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Predictable latency on flash storage is a long-pursuit goal, yet unpredictability stays due to the unavoidable

disturbance from many well-known SSD internal activities. To combat this issue, the recent NVMe IO Deter-

minism (IOD) interface advocates host-level controls to SSD internal management tasks. Although promising,

challenges remain on how to exploit it for truly predictable performance.

We present IODA,1 an I/O deterministic flash array design built on top of small but powerful extensions to

the IOD interface for easy deployment. IODA exploits data redundancy in the context of IOD for a strong la-

tency predictability contract. In IODA, SSDs are expected to quickly fail an I/O on purpose to allow predictable

I/Os through proactive data reconstruction. In the case of concurrent internal operations, IODA introduces

busy remaining time exposure and predictable-latency-window formulation to guarantee predictable data

reconstructions. Overall, IODA only adds five new fields to the NVMe interface and a small modification in

the flash firmware while keeping most of the complexity in the host OS. Our evaluation shows that IODA

improves the 95–99.99th latencies by up to 75×. IODA is also the nearest to the ideal, no disturbance case

compared to seven state-of-the-art preemption, suspension, GC coordination, partitioning, tiny-tail flash con-

troller, prediction, and proactive approaches.

CCS Concepts: • Computer systems organization→ Firmware; Embedded hardware; Embedded soft-

ware; • Information systems→ Flash memory; • Hardware→ Emerging interfaces;
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1 INTRODUCTION

Flash arrays are popular storage choices in data centers, and they must address users’ craving for
low and predictable latencies [2–4]. Thus, many recent SSD products are released and evaluated
not just on the average speed but the percentile latencies as well [5–8]. These all paint the reality
that customers would like SSDs with deterministic latencies.

Deterministic latency, however, is hard to achieve because SSD
performance is inherently non-deterministic due to the internal
management activities such as the garbage collection (GC)

process, wear leveling, and internal buffer flush [9–11]. These
activities will inevitably trigger many background I/Os and disturb
user requests. Notably, GC is a necessary path to overcome NAND
Flash’s inability for in-place overwrites. It involves time-consuming
data movement to reclaim space and contend with user requests,
thereby causing severe latency hiccups. As an illustration, the
figure on the right shows the giant latency gap between the “Base” (with GC) and the “Ideal” (no
GC) cases. Modern SSDs often resort to large over-provisioning space (e.g., up to 50% of the SSD’s
raw NAND capacity) [12] to provide legroom for more efficient background task processing;
however, our profiling experiments on recent enterprise SSDs showed that GCs can still cause
up to 60× latency increase. This is unfortunately still an ongoing problem faced by the storage
industry [13–15].

To tame the SSD performance challenges, there have been many efforts to evolve the device
interfaces [16–18]. The Storage Interface Technical Committee has standardized many extensions
over the past decade: from UNMAP/TRIM (2011) [16], ATOMIC_WRITE (2013) [17], and STREAM (2017)
[18] to a recent one, the NVMe I/O Determinism (IOD) interface (2019) [19]. One IOD feature
is the predictable latency mode (PLM) interface, which suggests that SSDs work in two alter-
nating modes across time: the deterministic (predictable) and non-deterministic (“busy” for short).
IOD-PLM tries to deliver the best I/O latency during the predictable mode and only schedules
background activities in the busy mode. For example, a simple use case [14, 15] is to redirect I/Os
from a “busy” SSD to NVRAM. The specification does not provide the exact definition of “determin-
istic window,” but a common understanding suggests that in a deterministic window, the device
should not perform internal activities that would cause unpredictable latencies to user I/Os (i.e.,
background operations should only be done in the busy window). IOD-PLM is a major leap toward
a more open host-SSD collaboration in attacking the latency consistency challenge. Major storage
companies and cloud providers are considering the use of IOD [14, 15]. However, it is still consid-
ered a “young” interface. Challenges remain on how the host OS and SSDs should be co-designed
around this interface.

IOD-PLM is expected to be useful for flash arrays or clusters where the host or applications can
redirect I/Os to devices in the deterministic mode, whenever possible. Let us take the read opera-
tion on a RAID-5 flash array as an example. Here, an “unpredictable I/O” destined to a busy device
can be reconstructed using the parity and the rest of the data blocks in the same stripe. The recon-
struction is done by the “array’s host” (e.g., software/hardware array controller). Suppose a stripe
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consists of three data chunks (B0, B1, B2) and one parity chunk (P ); if reading B0 is unpredictable
because device #0 is busy, B0 can be reconstructed by reading the parity and other chunks within
the stripe (B0 = B1⊕B2⊕P ), with the hope that other devices (#1 to #3) are in the deterministic
state. This proactive reconstruction scheme is often referred to as “degraded reads” [10, 20–23], a
popular concept used when parity computation is much faster than waiting.

Although degraded reads seem to be straightforward and a natural fit for IOD-PLM, we dis-
covered several shortcomings (detailed later) during our journey to exploit the interface for an
always-deterministic flash array design.

In this article, we first pinpoint four limitations (and opportunities) to improve the IOD-PLM in-
terface: (1) PLM is currently treated as a “best-effort” contract (the SSD can autonomously switch
from deterministic to busy mode whenever it needs to); (2) the specification states that this in-
terface can return much possible information of the device’s PLM status but not many standards
available on how the host should use them; (3) PLM is currently configured at a coarse-grained
level (whole device or partition) not optimum for modern devices with high channel-level paral-
lelism where some channels might be free from GC momentarily; and (4) although PLM allows the
host OS to “softly” control how long the device should be in (non)deterministic windows, there is
no guideline on how long the windows should properly last.

To this end, we introduce IODA,2 an I/O deterministic flash array built on top of small but
powerful extensions to the IOD-PLM interface.

