Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs

Laxman Dhulipala 1 Charles McGuffey 1 Hongbo Kang 2 Yan Gu 1 Guy E. Blelloch 1 Phillip B. Gibbons 1 Julian Shun 4
1 CMU 2 Tsinghua 3 U.C. Riverside 4 MIT CSAIL
{lidelhipa, cmcguffe}@cs.cmu.edu kanghongbothu@gmail.com
ygu@cs.ucr.edu {guyb, gibbons}@cs.cmu.edu jshun@mit.edu

ABSTRACT

Non-volatile main memory (NVRAM) technologies provide an attractive set of features for large-scale graph analytics, including byte-addressability, low idle power, and improved memory-density. NVRAM systems today have an order of magnitude more NVRAM than traditional memory (DRAM). NVRAM systems could therefore potentially allow very large graph problems to be solved on a single machine, at a modest cost. However, a significant challenge in achieving high performance is in accounting for the fact that NVRAM writes can be much more expensive than DRAM reads.

In this paper, we propose an approach to parallel graph analytics using the Parallel Semi-Asymmetric Model (PSAM), in which the graph is stored as a read-only data structure (in NVRAM), and the amount of mutable memory is kept proportional to the number of vertices. Similar to the popular semi-external and semi-streaming models for graph analytics, the PSAM approach assumes that the vertices of the graph fit in a fast read-write memory (DRAM), but the edges do not. In NVRAM systems, our approach eliminates writes to the NVRAM, among other benefits.

To experimentally study this new setting, we develop Sage, a parallel semi-asymmetric graph engine with which we implement provably-efficient (and often work-optimal) PSAM algorithms for over a dozen fundamental graph problems. We experimentally study Sage using a 48-core machine on the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) equipped with Optane DC Persistent Memory, and show that Sage outperforms the fastest prior systems designed for NVRAM. Importantly, we also show that Sage nearly matches the fastest prior systems running solely in DRAM, by effectively hiding the costs of repeatedly accessing NVRAM versus DRAM.

PVLDB Reference Format:

1 Introduction

Over the past decade, there has been a steady increase in the main-memory sizes of commodity multicore machines, which has led to the development of fast single-machine shared-memory graph algorithms for processing massive graphs with hundreds of billions of edges [37, 71, 84, 86] on a single machine. Single-machine analytics by-and-large outperform their distributed memory counterparts, running up to orders of magnitude faster using much fewer resources [37, 64, 84, 86]. These analytics have become increasingly relevant due to a longterm trend of increasing memory sizes, which continues today in the form of new non-volatile memory technologies that are now emerging on the market (e.g., Intel’s Optane DC Persistent Memory). These devices are significantly cheaper on a per-gigabyte basis, provide an order of magnitude greater memory capacity per DIMM than traditional DRAM, and offer byte-addressability and low idle power, thereby providing a realistic and cost-efficient way to equip a commodity multicore machine with multiple terabytes of non-volatile RAM (NVRAM).

Due to these advantages, NVRAMs are likely to be a key component of many future memory hierarchies, likely in conjunction with a smaller amount of traditional DRAM. However, a challenge of these technologies is to overcome an asymmetry between reads and writes—write operations are more expensive than reads in terms of energy and throughput. This property requires rethinking algorithm design and implementations to minimize the number of writes to NVRAM [10, 15, 16, 26, 96]. As an example of the memory technology and its tradeoffs, in this paper we use a 48-core machine that has 8x as much NVRAM as DRAM (we are aware of machines with 16x as much NVRAM as DRAM [42]), where the combined read throughput for all cores from the NVRAM is about 3x slower than reads from the DRAM, and writes on the NVRAM are a further factor of about 4x slower [49, 94] (a factor of 12 total). Under this asymmetric setting, algorithms performing a large number of writes could see a significant performance penalty if care is not taken to avoid or eliminate writes.

An important property of most graphs used in practice is that they are sparse, but still tend to have many more edges than vertices, often from one to two orders of magnitude more. This is true for almost all social network graphs [56], but also for many graphs that are derived from various simulations [35]. In Figure 2 we show that over 90% of the large graphs (more than 1 million vertices) from the SNAP [56] and LAW [22] datasets have at least 10 times as many edges as vertices. Given that very large graphs today can have over 100 billion edges (requiring around a terabyte of storage), but only a few billion vertices, a popular and reasonable assumption both in theory and in practice is that vertices, but not edges, fit in DRAM [1, 41, 52, 63, 65, 70, 75, 89, 106, 107].

With these characteristics of NVRAM and real-world graphs in mind, we propose a semi-asymmetric approach to parallel graph analytics, in which (i) the full graph is stored in NVRAM and is accessed in read-only mode and (ii) the amount of DRAM is proportional to the number of vertices. Although completely avoiding
Our main contribution is Sage, a parallel semi-asymmetric graph engine with which we implement provably-efficient (and often work-optimal) algorithms for over a dozen fundamental graph problems (see Table 1). The key innovations are in ensuring that the updated state is associated with vertices and not edges, which is particularly challenging (i) for certain edge-based parallel graph traversals and (ii) for algorithms that “delete” edges as they go along in order to avoid revisiting them once they are no longer needed. We provide general techniques (Sections 4.1 and 4.2) to solve these two problems. For the latter, used by four of our algorithms, we require relaxing the prescribed amount of DRAM to be on the order of one bit per edge. Details of our algorithms are given in Section 4.3. Our codes extend the current state-of-the-art DRAM-only codes from GBBS [37], and can be found at https://github.com/ParAlg/gbbs/tree/master/sage.

From a theoretical perspective, we propose a model for analyzing algorithms in the semi-asymmetric setting (Section 3). The model, called the Parallel Semi-Asymmetric Model (PSAM), consists of a shared asymmetric large-memory with unbounded size that can hold the entire graph, and a shared symmetric small-memory with \(O(n) \) words of memory, where \(n \) is the number of vertices in the graph. In a relaxed version of the model, we allow small-memory size of \(O(n + m \log n) \) words, where \(m \) is the number of edges in the graph. Although we do not use writes to the large-memory in our algorithms, the PSAM model permits writes to the large-memory, which are \(\omega > 1 \) times more costly than reads. We prove strong theoretical bounds in terms of PSAM work and depth for all of our parallel algorithms in Sage, as shown in Table 1. Most of the algorithms are work-efficient (performing asymptotically the same work as the best sequential algorithm for the problem) and have polylogarithmic depth (parallel time). These provable guarantees ensure that our algorithms perform reasonably well across graphs with different characteristics, machines with different core counts, and NVRAMs with different read-write asymmetries.

We experimentally study Sage on large-scale real-world graphs (Section 5). We show that Sage scales to the largest publicly-available graph, the Hyperlink2012 graph with over 3.5 billion vertices and 128 billion edges (and 225 billion edges for algorithms running on the undirected/symmetrized graph). Figure 1 compares the performance of Sage algorithms with the fastest available NVRAM approaches on the Hyperlink2012 graph, which is larger than the DRAM of the machine used in our experiments. Compared with the state-of-the-art DRAM codes from GBBS [37], automatically extended to use NVRAM using MemoryMode, 1 Sage is 1.89x faster on average, and slower only in one instance for reasons that we discuss in Section 5. Compared with the recently developed codes from [42], which are the current state-of-the-art NVRAM codes available today, our codes are faster on all five graph problems studied in [42], and achieve an average speedup of 1.94x.

