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Abstract
The memory system is a fundamental performance and energy bottleneck in al-

most all computing systems. Recent system design, application, and technology
trends that require more capacity, bandwidth, efficiency, and predictability out of
the memory system make it an even more important system bottleneck. At the same
time, DRAM technology is experiencing difficult technology scaling challenges that
make the maintenance and enhancement of its capacity, energy-efficiency, and reli-
ability significantly more costly with conventional techniques.

In this chapter, after describing the demands and challenges faced by the mem-
ory system, we examine some promising research and design directions to over-
come challenges posed by memory scaling. Specifically, we describe three major
solution directions: 1) enabling new DRAM architectures, functions, interfaces, and
better integration of the DRAM and the rest of the system (an approach we call
system-DRAM co-design), 2) designing a memory system that employs emerging
non-volatile memory technologies and takes advantage of multiple different tech-
nologies (i.e., hybrid memory systems), 3) providing predictable performance and
QoS to applications sharing the memory system (i.e., QoS-aware memory systems).
We also briefly describe our ongoing related work in combating scaling challenges
of NAND flash memory.

6.1 Introduction

Main memory is a critical component of all computing systems, employed in server,
embedded, desktop, mobile and sensor environments. Memory capacity, energy,
cost, performance, and management algorithms must scale as we scale the size of
the computing system in order to maintain performance growth and enable new ap-
plications. Unfortunately, such scaling has become difficult because recent trends in
systems, applications, and technology greatly exacerbate the memory system bot-
tleneck.
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6.2 Trends: Systems, Applications, Technology

In particular, on the systems/architecture front, energy and power consumption have
become key design limiters as the memory system continues to be responsible for
a significant fraction of overall system energy/power [69]. More and increasingly
heterogeneous processing cores and agents/clients are sharing the memory sys-
tem [6, 21, 107, 45, 46, 36, 23], leading to increasing demand for memory capacity
and bandwidth along with a relatively new demand for predictable performance and
quality of service (QoS) from the memory system [81, 87, 106].

On the applications front, important applications are usually very data intensive
and are becoming increasingly so [8], requiring both real-time and offline manipu-
lation of great amounts of data. For example, next-generation genome sequencing
technologies produce massive amounts of sequence data that overwhelms mem-
ory storage and bandwidth requirements of today’s high-end desktop and laptop
systems [109, 4, 115] yet researchers have the goal of enabling low-cost personal-
ized medicine. Creation of new killer applications and usage models for computers
likely depends on how well the memory system can support the efficient storage and
manipulation of data in such data-intensive applications. In addition, there is an in-
creasing trend towards consolidation of applications on a chip to improve efficiency,
which leads to the sharing of the memory system across many heterogeneous appli-
cations with diverse performance requirements, exacerbating the aforementioned
need for predictable performance guarantees from the memory system [106, 108].

On the technology front, two major trends profoundly affect memory systems.
First, there is increasing difficulty scaling the well-established charge-based mem-
ory technologies, such as DRAM [77, 53, 40, 5, 62, 1] and flash memory [59, 76,
10, 11, 14], to smaller technology nodes. Such scaling has enabled memory sys-
tems with reasonable capacity and efficiency; lack of it will make it difficult to
achieve high capacity and efficiency at low cost. Second, some emerging resistive
memory technologies, such as phase change memory (PCM) [100, 113, 62, 63, 98],
spin-transfer torque magnetic memory (STT-MRAM) [19, 60] or resistive RAM
(RRAM) [114] appear more scalable, have latency and bandwidth characteristics
much closer to DRAM than flash memory and hard disks, and are non-volatile with
little idle power consumption. Such emerging technologies can enable new oppor-
tunities in system design, including, for example, the unification of memory and
storage subsystems [80]. They have the potential to be employed as part of main
memory, alongside or in place of less scalable and leaky DRAM, but they also have
various shortcomings depending on the technology (e.g., some have cell endurance
problems, some have very high write latency/power, some have low density) that
need to be overcome or tolerated.
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6.3 Requirements: Traditional and New

System architects and users have always wanted more from the memory system:
high performance (ideally, zero latency and infinite bandwidth), infinite capacity, all
at zero cost! The aforementioned trends do not only exacerbate and morph the above
requirements, but also add some new requirements. We classify the requirements
from the memory system into two categories: exacerbated traditional requirements
and (relatively) new requirements.

The traditional requirements of performance, capacity, and cost are greatly ex-
acerbated today due to increased pressure on the memory system, consolidation of
multiple applications/agents sharing the memory system, and difficulties in DRAM
technology and density scaling. In terms of performance, two aspects have changed.
First, today’s systems and applications not only require low latency and high band-
width (as traditional memory systems have been optimized for), but they also re-
quire new techniques to manage and control memory interference between different
cores, agents, and applications that share the memory system [81, 87, 106, 26, 108]
in order to provide high system performance as well as predictable performance (or
quality of service) to different applications [106]. Second, there is a need for in-
creased memory bandwidth for many applications as the placement of more cores
and agents on chip make the memory pin bandwidth an increasingly precious re-
source that determines system performance [41], especially for memory-bandwidth-
intensive workloads, such as GPGPUs [48, 47], heterogeneous systems [6], and con-
solidated workloads [87, 44, 43]. In terms of capacity, the need for memory capacity
is greatly increasing due to the placement of multiple data-intensive applications on
the same chip and continued increase in the data sets of important applications. One
recent work showed that given that the core count is increasing at a faster rate than
DRAM capacity, the expected memory capacity per core is to drop by 30% every
two years [70], an alarming trend since much of today’s software innovations and
features rely on increased memory capacity. In terms of cost, increasing difficulty
in DRAM technology scaling poses a difficult challenge to building higher density
(and, as a result, lower cost) main memory systems. Similarly, cost-effective op-
tions for providing high reliability and increasing memory bandwidth are needed
to scale the systems proportionately with the reliability and data throughput needs
of today’s data-intensive applications. Hence, the three traditional requirements of
performance, capacity, and cost have become exacerbated.

