L))

-~ Kangaroo: Theory and Practice of Caching Billions of
Tiny Objects on Flash

SARA MCALLISTER and BENJAMIN BERG, Carnegie Mellon University

JULIAN TUTUNCU-MACIAS, Goldman Sachs

JUNCHENG YANG, Carnegie Mellon University

SATHYA GUNASEKAR and JIMMY LU, Meta

DANIEL S. BERGER, Microsoft Research and University of Washington

NATHAN BECKMANN and GREGORY R. GANGER, Carnegie Mellon University

Many social-media and IoT services have very large working sets consisting of billions of tiny (~100 B) objects. 21
Large, flash-based caches are important to serving these working sets at acceptable monetary cost. However,
caching tiny objects on flash is challenging for two reasons: (i) SSDs can read/write data only in multi-KB
“pages” that are much larger than a single object, stressing the limited number of times flash can be written;
and (ii) very few bits per cached object can be kept in DRAM without losing flash’s cost advantage. Unfortu-
nately, existing flash-cache designs fall short of addressing these challenges: write-optimized designs require
too much DRAM, and DRAM-optimized designs require too many flash writes.

We present KANGAROO, a new flash-cache design that optimizes both DRAM usage and flash writes to
maximize cache performance while minimizing cost. Kangaroo combines a large, set-associative cache with a
small, log-structured cache. The set-associative cache requires minimal DRAM, while the log-structured cache
minimizes Kangaroo’s flash writes. Experiments using traces from Meta and Twitter show that Kangaroo
achieves DRAM usage close to the best prior DRAM-optimized design, flash writes close to the best prior
write-optimized design, and miss ratios better than both. Kangaroo’s design is Pareto-optimal across a range
of allowed write rates, DRAM sizes, and flash sizes, reducing misses by 29% over the state of the art. These
results are corroborated by analytical models presented herein and with a test deployment of Kangaroo in a
production flash cache at Meta.
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1 INTRODUCTION

Many web services require fast, cheap access to billions of tiny objects, each a few hundred bytes
or less. Examples include social networks like Facebook or LinkedIn [16, 24, 69], microblogging
services like Twitter [72, 73], ecommerce [18], and emerging sensing applications in the Internet
of Things [37, 45, 46]. Given the societal importance of such applications, there is a strong need to
cache tiny objects at high performance and low cost (i.e., capital and operational expense).

Among existing memory and storage technologies with acceptable performance, flash is by far
the most cost-effective. DRAM and non-volatile memories (NVMs) have excellent performance,
but both are an order-of-magnitude more expensive than flash. Thus, cost argues for using of large
amounts of flash with minimal DRAM.

Flash’s main challenge is its limited write endurance; i.e., flash can only be written so many times
before wearing out. Wearout is especially problematic for tiny objects because flash can be read
and written only at multi-KB granularity. For example, writing a 100 B object may require writing
a 4 KB flash page, amplifying bytes written by 40X and rapidly wearing out the flash device. Thus,
cost also argues for minimizing excess bytes written to flash.

The problem. Prior flash-cache designs either use too much DRAM or write flash too much.
Log-structured caches write objects to flash sequentially and keep an index (typically in DRAM)
that tracks where objects are located on flash [19, 34, 47, 61, 62, 65]. By writing objects sequentially
and batching many insertions into each flash write, log-structured caches greatly reduce the
excess bytes written to flash. However, tracking billions of tiny objects requires a large index, and
even a heavily optimized index needs large amounts of DRAM [34]. Set-associative caches operate
by hashing objects’ keys into distinct “sets,” much like CPU caches [16, 24, 53]. These designs do
not require a DRAM index because an object’s possible locations are implied by its key. However,
set-associative caches write many excess bytes to flash. Admitting a single small object to the
cache requires re-writing an entire set, significantly amplifying the number of bytes written to
the flash device.

Our solution: Kangaroo. We introduce Kangaroo, a new flash-cache design optimized for billions
of tiny objects. The key insight is that existing cache designs each address half of the problem, and
they can be combined to overcome each other’s weaknesses while amplifying their strengths.

Kangaroo adopts a hierarchical design to achieve the best of both log-structured and set-
associative caches (Figure 1(a)). To avoid a large DRAM index, Kangaroo organizes the bulk of
cache capacity as a set-associative cache, called KSet. To reduce flash writes, Kangaroo places a
small (e.g., 5% of flash) log-structured cache, called KLog, in front of KSet. KLog buffers many ob-
jects, looking for objects that map to the same set in KSet (i.e., hash collisions), so that each flash
write to KSet can insert multiple objects. Our insight is that even a small log will yield many hash
collisions, so only a small amount of extra DRAM (for KLog’s index) is needed to significantly
reduce flash writes (in KSet).

The layers in Kangaroo’s design complement one another to maximize hit ratio while minimiz-
ing system cost across flash and DRAM. Kangaroo introduces three techniques to efficiently realize
its hierarchical design and increase its effectiveness. First, Kangaroo’s partitioned index lets it effi-
ciently find all objects in KLog that map to the same set in KSet while using a minimal amount of
DRAM. Second, since Kangaroo is a cache, not a key-value store, it is free to drop objects instead
of admitting them to KSet. Kangaroo’s threshold admission policy exploits this freedom to admit
objects from KLog to KSet only when there are enough hash collisions — i.e., only when the flash
write is sufficiently amortized. Third, Kangaroo’s “RRIParoo” eviction policy improves hit ratio by
supporting intelligent eviction in KSet, even though KSet lacks a conventional DRAM index to
track eviction metadata.
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(a) Overview. (b) Kangaroo reduces misses by 29%.

Fig. 1. (a) High-level illustration of Kangaroo’s design. (b) Miss ratio achieved on a production trace from
Meta by different flash-cache designs on a 1.9 TB drive with a budget of 16 GB DRAM and three device-writes
per day. Prior designs are constrained by either DRAM or flash writes, whereas Kangaroo’s design balances
these constraints to reduce misses by 29%.

Summary of results. We implement Kangaroo as a module in CacheLib [16] (cachelib.org). We
evaluate Kangaroo by replaying production traces on real systems and in simulation for sensitivity
studies. Prior designs are limited by DRAM usage or flash write rate, whereas Kangaroo optimizes
for both constraints. For example, under typical DRAM and flash-write budgets, Kangaroo reduces
misses by 29% on a production trace from Meta (Figure 1(b)), lowering miss ratio from 0.29 to 0.20.
Moreover, in simulation, we show that Kangaroo scales well with flash capacity, performs well
with different DRAM and flash-write budgets, and handles different access patterns well. We break
down Kangaroo’s techniques to see how much each contributes. Finally, we show that Kangaroo’s
benefits hold up in the real world through a test deployment at Meta.

Contributions. This paper contributes the following:

e Problem: We show that, for tiny objects, prior cache designs require either too much DRAM
(log-structured caches) or too many flash writes (set-associative caches).

o Key idea: We show how to combine log-structured and set-associative designs to cache tiny
objects on flash at low cost.

o Theoretical foundations: We develop a rigorous Markov model that shows Kangaroo reduces
flash writes over a set-associative flash design without any increase in miss ratio.

e Kangaroo design & implementation: Kangaroo introduces three techniques to realize and im-
prove the basic design: its partitioned index, threshold admission, and RRIParoo eviction.
These techniques improve hit ratio while keeping DRAM usage, flash writes, and runtime
overhead low.

o Results: We show that, unlike prior caches, Kangaroo’s design can handle different DRAM
and flash-write budgets. As a result, Kangaroo is Pareto-optimal across a wide range of con-
straints and for different workloads.

2 BACKGROUND AND RELATED WORK

This section discusses the important class of applications relying on billions of tiny objects, why
flash is needed to cache them and the challenges flash brings, and the shortcomings of existing
flash-cache designs.

2.1 Tiny Objects are Important and Numerous

Tiny objects are prevalent in many large-scale systems:
e At Meta, small objects are prevalent in the Facebook social graph. For example, the average
social-graph edge size is under 100 B. Across edges, nodes, and other objects, the average
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object size is less than 700 B [16, 24]. This has led to the development of a dedicated flash
caching system for small objects [16].

At Twitter, tweets are limited to 280 B, and the average tweet is fewer than 33 characters [55].
Due to the massive and growing number of tweets, Twitter seeks a cost-effective caching
solution [74].

At Microsoft Azure, sensor updates from IoT devices in Azure Streaming Analytics are a
growing use case. Before an update can be processed (e.g., to trigger a real-time action),
the server must fetch metadata (the sensor’s unit of measurement, geolocation, owner, etc.)
with an average size of 300 B. For efficiency and availability, it caches the most popular
metadata [37]. Another use case arises in search advertising, where Azure caches predictions
and other results [45, 46].

Each of these systems accesses billions of objects that are each significantly less than the 4KB
minimum write granularity of block-storage devices. For example, Facebook logs 1.5 billion users
daily [9] and just friendship connections alone account for hundreds to thousands of edges per
user [24, 66]. Twitter logs over 500 million new tweets per day and serves over 190 million daily
users [10]. While IoT update frequencies and ad impressions are not publicly available, the number
of connected devices is estimated to have surpassed 50 billion in 2020 [32], and the average person
was estimated to see 5,000 ads every day as early as 2007 [63].

2.2 Caching Tiny Objects in Flash is Hard

While individual objects in the above applications are tiny, application working sets on individual
servers still add up to TBs of data. To reduce throughput demands on back-end data-management
systems, applications rely on large-scale, cost-efficient caches, as a single caching server can re-
place tens of backend servers [16]. Unfortunately, as described below, current caching systems are
inefficient for tiny objects. There is therefore a need for caching systems optimized specifically for
large numbers of tiny objects.

