
Appendix: “Boosting the Throughput and Accelerator Utilization of
Specialized CNN Inference Beyond Increasing Batch Size”

Jack Kosaian 1 * Amar Phanishayee 2 Matthai Philipose 2 Debadeepta Dey 2 K. V. Rashmi 1

A. Datasets
A.1. Datasets and models used in game-scraping

application

This section provides details on the datasets and models used
in the production video-game-scraping workload described
in §2. The images in each dataset represent the style of
text that will appear in a particular portion of a game screen,
which will be used in a downstream event detection pipeline.

Dataset generation. The location and style of relevant
text in a particular video game may differ from stream-to-
stream. To avoid the need to manually label streams, the
game-scraping application generates synthetic datasets for
training, validation, and testing.

Specifically, the text that will appear in images for a par-
ticular dataset follows a predefined structure. For example,
the text appearing in images of the V1 task is of the form
“XY.Zk”, where X, Y, and Z each represent a digit 0 through
9, and k is the string literal “k”. From these specifications,
examples that match certain classes of a particular dataset
can be generated. For example, V1 classifies the Z digit
in the specification above, and might generate “67.8k” and
“04.8k” as instances of this specification for class “8”.

Once an instance of a specification has been constructed, an
image containing this text is generated. In order to train a
model that is robust to perturbations in text location, text
font, and background color/texture, the generation process
selects fonts, locations, and backgrounds for the generated
image at random from a set of prespecified options. Fig-
ures 1–6 below show the effects of this randomization.

We now provide details of each dataset used for this task in
the paper. Example images chosen randomly from the vali-
dation sets of each dataset are displayed. We also describe
the detailed architecture of the specialized CNNs employed
for each dataset. For brevity, we use the following notation

*Work done in part as an intern at Microsoft Research.
1Carnegie Mellon University 2Microsoft Research. Correspon-
dence to: Jack Kosaian <jkosaian@cs.cmu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

to describe CNNs: CX is a 3 × 3 2D convolution with X out-
put channels and stride of 1, M is a 2D max pool with kernel
size 3 × 3 and stride of 1, FX is a fully-connected layer with
X output features. We use B as shorthand notation for C32
→ C32 → C32. ReLUs follow each convolutional layer and
all but the final fully-connected layer.

Figure 1. Example images in the lol-gold1 dataset.

V1: lol-gold1.

• Game: League of Legends
• Number of classes: 11
• Image resolution: (22, 52)
• Example: Figure 1
• Model: C32 → M → B → M → C8 → M → F11
• Description: Classifies the fractional value of a count

of the amount of gold a player has accumulated (e.g.,
“7” in “14.7k”). Classes are digits 0 through 9 and
“other” indicating that the section is blank.

• Training images per class: 10000
• Validation images per class: 100
• Test images per class: 100

Figure 2. Example images in the apex-count dataset.

V2: apex-count.

• Game: Apex Legends
• Number of classes: 22
• Image resolution: (19, 25)
• Example: Figure 2

mailto:jkosaian@cs.cmu.edu

Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size”

• Model: C32 → M → B → M → C8 → M → F22
• Description: Classifies the number of members of a

squad remaining. Classes are integers 0 through 20
and “other” indicating that the section is blank.

• Training images per class: 1000
• Validation images per class: 100
• Test images per class: 100

Figure 3. Example images in the sot-coin dataset.

V3: sot-coin.

• Game: Sea of Thieves
• Number of classes: 15
• Image resolution: (17, 40)
• Example: Figure 3
• Model: C32 → M → B → M → C8 → M → F15
• Description: Classifies the thousands-place of a count

on the number of coins a player has (e.g., “10” for
“10,438”). Classes are integers 0 through 14 and “other”
indicating that the section is blank.

• Training images per class: 800
• Validation images per class: 200
• Test images per class: 200

Figure 4. Example images in the sot-time dataset.

V4: sot-time.

• Game: Sea of Thieves
• Number of classes: 27
• Image resolution: (22, 30)
• Example: Figure 4
• Model: C32 → M → B → M → B → M → C8 → M
→ F27

• Description: Classifies the time remaining. Classes
are integers 0 through 25 and “other” indicating that
the section is blank.

• Training images per class: 2000
• Validation images per class: 100
• Test images per class: 100

V5: lol-gold2.

