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Abstract—Memory devices represent a key component of
datacenter total cost of ownership (TCO), and techniques used
to reduce errors that occur on these devices increase this
cost. Existing approaches to providing reliability for memory
devices pessimistically treat all data as equally vulnerable
to memory errors. Our key insight is that there exists a
diverse spectrum of tolerance to memory errors in new
data-intensive applications, and that traditional one-size-fits-all
memory reliability techniques are inefficient in terms of cost.
For example, we found that while traditional error protection
increases memory system cost by 12.5%, some applications
can achieve 99.00% availability on a single server with a large
number of memory errors without any error protection. This
presents an opportunity to greatly reduce server hardware cost
by provisioning the right amount of memory reliability for
different applications.

Toward this end, in this paper, we make three main con-
tributions to enable highly-reliable servers at low datacenter
cost. First, we develop a new methodology to quantify the
tolerance of applications to memory errors. Second, using our
methodology, we perform a case study of three new data-
intensive workloads (an interactive web search application, an
in-memory key–value store, and a graph mining framework)
to identify new insights into the nature of application memory
error vulnerability. Third, based on our insights, we propose
several new hardware/software heterogeneous-reliability mem-
ory system designs to lower datacenter cost while achieving
high reliability and discuss their trade-offs. We show that our
new techniques can reduce server hardware cost by 4.7% while
achieving 99.90% single server availability.

Keywords—memory errors, software reliability, memory ar-
chitectures, soft errors, hard errors, datacenter cost, DRAM.

I. Introduction

Warehouse-scale datacenters each consist of many thou-
sands of machines running a diverse set of applications and
comprise the foundation of the modern web [1]. While these
datacenters are vital to the operation of companies such
as Facebook, Google, Microsoft, and Yahoo!, reducing the
cost of such large-scale deployments of machines poses a
significant challenge to these and other companies. Recently,
the need for reduced datacenter cost has driven companies to
examine more energy-efficient server designs [2] and build
their datacenter installations in cold environments to reduce
cooling costs [3, 4] or use built-in power plants to reduce
electricity supply costs [5].
There are two main components of the total cost of

ownership (TCO) of a datacenter [1]: (1) capital costs (those
associated with server hardware) and (2) operational costs
(those associated with providing electricity and cooling). Re-
cent studies have shown that capital costs can account for the
majority (e.g., around 57% in [1]) of datacenter TCO, and
thus represent the main impediment for reducing datacenter
TCO. In addition, this component of datacenter TCO is only
expected to increase going forward as companies adopt more
efficient cooling and power supply techniques.

Of the dominant component of datacenter TCO (capital
costs associated with server hardware), the cost of server

processors and memory represents the key component—
around 60% in modern servers [6]. Furthermore, the cost
of the memory in today’s servers is comparable to that of
the processors, and is likely to exceed processor cost for
data-intensive applications such as web search and social
media services, which use in-memory caching to improve
response time (e.g., a popular key–value store, Memcached,
has been used at Google and Facebook [7] for this purpose).
Exacerbating the cost of memory in modern servers is the

use of memory devices (such as dynamic random access
memory, or DRAM) that provide error detection and cor-
rection. This cost arises from two components: (1) quality
assurance testing performed by memory vendors to ensure
devices sold to customers are of a high enough caliber
and (2) additional memory capacity for error detection and
correction. Device testing has been shown to account for an
increasing fraction of the cost of memory for DRAM [8, 9].
The cost of additional memory capacity, on the other hand,
depends on the technique used to provide error detection and
correction.
Table 1 compares several common memory error detection

and correction techniques in terms of which types of errors
they are able to detect/correct and the additional amount
of capacity/logic they require (which, for DRAM devices,
whose design is fiercely cost-driven, is proportional to
cost). Techniques range from the relatively low-cost (and
widely employed) Parity, SEC-DED, Chipkill, and DEC-
TED, which use different error correction codes (ECC) to
detect and correct a small number of bits or chip errors,
to the more expensive RAIM and Mirroring techniques that
replicate some (or all) of memory to tolerate the failure of
an entire DRAM dual in-line memory module (DIMM). The
additional cost of memory with high error-tolerance can be
significant (e.g., 12.5% with SEC-DED ECC and Chipkill
and as high as 125% with Mirroring).
Yet even with well-tested and error-tolerant memory de-

vices, recent studies from the field have observed a ris-
ing rate of memory error occurrences [13–15]. This trend
presents an increasing challenge for ensuring high perfor-
mance and high reliability in future systems, as memory
errors can be detrimental to both.
In terms of performance, existing error detection and

correction techniques incur a slowdown on each memory
access due to their additional circuitry [15, 16] and up to

Technique Error detection (correction) Added capacity Added logic

Parity 2n-1/64 bits (None) 1.56% Low
SEC-DED 2/64 bits (1/64 bits) 12.5% Low
DEC-TED 3/64 bits (2/64 bits) 23.4% Low
Chipkill [10] 2/8 chips (1/8 chips) 12.5% High
RAIM [11] 1/5 modules (1/5 modules) 40.6% High
Mirroring [12] 2/8 chips (1/2 modules) 125% Low

Table 1: Memory error detection and correction techniques. “X/Y Z”
means a technique can detect/correct X out of every Y failures of Z.
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an additional 10% slowdown due to techniques that operate
DRAM at a slower speed to reduce the chances of random bit
flips due to electrical interference in higher-density devices
that pack more and more cells per square nanometer [17].
In addition, whenever an error is detected or corrected on
modern hardware, the processor raises an interrupt that must
be serviced by the system firmware (BIOS), incurring up
to 100 µs latency—roughly 2000× a typical 50 ns memory
access latency [18]—leading to unpredictable slowdowns.
In terms of reliability, memory errors can cause an applica-

tion to slow down, crash, or produce incorrect results [19].
Software-level techniques such as the retirement of regions
of memory with errors [15, 20–22] have been proposed
to reduce the rate of memory error correction and prevent
correctable errors from turning into uncorrectable errors over
time. Hardware-level techniques, such as those listed in Ta-
ble 1, are used to detect and correct errors without software
intervention (but with additional hardware cost). All of these
techniques are applied homogeneously to memory systems
in a one-size-fits-all manner.
Our goal in this paper is to understand how tolerant

different data-intensive applications are to memory errors
and design a new memory system organization that matches
hardware reliability to application tolerance in order to
reduce system cost. Our key insight is that data-intensive
applications exhibit a diverse spectrum of tolerance to mem-
ory errors—both within an application’s data and among
different applications—and that one-size-fits all solutions are
inefficient in terms of cost. The main idea of our approach
leverages this observation to classify applications based
on their memory error tolerance and map applications to
heterogeneous-reliability memory system designs managed
cooperatively between hardware and software (for example,
error-tolerant portions of data from an application may
reside in inexpensive less-tested memory with no ECC with
software-assisted data checkpointing, but error-vulnerable
portions of its data should be placed in ECC memory)
to reduce system cost. Toward this end, we provide the
following contributions:
• A new methodology to quantify the tolerance of applica-

tions to memory errors. Our approach measures the effect
of memory errors on application correctness and quantifies
an application’s ability to mask or recover from memory
errors.

• A comprehensive case study of the memory error toler-
ance of three data-intensive workloads: an interactive web
search application, an in-memory key–value store, and a
graph mining framework. We find that there exists an order
of magnitude difference in memory error tolerance across
these three applications.

• An exploration of the design space of new memory system
organizations, which combine a heterogeneous mix of reli-
ability techniques that leverage application error tolerance
to reduce system cost. We show that our techniques can
reduce server hardware cost by 4.7%, while achieving
99.90% single server availability.

II. Background and RelatedWork

A. Memory Errors and Mitigation Techniques

Modern devices use DRAM as their main memory. DRAM
stores its data in cells in the form of charge in a capacitor.