Why not just use memory? DRAM is expensive, both in terms of acquisition and power cost
per bit. This makes traditional DRAM caches hard to scale, particularly with data sizes increasing
exponentially [4]. DRAM capacity is also often limited due to operational concerns. Data-center
operators generally provision a limited number of server configurations to reduce management
complexity. It is not possible in some real deployments to fine-tune server configuration for
caching [64]. Moreover, DRAM is often in high demand, so all applications are encouraged to
minimize DRAM usage. For example, the trend in recent years at Meta is towards less DRAM and
more flash per server [16, 64].

Why flash? Flash currently provides the best combination of performance and cost among
memory and storage technologies, and is thus the technology of choice for most large-scale
caches [16, 21, 22, 34, 62]. It is persistent, cheaper and more power-efficient than DRAM, and much
faster than mechanical disks. While flash-based caches do use DRAM for metadata and “hot” ob-
jects, the bulk of the cache capacity is flash to reduce end-to-end system cost.

Challenges in flash caching. Flash presents many problems not present in DRAM caches. A big
one is that flash has limited write endurance, which means there is a limit on the number of writes
before the flash device wears out and must be replaced [23, 40, 44]. Without care, caches can quickly
wear out flash devices as they rapidly admit and evict objects [16, 34]. Hence, many existing flash
caches over-provision capacity, suffering more misses in order to slow wearout [16, 22]. New flash
technologies, such as multi-layer QLC (four bits per cell) and PLC (five bits per cell) [27], increase
capacity and decrease cost but significantly reduce write endurance.
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Fig. 2. The effect of flash over-provisioning on device-level write amplification (DLwA) of random writes of
various sizes. DLWA increases as over-provisioning decreases.

Exacerbating the endurance issue, flash drives suffer from write amplification. Write amplifica-
tion occurs when the number of bytes written to the underlying flash exceeds the number of bytes
of data originally written. Write amplification is expressed as a multiplier of the number of bytes
written, and thus a value of of 1X is minimal, indicating no extra writes. Flash devices suffer from
both device-level write amplification and application-level write amplification [40].

Device-level write amplification (DLwA) [34, 47, 65] occurs when the flash translation
layer (FTL) writes more flash pages than asked for by the storage application (e.g., file system,
database, or cache). Current flash drives implement the age-old block-storage interface, wherein
hosts read and write logical blocks in a numerical logical-block address (LBA) namespace.
Generally, the internal flash-page size and the external logical-block size are the same, with 4 KB
being common, even though the flash device can only erase pages in much larger (e.g., 256 MB)
“erase blocks”. Most DLwaA is caused by cleaning activity that copies live pages elsewhere before
an erase block is cleared.

Generally speaking, bLwA worsens as more of the raw flash capacity is utilized and as access
patterns consist more of small, random writes. A common approach to reduce pLwWA is over-
provisioning, i.e., only exposing a fraction of the raw flash capacity in the LBA namespace, so
that cleaning tends to find fewer live pages in victim erase blocks [16, 22]. Figure 2 shows pLwa
vs. utilized capacity for random 4 KB writes to a 1.9 TB flash drive. As expected, bLwa significantly
increases as over-provisioning decreases, from ~1x at 50% utilization to ~10x at 100% utilization.

Application-level write amplification (ALwA) occurs when the storage application re-writes
some of its own data as part of its storage management. One form of this is akin to FTL cleaning,
such as cleaning in log-structured file systems [44, 57] or compaction in log-structured merge
trees [6, 8]. Another form is caused by having to write an entire logical block. To write a smaller
amount of data, the application must read the block, install the new data, and then write the entire
block [52]. For example, installing 1 KB of new data into a 4 KB logical block involves rewriting
the other 3 KB, giving ALwA of 4X. Ideally, the unmodified data in the block would not have been
rewritten.

Why caching tiny objects is hard. The size of tiny objects makes caching them on flash chal-
lenging. Tracking billions of tiny objects individually in large storage devices can require huge
metadata structures [34], which either require a huge amount of DRAM, additional flash writes
(if the index lives on flash), or both. To amortize tracking metadata, one could group many tiny
objects into a larger, long-lived “meta-object”. This can be inefficient, however, if individual objects
in the meta-object are accessed in disparate patterns.

Tiny objects are also a major challenge for write amplification. Traditional cache designs (i.e.,
for DRAM caches) freely re-write objects in place, leading to small, random writes, i.e., the worst
case for DLwA. Since tiny objects are much smaller than a logical block, re-writing them in place
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would additionally involve substantial ALwa — 40X for a 100 B object in a 4 KB logical block —
which is multiplicative with DLwA. Grouping tiny objects into larger meta-objects, as mentioned
above, shifts ALwa from logical blocks to meta-objects but does not address the problem.

2.3 Current Approaches and Related Work

This section discusses existing solutions for flash caching and their shortcomings for caching tiny
objects.

Key-value stores: Flash-efficient key-value stores have been developed and demonstrated [8, 33,
48, 56, 70], and it is tempting to consider them when a cache is needed. But key-value stores
generally assume that deletion is rare and that stored values must be kept until told otherwise.
In contrast, caches delete items frequently and at their own discretion (i.e., every time an item is
evicted). With frequent deletions, key-value stores experience severe write amplification, much
lower effective capacity, or both [15, 22, 34, 65, 70].

As a concrete example, consider SILT [48], the key-value store that comes closest to Kangaroo
in its high-level design. Like Kangaroo, SILT uses a multi-tier flash design to balance memory
index size vs. write amplification. Unfortunately, SILT’s design is poorly suited to caching. For
example, SILT’s two main layers, which hold >99% of entries, are immutable. Because those layers
are immutable, DELETE operations are logged and do not immediately reclaim space. Thus, cache
evictions result in holes (i.e., reduced cache capacity) until the next compaction (merge and re-
sort) occurs. One can reduce the lost cache capacity with more frequent compactions, but at a
large penalty to performance and ALWA.

Similar issues with DELETEs affect most key-value stores, often with this same trade-off between
compaction frequency and holes in immutable data structures. One may be able to reduce these
overheads somewhat by coordinating eviction with compaction operations, but this is not trivial
and not how these systems were designed. For instance, Netflix used RocksDB [8] as a flash cache
and had to over-provision by 67% due to this issue [22]. Some key-value stores reduce ALwA by
making reads less efficient [49, 56, 70], but do not sidestep the fundamental challenge of DELETES
wasting capacity. In contrast, flash caches have the freedom to evict objects when convenient. This
lets flash caches co-design data structures and policies so that DELETEs are efficient and minimal
space is wasted.

Log-structured caches: To reduce write amplification, many flash caches employ a log structure
on flash with an index in DRAM to track objects’ locations [19, 34, 47, 61, 62, 65]. While this
solution often works well for larger objects, it requires prohibitively large amounts of DRAM for
tiny objects, as the index must keep one entry per object. The index can spill onto flash [70], but
spilling adds flash reads for lookups and flash writes to update the index as objects are admitted
and evicted.

Even Flashield [34], a recent log-structured cache design for small objects, faces DRAM problems
for larger flash devices. After optimizing its DRAM usage, Flashield needs 20 bits per object for
indexing plus approximately 10 bits per object for Bloom filters. Thus, Flashield would need 75 GB
of DRAM to track 2 TB of 100 B objects. In fact, Flashield’s DRAM usage is much higher than this
because it relies on an in-memory cache to decide which objects to write to flash. The DRAM cache
must grow with flash capacity or else prediction accuracy will suffer, leading to more misses.

Thus, the total DRAM required for a log-structured cache can quickly exceed the amount avail-
able and significantly increase system cost and power. Technology trends will make these problems
worse over time, since cost per bit continues to decrease faster for flash than for DRAM [27, 71].

Set-associative flash caches: Metadata to locate objects on flash can be reduced by restricting
their possible locations [53]. Meta’s CacheLib [16] implements such a design for small objects
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Fig. 3. Lookups in Kangaroo first check a tiny DRAM cache; then KLog, a small on-flash log-structured cache
with an in-DRAM index; and finally KSet, a large on-flash set-associative cache. Kangaroo uses little DRAM
because KLog is small and KSet has no DRAM index.

(<2KB), e.g., items in the social graph [24]. CacheLib’s “small-object cache” (SOC) is a set-
associative cache with variable-size objects, using a hash function to map each object to a specific
4KB set (i.e., a flash page). With this scheme, SOC requires no index and only ~3 bits of DRAM
per object for per-set Bloom filters.

Although more DRAM-efficient, set-associative designs suffer from excessive write rates. In-
serting a new object into a set means rewriting an entire flash page, most of which is unchanged,
incurring 40X ALwa for a 100 B object and 4 KB page as discussed above. In addition, flash writes
are a worst case for pLwA: small and random (Figure 2). The multiplicative nature of ALwa and
prwa compounds the harmful effect on device lifetimes.

Set-associative flash caches limit their flash write-rate through two main techniques. To reduce
DLWA, set-associative flash caches are often massively over-provisioned. For example, CacheLib’s
SOC is run in production with over half of the flash device empty [16]. That is, the cache requires
more than twice the physical flash to provide a given cache capacity. Additionally, to limit ALwa,
CacheLib’s SOC employs a pre-flash admission policy [16, 34] that rejects a fraction of objects
before they are written to flash. Unfortunately, both techniques reduce the cache’s achievable hit
ratio.

Summary: Prior work does not adequately address how to cache tiny objects in flash at low cost.
Log-structured caches require too much DRAM, and set-associative caches add too much write
amplification.

3 KANGAROO OVERVIEW AND MOTIVATION

Kangaroo is a new flash-cache design optimized for billions of tiny objects. Kangaroo aims to
maximize hit ratio while minimizing DRAM usage and flash writes. Like some key-value stores [26,
48, 50], Kangaroo adopts a hierarchical design, split across memory and flash. Figure 3 depicts
the two layers in Kangaroo’s design: (i) KLog, a log-structured flash cache and (ii) KSet, a set-
associative flash cache; as well as a DRAM cache that sits in front of Kangaroo.