Figure 5. Example images in the lol-gold2 dataset.

• Game: League of Legends
• Number of classes: 111
• Image resolution: (22, 52)
• Example: Figure 5
• Model: C32 → M → B → M → C8 → M → F111
• Description: Classifies the integer value of a count of

the amount of gold a player has accumulated (e.g., “14”
in “14.7k”). Classes are digits 0 through 9, 00 through
99, and “other” indicating that the section is blank.

• Training images per class: 1000
• Validation images per class: 100
• Test images per class: 100
• Note: This CNN is used only in §I

Figure 6. Example images in the lol-time dataset.

V6: lol-time.

• Game: League of Legends
• Number of classes: 62
• Image resolution: (15, 35)
• Example: Figure 6
• Model: C32 → M → B → M → C8 → M → F62
• Description: Classifies the minutes place of a timer

(e.g., “30” in “30:54”). Classes are digits 00 through
60 and “other” indicating that the section is blank.

• Training images per class: 1000
• Validation images per class: 100
• Test images per class: 100
• Note: This CNN is used only in §I

A.2. Datasets and models used in NoScope

We evaluate folding using four of the datasets from No-
Scope (Kang et al., 2017). Each task involves binary classi-
fication of whether an object of interest is present in a frame.
As the overall videos provided contain millions of frames,
we sample contiguous subsets of frames in the video to form
training, validation, and testing sets.

The CNNs used in evaluation follow those described in
2

Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size”

the NoScope paper and source code. We next detail these
architectures, as well as the splits of the dataset used in
evaluation.

N1: coral.

• Object of interest: person
• Model: C16 → C16 → M → F128 → F2
• Total video duration: 11 hrs.
• Dataset split: Split the video into eight contiguous

chunks. Use chunk 6 as a training dataset, chunk 7 as
a validation dataset, and chunk 8 as a testing dataset.

N2: night.

• Object of interest: car
• Model: C16 → C16 → M → F128 → F2
• Total video duration: 8.5 hrs.
• Dataset split: Split the video into eight contiguous

chunks. Use chunk 2 as a training dataset, chunk 3 as
a validation dataset, and chunk 4 as a testing dataset.

N3: roundabout.

• Object of interest: car
• Model: C32 → C32 → M → C64 → C64 → M →

F32 → F2
• Total video duration: 8.1 hrs.
• Dataset split: Split the video into eight contiguous

chunks. Use chunk 2 as a training dataset, chunk 3 as
a validation dataset, and chunk 4 as a testing dataset.

N4: taipei.

• Object of interest: bus
• Model: C64 → C64 → M → F32 → F2
• Total video duration: 12 hrs.
• Dataset split: Split the video into sixteen contiguous

chunks. Use the chunk 1 as a training dataset, chunk 2
as a validation dataset, and chunk 3 as a testing dataset.

B. Example of Folding a Single Layer
Table 1 shows an example of folding a convolutional layer
from a specialized CNN used in the game-scraping work-
load. The memory traffic of the original layer is dominated
by the input and output activations of the layer. Folding
with f = 4 reduces memory traffic by nearly 2× while
maintaining the same number of operations, enabling a 2×
increase in arithmetic intensity.

C. Folding for Group Convolutions
In this section, we describe how folding is applied to group
convolutions.

Background on group convolutions. In a group convo-
lution, the input and output channels of the convolution
are split into G groups. Each output channel in a partic-
ular group is computed via convolution over only those
input channels in the corresponding group. This results in
a G-fold decrease in operations and a G-fold decrease in
the number of parameters in the convolutional layer. The
resultant arithmetic intensity for a group convolution is thus:

2NHWCoCiKH KW /G
CiKH KW CoB(NHWCi + + NHWCo)G

The arithmetic intensity of a group convolution in the batch-
limited regime (defined in §2.3) is determined as follows
(recalling from §2.3 that calculating arithmetic intensity in
the batch-limited regime involves removing the variable B):

2NHWCoCiKH KW /G
A =

CiKH KW CoNHWCi + G + NHWCo

2CoCiKH KW 1
lim A = ∗

N→∞ Ci + Co G

Comparing this arithmetic intensity to that in Eqn. 4 of the
main paper, the arithmetic intensity of a group convolution
with G groups in the batch-limited regime is G× lower than
a corresponding “vanilla” convolution. This makes group
convolutions a promising target for increasing arithmetic
intensity via folding.