IODA introduces three main techniques to enhance the IOD interface and facilitate a deter-
ministic host/SSD co-design incorporating degraded reads seamlessly: (1) predictable mode I/Os
for augmenting coarse-grained whole-device level predictability with per-I/O level predictability
query via a simple flag (“Will this I/O be predictable? Yes/No”), which allows a more live
response of the predictability status to signal the host decisively on whether and when to trigger
reconstructions; (2) piggybacking busy remaining time (BRT) for assisting the host in picking
less-busy devices for reconstructions in the case of concurrent internal operations, and thus, we
only need to wait for the least busy devices to achieve improved latencies; and (3) a stronger
(un)predictable-latency-window formulation and scheduling scheme for programming a proper
upper bound value of the (un)predictable window in every device of the array to guarantee a
stronger predictability contract. We show how the combination of these approaches is more pow-
erful than each of the individual methods. Our techniques add only five new fields to the existing
IOD-PLM interface and NVMe commands (18 lines in the Linux NVMe driver), keep the flash
firmware simple (only 60 and 186 lines of new logic on two popular SSD platforms [24, 25], respec-
tively), and isolate all the complexity in the host OS, with 1,814 new lines in the Linux RAID (“md”)
sub-system.

We performed a thorough evaluation (Section 6) with nine datacenter I/O traces, six file systems,
and 15 popular data-intensive workloads. Compared to the baseline, IODA reduces I/O latency by
1–75× between p95–p99.99 (i.e., the 95–99.99th percentiles) and 1.7–16.3× on average. Compared
to an “ideal” scenario where there are no write-triggered GCs, IODA is only 1.0–3.3× slower be-
tween p95–p99.99, whereas the baseline suffers from 1.1–88.3× degradation. To compare IODA
with state-of-the-art approaches, we also re-implement seven published methods that represent
preemption [26–28], program/erase (P/E) suspension [29–31], speculation [32, 33], GC coordina-
tion [34, 35], partitioning [36–38], “tiny-tail” controller design [10], and SLO-aware prediction [39].

Overall, our measurements show that IODA provides a strong IOD guarantee (no I/Os delayed
by GCs), even under the maximum write burst, and without sacrificing throughput—to the best of
our knowledge, the first flash array design that has achieved so.

2IODA is pronounced “ Yoda,” a wise and determined Jedi Master.
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Fig. 1. GC impact in consumer and enterprise flash arrays (Section 1). CDFs of sub-IO slowdowns on a four-

drive RAID-0. The top figures (a, b) are from an array of consumer SSDs (Samsung SM951s), and the bottom

figures (c, d) are from a similar array of enterprise SSDs (e.g., Intel P4500).

For the rest of the article, we assume flash arrays with some level of redundancy. We use Nssd

and k to represent the number of devices and parities (e.g., Nssd = 4 and k = 1 in a four-drive
RAID-5 array).

2 LATENCY UNPREDICTABILITY IN FLASH ARRAYS

SSD firmware must perform background management operations such as GC, which will cause
channel/chip-level read/write contention with foreground (user) read I/Os. To show the GC impact
to latency predictability in flash arrays, imagine a typical sequential large read to block addresses
B1 to B4 that are striped across multiple SSDs. If one of them is “unpredictable” (e.g., must wait
for a background operation to finish), then the entire large read will be delayed. Figure 1(a) and (c)
show the cascading impact of a busy SSD (doing GC) to large user I/Os (stripe-IOs) in consumer-
and enterprise-level flash arrays, respectively.

Here, we form a RAID-0 on four real SSDs (see Figure 1 captions) with 4-KB chunk size; we run
16-KB full-stripe random reads (foreground). To trigger different intensities of GC (background)
noises, we also inject random-write noises of 1, 10, 40, 100, and 800 KWPS (kilo-writes-per-second)
where “1W” implies a 4-KB random write. Every ith full-stripe read generates four page sub-IOs.
We instrument Linux Software RAID to measure the latency of every sub-IO. Thus, for every ith

read, we measure four sub-IO latencies Li1..Li4 from the four SSDs. We then measure the longest
delayed (latest) sub-IO with the following slowdown metric: Si = Max (Li j )/Median(Li j ), where
j = 1..4. With four drives, we use the second earliest time as the median. Put simply, Si
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represents the slowdown to wait for the latest returned page (the tail) in every full-stripe
read i .

Let us look at the results from the consumer-level SSD array first. Figure 1(a) plots the CDF
of all Si on the array of four Samsung SM951s [40], showing that due to background activities,
the latest sub-IO of a full-stripe I/O can arrive multiple times slower than the earlier ones. The
slowdown becomes worse when GC happens more often (1 KWPS green vs. 10 KWPS blue lines).
For example, with 10 KWPS, a sub-IO read is 15× slower than the median at p97. Under 40 KWPS,
we see 40× slowdown at p98.

We emphasize that this slowdown is due to GC and not the random user writes (i.e., queueing
delays). This is verified by the five (overlapping) thin gray lines marked “NoGC” where we convert
the user write to a read noise. The gray lines mostly hovering around x=1 essentially show that
the foreground full-stripe reads observe no (1×) slowdown of sub-IO completions. For a fairer
experiment, as NAND read latency is around 20× faster than write latency, we also set the read
noises to be 20× more intense or 20× larger in size and obtain similar results.

Figure 1(c) is the same experiment as Figure 1(a) but done on a RAID-0 on top of four enterprise
SSDs. Figure 1(c) shows a behavior on enterprise flash array (as in Figure 1(a)), but here due to
the larger capacity and potentially more advanced techniques employed (e.g., P/E suspension),
the GC impacts are observable under a relatively high intensity write noise at 100 KWPS. The
aggregate array write bandwidth is 1.2 MWPS. Under a more intense write noise of 800 KWPS, we
can observe worse slowdowns, reaching 60× compared to the normal-case no-GC latencies.

2.1 Opportunity

With the same experiment presented previously, we find a big opportunity to cut unpredictable
latency. To show this, we also record the slowdown of the second latest returned page: S2

i =

2ndMax (Li j )/Median(Li j ). Figure 1(b) and (d) compare the distribution of the first- and second-
latest slowdowns in consumer- and enterprise-level flash arrays, respectively. For readability, we
only show the experiment results with 40 and 800 KWPS noises.