Basic operation. Kangaroo is split across DRAM and flash. As shown in Figure 3, (D lookups first
check the DRAM cache, which is very small (<1% of capacity). @ If the requested key is not found,
requests next check KLog (~5% of capacity). KLog maintains a DRAM index to track objects stored
in a circular log on flash. (3 If the key is not found in KLog’s index, requests check KSet (~95%
of capacity). KSet has no DRAM index; instead, Kangaroo hashes the requested key to find the set
(i.e., the LBA(s) on flash) that might hold the object. If the requested key is not in the small,
per-set Bloom filter, the request is a miss. Otherwise, the object is probably on flash, so the
request reads the LBA(s) for the given set and scans for the requested key.
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Fig. 4. Objects are first inserted into the tiny DRAM cache, then appended to KLog, and finally moved
— along with all other objects mapping to the same set — to KSet. Kangaroo significantly reduces write
amplification because KLog is written sequentially and each write to KSet inserts multiple objects.

Insertions follow a similar procedure to reads, as shown in Figure 4. (D Newly inserted items are
first written to the DRAM cache. This likely pushes some objects out of the DRAM cache, where

they are either dropped by KLog’s pre-flash admission policy or added to KLog’s DRAM
index and @ appended to KLog’s flash log (after buffering in DRAM to batch many insertions
into a single flash write). Likewise, inserting objects to KLog will push other objects out of KLog,
which are either dropped by another admission policy or inserted into KSet. Insertions to
KSet operate somewhat differently than in a conventional cache. For any object moved from KLog
to KSet, Kangaroo moves all objects in KLog that map to the same set to KSet, no matter where they
are in the log. Doing this amortizes flash writes in KSet, significantly reducing Kangaroo’s ALwA.

Design rationale. Kangaroo relies on its complementary layers for its efficiency and performance.
At a high level, KSet minimizes DRAM usage and KLog minimizes flash writes. Like prior
set-associative caches, KSet eliminates the DRAM index by hashing objects’ keys to restrict their
possible locations on flash. But KSet alone suffers too much write amplification, as every tiny
object writes a full 4 KB page when admitted. KLog comes to the rescue, serving as a write-efficient
staging area in front of KSet, which Kangaroo uses to amortize KSet’s writes.

On top of this basic design, Kangaroo introduces three techniques to minimize DRAM usage,
minimize flash writes, and reduce cache misses. (i) Kangaroo’s partitioned index for KLog can
efficiently find all objects in KLog mapping to the same set in KSet, and is split into many inde-
pendent partitions to minimize DRAM usage. (ii) Kangaroo’s threshold admission policy between
KLog and KSet only admits objects to KSet when at least n objects in KLog map to the same set,
reducing ALwA by > nX. (iii) Kangaroo’s “RRIParoo” eviction improves hit ratio in KSet by approx-
imating RRIP [41], a state-of-the-art eviction policy, while only using a single bit of DRAM per
object.

4 THEORETICAL FOUNDATIONS OF KANGAROO

We develop a Markov model of Kangaroo’s basic design, including threshold admission, to analyze
Kangaroo’s miss ratio and flash write rate. This model rigorously demonstrates that Kangaroo can
greatly reduce ALwA compared to a set-only design, without any increase in miss ratio.

Assumptions. For tractability, this analysis makes several simplifying assumptions that do not
hold in our design (Section 5), implementation (Section 6), or evaluation (Section 7). We assume
the independent reference model (IRM), in which each object has a fixed reference popularity,
drawn independently from a known object probability distribution. However, we make no assump-
tions about the object popularity distribution; our model holds across any popularity distribution
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Table 1. Key Variables in the Markov Model

Variable Description

Out-of-cache state.
KLog state.
KSet state.

Capacity of each set.

Number of sets in KSet.

Capacity of KLog.

Probability of requesting object i.

I2 v 2 |TOO

m Miss probability.
f Flash write rate.
i, X Stationary probability of object i in state X.
X —Y  Transition from state X to state Y.

(uniform, Zipfian, etc.). We also assume that all objects are fixed-size and that KSet uses FIFO
eviction. Similar assumptions are common in prior cache models [11, 17, 19, 30, 31, 38, 42, 54, 58].

We model a cache consisting of two layers: a log-structured cache and a set-associative cache,
called KLog and KSet as in Kangaroo — but note that the model simplifies Kangaroo’s operation
significantly. We assume that an object is first admitted to KLog. Once KLog fills up, it flushes
all objects to KSet. KLog and KSet may employ an admission policy that drops objects instead of
admitting them, as described below. Our goals are (i) to compute the miss probability and flash
writes per cache access and (ii) to show that Kangaroo improves miss ratio for a given write rate
vs. the baseline set-associative cache.

Modeling approach. We model how a single object moves through KLog and KSet. Figure 5 shows
our simple continuous-time Markov model, which has three states: an object can be out-of-cache
(0), in KLog (Q), or in KSet (W). To compute the miss probability m, we need to know each object’s
probability of being requested, which is fixed according to the IRM, and the probability that it is
out-of-cache (in state O). To find the latter, we need to know each state’s stationary probabilities,
7, i.e., the likelihood of an object being in a given state once the cache reaches its steady-state
behavior. To compute these probabilities and to find flash write rate, we require the transition
rates between states, e.g., how often an object transitions O — Q when an object is admitted to
KLog. Table 1 summarizes the key variables in the model.

Summary of model results. Through building our model from a baseline set-associative cache,
we will show that Kangaroo’s ALwa follows Theorem 1 and that Kangaroo’s miss ratio is the same
as a set-associative flash cache.

THEOREM 1. Suppose KLog contains q objects; KSet contains s sets with w objects each; objects are
admitted to flash with a p probability; and objects are only admitted to KSet if at least n new objects
are being inserted. Kangaroo’ app-level write amplification is

(1)

Wﬁx(n)
Fx(WE[X|X >n] )’

ALWAKangaroo = P (1 +

where X ~ Binomial(g,1/s) and Fx(n) = Yo, P[X = i] is the probability of a set being re-written.
Furthermore, the probability of admitting an object to KSet is P [X > n|X > 1].
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Fig.5. The continuous Markov model for Kangaroo’s basic cache design (a) with no log, (b) with no admission
policies, (c) with Kangaroo’s threshold admission before KSet, and (d) with probabilistic admission before

KLog.

For areasonable parameterization of Kangaroo on a 2 TB drive with 5% of flash dedicated to KLog
(q=5-10%s = 4.6 -10%, w = 40, p = 1, and n = 2), Kangaroo’s aAtwa will be ~ 5.8. In contrast,
a set-associative cache of the same size and admission probability, P [X > n|X > 1] ~ 0.45, gets
ALWAgeis = W - 0.45 = 17.9%. That is, Kangaroo improves ALWA by ~ 3.08X%, a large decrease in
ALWA with only a small percentage of flash dedicated to KLog.

4.1 Baseline Set-associative Cache

We first analyze a baseline set-associative cache (i.e., without KLog) and build up to Kangaroo. This
design has all objects admitted directly to KSet.

Transition rates: Each object i is requested with probability r;. When an object is requested and not
in the cache, there is a miss and the object moves to KSet. So, the transition rate from O — W is r;.

Each set in KSet holds w objects. Since we are modeling FIFO eviction of fixed-sized objects,
KSet evicts each object after w newer objects are inserted into the same set. With s sets, each set

only receives 1/s of misses, so the probability of writing a new object to a set is 7. Since there
needs to be w newer objects in the set to evict an object, the transition rate from W — O is '"T/s

Stationary probabilities: With the transition rates, we calculate the stationary probabilities using
two properties of stationary probabilities: (i) the sum of all the stationary probabilities is 1 and
(ii) the likelihood of entering and leaving a state is equal since stationary probabilities occur at

steady-state behavior. From these, we reach the equations:

1=mo+ miw (2)
m

ri M0 = — Miw (3)
sw

which means that the stationary probabilities are:

m

Tio = ———— 4
L0 m+swr; @)
SWr;j
Tow = ———— (5)
m+swr;

Miss ratio: The miss ratio is computed by summing the probability that an object will miss when
it is requested for all objects. Object i is requested with probability r; and misses when it is
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out-of-cache with probability ; o. Hence, the overall miss ratio ratio m is:

_ _ mr;
Mbpaseline = riTio = s wr (6)
1

i i
Without knowing the popularity distribution {r;}, we cannot go further than this; yet we will see
it is sufficient to show that Kangaroo’s design does not compromise miss ratio under our model.

Flash writes: To compute the flash write rate, we assign a write-cost to each edge in Figure 5. For
the baseline set-associative cache, each transition O — W re-writes the entire set, and so the
transition has a write-cost of w. Transitions W — O do not write anything to flash, and so they
have no write-cost. The flash write rate f is the average bytes written to flash on each access; that
is, we compute write rate in logical time. In the baseline design, this is:

fbaseline = Z ri 7,0 *W = W * Mpaseline (7)
i

The application-level write amplification (ALwa) is the flash write rate divided by the miss rate,
since each miss should ideally write exactly one object. Hence, for the baseline:

ALWAbaseline = m =W, (8)

Mpaseline

which matches our expectations for set-associative designs, since w is just the size of each set
(Section 2.3).

4.2 Add KLog, No Admission Policies

Next we add KLog, a log-structured cache, in front of KSet, as shown in Figure 5(b). KLog’s oper-
ation in our simple model is to buffer objects until full, and then flush the log’s contents to KSet.

Transition rates: The transition rate O — Q with KLog is the same as O — W in the baseline, since
the only difference is that objects are written to KLog instead of KSet.

