
TVARAK: Software-Managed Hardware Offload for
Redundancy in Direct-Access NVM Storage

Rajat Kateja
Carnegie Mellon University

rkateja@cmu.edu

Nathan Beckmann
Carnegie Mellon University

beckmann@cs.cmu.edu

Gregory R. Ganger
Carnegie Mellon University

ganger@ece.cmu.edu

Abstract—Production storage systems complement device-level
ECC (which covers media errors) with system-checksums and
cross-device parity. This system-level redundancy enables systems
to detect and recover from data corruption due to device
firmware bugs (e.g., reading data from the wrong physical
location). Direct access to NVM penalizes software-only imple-
mentations of system-level redundancy, forcing a choice between
lack of data protection or significant performance penalties.
We propose to offload the update and verification of system-
level redundancy to TVARAK, a new hardware controller co-
located with the last-level cache. TVARAK enables efficient
protection of data from such bugs in memory controller and
NVM DIMM firmware. Simulation-based evaluation with seven
data-intensive applications shows that TVARAK is efficient. For
example, TVARAK reduces Redis set-only performance by only
3%, compared to 50% reduction for a state-of-the-art software-
only approach.

Index Terms—Non-volatile memory, Direct access, Redun-
dancy

I. INTRODUCTION

Non-volatile memory (NVM) storage improves the perfor-
mance of stateful applications by offering DRAM-like perfor-
mance with disk-like durability [6, 7, 15, 18, 73]. Applications
that seek to leverage raw NVM performance eschew conven-
tional file system and block interfaces in favor of direct access
(DAX) to NVM. With DAX, an application maps NVM data
into its address space and uses load and store instructions to
access it, eliminating system software overheads from the data
path [14, 18, 39, 68, 69].

The need for system-level redundancy: Production storage
systems protect data from various failures. In addition to fail-
stop failures like machine or device crashes, storage systems
also need to protect data from silent corruption due to firmware
bugs. Storage device firmware is prone to bugs because of
its complexity, and these bugs can cause data corruption.
Such corruption-inducing firmware bugs fall into two broad
categories: lost write bugs and misdirected read or write
bugs [9, 10, 30, 52, 64]. Lost write bugs cause the firmware
to acknowledge a write without ever updating the data on
the device media. Misdirected read or write bugs cause the
firmware to read or write the data from the wrong location on
the device media. Firmware-bug-induced corruption will go
unnoticed even in the presence of device-level ECC, because
that ECC is read/written as an atom with its data during each
media access performed by the firmware.

Protection against firmware-bug-induced corruption com-
monly relies on system-checksums for detection and cross-
device parity for recovery. System-checksums are data check-
sums that the storage system computes and verifies at a layer
“above” the device firmware (e.g., the file system), using
separate I/O requests than for the corresponding data [9,52,74].
Using separate I/O requests for the data and the block contain-
ing its system-checksum (together with system-checksums for
other data) reduces the likelihood of an undetected firmware-
bug-induced corruption. This is because a bug is unlikely to
affect both in a consistent manner. Thus, the storage system
can detect a firmware-bug-induced corruption because of a
mismatch between the two. It can then trigger recovery using
the cross-device parity [34, 42, 46, 84]. In this paper, we use
the term redundancy to refer to the combination of system-
checksums and cross-device parity.

Production NVM-based storage systems will need such
redundancy mechanisms for the same reasons as conventional
storage. In the real world, firmware bugs happen—rare corner
conditions in the firmware cause data loss—and production
storage systems have low tolerance even for rare data losses
because of the enduring nature of storage data (unlike data
in memory or caches). NVM device firmware involves in-
creasingly complex functionality, akin to that of other storage
devices, making it susceptible to both lost write and misdi-
rected read/write bugs. However, most existing NVM storage
system designs provide insufficient protection. Although fault-
tolerant NVM file systems [50, 74] efficiently cover data
accessed through the file system interfaces, they do not cover
DAX-mapped data. The Pangolin [79] library is an exception,
implementing system-checksums and parity for applications
that use its transactional library interface. However, software-
only approaches for DAX NVM redundancy incur significant
performance overhead (e.g., 50% slowdown for a Redis set-
only workload, even with Pangolin’s streamlined design).

Our Solution: This paper proposes TVARAK1, a software-
managed hardware offload that efficiently maintains redun-
dancy for DAX NVM data. TVARAK resides with the last level
cache (LLC) controllers and coordinates with the file system to
provide DAX data coverage without application involvement.
The file system informs TVARAK when it DAX-maps a file.
TVARAK updates the redundancy for each DAX NVM cache-

1TVARAK means accelerator in Hindi.

line writeback and verifies each DAX NVM cache-line read.
TVARAK’s design relies on two key elements to achieve

efficient redundancy updates and verification. First, TVARAK
reconciles the mismatch between DAX granularities (typically
64-byte cache lines) and typical 4KB system-checksum block
sizes by introducing cache-line granular system-checksums
(only) while data is DAX-mapped. TVARAK accesses these
cache-line granular system-checksums, which are themselves
packed into cache-line-sized units, via separate NVM accesses.
Maintaining these checksums only for DAX-mapped data
limits the resulting space overhead. Second, TVARAK uses
caching to reduce the number of extra NVM accesses for re-
dundancy information. Applications’ data access locality leads
to reuse of system-checksum and parity cache lines; TVARAK
leverages this reuse with a small dedicated on-controller cache
and configurable LLC partitions for redundancy information.

Simulation-based evaluation with seven applications, each
with multiple workloads, demonstrates TVARAK’s efficient
DAX NVM storage redundancy. For Redis, TVARAK incurs
only a 3% slowdown for maintaining redundancy with a set-
only workload, in contrast to 50% slowdown with Pangolin’s
efficient software approach, without compromising on cov-
erage or checks. For other applications and workloads, the
results consistently show that TVARAK efficiently updates and
verifies system-checksums and parity, especially in compari-
son to software-only alternatives. The efficiency benefits are
seen in both application runtimes and energy.

This paper makes three primary contributions. First, it mo-
tivates the need for architectural support for DAX NVM stor-
age redundancy, highlighting the limitations of software-only
approaches. Second, it proposes TVARAK, a low-overhead,
software-managed hardware offload for DAX NVM storage
redundancy. It describes the challenges for efficient hardware
DAX NVM redundancy and how TVARAK overcomes these
challenges with straightforward, effective design. Third, it
reports on extensive evaluation of TVARAK’s runtime, energy,
and memory access overheads for seven applications, each
under multiple workloads, showing its efficiency especially
in comparison to software-only alternatives.

II. REDUNDANCY MECHANISMS AND NVM STORAGE

This section provides background and discusses related
work. First, it describes conventional storage redundancy
mechanisms for firmware bug resilience. Second, it discusses
the need for these mechanisms in NVM storage systems,
the direct-access (DAX) interface to NVM storage, and the
challenges in maintaining the required redundancy with DAX.
Third, it discusses related work and where TVARAK fits.

A. Redundancy for Firmware Bug Resilience

Production storage systems employ a variety of redundancy
mechanisms to address a variety of faults [21,28,34,36,44,46,
47, 74, 80, 82]. In this work, we focus on redundancy mecha-
nisms used to detect and recover from firmware-bug-induced
data corruption (specifically, per-page system-checksums and
cross-device parity).

Firmware

Media

write
ack ack

write
read

Time Initial Device
State

Bug-Free Write Lost Write Read returns
Old Data

(a) The problem: device responds to read of block that experienced the lost
write with incorrect (old) data.

Firmware

Media

Time Initial Device
State

Bug-Free Write w/
System-Checksum

Lost Write w/
System-Checksum

System-Checksum
Mismatch on Read

write
ack

write
csum

ack
write

ack ack read

write
csum read

csum

(b) The fix: having the higher-level system update and verify system-
checksums when writing or reading data, in separate requests to the device,
will detect a lost write because of mismatch between the data and the system-
checksum.

Fig. 1. Lost write bug example. Both sub-figures show a time-line for a storage
device with three media locations. The device is shown in an initial state, and
then upon completion of higher-level system’s write or read to data (first, a
successful write, then a ”lost write”, then a read) mapped to the same media
location. (a) shows how the higher-level system can consume incorrect (old)
data if it trusts the device to never lose an acknowledged write. (b) shows
how the higher-level system can detect a lost write with system-checksums.

Firmware-bug-induced data corruption: Large-scale
studies of deployed storage systems show that device firmware
bugs sometimes lead to data loss or corruption [9,10,30,52,64].
Device firmware, like any software, is prone to bugs because of
its complex responsibilities (e.g., address translation, dynamic
re-mapping, wear leveling, block caching, request scheduling)
that have increased both in number and complexity over
time. Research has even proposed embedding the entire file
system functionality [31] and application-specific functionali-
ties [2, 12, 58, 59, 70] in device firmware. Increasing firmware
complexity increases the propensity for bugs, some of which
can trigger data loss or corruption.

Corruption-inducing firmware-bugs can be categorized into
two broad categories: lost write bugs and misdirected
read/write bugs. A lost write bug causes the firmware to
acknowledge a write without ever updating the media with
the write request’s content. An example scenario that can lead
to a lost write is if a writeback firmware cache ”forgets” that
a cached block is dirty. Fig. 1(a) illustrates a lost write bug. It
first shows (second stage in the time-line) a correct bug-free
write to the block stored in the blue media location. It then
shows a second write to the same block, but this one suffers
from a lost write bug—the firmware acknowledges the write
but never updates the blue media location. The subsequent
read of the blue block returns the old data to the application.