The relatively new requirements from the main memory system are threefold.
First, technology scalability: there is a new need for finding a technology that is
much more scalable than DRAM in terms of capacity, energy, and cost, as described
earlier. As DRAM continued to scale well from the above-100-nm to 30-nm tech-
nology nodes, the need for finding a more scalable technology was not a prevalent
problem. Today, with the significant circuit and device scaling challenges DRAM
has been facing below the 30-nm node, it is. Second, there is a relatively new need
for providing performance predictability and QoS in the shared main memory sys-
tem. As single-core systems were dominant and memory bandwidth and capacity
were much less of a shared resource in the past, the need for predictable perfor-
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mance was much less apparent or prevalent [81]. Today, with increasingly more
cores/agents on chip sharing the memory system and increasing amounts of work-
load consolidation, memory fairness, predictable memory performance, and tech-
niques to mitigate memory interference have become first-class design constraints.
Third, there is a great need for much higher energy/power/bandwidth efficiency in
the design of the main memory system. Higher efficiency in terms of energy, power,
and bandwidth enables the design of much more scalable systems where main mem-
ory is shared between many agents, and can enable new applications in almost all
domains where computers are used. Arguably, this is not a new need today, but we
believe it is another first-class design constraint that has not been as traditional as
performance, capacity, and cost.

6.4 Solution Directions

As a result of these systems, applications, and technology trends and the resulting
requirements, it is our position that researchers and designers need to fundamen-
tally rethink the way we design memory systems today to 1) overcome scaling chal-
lenges with DRAM, 2) enable the use of emerging memory technologies, 3) design
memory systems that provide predictable performance and quality of service to ap-
plications and users. The rest of this chapter describes our solution ideas in these
three directions, with pointers to specific techniques when possible. Since scaling
challenges themselves arise due to difficulties in enhancing memory components at
solely one level of the computing stack (e.g., the device and/or circuit levels in case
of DRAM scaling), we believe effective solutions to the above challenges will re-
quire cooperation across different layers of the computing stack, from algorithms to
software to microarchitecture to devices, as well as between different components
of the system, including processors, memory controllers, memory chips, and the
storage subsystem. As much as possible, we will give examples of such solutions
and directions.

6.5 Challenge 1: New DRAM Architectures

DRAM has been the choice technology for implementing main memory due to its
relatively low latency and low cost. DRAM process technology scaling has for long
enabled lower cost per unit area by enabling reductions in DRAM cell size. Unfor-
tunately, further scaling of DRAM cells has become costly [5, 77, 53, 40, 62, 1] due
to increased manufacturing complexity/cost, reduced cell reliability, and potentially
increased cell leakage leading to high refresh rates. Several key issues to tackle in-
clude:

1) reducing the negative impact of refresh on energy, performance, QoS, and
density scaling [71, 72, 17],
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2) improving DRAM parallelism/bandwidth [57, 17], latency [68], and energy
efficiency [57, 68, 71],

3) improving reliability of DRAM at low cost [90, 75, 58, 51],
4) reducing the significant amount of waste present in today’s main memories

in which much of the fetched/stored data can be unused due to coarse-granularity
management [79, 117, 94, 95, 110],

5) minimizing data movement between DRAM and processing elements, which
causes high latency, energy, and bandwidth consumption [102].

Traditionally, DRAM devices have been separated from the rest of the system
with a rigid interface, and DRAM has been treated as a passive slave device that
simply responds to the commands given to it by the memory controller. We believe
the above key issues can be solved more easily if we rethink the DRAM architec-
ture and functions, and redesign the interface such that DRAM, controllers, and pro-
cessors closely cooperate. We call this high-level solution approach system-DRAM
co-design. We believe key technology trends, e.g., the 3D stacking of memory and
logic [74, 2, 111] and increasing cost of scaling DRAM solely via circuit-level ap-
proaches [77, 53, 40], enable such a co-design to become increasingly more feasi-
ble. We proceed to provide several examples from our recent research that tackle the
problems of refresh, parallelism, latency, and energy efficiency.

6.5.1 Reducing Refresh Impact and DRAM Error Management

With higher DRAM capacity, more cells need to be refreshed at likely higher rates
than today. Our recent work [71] indicates that refresh rate limits DRAM density
scaling: a hypothetical 64Gb DRAM device would spend 46% of its time and 47%
of all DRAM energy for refreshing its rows, as opposed to typical 4Gb devices of to-
day that spend respectively 8% of the time and 15% of the DRAM energy on refresh
(as shown in Figure 6.1). Today’s DRAM devices refresh all rows at the same worst-
case rate (e.g., every 64ms). However, only a small number of weak rows require a
high refresh rate [54, 72, 51] (e.g., only ⇠1000 rows in 32GB DRAM require to be
refreshed more frequently than every 256ms). Retention-Aware Intelligent DRAM
Refresh (RAIDR) [71] exploits this observation: it groups DRAM rows into bins
(implemented as Bloom filters [7] to minimize hardware overhead) based on the
retention time of the weakest cell within each row. Each row is refreshed at a rate
corresponding to its retention time bin. Since few rows need high refresh rate, one
can use very few bins to achieve large reductions in refresh counts: our results show
that RAIDR with three bins (1.25KB hardware cost) reduces refresh operations by
⇠75%, leading to significant improvements in system performance and energy effi-
ciency as described by Liu et al. [71].