1Effectively using the DRAM as a cache—see Section 5.1.2.
We also study the performance of Sage compared with state-of-the-art graph codes run entirely in DRAM on the largest dataset used in our study that still fits within memory (Figure 7 in Section 5.4). We compare Sage with the GBBS codes run entirely in DRAM, and also when automatically converted to use NVRAM using libvmmalloc, a standard NVRAM memory allocator. Compared with GBBS codes running in DRAM, Sage on NVRAM is only 1.01x slower on average, within 6% of the in-memory running time on all but two problems, and at most 1.82x slower in the worst case. Interestingly, we find that Sage when run in DRAM is 1.17x faster than state-of-the-art DRAM-only codes when run in DRAM, and all but two problems, and at most 1.82x slower in the worst case. Compared with state-of-the-art DRAM-only performance, Sage on NVRAM is only 1.01x slower on average, within 6% of the in-memory running time on all but two problems, and at most 1.82x slower in the worst case. Compared with state-of-the-art DRAM-only performance, Sage on NVRAM is only 1.01x slower on average, within 6% of the in-memory running time on all but two problems, and at most 1.82x slower in the worst case. Compared with state-of-the-art DRAM-only performance, Sage on NVRAM is only 1.01x slower on average, within 6% of the in-memory running time on all but two problems, and at most 1.82x slower in the worst case.

We summarize our contributions below.

1. A semi-asymmetric approach to parallel graph analytics that avoids writing to the NVRAM and uses DRAM proportional to the number of vertices.
2. Sage: a parallel semi-asymmetric graph engine with implementations of 18 fundamental graph problems, and general techniques for semi-asymmetric parallel graph algorithms. We have made all of our codes publicly-available.
3. A new theoretical model called the Parallel Semi-Asymmetric Model, and techniques for designing efficient, and often work-optimal parallel graph algorithms in the model.
4. A thorough experimental evaluation of Sage on an NVRAM system showing that Sage significantly outperforms

\[A[0], ⊕ ⊓ A[0] ⊓ A[1], \ldots, ⊕ ⊓ n−1 A[i] \] as well as the overall sum, \[⊕ ⊓ n−1 A[i] \]. Reduce takes an array A and a binary associative function f and returns the sum of the elements in A with respect to f. Filter takes an array A and a predicate f and returns a new array containing a ∈ A for which f(a) is true, in the same order as in A. If done in small-memory (Section 3), prefix sum, reduce and filter can all be done in O(n) work and O(log n) depth (assuming that ⊓ and f take O(1) work) [51].

Ligra, Ligra++, and Julienne. As discussed in Section 4, Sage builds on the Ligra [84], Ligra+ [86], and Julienne [36] frameworks for shared-memory graph processing. These frameworks provide primitives for representing subsets of vertices (vertexSubset), and mapping functions over them (EDGEMAP). EDGEMAP takes as input a graph G(V, E), a vertexSubset U ⊆ V, and two Boolean functions F and C. EDGEMAP applies F to (u, v) ∈ E such that u ∈ U and C(v) = true (call this subset of undirected edges E_u), and returns a vertexSubset U’ where u ∈ U’ if and only if (u, v) ∈ E_u and F(u, v) = true. F can side-effect data structures associated with the vertices.

2 Preliminaries

Graph Notation. We denote an unweighted graph by G(V, E), where V is the set of vertices and E is the set of edges. The number of vertices is n = |V| and the number of edges is m = |E|. Vertices are assumed to be indexed from 0 to n − 1. We use N(v) to denote the neighbors of vertex v and deg(v) to denote its degree. We focus on undirected graphs in this paper, although many of our algorithms and techniques naturally generalize to directed graphs. We assume that m = Ω(n) when reporting bounds. We use d_G to refer to the diameter of the graph, which is the longest shortest path distance between any vertex s and any vertex v reachable from s. ∆ (d_G) is used to denote the maximum (average) degree of the graph. We assume that there are no self-edges or duplicate edges in the graph. We refer to graphs stored in the compressed sparse column and compressed sparse row formats as CSC and CSR, respectively. We also consider compressed graphs that store the differences between consecutive neighbors using variable-length codes for each sorted adjacency list [86].

Parallel Cost Model. We use the work-depth model in this paper, and define the model formally when introducing the Parallel Semi-Asymmetric Model model, which extends it (Section 3).

Parallel Primitives. The following parallel procedures are used throughout the paper. Prefix Sum takes as input an array A of length n, an associative binary operator ⊓, and an identity element ⊥ such that ⊥ ⊓ x = x for any x, and returns the array (⊥, ⊥ ⊓ \ldots ⊓ A[t]) (call this subset of undirected edges E_u), and returns a vertexSubset U’ where u ∈ U’ if and only if (u, v) ∈ E_u and F(u, v) = true. F can side-effect data structures associated with the vertices.

3 Parallel Semi-Asymmetric Model

3.1 Model Definition

The Parallel Semi-Asymmetric Model (PSAM) consists of an asymmetric large-memory (NVRAM) with unbounded size, and a symmetric small-memory (DRAM) with O(n) words of memory. In a relaxed version of the model, we allow small-memory size of O(n + m/ log n) words of memory. The relaxed version is intended to model a system where the ratio of NVRAM to DRAM is close to the average degree of real-world graphs (see Figure 2 and Table 2).

The PSAM has a set of threads that share both the large-memory and small-memory. The underlying mechanisms for parallelism are identical to the T-RAM or binary forking model, which is discussed in detail in [13, 17, 37]. In the model, each thread acts like a sequential RAM that also has a fork instruction. When a thread performs a fork, two newly created child threads run starting at the next instruction, and the original thread is suspended until all the children terminate. A computation starts with a single root thread and finishes when that root thread finishes.

Algorithm Cost. We analyze algorithms on the PSAM using the work-depth measure [51]. The work-depth measure is a fundamental tool in analyzing parallel algorithms, e.g., see [14, 37, 44, 85, 90, 91, 100] for a sample of recent practical uses of this model. Like other multi-level models (e.g., the ANP model [10]), we assume...
writes to large-memory, all in the unit of a word. A write to the large-memory has a cost of $\omega > 1$, which is the cost of a write relative to a read on NVRAMs. The overall work W of an algorithm is the sum of the costs for all memory accesses by all threads. The depth D is the cost of the highest cost sequence of dependent instructions in the computation. A work-stealing scheduler can execute a computation in $W/p + O(D)$ time with high probability on p processors [10, 21]. Figure 3 illustrates the PSAM model.

3.2 Discussion

It is helpful to first clarify why we chose to keep the modeling parameters simple, focusing on NVRAM read-write asymmetry, when several other parameters are also available (as discussed below). Our goal was to design a theoretical model that helps guide algorithm design by capturing the most salient features of the new hardware.

Modeling Read and Write Costs. Although NVRAM reads are about 3x more costly than accesses to DRAM [94], we charge both unit cost in the PSAM. When this cost gap needs to be studied (especially for showing lower bounds), we can use an approach similar to the asymmetric RAM (ARAM) model [16], and define the I/O cost Q of an algorithm without charging for instructions or DRAM accesses. All algorithms in this paper have asymptotically as many instructions as NVRAM reads, and therefore have the same I/O cost Q as work W up to constant factors.

Writes to Large-memory. Although in the approach used in this paper we do not perform writes to the large-memory, the PSAM is designed to allow for analyzing alternate approaches that do perform writes to large-memory. Furthermore, permitting writes to the large-memory enables us to consider the cost of algorithms from previous work such as GBBS [37] and observe that many prior algorithms with W work in the standard work-depth model are $\Theta(\omega W)$ work in the PSAM. We emphasize that the objective of this work is to evaluate whether the restrictive approach used in our algorithms—i.e., completely avoiding writes to the large-memory, thereby gaining the benefits discussed in Section 1—is effective compared to existing approaches for programming NVRAM graph algorithms. We note that algorithms designed with a small number of large-memory writes could possibly be quite efficient in practice.

Applicability. In this paper, we provide evidence that the PSAM is broadly applicable for many (18) fundamental graph problems. We believe that many other problems will also fit in the PSAM. For example, counting and enumerating k-cliques, which were very recently studied in the in-memory setting [81], can be adapted to the PSAM using the filtering technique proposed in this paper. Other fundamental subgraph problems, such as subgraph matching [46, 92] and frequent subgraph mining [39, 99] could be solved in the PSAM using a similar approach, but mining many large subgraphs may require performing some writes to the NVRAM (as discussed below). Other problems, such as local search problems including CoSimiRank [76], personalized PageRank, and other local clustering problems [87], naturally fit in the regular PSAM model.