A misdirected write or misdirected read bug causes the
firmware to store data at or read data from an incorrect media
location, respectively. Fig. 2(a) illustrates a misdirected write
bug. As before, the first write to the block stored in the
blue location is performed correctly by the firmware. For this

Firmware

Media

write
ack ack

write
read

Time Initial Device
State

Bug-Free Write Misdirected Write Read returns
Corrupted Data

(a) The problem: device responds to read with the incorrectly updated data
from the blue location. Notice that the green location also has incorrect (old)
after the misdirected write.

Firmware

Media

Time Initial Device
State

Bug-Free Write w/
System-Checksum

Misdirected Write w/
System-Checksum

System-Checksum
Mismatch on Read

write
ack

write
csum

ack
write

ack ack read

write
csum read

csum

(b) The fix: having the higher-level system update and verify system-
checksums when writing or reading data, in separate requests to the device,
will detect a misdirected write because of mismatch between the data and the
system-checksum.

Fig. 2. Misdirected write bug example. Similar construction to Fig. 1, but
with the second operation being a write intended for the green location that
is misdirected by the firmware to the blue location.

example, the second write request shown is for the block stored
in the green location. But, it encounters a misdirected write
bug wherein the data is incorrectly written to the blue media
location. Notice that a misdirected write bug not only fails
to update the intended block, but also corrupts (incorrectly
replaces) the data of the block it incorrectly updates. In the
example, the subsequent read to the the block mapped to the
blue location returns this corrupted data.

Although almost all storage devices maintain error-
correcting codes (ECCs) to detect corruption due to random
bit flips [16, 29, 67, 77], these ECCs cannot detect firmware-
bug-induced corruption [9, 52]. Device-level ECCs are stored
together with the data and computed and verified inline by the
same firmware during the actual media update/access. So, in
the case of a lost write, the firmware loses the ECC update
along with the corresponding data update, because the data
and ECC are written together on the media as one operation.
Similarly, misdirected writes modify the ECC to match the
incorrectly updated data and misdirected reads retrieve the
ECC corresponding to the incorrectly read data.

System-checksums for detection: Production storage sys-
tems maintain per-page system-checksums to detect firmware-
bug-induced data corruption. System-checksums are updated
and verified at a layer above the firmware, such as the file
system, stored in checksum blocks (each containing check-
sums for many blocks) separate from the data, and read and
written using I/O requests separate from the corresponding
data I/O requests [21,36,44,74,80,82]. Separating the storage
and accesses for data from corresponding system-checksums
enables detection of firmware-bug-induced corruption, because
such bugs are unlikely to affect both the data and its system-
checksum access. Even in an unlikely scenario that a bug

that affect both the accesses, it is even more unlikely that the
bug affects both in a consistent fashion (e.g., losing both or
misdirecting both to another corresponding data and system-
checksum pair).

Fig. 1(b) demonstrates how system-checksums enable de-
tection of lost writes. Although the firmware loses the second
write to the blue block is lost, it is unlikely to lose the write
to the checksum block (stored in the orange location). Thus,
upon the data read in the example, which is paired with a
corresponding system-checksum read and verification, the lost
write is detected.

Fig. 2(b) illustrates how system-checksums enable detection
of misdirected writes. A misdirected write firmware bug is
extremely unlikely to affect both the data write to the green
block and the corresponding system-checksum write to the
orange block in a consistent manner. To do so, the firmware
would have to incorrectly write the system-checksum to a
location (block and the offset within the block) that stores
the checksum for the exact block to which it misdirected the
data write. In the illustration, the read of the blue block data,
followed by its system-checksum read, results in a verification
failure. Similarly, system-checksums also trigger a verification
failure in case of a misdirected read bug, because a bug is
unlikely to affect the both the data its system-checksum read.

Cross-device parity for recovery: To recover from a de-
tected page corruption, storage systems store parity pages [28,
34, 42, 46, 47, 84]. Although parity across arbitrarily selected
pages suffice for recovery from firmware-bug-induced corrup-
tion, storage systems often implement cross-device parity that
enable recovery from device failures as well.

B. NVM Storage Redundancy and Direct Access (DAX)

Non-volatile memory (NVM) refers to a class of memory
technologies that have DRAM-like access latency and granu-
larity but are also durable like disks [1, 13, 25, 37, 55]. NVM
devices have orders of magnitude lower latency and higher
bandwidth than conventional storage devices, thereby improv-
ing stateful applications’ performance [6, 7, 15, 18, 35, 72, 73].

Need for firmware-bug resilience in NVM storage: NVM
storage systems will be prone to firmware-bug-induced data
corruption and require corresponding redundancy mechanisms,
like conventional storage systems. NVM firmware is suscepti-
ble to corruption-inducing bugs, because it is non-trivial and its
complexity can only be expected to increase over time. NVM
firmware already provides for address translation, bad block
management, wear leveling, request scheduling, and other
conventional firmware responsibilities [53,54,55,62]. A recent
persistent memory characterization study also highlights the
complex behavior of NVM firmware [75]. Looking forward,
its complexity will only increase as more NVM-specific func-
tionality is embedded into the firmware (e.g., reducing NVM
writes and wear [11, 20, 40, 76, 85]) and as the push towards
near-data computation [2, 4, 5, 12, 19, 24, 31, 58, 59, 70, 78]
continues. Prior experience with firmwares of such complexity
demonstrate that they inevitably suffer from bugs that lead to

NVM Storage Redundancy Design Cheksum Checksum/Parity Update Checksum Verification Performance
Granularity for DAX data for DAX data Overhead

Nova-Fortis [74], Plexistore [50] (3) Page (7) No updates (7) No verification (3) None
Mojim [81], HotPot [63] (3) Page2 (3) On application data flush (∼) Background scrubbing (7) Very High
Pangolin [79] (∼) Object (3) On application data flush (3) On NVM to DRAM copy (∼) Moderate–High
Vilamb [33] (3) Page (∼) Periodically (∼) Background scrubbing (∼) Configurable
TVARAK (3) Page (3) On LLC to NVM write (3) On NVM to LLC read (3) Low

TABLE I
TRADE-OFFS AMONG TVARAK AND PREVIOUS DAX NVM STORAGE REDUNDANCY DESIGNS.

lost or misdirected reads and writes. Consequently, produc-
tion NVM storage systems will need firmware-bug resiliency
mechanisms.

Direct access NVM storage redundancy challenges:
Direct-access (DAX) interface to NVM storage exposes raw
NVM performance to applications [18,33,39,41,51,57,63,68,
74,79,81]. DAX-enabled file systems map NVM-resident files
directly into application address spaces; such direct mapping is
possible because of NVM’s DRAM-like access characteristics.
DAX enables applications to access persistent data with load
and store instructions, eliminating system software overheads
from the data path.

These characteristics, however, pose challenges for main-
taining firmware-bug resiliency mechanisms [33]. First, the
lack of interposed system software in the data path makes
it difficult to efficiently identify data reads and writes that
should trigger a system-checksum verification and system-
checksum/parity updates, respectively. Second, updating and
verifying system-checksums for DAX data incurs high over-
head because of the mismatch between DAX’s fine-grained
accesses and the typically large blocks (e.g., 4KB pages) over
which checksums are computed for space efficiency.

C. Related Work on DAX NVM Storage Redundancy

Existing proposals for maintaining system-checksums and
parity in NVM storage systems compromise on performance,
coverage, and/or programming flexibility for DAX-mapped
data. Table I summarizes these trade-offs. Two recent fault-
tolerant NVM file systems, Nova-Fortis [74] and Plexis-
tore [50], update and check redundancy during explicit FS
calls but do not update or verify redundancy while data is
DAX mapped. Interposing library-based solutions, such as
Mojim [81], HotPot [63], and Pangolin [79], can protect
DAX-mapped data if applications use the given library’s
transactional interface for all data accesses and updates. But
software-based redundancy updates on every data update incur
large performance overhead. Mojim [81] and HotPot [63]
would incur very high overhead because of DAX’s fine-grained
writes2. Pangolin [79] reduces such overhead by eschewing
per-page checksums in favor of per-object checksums, accept-
ing higher space overhead instead, but still incurs performance
overheads do to redundancy updates/verifications in software.
Vilamb [33] reduces the performance overhead, potentially

2The original Mojim and HotPot designs do not include checksums, only
replication, but their designs extend naturally to include per-page checksums.

arbitrarily, by delaying and batching the per-page checksum
updates. In doing so, however, Vilamb reduces the coverage
guarantees by introducing windows of vulnerability wherein
data can get corrupted silently.

Most existing redundant NVM storage system designs do
not verify DAX application data reads with the corresponding
checksum. As shown in the fourth column of Table I, some do
no verification while data is DAX-mapped, while other designs
only verify checksums as part of background scrubbing. Pan-
golin does verify the checksums when it reads an object into
a DRAM buffer, providing significantly tighter verification.

The remainder of this paper describes and evaluates
TVARAK, a software-managed hardware controller for effi-
cient in-line redundancy maintenance without any application
programming restriction. TVARAK offers strong guarantees—
updating redundancy for every write and verifying system-
checksum for every read to and from the NVM device,
respectively. verification for every read from from the NVM

III. TVARAK DESIGN

TVARAK is a hardware controller that is co-located with the
last-level cache (LLC) bank controllers. It coordinates with the
file system to protect DAX-mapped data from firmware-bug-
induced corruptions. We first outline the goals of TVARAK. We
then start by describing a naive redundancy controller, and im-
prove its design to reduce its overheads, leading to TVARAK.
We end with TVARAK’s architecture, area overheads, and walk
through examples.

