
Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management
Justin Meza∗ Jichuan Chang† HanBin Yoon∗ Onur Mutlu∗ Parthasarathy Ranganathan†

∗Carnegie Mellon University †Hewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com

Abstract —Hybrid main memories composed of DRAM as a cache to scalable non-volatile memories such as phase-change memory
(PCM) can provide much larger storage capacity than traditional main memories. A key challenge for enabling high-performance and
scalable hybrid memories, though, is efficiently managing the metadata (e.g., tags) for data cached in DRAM at a fine granularity.
Based on the observation that storing metadata off-chip in the same row as their data exploits DRAM row buffer locality, this paper
reduces the overhead of fine-granularity DRAM caches by only caching the metadata for recently accessed rows on-chip using a small
buffer. Leveraging the flexibility and efficiency of such a fine-granularity DRAM cache, we also develop an adaptive policy to choose the
best granularity when migrating data into DRAM. On a hybrid memory with a 512MB DRAM cache, our proposal using an 8KB on-chip
buffer can achieve within 6% of the performance of, and 18% better energy efficiency than, a conventional 8MB SRAM metadata store,
even when the energy overhead due to large SRAM metadata storage is not considered.

Index Terms —Cache memories, tag storage, non-volatile memories, hybrid main memories.

✦

1 INTRODUCTION

As feature sizes continue to shrink, future chip multi-
processors are expected to integrate more and more cores on a
single chip, increasing the aggregate demand for main memory
capacity. Satisfying such a demand with DRAM alone may
prove difficult due to DRAM scaling challenges [9]. To address
this problem, recent work has proposed using DRAM as a
cache to large non-volatile memories, such as phase-change
memory (PCM), which are projected to be much more scalable
than DRAM at comparable access latencies [6]. A key challenge
in scaling hybrid main memories is how to efficiently manage
the metadata (such as tag, LRU, valid, and dirty bits) for data
in such a large DRAM cache at a fine granularity.
Most prior hardware-based approaches toward large, fine-

granularity DRAM caches have either (1) stored metadata for
each cache block in a large SRAM structure, limiting scalability
and increasing cost (e.g., [11]), or (2) stored metadata in a
contiguous region of DRAM, requiring additional accesses
and reducing performance ([1, 15]). Our goal is to achieve
minimal performance degradation compared to large on-chip
SRAM metadata structures, but with orders of magnitude
lower hardware overhead.

2 HYBRID MAIN MEMORIES

Fig. 1 shows the organization of a hybrid memory using DRAM
as a cache to PCM. Both DRAM and PCM are composed of
multiple banks organized as rows and columns of memory
cells. Each bank is equipped with a row buffer that stores the
contents of the most recently accessed row of data. Accesses to
row buffer data (row buffer hits) can be serviced more quickly
than accesses to the memory array (row buffer conflicts).
A hybrid memory controller located on-chip is responsible

for managing the placement of data, scheduling accesses, and
performing data movement between the DRAM and PCM
devices.
Metadata Lookup. Tracking whether data are located in the

DRAM cache requires some form of metadata storage. While
tracking data at a large granularity (e.g., 4KB) is possible,

• Manuscript submitted: 20-Jan-2012. Manuscript accepted: 16-Feb-2012.
Final manuscript received: 23-Feb-2012.

Memory
Controller

PCM

......

PCM

...

DRAM

Migration Buffer

PCM
Scheduler

DRAM
Scheduler

Metadata Storage

Row Buffer

Bank

Last Level
Cache Miss

Channel

Fig. 1: A hybrid DRAM-PCM main memory organization.