We note that certain problems seem to require performing writes in the PSAM. For example, in the k-truss problem, the output requires emitting the trussness value for each edge, and thus storing the output requires $\Theta(m)$ words of memory, which requires $\Theta(\omega m)$ cost due to writes. Generalizations of k-truss, such as the (r, s)-nuclei problem appear to have the same requirement for $r \geq 2$ [79].

3.3 Relationship to Other Models

Asymmetric Models. The model considered in this paper is related to the ARAM model [16] and the asymmetric nested-parallel (ANP) model [10]. Compared to these more general models, the PSAM is specially designed for graphs, with its small-memory being either $O(n)$ or $O(n + m/\log n)$ words for n vertices and m edges.

External and Semi-External Models. The External Memory model (also known as the I/O or disk-access model) [2] is a classic two-level memory model containing a bounded internal memory of size M and an unbounded external memory. I/Os to the external memory are done in blocks of size B. The Semi-External Memory model [1] is a relaxation of the External Memory model where there is a small-memory that can hold the vertices but not the edges.

There are three major differences between the PSAM and the External Memory and Semi-External Memory models. First, unlike the PSAM, neither the External Memory nor the Semi-External Memory model account for accessing the small-memory (DRAM), because the objective of these models is to focus on the cost of expensive I/Os to the external memory. We believe that for existing systems with NVRAMs, the cost of DRAM accesses is not negligible. Second, both the External Memory and Semi-External Memory have a parameter B to model data movement in large chunks. NVRAMs support random access, so for the ease of design and analysis we omit this parameter B. Third, the PSAM explicitly models the asymmetry of writing to the large memory, whereas the External Memory and Semi-External Memory models treat both reads and writes to the external memory indistinguishably (both cost B). The asymmetry of these devices is significant for current devices (writes to NVRAM are 4x slower than reads from NVRAM, and 12x slower than reads from DRAM [49, 94]), and could be even larger in future generations of energy-efficient NVRAMs. Explicitly modeling asymmetry is an important aspect of our approach in the PSAM.

Semi-Streaming Model. In the semi-streaming model [41, 70], there is a memory size of $O(n \cdot \text{polylog}(n))$ bits and algorithms can only read the graph in a sequential streaming order (with possibly multiple passes). In contrast, the PSAM allows random access to the input graph because NVRAMs intrinsically support random access. Furthermore the PSAM allows expensive writes to the large-memory, which is read-only in the semi-streaming model.

4 Sage: A Semi-Asymmetric Graph Engine

Our main approach in Sage is to develop PSAM techniques that perform no writes to the large-memory. Using these primitives lets us derive efficient parallel algorithms (i) whose cost is independent of ω, the asymmetry of the underlying NVRAM technology, (ii) that do not contribute to NVRAM wearout or wear-leveling overheads, and (iii) that do not require on-the-fly recompression for compressed graphs. The surprising result of our experimental study is that this strict discipline—to entirely avoid writes to the large-memory—achieves state-of-the-art results in practice. This discipline also enables storage optimizations (discussed in Section 5), and perhaps most importantly lends itself to designing provably-efficient parallel algorithms that interact with the graph through high-level primitives.

Semi-Asymmetric EDGEMAP. Our first contribution in Sage is a version of EDGEMAP (Section 2) that achieves improved efficiency in the PSAM. The issue with the implementation of EDGEMAP used in Ligra, and subsequent systems (Ligra++ and Julienne) based on Ligra is that although it is work-efficient, it may use significantly more than $O(n)$ space, violating the PSAM model. In this paper, we design an improved implementation of EDGEMAP which achieves superior performance in the PSAM model (described in Section 4.1). Our result is summarized by the following theorem:

Theorem 4.1. There is a PSAM algorithm for EDGEMAP given a vertexSet U that runs in $O\left(\sum_{u \in U} \deg(u)\right)$ work, $O(\log n + d_{avg})$ depth, and uses $O(n)$ words of memory in the worst case.
Semi-Asymmetric Graph Filtering. An important primitive used by many parallel graph algorithms performs batch-deletions of edges incident to vertices over the course of the algorithm. A batch-deletion operation is just a bulk remove operation that logically deletes these edges from the graph. These deletions are done to reduce the number of edges that must be examined in the future. For example, four of the algorithms studied in this paper—biconnectivity, approximate set cover, triangle counting, and maximal matching—utilize this primitive.

In prior work in the shared-memory setting, deleted edges are handled by actually removing them from the adjacency lists in the graph. In these algorithms, deleting edges is important for two reasons. First, it reduces the amount of work done when edges incident to the vertex are examined again, and second, removing the edges is important to bound the theoretical efficiency of the resulting implementations [36, 37]. In the PSAM, however, deleting edges is expensive because it requires writes to the large-memory.

In our Sage algorithms, instead of directly modifying the underlying graph, we build an auxiliary data structure, which we refer to as a graphFilter, that efficiently supports updating a graph with a sequence of deletions. The graphFilter data structure can be viewed as a bit-packed representation of the original graph that supports mutation. Importantly, this data structure fits into the small-memory of the relaxed version of the PSAM. We formally define our data structure and state our theoretical results in Section 4.2.

Efficient Semi-Asymmetric Graph Algorithms. We use our new semi-asymmetric techniques to design efficient semi-asymmetric graph algorithms for 18 fundamental graph problems. In all but a few cases, the bounds are obtained by applying our new semi-asymmetric techniques in conjunction with existing efficient DRAM-only graph algorithms from Dhulipala et al. [37]. We summarize the PSAM work and depth of the new algorithms designed in this paper in Table 1, and present the detailed results in Section 4.3.

4.1 Semi-Asymmetric Graph Traversal

Our first technique is a cache-friendly and memory-efficient sparse EDGEMap primitive designed for the PSAM. This technique is useful for obtaining PSAM algorithms for many of the problems studied in this paper. Graph traversals are a basic graph primitive, used throughout many graph algorithms [32, 84]. A graph traversal starts with a frontier (subset) of seed vertices. It then runs a number of iterations, where in each iteration, the edges incident to the current frontier are explored, and vertices in this neighborhood are added to the next frontier based on some user-defined conditions.

4.1.1 Existing Memory-Inefficient Graph Traversal

Ligra implements the direction-optimization proposed by Beamer [8], which runs either a sparse (push-based) or dense (pull-based) traversal, based on the number of edges incident to the current frontier. The sparse traversal processes the out-edges of the current frontier to generate the next frontier. The dense traversal processes the in-edges of all vertices, and checks whether they have a neighbor in the current frontier. Ligra uses a threshold to select a method, which by default is a constant fraction of m to ensure work-efficiency.

The dense method is memory-efficient— theoretically, it only requires $O(n)$ bits to store whether each output vertex is on the next frontier. However, the sparse method can be memory-inefficient because it allocates an array with size proportional to the number of edges incident to the current frontier, which can be up to $O(m)$. In the PSAM, an array of this size can only be allocated in the large-memory, so the traversal is inefficient. This is also true for the real graphs and machines that we tested in this paper.

The GBBS algorithms [37] use a blocked sparse traversal, referred to as EDGEMapBLOCKED, that improves the cache-efficiency of parallel graph traversals by only writing to as many cache lines as the size of the newly generated frontier. This technique is not memory-efficient, as it allocates an intermediate array with size proportional to the number of edges incident to the current frontier, which can be up to $O(m)$ in the worst-case.

4.1.2 Memory-Efficient Traversal: EDGEMapCHUNKED

In this paper, we present a chunk-based approach that improves the memory-efficiency of the sparse (push-based) EDGEMap. Our approach, which we refer to as EDGEMapCHUNKED, achieves the same cache performance as the EDGEMapBLOCKED implementation used in GBBS [37], but significantly improves the intermediate memory usage of the approach. We provide the full details of our algorithm and its pseudocode in the full version of this paper [38].