As shown in Figure 1(b), the probability that two sub-IOs of a stripe read are simultaneously

delayed by GC is much lower than only one page being blocked. For example, >2× slowdown of the
latest page happens 13% of the time (x=2 at p87), but the second-latest page is >2× slower only 2%

of the time (x=2 at p98). Thus, if we put this finding in the context of RAID-4/5, 11% of the slow I/Os
can be made fast by reconstructing the late sub-IOs from another SSD that holds the parity block
of the stripe. Similarly, the preceding findings hold true for the enterprise flash array (Figure 1(d)).

3 IOD-PLM: THE GOOD AND THE BETTER

3.1 How IOD-PLM Works

The NVMe IOD concept [19] introduces two interfaces: “NVM Set” (for isolation, not our focus)
and PLM. PLM suggests that SSDs work in two alternating modes across time: deterministic (pre-
dictable) and non-deterministic (“busy”) windows. A common understanding suggests that back-
ground operations should only be done in the busy window. In more detail, PLM exposes two
NVMe commands. First, the “GetPLMLogPage” command (“PLM-Query” for short) allows the host

OS (e.g., Linux RAID) to query the device state such as the #I/Os in the future that the device can
guarantee to be deterministic in latency. Second, the “PLM-Config” command allows the host to
toggle the device’s deterministic/busy state. However, one caveat is that this IOD interface is seen
as a “best-effort, soft contract”—that is, the device can autonomously transit to the busy state un-
der certain conditions (e.g., performing GCs when running out of over-provisioning space), hence
breaking the predictability guarantee.

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.
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Table 1. Comparison of IODA to State-of-the-Art Approaches

IO
DA

Preemptio
n

Partit
ioning

Speculatio
n

Suspensio
n

Coordinatio
n

ttFla
sh

Predict
ion

Determinism � ✗ � ✗ ✗ ✗ � ✗

Throughput � ✗ ✗ ✗ � � ✗ �
Transparency � � � � � � � ✗

Deployment � � � � � � ✗ �
IODA achieves performance determinism without sacrificing throughput and is transparent to applications with

minimal device-side changes for easy deployment.

3.2 Opportunities for Improvement

PLM is a major leap toward more open host-SSD communication, and the interface keeps evolving.
We argue it requires further enhancement to enable a principled co-design for strong predictability
due to the following deficiencies.

First, PLM-Query returns significant information of the device PLM state [19, Section 8.18] with-
out (so far) much guidance on how the host should use them. Both the host and the device must
keep track of this “soft contract” (e.g., extensive inflight I/O status), which can create much man-
agement complexities. Let us imagine a return value of “the next R reads and W writes will be
predictable.” The host must keep track of this information—for example, as long as future writes
are fewer thanW , the host can still submit many reads (no write-triggering GCs). Likewise, on the
SSD side, the firmware logic must be modified to keep the promise by tracking the internal inflight
I/O status.

Second, the whole-device non-deterministic mode is unnecessarily too coarse-grained. Mod-
ern SSDs have many parallel channels (e.g., 16 or more) where a GC activity on certain chan-
nels will not disturb user requests on other channels. However, because the device declares to
be busy as a whole, the host might unnecessarily reconstruct I/Os from other devices while the
I/Os could have been destined to non-busy channels inside the currently busy device. This lim-
itation would adversely increase overall system resource utilization and jeopardize performance
predictability.

Third, the PLM busy window duration is vital for a strong predictability guarantee (more in
Section 4.3); however, we are not aware of any work that attempts to analyze and formulize the
proper window size. In particular, we need a “configurable” framework to lay out how these values
are derived and program them properly. The PLM’s “soft” control of the busy/predictable window
transition is far from being ideal.

3.3 Related Work and Our Contributions

Table 1 summarizes existing approaches that attack the flash performance challenges. The popular
methods include preemptions [26, 29, 41], hints [39, 42–45], partitioning [11, 37, 38, 46], speculation
[22, 47, 48], latency prediction [39, 49], and coordinated GCs [10, 34–36, 50, 51]. Traditional pre-
emptions cannot indefinitely avoid/postpone GCs, as they will revert to normal blocking behavior
under insufficient over-provisioning space. Hint schemes such as those in the work of Liu et al. [45]
require code changes, breaking application transparency. Partitioning methods like FlashBlox [37]
exploit parallel hardware resources (channels/chips) to achieve strong isolation at the cost of the
aggregate bandwidth drop. I/O speculation techniques, such as request cloning or hedging [3],
pose the question of how long to wait before forcing an I/O reconstruction/replication; it remains
challenging to adapt the speculation eagerness for balanced resource utilization and effectiveness.

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.



Extending and Programming the NVMe I/O Determinism Interface for Flash Arrays 5:7

Latency prediction approaches such as MittOS [39] or LinnOS [49] answer the when-to-reconstruct
question but suffer from inaccuracies without collaboration with the device. Coordinated GCs, as
in ttFlash [10], overcome latency prediction limitations but introduce another question of when

every device must start/stop GCs.
In terms of which layer tames the SSD performance issues, vast research has been done, from

device-only modifications [10, 26, 44, 52–54], host-level changes [32, 35, 36, 55, 56], and transpar-
ent approaches on programmable devices [12, 25, 39, 57, 58] to interface solutions [18, 51, 59–61].
Device-level proposals usually require vendors to significantly modify the firmware policies, which
are not attractive for quick deployment; host-only optimizations can only guarantee a soft contract
(i.e., not eliminating background interferences); transparent approaches do not work for commod-
ity SSDs, and many interface-level solutions focus on various types of inefficiencies of the existing
software/hardware stack. Fortunately, the IOD-PLM interface has been accepted, and time is ripe
for us to build solutions on it. IODA builds on top of the standard NVMe IOD-PLM interface and
only requires minimal firmware changes for easy deployment.