Applying folding to group convolutions. Folding group
convolutions is straightforward. Similar to folding “vanilla”
convolutions, a FoldedCNN for a group convolution with Ci

input channels and Co output channels reduces batch size
by√a factor of f and increases Ci and Co each by a factor
of f×. This results in increasing the number of channels√
per group in the group convolution by a factor of f , and
thus also increases arithmetic intensity in the batch-limited√
regime by a factor of f .

Inference performance of folded group convolutions.
We evaluate the throughput and utilization of folding on
two group convolutions shown in Table 2. The two group
convolutions are identical other than the number of total
input and output channels, with G32 having 32 and G64
having 64. Each setting uses 4 groups, leading to 8 and 16
channels per group for G32 and G64, respectively. We com-
pare the throughput and utilization of these convolutions
to the corresponding folded version with f = 4. Folding
results in 64 input and output channels with 16 channels per
group for G32, and 128 input and output channels with 32
channels per group for G64. We use the same experimen-
tal setup described in §5 of the main paper for evaluating
inference performance.

With batch size of 1024, folding with f = 4 increase
throughput and utilization of these grouped convolutions

3

Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size”

Table 1. Example of increasing arithmetic intensity by folding a convolutional layer with f = 4. The layer has KH = KW = 3, H = 11,
W = 26, and uses half precision (i.e., B = 2).

Original Folded (f = 4)
Equation Value Equation Value

Batch size
Input, output channels

N
Ci, Co

1024
32, 32

N/f √ √
Ci f , Co f √ √

256
64, 64

Input and output elements (Eio) NHW Ci + NHW Co 18.74M f NHW Ci +f
f N HW Cof 9.37M

Layer elements (El) CiKH KW Co 0.01M fCiKH KW Co 0.04M
Memory traffic in bytes (M) B(Eio + El) 37.51M B(Eio + El) 18.82M
Operations (O) 2NHW CoCiKH KW 5398.07M 2NHW CoCiKH KW 5398.07M
Arithmetic intensity O/M 143.93 O/M 286.87

Table 2. Group convolutions evaluated
Name Ci Co G KH KW H W
G32
G64

32
64

32
64

4 3 3 50 50

by 1.74× for G32 and by 1.59× for G64 on a V100 GPU.
Folding increases arithmetic intensity by nearly a factor of
two for each convolution. The larger improvement for G32
compared to G64 comes from the lower arithmetic intensity
of G32; due to having half the number of input and out-
put channels of G64, G32 has half the arithmetic intensity.
Thus, there is more room for improving the utilization of
G32 by increasing arithmetic intensity alone via folding.
These results show the effectiveness of folding on group
convolutions.

D. Folding for Winograd Convolutions
FoldedCNNs can benefit a wide variety of convolutional
implementations, such as direct convolutions, matrix-
multiplication-based convolutions, and Winograd convo-
lutions. In fact, our evaluation in §5 runs atop TensorRT,
which selects among convolutional implementations, includ-
ing Winograd. To more clearly illustrate the performance
of FoldedCNNs on Winograd convolutions, we also directly
run FoldedCNNs using Winograd convolutions in cuDNN.
Here, on the video scraping CNNs using the same exper-
imental setup described in §5, FoldedCNNs with f = 4
provided a median speedup of 1.66× over the original CNN,
matching the speedups in §5.3.

E. Inference Performance on T4 GPU
Figure 7 shows the throughput, FLOPs/sec, and arithmetic
intensity achieved by FoldedCNNs and the original CNN
on a T4 GPU (AWS g4dn.xlarge instance) in half-precision.
The general trends are similar to those described in §5 of
the main paper for the V100 GPU.

F. Speedup with Varying Batch Size
Figure 8 shows the throughput improvement when using
FoldedCNNs with various values of f relative to the original
CNN at varying batch sizes. As shown in the figure, the
throughput improvement resulting from folding is largest at
a batch size of 2048, and decreases with decreasing batch
size. This behavior is expected, as decreasing batch size N
decreases the likelihood that the inequality proved in §J will
hold, and thus that folding will benefit. Folding is designed
for improving high-throughput specialized CNN inference,
in which large batch sizes are used.