A. TVARAK’s Goals and Non-Goals

TVARAK intends to enable the following for DAX-mapped
NVM data: (i) detection of firmware-bug-induced data cor-
ruption, and (ii) recovery from such corruptions. To this
end, the file system and TVARAK maintain per-page system-
checksums and cross-DIMM parity with page striping, as
shown in Fig. 3. Note that a RAID-5 like geometry (as
shown in Fig. 3) precludes a cache-line-granular interleaving
across the NVM DIMMs. This is because cache-line-granular
interleaving would require certain cache lines in pages (e.g.,
every fourth cache line in case of 4 NVM DIMMs) to be
reserved for parity, breaking the contiguity of virtual address
space. Instead, a page-granular interleaving enables the OS
to map contiguous virtual pages to data pages (bypassing the
parity pages), retaining the contiguity of the virtual address

System-
ChecksumsData Data Data Parity

System-
ChecksumsData Data Data

System-
ChecksumsData Data Data

System-
ChecksumsData Data Data

Parity

Parity

Parity

N
V

M
 D

IM
M

s
Parity Stripe

Fig. 3. TVARAK coordinates with the file system to maintain per-page system-
checksums and cross-DIMM parity akin to RAID-5 with page striping.

space. This restriction is not unique to TVARAK and required
for any design that implements a RAID-5 like geometry.

TVARAK’s redundancy mechanisms co-exist with other
complementary file system redundancy mechanisms that each
serve a different purpose. These complementary mechanisms
do not protect against firmware-bug-induced corruptions, and
TVARAK does not intend to protect against the failures that
these mechanisms cover. Examples of such complementary re-
dundancy mechanisms include remote replication for machine
failures [21,28,34,47], snapshots for user errors [22,60,74,82],
write protection for scribbles [18,49], and inline sanity checks
for file system bugs [36].

Although not TVARAK’s primary intent, TVARAK also helps
protect from random bit flips and recover from DIMM failures.
TVARAK can detect random bit flips because it maintains a
checksum over the data. This coverage is in concert with
device-level ECCs [16, 29, 67] that are designed for detecting
and recovering from random bit flips. TVARAK’s cross-DIMM
parity also enables recovery from DIMM failures. The file
system and TVARAK ensure that recovery from a DIMM
failure does not use corrupted data/parity from other DIMMs.
To that end, the system-checksum for a page is stored in the
same DIMM as the page, and the file system verifies a page’s
data with its system-checksum before using it.

B. Naive Redundancy Controller Design

Fig. 4 illustrates a basic redundancy controller design that
satisfies the requirements for detecting firmware-bug-induced
corruptions, as described in Section II-A. We will improve
this naive design to build up to TVARAK. The naive controller
resides above the device firmware in the data path (with the
LLC bank controllers). The file system informs the controller
about physical page ranges of a file when it DAX-maps the file,
along with the corresponding system-checksum pages and the
parity scheme. For each cache-line writeback from the LLC
and cache-line read into the LLC, the controller performs an
address range matching. The controller does not do anything
for cache lines that do not belong to a DAX-mapped region,
as illustrated in the leftmost access in Fig. 4. The file system
continues to maintain the redundancy for such data [50, 74].

For DAX-mapped cache lines, the controller updates and
verifies redundancy using separate accesses from the corre-

write
ack ack

write

NVM DIMMs

LLC Bank

DAX-mapped?
Verify system-csum

NO YES

read

read

data

Compute system-csum
and parity

YES

write ack

read write

Naive

System-ChecksumsData Parity

read/write data/ack

Fig. 4. Naive Redundancy Controller Design: The redundancy controller
operates only on DAX-mapped data. For DAX-mapped cache-line reads, the
controller reads the entire page to compute the checksum, reads the system-
checksum, and verifies that the two match. For cache-line writes, it reads the
old data, system-checksum, and parity, computes the data diff, uses that to
compute the new system-checksum and parity, and writes them back to NVM.

sponding data. The request in the center of Fig. 4 shows a DAX
cache-line read. To verify the read, the controller reads the
entire page (shown with black arrows), computes the page’s
checksum, reads the page’s system-checksum (shown in olive)
and verifies that the two match. The rightmost request in Fig. 4
shows a cache-line write. The controller reads the old data in
the cache line, the old system-checksum, and the old parity
(illustrated using black, olive and pink, respectively). It then
computes the data diff using the old and the new data and uses
that to compute the new system-checksum and parity values3.
It then writes the new data, new system-checksum, and the
new parity to NVM. The cross-DIMM parity design and the
use of data diffs to update parity is similar to recently proposed
RAIM-5b [84].

Note that we assume that the NVM servers are equipped
with backup power to flush CPU caches in case of a power
failure. The backup power guarantees that the controller can
complete the system-checksum and parity writes correspond-
ing to a data write in case of a power failure, even if they cache
this information, as we will describe later. This backup power
could either be from top-of-the-rack batteries with OS/BIOS
support to flush caches, or ADR-like support for caches with
cache-controller managed flushing. Both of these designs are
common in production systems [3,17,22,32,45,48,83]. Backup
power also eliminates the need for durability-induced cache-
line flushes and improves performance [45, 83] at a low
cost (e.g., $2 for a 2 socket machine with 8MB LLC per
socket [45]). We extend this assumption, and the correspond-
ing performance benefits, to the all the designs we compare
TVARAK to in Section IV.

C. Efficient Checksum Verification

Verifying system-checksums in naive design incurs a high
overhead because it has to read the entire page, as shown
in Fig. 4. For typical granularities of 4KB checksum pages
and and 64B cache lines, the naive design reads 65× more
cache lines (64 cache line in a page and one for the check-
sum). Although a smaller checksum granularity would reduce

3We assume that the controller implements incremental system-checksums
that can be updated using the data diffs, e.g., CRC.

write
ack ack

write

NVM DIMMs

LLC Bank

DAX-mapped?
Verify system-csum

NO YES

read

read

data

Compute system-csum
and parity

YES

write ack

read write

Naive
+ DAX-CL-Csums

System-ChecksumsData Parity DAX-CL-Checksums

read/write data/ack

Fig. 5. Efficient Checksum Verification: DAX-CL-checksums eliminate the
need to read the entire page for DAX cache-line read verification. Instead, the
controller only reads the cache line and its corresponding DAX-CL-checksum.

the checksum verification overhead, doing so would require
dedicating more of the expensive NVM storage for redundant
data. For example, per-cache-line checksums would require
64× more space than per-page checksums. Instead, the trend
in storage system designs is to move towards larger, rather
than smaller, checksum granularities [38, 66, 71].

We introduce DAX-CL-checksums to reconcile the perfor-
mance overhead of page-granular checksum verification with
the space overhead of cache-line-granular checksums. Adding
DAX-CL-checksums to the naive controller results in the
design shown in Fig. 5. As the name suggests, DAX-CL-
checksums are cache-line-granular checksums that the con-
troller maintains only when data is DAX-mapped. The read
request in the middle of Fig. 5 illustrates that using DAX-CL-
checksums reduces the read amplification to only 2× from
65× for the naive design—the controller only needs to read
the DAX-CL-checksum in addition to the data to verify the
read. The additional space required for DAX-CL-checksums
is a small frction (e.g., 1

64
th of the DAX-mapped data size,

assuming 64 byte cache lines) and temporary in nature—it
is required only for the fraction of NVM that an application
has DAX-mapped and is freed after the application unmaps the
NVM data. This is in contrast to the dedicated space overhead
of maintaining fine-grained object-granular checksums for all
NVM data at all times [79].

The controller accesses DAX-CL-checksums separately
from the corresponding data to ensure that the it continues
to provide protection from firmware-bug-induced corruptions.
For DAX-mapped cache-line writes, the controller updates the
corresponding DAX-CL-checksum as well, using a similar
process as that for system-checksums and parity (rightmost
request in Fig. 5).

Managing DAX-CL-checksums is simple because the con-
troller uses them only while data is DAX-mapped. In particu-
lar, when recovering from any failure or crash, the file system
verifies data integrity using system-checksums rather than
DAX-CL-checksums. Thus the controller need not maintain
the DAX-CL-checksums persistently. When the file system
DAX-maps a file, the controller requests a buffer space for
DAX-CL-checksums. The file system can allocate this buffer
space in either NVM or in DRAM; our implementation stores
DAX-CL-checksums in NVM. The file system reclaims this
space when it unmaps a file. Unlike page system-checksums,

write
ack ack

write

NVM DIMMs

LLC Bank

DAX-mapped?
Verify system-csum

NO YES

read

read

data

Compute system-csum
and parity

YES

write ack

read/write data/ack read write

System-ChecksumsData Parity DAX-CL-Checksums

On-Controller Cache

get data
diff

Naive
+ DAX-CL-Csums
+ Cache Redundancy
+ Data Diffs in LLC

Fig. 6. Efficient Checksum and Parity Updates: The controller caches
redundancy cache lines in an on-controller cache and a LLC partition (not
shown). It also uses a LLC partition to store data diffs, eliminating the need
to read the old data from NVM upon cache-line writebacks.

DAX-CL-checksums need not be stored on the same DIMM
as its corresponding data because they are not used to verify
data during recovery from a DIMM failure.