Like RAIDR, other approaches have also been proposed to take advantage of
the retention time variation of cells across a DRAM chip. For example, some works
proposed refreshing weak rows more frequently at a per-row granularity, others pro-
posed not using memory rows with low retention times, and yet others suggested
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(b) Throughput Loss

Fig. 6.1. Impact of refresh in current (DDR3) and projected DRAM devices. Repro-
duced from [71].

mapping critical data to cells with longer retention times such that critical data is
not lost [112, 42, 73, 93, 52, 3] – see [71, 72] for a discussion of such techniques.
Such approaches that exploit non-uniform retention times across DRAM require ac-
curate retention time profiling mechanisms. Understanding of retention time as well
as error behavior of DRAM devices is a critical research topic, which we believe
can enable other mechanisms to tolerate refresh impact and errors at low cost. Liu
et al. [72] provides an experimental characterization of retention times in modern
DRAM devices to aid such understanding. Our initial results in that work, obtained
via the characterization of 248 modern commodity DRAM chips from five different
DRAM manufacturers, suggest that the retention time of cells in a modern device
is largely affected by two phenomena: 1) Data Pattern Dependence, where the re-
tention time of each DRAM cell is significantly affected by the data stored in other
DRAM cells, 2) Variable Retention Time, where the retention time of a DRAM cell
changes unpredictably over time. These two phenomena pose challenges against ac-
curate and reliable determination of the retention time of DRAM cells, online or
offline, and a promising area of future research is to devise techniques that can iden-
tify retention times of DRAM cells in the presence of data pattern dependence and
variable retention time. Khan et al.’s recent work [51] provides more analysis of
the effectiveness of conventional error mitigation mechanisms for DRAM retention
failures and proposes online retention time profiling as a solution for identifying re-
tention times of DRAM cells as a potentially promising approach in future DRAM
systems.

Looking forward, we believe that increasing cooperation between the DRAM
device and the DRAM controller as well as other parts of the system, including
system software, is needed to communicate information about weak (or, unreliable)
cells and the characteristics of different rows or physical memory regions from the
device to the system. The system can then use this information to optimize data al-
location and movement, refresh rate management, and error tolerance mechanisms.
Low-cost error tolerance mechanisms are likely to be enabled more efficiently with
such coordination between DRAM and the system. In fact, as DRAM technology
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scales and error rates increase, it might become increasingly more difficult to main-
tain the common illusion that DRAM is a perfect, error-free storage device. DRAM
may start looking increasingly like flash memory, where the memory controller
manages errors such that an acceptable specified uncorrectable bit error rate is sat-
isfied [10, 12]. We envision a DRAM Translation Layer (DTL), not unlike the Flash
Translation Layer (FTL) of today in spirit (which is decoupled from the processor
and performs a wide variety of management functions for flash memory, including
error correction, garbage collection, read/write scheduling, etc.), can enable better
scaling of DRAM memory into the future by not only enabling easier error manage-
ment but also opening up new opportunities to perform computation and mapping
close to memory. This can become especially feasible in the presence of the trend
of combining the DRAM controller and DRAM via 3D stacking. What should the
interface be to such a layer and what should be performed in the DTL are promising
areas of future research.

6.5.2 Improving DRAM Parallelism

A key limiter of DRAM parallelism is bank conflicts. Today, a bank is the finest-
granularity independently accessible memory unit in DRAM. If two accesses go
to the same bank, one has to completely wait for the other to finish before it can
be started (see Figure 6.2). We have recently developed mechanisms, called SALP
(subarray level parallelism) [57], that exploit the internal subarray structure of the
DRAM bank (Figure 6.2) to mostly parallelize two requests that access the same
DRAM bank. The key idea is to reduce the hardware sharing between DRAM sub-
arrays such that accesses to the same bank but different subarrays can be initiated in
a pipelined manner. This mechanism requires the exposure of the internal subarray
structure of a DRAM bank to the controller and the design of the controller to take
advantage of this structure. Our results show significant improvements in perfor-
mance and energy efficiency of main memory due to parallelization of requests and
improvement of row buffer hit rates (as row buffers of different subarrays can be kept
active) at a low DRAM area overhead of 0.15%. Exploiting SALP achieves most of
the benefits of increasing the number of banks at much lower area and power over-
head than doing so. Exposing the subarray structure of DRAM to other parts of the
system, e.g., to system software or memory allocators, can enable data placement
and partitioning mechanisms that can improve performance and efficiency even fur-
ther.

Note that other approaches to improving DRAM parallelism especially in the
presence of refresh and long write latencies are also promising to investigate. Chang
et al. [17] discuss mechanisms to improve the parallelism between reads and writes,
and Kang et al. [50] discuss the use of SALP as a way of tolerating long write
latencies to DRAM, which they identify as one of the three key scaling challenges
for DRAM, amongst refresh and variable retention time. We refer the reader to these
works for more information about these parallelization techniques.
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Fig. 6.2. DRAM Bank Organization. Reproduced from [57].