G. Accuracy-Throughput Tradeoff
When reasoning about the potential tradeoff between accu-
racy and throughput/utilization present with FoldedCNNs,
it is important to consider the usecases of specialized CNNs.
As described in §2.1, it is common to use specialized CNNs
as a lightweight filter in front of a large, general-purpose
CNN. In such systems, most inputs are processed only by the
specialized CNN, rather than by both the specialized CNN
and the general-purpose CNN. Thus, the throughput of the
specialized CNN typically dominates the total throughput
of the system.

Given the heavy use of the specialized CNN in this setup,
improving the throughput of the specialized CNN at the ex-
pense passing more inputs to the general-purpose CNN may
increase system throughput. For example, a FoldedCNN
with f = 4 speeds up the N2 CNN by 2.50× with a 0.21%
drop in accuracy. We show below that this FoldedCNN in-
creases system throughput unless the general-purpose CNN
is over 285× slower than the N2 CNN. Thus, the improved
utilization and throughput of specialized CNNs made pos-
sible by FoldedCNNs can compensate for reduced their
accuracy to improve total system throughput.

We now walk through this accuracy-throughput tradeoff via
an abstract example. Figure 9 shows an abstract example of
using a specialized CNN (e.g., those from NoScope) as a
lightweight filter in front of a large, general-purpose CNN
(e.g., ResNet-50). As depicted in the figure, all inputs pass

4

Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size”

OriginalOriginal Folded (f = 2) Folded (f = 2)

3
2 2

11
0 0

A
ri

th
m

et
ic

R

el
at

iv
e

Sp
ee

du
p

In
te

ns
ity

FL

O
Ps

/s
ec

Folded (f = 3) Folded (f = 4)

A
ri

th
m

et
ic

R

el
at

iv
e

Sp
ee

du
p

In
te

ns
ity

FL

O
Ps

/s
ec

Folded (f = 3) Folded (f = 4)

N1 N2 N3 N4 V1 V2 V3 V4

3
2
1
0

2

1

0
N1 N2 N3 N4 V1 V2 V3 V4

400

200

0

200
100

0
N1 N2 N3 N4 V1 V2 V3 V4

(a) NoScope specialized CNNs (b) Game-scraping specialized CNNs at a cloud-service provider
Figure 7. Inference performance of FoldedCNNs relative to the original CNN. Arithmetic intensity is plotted in absolute numbers, and the
dashed line shows the minimum arithmetic intensity required to reach peak FLOPs/sec on a T4 GPU.

through the specialized CNN, which has a latency of Ts.
The specialized CNN is unsure about u fraction of those
inputs, and thus forwards the inputs to the general-purpose
CNN, which has a latency of Tg . For the remaining (1 − u)
fraction of inputs, the specialized CNN is sure of its answer,
and returns the prediction directly.

The expected latency for a given input to this system is thus:

E[T] = Ts + uTg

Suppose that one replaced the specialized CNN used in such
an application with a FoldedCNN that increases throughput
by a factor of x, but decreases accuracy by a. Under the
reasonable assumption that an increase in throughput leads
to a corresponding decrease in latency, the latency of the
FoldedCNN can be given as Ts . Furthermore, under the x
assumption that all incorrectly classified inputs from the
specialized CNN are forwarded to the general-purpose CNN
(i.e., u is equivalent to the error of the specialized CNN),
then the FoldedCNN lets u + a fraction of frames through
to the general-purpose CNN. Thus, the expected latency for
a given input to the system with a FoldedCNN is:

Ts
E[T] = + (u + a)Tg

x

Clearly, for high values of x and small values a, the Folded-
CNN can result in improved total system throughput (recip-
rocal of latency). A secondary question of interest is: given
specific values of x and a, for what values of Ts and Tg

does the FoldedCNN increase overall system throughput?