In our simplified Markov model, KLog flushes all objects in KLog to KSet when KLog is com-
pletely full, i.e., it has g objects. KLog starts with 0 objects and each miss inserts one object, so
KLog is half-full when an object is admitted on average. Therefore, on average, q/2 objects need
to be inserted until the next flush, and the transition rate from Q —» W is 2% = 27'”. Finally, the

q/2
transition rate from W — O is the same as the baseline.

Stationary probabilities:

2m m

Ti,0 = ~ (9)

qri+2m+2swr; m+swr;

r

Ti0 = L (10)

qri +2m+2swr;

25Wr;j

Tiw = l (11)

qri+2m+2swr;
The approximation for 7; o holds when ¢ < sw (i.e., when KLog is much smaller than KSet).

We find that Equation (9) is the same as Equation (4), demonstrating that adding KLog does not
significantly affect the probability an object is out-of-cache, so long as KLog is small.
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Miss ratio: As a result, the miss ratio does not change either:

MKLog-only = Z ri Ti,0 (12)

1
2m
B T P — (13)
i

qri +2m + 2swr;

m
Y )
- m+ swr;
= Mpaseline (15)

Flash write rate: Writes are much cheaper with KLog. Since log-structured caches write out objects
sequentially in batches, newly admitted objects to KLog only write one object to flash per miss.
Hence, the write-cost of O — Q edge is 1.

Writes to KSet are also cheaper because, even though w objects are still written to flash at a
time, these writes are amortized across all objects in KLog that map to the same set. The number
of objects admitted to each set is a balls-and-bins problem. Specifically, it follows a binomial distri-
bution X ~ B(g, 1/s). Each transition is amortized across E [B|B > 1] objects, as KSet only writes
the set if at least one object is admitted. The total flash write rate is:

2m w
sy = 1100 1+ SE A0 By 1o

i

Which means every object suffers write amplification of:

ALWARLog-only = 1 + ————— (17)
KLog-only E [X|X > 1]

Deriving Equation (1 7) in detail:
2m
- Zm'1+_'qri‘ﬁ

Coganty = Y
f og-ony qri +2m + 2swr;

i

w 2mr;
=14 e | X ) ——————
( E[X|X > 1]) ( qri + 2m+23wri)

i

w
= (1 + m) X MKLog-only

This means that KLog is responsible for 1 object write, and the rest of the writes come from
KSet.

4.3 Add Threshold Admission Before KSet

Next, we consider the impact of adding Kangaroo’s threshold admission policy (Section 5.3), which
only admits objects to a set in KSet if at least n objects map to that set. For instance, a threshold of
2 means that if KLog has only one object mapping to a set, then that object is discarded (evicted) in-
stead of being inserted into KSet. To represent threshold admission, we add an edge in the Markov
model (Figure 5(c)) back from Q — O, denoting the discarded objects.

Transition rates: We denote the probability that a set has at least n objects mapped to it during a
flush of KLog as 7(n). The exact value of 7 can be computed from the binomial distribution, X,
where X ~ Binomial(g, 1/s) given that there is one object mapping the the set, i.e., X > 1. Since
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objects are admitted to KSet if there are greater than n:

7(n) = fx_(fl)’ (18)
Fx(1)
the probability that X has a value greater than n given that X has a value greater than 1.

The stream of objects flushed from KLog are split between the transition Q — O and Q — W.
The added edge back from Q — O, represents the 1 — 7 fraction of the discarded objects. The re-
maining 7 fraction transition Q — W as before. For the Markov model, the transition probabilities
along those edges are multiplied by their probability.

The admission policy also reduces the admission rate to state W, which in turn causes an object
to spend more time in state W. This is reflected in the transition rate W — O, which is scaled by 7.

Stationary probability and miss ratio: Threshold admission adds an edge, which causes the station-

ary equations to be more complicated:

1=mo+ Ti,Q + Tiw (19)
mrt 2m(1—-r1)
rimio=——Tiw+———TjQ (20)
sw q
mrt 2mrt
— Tw = Ti,0 (21)
sw q

Surprisingly, the threshold admission policy does not change the stationary probabilities in the
Markov model. Hence, the miss ratio is also unchanged:

Mihreshold = MKLog-only ~ Mbaseline (22)

Flash write rate: Threshold admission further reduces the write rate in two ways: (i) objects are
less likely to enter KSet at all; and (ii) the write-cost of KSet is reduced because at least n objects
are written. This is reflected in the flash write rate and write amplification:

ﬁhreshold = Z ri-mio- 1+

i

2mrt w
ST o
FOUEXIX > 1]

(23)

N w
_* .
E[X|X > n]

This formula is derived similar to Equation (17) above. Note that the ALwA can be easily read off
from Figure 5 at a glance by “following the write loop” from O back to O, adding up write costs
for each edge and scaling them by their transition rate relative to KLog-only, e.g., by a factor of ¢
for the second term.

Kangaroo’s threshold admission policy thus greatly decreases ALwa in KSet’s set-associative
design by guaranteeing a minimum level of amortization on all flash writes.

ALWAthreshold = 1 (24)

4.4 Add Probabilistic Admission Before KLog

The above techniques — KLog and threshold admission — are Kangaroo’s main tricks to reduce
flash writes. However, the design thus far always has write amplification at least 1X because all
objects are admitted to KLog. It is possible to achieve write amplification below 1x by adding an
admission policy in front of KLog. We now consider the effect of adding a probabilistic admis-
sion policy that drops objects with a probability p before they are admitted to KLog, as shown in
Figure 5(d).

Transition rates: If only a fraction p of objects are admitted to KLog, then the transition rate O — Q
decreases by a factor p. This factor of p propagates to all of the other transition rates.
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Fig. 6. Modeled ALwA for Kangaroo with different percentages of the flash cache devoted to KLog, assuming
4 KB sets, 100% probabilistic admission, and no admission threshold.

Stationary probability and miss ratio: As with the threshold admission policy, stationary probabil-
ities and miss ratio do not change by adding a probabilistic admission policy before KLog.

This insensitivity to admission probability reflects a limitation of the model: we assume static
reference probabilities, so all popular objects will eventually make it into the cache. In practice,
object popularity changes over time, so miss ratio decreases at very low admission probabilities
because the cache does not admit newly popular objects quickly enough.

Flash write rate: The write-cost of each edge does not change, but probability of traversing each
edge changes by a factor p. Thus:

2mprt w
fKangaroo = Zi:pri * T, 0 ¢ 1+ qp CTTi,Q E [X|X > n] (25)
w
ALWAKangaroo =p 1+ E[}{'Tn] T (26)

This equation is Theorem 1, as expected.

4.5 Modeling Results

With a full model of Kangaroo, we can not only show the aAtwa benefits of Kangaroo over the
set-associative baseline, but we can also predict the effect of different parameters on Kangaroo’s
ALWA.

Figure 6 shows the effect of KLog’s size on ALwa without an admission policy. As Kangaroo
devotes more space to KLog, its ALwA greatly decreases. For instance, doubling the percent of the
cache dedicated to KLog from 2.5% to 5% decreases ALWA by up to 38%. Since the overall amount
of flash dedicated to KLog is small, there is only a small increase in DRAM overhead for this
configuration of Kangaroo. Thus, even a small KLog greatly decreases ALWA.

Figure 7 shows the effect of thresholding on ALwa and KSet’s admission probability for different
object sizes using Theorem 1, keeping KLog at 5% of cache size. With no thresholding (n = 1), no
objects are rejected; but as the threshold increases more objects are rejected (Figure 7(a)). Also,
since more objects fit in the KLog when objects are smaller, smaller objects are more likely to be
admitted. Thresholding significantly reduces aArwa (Figure 7(b)). Importantly, the ALwA savings
are larger than the fraction of objects rejected, unlike purely probabilistic admission. For instance,
with 100 B objects, threshold n = 2 admits 44.4% of objects, but its write rate is only 22.8% of the
write rate with threshold n = 1.

The ALwaA results are consistent with results in our experiments (Section 7), giving us confidence
when using the model to explore the aAtwa design space.
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Fig. 7. Modeled (a) admission percentage and (b) ALwa for Kangaroo with different threshold values and
object sizes, assuming 4 KB sets and KLog w/ 5% of capacity.

5 KANGAROO DESIGN

This section describes the techniques introduced in KLog and KSet to reduce DRAM, flash writes,
and miss ratio.

5.1 Pre-flash Admission to KLog

Like previous flash caches, Kangaroo may not admit all objects evicted from the DRAM cache [16,
28, 29, 34-36]. It has a pre-flash admission policy that can be configured to randomly admit objects
to KLog with probability p, decreasing Kangaroo’s write rate proportionally without additional
DRAM overhead. Compared to prior designs, Kangaroo can afford to admit a larger fraction of
objects to flash than prior flash caches due to its low ALwa; in fact, except at very low write budgets,
Kangaroo admits almost all objects to KLog.

5.2 KlLog

KLog’s role is to minimize the flash cache’s aALwa without requiring much DRAM. To accomplish
this, it must support three main operations: Looxup, INSERT, and ENUMERATE-SET. ENUMERATE-
SET allows KLog to find all objects mapping to the same set in KSet. LookuP and INSERT operate
similarly to a conventional log-structured cache with an approximate index. However, the under-
lying data structure is designed so that ENUMERATE-SET is efficient and has few false positives.

Operation. Like other log-structured caches, KLog writes objects to a circular buffer on flash in
large batches and tracks objects via an index kept in DRAM. To support ENUMERATE-SET efficiently,
KLog’s index is implemented as a hash table using separate chaining. Each index entry contains an
of fset tolocate the object in the flash log, a tag (partial hash of the object’s key), a next-pointer
to the next entry in the chain (for collision resolution), eviction-policy metadata (described in
Section 5.4), and a valid bit.

Lookup: To look up a key (Figure 8(a)), (D KLog determines which bucket it belongs to by comput-
ing the object’s set in KSet. @) KLog traverses index entries in this bucket, ignoring invalid entries,
until a tag matches a hash of the key. If there is no matching tag, KLog returns a miss. 3) KLog
reads the flash page at of fset in the log. After confirming a full key match, KLog returns the data
and updates eviction-policy metadata.