D. Efficient Checksum and Parity Updates

The rightmost request in Fig. 5 shows that the controller
incurs 4 NVM reads and writes for each cache-line write to up-
date the redundancy. To reduce these NVM accesses, we note
that redundancy information is cache-friendly. Checksums are
typically small and multiple checksums fit in one cache line.
In our implementation of 4 byte CRC-32C checksums, one 64
byte cache line holds 16 checksums. DAX-CL-checksums for
consecutive cache lines and system-checksums for consecutive
physical pages in a DIMM belong to the same cache line. Ac-
cess locality in data leads to reuse of DAX-CL-checksum and
system-checksum cache lines. Similarly, accesses to logically
consecutive pages lead to reuse of parity cache lines because
they belong to the same RAID stripe.

Fig. 6 shows a design that caches the redundancy data,
i.e., system-checksums, DAX-CL-checksums, and parity, in a
small on-controller cache. The controller does not cache the
corresponding NVM data because the LLC already does that.
The controller also uses a partition of the LLC to increase
its cache space for redundancy information (not shown in
the figure). Using a reserved LLC partition for caching re-
dundancy information limits the interference with application
data. The controller can insert up to 3 redundancy cache lines
(checksum, DAX-CL-checksum, and parity) per data cache-
line writeback. If the controller were to share the entire LLC
for caching redundancy information, each of these redundancy
cache lines could force out application data. Reserving a
partition for redundancy information eliminates this possibility
because the redundancy controller can only evict a redundancy
cache line when inserting a new one.

We further eliminate the need for the controller to fetch the
old data from NVM to compute the data diff. Cache lines in
the LLC become dirty when they are evicted from the L2.
Since the LLC already contains the soon-to-be-old data value,
the controller uses it to compute the data diff and stores this
diff in a LLC partition. This enables the controller to directly
use this data diff upon a LLC cache-line writeback (shown as
maroon arrows from the controller to the LLC in the rightmost

request in Fig. 6). Upon an eviction from the LLC data diff
partition (e.g., to insert a new data diff), the controller writes
back the corresponding data without evicting it from the LLC,
and marks the data cache line as clean in the LLC. This ensures
that the future eviction of the data cache line would not require
the controller to read the old data either, while allowing for
reuse of the data in the LLC.

The LLC partitions (for caching redundancy and storing
data diffs) are completely decoupled from the application data
partitions. The LLC bank controllers do not lookup application
data in redundancy and data diff partitions, and the redundancy
controller does not look up redundancy or data diff cache lines
in application data partitions. Our design of storing the data
diff in the LLC assumes inclusive caches. We evaluate the
impact of exclusive caching in Section IV-G.

E. Putting it all together with TVARAK

Fig. 7 shows TVARAK’s components that implement the
functionality of a redundancy controller with all the opti-
mizations described above (DAX-CL-checksums, redundancy
caching and storing data diffs in LLC). One TVARAK con-
troller resides with each LLC cache bank. Each TVARAK
controller consists of comparators for address range matching
and adders for checksum and parity computations. TVARAK
includes a small on-controller cache for redundancy data and
uses LLC way-partitions for caching redundancy data and
storing data diffs. The on-controller cache and LLC way-
partition form an inclusive cache hierarchy. The controllers
use MESI coherence protocol for sharing the redundancy
cache lines between their private caches. TVARAK also uses a
separate LLC way-partition of storing data diffs.

Area overhead: The on-controller cache dominates
TVARAK’s area overhead because its other components (com-
parators and adders) only require small logic units. In our
evaluation with 2MB LLC cache banks, each TVARAK con-
troller consists of a 4KB cache. This implies that TVARAK’s
dedicated area is only 0.2% of the LLC. TVARAK’s design of
caching redundancy in an LLC partition instead of using its
own large cache keeps TVARAK’s dedicated area overheads
low, without compromising on performance (Section IV). We
evaluate the impact of reserving LLC partitions for caching
redundancy and storing data diffs on application performance
in Section IV-G.

DAX-mapped cache-line accesses with TVARAK: For a
DAX-mapped cache-line read, TVARAK computes its DAX-
CL-checksum address and looks it up in the on-controller
cache. Upon a miss, it looks up the DAX-CL-checksum in the
LLC redundancy partition. If it misses in the LLC partition
as well, TVARAK reads the DAX-CL-checksum from NVM
and caches it. TVARAK reads the data cache line from NVM,
computes its checksum, and verifies it with the DAX-CL-
checksum. If the verification succeeds, TVARAK hands over
the data to the bank controller. In case of an error, TVARAK
raises an interrupt that traps in the OS; the file system then
initiates recovery using the cross-DIMM parity.

Core

L1 Cache
L2 Cache

LLC

Core
L1 Cache
L2 Cache

DRAM DIMMs

Tvarak

Adder

On-Controller
Cache

Comparator

LLC
Cache-Bank

Data Diffs

Redundancy

Cache-Ctrl

Cache-Bank

Tvarak

Memory Controller

NVM DIMMs

Cache-Ctrl

Cache-Bank

Tvarak

Fig. 7. TVARAK is co-resides with the LLC bank controllers. It includes
comparators to identify cache lines that belong to DAX-mapped pages and
adders to compute checksums and parity. It includes a small on-controller
redundancy cache that is backed by a LLC partition. TVARAK also stores the
data diffs to compute checksums and parity.

On a DAX-mapped cache-line write, TVARAK computes
the corresponding system-checksum, DAX-CL-checksum, and
parity addresses and reads them following the same process
as above. TVARAK retrieves the data diff from the LLC bank
partition and uses that to compute the new system-checksum,
DAX-CL-checksum, and parity. TVARAK stores the updated
redundancy information in the on-controller cache, and writes
back the data cache line to NVM. TVARAK can safely cache
the updated redundancy information because it assumes that
servers are equipped with backup power to flush caches to
persistence in case of a power failure (Section III-B).

TVARAK fills an important gap in NVM storage redundancy
with simple architectural changes. Integrating NVM devices
into servers already requires changing the on-chip memory
controller to support the new DDR-T protocol [27]. Hence, we
believe that TVARAK can be easily integrated in storage server
chips, especially given its low-overhead and energy-efficient
design, as we show next.

IV. EVALUATION

We evaluate TVARAK with 7 applications and with multiple
workloads for each application. Table II describes our applica-
tions and their workloads. Redis [57], Intel PMDK’s [26] tree-
based key-value stores (C-Tree, B-Tree, and RB-Tree), and N-
Store [6] are NVM applications with complex access patterns.
We also use the standard file system benchmarking tool fio [8]
to generate synthetic sequential and random access patterns,
and stream [65] for sequential access memory-bandwidth
intensive microbenchmarks.

We compare TVARAK with three alternatives: Baseline,
TxB-Object-Csums, and TxB-Page-Csums. Baseline imple-
ments no redudancy mechanisms. TxB-Object-Csums and
TxB-Page-Csums are software-only redudancy approaches;
TxB-Object-Csums is based on Pangolin [79] and TxB-Page-
Csums is based on Mojim [81] and HotPot [63]4. Both

4The original Mojim and HotPot designs do not include checksums, but
can be extended to include them.

Application Workload

Redis Set-only and get-only with 1–6 parallel instances

C-Tree Insert-only, and 100:0, 50:50, & 0:100 updates:reads
with 12 parallel instances

B-Tree Insert-only, and 100:0, 50:50, & 0:100 updates:reads
with 12 parallel instances

RB-Tree Insert-only, and 100:0, 50:50, & 0:100 updates:reads
with 12 parallel instances

N-Store Read heavy, balanced, and write-heavy YCSB workloads

Fio Sequential and random reads and writes with 12 threads

Stream 4 memory bandwidth intensive kernels with 12 threads

TABLE II
APPLICATIONS AND THEIR WORKLOADS.

TxB-Object-Csums and TxB-Page-Csums update system-
checksums and parity when applications inform the interpos-
ing library after completing a write, which is typically at
a transaction boundary (TxB). TxB-Object-Csums maintains
system-checksums at an object granularity, whereas TxB-
Page-Csums maintains system-checksums at a page granu-
larity. TxB-Object-Csums does not need to read the entire
page to compute the system-checksum after a write, however,
TxB-Object-Csums has higher space overhead because of
the object-granular checksums. Unlike Pangolin, TxB-Object-
Csums does not copy data between NVM and DRAM. Conse-
quently, TxB-Object-Csums avoids the data copying overhead
of Pangolin and does not verify data reads (which can also
incur up to 50% overhead [79]). However, because data is
updated in place, TxB-Object-Csums also loses the ability to
update parity using a data diff. TxB-Page-Csums also does
not verify data reads and updates parity by recomputing it as
opposed to using a data diff.

TVARAK updates system-checksums and parity upon every
writeback from the LLC to the NVM, and verifies system-
checksums upon every read from the NVM to the LLC. As
mentioned in Section III-B, we assume battery-backed CPU
caches, so none of the designs flush cache lines for durability.

Methodology: We use zsim [61] to simulate a system
similar to Intel Westmere processors [61]. Table III details
our simulation parameters. We simulate 12 OOO cores, each
with 32KB private L1 and 256KB private L2 caches. The
cores share a 24MB last level cache (LLC) with 12 banks of
2MB each. The simulated system consists of 4 NVM DIMMs;
we use the latency and energy parameters derived by Lee et
al. [37] (60/150 ns read/write latency, 1.6/9 nJ per read/write).
We evaluate the impact of changing the number of NVM
DIMMs and the underlying NVM technology (and the asso-
ciated performance characteristics) in Section IV-H. We use
a fixed-work methodology to compare the designs: baseline,
TVARAK, TxB-Object-Csums, and TxB-Page-Csums. Unless
stated otherwise, we present the average of three runs for each
data point with root mean square error bars.

