage-friendliness. Prior work studied the high cost
of page faults in PM file systems and proposed changes
to the memory sub-system [11]; in contrast, WineFS does
not require any changes to the memory subsystem. Intel
PMDK [22] recommends using ext4-DAX [33] or xfs-DAX [1,
21] with 2MB sized blocks, to ensure hugepage-friendliness.
However, the downside of this approach is high space ampli-
fication for applications with files smaller than 2MB.

NOVA [49] attempts to allocate hugepage-aligned physical
extents, but requires allocation requests to be exact multiples

816

SOSP ’21, October 26–29, 2021, Virtual Event, Germany R. Kadekodi et al.

of 2MB. The log-structured design of NOVA fragments free
space; NOVA does not seek to prevent this. The free-space
allocator in other PM file systems ignores fragmentation and
physical alignment, causing a decrease in hugepages.WineFS
is the first PM file system that has hugepage-friendliness as
a primary design concern and shows that hugepages can be
achieved without high space amplification.
Aging in PM file systems. Prior work has studied aging
in file systems on magnetic hard drives [43] and SSDs [13,
14, 26]. While prior work has studied aging on emulated
persistent memory [26], our work is the first to not only
understand the problems that occur with aging on actual
PM, but also address it via WineFS.
TLB effects. The correlation of increased performance due
to larger TLB reach and coarser TLB mappings on PM was
noted by prior work [32], but WineFS is the first to explain
the reason behind these observations. Recent work [9] also
speaks about the perils of TLB shootdowns, though not in
the context of PM.
Fsync overhead. PM file systems like BPFS [12], PMFS [40],
NOVA [49], Strata [28], and SplitFS [25] have reduced the
overhead of fsync(). However, the log-structuring or copy-
on-write design of NOVA, Strata, and SplitFS causes fragmen-
tation and reduces hugepages. PMFS uses a single journal
that becomes the bottleneck in multi-threaded applications.
WineFS uses fine-grained per-CPU undo journal which mini-
mizes fsync() overhead without trading off hugepages.

7 Conclusion

This paper presents WineFS, a hugepage-aware PM file sys-
tem. WineFS demonstrates that it is possible to design a file
system that achieves good performance for applications ac-
cessing PM via either memory-mapped files or system calls.
WineFS revisits a number of file-system design choices in
the light of hugepage-awareness. The design of WineFS al-
lows it to resist aging, offering the same performance in
the aged and unaged setting. WineFS is publicly available at
https://github.com/utsaslab/winefs.

Acknowledgments

We thank our shepherd, Haibo Chen, and the anonymous
reviewers at SOSP 21 and OSDI 21 for their insightful com-
ments and suggestions. This work was supported by NSF
CAREER #1751277, the UT Austin-Portugal BigHPC project
(POCI-01-0247-FEDER-045924) We thank Intel for gener-
ously providing access to the testbed used in our evaluation.
We thank the members and companies of the PDL Consor-
tium (Amazon, Facebook, Google, HPE, Hitachi, IBM, Intel,
Microsoft, NetApp, Oracle, Pure Storage, Salesforce, Sam-
sung, Seagate, Two Sigma, andWestern Digital) and VMware
for their interest, insights, feedback, and support.

References

[1] 1996. XFS Filesystem Structure. https://xfs.org/docs/xfsdocs-xml-
dev/XFS_Filesystem_Structure//tmp/en-US/html/index.html.

[2] 2012. Symas Lightning Memory-Mapped Database. https://symas.
com/products/lightning-memory-mapped-database/.

[3] 2015. XFS: DAX support. https://lwn.net/Articles/635514/.
[4] 2017. RocksDB | A persistent key-value store. http://rocksdb.org.
[5] 2019. Redis: In-memory data structure store. https://pmem.io/2020/

09/25/memkeydb.html.
[6] 2020. Intel Optane DC Persistent Memory. https://www.intel.

com/content/www/us/en/architecture-and-technology/optane-dc-
persistent-memory.html

[7] Nitin Agrawal, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2009. Generating realistic impressions for file-system bench-
marking. ACM Transactions on Storage (TOS) 5, 4 (2009), 1–30.

[8] Nitin Agrawal, William J Bolosky, John R Douceur, and Jacob R Lorch.
2007. A five-year study of file-system metadata. ACM Transactions on
Storage (TOS) 3, 3 (2007), 9–es.

[9] Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t shoot down TLB
shootdowns!. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1–14.

[10] Thomas E Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N Schuh, and Em-
mett Witchel. 2020. Assise: Performance and Availability via Client-
local {NVM} in a Distributed File System. In 14th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 20).
1011–1027.