Over time, the charge in DRAM cells leaks and must be
refreshed (every 64 ms in current devices). When data is
accessed in DRAM, cell charge is sensed, amplified, and
transmitted across a memory channel. In case any of the
components used to store or transmit data fails, a memory
error can occur.1

There are two main types of memory errors: (1) soft
or transient errors and (2) hard or recurring errors.2 Soft
memory errors occur at random due to charged particle
emissions from chip packaging or the atmosphere [28].
Hard memory errors may occur from physical device defects
or wearout [13–15], and are influenced by environmental
factors such as humidity, temperature, and utilization [13, 29,
30]. Hard errors typically affect multiple bits (for example,
large memory regions and entire DRAM chips have been
shown to fail [14, 15, 29]).
Various error correcting codes have been designed to

mitigate these errors. ECC methods differ based on the
amount of additional memory capacity required to detect and
correct errors of different severity (Table 1 lists some of these
techniques, discussed in Section I). The effects of hard errors
can be mitigated in the operating system (OS) or BIOS by
retiring affected memory regions when the number of errors
in the region exceeds a certain threshold [15, 20–22]. Region
retirement is typically done at the memory page granularity,
∼4 KB. Retiring pages eliminates the performance overhead
of the processor repeatedly performing detection and correc-
tion and also helps to prevent correctable errors from turning
into uncorrectable errors.
A memory error will remain latent until the erroneous

memory is accessed. The amount of time an error remains
latent depends on how applications’ data are mapped to
physical memory and on the program’s memory access
pattern. For example, the frequency at which data is read
determines how often errors are detected and corrected and
the frequency at which data is written determines how often
errors are masked by overwrites to the erroneous data.

B. Related Work
We categorize related research literature in memory error

vulnerability and DRAM architecture into five broad classes:
(1) characterizing application error tolerance, (2) hardware-
based memory reliability techniques, (3) software-based
memory reliability techniques, (4) exploiting application
error tolerance, and (5) heterogeneous (hybrid) memory
architectures. We next discuss these each in turn.
Classifying application error tolerance. Controlled error

injection techniques based on hardware watchpoints [16,
31], binary instrumentation [32], and architectural simu-
lation [33], have been used to investigate the impacts of
memory errors on application behavior, including execution
times, application/system crashes, and output correctness.
These works have studied a range of applications includ-
ing SPEC CPU benchmarks, web servers, databases, and
scientific applications. In general, these works conclude that
not all memory errors cause application/system crashes and
can be tolerated with minimal difference in their outputs.

1For a detailed background on DRAM operation, we refer the reader
to [23–25].

2Two recent studies [26, 27] examined the effects of intermittent and
access-pattern dependent errors, which are increasingly common as DRAM
technology scales down to smaller technology nodes.
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We generalize this observation to data-intensive applications
and leverage it to reduce datacenter TCO. Approximate
computing techniques [34–36], where the precision of pro-
gram output can be relaxed to achieve better performance or
energy efficiency, offer further opportunities for leveraging
the error-tolerance of application data, though these typically
require changes to program source code.
Hardware-based memory reliability techniques. Various

memory ECC techniques have been proposed (we list the
most dominant ones in Table 1). Using eight bits, SEC-
DED can correct a single bit flip and detect up to two bit
flips out of every 64. DEC-TED is a generalization of SEC-
DED that uses fourteen bits to correct two and detect three
flipped bits out of every 64. Chipkill improves reliability
by interleaving error detection and correction data among
multiple DRAM chips [10]. RAIM [11] is able to tolerate en-
tire DIMMs failing by storing detection and correction data
across multiple DIMMs. Virtualized ECC [37] maps ECC
to software-visible locations in memory so that software
can decide what ECC protection to use. While Virtualized
ECC can help reduce the DRAM hardware cost of memory
reliability, it requires modification to the processor’s memory
management unit and cache(s).
Software-based memory reliability techniques. Previous

works (e.g., [15, 22, 38]) have shown that the OS retiring
memory pages after a certain number of errors can eliminate
up to 96.8% of detected memory errors. These techniques,
though they improve system reliability, still require costly
ECC hardware for detecting and identifying memory pages
with errors. Other works have attempted to reduce the impact
of memory errors on system reliability by writing more
reliable software [39], modifying the OS memory alloca-
tor [40], or using a compiler to generate a more error-tolerant
version of the program [41, 42]. Other algorithmic solutions
(e.g., memory bounds checks [43], watchdog timers [43],
and checkpoint recovery [44–46]) have also been applied to
achieve resilience to memory errors.
Exploiting application error tolerance. Flikker [47] pro-

posed a technique to trade off DRAM reliability for energy
savings. It relies on the programmer to separate application
data into vulnerable or tolerant data. Less reliable mobile
DIMMs have been proposed [48, 49] as a replacement for
ECC DIMMs in servers to improve energy efficiency.

Heterogeneous (hybrid) memory architectures. Several
works (e.g., [50–54]) explored the use of heterogeneous
memory architectures, consisting of multiple different types
of memories. These works were mainly concerned with
either mitigating the overheads of emerging technologies or
improving performance and power efficiency. They did not
investigate the use of multiple devices with different error
correction capabilities.
Compared to prior research, our work is the first to (1)

perform a comprehensive analysis of memory error vul-
nerability for data-intensive datacenter applications across
a range of different memory error types and (2) evaluate
the cost-effectiveness of different heterogeneous-reliability
memory organizations with hardware/software cooperation.
Although our error injection-based vulnerability character-
ization methodology is similar to [16, 31], our analysis is
done on a wider range of application parameters (such as
memory write frequency and application access patterns).
We also provide additional insights as to how errors are
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Figure 1: Memory error outcomes.

masked by applications. As such, our work studies memory
error vulnerability for a new set of applications and proposes
a new heterogeneous memory architecture to optimize dat-
acenter cost.

III. Quantifying ApplicationMemory Error Tolerance
We begin by discussing our methodology for quantifying

the tolerance of applications to memory errors. Our method-
ology consists of three components: (1) characterizing the
outcomes of memory errors on an application based on how
they propagate through an application’s code and data, (2)
characterizing how safe or unsafe it is for memory errors
to occur in different regions of an application’s data, and
(3) determining how amenable an application’s data is to
recovery in the event of an error. We next discuss each
of these components in turn and describe their detailed
implementation in Section IV.

A. Characterizing the Outcomes of a Memory Error
We characterize an application’s vulnerability to a memory

error based on its behavior after a memory error is intro-
duced (we assume for the moment that no error detection or
correction is being performed). Figure 1 shows a taxonomy
of memory error outcomes. Our taxonomy is mutually exclu-
sive (no two outcomes occur simultaneously) and exhaustive
(it captures all possible outcomes). At a high level, a memory
error may be either (1) masked by an overwrite, in which
case it is never detected and causes no change in application
behavior or (2) consumed by the application. In the case that
an error is consumed by the application, it may either (2.1)
be masked by application logic, in which case it is never
detected and causes no change in application behavior, (2.2)
cause the application to generate an incorrect response, or
(2.3) cause the application or system to crash.
When we refer to the tolerance of an application to memory

errors, we mean the likelihood that an error occurring in
some data results in outcomes (1) or (2.1). Conversely, when
we refer to the vulnerability of an application to memory
errors, we mean the likelihood that an error occurring in
some data results in outcomes (2.2) or (2.3).

B. Characterizing Safe Data Regions
An application’s data is typically spread across multi-

ple logical regions of memory to simplify OS-level mem-
ory management and protection. For example, a statically-
allocated variable would be placed in a memory region
called the stack, while a dynamically-allocated variable
would be placed in a memory region called the heap. Table 2
lists several key memory regions and describes the types of
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Region The types of data that it stores

Heap Memory for dynamically-allocated data.
Stack Memory used to store function parameters and local variables.
Private Pre-allocated private memory managed by the user (allocated

by VirtualAlloc on Windows or mmap on Linux).
Other Program code, managed heap, and so on, which are relatively

small in size, and which we do not examine.

Table 2: Different application memory regions.

data that they store. How an application manipulates data
in each of these regions ultimately determines its tolerance
or vulnerability to memory errors, and so ideally we would
like to quantify, for every address A in every region, how
safe or unsafe it is (in terms of application vulnerability) for
an error to occur at A.