A. Key Evaluation Takeaways

We highlight the key takeaways from our results before
describing each application’s results in detail.

Cores 12 cores, x86-64 ISA, 2.27 GHz,
Westmere-like OOO [61]

L1-D caches 32KB, 8-way set-associative, 4 cycle latency,
LRU replacement, 15/33 pJ per hit/miss [43]

L1-I caches 32KB, 4-way set-associative, 3 cycle latency,
LRU replacement, 15/33 pJ per hit/miss [43]

L2 caches 256KB, 8-way set-associative, 7 cycle latency,
LRU replacement, 46/94 pJ per hit/miss [43]

L3 cache

24MB (12 2MB banks), 16-way set-associative,
27 cycle latency, shared and inclusive,
MESI coherence, 64B lines
LRU replacement, 240/500 pJ per hit/miss [43]

DRAM 6 DDR DIMMs, 15ns reads/writes

NVM 4 DDR DIMMs, 60ns reads, 150ns writes [37]
1.6/9 nJ per read/write [37]

TVARAK

4KB on-controller cache with 1 cycle latency, 15/33 pJ per hit/miss
2 cycle latency for address range matching
1 cycle per checksum/parity computation and verification,
2 ways (out of 16) reserved for caching redundancy information,
1 way (out of 16) for storing data diffs.

TABLE III
SIMULATION PARAMETERS

• TVARAK provides efficient redundancy updates for ap-
plication data writes, e.g., with only 1.5% overhead over
baseline that provides no redundancy for an insert-only
workload with tree-based key-value stores (C-Tree, B-
Tree, RB-Tree).

• TVARAK verifies all application data reads, unlike most
existing solutions, and does so efficiently. For example,
in comparison to baseline that does not verify any reads,
TVARAK increase Redis get-only runtime by only 3%.

• TVARAK benefits from application data access locality
because it improves cache usage for redundancy informa-
tion. For example, for synthetic fio benchmarks, TVARAK
has negligible overheads with sequential accesses, but 2%
overhead for random reads and 33% for random writes,
compared to baseline.

• TVARAK outperforms existing software-only redundancy
mechanisms. For example, for Nstore workloads, TxB-
Object-Csums is 33–53% slower than TVARAK, and TxB-
Page-Csums is 180–390% slower than TVARAK.

• TVARAK’s efficiency comes without an increase in (ded-
icated) space requirements. TxB-Object-Csums outper-
forms TxB-Page-Csums but at the cost of higher space
overhead for per-object checksums. TVARAK instead uses
DAX-CL-checksums that improve performance without
demanding dedicated storage.

B. Redis

Redis is a widely used single-threaded in-memory key-value
store that uses a hashtable as its primary data structure [56].
We modify Redis (v3.1) to use a persistent memory heap
using Intel PMDK’s libpmemobj library [26], building upon
an open-source implementation [57]. We vary the number of
Redis instances, each of which operate independently. We use
the redis-benchmark utility to spawn 100 clients that together
generate 1 million requests per Redis instance. We use set-

Baseline Tvarak TxB-Object-Csums TxB-Page-Csums Redundancy Data On-Tvarak Cache LLC L2 L1

Set Only Get Only
Workload w/ 6 Redis Instances
0

10

20

30

40

Ru
nt

im
e

(s
ec

on
ds

)

(a) Redis: Runtime

Set Only Get Only
Workload w/ 6 Redis Instances
0

20

40

En
er

gy
 (n

J)

85

(b) Redis: Energy

Set Only Get Only
Workload w/ 6 Redis Instances
0

200

400

NV
M

 A
cc

es
se

s (
x

10
6) 2418

(c) Redis: NVM Accesses

Set Only Get Only
Workload w/ 6 Redis Instances
0

50

100

150

200

Ca
ch

e
Ac

ce
ss

es
 (x

 1
09)

257

(d) Redis: Cache Accesses

C-Tree

Insert Only
B-Tree

RB-Tree
C-Tree

Balanced
B-Tree

RB-Tree

Workload: Data Structure

0

500

1000

1500

Ru
nt

im
e

(m
s)

1696 3197

(e) KV-Structures: Runtime

C-Tree

Insert Only
B-Tree

RB-Tree
C-Tree

Balanced
B-Tree

RB-Tree

Workload: Data Structure

0

250

500

750

1000

En
er

gy
 (n

J)
1484

(f) KV-Structures: Energy

C-Tree

Insert Only
B-Tree

RB-Tree
C-Tree

Balanced
B-Tree

RB-Tree

Workload: Data Structure

0

10

20

NV
M

 A
cc

es
se

s (
x

10
6) 81 73 81

(g) KV-Structures: NVM Accesses

C-Tree

Insert OnlyB-Tree
RB-Tree

C-Tree

BalancedB-Tree
RB-Tree

Workload: Data Structure

0

10

20

30

Ca
ch

e
Ac

ce
ss

es
 (x

 1
09)

35 57

(h) KV-Structures: Cache Accesses

Update
Heavy

Balanced Read
Heavy

Workload

0

20

40

Ru
nt

im
e

(s
ec

on
ds

) 102

(i) N-Store: Runtime

Update
Heavy

Balanced Read
Heavy

Workload

0

2000

4000

En
er

gy
 (n

J)

15482 5722

(j) N-Store: Energy

Update
Heavy

Balanced Read
Heavy

Workload

0

500

1000

1500

2000

NV
M

 A
cc

es
se

s (
x

10
6) 2059 10516 3462

(k) N-Store: NVM Accesses

Update
Heavy

Balanced Read
Heavy

Workload

0

5

10

15

20

Ca
ch

e
Ac

ce
ss

es
 (x

 1
09)

24 53 27

(l) N-Store: Cache Accesses

Seq.
Write

Rand.
Write

Seq.
Read

Rand.
Read

Workload

0

250

500

750

1000

Ru
nt

im
e

(m
s)

2930

(m) Fio: Runtime

Seq.
Write

Rand.
Write

Seq.
Read

Rand.
Read

Workload

0

250

500

750

1000

En
er

gy
 (n

J)

1487

(n) Fio: Energy

Seq.
Write

Rand.
Write

Seq.
Read

Rand.
Read

Workload

0

25

50

75

100

NV
M

 A
cc

es
se

s (
x

10
6) 863

(o) Fio: NVM Accesses

Seq.
Write

Rand.
Write

Seq.
Read

Rand.
Read

Workload

0

5

10

Ca
ch

e
Ac

ce
ss

es
 (x

 1
09)

(p) Fio: Cache Accesses

Copy Scale Add Triad
Workload

0

200

400

600

Ru
nt

im
e

(m
s)

1154 1154 1156 1156

(q) Stream: Runtime

Copy Scale Add Triad
Workload

0

100

200

300

En
er

gy
 (n

J)

(r) Stream: Energy

Copy Scale Add Triad
Workload

0

5

10

15

NV
M

 A
cc

es
se

s (
x

10
6)

(s) Stream: NVM Accesses

Copy Scale Add Triad
Workload

0

5

10

Ca
ch

e
Ac

ce
ss

es
 (x

 1
09)

(t) Stream: Cache Accesses

Fig. 8. Runtime, energy, and NVM and cache accesses for various Redis (Figs. 8(a) to 8(d)), tree-based key-value data structures (Figs. 8(e) to 8(h)), N-Store
(Figs. 8(i) to 8(l)), Fio (Figs. 8(m) to 8(p)), and Stream (Figs. 8(q) to 8(t)) workloads. We divide NVM accesses into data and redundancy information accesses,
and cache accesses into L1, L2, LLC, and on-TVARAK cache.

only and get-only workloads. We show the results only for
6 Redis instances for ease of presentation; the trends are the
same for 1–6 Redis instances that we evaluated.

Fig. 8(a) shows the runtime for Redis set-only and get-only
workloads. In comparison to baseline, that maintains no redun-
dancy, TVARAK increases the runtime by only 3% for both the
workloads. In contrast, TxB-Object-Csums typically increases
the runtime by 50% and TxB-Page-Csums by 200% over the
baseline for the set-only workload. For get-only workloads,
TxB-Object-Csums and TxB-Page-Csums increase the runtime
for by a maximum of 5% and 28% over baseline, respectively.
This increase for TxB-Object-Csums and TxB-Page-Csums,
despite them not verifying any application data reads, is
because Redis uses libpmemobj transactions for get requests as
well and these transactions lead to persistent metadata writes
(e.g., to set the transaction state as started or committed).
Redis uses transactions for get requests also because it uses
an incremental rehashing design wherein it rehashes part of its
hashtable upon each request. The incremental rehashing can
lead to writes for get requests also. We do not change Redis’
behavior to eliminate these transactions to suit our get-only
workload, which wouldn’t actually trigger a rehashing.