doing so can cause underutilization of the DRAM cache and
waste bandwidth, making large-granularity migrations ineffi-
cient and undesirable if most data in the large blocks are not
accessed. On the other hand, tracking data at a fine granularity
can incur large storage overheads (e.g., 8MB required to track
all 128B blocks in a 512MB DRAM cache). Others have pro-
posed storing metadata in the DRAM cache itself, alongside
data [1, 8, 15]. While this mitigates the storage overhead
and scalability limitations induced by on-chip metadata stores,
it instead requires additional metadata accesses to DRAM,
increasing main memory latency and bandwidth consumption.
Request Scheduling. Based on the retrieved metadata, the

request is placed in either the DRAM or PCM scheduler. To
maximize throughput, requests are scheduled using a first
ready, first-come first-served (FR-FCFS) scheduling policy [12, 16].
Data Movement. After data arrive at the memory controller,

if they should be cached into (or evicted from) the DRAM
cache, a special migration request is inserted into the destina-
tion scheduler, which writes them into the destination device.
During this brief transient state, in-flight data are placed in
a migration buffer in the memory controller, where they can
be accessed at a latency similar to an on-chip cache. For each
demand request to PCM, the memory controller may issue
multiple data requests to support large migration granularities.
We would like to achieve the benefits of storing metadata

in DRAM while minimizing the latency of metadata accesses.
To this end, we propose a technique for storing metadata in
DRAM coupled with a new architecture for reducing DRAM
metadata accesses using a small, on-chip metadata buffer.

3 A F INE-GRAINED DRAM CACHE ARCHITECTURE

Overview. Independent to [8], we also observe that metadata
can be stored in DRAM in the same row as their data, reducing

the access latency from two row buffer conflicts (one for
the metadata and another for the datum itself), to one row
buffer conflict and one row buffer hit (if the datum is located
in DRAM). Based on this observation, to further mitigate
metadata lookup latency, we cache the metadata for the most
recently accessed rows in DRAM in a small, on-chip buffer. The
key idea is that the metadata needed for data with temporal or
spatial locality will likely be cached on-chip, where they can
be accessed at the same latency as an SRAM tag store.

3.1 Storing Metadata Alongside Data

Data
Block 0

Data
Block 1

... Data
Block 30

Metadata
Block

DRAM Row (4KB)

Cache Block (128B)

Metadata
Block 0

Metadata (~4B)

Metadata
Block 1

... Metadata
Block 30

Fig. 2: A method for efficiently
storing tags in memory (TIM).
Metadata are stored in the same
row as their data.

Fig. 2 shows how data and
metadata are laid out in the
same row: Each row uses
one cache block (referred to
as the metadata block) to store
the metadata for the remain-
ing cache blocks. On a mem-
ory access, the row index of
the request is used to re-
trieve the metadata block.
The cache block address of
the request is used to index this metadata block to retrieve its
metadata. We call this metadata organization tags-in-memory
(TIM). Fig. 3 compares TIM with storing metadata in a DRAM
region separate from their data (Region), where TIM reduces
memory access latency by accessing data after its metadata
lookup, at a lower latency by hitting in the row buffer.

Region

TIM

Metadata Lookup Data Access

Row Buffer Miss

Hit Saved CyclesRow Buffer Miss

Row Buffer Miss

Time

Fig. 3: Unlike storing metadata in
a region, storing them in the same
row as their data allows subse-
quent accesses to hit in the row
buffer, reducing memory latency.

Fig. 4(a) shows the
performance of various
DRAM cache management
techniques which we will
refer to throughout the
paper (our simulation
methodology is explained
in Section 4). Comparing
a system with all DRAM
cache metadata stored in an on-chip SRAM (SRAM), a
simple metadata storage scheme where metadata are stored
contiguously in a separate DRAM region (Region), and the
TIM optimization just discussed (TIM), two observations are
worth noting. (1) The simple, region-based in-memory tag
storage mechanism increases average memory access latency
by 29% and requires additional metadata accesses, degrading
performance by 48% compared to the SRAM tag store. (2)
While the TIM approach improves average memory access
latency by 19% over Region, there is still a significant 30%
performance gap in between TIM and the SRAM tag store
design due to the additional off-chip tag lookups.