Our Algorithm. The high-level idea of our algorithm is as follows. It first divides the edges that are to-be traversed into groups of work. This is done based on the underlying graph size, g, of the graph, which is set to the average degree d_{avg}. The edges incident to each vertex are partitioned into groups based on g. The algorithm then performs a work-assignment phase, which statically load-balances the work over the incident edges to $O(P)$ virtual threads. Next, in parallel for each virtual thread, it processes the edges assigned to the thread. For each group, it uses a thread-local allocator to obtain a chunk that is ensured to have sufficient memory to store the output of mapping over the edges in the group. The chunks are stored
while improving the memory usage to $O(n)$ words. The main algorithm for BFS in Sage is represented by the class `BFSFunc` (Lines 3–20). The main algorithm, BFS, is templated over a graph type (Line 21). The BFS code first initializes the parent array P (Line 25), sets the parent of the source vertex to itself (Line 26), and initializes the first frontier to contain just the parent (Line 27). It then loops while the frontier is non-empty (Lines 28–31), and calls `edgeMapChunked` in each iteration of the while loop (Line 30).

The function supplied to `edgeMapChunked` is `BFSFunc` (Lines 3–20), which contains two implementations of update based on whether a sparse or dense traversal is applied (update and updateAtomic respectively), and the function `cond` indicating whether a neighbor should be visited. This logic is identical to the update function used in BFS in Ligra, and we refer the interested reader to Shun and Blelloch [84] for a detailed explanation.

Edge Map Across All Rounds. To bound this quantity, observe that each vertex, v, processes its out-edges at most once, in the round where it is contained in `Frontier` (if other vertices try to visit v in subsequent rounds notice that the `cond` function will return `false`). Let R be the set of all rounds run by the algorithm, $W_{\text{edgeMapChunked}}(r)$ be the work of `edgeMapChunked` on the r-th round, and U_r be the set of vertices in `Frontier` in the r-th round. Then, the total work is $\sum_{r \in R} W_{\text{edgeMapChunked}}(r) = \sum_{r \in R} \sum_{u \in U_r} \text{deg}(u) = \Theta(n \log n)$.

The depth to initialize the parents array is $O(\log n)$, and the depth of each of the r applications of `edgeMapChunked` is $O(\log n + d_{avg})$ by Theorem 4.1. Thus, the overall depth is $O(r(\log n + d_{avg})) = O(d_C(\log n + d_{avg}))$. The small-memory space used for the parent array is $O(n)$ words, and the maximum space used over all `edgeMapChunked` calls is $O(n)$ words by Theorem 4.1. This proves the following theorem:

Theorem 4.2. There is a PSAM algorithm for breadth-first search that runs in $O(n \log n)$ work, $O(d_C(\log n + d_{avg}))$ depth, and uses only $O(n)$ words of small-memory.

4.2 Semi-Asymmetric Graph Filtering

Sage provides a high-level filtering interface that captures both the current implementation of filtering in GBBS, as well as the new mutation-avoiding implementation described in this paper. The interface provides functions for creating a new graphfilter, filtering edges from a graph based on a user-defined predicate, and a function similar to `edgeMap` which filters edges incident to a subset of vertices based on a user-defined predicate. Since edges incident to a vertex can be deleted over the course of the algorithm by using a graphFilter, we call edges that are currently part of the graph represented by the graphFilter as **active** edges.

We first discuss a semantic issue that arises when filtering graphs. Suppose the user builds a filter G_f over a symmetric graph G. If the filtering predicate takes into account the directionality of the edge, then the resulting graph filter can become directed, which is unlikely to be what the user intends. Therefore, we designed the constructor to have the user explicitly specify this decision by indicating whether the user-defined predicate is symmetric or asymmetric, which results in either a symmetric or asymmetric graph filter.

The filtering interface is defined as follows:

- **MAKEFILTER** ($G : \text{Graph}$, $P : \text{edge \rightarrow bool, S : \text{bool}})$: graphFilter
 Creates a graphFilter G_f for the immutable graph G with respect to the user-defined predicate P, and S, which indicates whether the filter is symmetric or asymmetric.

- **FILTEREDGES** ($G_f : \text{graphFilter}$) : int
 Filters all active edges in G_f that do not satisfy the predicate P from G_f. The function mutates the supplied graphFilter, and returns the number of edges remaining in the graphFilter.

- **EDGEMAPPACK** ($G_f : \text{graphFilter}$, $S : \text{vertexSubset}$) : vertexSubset
 Filters edges incident to $v \in S$ that do not satisfy the predicate P from G_f. Returns a vertexSubset on the same vertex set as S, where each vertex is augmented with its new degree in G_f.

4.2.1 Graph Filter Data Structure

For simplicity, we describe the symmetric version of the graph filter data structure. The asymmetric filter follows naturally by using two copies of the data structure described below, one for the in-edges and one for the out-edges.

We first review how edges are represented in Sage. In the (uncompressed) CSR format, the neighbors of a vertex are stored contiguously in an array. If the graph is compressed using one of the
Parallel compression methods from Ligra+ [86], the incident edges are divided into a number of compression blocks, where each block is sequentially encoded using a difference-encoding scheme with variable-length codes. Each block must be sequentially decoded to retrieve the neighbor IDs within the block, but by choosing an appropriate block size, the edges incident to a high-degree vertex can be traversed in parallel across the blocks.

The graph filter’s design mirrors the CSR representation described above. The design of our structure is inspired by similar bit-packed structures, most notably the cuckoo-filter by Epstein et al. [40]. Figure 5 illustrates the graph filter for the following description.

Definition. The graph data is stored in the compressed sparse row (CSR) format on NVRAM, and is read-only. Each vertex’s incident edges are logically divided into blocks of size F_B, the filter block size, which is the provided block size rounded up to the next multiple of the number of bits in a machine word, inclusive (64 bits on modern architectures and $\log n$ bits in theory). In Figure 5, $F_B = 2$. For compressed graphs, this block size is always equal to the compression block size (and thus, both must be tuned together).

The filter consists of blocks corresponding to a subset of the logical blocks in the edges array, and is stored in DRAM. Each vertex stores a pointer to the start of its blocks, which are stored contiguously. For each block, the filter stores F_B many bits, where the bits correspond one-to-one to the edges in the block. Each block also stores two words of metadata: (i) the original block-ID in the adjacency list that the block corresponds to, and (ii) the offset, which stores the number of active edges before this block. The original block-IDs are necessary because over the course of the algorithm, only a subset of the original blocks used for a vertex may be currently present in the graph filter, and the data structure must remember the original position of each block. The offset is needed for graph primitives which copy all active edges incident to a vertex into an array with size proportional to the degree of the vertex.

The overall graph filter structure thus consists of blocks of bitsets per vertex. It stores the per-vertex blocks contiguously, and stores an offset to the start of each vertex’s blocks. It also stores each vertex’s current degree, as well as the number of blocks in the vertex structure. Finally, the structure stores an additional n bits of memory which are used to mark vertices as dirty.

4.2.2 Algorithms

MAKEFILTER. To create a graph filter, the algorithm first computes the number of blocks that each vertex requires, based on F_B, and writes the space required per vertex into an array. Next, it prefix sums the array, and allocates the required $O(n)$ bits of memory contiguously. It then initializes the per-vertex blocks in parallel, setting all edges as active (their corresponding bit is set to 1). Finally, it allocates an array of n per-vertex structures storing the degree, offset into the bitset structure corresponding to the start of the vertex’s blocks, and the number of blocks for that vertex. Lastly, it initializes per-vertex dirty bits to false (not dirty) in parallel.

The overall work to create the filter is $O(n)$ and the overall depth is $O(n + F_B)$, because a block is processed sequentially. If the user specifies that the initially supplied predicate returns false for some edges, the implementation calls FILTEREDGES (described below), which runs within the same work and depth bounds.

PACKVERTEX. Next, we describe an algorithm to pack out the edges incident to a vertex given a predicate P. This algorithm is an internal primitive in Sage and is not exposed to the user. The algorithm first maps over all blocks incident to the vertex in parallel.