The emerging Zoned Namespace [60] interface offers new opportunities for predictable perfor-
mance by delegating more device controls to the host, but it could still potentially benefit from
IODA techniques to co-schedule housecleaning tasks (e.g., GCs) and the hardware across devices.
We leave more detailed study as future work.

ttFlash [10] tackles a similar problem as IODA. However, IODA’s design context, principles,
and technical challenges are fundamentally different. ttFlash is a device-level design, whereas
IODA focuses on host/device co-design with minimal interface changes (we must address host-
level and minor device-level changes and the interface design). ttFlash requires extensive con-
troller/firmware re-architecting, which we argue is not realistic (e.g., reliance on NAND “copy-
backs” to enable chip-level blocking GC but skipping ECC checking that vendors do not employ;
GC has to move data from NAND to RAM for ECC checking by the controller). IODA does not en-
force a specific GC policy. More importantly, IODA tackles a new problem of PLM management on
IOD devices—we must address PLM limitations, and design and build the needed software support
in the host/OS.

Although several works on IOD have begun to appear [14, 62], they mainly target hardware-
level partitioning for better workload isolation, and none of them address IOD-PLM challenges. We
present more detailed comparisons between IODA and related work in Section 6.2, qualitatively
and quantitatively.

Although these existing works without a doubt guide us to our ultimate solution (e.g., we in-
tegrate IODA with degraded reads), to the best of our knowledge, none of the preceding works
answer the following questions: How can we extend and manage the existing IOD features and
design proper software support to achieve always-predictable latencies? How should the host and
the device agree on a proper PLM window to achieve an optimal result? How should the popular
concepts of degraded reads and coordinated GCs be redesigned for future IOD-capable drives? We
believe that these questions are similar to those around the highly popular concept of tail toler-
ance/speculative execution [63] that has been extended, re-architected, and re-evaluated for many
scenarios [64–68] (far too many to cite here). In the same way, our unique contributions lie in
answering the preceding questions.

4 IODA

We present IODA, an I/O deterministic flash array that is built on top of small and simple extensions
around the existing IOD-PLM interface. This section describes our journey one step at a time
toward reaching a highly deterministic latency, and Section 4.4 puts all the pieces together.

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.
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4.1 Design Principles

When designing IODA, we adhere to the following goals and principles:

(1) Make best-effort predictability stronger to guaranteed predictability. The IOD-PLM concept is
ideal for flash arrays if designed properly; the SSDs in the array can guarantee alternating
internal activities and the host can leverage data redundancy for I/O reconstruction such
that there is no single I/O that will be delayed by GC operations.

(2) Continue reducing the host-SSD semantic gap. For stronger predictability, we advocate SSDs
to be “array-aware” with more but simple co-design/coordination between the OS and the
devices without forcing the device to expose much of its internal proprietary information.

(3) Make predictability more fine-grained. To achieve a more efficient array, coarse-grained pre-
dictability mode (at the whole device level) should be augmented with finer-grained pre-
dictability at the I/O level to alleviate unnecessary reconstruction/rerouting overhead.

(4) Limit device-level modifications, and keep most of the complexity in the host. Deployed flash
firmware has gone through years of development and hence should not be heavily re-
architected. All that is needed is for the firmware to shift its internal activities over time
(e.g., <100 lines of change). Similarly, applications should not be modified, leaving the OS to
handle all the complexity of guaranteeing strong predictability.

4.2 PLIO: Predictable-Latency Flagged I/Os

Our first method is to introduce PLIO , predictable-latency flagged I/Os, by piggybacking a binary

PLM query within the I/O submission command (“Will this I/O be predictable? Yes/No”). This al-
lows a more live response of the predictability status. In other words, to have deterministic latency,
the host ideally should know which I/Os will be delayed internally by the device such that the host
will perform a degraded read without waiting. PLIO binary response serves as a timely and accu-
rate signal for the host to initiate proactive reconstruction. PLIO modifications to the (1) interface,
(2) firmware, and (3) host is minimal:

(1) At the NVMe interface level, we extend the I/O submission command with a 2-bit PL flag

(using a slot in the existing 64 reserved bits). The purpose of this bit is as follows. For every
user I/O, the host can mark them with PL=true (01) hinting to the underlying device that
“ideally” this I/O should exhibit a predictable latency (not queued behind GC activities). If
predictability cannot be guaranteed, please acknowledge the host as soon as possible. In our
flash array setup, we initially set all read I/Os with PL=true.

(2) On the device side, when a user I/O contends with GC, the device firmware should quickly

“fail” this unpredictable I/O by placing PL=fail (11) in the corresponding completion com-
mand. Afterward, the host can proactively reconstruct this unavailable block from the other
devices in the array (Section 3). Otherwise, if GC is not active, the device can serve and
complete the I/O without changing the flag (i.e., the same processing logic as normal I/Os).

(3) On the host side, upon receiving a failed I/O, if the I/O is a read operation, the host can
simply reconstruct the unavailable block by submitting additional I/Os with predictability
off (PL=false (00)), which we call reconstruction I/Os to differentiate from the original user
I/Os. After reconstruction, the host can return to the upper layers (e.g., file systems) and
deem it completed.

4.2.1 Benefits and Limitations. This simple extension delivers a large benefit for two reasons.
First, failing an I/O only takes 1 μs through PCIe, and the xor-based reconstruction takes less
than 10 μs on modern CPUs. Thus, this fast response (plus reconstruction) can provide a signifi-
cantly faster response than waiting for background operations to complete. The PL flag serves as
a proactive signal to coordinate the device and the host on the correct timing to respond to the
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non-determinism. Second, the probability that more than one sub-IO of the same stripe are delayed
by simultaneous GCs on different devices is significantly lower than the probability of just one sub-
IO getting delayed. A sub-IO is a page I/O within a full-stripe I/O. In a four-drive array, a full-stripe
I/O has four sub-IOs, including the parity page. We observed this probability in a detailed profiling
experiment in the Linux block layer with real SSDs.

A limitation of this approach is that it can only reconstruct k sub-IOs within a stripe where k is
the number of parity blocks (e.g., k = 1 in RAID-5 and k = 2 in RAID-6). Thus, it is still tail-prone
when >k sub-IOs are not predictable (i.e., the reconstruction I/Os also cannot be served quickly).
The subsequent sections will address this limitation and show how PLIO can be more powerful
under further enhancement.