3.2 A Buffer for Recently-Accessed Metadata Blocks

To help mitigate the performance deficiency of TIM without
requiring the large hardware overheads of an SRAM metadata
store, we propose caching metadata for a small number of
recently accessed rows in a buffer, called TIMBER. The key
insight behind TIMBER is that caching metadata (i.e., tags) for
data with good locality in a small buffer allows most metadata
accesses to be serviced at SRAM latency, and at a low storage
overhead. TIMBER is organized as a cache, where entries are
tagged by DRAM row indices and the data payload contains
the metadata block for a particular row, as shown in Fig. 5.
Fig. 5 also shows how metadata are looked up under

TIMBER: An incoming memory request’s address is used to
determine its row index to access TIMBER. If the row index

m
cf

lb
m

tp
cc

64

tp
ch

2

as
ta

r

tp
ch

17

m
ilc

ge
m

s

sw
im

ze
us

m
p

bw
av

es

ca
ct

us

lu
ca

s

sj
en

g

gm
ea

n

1.93

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

N
or

m
al

iz
ed

W
ei

gh
te

d
Sp

ee
du

p

SRAM Region TIM TIMBER TIMBER-Dyn

(a)

m
cf

lb
m

tp
cc

64

tp
ch

2

as
ta

r

tp
ch

17

m
ilc

ge
m

s

sw
im

ze
us

m
p

bw
av

es

ca
ct

us

lu
ca

s

sj
en

g

gm
ea

n

1.91 1.57

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

E
ne

rg
y

E
ff

ic
ie

nc
y

(b)

Fig. 4: Multi-core (a) performance and (b) energy efficiency.

Row in TIMBER?

Memory Request
from CPU

No

Fetch Metadata
Block & Insert
into TIMBER

Yes

Tag matches?

No Yes

Fetch Data

from PCM

Fetch Data

from DRAM

TIMBER

Tag (Row Index)

Data (Metadata Block)

12 Row 12's
Metadata

......

76 Row 76's
Metadata

Valid

1

1

...

0
_ _

Fig. 5: TIMBER organization and metadata lookup.

does not match the TIMBER tag entry, the row’s metadata must
be fetched from DRAM and inserted into TIMBER. When the
row index matches the TIMBER tag entry, the tag data in the
TIMBER entry’s payload is further compared with the request
block’s address tag. The cache block is located in DRAM if the
tags match, and located in PCM otherwise.

3.3 Implementation and Hardware Cost

For a system with a 44-bit physical address, each TIMBER entry
requires 4B for TIMBER tag storage, 128B for metadata storage,
and 1 bit for validity for a total overhead of around 8KB for
64 entries. For comparison, the amount of SRAM overhead
required to store all metadata for a 512MB DRAM cache is
8MB (i.e., roughly 1000× larger).

4 METHODOLOGY

We developed a cycle-level memory simulator as part of an
in-house x86 multi-core simulator, whose front-end is based
on Pin, and executes representative phases of benchmarks
as profiled by PinPoints. Table 1 shows the major system
parameters used in our study. We warmed up the system for
one billion cycles and collected results for one billion cycles.
For our 8-core workloads, we run one single-threaded in-

stance of a SPEC CPU or TPC-C/H benchmark1 on each core

1. Benchmarks were chosen based on their large memory footprints.

TABLE 1: Baseline simulation parameters adapted from [6]. ‡Note
that TIM can also support set-associative DRAM caches.

Processor 8 cores, 4GHz, 3-wide issue (maximum 1 memory opera-
tion per cycle), 128-entry instruction window

L1 cache Private 32KB per core, 4-way, 128B blocks
L2 cache Shared 512KB per core, 8-way, 128B blocks, 16 miss buffers
Memory
controller

128-/128-entry read/write request queues and 128-entry
migration buffer per controller; FR-FCFS scheduler [12, 16]

TIMBER 64-entry, direct-mapped
Memory 2 controllers (DRAM and PCM), each with a 64-bit channel

and 1 rank with 8 banks. 512MB direct-mapped‡, write-
back, no-write-allocate DRAM cache. Block-level write-
back of dirty data to PCM. Open-row policy.