For each block, it finds all active bits in the block, reads the edge corresponding to the active bit and applies the predicate P, unsetting the bit if the predicate returns false. If the bit for an edge (u, v) is unset, the algorithm marks the dirty bit for v to true if needed. The algorithm maintains a count of how many bits are still active while processing the block, and stores the per-block counts in an array of size equal to the number of blocks. Next, it performs a reduction over this array to compute the number of blocks with at least one active edge. If this value is less than a constant fraction of the current number of blocks incident to the vertex, the algorithm filters out all of these blocks with no active elements, and packs the remaining blocks contiguously in the same memory, using a parallel filter over the blocks. The algorithm then updates the offsets for all blocks using a prefix sum. Finally, the algorithm updates the vertex degree and number of currently active blocks incident to the vertex.

EDGE-MAP-PACK. The EDGE-MAP-PACK primitive is implemented by applying PACKVERTEX to each vertex in the vertexSubset in parallel. It then updates the number of active edges by performing a reduction over the new vertex degrees in the vertexSubset. The overall work is the sum of the work for packing out each vertex in the vertexSubset, S, which is $O(A \cdot (F_B / \log n) + d_{active}(v))$, and the depth is $O(\log n + F_B)$, where A is the number of non-empty blocks corresponding to v and $d_{active}(v)$ is the number of active edges incident to vertex v.

FILTEREDGES. The FILTEREDGES primitive uses the EDGE-MAP-PACK primitive to apply a vertexSubset containing all vertices. The work is $O(n + A \cdot (F_B / \log n) + |E_{active}|)$, and the depth is $O(\log n + F_B)$, where A is the number of non-empty blocks in the graph and E_{active} is the set of active edges represented by the graph filter.

4.2.3 Implementation

Optimizations. We use the widely available TZCNT and BLSR x86 intrinsics to accelerate block processing. Each block is logically divided into a number of machine words, so we consider processing a single machine word. If the word is non-zero, we create a temporary copy of the word, and loop while this copy is non-zero. In each iteration, we use TZCNT to find the index of the next lowest bit, and clear the lowest bit using BLSR. Doing so allows us to process a block with q words and k non-zero bits in $O(q + k)$ instructions.

We also implemented intersection primitives, which are used in our triangle counting algorithm based on the decoding implementation described above. For compressed graphs, since we may have to decode an entire compressed block to fetch a single active edge, we immediately decompress the entire block and store it locally in the iterator’s memory. We then process the graph filter’s bits word-by-word using the intrinsic-based algorithm described above.

Memory Usage. The overall memory requirement of a graphFilter is $3n$ words to store the degrees, offsets, and number of blocks, plus $O(n)$ bits to store the bitset data and the metadata. The metadata increases the memory usage by a constant factor, since F_B is at least the size of a machine word, and so the metadata stored per block can be amortized against the bits stored in the block. The overall memory usage is therefore $O(n + m / \log n)$ words of memory.
For our uncompressed inputs, the size of the graph filter is 4.6–8.1x smaller than the size of the uncompressed graph. For our compressed inputs, the size of the filter is 2.7–2.9x smaller than the size of the compressed graph.

4.3 Semi-Asymmetric Graph Algorithms

We now describe Sage’s efficient parallel graph algorithms in the PSAM model. Our results and theoretical bounds are summarized in Table 1. The bounds are obtained by combining efficient in-memory algorithms in our prior work [37] with the new semi-asymmetric techniques designed in Sections 4.1 and 4.2. Due to space constraints, we provide details about how our theoretical results are obtained based on the proofs from Dhulipala et al. [37].

4.3.1 Shortest Path Problems

Algorithms. We consider six shortest-path problems in this paper: breadth-first search (BFS), integral-weight SSSP (wBFS), general-weight SSSP (Bellman-Ford), single-source betweenness centrality, single-source widest path, and $O(k)$-spanner. Our BFS, Bellman-Ford, and betweenness centrality implementations are based on those in Ligra [84], and our wBFS implementation is based on the one in Julienné [36]. We provide two implementations of the single-source widest path algorithm, one based on Bellman-Ford, and another based on the wBFS implementation from Julienné [36]. An $O(k)$-spanner is a subgraph that preserves shortest-path distances within a factor of $O(k)$. Our $O(k)$-spanner implementation is based on an algorithm by Miller et al. [68].

Efficiency in the PSAM. Our theoretical bounds for these problems in the PSAM are obtained by using the edgeMapChunked primitive (Section 4.1) for performing sparse graph traversals, because all of these algorithms can be expressed as iteratively performing edgeMapChunked over subsets of vertices. The proofs are similar to the proof we provide for BFS in Section 4.1.3 and rely on Theorem 4.1. Note that the bucketing data structure used in Julienne [36] requires only $O(\log n)$ words of space to bucket vertices, and thus automatically fits in the PSAM model. The Miller et al. construction builds an $O(k)$-spanner with size $O(n^{1+1/k})$, and runs in $O(m_n)$ expected work and $O(k \log n)$ depth whp. Our implementation in Sage runs our low-diameter decomposition algorithm, which is efficient in the PSAM as we describe below. We set k to be $\Theta(\log n)$, which results in a spanner with size $O(n)$.

4.3.2 Connectivity Problems

Algorithms. We consider four connectivity problems in this paper: low-diameter decomposition (LDD), connectivity, spanning forest, and biconnectivity. Our implementations are extensions of the implementations provided in GBBS [37], and due to space constraints we refer the reader to that paper for detailed descriptions of the problems and of our provably-efficient in-memory algorithms.

Efficiency in the PSAM. First, we replace the calls to edgeMapBlock in each algorithm with calls to edgeMapChunked, which ensures that the graph traversal step uses $O(n)$ words of small-memory using Theorem 4.1. This modification results in PSAM algorithms for LDD. For the other connectivity-like algorithms that use LDD, namely connectivity, spanning forest, biconnectivity, we use the improved analysis of LDD provided in [68] to argue that the number of inter-cluster edges after applying LDD with $\beta = O(1)$ is $O(n)$ in expectation. Thus, the graph on the inter-cluster edges can be built in small-memory. We provide the full details in [38]. We also obtain the same space bounds in the worst case for our connectivity, spanning forest, biconnectivity, and $O(k)$-spanner algorithms without affecting the work and depth of the algorithms (see [38] for details). Lastly, we note that although this results in only $O(n)$ words of small-memory theoretically, in practice our implementation of biconnectivity instead uses the graph filtering structure to optimize a call to connectivity that runs on the input graph, with a large subset of the edges removed.

4.3.3 Covering Problems

Algorithms. We consider four covering problems in this paper: maximal independent set (MIS), maximal matching, graph coloring, and approximate set cover. All of our implementations are extensions of our previous work in GBBS [37].

Efficiency in the PSAM. For MIS and graph coloring, we derive PSAM algorithms by applying our edgeMapChunked optimization because other than graph traversals, both algorithms already use $O(n)$ words of small-memory. Both maximal matching and approximate set cover use our graph filtering technique to achieve immutability and reduced memory usage without affecting the theoretical bounds of the algorithms. We provide more details about our maximal matching algorithm in the full version of this paper [38]. For set cover, our new bounds for filtering match the bounds on filtering used in the GBBS code which mutates the underlying graph, and so our implementation also computes a $(1+\epsilon)$-approximate set cover in $O(m)\epsilon$ expected work and $O(\log^2 n)$ depth whp.

4.3.4 Substructure Problems

Algorithms. We consider three substructure-based problems in this paper: k-core, approximate densest subgraph and triangle counting. Substructure problems are fundamental building blocks for community detection and network analysis (e.g., [23, 48, 57, 78, 79, 98]). Our k-core and triangle-counting implementations are based on the implementation from GBBS [37].

Efficiency in the PSAM. For the k-core algorithm to use $O(n)$ words of small-memory, it should use the fetch-and-add based implementation of k-core, which performs atomic accumulation in an array in order to update the degrees. However, the fetch-and-add based implementation performs poorly in practice, where it incurs high contention to update the degrees of vertices incident to many removed vertices [37]. Therefore, in practice we use a histogram-based implementation, which always runs faster than the fetch-and-add based implementation (the histogram primitive is fully described in [37]). In this paper, we implemented a dense version of the histogram routine, which performs reads for all vertices in the case where the number of neighbors of the current frontier is higher than a threshold t. The work of the dense version is $O(m)$. Using $t = m/e$ for some constant c ensures work-efficiency, and results in low memory usage for sparse calls in practice. Our approximate densest subgraph algorithm is similar to our k-core algorithm, and uses a histogram to accelerate processing the removal of vertices. The code uses the dense histogram optimization described above. Our triangle counting implementation uses the graph filter structure to orient edges in the graph from lower degree to higher degree.