To answer this question, we focus on the ratio Tg . Intuitively, Ts

the higher this ratio, the larger the effect of inaccuracy of the
FoldedCNN on overall system throughput. We next calcu-
late the maximum value this ratio can be for a FoldedCNN

5

to improve overall system throughput:

Ts
Ts + uTg > + (u + a)Tg

x
Ts

Ts − > (u + a)Tg − uTg
x
1

Ts(1 −) > aTg
x

1 1 Tg
(1 −) >

a x Ts

Consider the FoldedCNN with f = 4 for the N2 dataset
described in §5.2 of the main paper. This FoldedCNN results
in an increase in throughput of x = 2.5× and a decrease
in accuracy of a = 0.0021. Plugging these values into the
inequality above shows that this FoldedCNN will result in
an overall improvement in system throughput so long as
the general-purpose CNN is less than 285× slower than the
original specialized CNN. If we consider ResNet-50 as an
example of a general-purpose CNN, this is easily satisfied
for the N2 CNN: ResNet-50 is 83× slower than the original
specialized CNN.

H. Effect of Tile Quantization on the
Performance of FoldedCNNs

In §5.2, we observed one case in which a FoldedCNN re-
sulted in a decrease in throughput and utilization compared
to the original CNN: the N4 CNN using f = 4. After inves-
tigating the CNN, we found the cause to be due to GPU tile
quantization: when the problem size does not divide evenly
into a chosen tile size (i.e., the size of partitions of the over-
all kernel) (NVIDIA). NVIDIA’s deep learning libraries are
best optimized for cases in which certain parameters of a
convolutional layer, such as input and output channels, are

Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size”

2048 1024 512 256

1

0.5

0
N1 N2 N3 N4 V1 V2 V3 V4

(a) f = 2

2048 1024 512 2562

1.5

1

0.5

0
N1 N2 N3 N4 V1 V2 V3 V4

(b) f = 3

2048 1024 512 2563

2

1

0

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

N1 N2 N3 N4 V1 V2 V3 V4

(c) f = 4

Figure 8. Speedup of FoldedCNNs with varying f at various batch
sizes relative to the throughput of the original CNN at correspond-
ing batch sizes.

divisible by large powers of two (e.g., divisible by 64 or
128) (NVIDIA). Parameters that do not meet this require-
ment typically use kernels optimized for the next highest
number divisible by a large power of two, resulting in a
significant amount of wasted work. For more details on
the inefficiency resulting from tile quantization, please see
NVIDIA’s deep learning performance guide (NVIDIA).

Many CNNs are already designed to have a number of input
and output channels that are a power of two (e.g., many
of the specialized CNNs have convolutional layers with
32 input and output channels). However, FoldedCNN’s
increase the number of input and output channels by a factor√
of f . For non-square values of f , such as 2 and 3, applying
folding to such a layer may result in a number of input or
output channels that is no longer a power of two or is no
longer divisible by a power of two. For example, applying
folding with f = 2 to a convolutional layer with 64 input
and output channels will result in a convolutional layer with√
b64 2c = 90 channels.

For the values of f considered in this work, we find that tile

Input

Specialized CNN
General-Purpose CNN

unsure (u)

sure (1 - u)

latency = Ts latency = Tg

Figure 9. Abstract example of the use of a specialized CNN as a
lightweight filter in front of a larger, general-purpose CNN.

quantization primarily affects convolutions with a number
of input and output channels greater than or equal to 64; we
do not observe the negative effects often associated with tile
quantization for convolutions with fewer channels, such as
32 or 16.

As shown in §A, the N4 CNN contains two convolu-
tions with 64 intermediate channels, followed by a fully-
connected layer with 32 output neurons. The FoldedCNN
with f of 2 and 3 will thus lead to the negative effects of tile
quantization for the convolutions in this CNN, but not for
the fully-connected layer, which will receive the full benefits
of folding. With f = 2, the benefit from folding does not
outweigh the inefficiency due to tile quantization, resulting
in a net decrease in utilization and throughput. In contrast,
with f = 3, the benefits of folding outweigh the cost of
tile quantization, resulting in an increase in utilization and
throughput, albeit less pronounced than expected for f = 3.

It is important to note that this case with decreased uti-
lization and throughput is not due to incorrectness of the
transformations performed by FoldedCNNs. As shown in
§5.2 of the main paper, FoldedCNNs with f of 2 and 3 for √
the N4 CNN result in the expected f× improvements in
arithmetic intensity. Decreased inference performance in
this case is due to lower levels of the system software (e.g.,
TensorRT, cuDNN), rather than the design of FoldedCNNs
themselves. Other accelerators may not face the same issue.