6.5.3 Reducing DRAM Latency and Energy

The DRAM industry has so far been primarily driven by the cost-per-bit metric:
provide maximum capacity for a given cost. As shown in Figure 6.3, DRAM chip
capacity has increased by approximately 16X in 12 years while the DRAM latency
reduced by only approximately 20%. This is the result of a deliberate choice to
maximize capacity of a DRAM chip while minimizing its cost. We believe this
choice needs to be revisited in the presence of at least two key trends. First, DRAM
latency is becoming more important especially for response-time critical workloads
that require QoS guarantees [28]. Second, DRAM capacity is becoming very hard to
scale and as a result manufacturers likely need to provide new values for the DRAM
chips, leading to more incentives for the production of DRAMs that are optimized
for objectives other than mainly capacity maximization.

Fig. 6.3. DRAM Capacity & Latency Over Time. Reproduced from [68].

To mitigate the high area overhead of DRAM sensing structures, commodity
DRAMs (shown in Figure 6.4a) connect many DRAM cells to each sense-amplifier
through a wire called a bitline. These bitlines have a high parasitic capacitance due
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to their long length, and this bitline capacitance is the dominant source of DRAM
latency. Specialized low-latency DRAMs (shown in Figure 6.4b) use shorter bitlines
with fewer cells, but have a higher cost-per-bit due to greater sense-amplifier area
overhead. We have recently shown that we can architect a heterogeneous-latency
bitline DRAM, called Tiered-Latency DRAM (TL-DRAM) [68], shown in Fig-
ure 6.4c, by dividing a long bitline into two shorter segments using an isolation
transistor: a low-latency segment can be accessed with the latency and efficiency
of a short-bitline DRAM (by turning off the isolation transistor that separates the
two segments) while the high-latency segment enables high density, thereby reduc-
ing cost-per-bit. The additional area overhead of TL-DRAM is approximately 3%
over commodity DRAM. Significant performance and energy improvements can be
achieved by exposing the two segments to the memory controller and system soft-
ware such that appropriate data is cached or allocated into the low-latency segment.
We expect such approaches that design and exploit heterogeneity to enable/achieve
the best of multiple worlds [84] in the memory system can lead to other novel mech-
anisms that can overcome difficult contradictory tradeoffs in design.
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Fig. 6.4. Cost Optimized Commodity DRAM (a), Latency Optimized DRAM (b),
Tiered-Latency DRAM (c). Reproduced from [68].

Another promising approach to reduce DRAM energy is the use of dynamic volt-
age and frequency scaling (DVFS) in main memory [27, 29]. David et al. [27] make
the observation that at low memory bandwidth utilization, lowering memory fre-
quency/voltage does not significantly alter memory access latency. Relatively re-
cent works have shown that adjusting memory voltage and frequency based on pre-
dicted memory bandwidth utilization can provide significant energy savings on both
real [27] and simulated [29] systems. Going forward, memory DVFS can enable
dynamic heterogeneity in DRAM channels leading to new customization and op-
timization mechanisms. Also promising is the investigation of more fine-grained



xiv 6 Main Memory Scaling: Challenges and Solution Directions

power management methods within the DRAM rank and chips for both active and
idle low power modes.

6.5.4 Exporting Bulk Data Operations to DRAM

Today’s systems waste significant amount of energy, DRAM bandwidth and time (as
well as valuable on-chip cache space) by sometimes unnecessarily moving data from
main memory to processor caches. One example of such wastage sometimes occurs
for bulk data copy and initialization operations in which a page is copied to another
or initialized to a value. If the copied or initialized data is not immediately needed
by the processor, performing such operations within DRAM (with relatively small
changes to DRAM) can save significant amounts of energy, bandwidth, and time.
We observe that a DRAM chip internally operates on bulk data at a row granularity.
Exploiting this internal structure of DRAM can enable page copy and initialization
to be performed entirely within DRAM without bringing any data off the DRAM
chip, as we have shown in recent work [102]. If the source and destination page
reside within the same DRAM subarray, our results show that a page copy can be
accelerated by more than an order of magnitude (⇠11 times), leading to an energy
reduction of ⇠74 times and no wastage of DRAM data bus bandwidth [102]. The key
idea is to capture the contents of the source row in the sense amplifiers by activating
the row, then deactivating the source row (using a new command which introduces
very little hardware cost, amounting to less than 0.03% of DRAM chip area), and
immediately activating the destination row, which causes the sense amplifiers to
drive their contents into the destination row, effectively accomplishing the page copy
(shown at a high level in 6.5). Doing so reduces the latency of a 4KB page copy
operation from ⇠1000ns to less than 100ns in an existing DRAM chip. Applications
that have significant page copy and initialization lead to large system performance
and energy efficiency improvements [102]. Future software can be designed in ways
that can take advantage of such fast page copy and initialization operations, leading
to benefits that may not be apparent in today’s software that tends to minimize such
operations due to their current high cost.
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Going forward, we believe acceleration of other bulk data movement and com-
putation operations in or very close to DRAM, via similar low-cost architectural
support mechanisms, can enable promising savings in system energy, latency, and
bandwidth. Given the trends and requirements described in Section 6.2, it is likely
time to re-examine the partitioning of computation between processors and DRAM,
treating memory as a first-class accelerator as an integral part of a heterogeneous
parallel computing system [84].