4.2.2 A Further Extension (PLBRT ). To address the limitation of PLIO , we explored extending
the firmware furthermore to return the BRT to inform the host how long the corresponding I/O
would have to wait. Thus, when multiple, n sub-IOs are returned with unpredictable flags (PL=11),
including the reconstruction I/Os, the host will resubmit n−1 of the sub-I/Os with the shortest BRT.
This time, these I/Os must be resubmitted with PL=00 to avoid recursive fast failures (i.e., these I/Os
will wait for GCs if any). In the firmware, calculating the BRT that affects a particular incoming I/O
can be done in a straightforward fashion because it is about the chip and channel-level queueing
delays with established device-level specifications. In the NVMe interface, we piggyback the BRT
in the NVMe completion command of the affected I/Os (using the 64 reserved bits).

Later in the evaluation, we show that PLBRT improves upon PLIO , but PLBRT fails to provide
a strong predictability contract. The PLBRT technique works effectively under a low probability
of multiple I/Os in a stripe delayed by concurrent background operations. However, we observed
that in some deployments of a major storage company, the flash array design absorbs user writes
to a separate battery-backed DRAM and flushes them in large sequential full-stripe writes across
the SSDs. Hence, all the SSDs in the array age at the same pace, and because the device models
are usually the same (e.g., same firmware logic), GC operations kick in at relatively the same
time. PLBRT becomes ineffective here because the host would see multiple unpredictable I/Os with
similar BRT values.

4.3 PLWin: Busy Latency Windows

4.3.1 Overview. To provide a strong predictability contract, we leverage the fact that the notion
of “PLM windows” has been accepted in the NVMe specification (i.e., a device should alternate
between busy and predictable windows). We take this concept within the context of flash arrays.
Here, we concisely introduce the rules to achieve strong predictability:

(1) During the busy time window (TW ), the device must have time to reclaim enough space via
GCs and bring back the free over-provisioning space to a certain level (some percentage of
the total raw NAND capacity) to serve the incoming writes during the predictable window.

(2) During the predictable time window, which lasts (Nssd − k ) × TW (explained later), every
device must have enough over-provisioning space to absorb the largest possible write bursts
to the device, hence guaranteeing that no GCs are triggered during the predictable window.

Figure 2 illustrates the goal of usingTW in a four-drive RAID-5 array. In the first time window,
between time t to t + TW , device #0 enters the busy mode for TW and performs GC to create a
large free space in the over-provisioning area, which is crucial for absorbing the maximum write
bursts during the predictable window. It is important to note here that the other devices (#1 to #3)
must be in the predictable mode and may not perform any GC. In the next time window, between
t + TW and t + (2 × TW ), device #0 switches to predictable mode while device #1 enters its busy
period (taking its turn to do GC operations). In this four-drive RAID-5, every device must be able

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.



5:10 H. Li et al.

Fig. 2. Alternating busy/predictable windows (Section 4.3). This figure, using a four-drive RAID-5, shows that

in any time window (a duration of TW ), there is at most one device in the busy mode, performing GCs.

to sustain user write bursts within the predictable duration (3 × TW ) without triggering internal
busyness. Note that writes are allowed during both the predictable and busy windows, as we do not
perform any write throttling or orchestration/staging that limits write throughput. To generalize
the TW synchronization across SSDs, given an array’s width (N ), start time (t ), and TW , the ith

SSD will enter its busy state at time (t + (i − 1 + k × N ) ×TW ) for k in [0, 1, 2, . . .]. Each SSD can
use the controller’s timer to perform busy/predictable state transitions periodically (e.g., via timer
events) and autonomously without overlapping with other SSDs.

Although similar coordination ideas as in Figure 2 have appeared in scenarios ranging from
in-device RAIN [10, 20, 69] to even distributed “Java GC” [70, 71], we are not aware of existing
works that apply it to flash array designs. The unique challenge here lies in programming the
proper PLM windows without breaking the predictability contract. In this context, we need a con-
figurable framework to program and formulate the busy window that IOD arrays can base on. For
example, an SSD vendor employing a certain GC policy can slightly tune the formula/parameters
to achieve the ideal window length for their SSD models; a flash array operator might want to
relax the window value to better suit their target workloads for better device lifetime. To this end,
we introduce PLW in , a TW formulation that flash array’s host and devices can use to guarantee the

contract, hence making the flash array deliver predictable latencies all the time.
Due to the complex and proprietary GC dynamics whose details are invisible to the host for

modern SSDs, devices are the ideal candidates to calculate the proper TW length and advertise
them to the host. Host-based TW calculation would make more sense if devices are willing to
expose more of the internals (e.g., Zoned Namespace SSDs [60]).

4.3.2 TW Upper-Bound Formulation. This section describes ourTW formulation in a top-down
fashion. To satisfy the contract rules, TW must satisfy the following constraint:

TW ≤ Sp / ((Nssd × Bburst ) − Bдc ).

Without losing generality, let us consider a full cycle of Nssd × TW as illustrated from time t
to t + (4 × TW ) in Figure 2 for one SSD in the array. Bburst represents the per-device maximum

user write burst, which we will break down in the subsequent section. The SSD is only allowed to
perform GC on its own turn (in one TW ), whereas writes can keep coming within the full cycle
without any throttling/arbitration until the SSD has a chance again to perform GC. Thus, Nssd ×
Bburst represents the maximum user write burst within a cycle for one SSD. Within its time win-
dow, the SSD can run GCs freely to reclaim space, say at the speed of Bдc (expanded later). This
means that (Nssd × Bburst ) – Bдc is the net write load that an SSD should handle in a cycle. In
other words, the net incoming write load should not take up all the free over-provisioning space
(Sp ) that the SSD has.

All combined, the time window length (TW ) must be less than the size of the over-provisioning
space (Sp ) divided by the net write load, hence the preceding constraint. Given that Sp is typically
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Fig. 3. TheTW formulation. The formula depends on 11 hardware-level parameters and 3 workload-related

parameters (the width of the flash array (Nssd ), Rv , Ndwpd ). The breakdown of the formula is detailed in

Table 2. SSD controllers can use this formula to calculate and report the TW length (upperbound) to the

host during array initialization/creation phase. Later, the host can program appropriate TW value to all the

devices in the array.

a fixed size,TW is mainly decided by Nssd , Bburst , and Bдc . For example, under a wide array (large
Nssd ),TW must be set smaller to avoid breaking the IOD contract (will be analyzed further later).
TW has a lower bound, the latency of the smallest, non-preemptible unit of GC activity (Tдc ).