Recall from Section II-A that the frequency at which data
is read determines how often errors are detected (exposing
an application to a potentially unsafe memory error) and
the frequency at which data is written determines how
often errors are masked by overwrites to the erroneous data
(making the data safe for application consumption). For an
address A, we define an address A’s unsafe duration as the
sum of time, across an application’s execution time, between
each read to A and the previous memory reference to A.
Similarly, we define an address A’s safe duration as the sum
of time, across an application’s execution time, between each
write to A and the previous memory reference to A. Then, the
safe ratio = safe duration/(safe duration + unsafe duration)
for an address A is the fraction of time for which an error at
A was never consumed by an application over its execution
time.
A safe ratio closer to 1 implies that the address A is more

frequently written than read, increasing the chances that an
error at A will be masked; a safe ratio closer to 0 implies
that the address A is more frequently read than written,
increasing the chances that an error at A will be consumed
by the application. We can generalize the concept of a safe
ratio to regions of memory by computing the average safe
ratio for all the addresses (or a representative sampling of
the addresses) in a region.

C. Determining Data Recoverability

Even if an application is vulnerable to memory errors and
its data is not particularly safe, it can still potentially recover
from a memory error in its data by loading a clean copy of its
data from persistent storage (i.e., flash or disk). This requires
that a system is able to detect memory errors in hardware
with Parity/ECC or in software by computing checksums
over application data regions [19]. For example, once an
error is detected, the OS can perform a recovery of clean data
before repeating the memory access and returning control
to the program. As such, data recoverability can improve
application memory error tolerance. We have identified two
strategies for data recoverability in applications: implicit
recoverability and explicit recoverability.
Implicit recoverability is enabled by an application already

maintaining a clean copy of its data in persistent storage. For
example, the contents of a memory-mapped file can be re-
read from disk. Though recovering data incurs the additional
latency of reading from persistent storage, it only happens
in the relatively uncommon case of a memory error.

Explicit recoverability is enabled by the system software
automatically maintaining a clean copy of an application’s
memory pages in persistent storage. This can be realized by
updating pages in persistent storage in tandem with updates
to main memory. This may affect application performance
and therefore may need to be applied only sparingly, to the
most unsafe regions of memory.
We characterize data recoverability of a memory region

by measuring the percentage of memory pages that are
either implicitly or explicitly recoverable. A memory page
is implicitly recoverable if the operating system can identify
its mapped location on disk. A memory page is explicitly
recoverable if, on average, it is written to less than once
every five minutes.
Regardless of an application’s recoverability strategy, for

persistent hard errors (which cannot be corrected by recover-
ing a clean copy of data), a technique such as page retirement
can be used in conjunction with data recovery.

IV. Characterization Frameworks

We had three design goals when implementing our method-
ology for quantifying application memory error tolerance.
First, due to the sporadic and inconsistent nature of memory
errors in the field, we wanted to design a framework to
emulate the occurrence of a memory error in an application’s
data in a controlled manner (to characterize its outcomes).
Second, we wanted an efficient way to measure how an
application accesses its data (to characterize safe and unsafe
durations and determine data recoverability). Third, we
wanted our framework to be easily adapted to other work-
loads or system configurations. To achieve all of these goals,
we leveraged the support of existing software debuggers
for modifying and monitoring arbitrary application memory
locations. We next describe the details of the error emulation
and access monitoring frameworks that we developed.

A. Memory Error Emulation Framework
Software debuggers (such as WinDbg [55] in Windows

and GDB [56] in Linux) are typically used to examine and
diagnose problems in application code. They run alongside
a program and provide a variety of debugging features
for software developers to analyze program behavior. For
example, these debuggers can read and write the contents of
an arbitrary memory location in an application. We leverage
this ability to emulate both soft and hard errors.

1: addr = getMappedAddr()
2: data = ∗addr
3: bit = getRandBit()
4: data = data ∧ (1 << bit)
5: ∗addr = data

(a)

1: addr = getMappedAddr()
2: awatch(addr):
3: print ∗addr
4: print loadOrStore
5: print time

(b)

Algorithm 1: Debugger pseudocode for (a) emulating single-bit soft
memory errors and (b) measuring application memory access patterns.

Algorithm 1(a) lists the pseudocode for emulating a single-
bit soft memory error in a random location in an application.
In line 1, the getMappedAddr() function that we implement
uses the debugger’s ability to determine which memory
addresses a program has data stored in to randomly select
a valid byte-aligned application memory address, which it
stores in the variable addr. In line 2, the value of the byte
at addr is read and stored in the variable data. In line 3, the
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getRandBit() function that we implement uses a random
number generator to select a bit index that determines which
bit in a byte will contain an error, and stores this index in
the variable bit. Line 4 performs the actual injection of the
error by flipping the bit at index bit in data (using a left shift
and an XOR operation). Finally, line 5 stores the modified
version of data back to the location addr.

We generalize Algorithm 1(a) to generate multi-bit soft
errors by repeatedly performing lines 3–4 with different
values of bit. To emulate single- and multi-bit hard errors we
perform the same approach, but to ensure that an application
does not overwrite the emulated hard error, every 30 ms we
check if the contents of data has changed, and if it has,
we re-apply the hard error. We chose this approach so as to
keep our emulation infrastructure reasonably fast while still
emulating the features of hard errors.
Note that Algorithm 1(a) always flips the bit selected by bit

in data. While it is true that some failure modes may only
cause the value of a DRAM cell to change in one direction
(only from 0→ 1 or only from 1→ 0 [28]), modern DRAM
devices have been shown to contain regions of cells that can
be induced to flip in either direction [27, 57], and so we do
not impose any constraints on the direction of bit flips.
One difference between the errors that we emulate in soft-

ware and memory errors in hardware is that our technique
immediately makes memory errors visible throughout the
system. In contrast, memory errors in hardware may take a
while to become visible to system as processor caches may
prevent the erroneous data in memory from being accessed
by serving the correct data from the cache data store. Due to
this, our methodology provides a more conservative estimate
of application memory error tolerance.

(b) Error Injection
Framework
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Figure 2: Memory error
emulation framework.

Tying everything together, Figure 2
shows a flow diagram illustrating the
five steps involved in our error em-
ulation framework. We assume that
the application under examination
has already been run outside of the
framework and its expected output
has been recorded. The framework
proceeds as follows. (1) We start the
application under the error injection
framework. (2) The debugger injects
the desired number and type of er-
rors. (3) We initiate the connection
of a client and start performing the
desired workload. (4) Throughout the
course of the application’s execution,
we check to see if the machine has
crashed (we deem an application in
a crashed state if it fails to respond
to ≥ 50% of the client’s requests),
corresponding to outcome (2.3) in Figure 1; if it has, we
log this outcome and proceed to step (1) to begin testing
once again. (5) If the application finishes its workload, we
check to see if its output matches the expected results,
corresponding to either outcome (1) or (2.1) in Figure 1.3 If
its output does not match the expected results, corresponding

3Note that we ignore responses to the client that time out due to
performance variations (e.g., all of an application’s threads are busy serving
other requests). In our tests, this occurred for 1.5% of the total requests.

to outcome (2.2) in Figure 1, we log this outcome and
proceed to step (1) to test again.
We stop testing after a statistically-significant number of

errors have been emulated. While testing all of the memory
addresses of data-intensive applications may not be feasible
due to their sheer size, in our experiments we ensured
that we sampled at least 0.1% of the memory addresses
in the applications we examine. This translates to over
10,000 experiments for an application with 32 GB of in-
memory data (the average amount of in-memory data for the
applications we tested was ∼28 GB). We can then process
the logged information to quantify an application’s tolerance
or vulnerability to memory errors (Section III-A).

B. Memory Access Monitoring Framework
To monitor application memory access behavior, we use

processor watchpoints, available on x86 processors, to ex-
ecute logging code on individual loads/stores from/to arbi-
trary memory addresses. Algorithm 1(b) lists the pseudocode
for tracking memory access patterns to a random location
in an application. In line 1, similar to Algorithm 1(a), we
randomly select a valid byte-aligned memory address and
store this address in the variable addr. In line 2, we register
a watchpoint in the debugger (e.g., using awatch in GDB).
From then on, whenever the processor loads data from that
address or stores data to that address, our logging code in
lines 3–5 will get called to print out the data at addr, whether
the access was a load or a store (loadOrStore), and the time
of access (time).