INserT: To insert an object (Figure 8(b)), @) KLog creates an index entry, adds it to the bucket
corresponding to the key’s set in KSet, and appends the object to an in-DRAM buffer. The on-flash
circular log is broken into many segments, one of which is buffered in DRAM at a time. (2) Once
the segment buffer is full, it is written to flash.
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Fig. 8. Overview of KLog operations.

ENUMERATE-SET: The ENUMERATE-SET(x) operation returns a list of all objects currently in KLog
that map to the same set in KSet as object x. This operation is efficient because, by construction, all
such objects will be in the same bucket in KLog’s index. That is, KLog intentionally exploits hash
collisions in its index so that it can enumerate a set simply by iterating through all entries in one
index bucket.

Internal KLog structure. As depicted in Figure 8, KLog is structured internally as multiple par-
titions. Each partition is an independent log-structured cache with its own flash log and DRAM
index. Moreover, each partition’s index is split into multiple tables, each an independent hash table.

This partitioned structure reduces DRAM usage, as described next, but otherwise changes the
operation of KLog little. The table and partition are inferred from an object’s set in KSet. Hence,
all objects in the same set will belong to the same partition, table, and bucket; and operations work
as described above within each table.

Reducing DRAM usage in KLog. Table 2 breaks down Kangaroo’s DRAM usage per object vs. a
naive log-structured design as a standalone cache (“Naive Log-Only”) and as a drop-in replacement
for KLog (“Naive Kangaroo”).

The flash offset must be large enough to identify which page in the flash log contains the
object, which requires log, (LogSize/4 KB) bits. By splitting the log into 64 partitions, KLog reduces
LogSize by 64X and saves 6 b in the pointer.

The tag size determines the false-positive rate in the index; i.e., a smaller tag leads to higher
read amplification. KLog splits the index into 2%° tables. Since the table is inferred from the key,
all keys in one table effectively share 20 b of information, and KLog can use a much smaller tag to
achieve the same false positive rate as the naive design.!

KLog’s structure also reduces the next-pointer size. We only need to know the offset into
memory allocated to the object’s index table. Thus, rather than using a generic memory pointer,
we can store a 16 b offset, which allows up to 2!¢ items per table. KLog can thus index 23¢ items as
parameterized (12.5 TB of flash with 200 B objects), which can be increased by splitting the index
into more tables.

In a naive cache using LRU eviction, each entry keeps a pointer to adjacent entries in the LRU list.
This requires 2-log, (LogSize/ObjectSize) bits. In contrast, Kangaroo’s RRIParoo policy (Section 5.4)
is based on RRIP [41] and only needs 3 b per object in KLog (and even less in KSet).

IProcessor caches reduce tag size vs. a fully associative cache similarly; each index table in KLog corresponds to a “set” in
the processor cache.
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Table 2. Breakdown of DRAM Per Object for a 2 TB Cache, Comparing Kangaroo to a
Naive Log-structured Cache and Kangaroo with a Naive Log Index

Component Naive Log-Only Naive Kangaroo Kangaroo

v offset 29b 25b 19b

g tag 29b 29b 9b

= next-pointer 64b 64b 16b

% Eviction metadata 67b 58b 3b

2 valid 1b 1b 1b
Sub-total 190 bits/obj 177 bits/obj 48 bits/obj

+ Bloom filter - 3b 3b

ii Eviction - 5b 1b
Sub-total - 8 bits/obj 4 bits/obj

— Index buckets ~3.1b ~3.1b ~0.8b

g Log size 100% = 181b 5% =8.9b 5% =2.4b

5 Set size 0% 95% =7.6b 95% =3.8b
Total 193.1 bits/obj 19.6 bits/obj 7.0 bits/obj

Bucket and LRU overhead assume 200 B objects.

Finally, each bucket in KLog’s index requires one pointer for the head of the chain. In naive logs,
this is a 64 b pointer. In KLog, it is a 16 b offset into the table’s memory. KLog allocates roughly one
bucket per set in KSet. With 4 KB sets and 200 B objects, the per-object DRAM overhead is 3.1b
(Naive) or 0.8b (KLog) per object.

All told, KLog’s partitioned structure reduces the per-object metadata from 190b to 48b per
object, a 3.96X savings vs. the naive design. Compared to prior index designs, KLog’s index uses
slightly more DRAM per object than the state-of-the-art (30 b per object in Flashield [34]), but it
supports ENUMERATE-SET and has fewer false positives. Most importantly, KLog only tracks ~5% of
objects in Kangaroo, so indexing overheads are just 3.2 b per object. Adding KSet’s DRAM overhead
gives a total of 7.0 b per object, a 4.3X improvement over the state-of-the-art.

5.3 KLog — KSet: Minimizing Flash Writes

Write amplification in KLog is not a significant concern because it has a ALwa close to 1X and
writes data in large segments, minimizing brwa. However, KSet’s write amplification is potentially
problematic due to its set-associative design. Kangaroo solves this by using KLog to greatly reduce
ALWA in KSet: namely, by amortizing each flash write in KSet across multiple admitted objects.

Moving objects from KLog to KSet. A background thread keeps one segment free in each log
partition. This thread flushes segments from the on-flash log in FIFO order, moving objects from
KLog to KSet as shown in Figure 8(c). For each victim object in the flushed segment, this thread
(D calls ENUMERATE-SET to find all other objects in KLog that should be moved with it; if
there are not enough objects to move (see below), the victim object is dropped or, if popular, is re-
admitted to KLog; otherwise, the victim object and all other objects returned by ENUMERATE-
SET are moved from KLog to KSet in a single flash write.

Instead of flushing one segment at a time, one could fill the entire log and then flush it completely.
But this leaves the log half-empty, on average. Flushing one segment at a time keeps KLog’s ca-
pacity utilization high, empirically 80-95%. Incremental flushing also increases the likelihood of
amortizing writes in KSet, since each object spends roughly twice as long in KLog and is hence
more likely to find another object in the same set when flushed.
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Threshold admission to KSet. Kangaroo amortizes writes in KSet by flushing all objects in the
same set together, but inevitably some objects will be the only ones in their set when they are
flushed. Moving these objects to KSet would result in the same excessive ALWA as a naive set-
associative cache. Thus, Kangaroo adds an admission policy between KLog and KSet that sets a
threshold, n, of objects required to write a set in KSet. If ENUMERATE-SET(x) returns fewer than n
objects, then x is not admitted to KSet.

To avoid unnecessary misses to popular objects that do not meet the threshold when moving
from KLog to KSet, Kangaroo readmits any object that received a hit during its stay in KLog back
to the head of the log. This lets Kangaroo retain popular objects while only slightly increasing
overall write amplification (due to KLog’s minimal ALwa).

5.4 KSet

KSet’s role is to minimize the overall DRAM overhead of the cache. KSet employs a set-associative
cache design similar to CacheLib’s Small Object Cache [16]. This design splits the cache into many
sets, each holding multiple objects; by default, each set is 4 KB, matching flash’s read and write
granularity. KSet maps an object to a set by hashing its key. Since each object is restricted to a
small number of locations (i.e., one set), an index is not required. Instead, to look up a key, KSet
simply reads the entire set off flash and scans it for the requested key.

To reduce unnecessary flash reads, KSet keeps a small Bloom filter in DRAM built from all the
keys in the set. These Bloom filters are sized to achieve a false positive rate of about 10%. Whenever
a set is written, the Bloom filter is reconstructed to reflect the set’s contents.

RRIParoo: Usage-based eviction without a DRAM index. Usage-based eviction policies can sig-
nificantly improve miss ratio, effectively doubling the cache size (or more) without actually adding
any resources [12, 19, 20, 41, 62]. Unfortunately, implementing these policies on set-associative
flash caches is hard, as such policies involve per-object metadata that must be updated whenever
an object is accessed. Since KSet has no DRAM index to store metadata and cannot update on-flash
metadata without worsening ALwa, it is not obvious how to implement a usage-based eviction pol-
icy. For these reasons, most flash caches use FIFO eviction [2, 5, 7, 8, 16, 25, 37, 39, 60, 67], which
keeps no per-object state. Unfortunately, FIFO significantly increases miss ratio because popular
objects continually cycle out of the cache.

Kangaroo introduces RRIParoo, a new technique to efficiently support usage-based eviction poli-
cies in flash caches. Specifically, RRIParoo implements RRIP [41], a state-of-the-art eviction policy
originally proposed for processor caches, while using only =1 bit of DRAM per object and without
any additional flash writes.

Background: How RRIP works. RRIP is essentially a multi-bit clock algorithm: RRIP associates a

small number of bits with each object (3 bits in Kangaroo), which represent reuse predictions from
NEAR reuse (000) to FAR reuse (111). Objects are evicted only once they reach rAr. If there are no
FAR objects when something must be evicted, all objects’ predictions are incremented until at least
one is at FAR. Objects are promoted to NEAR (000) when they are accessed. Finally, RRIP inserts new
objects at LONG (110) so they will be evicted quickly, but not immediately, if they are not accessed
again. This insertion policy handles scans that can degrade LRU’s performance.