Timing DRAM: row buffer hit (conflict) = 40 (80) ns. PCM: row
buffer hit (clean conflict/dirty conflict) = 40 (128/368) ns.

Energy Both: row buffer read (write) = 0.93 (1.02) pJ/bit. DRAM:
array read (write): 1.17 (0.39) pJ/bit. PCM: array read
(write) = 2.47 (16.82) pJ/bit.

TABLE 2: Consolidated multi-core workload characteristics.

Workload MPKI Footprint (MB) Avg. Dynamic Migr. (B)
mcf 65.18 2481.0 128
lbm 64.68 1703.1 700
astar 21.55 2171.6 128
tpcc64 19.44 1150.6 169
tpch2 17.97 1501.5 128
tpch17 11.72 1696.4 178
milc 11.04 1273.6 128
gems 8.84 1819.9 160
swim 8.29 1072.3 376
zeusmp 8.68 1176.0 361
bwaves 7.42 1506.0 128
cactus 4.02 783.7 881
lucas 2.15 1002.2 417
sjeng 0.85 893.9 128

for a total of eight benchmark instances per workload, rep-
resentative of many consolidated workloads for large CMPs.
Table 2 characterizes our workloads on an 8-core all-SRAM
metadata store system in terms of last-level cache misses per
kilo instruction (MPKI), amount of referenced data (footprint),
and under TIMBER for a metric we will discuss in Section 5.5.

5 EVALUATION

5.1 Performance Evaluation

Fig. 4(a) shows the performance of various DRAM cache man-
agement techniques using the weighted speedup metric [2]:
the sum of the speedups of the benchmarks when run together
compared to when run alone on the same system with SRAM
metadata storage.
The addition of a 64-entry TIMBER (we study the sensitivity

of our mechanism to TIMBER size in Section 5.3) improves
performance over TIM by more than 22%. This performance
boost is due to TIMBER’s ability to issue accesses to the same
row just as quickly as an SRAM tag store if the row’s metadata
are cached in TIMBER. We find that 62% of accesses hit in
TIMBER (34% with data located in DRAM and 28% in PCM),
and 38% of accesses miss in TIMBER and need to first access
metadata from DRAM.

5.2 Energy-Efficiency Evaluation

Fig. 4(b) compares the dynamic main memory energy efficiency
(performance per watt) of the different techniques (higher
is better). Note that we do not consider memory controller
energy, thus we do not penalize techniques with large SRAM
storage. While Region and TIM are around 25% less energy
efficient than an all-SRAM metadata store system due to their
increased number of DRAM lookups, TIMBER is able to service

many such lookups from its small on-chip cache, achieving
energy efficiency within 11% of an all-SRAM system.

5.3 Sensitivity to Tag Buffer Size

Fig. 6(a) shows the sensitivity of performance and TIMBER
miss ratio to the size of TIMBER. As TIMBER size increases,
performance improves and TIMBER miss ratio decreases,
though with diminishing marginal returns, as the metadata
cached in TIMBER cover a large portion of the DRAM cache.

5.4 Sensitivity to Number of Cores

Fig. 6(b) shows how our TIMBER technique scales with differ-
ent numbers of cores. For this study, we scale the number of
cores, keeping the amount of DRAM proportional to the cores,
and plot the number of TIMBER entries needed to achieve
around 6% of the performance of an all-SRAM metadata
system. TIMBER size needs to scale proportionally with core
count, but the absolute storage overhead of TIMBER remains
three orders of magnitude smaller than an SRAM tag store.