We can then process the information logged by Algo-
rithm 1(b), to compute the safe ratio for a region of an appli-
cation’s data (Section III-B). To quantify the recoverability
of an application’s data (Section III-C), we first use the
debugger to identify any read-only file-mapped data, which
we classify as recoverable. Additionally, we process the
data logged by Algorithm 1(b) to measure how frequently
different regions of memory are written to, and classify any
regions of memory that are written to every ≥ 5 minutes on
average as recoverable (as storing a backup copy of their
data in persistent storage would likely not pose a significant
performance impediment).

V. Data-Intensive ApplicationMemory Error Tolerance

We next use our methodology to quantify the tolerance
of three data-intensive applications to memory errors. We
use the insights developed in this section to inform the
new memory system organizations that we propose in Sec-
tion VI-B to reduce system cost.

A. Data-Intensive Applications
We examined three data-intensive applications as part of

our case study: an interactive web search application (Web-
Search), an in-memory key–value store (Memcached), and a
graph mining framework (GraphLab). While these applica-
tions all operate on large amounts of memory (Table 3 lists

Applications Private Heap Stack Total

WebSearch 36 GB 9 GB 60 MB 46 GB
Memcached 0 GB 35 GB 132 KB 35 GB
GraphLab 0 GB 4 GB 132 KB 4 GB

Table 3: The size of different applications’ memory regions.
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Figure 3: Inter-application variations in vulnerability to single-bit
soft and hard memory errors for the three applications in terms of (a)
probability of crash and (b) frequency of incorrect results.

the sizes of their various regions of memory), they differ in
several ways that we describe next.
WebSearch implements the index searching component of

a production search engine described in [58]. It does this by
storing several hundred gigabytes of index data in persistent
storage and uses DRAM as a read-only cache for around
36 GB of frequently-accessed data. We use a real-world trace
of 200,000 queries as the client workload. The result of a
query is a set of the top four most relevant documents to the
query. We use number of documents returned, the relevance
of the documents to the query, and the popularity score of
the documents as the expected outputs.
To evaluate WebSearch, we used 40 Intel Xeon two-

socket servers with 64 GB DDR3 memory and conducted
our experiments for over two months. In total, we sampled
20,576 unique memory addresses for our experiments across
different memory regions, executing a total of over five
billion queries.
Memcached [59] is an in-memory key–value store for a

30 GB Twitter dataset. It primarily uses DRAM to improve
the performance of read requests. We run a synthetic client
workload that consists of 90% read requests and 10% write
requests. We use the contents of the value fetched by read
requests as the expected outputs.
To evaluate Memcached, we used an Intel Xeon two-socket

server with 48 GB DDR3 memory and sampled more than
983 unique memory addresses for our experiments across
different memory regions, executing a total of over six
billion queries.
GraphLab [60] is a framework designed to perform com-

putation over large datasets consisting of nodes and edges.
We use a 1.3 GB dataset of 11 million Twitter users as
nodes with directed edges between the nodes representing
whether one Twitter user follows another. Our workload runs
an algorithm called TunkRank [61] that assigns each node
in a graph a floating-point popularity score corresponding
to that user’s influence. We use the scores of the 100 most
influential users as the expected outputs.
To evaluate GraphLab, we used an Intel Xeon two-socket

server with 48 GB DDR3 memory and sampled more than
2,159 unique memory addresses for our experiments across
different memory regions.

B. Application Characterization Results
We applied our characterization methodology from Sec-

tion IV to our applications and next present the results and
insights from this study.
Finding 1: Error Tolerance Varies Across Applications.
Figure 3(a) plots the probability of each of the three applica-
tions crashing due to the occurrence of single-bit soft or hard
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Figure 4: Memory region variations in vulnerability to single-bit soft
and hard memory errors for the applications in terms of (a) probability
of crash and (b) frequency of incorrect results.

errors in their memory (i.e., application vulnerability). Error
bars on the figure show the 90% confidence interval of each
probability. In terms of how these errors affect application
correctness, Figure 3(b) plots the rate of incorrect results
per billion queries under the same conditions. Error bars on
the figure label the maximum number of incorrect queries
during a test per billion queries (the minimum number of
incorrect queries during a test per billion was 0). We draw
two key observations from these results.
First, there exists a significant variance in vulnerability

among the three applications both in terms of crash proba-
bility and in terms of incorrect result rate, which varies by
up to six orders of magnitude. Second, these characteristics
may differ depending on whether errors are soft or hard
(for example, the number of incorrect results for WebSearch
differs by over two orders of magnitude between soft and
hard errors). We therefore conclude that memory reliability
techniques that treat all applications the same are inefficient
because there exists significant variation in error tolerance
among applications.

Finding 2: Error Tolerance Varies Within an Application.
Figure 4(a) plots the probability of each of the three applica-
tions crashing due to the occurrence of single-bit soft or hard
errors in different regions of their memory (with error bars
showing the 90% confidence interval of each probability).
Figure 4(b) plots the rate of incorrect results per billion
queries under the same conditions (with error bars showing
the maximum number of incorrect queries during a test per
billion queries, with the minimum number being 0). Two
observations are in order.
First, for some regions, the probability of an error leading

to a crash is much lower than for others (for example, in
WebSearch the probability of a hard error leading to a crash
in the heap or private memory regions is much lower than
in the stack memory region). Second, even in the presence
of memory errors, some regions of some applications are
still able to tolerate memory errors (perhaps at reduced
correctness). This may be acceptable for applications such as
WebSearch that aggregate results from several servers before
presenting them to the user, in which case the likelihood of
the user being exposed to an error is much lower than the
reported probabilities. We therefore conclude that memory
reliability techniques that treat all memory regions within
an application the same are inefficient because there exists
significant variance in the error tolerance among different
memory regions.
For the remainder of this section, we use WebSearch as our

exemplar data-intensive application and perform an in-depth
analysis of its tolerance behavior.
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Figure 5: (a) Temporal variation in vulnerability for WebSearch,
presented as frequency distribution function of time between a memory
error is injected and a corresponding effect of that error (either an
incorrect result or a crash) is observed. (b) Safe ratio distribution for
different memory regions of WebSearch.

Finding 3: Quick-to-Crash vs. Periodically Incorrect Be-
havior. Figure 5(a) shows the probability of a particular
type of outcome occurring after a certain number of minutes
given that it occurs during an application’s execution time.
For this analysis, we focus on soft errors and note that hard
errors would likely shift these distributions to the right, as
hard errors would continue to be detected over time. We
draw two key conclusions from this figure.
First, more-severe failures of an application or system due

to a memory error appear to be exponentially distributed and
exhibit a quick-to-crash behavior: they are detected early-
on (within the first ten minutes for WebSearch) and result
in an easily-detectable failure mode. Second, less-severe
failures of an application due to a memory error appear to
be uniformly distributed and exhibit periodically incorrect
behavior: they arise more evenly distributed over time as
incorrect data is accessed.
Finding 4: Some Memory Regions Are Safer Than Others.
Recall from Section III-B that the safe ratio quantifies the
relative frequency of writes to a memory region versus
all accesses to the memory region as a way to gauge the
likelihood of an error being masked by an overwrite in
an application. We sampled the addresses of the memory
regions of WebSearch and plot the distribution of their safe
ratios in Figure 5(b) (we sampled 1590 addresses in total,
with the number of sampled addresses in each memory
region roughly proportional to the size of that region). In
Figure 5(b), the width of each colored region indicates the
probability density for a given safe ratio of the memory
region indicated at the bottom. The line on each distribution
denotes the average safe ratio value for that region. We make
two observations from these results.
First, we notice a difference in the safe ratios between the

regions of the application that contain programmer-managed
data, the private and heap regions, and the region of the
application that contains compiler-managed data, the stack.
The programmer-managed regions (private and heap), which
in WebSearch contain mainly read-only web index data, have
a smaller potential to mask memory errors with overwrites
due to their lower write intensity. The compiler-managed
region (stack), on the other hand, contains data that is
frequently expanded and discarded whenever new functions
are called or returned from, giving it a high potential to mask
memory errors with overwrites (cf. Figure 1 outcome 1).
Second, we note that though memory regions may have

relatively low safe ratios (such as private and heap), errors
in these regions may still be masked by application logic
(cf. Figure 1 outcome 2.1). For example, the private and
heap regions, despite their low safe ratios, are still quite
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Figure 6: Vulnerability of WebSearch to types of errors in terms of
(a) probability of crash and (b) frequency of incorrect result.