4.3.5 Eigenvector Problems

Algorithms. We consider the PageRank algorithm, designed to rank the importance of vertices in a graph [24]. Our PageRank implementation is based on the implementation from Ligra.

Efficiency in the PSAM. We optimized the Ligra implementation to improve the depth of the algorithm. The implementation from Ligra runs dense iterations, where the aggregation step for each vertex (reading its neighbor’s PageRank contributions) is done sequentially. In Sage, we implemented a reduction-based method that reduces over these neighbors using a parallel reduce. Therefore, each iteration of our implementation requires $O(m)$ work and $O(\log n)$ depth. The overall work is $O(P_{tr} \cdot m)$ and depth is $O(P_{tr} \log n)$, where P_{tr} is the number of iterations required to run PageRank to convergence with a convergence threshold of $\epsilon = 10^{-6}$.

1605
5 Experiments

Overview of Results. After describing the experimental setup (Section 5.1), we show the following main experimental results:

- **Section 5.2**: Our NUMA-optimized graph storage approach outperforms naive (and natural) approaches by 6.2x.
- **Section 5.3**: Sage achieves between 31–51x speedup for shortest path problems, 28–53x speedup for connectivity problems, 16–49x speedup for covering problems, 9–63x speedup for substructure problems and 42–56x speedup for eigenvector problems.
- **Section 5.4**: Compared to existing state-of-the-art DRAM-only graph analytics, Sage runs on NVRAM is 1.17x faster on average on our largest graph that fits in DRAM. Sage run on NVRAM is only 5% slower on average than when run entirely in DRAM.
- **Section 5.5**: We study how Sage compares to other NVRAM approaches for graphs that are larger than DRAM. We find that Sage on NVRAM using App-Direct Mode is 1.94x faster on average than the recent state-of-the-art Galois codes [42] run using Memory Mode. Compared to GBBS codes run using Memory Mode, Sage is 1.87x faster on average across all 18 problems.
- **Section 5.6**: We compare Sage with existing state-of-the-art semi-external memory graph processing systems, including FlashGraph, Mosaic, and GridGraph and find that our times are 9.3x, 12x, and 8024x faster on average, respectively.

5.1 Experimental Setup

5.1.1 Machine Configuration

We run our experiments on a 48-core, 2-socket machine (with two-way hyper-threading) with 2 × 2.2Ghz Intel 24-core Cascade Lake processors (with 33MB L3 cache) and 375GB of DRAM. The machine has 3.024TB of NVRAM spread across 12 252GB DIMMs (6 per socket). All of our speedup numbers report running times on a single thread (T1) divided by running times on 48-cores with hyper-threading (T96). Our programs are compiled with the g++ compiler (version 7.3.0) with the −O3 flag. We use the command numa_t1 −i all for our parallel experiments. Our programs use a work-stealing scheduler that we implemented, implemented similarly to Cilk [20].

5.1.2 NVRAM Configuration

NVRAM Modes. The NVRAM we use (Optane DC Persistent Memory) can be configured in two distinct modes. In **Memory Mode**, the DRAM acts like a direct-mapped cache between L3 and the NVRAM for each socket. Memory Mode transparently provides access to higher memory capacity without software modification. In this mode, the read-write asymmetry of NVRAM is obscured by the DRAM cache, and causes the DRAM hit rate to dominate memory performance. In **App-Direct Mode**, NVRAM acts as byte-addressable storage independent of DRAM, providing developers with direct access to the NVRAM.

Sage Configuration. In Sage, we configure the NVRAM to use App-Direct Mode. The devices are configured using the fsdax mode, which removes the page cache from the IO path for the device and allows mmap to directly map to the underlying memory.

Graph Storage. The approach we use in Sage is to store two separate copies of the graph, one copy on the local NVRAM of each socket. Threads can determine which socket they are running on by reading a thread-local variable, and access the socket-local copy of the graph. We discuss the approach in detail in Section 5.2.

5.1.3 Graph Data

To show how our algorithms perform on graphs at different scales, we selected a representative set of real-world graphs of varying sizes. These graphs are Web graphs and social networks, which are low-diameter graphs that are frequently used in practice. We list the graphs used in our experiments in Table 2, which we symmetrized to obtain larger graphs and so that all of the algorithms would work on them. Hyperlink 2012 is the largest publicly-available real-world graph. We create weighted graphs for evaluating weighted BFS, Bellman-Ford, and Widest Path by selecting edge weights in the range [1, \log n] uniformly at random. We process the ClueWeb, Hyperlink2014, and Hyperlink2012 graphs in the parallel byte-encoded compression format from Ligra+ [86], and process LiveJournal, com-Orkut, and Twitter in the uncompressed (CSR) format.

5.2 Graph Layout in NVRAM

While building Sage, we observed startlingly poor performance of cross-socket reads to graph data stored on NVRAM. We designed a simple micro-benchmark that illustrates this behavior. The benchmark runs over all vertices in parallel. For the \(i\)-th vertex, it counts the number of neighbors incident to it by reducing over all of its incident edges. It then writes this value to an array location corresponding to the \(i\)-th vertex. The graph is stored in CSR format, and so the benchmark reads each vertex offset exactly once, and reads the edges incident to each vertex exactly once. Therefore the total number of reads from the NVRAM is proportional to \(n + m\), and the number of (in-memory) writes is proportional to \(n\).

For the ClueWeb graph, we observed that running the benchmark with the graph on one socket using all 48 hyper-threads on the same socket results in a running time of 7.1 seconds. However, using numa_t1 −i all, and running the benchmark on all threads across both sockets results in a running time of 26.7 seconds, which is 3.7x worse, despite using twice as many hyper-threads. While we are uncertain as to the underlying reason for this slowdown, one possible reason could be the granularity size for the current generation of NVRAM DIMMs, which have a larger effective cache line size of 256 bytes [49], and a relatively small cache within the physical NVM device. Using too many threads could cause thrashing, which is a possible explanation of the slowdowns we observed when scaling up reads to a single NVRAM device by increasing the number of threads. To the best of our knowledge, this significant slowdown has not been observed before, and understanding how to mitigate it is an interesting question for future work.

As described earlier, our approach in Sage is to store two separate copies of the graph, one on the local NVRAM of each socket. Using this configuration, our micro-benchmark runs in 4.3 seconds using all 96 hyper-threads, which is 1.6x faster than the single-socket experiment and 6.2x faster than using threads across both sockets to the graph stored locally within a single socket.

5.3 Scalability

Figure 6 shows the speedup obtained on our machine for Sage implementations on our large graphs, annotating each bar with the parallel running time. In all of these experiments, we store all of the graph data in NVRAM and use DRAM for all temporary data.

Shortest Path Problems. Our BFS, weighted BFS, Bellman-Ford, and betweenness centrality implementations achieve between parallel speedups of 31–51x across all inputs. For \(O(k)\)-Spanner, we achieve 39–51x speedups across all inputs. All Sage codes use the memory-efficient sparse traversal (i.e., edgemapchunked) designed in this paper. We note that the new weighted-SSSP implementations using edgemapchunked are up to 2x more
memory-efficient than the implementations from [37]. We ran our \(O(k)\)-Spanner implementation with \(k\) set to \(\lceil \log_2 n \rceil\) by default.

Connectivity Problems. Our low-degree decomposition implementation achieves a speedup of 28–42x across all inputs. Our connectivity and spanning forest implementations, which use the new filtering structure from Section 4.2, achieve speedups of 37–53x across all inputs. Our biconnectivity implementation achieves a speedup of 38–46x across all inputs. We found that setting \(\beta = 0.2\) in the LDD-based algorithms (connectivity, spanning forest, and biconnectivity) performs best in practice, and creates significantly fewer than \(m\beta = m/5\) inter-cluster edges predicted by the theoretical bound [69], due to many duplicate edges that get removed.