[11] Jungsik Choi, Jiwon Kim, and Hwansoo Han. 2017. Efficient Memory
Mapped File I/O for In-Memory File Systems. In 9th USENIX Work-
shop on Hot Topics in Storage and File Systems, HotStorage 2017, Santa
Clara, CA, USA, July 10-11, 2017. https://www.usenix.org/conference/
hotstorage17/program/presentation/choi

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP
’09). 133–146.

[13] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,William Jannen, Yang
Zhan, Jun Yuan, Michael A. Bender, Rob Johnson, Bradley C. Kuszmaul,
Donald E. Porter, Jun Yuan, and Martin Farach-Colton. 2017. File
Systems Fated for Senescence? Nonsense, Says Science!. In Proceedings
of the 15th USENIX Conference on File and Storage Technologies (FAST
17). 45–58.

[14] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A Bender, William
Jannen, Rob Johnson, Donald Porter, and Martin Farach-Colton. 2019.
Filesystem aging: It’s more usage than fullness. In 11th USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage 19).

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[16] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
2019. Performance and Protection in the ZoFS User-Space NVM
File System. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). As-
sociation for Computing Machinery, New York, NY, USA, 478–493.
https://doi.org/10.1145/3341301.3359637

[17] John R Douceur and William J Bolosky. 1999. A large-scale study
of file-system contents. ACM SIGMETRICS Performance Evaluation
Review 27, 1 (1999), 59–70.

[18] Facebook. 2017. RocksDB | A persistent key-value store. http://rocksdb.
org.

[19] Alexandra Fedorova, Craig Mustard, Ivan Beschastnikh, Julia Rubin,
Augustine Wong, Svetozar Miucin, and Louis Ye. 2018. Performance

817

https://github.com/utsaslab/winefs
https://xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure//tmp/en-US/html/index.html
https://xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure//tmp/en-US/html/index.html
https://symas.com/products/lightning-memory-mapped-database/
https://symas.com/products/lightning-memory-mapped-database/
https://lwn.net/Articles/635514/
http://rocksdb.org
https://pmem.io/2020/09/25/memkeydb.html
https://pmem.io/2020/09/25/memkeydb.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://doi.org/10.1145/3341301.3359637
http://rocksdb.org
http://rocksdb.org

WineFS: a hugepage-aware file system for persistent memory that ages gracefully SOSP ’21, October 26–29, 2021, Virtual Event, Germany

comprehension at WiredTiger. In Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018. 83–94. https://doi.
org/10.1145/3236024.3236081

[20] Google. 2021. Colossus under the hood: a peek into Google’s scalable
storage system. https://cloud.google.com/blog/products/storage-data-
transfer/a-peek-behind-colossus-googles-file-system.

[21] Christoph Hellwig. 2009. XFS: the big storage file system for Linux.
login:: the magazine of USENIX & SAGE 34, 5 (OCT) (2009), 10–18.
https://dialnet.unirioja.es/servlet/articulo?codigo=4957012

[22] Intel. 2018. Persistent Memory Development Kit. http://pmem.io.
[23] Intel. 2018. PmemKV | Key/Value Datastore for Persistent Memory.

https://github.com/pmem/pmemkv.
[24] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-
manya R. Dulloor, Jishen Zhao, and Steven Swanson. 2019. Ba-
sic Performance Measurements of the Intel Optane DC Persistent
Memory Module. CoRR abs/1903.05714 (2019). arXiv:1903.05714
http://arxiv.org/abs/1903.05714

[25] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. SplitFS: A File System that Minimizes Soft-
ware Overhead in File Systems for Persistent Memory. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19).
Ontario, Canada.

[26] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gregory R Ganger. 2018.
Geriatrix: Aging what you see and what you don’t see. A file system
aging approach for modern storage systems. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18). 691–704.

[27] Linux kernel developers. 2008. Linux POSIX file system test suite.
https://lwn.net/Articles/276617/.

[28] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas E. Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. 460–477. https://doi.
org/10.1145/3132747.3132770

[29] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. Recipe: converting concurrent DRAM
indexes to persistent-memory indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.).
ACM, 462–477. https://doi.org/10.1145/3341301.3359635

[30] Linux. 2019. Direct Access for files. https://www.kernel.org/doc/
Documentation/filesystems/dax.txt.

[31] LMDB. 2012. Database Microbenchmarks. http://www.lmdb.tech/
bench/microbench/.

[32] Tony Mason, Thaleia Dimitra Doudali, Margo Seltzer, and Ada
Gavrilovska. 2020. Unexpected performance of Intel® Optane DC
Persistent Memory. IEEE Computer Architecture Letters 19, 1 (2020),
55–58.

[33] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Alex Tomas
Andreas Dilge and, and Laurent Vivier. 2007. The New Ext4 filesystem:
Current Status and Future Plans. In Ottawa Linux Symposium (OLS
’07). Ottawa, Canada.

[34] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux symposium,
Vol. 2. Citeseer, 21–33.