Figs. 8(b) to 8(d) show the energy, NVM accesses and cache
accesses. The energy results are similar to that for runtime.
For the set-only workload, TVARAK performs more NVM
accesses than TxB-Object-Csums because TVARAK does not
cache the data or redundancy information in the L1 and
L2 caches; TxB-Object-Csums instead performs more cache
accesses. Even though TxB-Page-Csums can and does use
the caches (demonstrated by TxB-Page-Csums’s more than
2.5× more cache accesses than baseline), it also requires more
NVM accesses because it needs to read the entire page to
compute the page-granular system-checksums. For get-only
workloads, TVARAK performs more NVM accesses than both
TxB-Object-Csums and TxB-Page-Csums because it verifies
the application data reads with DAX-CL-checksums.

C. Key-value Data Structures

We use three persistent memory key-value data structures,
namely C-Tree, B-Tree, and RB-Tree, from Intel PMDK [26].
We use PMDK’s pmembench utility to generate insert-only,
update-only, balanced (50:50 updates:reads), and read-only
workloads. We stress the NVM usage by using 12 instances
of each data-structure; each instance is driven by a single
threaded workload generator. Having 12 independent instances
of single-threaded workloads allows us to remove locks from
the data-structures and increase the workload throughput. We
show the results for insert-only and balanced workloads; the
trends are the same for other workloads.

Figs. 8(e) to 8(h) show the runtime, energy, and NVM and
cache accesses for the different workloads and data-structures.
For the insert-only workload, TVARAK increases the runtime
by a maximum of 1.5% (for RB-Tree) over the baseline while
updating the redundancy for all inserted tuples. In contrast,
TxB-Object-Csums and TxB-Page-Csums increase the runtime
by 43% and 171% over the baseline, respectively. For the

balanced workload, TVARAK updates the redundancy for tuple
updates and also verifies tuple reads with system-checksums
with only 5% increase in runtime over the baseline for C-
Tree and B-Tree. TxB-Object-Csums incurs a 20% increase in
runtime over baseline for just updating the redundancy upon
tuple updates; TxB-Page-Csums performs even worse.

D. N-Store

N-Store is a NVM-optimized relational DBMS. We use
update-heavy (90:10 updates:reads), balanced (50:50 up-
dates:reads) and read-heavy (10:90 updates:reads) YCSB
workloads with high skew (90% of transactions go to 10%
of tuples) [6]. We use 4 client threads to drive the workload
and perform a total of 800000 transactions. For N-Store, we
present results from a single run with no error bars.

Figs. 8(i) to 8(l) show runtime and energy, and NVM and
cache accesses. TVARAK increases the runtime by 27% and
41% over the baseline for the read-heavy and update-heavy
workloads, respectively. TVARAK’s overheads are higher with
N-Store than with Redis or key-value structures because N-
Store uses a linked-list-based write-ahead log that leads to
a random-write access pattern for update transactions: each
update transaction allocates and writes to a linked list node.
Because the linked list layout is not sequential in NVM,
TVARAK incurs cache misses for the redundancy informa-
tion and performs more NVM accesses. The random-write
access pattern also affects TxB-Object-Csums and TxB-Page-
Csums, with a 70%–117% and 264%–600% longer runtime
than baseline, respectively. This is because TxB-Object-Csums
and TxB-Page-Csums also incur misses for for redundancy
information in the L1, L2 and LLC caches and have to perform
more NVM accesses for random writes.

E. Fio Benchmarks

Fio is a file system benchmarking tool that supports multiple
access patterns [8]. We use Fio’s libpmem engine that accesses
DAX-mapped NVM file data using load and store instructions.
We use sequential and random read and write workloads with
a 64B access granularity. We use 12 concurrent threads with
each thread performing 32MB worth of accesses (reads or
writes). Each thread accesses data from a non-overlapping
512MB region, and no cache line is accessed twice.

Figs. 8(m) to 8(p) show the results for fio. As discussed
above in the context of N-Store, random access patterns
in the application hurt TVARAK because of poor reuse for
redundancy cache lines with random accesses. This trend is
visible for fio as well—whereas TVARAK has essentially the
same runtime as baseline for sequential accesses, TVARAK
increases the runtime by 2% and 33% over baseline for
random reads and writes, respectively. However, TVARAK
still outperforms TxB-Object-Csums and TxB-Page-Csums
for the write workloads. For read workloads, TxB-Object-
Csums and TxB-Page-Csums have no impact because they
do not verify application data reads. For the random write
workload, TVARAK incurs a higher energy overhead than
TxB-Object-Csums. This is because the energy required for

Baseline
Naive
 + DAX-CL-Csums

 + Redundancy-Caching
 + Data Diffs in LLC (= Tvarak)

Redis
Set Only

C-Tree
Insert Only

NStore
Balanced

Fio Random
Write

Stream
Triad

Application Workload

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ru

nt
im

e
(L

ow
er

 is
 b

et
te

r)

2 3 4 25 2

Fig. 9. Impact of TVARAK’s Design Choices: We evaluate the impact of
TVARAK’s design optimizations with one workload for each application. We
present the results for the naive design and then add optimizations: DAX-
CL-checksums, redundancy caching, and data diffs in LLC. With all the
optimizations enabled, we get TVARAK.

additional NVM accesses that TVARAK generates exceed that
required for the additional cache accesses that TxB-Object-
Csums generates.

F. Stream Benchmarks

Stream is a memory bandwidth stress tool [65] that is part
of the HPC Challenge suite [23]. Stream comprises of four
sequential access kernels: (i) Copy data from one array to
another, (ii) Scale elements from one array by a constant factor
and write them in a second array, (iii) Add elements from two
arrays and write them in a third array, and (iv) Triad which is
a combination of Add and Scale: it scales the elements from
one array, adds them to the corresponding elements from the
second array, and stores the values in a third array. We modify
stream to store and access data in persistent memory. We use
12 concurrent threads that operate on non-overlapping regions
of the arrays. Each array has a size of 128MB.

Figs. 8(q) to 8(t) show the results for the four kernels. The
trends are similar to the preceding results. TVARAK, TxB-
Object-Csums, and TxB-Page-Csums increase the runtime by
6%–21%, 700%–1200%, and 1800%–3200% over the base-
line, respectively. The absolute values of the overheads are
higher for all the designs because the baseline already saturates
the NVM bandwidth, unlike the real-world applications con-
sidered above that consume the data in more complex fashions.
The impact of computation complexity is clear even across the
four microbenchmarks: copy is the simplest kernel, followed
by scale, add, and triad. Consequently, the overheads for all
the designs are highest for the copy kernel and lowest for the
triad kernel.

G. Impact of TVARAK’s Design Choices

We break down the impact of TVARAK’s design choices,
namely, using DAX-CL-checksum, caching redundancy infor-

mation, and storing data diffs in LLC. We present the results
for one workload from each of the above applications: set-
only workload with 6 instances for Redis, insert-only workload
for C-Tree, balanced workload for N-Store, random write
workload for fio, and triad kernel for stream.

Fig. 9 shows the performance for the naive design, and then
adds individual design elements, i.e., DAX-CL-checksums,
redundancy caching, and storing data diffs in LLC. With
all the design elements, we get the complete TVARAK de-
sign. Not storing data diffs in LLC, while using DAX-CL-
checksums and redundancy caching corresponds to TVARAK
design for systems with exclusive caching. For Redis, C-Tree
and stream’s triad kernel, all of TVARAK’s design choices
improve performance. This is the case for B-Tree, RB-Tree,
other stream kernels, and fio sequential access workloads as
well (not shown in the figure).

For N-Store and fio random write workload, redundancy
caching and storing data diffs in the LLC hurt performance.
This is because taking away cache space from application data
creates more NVM accesses than that saved by caching the
redundancy data and storing the data diffs in LLC for N-Store
and fio random writes—their random access patterns lead to
poor reuse of redundancy cache lines.

This evaluation highlights the importance of right-sizing
LLC partitions that TVARAK uses to cache redundancy infor-
mation and to store data diffs. We now evaluate the application
performance sensitivity to these parameters.

H. Sensitivity Analysis

We evaluate the sensitivity of TVARAK to the size of LLC
partitions that it can use for caching redundancy information
and storing data diffs. We present the results for one workload
from each of the set of applications, namely, set-only workload
with 6 instances for Redis, insert-only workload for C-Tree,
balanced workload for N-Store, random write workload for
fio, and triad kernel for stream.

Fig. 10(a) shows the impact of changing the number of LLC
ways (out of 16) that TVARAK can use for caching redundancy
information. Redis and C-Tree are largely unaffected by the
redundancy partition size, with Redis benefitting marginally
from reserving 2 ways instead of 1. Stream and fio, being syn-
thetic memory stressing microbenchmarks, demonstrate that
dedicating a larger partition for redundancy caching improves
TVARAK’s performance because of the increased cache space.
N-Store is cache-sensitive and taking away the cache from
application data for redundancy hurts its performance.

Fig. 10(b) shows the sensitivity of TVARAK to the number
of ways reserved for storing data diffs. As with the sensitivity
to redundancy information partition size, changing the data
diff partition size has negligible impact on Redis and C-
Tree. For N-Store, increasing the number of ways reserved
for storing data diffs hurts performance because N-Store is
cache-sensitive. Stream and fio show an interesting pattern:
increasing the number of data diff ways from 1 to 4 hurts
performance, but increasing it to 6 or 8 improves performance
(although the performance remains worse than reserving just

Baseline
Tvarak-1

Tvarak-2
Tvarak-4

Tvarak-6
Tvarak-8

Redis
Set Only

C-Tree
Insert Only

NStore
Balanced

Fio Random
Write

Stream
Triad

Application Workload

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ru

nt
im

e
(L

ow
er

 is
 b

et
te

r)

(a) Sensitivity to number of ways for
caching redundancy information.