robust against memory errors (with crash probabilities of
1.04% and 0.64%, respectively, in Figure 4a and low rates
of incorrect results in Figure 4b). Prior works have examined
techniques to identify how applications mask errors due to
their control flow [62, 63]. These can potentially be used in
conjunction with our technique to further characterize the
safety of memory regions.
We conclude that some application memory regions are

safer than others because either application access pattern
or application logic can be the dominant factor in different
memory regions to mask a majority of memory errors.
Finding 5: More Severe Errors Mainly Decrease Correct-
ness. We next examine how error severity affects application
vulnerability. To do so, we emulated three common error
types: single-bit soft errors and single-/two-bit hard errors.
Figure 6(a) shows the how different error types affect the
probability of a crash and Figure 6(b) shows how the
different error types affect the rate of incorrect results. We
find that while the probability of a crash is relatively similar
among the different error types (without any conclusive
trend), the rate of incorrect results can increase by multiple
orders of magnitude. Especially large is the increase in
incorrect result rates from single-bit soft errors to single-
bit hard errors, which may vary by around three orders
of magnitude. Thus, more severe errors seem to have a
larger effect on application correctness as opposed to an
application’s probability of crashing.
Finding 6: Data Recoverability Varies Across Memory
Regions. We used our methodology from Section IV-B to
measure the amount of memory in WebSearch that was
implicitly recoverable (read-only data with a copy on persis-
tent storage) and explicitly recoverable (data that is written
to every ≥5 minutes on average) and show our results in
Table 5. Note that the same data may be both implicitly
and explicitly recoverable, so the percentages in Table 5
may sum to greater than 100%. We make three observations
from this data. First, we find that for a significant fraction of
the address space (at least 82.1%, pessimistically assuming
the implicitly recoverable and explicitly recoverable data
completely overlap) of WebSearch, it is feasible to recover
a clean copy from disk with low overhead. This suggests
that there is ample opportunity for correcting memory errors
in software with low overhead. Second, we find that, for

Memory region Implicitly recoverable Explicitly recoverable

Private 88% 63.4%
Heap 59% 28.4%
Stack 1% 16.7%

Overall 82.1% 56.3%

Table 5: Recoverable memory in WebSearch.

7



Design dimension Technique Benefits Trade-offs

Hardware techniques

No detection/correction No associated overheads (low cost) Unpredictable crashes and silent data corruption
Parity Relatively low cost with detection capability No hardware correction capability
SEC-DED/DEC-TED Tolerate common single-/double-bit errors Increased cost and memory access latency
Chipkill [10] Tolerate single-DRAM-chip errors Increased cost and memory access latency
Mirroring [12] Tolerate memory module failure 100% capacity overhead
Less-Tested DRAM Saved testing cost during manufacturing Increased error rates

Software responses

Consume errors in application Simple, no performance overhead Unpredictable crashes and data corruption
Automatically restart application Can prevent unpredictable application behavior May make little progress if error is frequent
Retire memory pages Low overhead, effective for repeating errors Reduces memory space (usually very little)
Conditionally consume errors Flexible, software vulnerability-aware Memory management overhead to make decision
Software correction Tolerates detectable memory errors Usually has performance overheads

Usage granularity

Physical machine Simple, uniform usage across memory space Costly depending on technique used
Virtual machine More fine-grained, flexible management Host OS is still vulnerable to memory errors
Application Manageable by the OS Does not leverage different region tolerance
Memory region Manageable by the OS Does not leverage different page tolerance
Memory page Manageable by the OS Does not leverage different data object tolerance
Cache line Most fine-grained management Large management overhead; software changes

Table 4: Heterogeneous reliability design dimensions, techniques, and their potential benefits and trade-offs.

WebSearch, more data is implicitly recoverable than explic-
itly recoverable. This is likely due to the fact that most
of WebSearch’s working set of data is an in-memory read-
only cache of web document indices stored on disk. Thus,
a large portion of the data in applications like WebSearch
that cache persistent data in memory can tolerate memory
errors in software, without any additional need to maintain
a separate copy of data on disk. Third, even if WebSearch
did not maintain a copy of its data on disk, the majority
of its data (56.3%) could still be recovered with relatively
low overhead. We therefore conclude that for data-intensive
applications like WebSearch, software-only memory error
tolerance techniques are a promising direction for enabling
reliable system designs.
Based on the results of our case study of data-intensive ap-

plications, we next explore how to design systems composed
of heterogeneous hardware/software techniques to enable
high reliability at low system cost.

VI. Heterogeneous-ReliabilityMemory Systems
Overview. The goals for our heterogeneous-reliability

memory system design methodology are (1) to provide high
memory system reliability (e.g., enabling 99.90% single
server availability) at (2) low cost. To achieve these goals,
our methodology consists of three steps. First, motivated by
the fact that memory error vulnerability and recoverability
varies widely among different applications and memory
regions, we perform an exploration of the design space for
systems that could employ heterogeneous hardware/software
reliability techniques. Second, we examine how ways of
mapping applications with different reliability characteristics
to system configurations in the heterogeneous-reliability
design space can achieve the right amount of reliability at
low cost, using the WebSearch application as an example.
Third, we discuss some of the required hardware/software
support for the proposed new system designs. We describe
each of these steps in detail next.

A. Design Space, Metrics, and Error Models
We examine three dimensions in the design space for sys-

tems with heterogeneous reliability: (1) hardware techniques
to detect and correct errors, (2) software responses to errors,
and (3) the granularity at which different techniques are

used. Table 4 lists the techniques we considered in each of
the dimensions along with their potential benefits and trade-
offs. In addition to discussing system designs, we discuss
(1) the metrics we use to evaluate the benefits and costs
of the designs, and (2) the memory error model we use to
examine the effectiveness of the designs. We discuss each of
these components of our design space exploration in turn.
Hardware Techniques. Hardware techniques to detect and

correct errors determine the amount of protection provided
by the memory devices in a system. These techniques
typically trade hardware cost for additional memory error
detection and correction capabilities, and so we would like
to use them as sparingly as possible to achieve a particular
amount of reliability in our system designs. We briefly
review the various techniques next.
One technique employed in consumer laptops and desktops

to reduce cost is to not use any memory error detection
and correction capabilities in memory. While this technique
can save greatly on cost, it can also cause unpredictable
crashes and data corruption, as has been documented in
studies across a large number of consumer PCs [64]. Other
techniques (discussed in Section II) that store additional
data in order to detect and/or correct memory errors include
storing parity information, SEC-DED, Chipkill, and Mirror-
ing. These more costly techniques are typically employed
homogeneously in existing servers to achieve a desired
amount of reliability. Another technique that is orthogonal to
those we have discussed so far is to employ memory devices
that use less-tested DRAM chips. The testing performed
by vendors in order to achieve a certain quality of DRAM
device can add a substantial amount of cost [8], though it
can increase the average reliability of DRAM devices.
Software Responses. Software responses to errors deter-

mine any actions that are taken by the software to potentially
tolerate or correct a memory error. These techniques typi-
cally trade application/OS performance and implementation
complexity for improved reliability. Notice that some of
these software responses can potentially enable lower-cost
hardware techniques to be employed in a system, while still
achieving a desired amount of reliability. We discuss each
of these techniques next.
The simplest (but potentially least effective) software re-

sponse to a memory error is to allow the application to
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consume the error and experience unpredictable behavior or
data corruption [65]. As we have seen, however, some data-
intensive applications (such as WebSearch) can consume and
tolerate a considerable amount of errors without substantial
consequences. Another software response is to automati-
cally restart applications once an error has been detected
(whether through hardware or software techniques or other
indicators, such as an application crash), which can reduce
the likelihood that applications experience unpredictable
behavior. Retiring memory pages is a technique used in
some operating systems [15, 20–22] to help tolerate memory
errors by not allowing a physical page that has experienced
a certain number of errors to be allocated to applications.
Other software responses may require additional soft-