6.5.5 Minimizing Capacity and Bandwidth Waste

Storing and transferring data at large granularities (e.g., pages, cache blocks) within
the memory system leads to large inefficiency when most of the large granularity
is not needed [117, 118, 79, 78, 110, 101, 61, 96, 49]. In addition, much of the
data stored in memory has significant redundancy [116, 35, 94, 95]. Two promis-
ing research directions are to develop techniques that can 1) efficiently provide fine
granularity access/storage when enough and large granularity access/storage only
when needed, 2) efficiently compress data in main memory and caches without sig-
nificantly increasing latency and system complexity. Our results with new low-cost,
low-latency cache compression [94] and memory compression [95] techniques and
frameworks are promising, providing high compression ratios at low complexity
and latency. For example, the key idea of Base-Delta-Immediate compression [94]
is that many cache blocks have low dynamic range in the values they store, i.e., the
differences between values stored in the cache block are small. Such a cache block
can be encoded using a base value and an array of much smaller (in size) differ-
ences from that base value, which together occupy much less space than storing the
full values in the original cache block. This compression algorithm has low decom-
pression latency as the cache block can be reconstructed using a vector addition (or
even potentially vector concatenation). It reduces memory bandwidth requirements,
better utilizes memory/cache space, while minimally impacting the latency to ac-
cess data. Granularity management and data compression support can potentially
be integrated into DRAM controllers or partially provided within DRAM, and such
mechanisms can be exposed to software, which can enable higher energy savings
and higher performance improvements.

6.5.6 Co-Designing DRAM Controllers and Processor-Side
Resources

Since memory bandwidth is a precious resource, coordinating the decisions made
by processor-side resources better with the decisions made by memory controllers
to maximize memory bandwidth utilization and memory locality is a promising area
of more efficiently utilizing DRAM. Lee et al. [67] and Stuecheli et al. [105] both
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show that orchestrating last-level cache writebacks such that dirty cache lines to
the same row are evicted together from the cache improves DRAM row buffer lo-
cality of write accesses, thereby improving system performance. Going forward,
we believe such coordinated techniques between the processor-side resources and
memory controllers will become increasingly more effective as DRAM bandwidth
becomes even more precious. Mechanisms that predict and convey slack in memory
requests [25], that orchestrate the on-chip scheduling of memory requests to im-
prove memory bank parallelism [65] and that reorganize cache metadata for more
efficient bulk (DRAM row granularity) tag lookups [103] can also enable more effi-
cient memory bandwidth utilization.

6.6 Challenge 2: Emerging Memory Technologies

While DRAM technology scaling is in jeopardy, some emerging technologies seem
more scalable. These include PCM and STT-MRAM. These emerging technologies
usually provide a tradeoff, and seem unlikely to completely replace DRAM (evalu-
ated in [62, 63, 64] for PCM and in [60] for STT-MRAM), as they are not strictly su-
perior to DRAM. For example, PCM is advantageous over DRAM because it 1) has
been demonstrated to scale to much smaller feature sizes and can store multiple bits
per cell [120], promising higher density, 2) is non-volatile and as such requires no re-
fresh (which is a key scaling challenge of DRAM as we discussed in Section 6.5.1),
and 3) has low idle power consumption. On the other hand, PCM has significant
shortcomings compared to DRAM, which include 1) higher read latency and read
energy, 2) much higher write latency and write energy, and 3) limited endurance for
a given PCM cell, a problem that does not exist (practically) for a DRAM cell. As a
result, an important research challenge is how to utilize such emerging technologies
at the system and architecture levels such that they can augment or perhaps even
replace DRAM.

Our initial experiments and analyses [62, 63, 64] that evaluated the complete re-
placement of DRAM with PCM showed that one would require reorganization of pe-
ripheral circuitry of PCM chips (with the goal of absorbing writes and reads before
they update or access the PCM cell array) to enable PCM to get close to DRAM per-
formance and efficiency. These initial results are reported in Lee et al. [62, 63, 64].
We have also reached a similar conclusion upon evaluation of the complete replace-
ment of DRAM with STT-MRAM [60]: reorganization of peripheral circuitry of
STT-MRAM chips (with the goal of minimizing the number of writes to the STT-
MRAM cell array, as write operations are high-latency and high-energy in STT-
MRAM) enables an STT-MRAM based main memory to be more energy-efficient
than a DRAM-based main memory.

One can achieve more efficient designs of PCM (or STT-MRAM) chips by tak-
ing advantage of the non-destructive nature of reads, which enables simpler and
narrower row buffer organizations [78] Unlike in DRAM, the entire memory row
does not need to be buffered in a device where reading a memory row does not
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destroy the data stored in the row. Meza et al. [78] show that having narrow row
buffers in emerging non-volatile devices can greatly reduce main memory dynamic
energy compared to a DRAM baseline with large row sizes, without greatly affect-
ing endurance, and for some NVM technologies, leading to improved performance.
Going forward, designing systems, memory controllers and memory chips taking
advantage of the specific property of non-volatility of emerging technology seems
promising.

We believe emerging technologies enable at least three major system-level oppor-
tunities that can improve overall system efficiency: 1) hybrid main memory systems,
2) non-volatile main memory, 3) merging of memory and storage. We briefly touch
upon each.

6.6.1 Hybrid Main Memory

A hybrid main memory system [98, 30, 79, 119] consists of multiple different tech-
nologies or multiple different types of the same technology with differing character-
istics, e.g., performance, cost, energy, reliability, endurance. A key question is how
to manage data allocation and movement between the different technologies such
that one can achieve the best of (or close to the best of) the desired performance
metrics. In other words, we would like to exercise the advantages of each tech-
nology as much as possible while hiding the disadvantages of any technology. Po-
tential technologies include DRAM, 3D-stacked DRAM, embedded DRAM, PCM,
STT-MRAM, other resistive memories, flash memory, forms of DRAM that are op-
timized for different metrics and purposes, etc. An example hybrid main memory
system consisting of a large amount of PCM as main memory and a small amount
of DRAM as its cache is depicted in Figure 6.6.