For example, a firmware might prefer to clean one NAND block as an uninterruptible activity to
reclaim enough space within one TW .

4.3.3 TW Parameters. We now break down our TW formulation in a bottom-up fashion. The
parameters we introduced (Sp , Bburst and Bдc ) are high-level parameters that must be derived from
hardware specifications. Figure 3 shows our finalTW formulation that requires 11 hardware-level
parameters. For understandability, we break down this equation in Table 2. The first row segment
of Table 2 lists the hardware time-related specification such as channel transfer (tcpt ), NAND write
(tw ), read (tr ), and erase (te ) time and the host-device PCIe bandwidth (Bpcie ). The second segment
lists the hardware space-related specification such as the page size (Spд), pages per block (Npд),
blocks per chip (Nblk ), chips per channel (Nchip ), number of channels (Nch ), over-provisioning
ratio (Rp ), and the average ratio of valid pages in victim blocks (Rv ). These low-level parameters
are needed to derive higher-level parameters (the third row segment) such as block size (Sblk ), total
NAND size (St ), and over-provisioning space (Sp ). From here, we can calculate GC behavior (the
fourth row segment) such as the time to clean one victim block (Tдc ), the size of the reclaimed
space (Sr ), and GC cleaning bandwidth (Bдc ). The device also needs to understand the workload
intensity, such as the maximum write bandwidth (Bburst ) that depends on two values (Bpcie and
Bnorm ). More importantly, TW depends on the width of the flash array (Nssd ).

4.3.4 TW Example Values. With all of these parameters, we can setTW = TWburst (the last row
in Table 2) to fully guarantee the contract. To get a sense of the actual possible values, columns
5 through 10 of Table 2 show parameters of six SSD models we analyzed, including a simulated
device that mimics a consumer SSD (Sim), a flash emulator used for our firmware prototyping
(“FEMU”) [24], an OpenChannel-SSD (OCSSD) [25] whose parameters are publicly known, and
three commercial SSDs from different vendors. We used an SSD prober [72] to profile the hard-
ware parameters of the commercial SSDs. Some of the SSD internal parameters are known to be
“guessable” based on the observed latencies [73]. The average number of valid pages in a victim
block (Rv ) is estimated from running our workloads (Section 6) in FEMU [24] and OCSSD [25]. We
emphasize that the use of these numbers is only for analyzing possibleTW values on real devices.

Overall, when varying the number of devices (Nssd ) in the array from 4 to 8, TWburst can range
from ∼100 ms to ∼3 seconds for different SSD models, which gives us a reasonable window length
large enough to run sufficient GCs. Higher-capacity devices such as enterprise SSDs can have a
longer TW , primarily because they have more over-provisioning space to absorb the incoming
write burst, but the maximum user write burst (Bburst ) is also limited by the PCIe bandwidth.

Note that we use fixed parameter values to simplify the analysis without losing generality. For
more complex scenarios where some parameters (e.g., Rv ) will change over time due to workload
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Table 2. Time Window (TW ) Breakdown and Values (Section 4.3)

Symbol Longer Symbol Unit Symbol Equation S
im

O
C

S
S

D

F
E

M
U

9
7

0

P
4

6
0

0

S
N

2
6

0

Hardware Time Specification

tcpt TimeOfChannelPageTransfer μs 40 60 60 40 60 60

tw TimeOfNandPageWrite μs 2400 1440 140 960 2000 1940

tr TimeOfNandPageRead μs 60 40 40 32 60 50

te TimeOfNandBlockErase ms 8 3 3 3 6 3

Bpcie BandwidthOfPCIe GB/s 4 8 4 4 8 8

Hardware Space Specification

Spд SizeOfNandPage KB 16 16 4 16 16 16

Npд NumberOfPagesPerBlock . 512 512 256 384 256 256

Nblk NumberOfBlocksPerChip . 2048 2048 256 2731 5461 4096

Nchip NumberOfChipsPerChannel . 4 8 8 4 8 8

Nch NumberOfChannels . 8 16 8 8 12 16

Rp RatioOfOverProvisioning . 0.25 0.12 0.25 0.20 0.40 0.20

Rv RatioOfGCValidPages . 0.5 0.75 0.7 0.75 0.75 0.75

Derived Values

Sblk SizeOfNandBlock MB Spд × Npд 8 8 1 6 4 4

St SizeOfTotalNandSpace GB Sblk × Nblk × Nchip × Nch 512 2048 16 512 2048 2048

Sp SizeOfProvisionSpace GB Rp × St 128 246 4 102 819 410

Garbage Collection

Tдc TimeToGCOneBlock ms (tr +tw +2×tcpt )×Rv×Npд+te 658 617 57 312 425 408

Sr SizeOfGCReclaimedSpace MB (1 − Rv ) × Sblk × Nch 32 32 2 12 12 16

Bдc BandwidthOfGCCleaning MB/s Sr / Tдc 49 52 35 38 28 39

Workload Behavior

Ndwpd NumberOfCommonDWPD . 10 10 40 10 10 10

Bnorm BandwidthOfWorkloadWrite MB/s Ndwpd × (St - Sp ) / (8 hours) 137 641 17 146 437 582

Bburst BandwidthOfFullWrite MB/s Min(Bpcie ,Max (Bnorm )) 3200 4000 536 3200 3204 4000

RAID

Nssd NumberOfSSDsInTheArray . 8 4 4 8 4 4

Time Window

TWnorm TimeWindowNormal ms Sp / (Nssd × Bnorm − Bдc ) 6259 5014 6206 4622 24380 9171

TWburst TimeWindowBurst ms Sp / (Nssd × Bburst − Bдc ) 256 790 97 204 3279 1315

The top row segments are basic NAND/controller-level parameters (i.e., “Hardware Time/Space Specification”), and the

bottom row segments (i.e., “Derived Values, Garbage Collection, down to Time Window”) are calculated based on the

upper rows. We show analysis results for six SSD models (the right-most columns).

and/or GC dynamics, we believe that SSD vendors can further tune and customize theTW formula
to derive more accurateTW values for their device models. This is because SSD vendors have full
control of their firmware/GC policies. For example, the vendors could use a “worst-case” Rv value
to calculate the tightest TW upper bound. Later, our FEMU-based evaluation (Section 6) shows
that the TW approach can help us achieve predictable latencies.