Covering Problems. Our MIS, maximal matching, and graph coloring implementations achieve speedups of 43–49x, 33–44x, and 16–39x, respectively. Our MIS implementation is similar to the implementation from GBBS. Our maximal matching implementation implements several new optimizations over the implementation from GBBS, such as using a parallel hash table to aggregate edges that will be processed in a given round. These optimizations result in our code (using the graph filter) running faster than the original code when run in DRAM-only, outperforming the 72-core DRAM-only times reported in [37] for some graphs (we discuss the speedup of Sage over GBBS in Section 5.4).

Substructure Problems. Our \(k\)-core, approximate densest subgraph, and triangle counting implementations achieve speedups of 9–38x, 43–48x, and 29–63x, respectively. Our code achieves similar speedups and running times on NVRAM compared to the previous times reported in [37]. We ran the approximate densest subgraph implementation with \(\epsilon = 0.001\), which produces subgraphs of similar density to the 2-approximation of Charikar [27]. Lastly, the Sage triangle counting algorithm uses the iterator defined over graph filters to perform parallel intersection. The performance of our implementation is affected by the number of edges that must be decoded for compressed graph inputs, and we discuss this in detail in the full version of this paper [38].

Eigenvector Problems. Our PageRank implementation achieves a parallel speedup of 42–56x. Our implementation is based on the PageRank implementation from Ligra, and improves the parallel scalability of the Ligra-based code by aggregating the neighbor’s contributions for a given vertex in parallel. We ran our PageRank implementation with \(\epsilon = 10^{-6}\) and a damping factor of 0.85.

5.4 NVRAM vs. DRAM Performance

In this section, we study how fast Sage is compared to state-of-the-art shared-memory graph processing codes, when these codes are run entirely in DRAM. For these experiments, we study the ClueWeb graph since it is the largest graph among our inputs where both the graph and all intermediate algorithm-specific data fully resides in the DRAM of our machine. We consider the following configurations:

1. GBBS codes run entirely in DRAM
2. GBBS codes converted to use NVRAM using libvmmalloc (a robust NVRAM memory allocator)
3. Sage codes run entirely in DRAM
4. Sage codes run using NVRAM in App-Direct Mode

Setting (2) is relevant since it captures the performance of a naive approach to obtaining NVRAM-friendly code, which is to simply run existing shared-memory code using a NVRAM memory allocator.

Figure 7 displays the results of these experiments. Comparing Sage to GBBS when both systems are run in memory shows that our code is faster than the original GBBS implementations by 1.17x on average (between 2.38x faster to 1.73x slower). The notable exception is for triangle counting, where Sage is 1.73x slower than the GBBS code (both run in memory). The reason for this difference is due to the input-ordering the graph is provided in, and is explained in detail in the full version of this paper [38]. A number of Sage implementations, like connectivity and approximate densest subgraph, are faster than the GBBS implementations due to optimizations in our codes that are absent in GBBS, such as a faster implementation of graph contraction. Our read-only codes when run using NVRAM are only about 5% slower on average than when run using DRAM-only. This difference in performance is likely due to the higher cost of NVRAM reads compared to DRAM reads. Finally, Sage is always faster than GBBS when run on NVRAM using libvmmalloc, and is 6.69x faster on average.

These results show that for a wide range of parallel graph algorithms, Sage significantly outperforms a naive approach that converts DRAM codes to NVRAM ones, is often faster than the fastest DRAM-only codes when run in DRAM, and is competitive with the fastest DRAM-only running times when run in NVRAM.

5.5 Alternate NVRAM approaches

We now compare Sage to the fastest available NVRAM approaches when the input graph is larger than the DRAM size of the machine. We focus on the Hyperlink2012 graph, which is our only graph where both the graph and intermediate algorithm data are larger than DRAM. We first compare Sage to the Galois-based implementations by Gill et al. [42], which use NVRAM configured in Memory Mode. We then compare Sage to the unmodified shared-memory codes from GBBS modified to use NVRAM configured in Memory Mode.
Comparison with Galois [42]. Gill et al. [42] study the performance of several state-of-the-art graph processing systems, including Galois [71], GBBS [37], GraphIt [105], and GAP [9] when run on NVRAM configured to use Memory Mode. Their experiments are run on a nearly identical machine to ours, with the same amount of DRAM. However, their machine has 6.144TB of NVRAM (12 NVRAM DIMMs with 512GB of capacity each).

Gill et al. [42] find that their Galois-based codes outperform GAP, GraphIt, and GBBS by between 3.8x, 1.9x, and 1.6x on average, respectively, for three large graphs inputs, including the Hyperlink2012 graph. In our experiments running GBBS on NVRAM using MemoryMode, we find that the GBBS performance using MemoryMode is 1.3x slower on average than Galois. There are several possible reasons for the small difference. First, Gill et al. [42] use the directed version of the Hyperlink2012 graph, which has 1.75x fewer edges than the symmetrized version (225.8B vs. 128.7B edges). The symmetrized graph exhibits a massive connected component containing 94% of the vertices, which a graph search algorithm must process for most source vertices. However, a search from the largest SCC in the directed graph reaches about half the vertices [66]. Second, they do not enable compression in GBBS, which is important for reducing cache-misses and NVRAM reads. Lastly, we found that transparent huge pages (THP) significantly improves performance, while they did not, which may be due to differences regarding THP configuration on the different machines.

Figure 1 shows results for their Galois-based system on the directed Hyperlink2012 graph. Compared with their NVRAM codes, Sage is 1.04–3.08x faster than their fastest reported times, and 1.94x faster on average. Their codes use the maximum degree vertex in the directed graph as the source for BFS, SSSP, and betweenness centrality. We use the maximum degree vertex in the symmetric graph, and note that running on the symmetric graph is more challenging, since our codes must process more edges.

Despite the fact that our algorithm must perform more work, our running times for BFS are 3.08x faster than the time reported for Galois, and our SSSP time is 1.43x faster. For connectivity and PageRank, our times are 2.09x faster and 2.12x faster respectively. For betweenness, our times are 1.04x faster. The authors also report running times for an implementation of k-core that computes a single k-core, for a given value of k. This requires significantly fewer rounds than the k-core computation studied in this paper, which computes the coreness number of every vertex, or the largest k such that the vertex participates in the k-core. They report that their code requires 49.2 seconds to find the 100-core of the Hyperlink2012 graph. Our code finds all k-cores of this graph in 259 seconds, which requires running 130,728 iterations of the peeling algorithm and also discovers the value of the largest k-core supported by the graph (k_{max} = 10565).

In summary, we find that using Sage on NVRAM using App-Direct Mode is 1.94x faster on average than the Galois codes running Memory Mode.

Algorithms using Memory Mode. Next, we compare Sage to the unmodified shared-memory codes from GBBS modified to use NVRAM configured in Memory Mode. We run these Memory Mode experiments on the same machine with 3TB of NVRAM, which 1.5TB is configured to be used in Memory Mode.

Figure 1 reports the parallel running times of both Sage codes using NVRAM, and the GBBS codes using NVRAM configured in Memory Mode for the Hyperlink2012 graph. The results show that in all but one case (triangle counting) our running times are faster (between 1.15–2.92x). For triangle counting, the directed version of the Hyperlink2012 graph fits in about 180GB of memory, which fits within the DRAM of our machine and will therefore reside in memory. We note that we also ran Memory Mode experiments on the ClueWeb graph, which fits in memory. The running times were only 5–10% slower compared to the DRAM-only running times for the same GBBS codes reported in Figure 7, indicating a small overhead due to Memory Mode when the data fits in memory.

In summary, our results for this experiment show that the techniques developed in this paper produce meaningful improvements (1.87x speedup on average, across all 18 problems) over simply running unmodified shared-memory graph algorithms using Memory Mode to handle graph sizes that are larger than DRAM.