The design space of hybrid memory systems is large, and many potential ques-
tions exist. For example, should all memories be part of main memory or should
some of them be used as a cache of main memory (or should there be config-
urability)? What technologies should be software visible? What component of
the system should manage data allocation and movement? Should these tasks be
done in hardware, software, or collaboratively? At what granularity should data
moved between different memory technologies? Some of these questions are tack-
led in [79, 119, 98, 30, 99], among other works recently published in the computer
architecture community. For example, Yoon et al. [119] make the key observation
that row buffers are present in both DRAM and PCM, and they have (or can be
designed to have) the same latency and bandwidth in both DRAM and PCM. Yet,
row buffer misses are much more costly in terms of latency, bandwidth, and energy
in PCM than in DRAM. To exploit this, we devise a policy that avoids accessing
in PCM data that frequently causes row buffer misses. Hardware or software can
dynamically keep track of such data and allocate/cache it in DRAM while keep-
ing data that frequently hits in row buffers in PCM. PCM also has much higher
write latency/power than read latency/power: to take this into account, the alloca-
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Fig. 6.6. An example hybrid main memory system organization using PCM and
DRAM chips. Reproduced from [119].

tion/caching policy is biased such that pages that are written to more likely stay in
DRAM [119].

Note that hybrid memory need not consist of completely different underlying
technologies. A promising approach is to combine multiple different DRAM chips,
optimized for different purposes. For example, recent works proposed the use of
low-latency and high-latency DIMMs in separate memory channels and allocat-
ing performance-critical data to low-latency DIMMs to improve performance and
energy-efficiency at the same time [18], or the use of highly-reliable DIMMs (pro-
tected with ECC) and unreliable DIMMs in separate memory channels and allocat-
ing error-vulnerable data to highly-reliable DIMMs to maximize server availability
while minimizing server memory cost [75]. We believe these approaches are quite
promising for scaling the DRAM technology into the future by specializing DRAM
chips for different purposes. These approaches that exploit heterogeneity do increase
system complexity but that complexity may be warranted if it is lower than the com-
plexity of scaling DRAM chips using the same optimization techniques the DRAM
industry has been using so far.

6.6.2 Exploiting and Securing Non-volatile Main Memory

Non-volatility of main memory opens up new opportunities that can be exploited by
higher levels of the system stack to improve performance and reliability/consistency
(see, for example, [31, 22]. Researching how to adapt applications and system soft-
ware to utilize fast, byte-addressable non-volatile main memory is an important re-
search direction to pursue [80].
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On the flip side, the same non-volatility can lead to potentially unforeseen se-
curity and privacy issues: critical and private data can persist long after the system
is powered down [20], and an attacker can take advantage of this fact. Wearout is-
sues of emerging technology can also cause attacks that can intentionally degrade
memory capacity in the system [97, 104]. Securing non-volatile main memory is
therefore an important systems challenge.

6.6.3 Merging of Memory and Storage

Traditional computer systems have a two-level storage model: they access and ma-
nipulate 1) volatile data in main memory (DRAM, today) with a fast load/store inter-
face, 2) persistent data in storage media (flash and hard disks, today) with a slower
file system interface. Unfortunately, such a decoupled memory/storage model man-
aged via vastly different techniques (fast, hardware-accelerated memory manage-
ment units on one hand, and slow operating/file system (OS/FS) software on the
other) suffers from large inefficiencies in locating data, moving data, and translating
data between the different formats of these two levels of storage that are accessed via
two vastly different interfacesleading to potentially large amounts of wasted work
and energy [80]. The two different interfaces arose largely due to the large discrep-
ancy in the access latencies of conventional technologies used to construct volatile
memory (DRAM) and persistent storage (hard disks and flash memory).

Today, new non-volatile memory technologies (NVM), e.g, PCM, STT-MRAM,
RRAM, show the promise of storage capacity and endurance similar to or better than
flash memory at latencies comparable to DRAM. This makes them prime candidates
for providing applications a persistent single-level store with a single load/store-like
interface to access all system data (including volatile and persistent data). In fact,
if we keep the traditional two-level memory/storage model in the presence of these
fast NVM devices as part of storage, the operating system and file system code for
locating, moving, and translating persistent data from the non-volatile NVM devices
to volatile DRAM for manipulation purposes becomes a great bottleneck, causing
most of the memory energy consumption and degrading performance by an order
of magnitude in some data-intensive workloads, as we showed in recent work [80].
With energy as a key constraint, and in light of modern high-density NVM devices, a
promising research direction is to unify and coordinate the management of volatile
memory and persistent storage in a single level, to eliminate wasted energy and
performance, and to simplify the programming model at the same time.

To this end, Meza et al. [80] describe the vision and research challenges of a
persistent memory manager (PMM), a hardware acceleration unit that coordinates
and unifies memory/storage management in a single address space that spans po-
tentially multiple different memory technologies (DRAM, NVM, flash) via hard-
ware/software cooperation. Figure 6.7 depicts an example PMM, programmed using
a load/store interface (with persistent objects) and managing an array of heteroge-
neous devices.
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash HDDs NVM

Persistent Memory Manager
Hardware
Software

Data Layout, Persistence, Metadata, Security, ...