RRIParoo’s key ideas. There are two ideas to support RRIP in KSet. First, rather than tracking all of
RRIP’s predictions in a DRAM index, RRIParoo stores the eviction metadata in flash and keeps only
a small portion of it in DRAM. Second, to reduce DRAM metadata to a single bit, we observe that
RRIP only updates predictions upon eviction (incrementing predictions towards FAR) and when an
object is accessed (promoting to NEAR). Our insight is that, so long as KSet tracks which objects
are accessed, promotions can be deferred to eviction time, so that all updates to on-flash RRIParoo
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Fig. 9. RRIParoo implements RRIP eviction with only ~1b in DRAM per object and no additional flash writes.

metadata are only made at eviction, when the set is being re-written anyway. Hence, since KSet
can track whether an object has been accessed using only single bit in DRAM, KSet achieves the
hit-ratio of a state-of-the-art eviction policy with one-third of the DRAM usage (1b vs. 3b).
RRIParoo operation. RRIParoo allocates enough metadata to keep one DRAM bit per object on av-
erage; e.g., 40 b for 4 KB sets and 100 B objects. Objects use the bit corresponding to their position
in the set (e.g., the ith object uses the ith bit), so there is no need for an index. If there are too many
objects, RRIParoo does not track hits for the objects closest to NEAR, as they are least likely to be
evicted.

Kangaroo also uses RRIP to merge objects from KLog. Tracking hits in KLog is trivial because
it already has a DRAM index. Objects are inserted into KLog at LoNG prediction (like usual), and
their predictions are decremented towards NEAR on each subsequent access. Then, when moving
objects from KLog to KSet, KSet sorts objects from NEAR to FAR and fills up the set in this order
until out of space, breaking ties in favor of objects already in KSet.

Example: Figure 9 illustrates this procedure, showing how a set is re-written in KSet. D) We start
when KLog flushes a segment containing object F, which maps to a set in KSet. KLog finds a second
object, E, elsewhere in the log that also maps to this set. Meanwhile, the set contains objects /.,

, C, and D with the RRIP predictions shown on flash, and B has received a hit since the set
was last re-written, as indicated by bits in DRAM. 2) Since B received a hit, we promote its RRIP
prediction to NEAR and clear the bits in DRAM. (3) Since no object is at FAR, we increment all objects’
predictions by 3, whereupon object / reaches FAR. (@) Finally, we fill up the set by merging objects
in DRAM and flash in prediction-order until the set is full. The set now contains B, F, D, and C;

was evicted, and E stays in KLog for now since its KLog segment was not flushed. (The set on
flash is only written once, after the above procedure completes.)

DRAM usage. As shown in Table 2, KSet needs up to 4 bits in DRAM per object: one for RRIParoo
and three for the Bloom filters. Combined with the DRAM usage of KLog that contains about 5%
of objects, Kangaroo needs ~7.0 b per object, 4.3% less than Flashield [34]. Moreover, the 1b per
object DRAM overhead for RRIParoo can be lowered by tracking fewer objects in each set. Taken
to the extreme, this would cause the eviction policy to decay to FIFO, but it allows Kangaroo to
adapt to use less DRAM if desired.

6 EXPERIMENTAL METHODOLOGY
This section describes the experimental methodology that we use to evaluate Kangaroo in

Section 7.
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Table 3. Kangaroo’s Default Parameters

Parameter Value
Total cache capacity 93% of flash
Log size 5% of flash
Admission probability to log from DRAM 90%
Admission threshold to sets from log 2

Set size 4KB

6.1 Kangaroo Implementation and Parameterization

We implement Kangaroo in C++ as a module within the CacheLib caching library [16]. Table 3
describes Kangaroo’s default parameters; we evaluate sensitivity to these parameters in
Section 7.3.

6.2 Comparisons

We compare Kangaroo to (i) CacheLib’s small object cache (SA), a set-associative design that
currently serves the Facebook Social Graph [24] in production; and (ii) an optimistic version of a
log-structured cache (LS) with a full DRAM index. For LS, we configure KLog to index the entire
flash device and use FIFO eviction.

We run experiments on two 16-core Intel Xeon CPU E5-2698 servers running Ubuntu 18.04,
one with 64 GB of DRAM and one with 128 GB of DRAM. We use Western Digital SN840 drives
with 1.92 TB rated at three device-writes per day. This flash drive gives a sustained write budget
of 62.5MB/s. We chose these configurations to be similar to those deployed in the large-scale
production clusters that contributed traces to this work, but with extra DRAM to let us explore
large log-structured caches.

Except where noted, all experiments are configured to stay within 16 GB of DRAM (all-inclusive
— DRAM cache, index, etc.); 62.5 MB/s flash writes, as measured directly from the device (i.e.,
including prwa); and 100K requests/s, similar to what is achieved by flash caches in produc-
tion [16, 22]. To mimic a memory-constrained system, we limit LS’s flash capacity to the max-
imum allowed by a 16 GB index assuming 30 b/object, the best reported in the literature [34],
but also grant LS an additional 16 GB for its DRAM cache. Note that this is optimistic for
LS, as DRAM is LS’s main constraint. We use this variant as we were unable to compare to
state-of-the-art systems: the source code of Flashield [34] is not available, and we were unable
to run FASTER [25] as a cache. All systems use CacheLib’s probabilistic pre-flash admission

policy.

6.3 Simulation

To explore a wide range of parameters and constraints, we implemented a trace-driven cache simu-
lator for Kangaroo. The simulator measures miss ratio and application-level write rate. We estimate
device-level write amplification based on our results in Section 2, using a best-fit exponential curve
to the prwa of random, 4 KB writes for SA and Kangaroo, and assuming a bLwa of 1X (no write am-
plification) for LS. Note that this is pessimistic for Kangaroo, since writes to KLog incur less bLwa
than SA. Comparing the results with our experimental data shows the simulator to be accurate
within 10%. The simulator does not implement some features of CacheLib including promotion to
the memory cache, which can affect miss ratios, but we have found it able to give a good indication
of how the full system would perform as parameters change.
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Table 4. Key Parameters in Scaling Methodology

Param Description

R Request rate.

¢ Relative load factor.

S Flash cache size.

w App-level write rate (w/out DLWA).
D Device-level write rate.

k Trace sampling rate.

Q Per-server DRAM capacity.

Xo Param x in original system.
Xm Param x in modeled system.
Xs Param x in simulated system.

6.4 Workloads

Our experiments use sampled 7-day traces from Meta [16] and Twitter [73]. These traces have
average object sizes of 291 B and 271 B, respectively. For systems experiments, we scale the Meta
trace to achieve 100 K reqs/s by running it 3X concurrently in different key spaces.

The simulator results use sampled-down traces, and we scale-up the measurements to a full-
server equivalent based on the server’s flash capacity and desired load as described below, Sec-
tion 6.6. We use 1% of the keys for the Meta trace and 10% of the keys for the Twitter trace. Unless
otherwise noted, we report numbers for the last day of requests, allowing the cache to warm up
and display steady-state behavior.

6.5 Metrics

Kangaroo is designed to balance several competing constraints that limit cache effectiveness. As
such, our evaluation focuses on cache miss ratio, i.e., the fraction of requests that must be served
from backend systems, under different constraints. We further report on Kangaroo’s raw perfor-
mance, showing it is competitive with prior designs.

6.6 Scaling Traces

Our scaling methodology allows us explore a wide range of system parameters in simulation. This
methodology builds on prior analysis of scaling caches [13, 14, 43, 51, 59, 68], and Table 4 summa-
rizes its key parameters.

The model involves three free parameters that let us: (i) choose the load on each server;
(ii) choose the flash cache size on each server; and (iii) down-sample requests to accelerate simu-
lations. Moreover, the methodology incorporates three constraints to exclude infeasible configu-
rations: request throughput, flash write rate, and DRAM usage.

Goals for scaling traces. The starting point for our methodology is a trace collected from a real
production system. For simplicity and without loss of generality, we assume that the trace is gath-
ered from a single caching server. This trace’s requests arrive at a rate R, (measured in, e.g., re-
quests/s).

The goal of our methodology is to use this trace to explore other system configurations. In par-
ticular, we want to explore caching systems with fewer or more caching servers and with different
amounts of resources at each individual server. We do this by modeling the performance of a sin-
gle server in the desired system configuration. Last but not least, we want to be able to do this
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efficiently, i.e., without needing to actually duplicate the original production system, by running
scaled-down simulations.

Load factor and request rate per server. The first choice in the methodology is the load factor
on each server, which changes the number of servers in the cluster. In the original system, each
server serves requests at a rate R, — by increasing or decreasing this rate, we effectively scale the
number of caching servers that are needed to serve all user requests.

The parameter ¢ sets the relative load factor at each server. That is, the request rate at each server
in the modeled system is

Rn=1{-R,, (27)
and the total number of caching servers in the modeled system scales o« 1/¢.

The load factor is clearly an important parameter. In general, a higher load factor is desirable,
as higher load reduces the number of servers needed to serve all user requests. However, load
factor is constrained by the maximum request throughput at a single server Rp,.«. Specifically, the
maximum load factor is

Umax = Rimax/Ro- (28)
Higher load factors may also not be desirable because higher load increases flash write rate and,
at a fixed cache size per server, increases miss ratio. Hence, the best load factor will depend on
a number of factors, including properties of the trace like object size and locality (i.e., miss ratio
curve).

Flash cache size. The next choice is the per-server flash cache size, Sy,. This is a free parameter
constrained only by flash write rate and the size of the flash device. (A log-structured cache size is
also constrained by DRAM, as discussed below.)

This parameter is significant because it determines the miss ratio at each server. A bigger cache
is usually better, until write amplification or DRAM usage exceed the server’s constraints. For a
given cache design, at cache size Sy, it will achieve miss ratio of mp(Sy) and a flash write rate
(excluding prwa) of

Wi o My (Sm) - Ri. (29)
The miss ratio m(S) depends on the system because load factor varies between systems.
Application-level write rate W is scaled by an design-specific factor corresponding to the cache
design’s ALwa — this factor is large for set-associative designs like SA, smaller for Kangaroo, and
essentially 1x for log-structured caches like LS.