5.5 Potential Benefits Enabled by Fine-Granularity

Managing a DRAM cache at a fine granularity provides the
opportunity for migrating different amounts of data from PCM
to DRAM based on runtime characteristics. For example, appli-
cations which have high data reuse may benefit from caching
more data, increasing DRAM cache hit rate. On the baseline
SRAM system, we found that simply caching 4KB of data per
migration could improve DRAM cache hit rate by 20%, but
cause performance to degrade by 75% due to the increase in
bandwidth consumption on the DRAM and PCM channels by
55% and 140%, respectively. To balance this tradeoff between
locality and bandwidth consumption, we developed a simple
policy which dynamically adjusts the migration granularity.
Our mechanism is inspired by that of Qureshi et al. [10],

where certain “leader” cache sets follow fixed replacement
policies and the remaining “follower” cache sets follow the
replacement policy that leads to the lowest cache miss rate
among the leader sets. We divide main memory into 256 sets
of rows consisting of seven leader row sets which employ
a fixed granularity for migration—128B, 256B, 512B, 1KB,
2KB, 4KB, and no migration—and 249 follower row sets. At
the end of each ten-million–cycle quantum, we compute per
thread, per leader set: (1) average memory access latency (also
counting migration buffer accesses), using latency counters per
outstanding request, whose sum is divided by request count,
and (2) number of cache blocks migrated.
We determine a thread’s migration granularity for the next

quantum as the migration granularity of the leader set with
the smallest product of average request access latency and number of
cache blocks migrated2. The key idea is that follower sets should
mimic leader sets with low access latencies and few migrations
to improve system performance. Table 2 shows the average
granularity measured for workloads under our policy.
Fig. 4(a) shows the performance of a 64-entry TIMBER with

our dynamic migration granularity technique (TIMBER-Dyn).
Several observations are in order. First, we find that TIMBER
with our dynamic migration granularity technique can achieve
within 6% of the performance of the SRAM metadata storage
system due to its ability to adjust its migration granularity
to workload characteristics, which in some cases involves not
migrating data at all during a quantum. This improves both

2. For the “no migration” set, we only use average request latency,
and our policy only considers sets with at least one access.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of TIMBER Entries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

W
ei

gh
te

d
Sp

ee
du

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
IM

B
E

R
M

is
s

R
at

io

Performance
TIMBER Miss Ratio

(a) Number of TIMBER entries.

(6% of SRAM)

2 4 8 16

Number of Cores

0

128

256

384

512

640

768

N
um

be
r

of
T

IM
B

E
R

E
nt

ri
es

Iso Performance

(b) Core count, scaling DRAM.

Fig. 6: Performance sensitivity to system characteristics.

DRAM cache efficiency and TIMBER efficiency. We find that
45% of TIMBER accesses result in hits for data in the DRAM
cache, 12% of TIMBER accesses result in hits for data in the
PCM backing store, and 43% of accesses miss in TIMBER and
must access metadata from DRAM. Second, as Fig. 4(b) shows,
being more prudent about migrations improves the DRAM
cache utilization and reduces bandwidth contention, leading to
energy efficiency benefits of 18% over the SRAM-tag baseline.
Although we use TIMBER as a substrate to efficiently im-

plement our dynamic migration granularity technique, other
metadata storage techniques could be used in conjunction with
our dynamic migration granularity mechanism3. Also note that
this is an early design of a dynamic granularity mechanism and
we are working on ways to improve its efficiency.

6 RELATED WORK

Prior approaches toward reducing metadata storage overhead
have managed the DRAM cache using large cache lines on
the order of kilobytes [1, 4] or represented the presence of
smaller sectors of a large cache block as a bit vector, eliminating
the need to store full tag metadata [7, 13]. These techniques
still store metadata for all of DRAM, increasing bandwidth
consumption and pollution of the DRAM cache, increasing
false-sharing probability, and limiting scalability. CAT reduced
tag storage overhead by observing that cache blocks with
spatial locality share the same high order tag bits and thus
one tag can represent multiple cache blocks [14]; their cache for
partial tags requires an associative search and cache elements
must be invalidated on partial tag eviction. While TIMBER also
caters to accesses with spatial locality (at the row granularity),
we take a fundamentally different approach by storing tags in
DRAM and caching full tag information in a small buffer.
Concurrent to this work, Loh and Hill also proposed storing