4.3.5 TW Scalability and Write Amplification. We now analyze the tradeoffs of TW values.
Figure 4(a) shows the implication of larger array width (x-axis) to the TW value (y-axis) of six
device models in Table 2. A wider array (larger Nssd ) forces TW to be lowered as the predictable
window duration (Nssd × TW ) for every device increases while the busy window period remains
the same (1 × TW ). This means that the over-provisioning space will be full relatively faster.
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Fig. 4. Time window analysis. (a) The figure shows thatTW can scale well to large arrays (e.g., >20 devices).

(b) This figure demonstrates improved WA under largerTW . (c) The figure presents the tradeoffs to balance

WA, predictability, and TW . The y-axis for the red line represents WA, and the y-axis for the green lines

denotes latency predictability gaurantees (the higher the better).

Unfortunately, as shown in Figure 4(b), a lowerTW (in the x-axis) causes a higher write ampli-

fication (WA) factor (in the y-axis). Here we ran various workloads on SSD model “Sim” (more in
Section 6.3.7). Let us take an example ofTW = 100 ms in a four-drive RAID-5 array, which implies
300 ms of predictable window length for each device. However, user write workload is typically
less intensive than the maximum possible write burst, thus the over-provisioning space might not

be full after 300 ms, but yet the device is forced to transition to the busy window and start cleaning
despite not many pages to clean, which then increases WA.

4.3.6 A More Relaxed Contract to Reduce WA. With the preceding analysis, a flash ven-
dor/operator might worry about the unnecessary high WA given a small TW value. A preferable
way is to absorb as many (over)writes until the over-provisioning space is almost full before start-
ing GC. To incorporate this, the flash array can reuse our formulation but replace the maximum
write burst (Bburst ) with a typical “normal” user write throughput (Bnorm ). An industry standard
to set this number is by using the DWPD (drive-write-per-day metric) [74]. For calculating Bnorm

in Table 2, we use DWPD values of 10 to 40 (Ndwpd ), often suggested to prolong the device lifetime
to 3 to 5 years [75].

Plugging in this value to the same formula will give us TWnorm . As shown in the two last rows
of Table 2, TWnorm increases the busy window length by 6–64× (higher compared to TWburst ),
hence a longer predictable window length. Although this reduces WA, we must call this a relaxed

(weaker) contract. The reason is that the user write intensity may jump higher than the expected
Bnorm bandwidth. This in turn will fill up the over-provisioning space quickly and force the device
to trigger GC even when it is not supposed to (still in predictable mode). This will be a rare event
if user workloads follow the suggested DWPD.

4.3.7 The WA and Predictability Tradeoff. As analyzed previously, one might prefer to reconfig-
ure theTW to achieve low WA without breaking the predictability contract. Figure 4(c) illustrates
the tradeoff between WA and predictability under different time window values (x-axis). Although
WA improves with larger TW (red line), the predictability guarantee weakens if the TW is exces-
sively too large as GCs have to forcefully kick in. Thus, it is necessary to find the sweet TW
spot/range that can satisfy both requirements.

Under a “Burst” workload (boldest green line), the predictability guarantee first increases (i.e.,
delivering overall better tail latencies) starting with the lower-bound TW value of Tдc , and peaks
around TW = TWbusr t , the tight upper-bound TW value under the maximum-possible burst load.
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As TW continues to increase, the predictability guarantee weakens/decreases. For a lighter load
(e.g., the 40 and 20 DWPD green lines), they show a similar predictability vs. TW trend, but the
peak predictability guarantee can sustain over a range of TW ∈ [TWburst , TW40dwpd ] or [TWburst ,
TW20dwpd ], respectively. Here,TW40dwpd represents the calculatedTW value based on Figure 3 with
Ndwpd = 40. Combining the red line WA trend, the flash array operators better switch theTW from
TWburst toTW40dwpd for better WA if the workload intensity decreases from “Burst” to “40 DWPD.”
To reconfigure TW , all that is needed is an NVMe admin command to reprogram the TW value for
all devices in the array), and it can happen at the granularity of time slices (e.g., every few minutes)
or per workload, which flash array operators already have good control of. Furthermore, the OS can
be strengthened to dynamically adjust TW based on load changes. However, when under bursts,
unpredictability will still show up as the TW adjustment lags behind workload intensity changes.

4.4 Putting It All Together

In summary, we show that the two combinations of PLIO + PLW in create a very efficient flash array
that fulfills the two rules of the strong contract we mentioned in Section 4.3. When not combined,
each of these two techniques has limitations (which we will evaluate later).

PLIO Only. As discussed before, this method advocates a “fail-if-slow” hardware design to enable
host-level timely reconstruction for better latencies. However, it does not prevent multiple sub-
IOs within a stripe from concurrent GC delays in different SSDs, thus the inability to achieve
predictable latency when multiple SSDs are busy.

PLW in Only. Although PLW in by itself guarantees at most one busy SSD in every busy time
window, this labeling is too coarse-grained—that is, an I/O destined to a busy SSD might not contend
with the internal GC. Let us suppose a block read B0 to a busy device D0 that must read the data
via channel #8 in D0. Channel #8 may be idle because the GC activities currently are on the other
channels. But because PLW in assumes the whole device D0 is busy (too coarse-grained), then the
host will not send B0 to D0. As a result, B0’s data must be reconstructed by reading B1, B2, and the
parity block P . In general, because the host will never send any I/O to an SSD in its busy window,
the frequent parity-based reconstruction overhead (probabilistically 25% of the time in a four-drive
array) is unnecessarily too excessive.