The maximum cache size Sy« is determined from the flash-write constraint, Dp,«. Specifically,
we multiply the application-level flash write rate Wi, by the estimated pLwA to get the device-
level write rate Dy,. We then sweep the flash cache size Sy, to find the sizes that stay within the
constraint. Increasing cache size has two competing effects on write rate: larger caches generally
have fewer misses, leading to fewer insertions, but they also suffer higher bLwa, increasing the
cost of each insertion. As a result, the maximum size usually lies on the “knee” of the pLwA curve
(see Figure 2), though which size hits the knee depends on the cache design (via ALwa), the load
factor (via Ry,), and the trace itself (via my,).

We are now ready, in principle, to run experiments to model the desired system. By replaying
the original trace, which has a request rate of R,, we are simulating a system at 1/{-scale of the
desired system (since R, = Ry, /{). We therefore need to scale the cache size in our experiments
by the same factor, simulating a cache of size Sy = Sy,/¢. (This is why increasing load factor can
hurt miss ratio: all else equal, a larger load factor reduces effective cache capacity.) We can then
interpret results by scaling them up by a factor ¢, e.g., rescaling the measured write rate W; to
report a modeled write rate of Wy, = £ - Ws. We can accelerate experiments further by employing
the same trick more aggressively.
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Accelerating simulations by sampling down. To speedup simulation, we downsample the orig-
inal trace by pseudorandomly selecting keys to produce a new, sampled trace that we will use
in the actual simulation experiments. This trace has a request rate of Ry, yielding an empirically
measured sampling rate of

k = Rs/R, (30)
Downsampling by k < 1 makes simulations take many fewer requests and also lets simulated
flash capacity fit in DRAM, significantly accelerating each experiment.

We must scale down the other resources in the system to match the downsampled trace. The

simulated cache size is

Ss =k - Sm. (31)
With this scaling, simulated write rate needs to be scaled up by 1/k to compute the modeled sys-
tem’s write rate

Wn = Wy/k. (32)
However, simulated miss ratio does not change
mm(sm) = mm(ss/k) = ms(Ss)- (33)

(Miss ratio is invariant under sampling because it is the ratio of rates, so the scaling factors cancel.)

DRAM constraints per server. In addition to other constraints, systems are constrained in their
DRAM usage. This is particularly important for log-structured caches like LS, but every system
includes a DRAM cache that has a (modest) impact on results. We enforce DRAM constraints by
observing that the DRAM : flash ratio should be held constant between the simulated and modeled
system. So, given a fixed DRAM capacity in the modeled system Qy, (e.g., 16 GB), the flash cache
size in the modeled system S, and the simulated flash cache size S, it is trivial to compute the
simulated DRAM budget:
Qs = %
m
For each simulation, we compute the DRAM overhead for that cache design (e.g., for its DRAM
index and Bloom filters), and use the remaining DRAM capacity as a DRAM cache. For LS, flash
cache size is often limited by DRAM usage, not the flash write rate or device size.

(34)

The methodology in practice. The above describes the methodology from a top-down perspective,
starting from the decisions that have the largest impact on performance and cost. In practice, we
use this methodology to understand the parameter limitations for the simulator. Then, the scaling
methodology is applied in the opposite direction, starting from the parameters of a specific simu-
lation experiment and backing out the modeled system configuration for any given simulation.

Specifically, we run each simulation with a DRAM capacity Q, flash size Ss, and trace sampled
at rate k. These experiments produce a miss ratio m(Ss) and application-level flash write rate W;.

Then, given a fixed DRAM budget in the modeled system Q,,, we compute the full properties of
the modeled caching system. We compute the size of the modeled flash cache as

Qs
This is the flash cache size that respects the modeled DRAM constraint and keeps DRAM : flash
ratio constant. Moreover, to maintain miss ratio, the ratio of cache sizes Sy, /Ss must equal the ratio
of request rates Ry, /Rs. We want to model a system receiving R, = ¢ - R, requests, but actually run
a simulation with Ry = k - R, requests. Hence, the load factor is

Sm (35)

R S
(= 2k = 2k, (36)
R, S,
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Fig. 10. Miss ratio for all three systems over a 7-day Meta trace. All systems are run with 16 GB DRAM, a
1.9 TB drive, and with write rates less than 62.5 MB/s.

yielding a modeled request rate of

S
Rn = _mRs (37)
Ss
Finally, we scale the write rate and estimate DLwaA for size Sp,
W,
Dy, = DLWA(Sy) - TS (38)

This methodology lets us run short simulations to estimate the behavior of a wide range of
modeled caching systems, while obeying constraints faced by production servers.

7 EVALUATION

This section presents experimental results from Kangaroo and prior systems. We find that:
(i) Kangaroo reduces misses by 29% under realistic system constraints. (ii) Kangaroo improves
the Pareto frontier when varying constraints. (iii) In a production deployment, Kangaroo reduces
flash-cache misses by 18% at equal write rate and reduces write rate by 38% at equal miss ratios.
We also break down Kangaroo by technique to see where its benefits arise.

7.1 Main Result: Kangaroo Significantly Reduces Misses vs. Prior Cache Designs
Under Realistic Constraints

Kangaroo aims to achieve low miss ratios for tiny objects within constraints on flash-device write
rate, DRAM capacity, and request throughput. This section compares Kangaroo against SA and LS
on the Meta trace, running our CacheLib implementation of each system under these constraints.
We configure each cache design to minimize cache miss ratio while maintaining a device write
rate lower than 62.5 MB/s and using up to 16 GB of memory and 1.9 TB of flash. Later sections will
consider how performance changes as these constraints vary.

Miss ratio: Figure 10 shows that Kangaroo reduces cache misses by 29% vs. SA and by 56% vs. LS.
This is because Kangaroo makes effective use of both limited DRAM and flash writes, whereas prior
designs are hampered by one or the other. Specifically, SA is limited primarily by its high write
rate, which forces it to admit a lower percentage of objects to flash and to over-provision flash to
reduce device-level write amplification. SA uses only 81% of flash capacity. Similarly, LS is limited
by the reach of its DRAM index. LS warms up as quickly as Kangaroo until it runs out of indexable
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Fig. 11. Pareto curve of cache miss ratio at different device-level write rates under 16 GB DRAM and 2TB
flash capacity. At very low write rates, LS is best, but it is limited by DRAM from scaling to larger caches.
Thus, for most write rates, Kangaroo outperforms both systems because it can take advantage of the entire
cache capacity, has a lower write rate than SA, and has a better eviction policy than the other two systems.

flash capacity at 61% of device capacity, even though we provision LS extra DRAM for both an
index and DRAM cache (Section 6.2).

By contrast, Kangaroo uses 93% of flash capacity, increasing cache size by 15% vs. SA and by
52% vs. LS. On top of its larger cache size, Kangaroo’s has lower ALwa than SA and its RRIParoo
policy makes better use of cache space.

Request latency and throughput: Kangaroo achieves reasonable throughput and tail latencies.
When measuring flash cache performance without a backing store, Kangaroo’s peak throughput is
158 K gets/s, LS’sis 172 K gets/s, and SA’s is 168 K gets/s. Kangaroo achieves 94% of SA’s throughput
and 91% of LS’s throughput, and it is well above typical production request rates [16, 22, 69].

In any reasonable caching deployment, request tail latency will be set by cache misses as they
fetch data from backend systems. However, for completeness and to show that Kangaroo has no
performance pathologies, we present tail latency at peak throughput. Kangaroo’s p99 latency is
736 ps, LS’s is 229 ps, and SA’s is 699 ps. All of these latencies are orders-of-magnitude less than
typical SLAs [1, 3, 22, 75], which are set by backend databases or file systems. For instance, in
production, the p99 latency in Facebook’s social-graph cache is 51 ms and Twitter’s is 8 ms, both
orders-of-magnitude larger than Kangaroo’s p99 latency. In addition, Kangaroo might reduce p99
latency in practice because its improved hit ratio reduces load on backend systems.

7.2 Kangaroo Performs Well as Constraints Change

Between different environments and over time, system constraints will vary. Using our simulator,
we now evaluate how the cache designs behave when changing four parameters: device write
budget, DRAM budget, flash capacity, and average object size.

Device write budget. Device write budgets change with both the type of flash SSD and the desired
lifetime of the device. To explore how this constraint effects miss ratio, we simulate the spread of
miss ratios we can achieve at different device-level write rates. To change the device-level write
rate, we vary both the utilized flash capacity percentage and the admission policies for all three
systems while holding the total DRAM and flash capacity constant. Note that LS can never use the
entire device in these experiments because its index is limited by DRAM capacity.

Figure 11 shows the tradeoff between device-level write rate budget and miss ratio. At 62.5 MB/s
(the default) on both the Meta and Twitter workloads, Kangaroo consistently performs better than
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Fig. 12. Pareto curve of cache miss ratio as DRAM capacity varies from 5 to 64 GB. Flash capacity is fixed
at 2TB and device write rate is capped at 62.5 MB/s. The amount of DRAM does not greatly affect SA or
Kangaroo, which are both write-rate-constrained, but has a huge effect on LS by increasing its cache size.

both SA and LS. At higher write budgets, Kangaroo continues to have lower miss ratio. In this
range, SA suffers both due to its FIFO eviction policy and its higher aAtwa, which shifts points
farther right vs. similar Kangaroo configurations. LS is mostly constrained by DRAM capacity,
which is why its achievable miss ratio does not change above 15 MB/s for both traces. However, at
very low device-level write budgets, LS performs better than Kangaroo. This is because Kangaroo
is designed to balance prwa and DRAM capacity, whereas LS focuses only on bLwA. At extremely
low write budgets, Kangaroo’s higher prwa (in KSet) forces it to admit fewer objects. (Kangaroo
configurations where KLog holds a large fraction of objects, which we did not evaluate, would
solve this problem.)