metadata in the same row as their data and exploit this tech-
nique with an on-chip cache that stores a bitmap representing
the presence in DRAM of a fixed number of recently accessed
regions. When a region is evicted from the metadata cache, its
data must also be evicted from DRAM, so a large metadata
cache is needed to reduce such data evictions (the authors
use 2MB of SRAM for a 512MB DRAM cache) [8]. The key
difference of our work is that we cache full metadata for a small
subset of rows in DRAM and retain both the metadata and data for
entries evicted from TIMBER, in the DRAM cache. This improves
DRAM cache utilization, avoids metadata lookups for TIMBER
hits, and reduces costly writeback traffic to PCM.
Prior techniques to determine the fetch size in traditional

caches (e.g., [3, 5]) differ from our dynamic policy in two key

3. For example, on an all SRAM metadata system, our technique
improves performance by 3% and improves energy efficiency by 43%.

ways. (1) They consider the benefit side of different caching
granularities, whereas we also consider the cost side in terms
of data movement contention, a factor that significantly affects
system performance in a hybrid memory. And (2) they track
reuse information using large structures whose size must scale
with the cache size, whereas our technique only requires
structures whose size scale with the number of outstanding
memory requests which is much smaller than the size of the
DRAM cache.

7 CONCLUSIONS

We introduced an efficient architecture for managing a large
DRAM cache. Leveraging the observation that metadata can
be stored in the same row as their data, we designed a new
architecture which caches recently-used metadata to provide
the benefits of a large SRAM metadata store for accesses with
temporal and spatial locality. Building upon our technique, we
also explored the design of a new caching policy for hybrid
memories which determines the migration granularity that
leads to low access latency and few migrations. Our results
show that our technique and caching policy can achieve similar
benefits to a large SRAM metadata store at much lower storage
overhead (8KB compared to 8MB) and 18% better energy-
efficiency due to fewer migrations, even when the energy over-
head due to large SRAM metadata storage is not considered.

ACKNOWLEDGEMENTS

We thank the members of the SAFARI research group and
the anonymous reviewers for their comments and suggestions.
We gratefully acknowledge the support of an NSF CAREER
Award CCF-0953246, NSF EAGER Grant CCF-1147397, and the
Gigascale Systems Research Center. Part of this work was done
while Justin Meza and HanBin Yoon were interns at Hewlett-
Packard Labs.

REFERENCES
[1] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple

but effective heterogeneous main memory with on-chip memory
controller support. SC ’10.

[2] S. Eyerman and L. Eeckhout. System-level performance metrics
for multiprogram workloads. IEEE Micro, 2008.

[3] K. Inoue, K. Kai, and K. Murakami. Dynamically variable line-
size cache exploiting high on-chip memory bandwidth of merged
DRAM/logic LSIs. HPCA ’99.

[4] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian. CHOP: Adaptive
filter-based DRAM caching for CMP server platforms. HPCA ’10.

[5] T. L. Johnson and W.-m. W. Hwu. Run-time adaptive cache
hierarchy management via reference analysis. ISCA ’97.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable DRAM alternative. ISCA ’09.

[7] J. Liptay. Structural aspects of the System/360 Model 85, II: The
cache. IBM Syst. J., 1968.

[8] G. Loh and M. D. Hill. Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches. MICRO ’11.

[9] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse,
R. Divakaruni, Y. Li, and C. J. Radens. Challenges and future
directions for the scaling of dynamic random-access memory
(DRAM). IBM J. Res. Dev., 2002.

[10] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for
MLP-aware cache replacement. ISCA ’06.

[11] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change memory
technology. ISCA ’09.

[12] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. ISCA ’00.

[13] A. Seznec. Decoupled sectored caches: conciliating low tag
implementation cost and low miss ratio. ISCA ’94.

[14] H. Wang, T. Sun, and Q. Yang. CAT - caching address tags - a
technique for reducing area cost of on-chip caches. ISCA ’95.

[15] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring DRAM
cache architectures for CMP server platforms. ICCD ’07.

[16] W. K. Zuravleff and T. Robinson. Controller for a synchronous
DRAM that maximizes throughput by allowing memory requests
and commands to be issued out of order. U.S. patent 5630096, ’97.