ware/OS modification in order to implement. Allowing ap-
plications to conditionally consume errors once they have
been identified can potentially allow the software/OS to
make informed decisions about how tolerable errors in cer-
tain memory locations may be. Recent work that allows the
programmer to annotate the tolerance of their data structures
(e.g., [47]) is one way of allowing software to conditionally
consume errors. Finally, the software/OS may be able to
perform its own correction of memory errors once they are
detected in the hardware by storing additional data required
to repair corrupted data. Though these techniques require
software changes and may reduce performance, they have
the potential to reduce hardware cost by making up for the
deficiencies of less reliable, but cheaper, hardware devices.
Usage Granularity. The usage granularity determines

where hardware techniques or software responses are ap-
plied. Applying hardware techniques or software responses
at coarser granularities may require less overhead to manage,
but may not leverage the diversity of tolerance among
different applications and memory regions. For example, the
coarsest granularity, applying techniques across the entire
physical machine, is what is typically used in servers, and
may be inefficient for applications or memory regions that
have different reliability requirements (like the examples we
have examined in data-intensive applications).
Finer granularities for using hardware techniques and soft-

ware responses than the entire physical machine include
across individual virtual machines, applications, memory re-
gions/pages, and cache lines. Each increasingly finer granu-
larity of usage provides more opportunities for how different
hardware techniques and software responses are used across
data, but may also require more complexity to manage the
increased number of techniques and responses used.
Metrics. When evaluating a particular system configuration

in the design space, we examine three metrics to quantify the
effectiveness of a design: (1) cost, the amount spent on server
hardware for a particular system design, (2) single server
availability, the fraction of time a server is functioning
correctly over a certain period of time,4 and (3) reliability,
the likelihood of incorrect behavior occurring.
Error Models. To evaluate the reliability and availability

of a particular design, we use information from prior studies
(e.g., [13, 15]) to derive the rate of occurrence of soft and

4Note that this is different from application availability, which measures
the fraction of time an application is functioning correctly, typically across
multiple servers. In fact, for our applications, application availability would
likely be much higher than single server availability because our applica-
tions rely on software-level techniques that can tolerate server failures.
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Figure 7: Mapping of applications to a heterogeneous-reliability
memory system design, arrows show an example mapping.

hard errors. We then examine how such rates of occurrence
affect application reliability and single server availability
based on the measured results from our case studies of
applications.
Note that though we do not explicitly model how error

rates change depending on DRAM density, capacity, speed,
power, and other characteristics, our methodology is compat-
ible with other more complex, and potentially more precise,
ways of modeling the rate of memory error occurrence.
Tying everything together, Figure 7 illustrates the high

level operation of our methodology. At the top of the figure
are the inputs to our technique: memory error models,
application memory access information (such as an appli-
cation’s spatial and temporal locality of reference), and the
various metrics under evaluation and their constraints (e.g.,
99.90% single server availability). We choose as our usage
granularity memory regions for their good balance between
diversity of memory error tolerance and lower manage-
ment complexity. Based on the inputs, we explore different
mappings of memory regions to hardware techniques and
which software responses to use. Finally, we choose the
heterogeneous-reliability memory system design that best
suits our needs. We next examine the results of performing
this process on the WebSearch application and the resulting
implications for hardware/software design.

B. Design Space Exploration
In this section, we use the results of our case study

presented in Section V and the design space parameters
discussed in Section VI to evaluate the effectiveness and cost
of several memory system design points for the WebSearch
application. We chose five design points to compare against
to illustrate the inefficiencies of traditional homogeneous
approaches to memory system reliability as well as show
some of the benefits of heterogeneous-reliability memory
system designs, which we next describe and contrast.
• Typical Server: A configuration resembling a typical

server deployed in a modern datacenter. All memory is
homogeneously protected using SEC-DED ECC.

• Consumer PC: Consumer PCs typically have no hardware
protection against memory errors, reducing both their cost
and reliability.
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Design parameters

DRAM/server HW cost 30%
NoECC memory cost savings 11.1%
Parity memory cost savings 9.7%
L memory cost savings 18%±12%
Crash recovery time 10 mins
Par+R flush threshold 5 mins
Errors/server/month [13] 2000
Target single server availability 99.9%

Configuration

Mapping Metrics

Private
(36GB)

Heap
(9GB)

Stack
(60MB)

Memory cost
savings (%)

Server
HW cost

savings (%)

Crashes/
server/
month

Single
server avail-

ability

# incorrect/
million
queries

Typical Server ECC ECC ECC 0.0 0.0 0 100.00% 0
Consumer PC NoECC NoECC NoECC 11.1 3.3 19 99.55% 33
Detect&Recover Par+R NoECC NoECC 9.7 2.9 3 99.93% 9
Less-Tested (L) NoECC NoECC NoECC 27.1 (16.4-37.8) 8.1 (4.9-11.3) 96 97.78% 163
Detect&Recover/L ECC Par+R NoECC 15.5 (3.1-27.9) 4.7 (0.9-8.4) 4 99.90% 12

Table 6: Mapping of WebSearch address space to different hardware/software design points and the corresponding trade-off in cost, single server
availability, and reliability. (ECC = SEC-DED memory; NoECC = no detection/correction; Par+R = parity memory and recovery from disk; L
= less-tested memory.)

• Detect&Recover: Based on our observation that some
memory regions are safer than others (Section V), we con-
sider a memory system design that, for the private region,
uses parity in hardware to detect errors and responds by
correcting them with a clean copy of data from disk in
software (Par+R, parity and recovery), and uses neither
error detection nor correction for the rest of its data.

• Less-Tested (L): Testing increases both the cost and aver-
age reliability of memory devices. This system examines
the implications of using less-thoroughly-tested memory
throughout the entire system.

• Detect&Recover/L: This system evaluates the De-
tect&Recover design with less-tested memory. ECC is
used in the private region and Par+R in the heap to
compensate for the reduced reliability of the less-tested
memory.

Table 6 (left) shows the design parameters that we use for
our study. We estimate the fraction of DRAM cost compared
to server hardware cost based on [6]. We derive the cost
of ECC DRAM, non-ECC DRAM (NoECC), and parity-
based DRAM using “Added capacity” from Table 1. We
estimate the cost of less-tested DRAM based on the trends
shown in [8, 9] and examine a range of costs for less-
tested DRAM because we are not aware of any recently
documented costs from vendors. Crash recovery time is
based on our observations during testing and we assume that
data that is written in memory for regions protected by parity
and recovery (Par+R) is copied to a backup on disk every
five minutes. We assume 2000 errors per server per month
based on a prior study of DRAM errors in the field [13]
and target single server availability of 99.90%. Since we do
not examine the occurrence of hard errors in our analysis
(only their ongoing effects), we treat all memory errors as
soft errors for this analysis.
Table 6 (right) shows, for each of the five designs we

evaluate, how their memory regions are mapped to different
hardware/software reliability techniques (columns 2–4), and
the resulting effects on the metrics that we evaluate (columns
5–9). We break down cost savings into two components:
the cost savings of the memory system (column 5) and the
cost savings of the entire server hardware (column 6). Note
that we compute capital cost as it represents the dominant
cost component of the server.5 We also list the average
number of crashes per server per month (column 7) and the
associated fraction of single server availability (column 8).
While server availability also depends on other factors, such

5We also expect memory system energy savings to be proportional to
memory capacity savings. This is due to the eliminated dynamic energy of
moving and storing the ECC bits used for error detection or correction.

as disk failure or power supply failure, here, we examine
server availability from the perspective of only memory
errors. We also show the number of incorrect responses per
million queries (column 9).
We take the Typical Server configuration as our baseline.