Fig. 6.7. An example Persistent Memory Manager (PMM). Reproduced from [80].

The spirit of the PMM unit is much like the virtual memory management unit
of a modern virtual memory system used for managing working memory, but it is
fundamentally different in that it redesigns/rethinks the virtual memory and storage
abstractions and unifies them in a different interface supported by scalable hardware
mechanisms. The PMM: 1) exposes a load/store interface to access persistent data,
2) manages data placement, location, persistence semantics, and protection (across
multiple memory devices) using both dynamic access information and hints from the
application and system software, 3) manages metadata storage and retrieval, needed
to support efficient location and movement of persistent data, and 4) exposes hooks
and interfaces for applications and system software to enable intelligent data place-
ment and persistence management. Our preliminary evaluations show that the use
of such a unit, if scalable and efficient, can greatly reduce the energy inefficiency
and performance overheads of the two-level storage model, improving both per-
formance and energy-efficiency of the overall system, especially for data-intensive
workloads [80].

We believe there are challenges to be overcome in the design, use, and adoption
of such a unit that unifies working memory and persistent storage. These challenges
include:

1. How to devise efficient and scalable data mapping, placement, and location
mechanisms (which likely need to be hardware/software cooperative).

2. How to ensure that the consistency and protection requirements of different
types of data are adequately, correctly, and reliably satisfied. How to enable the
reliable and effective coexistence and manipulation of volatile and persistent data.

3. How to redesign applications such that they can take advantage of the unified
memory/storage interface and make the best use of it by providing appropriate hints
for data allocation and placement to the persistent memory manager.
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4. How to provide efficient and high-performance backward compatibility mech-
anisms for enabling and enhancing existing memory and storage interfaces in a
single-level store. These techniques can seamlessly enable applications targeting tra-
ditional two-level storage systems to take advantage of the performance and energy-
efficiency benefits of systems employing single-level stores. We believe such tech-
niques are needed to ease the software transition to a radically different storage
interface.

6.7 Challenge 3: Predictable Performance

Since memory is a shared resource between multiple cores (or, agents, threads,
or applications and virtual machines), different applications contend for memory
bandwidth and capacity. As such, memory contention, or memory interference, be-
tween different cores critically affects both the overall system performance and each
application’s performance. Providing the appropriate bandwidth and capacity al-
location to each application such that its performance requirements are satisfied
is important to satisfy user expectations and service level agreements, and at the
same time enable better system performance. Our past work (e.g., [81, 87, 88])
showed that application-unaware design of memory controllers, and in particular
memory scheduling algorithms, leads to uncontrolled interference of applications in
the memory system. Such uncontrolled interference can lead to denial of service to
some applications [81], low system performance [87, 88], and an inability to satisfy
performance requirements [87, 106, 32], which makes the system uncontrollable
and unpredictable. In fact, an application’s performance depends on what other ap-
plications it is sharing resources with: an application can sometimes have very high
performance and at other times very low performance on the same system, solely
depending on its co-runners. A critical research challenge is therefore how to design
the memory system (including all shared resources such as main memory, caches,
and interconnects) such that 1) the performance of each application is predictable
and controllable, 2) while the performance and efficiency of the entire system are as
high as needed or possible.

To achieve these goals, we have designed various solutions including QoS-
aware memory controllers [87, 88, 82, 55, 56, 83, 6, 106, 66, 33], intercon-
nects [24, 25, 38, 39, 16, 91, 92, 26], and entire memory systems including caches,
interconnect, and memory [32, 34, 26]. These works enhanced our understanding
of memory interference in multi-core and heterogeneous systems and provide vi-
able and effective mechanisms that improve overall system performance, while also
providing a fairness substrate that can enable fair memory service, which can be
configured to enforce different application priorities.

A promising direction going forward is to devise mechanisms that are effective
and accurate at 1) estimating and predicting application performance in the presence
of interference and a dynamic system with continuously incoming and outgoing ap-
plications and 2) enforcing end-to-end performance guarantees within the entire
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shared memory system. Subramanian et al. [106] provides a simple method, called
MISE (Memory-interference Induced Slowdown Estimation), for estimating appli-
cation slowdowns in the presence of main memory interference. We observe that
an application’s memory request service rate is a good proxy for its performance,
as depicted in Figure 6.8, which shows the measured performance versus mem-
ory request service rate for three applications on a real system [106]. As such, an
application’s slowdown can be accurately estimated by estimating its uninterfered
request service rate, which can be done by prioritizing that application’s requests
in the memory system during some execution intervals. Results show that average
error in slowdown estimation with this relatively simple technique is approximately
8% across a wide variety of workloads. Figure 6.9 shows the actual versus predicted
slowdowns over time, for astar, a representative application from among the many
applications examined, when it is run alongside three other applications on a simu-
lated 4-core 1-channel system. As we can see, MISE’s slowdown estimates track the
actual slowdown closely. Extending such simple techniques like MISE to the entire
memory and storage system is a promising area of future research in both homoge-
neous and heterogeneous systems. Devising memory devices and architectures that
can support predictability and QoS also appears promising.
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6.8 Aside: Flash Memory Scaling Challenges