I. Evaluation on Small CNNs with many
Classes

In this section, we consider CNNs that have the same size
as specialized CNNs, but which operate over many classes.
We consider two new game-scraping tasks: a task with 111
classes (V5), and one with 62 classes (V61). We use the
same CNN as that used for V1. Table 3 shows that Folded-
CNNs exhibit larger drops in accuracy on these tasks due

1For this CNN, we find that the small input resolution and large
number of classes requires using more specially-tuned curriculum
learning parameters. Specifically, when training a FoldedCNN
with f = 4 on this dataset, we use I = 4, Δ = 3, and E = 120,
and train the CNN for 3000 epochs.

6

Appendix: “Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size”

Table 3. Performance of FoldedCNNs for CNNs with many classes. Differences in accuracy are listed in parentheses.
Original Folded (f = 2) Folded (f = 3) Folded (f = 4)

Model Resolution Classes Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup
V5 (22, 52) 111 93.95 92.50 (-1.45) 1.12 90.78 (-3.17) 1.42 87.51 (-6.44) 1.75
V6 (15, 35) 62 89.71 88.03 (-1.68) 1.08 85.48 (-4.23) 1.42 84.92 (-4.79) 1.71

to the larger number of classes, but still increase utiliza-
tion/throughput by up to 1.75×.

J. Proof of Reduction in Memory Traffic
We will prove that the transformation described in §3 re-
duces total memory traffic if:

(f − 1)CiKH KW Co
NHW > (1)1(1 − √)(Ci + Co)f

Recall that the arithmetic intensity of a convolutional layer
as given by Eqn. 3 is:

FLOPs 2NHWCoCiKH KW
=

Bytes B(NHWCi + CiKH KW Co + NHWCo)

In §3, we create a new version of the layer in which we
decrease NHW by a factor of f and increase both Ci and√
Co by a factor of f . We wish to show that this new layer
has a higher arithmetic intensity than the original layer,
provided that:

(f − 1)CiKH KW Co
NHW > 1(1 − √)(Ci + Co)f

We will first show that the new layer performs an equal num-
ber of operations as the original layer (i.e., the numerator
in Eqn. 3 stays the same) and then show that the new layer
layer has reduced memory traffic compared to the original
layer (i.e., the denominator in Eqn. 3 decreases), provided
that the inequality holds. These two changes will result in
the new layer having an increased arithmetic intensity.

Equal number of operations. The initial con-
volutional layer performs 2NHWCoCiKH KW

operations. The transformed convolutional layer√ √
2NHW performs (fCo)(fCi)(KH KW) = f

2NHWCoCiKH KW operations, which is equal to
that of the original model.

Reduced memory traffic. We wish to show that the in-
equality is equivalent to the memory traffic of the trans-
formed layer being lower than that of the original layer.

We first note that, ignoring the bytes per element B,
the memory traffic of the original convolutional layer

is NHWCi + CiKH KW Co + NHWCo, while that of√
fthe transformed layer is NHWCi + fCiKH KW Co +f√

f NHWCo.f

We wish to show that:

NHWCi + CiKH KW Co + NHWCo
√ √
f f

> NHWCi + fCiKH KW Co + NHWCo
f f

We first rearrange the righthand side of the inequality as:
√ √
f f
NHWCi + fCiKH KW Co + NHWCo

f f
NHW NHW

= √ Ci + fCiKH KW Co + √ Co
f f

Grouping by similar terms gives:

NHW NHW
NHWCi − √ Ci + NHWCo − √ Co

f f

> fCiKH KW Co − CiKH KW Co

Which implies:

1 1
(1 − √)NHWCi + (1 − √)NHWCo

f f

> (f − 1)CiKH KW Co

Which implies:

1
NHW ((1 − √)(Ci + Co))

f

> (f − 1)CiKH KW Co

Which ultimately leads to our desired inequality:

(f − 1)CiKH KW Co
NHW > 1(1 − √)(Ci + Co)f

References
Kang, D., Emmons, J., Abuzaid, F., Bailis, P., and Zaharia,

M. NoScope: Optimizing Neural Network Queries over
Video at Scale. Proceedings of the VLDB Endowment, 10
(11):1586–1597, 2017.

NVIDIA. NVIDIA Deep Learning Performance Guide.
https://docs.nvidia.com/deeplearning/
sdk/dl-performance-guide/index.html.
Last accessed 08 June 2021.

7

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html