Notice that the memory design common in consumer PCs,
which uses no error detection or correction in memory,
is able to reduce memory cost by 11.1% (reducing server
hardware cost by 3.3%). This comes at the penalty of
19 crashes per server per month (reducing single server
availability to 99.55%). When the server is operational, it
generates 33 incorrect results per million queries.
In contrast, the Detect&Recover design, which leverages a

heterogeneous-reliability memory system, is able to reduce
memory cost by 9.7% compared to the baseline (leading to
a server hardware cost reduction of 2.9%), while causing
only 3 crashes per server per month (leading to a single
server availability of 99.93%, above the target availability of
99.90%). In addition, during operation, the Detect&Recover
design generates only 9 incorrect results per million queries.
Using less-tested DRAM devices has the potential to reduce

memory costs substantially—in the range of 16.4% to 37.8%
(leading to server hardware cost reduction in the range of
4.9% to 11.3%). Unfortunately, this reduction in cost comes
with a similarly substantial reduction in server availability
and reliability, with 96 crashes per server per month, a single
server availability of only 97.78%, and 163 incorrect queries
per million.
The Detect&Recover/L technique uses a heterogeneous-

reliability memory system on top of less-tested DRAM to
achieve both memory cost savings and high single server
availability/reliability. While using less-tested DRAM lowers
the cost of the memory by 3.1% to 27.9% (reducing cost of
server hardware by 0.9% to 8.4%), using hardware/software
reliability techniques tailored to the needs of each partic-
ular memory region reduces crashes to only 4 per server
per month (meeting the target single server availability of
99.90%), with only 12 incorrect queries per million. We
therefore conclude that heterogeneous-reliability memory
system designs can enable systems to achieve both high cost
savings and high single server availability/reliability at the
same time.
While we performed our analysis on the WebSearch appli-

cation, we believe that other data-intensive applications may
benefit from the heterogeneous-reliability memory system
designs we have proposed. To illustrate this fact, Figure 8
shows for each data-intensive application we examined in
Section V, the maximum number of tolerable errors re-
quired to still achieve a particular amount of reliability,
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Figure 8: Number of memory errors tolerable per month to ensure
different single server availability requirements are met for three
applications.

derived from the results in Figure 4. We make two ob-
servations from this figure. First, even at the error rate of
2000 errors per month that we assume, without any error
detection/correction, two of the applications (WebSearch
and Memcached) are able to achieve 99.00% single server
availability. Second, there exists an order of magnitude
difference in the amount of errors that can be tolerated per
month to achieve a particular availability across the applica-
tions. Based on these, we believe that there is significant
opportunity in these and other applications for reducing
server hardware cost while achieving high single server
availability/reliability using our heterogeneous-reliability de-
sign methodology.

C. Required Hardware/Software Support

We next discuss the hardware and software changes
required to enable heterogeneous-reliability memory sys-
tems and the feasibility of foregoing memory error detec-
tion/correction in servers.

Hardware Support. In hardware, our techniques require
the ability for memory modules with different hardware
reliability techniques to coexist in the same system (e.g.,
no detection/correction, parity detection, and SEC-DED).
We believe that this is achievable using existing memory
controllers at the granularity of memory channels without
much modification. Figure 9 shows an example of how such
a technique could be employed on a processor that uses
separate memory controllers for each channel, each con-
trolling DIMMs that employ different hardware reliability
techniques. Furthermore, techniques such as memory disag-
gregation [66] can be leveraged to provide heterogeneous-
reliability memory over remote direct memory access pro-
tocols to a variety of servers.
Software Support. In software, our techniques require the

ability to identify memory regions with distinct reliability
requirements and map them to locations on hardware devices
employing appropriate reliability techniques. Although we
examined OS-visible memory regions in this work (private,
heap, and stack), our technique can easily be extended to
other usage granularities, potentially by leveraging hints
from the programmer (as in [47, 67]). Alternatively, it is
foreseeable with our technique that infrastructure service
providers, such as Amazon EC2 and Windows Azure, could
provide different reliability domains for users to configure
their virtual machines with depending on the amount of
availability they desire (e.g., 99.90% versus 99.00% avail-
ability). In addition, techniques like virtual machine migra-
tion [68] can be used to dynamically change the provided
memory reliability over time (e.g., in response to changes
in application utilization).

CPU

DIMMMem
Ctrl 0
Mem
Ctrl 1*

Mem
Ctrl 2*

DIMM

DIMM

Channel 0
ECC DIMM ECC

Channel 1*

Channel 2*

* Memory controller/channel without ECC support

DIMM

DIMM

Figure 9: Minimal changes in today’s memory controller can achieve
heterogeneous memory provisioning at the channel granularity.

Feasibility. A primary concern associated with using mem-
ory without error detection/correction is the fear of the
effects of memory errors propagating to persistent storage.
Based on our analysis, we believe that, in general, the use of
memory without error detection/correction (and the subse-
quent propagation of errors to persistent storage) is suitable
for applications with the following two characteristics: (1)
application data is mostly read-only in memory (i.e., errors
have a low likelihood of propagating to persistent storage),
and (2) the result from the application is transient in nature
(i.e., consumed immediately by a user and then discarded).
There are several large-scale data-intensive applications that
conform to these characteristics such as web search (which
we have analyzed), media streaming, online games, collab-
orative editing (e.g., Wikipedia), and social networking.
Applications that do not have these two characteristics

should be carefully inspected and possibly re-architected
before deciding to use memory without detection/correction
capabilities. As an example, applications could divide their
data into persistent and transient, and map persistent data
to more reliable memory. To avoid incorrect results from
remaining in memory indefinitely, applications may period-
ically invalidate and recompute their working set of data.
Another concern with using less reliable memory devices

is their inability to detect (and thus retire [20–22]) memory
pages with permanent faults. To alleviate this issue, software
designed to detect memory errors, such as memtest [69], can
be run periodically on servers with memory devices without
error detection and pages can be retired as usual.
Finally, the use of less reliable memory may result in single

server unavailability, and hence, may only be applicable for
applications that possess inherent slack in their availability
requirements. Server models such as scale-out and stateless
models, which tolerate single server failures by diverting
work to other available servers, are well-suited to handle
occasional single server unavailability, and thus can even
more efficiently leverage heterogeneous-reliability memory
system designs.

VII. Conclusions
In this paper, we developed a new methodology to quantify

the tolerance of applications to memory errors. Using this
methodology, we performed a case study of three new
data-intensive workloads that showed, among other new
insights, that there exists a diverse spectrum of memory
error tolerance both within and among these applications.
We proposed several new hardware/software heterogeneous-
reliability memory system designs and evaluated them to
show that the one-size-fits-all approach to reliability in
modern servers is inefficient in terms of cost, and that
heterogeneous-reliability systems can achieve the benefits of
both low cost and high single server availability/reliability.
We hope that our techniques can enable the use of lower-
cost memory devices to reduce the server hardware cost of
datacenters and that our analyses will spur future research
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on heterogeneous-reliability memory systems. As DRAM
technology scales into small feature sizes and becomes less
reliable, we believe such system-level hardware/software
cooperative heterogeneous-reliability solutions will become
more important in the future [70].
As part of our future efforts, we plan to extend our

characterization framework to cover a more diverse set
of memory failure modes (e.g., failures correlated across
DRAM banks, rows, and columns), and to explore lighter-
weight characterization methodologies to make characteriz-
ing application memory error tolerance cheaper for a wider
set of applications. We also intend to implement and further
evaluate the heterogeneous hardware detection and software
recovery designs we propose in this paper.

VIII. Acknowledgments

We thank the anonymous reviewers and the members of
SAFARI research group for feedback. We acknowledge
the support of Microsoft and Samsung. This research was
partially supported by grants from Intel Science and Tech-
nology Center for Cloud Computing, NSF Awards 0953246,
1065112, 1212962. This research was started as an intern-
ship project at Microsoft Research.

References
[1] L. A. Barroso et al., The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines. Morgan & Claypool
Publishers, 2009.

[2] E. M. Elnozahy et al., “Energy-Efficient Server Clusters,” in PACS,
2003.

[3] P. Jobin, “Cloud Computing Shifting to Cooler Climates,” 2012,
http://tinyurl.com/mfrlrtl.

[4] S. Grundberg et al., “For Data Center, Google Goes for the Cold,”
2011, http://tinyurl.com/ml55nh5.

[5] A. C. Riekstin et al., “No More Electrical Infrastructure: Towards
Fuel Cell Powered Data Centers,” in HotPower, 2013.