Flash memory, another successful charge-based memory like DRAM, has been
commonly employed as part of the storage system. In part of our research, we aim
to develop new techniques that overcome reliability and endurance challenges of
flash memory to enable its scaling beyond the 20nm technology generations. To
this end, we experimentally measure, characterize, analyze, and model error pat-
terns that occur in existing flash chips, using an experimental flash memory testing
and characterization platform [9]. Based on the understanding we develop from our
experiments, we aim to develop error management techniques that mitigate the fun-
damental types of errors that are likely to increase as flash memory scales.
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We have recently experimentally characterized complex flash errors that occur
at 30-40nm flash technologies [10], categorizing them into four types: retention er-
rors, program interference errors, read errors, and erase errors. Our characterization
shows the relationship between various types of errors and demonstrates empirically
using real 3x-nm flash chips that retention errors are the most dominant error type.
Our results demonstrate that different flash errors have distinct patterns: retention
errors and program interference errors are program/erase-(P/E)-cycle-dependent,
memory-location-dependent, and data-value-dependent. Since the observed error
patterns are due to fundamental circuit and device behavior inherent in flash mem-
ory, we expect our observations and error patterns to also hold in flash memories
beyond 30-nm technology.

Based on our experimental characterization results that show that the retention
errors are the most dominant errors, we have developed a suite of techniques to
mitigate the effects of such errors, called Flash Correct-and-Refresh (FCR) [11]. The
key idea is to periodically read each page in flash memory, correct its errors using
simple error correcting codes (ECC), and either remap (copy/move) the page to a
different location or reprogram it in its original location by recharging the floating
gates, before the page accumulates more errors than can be corrected with simple
ECC. Our simulation experiments using real I/O workload traces from a variety of
file system, database, and search applications show that FCR can provide 46x flash
memory lifetime improvement at only 1.5% energy overhead, with no additional
hardware cost.

Recently, we have also experimentally investigated and characterized the thresh-
old voltage distribution of different logical states in MLC NAND flash memory [14].
We have developed new models that can predict the shifts in the threshold voltage
distribution based on the number of P/E cycles endured by flash memory cells. Our
data shows that the threshold voltage distribution of flash cells that store the same
value can be approximated, with reasonable accuracy, as a Gaussian distribution.
The threshold voltage distribution of flash cells that store the same value gets dis-
torted as the number of P/E cycles increases, causing threshold voltages of cells
storing different values to overlap with each other, which can lead to the incorrect
reading of values of some cells as flash cells accumulate P/E cycles. We find that
this distortion can be accurately modeled and predicted as an exponential function
of the P/E cycles, with more than 95% accuracy. Such predictive models can aid the
design of more sophisticated error correction methods, such as LDPC codes [37],
which are likely needed for reliable operation of future flash memories.

We are currently investigating another increasingly significant obstacle to MLC
NAND flash scaling, which is the increasing cell-to-cell program interference due to
increasing parasitic capacitances between the cells’ floating gates. Accurate charac-
terization and modeling of this phenomenon are needed to find effective techniques
to combat program interference. In recent work [13], we leverage the read retry
mechanism found in some flash designs to obtain measured threshold voltage distri-
butions from state-of-the-art 2Y-nm (i.e., 24-20 nm) MLC NAND flash chips. These
results are then used to characterize the cell-to-cell program interference under var-
ious programming conditions. We show that program interference can be accurately
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modeled as additive noise following Gaussian-mixture distributions, which can be
predicted with 96.8% accuracy using linear regression models. We use these models
to develop and evaluate a read reference voltage prediction technique that reduces
the raw flash bit error rate by 64% and increases the flash lifetime by 30%. More
detail can be found in Cai et al. [13].

Most recently, to improve flash memory lifetime, we have developed a mecha-
nism called Neighbor-Cell Assisted Correction (NAC) [15], which uses the value
information of cells in a neighboring page to correct errors found on a page when
reading. This mechanism takes advantage of the new empirical observation that
identifying the value stored in the immediate-neighbor cell makes it easier to de-
termine the data value stored in the cell that is being read. The key idea is to re-read
a flash memory page that fails error correction codes (ECC) with the set of read
reference voltage values corresponding to the conditional threshold voltage distri-
bution assuming a neighbor cell value and use the re-read values to correct the cells
that have neighbors with that value. Our simulations show that NAC effectively im-
proves flash memory lifetime by 33% while having no (at nominal lifetime) or very
modest (less than 5% at extended lifetime) performance overhead.

Going forward, we believe more accurate and detailed characterization of flash
memory error mechanisms are needed to devise models that can aid the design of
more efficient and effective mechanisms to tolerate errors found in sub-20nm flash
memories. A promising direction is the design of predictive models that the system
(e.g., the flash controller or system software) can use to proactively estimate the
occurrence of errors and take action to prevent the error before it happens. Flash-
correct-and-refresh [11], read reference voltage prediction [13], described earlier,
are early forms of such predictive error tolerance mechanisms.

6.9 Conclusion

We have described several research directions and ideas to enhance memory scaling
via system and architecture-level approaches. A promising approach is the co-design
of memory and other system components to enable better system optimization. En-
abling better cooperation across multiple levels of the computing stack, including
software, microarchitecture, and devices can help scale the memory system by ex-
posing more of the memory device characteristics to higher levels of the system
stack such that the latter can tolerate and exploit such characteristics. Finally, het-
erogeneity in the design of the memory system can help overcome the memory
scaling challenges at the device level by enabling better specialization of the mem-
ory system and its dynamic adaptation to different demands of various applications.
We believe such approaches will become increasingly important and effective as the
underlying memory technology nears its scaling limits at the physical level and en-
vision a near future full of innovation in main memory architecture, enabled by the
co-design of the system and main memory.
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