DRAM capacity. Over time, the typical ratio of DRAM to flash in data-center servers is decreasing
in order to reduce cost [64]. Figure 12 compares miss ratios for DRAM capacities up to 64 GB,
holding flash-device capacity fixed at 2 TB and device-write rate at 62.5 MB/s. DRAM capacity
does not greatly affect SA. Larger DRAM capacity allows Kangaroo to use a larger log. Even so,
both of these systems are mainly constrained by device-level write rate. By contrast, LS is very
dependent on DRAM capacity. LS approaches, though does not reach, Kangaroo’s miss ratio at
64 GB of DRAM on the Meta trace and at 40 GB on the Twitter trace. At this point, Kangaroo is
constrained from reducing misses further by device write rate (see Figure 11).

Larger flash capacities will shift the lines right as the DRAM : flash ratio decreases. Assuming
write budget and request throughput scale with flash capacity, a 4 TB flash device requires 60 GB
DRAM to achieve the same miss ratio as a 2 TB flash device with 30 GB DRAM. This makes the
left side of the graph particularly important when comparing flash-cache designs.

Flash-device capacity. As stated in the previous section, the size of the flash device greatly im-
pacts miss ratio and the significance of write-rate and DRAM constraints. As we look forward,
flash devices are likely to increase while DRAM capacity is unlikely to grow much and may even
shrink [64]. Figure 13 shows the miss ratio for each system as the device capacity changes. Each
system can use as much of the device capacity as it desires while staying within 16 GB DRAM and
3 device writes per day.

Except at smaller flash capacities, Kangaroo is Pareto-optimal across device capacities. At
smaller device capacities (<1.2 TB for the Meta trace and <1 TB for the Twitter trace), Kangaroo
and SA are increasingly write-rate-limited while LS is decreasingly DRAM-limited. However, as
flash capacity increases, LS is quickly constrained by DRAM capacity. In contrast, Kangaroo and
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Fig. 13. Pareto curve of cache miss ratio at different device sizes. The DRAM capacity is limited to 16 GB
and the device write rate to 3 device writes/day (e.g., 62.5 MB/s for a 2TB drive).
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Fig. 14. Pareto curve of cache miss ratio vs. average object size. Object sizes are limited to [1 B, 2048 B]. The
write rate is constrained to 62.5 MB/s for a 2 TB flash drive with 16 GB of DRAM.

SA both take advantage of the additional write budget and flash capacity. Kangaroo is consistently
better than SA due to lower ALwA (allowing larger cache sizes) and RRIParoo.

Object size. The final feature that we study is object sizes. Figure 14 shows how miss ratio changes
for each system as we artificially change the object sizes. For each object in the trace, we multiply
its size by a scaling factor, but constrain the size to [1 B, 2 KB]. To study the impact of cache design
as object sizes change, we keep the working-set size constant by scaling up the sampling rate
(Section 6.6).

The cache designs are affected differently as object size scales. SA writes 4 KB for every object
admitted, independent of size, so its ALwWA grows in inverse proportion to object size, and SA is in-
creasingly constrained by flash writes as objects get smaller. Similarly, LS can track a fixed number
of objects due to DRAM limits, so its flash-cache size in bytes shrinks as objects get smaller. Both
SA and LS suffer significantly more misses with smaller objects.

Kangaroo is also affected as objects get smaller, but not as much as prior designs. KSet’s ALwa
increases with smaller objects, but less than SA. For example, as avg object size goes from 500 B
to 50 B, Kangaroo’s ALwa increases by 4X, while SA’s ALwa increases by 10x (Figure 7). Similarly,
KLog uses more DRAM with smaller objects, but, unlike LS, Kangaroo can reduce DRAM usage
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Fig. 15. Miss ratio vs. application-level write rate based on various design parameters in Kangaroo: (a) KLog
admission probability, (b) RRIParoo metadata size, (c) KLog size (% of flash-device capacity), and (d) KSet
admission threshold.

by decreasing KLog’s size without decreasing overall cache size. The tradeoff is that ALwA in-
creases slightly (see below). Kangaroo thus scales better than prior flash-cache designs as objects
get smaller: on the Twitter trace, Kangaroo reduces misses by 7.1% vs. LS with 500 B avg object
size and by 41% vs. LS with 50 B avg object size.

7.3 Parameter Sensitivity and Benefit Attribution

We now analyze how much each of Kangaroo’s techniques contributes to Kangaroo’s performance
and how each should be parameterized. Figure 15 evaluates Kangaroo’s sensitivity to four main
parameters on the Meta trace: KLog admission probability, KSet eviction policy, KLog size, and
KSet admission threshold. All setups use the full 2 TB device capacity and 16 GB of memory. We
build up their contribution to miss ratio and application write rate from a basic set-associative
cache with FIFO eviction.

Pre-flash admission probability. Figure 15(a) varies admission probability from 10% to 100%.
As admission probability increases, write rate increases because more objects are written to flash.
However, the miss ratio does not decrease linearly with admission probability. Rather, it has a
smaller effect when the admission percentage is high than when the admission percentage is low.
Since Kangaroo’s other techniques significantly reduce ALwa, we use a pre-flash admission prob-
ability of 90%.
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Number of RRIParoo bits. Figure 15(b) shows miss ratios for FIFO and RRIParoo with one to
four bits. Although changing the eviction policy does slightly change the write rate (because there
are fewer misses), we show only miss ratio for readability. RRIParoo with one bit suffers 3.4%
fewer misses vs. FIFO, whereas RRIParoo with three bits suffers 8.4% fewer misses. Once RRIPa-
roo uses four bits, the miss ratio increases slightly, a phenomenon also noticed in the original
RRIP paper [41]. Since three-bit RRIParoo uses the same amount of DRAM as one-bit RRIParoo
(Section 5.4), we use three bits because it achieves the best miss ratio.

KLog size. Figure 15(c) shows that, as KLog size increases, the flash write rate decreases signifi-
cantly, but the miss ratio is unaffected (<.05% maximum difference). However, a bigger KLog needs
more DRAM for its index. Thus, KLog should be as large enough to substantially reduce write am-
plification, but cannot exceed available DRAM nor prevent using a DRAM cache. Flash writes can
be further reduced via admission policies or by over-provisioning flash capacity as needed. We use
5% of flash capacity for KLog.

KSet admission threshold. Figure 15(d) shows the impact of threshold admission to KSet. Thresh-
olding reduces flash write rate up to 70.4% but increases misses by up to 72.9% at the most extreme.
Note that these results assume rejected objects are re-admitted to KLog if they have been hit, since
re-admission reduces misses without significantly impacting flash writes. We use a threshold of 2,
which reduces flash writes by 32.0% while only increasing misses by 6.9%.

Benefit breakdown. In this configuration, Kangaroo reduces misses by 2% and decreases applica-
tion write rate by 67% vs. a set-associative cache that admits everything. Most of the miss ratio
benefits over SA come from RRIParoo. Kangaroo also improves miss ratio vs. SA at a similar write
rate by reducing ALwa, which allows it to admit more objects than SA. Each of Kangaroo’s tech-
niques reduces write rate: pre-flash admission by 8.2%, RRIParoo by 8.3%, KLog by 42.6%, and
KSet’s threshold admission by 32.0%. Kangaroo’s techniques have more varied effects on misses:
pre-flash admission increases them by 1.9%, RRIParoo decreases them by 8.4%, KLog changes them
little (<0.05% difference), and KSet’s threshold admission increases them by 6.9%. We found similar
results on the trace from Twitter.

7.4 Production Deployment Test

Finally, we present results from two production test deployments on a small-object workload at
Meta, comparing Kangaroo to SA. Each deployment receives the same request stream as production
servers but does not respond to users. Due to limitations in the production setup, we can only
present application-level write rate (i.e., not device-level) and flash miss ratio (i.e., for requests
that miss in the DRAM cache). In addition, both systems use the same cache size (i.e., Kangaroo
does not benefit from reduced over-provisioning).

To find appropriate production configurations, we chose seven configurations for each system
that performed well in simulation: four with probabilistic pre-flash admission and three with a
machine-learning (ML) pre-flash admission policy. The first production deployment ran all prob-
abilistic admission configurations and the second ran all ML admission configurations. Since these
configurations ran under different request streams, their results are not directly comparable.

Figures 16(a) and 16(b) present results over a six-day request stream for configurations with
similar write rates (“equivalent WA”) as well as configurations that admit all objects to the flash
cache (“admit-all”). Kangaroo reduces misses by 18% vs. SA in the equivalent-WA configurations,
which both have similar write rates at ~33 MB/s. The admit-all configurations achieve the best miss
ratio for each system at the cost of additional flash writes. Here, Kangaroo reduces flash misses by
3% vs. SA while writing 38% less.

We also tested both systems with the ML pre-flash admission policy that Meta uses in produc-
tion [16]. Figure 16(c) presents results over a three-day request stream. The trends are the same:
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Fig. 16. Results from two production test deployments of Kangaroo and SA, showing (a) flash miss ratio and
(b) application flash write rate over time using pre-flash random admission and (c) application flash write
rate over time using ML admission. With random admission at equivalent write-rate, Kangaroo reduces
misses by 18% over SA. When Kangaroo and SA admit all objects, Kangaroo reduces write rate by 38%. With
ML admission, Kangaroo reduces the write rate by 42.5%.
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Kangaroo reduces application flash writes by 42.5% while achieving a similar miss ratio to SA.
Kangaroo thus significantly outperforms SA, independent of pre-flash admission policy.

8 CONCLUSION

Kangaroo is a flash cache for billions of tiny objects that handles a wide range of DRAM and
flash-write budgets. Kangaroo leverages prior log-structured and set-associative designs, together
with new techniques, to achieve the best of both designs. Experiments using traces from Meta
and Twitter show DRAM usage close to the best prior DRAM-optimized design, flash writes close
to the best prior write-optimized design, and miss ratios better than either. Kangaroo has been
implemented in CacheLib [16] and is open-sourced for use by the community. Kangaroo shows
that flash caches can support tiny objects, an adversarial workload for DRAM usage and write
amplification, while maintaining flash’s cost advantage.
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