Redis
Set Only

C-Tree
Insert Only

NStore
Balanced

Fio Random
Write

Stream
Triad

Application Workload

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ru

nt
im

e
(L

ow
er

 is
 b

et
te

r)

(b) Sensitivity to number of ways for
storing data diffs.

Fig. 10. Impact of changing the number of LLC ways (out of 16) that TVARAK
can use for caching redundancy data and for storing data diffs.

1 way). This is because dedicating more ways for storing data
diffs has two contradicting effects. It reduces the number of
writebacks due to data diff evictions, but it also causes more
writebacks because of the reduced cache space for application
data. Their combined effect dictates the overall performance.

We also evaluate the impact of increasing the number of
NVM DIMMs and changing the underlying NVM technology
on baseline, TVARAK, TxB-Object-Csums, and TxB-Page-
Csums. The relative performance trends stay the same with
both of these changes; we do not show the results here for
brevity. As an example, even with 8 NVM DIMMs or with
improved NVM performance by considering battery-backed
DRAM as NVM, TVARAK continues to outperform TxB-
Object-Csums and TxB-Page-Csums by orders of magnitude
for the stream microbenchmarks.

V. CONCLUSION

TVARAK efficiently maintains system-checksums and cross-
device parity for DAX NVM storage, addressing controller and
firmware imperfections expected to arise with NVM as they
have with other storage technologies. As a hardware offload,
managed by the storage software, TVARAK does so with
minimal overhead and much more efficiently that software-
only approaches. Since system-level redundancy is expected
from production storage, TVARAK is an important step towards
the use of DAX NVM as primary storage.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback.
We also thank VMware and the companies of the PDL
consortium—Alibaba, Amazon, Datrium, Facebook, Google,
Hewlett Packard Enterprise, Hitachi, IBM Research, Intel, Mi-
cron, Microsoft Research, NetApp, Oracle, Salesforce, Sam-
sung, Seagate, and Two Sigma.

REFERENCES

[1] Intel Optane/Micron 3d-XPoint Memory, http://www.intel.com/content/
www/us/en/architecture-and-technology/non-volatile-memory.html.

[2] I. F. Adams, J. Keys, and M. P. Mesnier, “Respecting the block
interface – computational storage using virtual objects,” in 11th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 19).
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/node/234680

[3] AGIGARAM Non-Volatile System, http://www.agigatech.com/agigaram.
php.

[4] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-memory Accelerator for Parallel Graph Processing,” in Proceedings
of the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 105–117.
[Online]. Available: http://doi.acm.org/10.1145/2749469.2750386

[5] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled Instructions: A
Low-overhead, Locality-aware Processing-in-memory Architecture,” in
Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 336–
348. [Online]. Available: http://doi.acm.org/10.1145/2749469.2750385

[6] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s Talk About
Storage & Recovery Methods for Non-Volatile Memory Database
Systems,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’15. New
York, NY, USA: ACM, 2015, pp. 707–722. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2749441

[7] J. Arulraj, M. Perron, and A. Pavlo, “Write-behind Logging,” Proc.
VLDB Endow., vol. 10, no. 4, pp. 337–348, Nov. 2016. [Online].
Available: https://doi.org/10.14778/3025111.3025116

[8] J. Axboe, “Fio-flexible I/O tester,” URL https://github.com/axboe/fio,
2014.

[9] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
G. R. Goodson, and B. Schroeder, “An Analysis of Data Corruption in
the Storage Stack,” Trans. Storage, vol. 4, no. 3, pp. 8:1–8:28, Nov.
2008. [Online]. Available: http://doi.acm.org/10.1145/1416944.1416947

[10] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis,
T. Giuli, and P. Bungale, “A Fresh Look at the Reliability of Long-term
Digital Storage,” in Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006, ser. EuroSys ’06.
New York, NY, USA: ACM, 2006, pp. 221–234. [Online]. Available:
http://doi.acm.org/10.1145/1217935.1217957

[11] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec 2009, pp. 347–357.

[12] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active
Disk Meets Flash: A Case for Intelligent SSDs,” in Proceedings of
the 27th International ACM Conference on International Conference
on Supercomputing, ser. ICS ’13. New York, NY, USA: ACM, 2013,
pp. 91–102. [Online]. Available: http://doi.acm.org/10.1145/2464996.
2465003

[13] L. Chua, “Memristor-the missing circuit element,” Circuit Theory, IEEE
Transactions on, vol. 18, no. 5, pp. 507–519, Sep 1971.

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “NV-Heaps: Making Persistent Objects Fast
and Safe with Next-generation, Non-volatile Memories,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: ACM, 2011, pp. 105–118. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950380

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O Through Byte-addressable, Persistent
Memory,” in Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, ser. SOSP ’09. New York,
NY, USA: ACM, 2009, pp. 133–146. [Online]. Available: http:
//doi.acm.org/10.1145/1629575.1629589

[16] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc for pc
server main memory,” IBM Microelectronics Division, vol. 11, pp. 1–23,
1997.

[17] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No Compromises: Distributed
Transactions with Consistency, Availability, and Performance,” in
Proceedings of the 25th Symposium on Operating Systems Principles,
ser. SOSP ’15. New York, NY, USA: ACM, 2015, pp. 54–70.
[Online]. Available: http://doi.acm.org/10.1145/2815400.2815425

[18] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System Software for Persistent Memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
ser. EuroSys ’14. New York, NY, USA: ACM, 2014, pp. 15:1–15:15.
[Online]. Available: http://doi.acm.org/10.1145/2592798.2592814

[19] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM

devices and standard memory modules,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), Feb
2015, pp. 283–295.

[20] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Mossé, “Increasing PCM Main Memory Lifetime,” in Proceedings
of the Conference on Design, Automation and Test in Europe, ser.
DATE ’10. 3001 Leuven, Belgium, Belgium: European Design
and Automation Association, 2010, pp. 914–919. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1870926.1871147

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
29–43. [Online]. Available: http://doi.acm.org/10.1145/945445.945450

[22] D. Hitz, J. Lau, and M. Malcolm, “File system design for an nfs file
server appliance,” in Proceedings of the USENIX Winter 1994 Technical
Conference on USENIX Winter 1994 Technical Conference, ser.
WTEC’94. Berkeley, CA, USA: USENIX Association, 1994, pp. 19–19.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267074.1267093

[23] HPC Challenge Benchmark, https://icl.utk.edu/hpcc/.
[24] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,

S. Ghose, and O. Mutlu, “Accelerating pointer chasing in 3d-stacked
memory: Challenges, mechanisms, evaluation,” in 2016 IEEE 34th
International Conference on Computer Design (ICCD), Oct 2016, pp.
25–32.

[25] Intel and Micron Produce Breakthrough Memory Tehcnology,
https://newsroom.intel.com/news-releases/intel-and-micron-produce-
breakthrough-memory-technology/.

[26] PMDK: Intel Persistent Memory Development Kit, http://pmem.io.
[27] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
Performance Measurements of the Intel Optane DC Persistent Memory
Module,” CoRR, vol. abs/1903.05714, 2019. [Online]. Available:
http://arxiv.org/abs/1903.05714

[28] M. Ji, A. C. Veitch, and J. Wilkes, “Seneca: remote mirroring done
write.” in USENIX Annual Technical Conference, General Track, ser.
ATC’03, 2003, pp. 253–268.

[29] X. Jian and R. Kumar, “Adaptive Reliability Chipkill Correct (ARCC),”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), Feb 2013, pp. 270–281.

[30] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are Disks the
Dominant Contributor for Storage Failures?: A Comprehensive
Study of Storage Subsystem Failure Characteristics,” Trans. Storage,
vol. 4, no. 3, pp. 7:1–7:25, Nov. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1416944.1416946

[31] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang,
J. Xu, and G. Palani, “Designing a True Direct-access File System
with DevFS,” in Proceedings of the 16th USENIX Conference
on File and Storage Technologies, ser. FAST’18. Berkeley, CA,
USA: USENIX Association, 2018, pp. 241–255. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3189759.3189782

[32] R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger,
“Viyojit: Decoupling Battery and DRAM Capacities for Battery-
Backed DRAM,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. New York,
NY, USA: ACM, 2017, pp. 613–626. [Online]. Available: http:
//doi.acm.org/10.1145/3079856.3080236

[33] R. Kateja, A. Pavlo, and G. R. Ganger, “Vilamb: Low Overhead
Asynchronous Redundancy for Direct Access NVM,” 2020. [Online].
Available: https://arxiv.org/abs/2004.09619v1

[34] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, “Designing
for Disasters,” in Proceedings of the 3rd USENIX Conference
on File and Storage Technologies, ser. FAST’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 5–5. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973374.1973379

[35] H. Kimura, “FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’15. New
York, NY, USA: ACM, 2015, pp. 691–706. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2746480

[36] H. Kumar, Y. Patel, R. Kesavan, and S. Makam, “High-performance
Metadata Integrity Protection in the WAFL Copy-on-write File
System,” in Proceedings of the 15th Usenix Conference on File
and Storage Technologies, ser. FAST’17. Berkeley, CA, USA:

USENIX Association, 2017, pp. 197–211. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3129633.3129651

[37] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase
Change Memory As a Scalable Dram Alternative,” in Proceedings of
the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 2–13. [Online].
Available: http://doi.acm.org/10.1145/1555754.1555758

[38] LWN: Linux and 4K disk sectors, https://web.archive.org/web/
20131005191108/http://lwn.net/Articles/322777/.