5.6 External and Semi-External Systems

In this section we place Sage’s performance in context by comparing it to existing state-of-the-art semi-external memory graph processing systems. Table 3 shows the running times and system configurations for state-of-the-art results on semi-external memory graph processing systems. We report the published results presented by the authors of these systems to give a high-level comparison due to the fact that (i) our machine does not have parallel SSD devices...
that most of these systems require, and (ii) modifying them to use NVRAM would be a serious research undertaking in its own right.

FlashGraph. FlashGraph [34] is a semi-external memory graph engine that stores vertex data in memory and stores the edge lists in an array of SSDs. Their system is optimized for I/Os at a flash page granularity (4KB), and merges I/O requests to maximize throughput. FlashGraph provides a vertex-centric API, and thus cannot implement some of the work-optimal algorithms designed in Sage, like our connectivity, biconnectivity, or parallel set cover algorithms.

We report running times for FlashGraph for Hyperlink2012 on a 32-core 2-way hyper-threaded machine with 512GB of memory and 15 SSDs in Table 3. Compared to FlashGraph, the Sage times are 9.3x faster on average. Our BFS and BC times are 18.2x and 11x faster, and our connectivity, PageRank and triangle counting implementations are 12.7x, 2.4x faster, and 2.2x faster, respectively. We note that our times are on the symmetric version of the Hyperlink2012 graph which has twice the edges, where a BFS from a random seed hits the massive component containing 95% of the vertices (BFSes on the directed graph reach about 30% of the vertices).

Mosaic. Mosaic [61] is a hybrid engine supporting semi-external memory processing based on a Hilbert-ordered data structure. Mosaic uses co-processors (Xeon Phis) to offload edge-centric processing, allowing host processors to perform vertex-centric operations. Giving a full description of their complex execution strategy is not possible in this space, but at a high level, it is based on exploiting the fact that user-programs are written in a vertex-centric model.

We report the running times for Mosaic run using 1000 hyper-threads, 768GB of RAM, and 6 NVMe devices in Table 3. Compared with their times, Sage is 12x faster on average, solving BFS 1.2x faster, connectivity 44.8x faster, SSSP 3.8x slower, and 1-iteration of PageRank 2.4x faster. Given that both SSSP and PageRank are implemented using an SpMV like algorithm in their system, we are not sure why their PageRank times are 2.5x slower than the total time of an SSSP computation. In our experiments, the most costly iteration of Bellman-Ford takes roughly the same amount of time as a single PageRank iteration since both algorithms require similar memory accesses in this step. Sage solves a much broader range of problems compared to Mosaic, and is often faster than it.

GridGraph. GridGraph is an out-of-core graph engine based on a 2-dimensional grid representation of graphs. Their processing scheme ensures that only a subset of the vertex-values accessed and written to are in memory at a given time. GridGraph also offers a mechanism similar to edge filtering which prevents streaming edges from disk if they are inactive. Unlike FlashGraph, GridGraph is a vertex-centric system and thus cannot implement algorithms that do not fit in this restricted computational model.

The authors consider significantly smaller graphs than those used in our experiments (the largest is a 6.64B edge WebGraph). However, they do solve the LiveJournal and Twitter graphs that we use. For the Twitter graph, our BFS and Connectivity times are 15690x and 359x faster respectively than theirs (our speedups for LiveJournal are similar). GridGraph does not use direction optimization, which is likely why their BFS times are much slower.

6 Related Work

A significant amount of research has focused on reducing expensive writes to NVRAMs. Early work has designed algorithms for database operators [29, 95, 96]. Blelloch et al. [10, 15, 16] define computational models to capture the asymmetric read-write cost on NVRAMs, and many algorithms and lower bounds have been obtained based on the models [11, 18, 19, 45, 50]. Other models and systems to reduce writes or memory footprint on NVRAMs have also been described [5, 6, 25, 26, 28, 54, 60, 72, 73, 80, 93].

Persistence is a key property of NVRAMs due to their non-volatility. Many new persistent data structures have been designed for NVRAMs [7, 12, 30, 31, 74, 83]. There has been recent research on automatic recovery schemes and transactional memory for NVRAMs [3, 33, 55, 97, 104, 108]. There are several recent papers benchmarking performance on NVRAMs [49, 58, 94].

Parallel graph processing frameworks have received significant attention due to the need to quickly analyze large graphs [77]. The only previous graph processing work targeting NVRAMs is the concurrent work by Gill et al. [42], which we discuss in Section 5.5. Dhillipala et al. [36, 37] design the Graph Based Benchmark Suite, and show that the largest publicly-available graph, the Hyperlink2012 graph, can be efficiently processed on a single multicore machine. We compare with these algorithms in Section 5. Other multicore frameworks include Galois [71], Ligra [84, 86], Polymer [103], Gemini [109], GraphGrind [88], Green-Marl [47], Grazelle [43], and GraphIt [105]. We refer the reader to [4, 6, 28, 101] for excellent surveys of this growing literature.

7 Conclusion

We have introduced Sage, which takes a semi-asymmetric approach to designing parallel graph algorithms that avoid writing to the NVRAM and uses DRAM proportional to the number of vertices. We have designed a new model, the Parallel Semi-Asymmetric Model, and have shown that all of our algorithms in Sage are provably efficient, and often work-optimal in the model. Our empirical study shows that Sage graph algorithms can bridge the performance gap between NVRAM and DRAM. This enables NVRAMs, which are more cost-efficient and support larger capacities than traditional DRAM, to be used for large-scale graph processing. Interesting directions for future work include studying which filtering algorithms can be made to use only \(O(n)\) words of DRAM, and to study how Sage performs relative to existing NVRAM graph-processing approaches on synthetic graphs with trillions of edges.

Acknowledgements

This research was supported by DOE Early Career Award DE-SC0018947, NSF CAREER Award CCF-1845763, NSF grants CCF-1725663, CCF-1910030 and CCF-1919223, Google Faculty Research Award, DARPA SDH Award HR0011-18-3-0007, and the Applications Driving Algorithms (ADA) Center, a JUMP Center co-sponsored by SRC and DARPA.

Table 3: System configurations (memory in terabytes and threads (hyper-threads)) and running times (seconds) of existing semi-external memory results on the Hyperlink graphs. The last section shows our running times (note that our system is also equipped with NVRAM DIMMs). *These problems are run on directed versions of the graph.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Problem</th>
<th>Graph</th>
<th>Mem</th>
<th>Threads</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 2012</td>
<td>0.512</td>
<td>64</td>
<td>7818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PageRank* 2012</td>
<td>.512</td>
<td>64</td>
<td>2041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity* 2012</td>
<td>.512</td>
<td>64</td>
<td>461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS* 2012</td>
<td>.512</td>
<td>64</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSP* 2012</td>
<td>.768</td>
<td>1000</td>
<td>8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosaic [61]</td>
<td>Connectivity* 2014</td>
<td>.768</td>
<td>1000</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>PageRank* 2014</td>
<td>.768</td>
<td>1000</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC* 2014</td>
<td>.768</td>
<td>1000</td>
<td>8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sage</td>
<td>BFS 2014</td>
<td>.375</td>
<td>96</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>Connectivity 2014</td>
<td>.375</td>
<td>96</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSP 2014</td>
<td>.375</td>
<td>96</td>
<td>15.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PageRank 2014</td>
<td>.375</td>
<td>96</td>
<td>8.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC 2014</td>
<td>.375</td>
<td>96</td>
<td>11.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity 2012</td>
<td>.375</td>
<td>96</td>
<td>53.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSP 2012</td>
<td>.375</td>
<td>96</td>
<td>36.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PageRank 2012</td>
<td>.375</td>
<td>96</td>
<td>82.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC 2012</td>
<td>.375</td>
<td>96</td>
<td>3529</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 References

[37] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph algorithms can be fast and scalable.

D. Zheng, D. Mhembere, V. Lyzinski, J. T. Vogelstein, C. E. Priebie, and R. Burns. Semi-external memory sparse matrix...