[6] C. Kozyrakis et al., “Server Engineering Insights for Large-Scale
Online Services,” IEEE Micro, 2010.

[7] R. Nishtala et al., “Scaling Memcache at Facebook,” in NSDI, 2013.
[8] Z. Al-Ars, “DRAM Fault Analysis and Test Generation,” Ph.D.

dissertation, Delft, 2005.
[9] “Memory Test Background,” 2000, http://tinyurl.com/m7c3wf7.

[10] T. J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC
for PC Server Main Memory,” IBM Microelectronics Division, 1997.

[11] P. J. Meaney et al., “IBM zEnterprise Redundant Array of Independent
Memory Subsystem,” IBM JRD, 2012.

[12] D. Henderson et al., “POWER7 System RAS,” 2012.
[13] B. Schroeder et al., “DRAM Errors in the Wild: A Large-Scale Field

Study,” in SIGMETRICS Performance, 2009.
[14] V. Sridharan et al., “A Study of DRAM Failures in the Field,” in SC,

2012.
[15] A. A. Hwang et al., “Cosmic Rays Don’t Strike Twice: Understanding

the Nature of DRAM Errors and the Implications for System Design,”
in ASPLOS, 2012.

[16] X. Li et al., “A Realistic Evaluation of Memory Hardware Errors and
Software System Susceptibility,” in USENIX ATC, 2010.

[17] J. Stuecheli et al., “Elastic refresh: Techniques to mitigate refresh
penalties in high density memory,” in MICRO, 2010.

[18] JEDEC Solid State Technology Association, “JEDEC Standard:
DDR3 SDRAM, JESD79-3C,” 2008.

[19] D. Fiala et al., “Detection and Correction of Silent Data Corruption
for Large-scale High-performance Computing,” in SC, 2012.

[20] “Predictive Failure Analysis (PFA),” http://tinyurl.com/n34z657.
[21] “Mcelog: Memory Error Handling in User Space,” http://ww

w.halobates.de/lk10-mcelog.pdf.
[22] D. Tang et al., “Assessment of the Effect of Memory Page Retirement

on System RAS Against Hardware Faults,” in DSN, 2006.
[23] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” in ISCA, 2012.
[24] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost

DRAM Architecture,” in HPCA, 2013.
[25] V. Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and

Initialization of Bulk Data,” in MICRO, 2013.
[26] S. Khan et al., “The Efficacy of Error Mitigation Techniques for

DRAM Retention Failures: A Comparative Experimental Study,” in
SIGMETRICS, 2014.

[27] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[28] T. C. May et al., “Alpha-Particle-Induced Soft Errors in Dynamic
Memories,” IEEE T-ED, 1979.

[29] V. Sridharan et al., “Feng Shui of Supercomputer Memory: Positional
Effects in DRAM and SRAM Faults,” in SC, 2013.

[30] T. Siddiqua et al., “Analysis and Modeling of Memory Errors from
Large-scale Field Data Collection,” in SELSE, 2013.

[31] A. Messer et al., “Susceptibility of Commodity Systems and Software
to Memory Soft Errors,” IEEE TC, 2004.

[32] D. Li et al., “Classifying Soft Error Vulnerabilities in Extreme-Scale
Scientific Applications Using a Binary Instrumentation Tool,” in SC,
2012.

[33] X. Li et al., “Application-Level Correctness and Its Impact on Fault
Tolerance,” in HPCA, 2007.

[34] H. Esmaeilzadeh et al., “Architecture Support for Disciplined Ap-
proximate Programming,” in ASPLOS, 2012.

[35] J. Bornholt et al., “Uncertain<T>: A First-order Type for Uncertain
Data,” in ASPLOS, 2014.

[36] “Intel iACT,” http://www.github.com/IntelLabs/iACT.
[37] D. H. Yoon et al., “Virtualized and Flexible ECC for Main Memory,”

in ASPLOS, 2010.
[38] H. Schirmeier et al., “RAMpage: Graceful Degradation Management

for Memory Errors in Commodity Linux Servers,” in PRDC, 2011.
[39] C. Borchert et al., “Generative Software-Based Memory Error Detec-

tion and Correction for Operating System Data Structures,” in DSN,
2013.

[40] K. Pattabiraman et al., “Samurai: Protecting Critical Data in Unsafe
Languages,” in EuroSys, 2008.

[41] J. Chang et al., “Automatic Instruction-Level Software-Only Recov-
ery,” in DSN, 2006.

[42] A. Benso et al., “A C/C++ Source-to-Source Compiler for Depend-
able Applications,” in DSN, 2000.

[43] L. Leem et al., “ERSA: Error Resilient System Architecture for
Probabilistic Applications,” in DATE, 2010.

[44] M.-L. Li et al., “Trace-Based Microarchitecture-level Diagnosis of
Permanent Hardware Faults,” in DSN, 2008.

[45] X. Xu et al., “Understanding Soft Error Propagation Using Efficient
Vulnerability-Driven Fault Injection,” in DSN, 2012.

[46] M.-L. Li et al., “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient System Design,” in ASPLOS,
2008.

[47] S. Liu et al., “Flikker: Saving DRAM Refresh-Power Through Critical
Data Partitioning,” in ASPLOS, 2011.

[48] D. H. Yoon et al., “BOOM: Enabling Mobile Memory Based Low-
power Server DIMMs,” in ISCA, 2012.

[49] K. T. Malladi et al., “Towards Energy-proportional Datacenter Mem-
ory with Mobile DRAM,” in ISCA, 2012.

[50] M. K. Qureshi et al., “Scalable High Performance Main Memory
System Using Phase-Change Memory Technology,” in ISCA, 2009.

[51] H. Yoon et al., “Row Buffer Locality Aware Caching Policies for
Hybrid Memories,” in ICCD, 2012.

[52] S. Phadke et al., “MLP Aware Heterogeneous Memory System,” in
DATE, 2011.

[53] N. Chatterjee et al., “Leveraging Heterogeneity in DRAM Main
Memories to Accelerate Critical Word Access,” in MICRO, 2012.

[54] J. Meza et al., “Enabling efficient and scalable hybrid memories
using fine-granularity dram cache management,” IEEE Computer
Architecture Letters, 2012.

[55] “Windows Debugging,” http://tinyurl.com/l6zsqzv.
[56] “GDB: The GNU Project Debugger,” http://www.sourceware.org/gdb/.
[57] J. Liu et al., “An Experimental Study of Data Retention Behavior in

Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms,” in ISCA, 2013.

[58] V. J. Reddi et al., “Web Search Using Mobile Cores: Quantifying and
Mitigating the Price of Efficiency,” in ISCA, 2010.

[59] “Memcached,” http://memcached.org/.
[60] Y. Low et al., “Distributed GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud,” PVLDB, 2012.
[61] D. Tunkelang, “A Twitter Analog to PageRank,” 2009,

http://tinyurl.com/9byt4z.
[62] S. K. S. Hari et al., “Relyzer: Exploiting Application-Level Fault

Equivalence to Analyze Application Resiliency to Transient Faults,”
in ASPLOS, 2012.

[63] N. J. Wang et al., “Characterizing the Effects of Transient Faults on
a High-Performance Processor Pipeline,” in DSN, 2004.

[64] E. B. Nightingale et al., “Cycles, Cells and Platters: An Empirical
Analysis of Hardware Failures on a Million Consumer PCs,” in
EuroSys, 2011.

[65] M. C. Rinard et al., “Enhancing Server Availability and Security
Through Failure-Oblivious Computing,” in OSDI, 2004.

[66] K. Lim et al., “Disaggregated Memory for Expansion and Sharing in
Blade Servers,” in ISCA, 2009.

[67] A. Sampson et al., “EnerJ: Approximate Data Types for Safe and
General Low-Power Computation,” in PLDI, 2011.

[68] Y. Du et al., “A Rising Tide Lifts All Boats: How Memory Error Pre-
diction and Prevention Can Help with Virtualized System Longevity,”
in HotDep, 2010.

[69] “Memtest86+,” http://www.memtest.org/.
[70] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in

MEMCON, 2013.

12