[39] Supporting filesystems in persistent memory, https://lwn.net/Articles/
610174/.

[40] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing Memory and Storage Support for Non-volatile Memory
Systems,” in Proceedings of the 46th International Symposium on
Computer Architecture, ser. ISCA ’19. New York, NY, USA: ACM,
2019, pp. 143–156. [Online]. Available: http://doi.acm.org/10.1145/
3307650.3322206

[41] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris, “Persistent
Memcached: Bringing Legacy Code to Byte-addressable Persistent
Memory,” in Proceedings of the 9th USENIX Conference on Hot
Topics in Storage and File Systems, ser. HotStorage’17. Berkeley,
CA, USA: USENIX Association, 2017, pp. 4–4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3154601.3154605

[42] P. J. Meaney, L. A. Lastras-Montanõ, V. K. Papazova, E. Stephens,
J. S. Johnson, L. C. Alves, J. A. O’Connor, and W. J. Clarke, “Ibm
zenterprise redundant array of independent memory subsystem,” IBM
J. Res. Dev., vol. 56, no. 1, pp. 43–53, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1147/JRD.2011.2177106

[43] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), Dec 2007, pp. 3–14.

[44] S. Narayan, J. A. Chandy, S. Lang, P. Carns, and R. Ross, “Uncovering
Errors: The Cost of Detecting Silent Data Corruption,” in Proceedings
of the 4th Annual Workshop on Petascale Data Storage, ser. PDSW ’09.
New York, NY, USA: ACM, 2009, pp. 37–41. [Online]. Available:
http://doi.acm.org/10.1145/1713072.1713083

[45] D. Narayanan and O. Hodson, “Whole-system Persistence,” in Pro-
ceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XVII. New York, NY, USA: ACM, 2012, pp. 401–410.
[Online]. Available: http://doi.acm.org/10.1145/2150976.2151018

[46] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” in Proceedings of the 1988
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’88. New York, NY, USA: ACM, 1988, pp. 109–116.
[Online]. Available: http://doi.acm.org/10.1145/50202.50214

[47] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and
S. Owara, “SnapMirror: File-System-Based Asynchronous Mirroring
for Disaster Recovery,” in Proceedings of the 1st USENIX Conference
on File and Storage Technologies, ser. FAST ’02. Berkeley,
CA, USA: USENIX Association, 2002. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1083323.1083335

[48] Deprecating the PCOMMIT instruction, https://software.intel.com/en-
us/blogs/2016/09/12/deprecate-pcommit-instruction.

[49] Memory Protection Keys Man Page, http://man7.org/linux/man-pages/
man7/pkeys.7.html.

[50] Plexistore keynote presentation at NVMW 2018, http://nvmw.ucsd.
edu/nvmw18-program/unzip/current/nvmw2018-paper97-presentations-
slides.pptx.

[51] Persistent Memory Storage Engine, https://github.com/pmem/pmse.
[52] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “IRON File Systems,”
in Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, ser. SOSP ’05. New York, NY, USA: ACM, 2005, pp. 206–
220. [Online]. Available: http://doi.acm.org/10.1145/1095810.1095830

[53] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini,
“Practical and secure PCM systems by online detection of malicious
write streams,” in 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, Feb 2011, pp. 478–489.

[54] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing Lifetime and Security of PCM-based Main
Memory with Start-gap Wear Leveling,” in Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO 42. New York, NY, USA: ACM, 2009, pp. 14–23. [Online].
Available: http://doi.acm.org/10.1145/1669112.1669117

[55] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-change Memory
Technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New York,
NY, USA: ACM, 2009, pp. 24–33. [Online]. Available: http:
//doi.acm.org/10.1145/1555754.1555760

[56] Redis: in-memory key value store, http://redis.io/.
[57] Redis PMEM: Redis, enhanced to use PMDK’s libpmemobj, https:

//github.com/pmem/redis.
[58] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, “Active Disks

for Large-Scale Data Processing,” Computer, vol. 34, no. 6, pp. 68–74,
Jun. 2001. [Online]. Available: https://doi.org/10.1109/2.928624

[59] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active Storage for
Large-Scale Data Mining and Multimedia,” in Proceedings of the
24rd International Conference on Very Large Data Bases, ser. VLDB
’98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1998, pp. 62–73. [Online]. Available: http://dl.acm.org/citation.cfm?id=
645924.671345

[60] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree
Filesystem,” Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32, Aug. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2501620.2501623

[61] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-core Systems,” in
Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 475–
486. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485963

[62] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security Refresh: Prevent
Malicious Wear-out and Increase Durability for Phase-change Memory
with Dynamically Randomized Address Mapping,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 383–394.
[Online]. Available: http://doi.acm.org/10.1145/1815961.1816014

[63] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed Shared Persistent
Memory,” in Proceedings of the 2017 Symposium on Cloud Computing,
ser. SoCC ’17. New York, NY, USA: ACM, 2017, pp. 323–337.
[Online]. Available: http://doi.acm.org/10.1145/3127479.3128610

[64] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in
storage: Techniques and applications,” in Proceedings of the 2005 ACM
Workshop on Storage Security and Survivability, ser. StorageSS ’05.
New York, NY, USA: ACM, 2005, pp. 26–36. [Online]. Available:
http://doi.acm.org/10.1145/1103780.1103784

[65] Stream Memory Bandwidth Benchmark, http://www.cs.virginia.edu/
stream/.

[66] 4K Sector Disk Drives: Transitioning to the Future with Advanced
Format Technologies, https://storage.toshiba.com/docs/services-support-
documents/toshiba 4kwhitepaper.pdf.

[67] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, “LOT-ECC: Localized and tiered reliability mechanisms
for commodity memory systems,” in 2012 39th Annual International
Symposium on Computer Architecture (ISCA), June 2012, pp. 285–296.

[68] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible file-system interfaces to storage-class
memory,” in Proceedings of the Ninth European Conference on
Computer Systems, ser. EuroSys ’14. New York, NY, USA: ACM,
2014, pp. 14:1–14:14. [Online]. Available: http://doi.acm.org/10.1145/
2592798.2592810

[69] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
Persistent Memory,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XVI. New York, NY, USA:
ACM, 2011, pp. 91–104. [Online]. Available: http://doi.acm.org/10.
1145/1950365.1950379

[70] J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson, “Ssd in-storage
computing for search engines,” IEEE Transactions on Computers, pp.
1–1, 2016.

[71] Transition to Advanced Format 4K Sector Hard Drives,
https://www.seagate.com/tech-insights/advanced-format-4k-sector-
hard-drives-master-ti/.

[72] X. Wu and A. L. N. Reddy, “SCMFS: A File System for Storage
Class Memory,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.

SC ’11. New York, NY, USA: ACM, 2011, pp. 39:1–39:11. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063436

[73] J. Xu and S. Swanson, “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories,” in 14th USENIX Conference
on File and Storage Technologies (FAST 16). Santa Clara, CA:
USENIX Association, 2016, pp. 323–338. [Online]. Available: https:
//www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[74] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B.
Da Silva, S. Swanson, and A. Rudoff, “NOVA-Fortis: A Fault-Tolerant
Non-Volatile Main Memory File System,” in Proceedings of the 26th
Symposium on Operating Systems Principles, ser. SOSP ’17. New
York, NY, USA: ACM, 2017, pp. 478–496. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132761

[75] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies
(FAST 20). Santa Clara, CA: USENIX Association, Feb. 2020,
pp. 169–182. [Online]. Available: https://www.usenix.org/conference/
fast20/presentation/yang

[76] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-
Efficient Encryption for Non-Volatile Memories,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 33–44. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694387

[77] D. Zhang, V. Sridharan, and X. Jian, “Exploring and optimizing chipkill-
correct for persistent memory based on high-density nvrams,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 710–723.

[78] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski, “TOP-PIM: Throughput-oriented Programmable
Processing in Memory,” in Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’14. New York, NY, USA: ACM, 2014, pp. 85–98.
[Online]. Available: http://doi.acm.org/10.1145/2600212.2600213

[79] L. Zhang and S. Swanson, “Pangolin: A Fault-Tolerant Persistent
Memory Programming Library,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19). Renton, WA: USENIX Association,
2019. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/zhang-lu

[80] Y. Zhang, D. S. Myers, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Zettabyte reliability with flexible end-to-end data integrity,” in
2013 IEEE 29th Symposium on Mass Storage Systems and Technologies
(MSST), May 2013, pp. 1–14.

[81] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim:
A Reliable and Highly-Available Non-Volatile Memory System,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: ACM, 2015, pp. 3–18. [Online].
Available: http://doi.acm.org/10.1145/2694344.2694370

[82] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “End-to-end Data Integrity for File Systems: A
ZFS Case Study,” in Proceedings of the 8th USENIX Conference
on File and Storage Technologies, ser. FAST’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855511.1855514

[83] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln:
Closing the Performance Gap Between Systems with and Without
Persistence Support,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 421–432. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540744

[84] R. Zheng and M. C. Huang, “Redundant memory array architecture
for efficient selective protection,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: ACM, 2017, pp. 214–227. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080213

[85] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving
the Performance and Endurance of Encrypted Non-volatile Main
Memory Through Deduplicating Writes,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-51. Piscataway, NJ, USA: IEEE Press, 2018, pp. 442–454.
[Online]. Available: https://doi.org/10.1109/MICRO.2018.00043