[35] Memcached. 2019. The Volatile Benefit of Persistent Memory. https:
//memcached.org/blog/persistent-memory/.

[36] Dutch T Meyer and William J Bolosky. 2012. A study of practical
deduplication. ACM Transactions on Storage (ToS) 7, 4 (2012), 1–20.

[37] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding crash-consistency bugs with

bounded black-box crash testing. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 33–50.

[38] PostgreSQL. 1996. PostgreSQL: The World’s Most Advanced Open
Source Relational Database. https://www.postgresql.org/.

[39] Memhive PostgreSQL. 2020. Announcing Memhive PostgreSQL.
https://www.postgresql.org/about/news/announcing-memhive-
postgresql-2088/.

[40] Dulloor Subramanya Rao, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014. 15:1–
15:15. https://doi.org/10.1145/2592798.2592814

[41] Storage Review. 2019. Intel Optane DC Persistent Memory Module
(PMM). https://www.storagereview.com/intel_optane_dc_persistent_
memory_module_pmm.

[42] Denis Serenyi. 2017. Cluster-Level Storage @ Google. Keynote at the
2nd Joint International Workshop on Parallel Data Storage and Data
Intensive Scalable Intensive Computing Systems.

[43] Keith A Smith and Margo I Seltzer. 1997. File system aging-increasing
the relevance of file system benchmarks. In Proceedings of the 1997 ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems. ACM, 203–213.

[44] Steven Swanson. 2019. Redesigning File Systems for Nonvolatile Main
Memory. IEEE Micro 39, 1 (2019), 62–64. https://doi.org/10.1109/MM.
2018.2886443

[45] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishi-
moto, and Geoff Peck. 1996. Scalability in the XFS File System.. In
USENIX Annual Technical Conference, Vol. 15.

[46] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A
flexible framework for file system benchmarking. login: The USENIX
Magazine 41, 1 (2016), 6–12.

[47] Yifan Wang. 2012. A statistical study for file system meta data on high
performance computing sites. Master’s thesis, Southeast University
(2012).

[48] AndrewWilson. 2008. The new and improved FileBench. In 6th USENIX
Conference on File and Storage Technologies (FAST 08).

[49] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies, FAST 2016, Santa Clara,
CA, USA, February 22-25, 2016. 323–338. https://www.usenix.org/
conference/fast16/technical-sessions/presentation/xu

[50] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudoff.
2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. ACM, 478–496. https:
//doi.org/10.1145/3132747.3132761

[51] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In 18th USENIX Conference on File and
Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27,
2020, Sam H. Noh and Brent Welch (Eds.). USENIX Association, 169–
182. https://www.usenix.org/conference/fast20/presentation/yang

[52] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. Segcache: a memory-
efficient and scalable in-memory key-value cache for small objects. In
18th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 21).

[53] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019.
Ziggurat: A Tiered File System for Non-Volatile Main Memories and
Disks. In 17th USENIX Conference on File and Storage Technologies,
FAST 2019, Boston, MA, February 25-28, 2019. 207–219. https://www.
usenix.org/conference/fast19/presentation/zheng

818

https://doi.org/10.1145/3236024.3236081
https://doi.org/10.1145/3236024.3236081
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://dialnet.unirioja.es/servlet/articulo?codigo=4957012
http://pmem.io
https://github.com/pmem/pmemkv
https://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://lwn.net/Articles/276617/
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3341301.3359635
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
http://www.lmdb.tech/bench/microbench/
http://www.lmdb.tech/bench/microbench/
https://memcached.org/blog/persistent-memory/
https://memcached.org/blog/persistent-memory/
https://www.postgresql.org/
https://www.postgresql.org/about/news/announcing-memhive-postgresql-2088/
https://www.postgresql.org/about/news/announcing-memhive-postgresql-2088/
https://doi.org/10.1145/2592798.2592814
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm
https://doi.org/10.1109/MM.2018.2886443
https://doi.org/10.1109/MM.2018.2886443
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Persistent Memory
	2.2 Performance overhead of memory-mapping
	2.3 Impact of aging on PM application performance
	2.4 Pre-faulting pages
	2.5 Hugepages without file system support
	2.6 The need for a hugepage-aware PM file system

	3 WineFS
	3.1 Goals
	3.2 Overview
	3.3 Guarantees
	3.4 hugepage Awareness
	3.5 Ensuring good performance for applications using POSIX system calls
	3.6 Implementation

	4 Discussion
	5 Evaluation
	5.1 Experimental setup
	5.2 Crash Consistency & POSIX Compliance
	5.3 Read and Write Throughput
	5.4 Performance for memory-mapped access mode
	5.5 Performance for system-call access mode
	5.6 Scalability
	5.7 Resource Consumption
	5.8 Summary

	6 Related Work
	7 Conclusion
	References