IODA (PLIO + PLW in). When PLIO and PLW in are combined, the host will always send I/Os with
PL=true (01) even to a device in the busy state. It is more opportunistic in a more fine-grained
way—predictability is per I/O, not the whole device (or partition). If the I/O going to the busy device
is not contending with GCs, then no data reconstruction is necessary. Otherwise, the array will
guarantee that every busy I/O (PL=fail (11)) can always be circumvented. With IODA design, we
ensure that only non-deterministic I/Os contending with GCing channels in the busy SSDs will
be fast-failed and reconstructed from other drives. The reconstruction I/Os are guaranteed to be
predictable based on our PLW in window formulation, so they will not bloat up the system with
endless/nested extra traffic. Later in the evaluation, we show that IODA caps the extra load to only
a small percentage (e.g., 6% in Figure 10(b), and with <10% fast-rejected reads in Figure 8 across
all workloads). The CPU overhead is negligible compared to GC-induced long I/O latencies. Given
this per-I/O predictability, our final IODA design also does not degrade the original aggregate
bandwidth (IODA bandwidth is close to the raw RAID-5 bandwidth).

Regarding PLBRT (the shortest-background-remaining-time strategy), as stated in Section 4.2,
we no longer need it but will still evaluate it for SSD vendors who do not prefer SSDs to be array-
aware. (In PLW in , the TW calculation requires the SSDs knowing Nssd , the number of devices).

Interface and Control Flow. To achieve PLIO+PLW in , we extend the NVMe IOD-PLM and
submission/completion interfaces with only five simple fields. Upon array initialization, the
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host informs each of the devices’ three pieces of information, array type (e.g., k=1 in RAID-5)
and the array width via two new fields, (1) arrayType and (2) arrayWidth. Next, the device
plugs in these values to program TW internally and returns the value via (3) busyTimeWindow
field in the PLM-Query’s response. (Device proprietary information is not exposed to the host.)
During runtime, the host and the device can tag submission (and completion) commands with the
(4) PL flag. For flexible array volumes, the host can submit a new arrayWidth and the devices can
reprogram the busyTimeWindow). Finally, the host and the devices communicate the (5) cycle’s
start time (t in Figure 2).

Write Path. IODA does not change the way the host/array or device performs writes. Data are
striped and each write will trigger the parity updates. For non-full-stripe writes, parity updates
will trigger RAID-level read-modify-writes. In this case, the reads are tagged with the PL flag.
Since writes usually tend not to be latency sensitive, IODA design mainly targets strong read
performance predictability without degrading the array’s aggregate write bandwidth. IODA does
not rely on write staging/orchestration. The TW analysis in Section 4.3 holds true for the general
case where writes can arrive at the devices in both predictable and busy windows freely. IODA also
does not change the write semantic/crash-consistency of the array. For example, if Non-Volatile

Memory (NVM) (e.g., NVRAM [76] or Optane Memory [77]) is used, the host/array only needs to
write data to the NVM and flush to the device later. Otherwise, writes are directly acknowledged
either when hitting the in-device buffer or the NAND pages when device buffers are full. We
acknowledge that NVM can be used as an effective caching layer and greatly improve average
latencies; however, the tail latencies that are often caused by cache misses, unfortunately, will not
go away. For example, read misses will still contend with GCs (triggered by frequent flushes) at the
SSD/array level. This is because write buffering (e.g., using NVRAM) only removes user-level read
vs. user-level write contention. With/without write buffering, user-level reads are still contending
with GC-induced writes (which is our focus). Our current IODA prototype is built on top of the
Linux “md” sub-system without NVRAM support.

Limitations and Discussions. We assume the SSDs in the array are of the same model and size. The
SSD vendors should be persuaded to implement our simple interface extension. IODA does not cut
tail latency due to I/O bursts (i.e., host-side queueing delays); it only removes non-deterministic
latency due to GC activities (which is a major goal of IOD-PLM). Although IODA currently concen-
trates on GC-induced non-determinism, it can be extended to handle other types of I/O contentions
(queueing delay, wear leveling, flushing, etc.), apply to other types of array layout (e.g., erasure-
coded systems for more flexible busy window scheduling), and benefit new hardware determinism-
capable designs via PLIO (e.g., head-of-line blocking in networking).

5 IMPLEMENTATION

We now describe IODA implementation [78].

IODA’s Firmware Side. We prototype the firmware logic in two open-source SSD research
platforms. First, we have FEMU (upgraded). FEMU is a recent QEMU-based and DRAM-backed
SSD emulator [24, 79] used by some recent works appearing in top venues [44, 45, 80, 81]. To
make FEMU resemble modern SSDs, we had to make several optimizations in 1,200 LOC. First,
FEMU’s default FTL imposes a high computational overhead that causes inaccurate emulation
under high user load. Thus, we (1) implemented a new page-level FTL optimized for FEMU
emulation model, (2) offloaded the FTL logic to a separate polling thread to avoid interference
from other management logics, and (3) re-implemented the data placement and GC policies taken
from modern SSD designs [25, 82]. Second, we had to extend the firmware emulation with more
basic features such as write buffering and flushing policies (e.g., LRU with a balanced binary
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search tree) and preemptive GC policy. All of the upgrades and extensions now allow us to
build IODA’s firmware logic in FEMU as well as to rapidly re-implement other related works for
evaluation purposes. Bottom line, our FEMU version can deliver 400 KIOPS throughput and as
low as 10-μs I/O latency. On top of this, we then built a firmware that returns the PL flag and
performs GC only in the busy window, all only in 60 LOC. FEMU allows fast prototyping, but one
drawback is its DRAM-backed emulation nature (i.e., not a real SSD). Thus, we also implemented
IODA on real hardware platform to validate our designs. Second, we have LightNVM+OCSSD. We
prototype IODA with LightNVM on a real OCSSD [25, 83] in 186 LOC for additional evaluation.
One design flaw of our OCSSD controller is that it excessively favors reads over writes (e.g., write
throughput drops to only 3 MB/s under a 2:1 read/write mixed workload). To address this issue,
we re-architected LightNVM with a per-chip FIFO queue in 780 LOC.

We also explored other popular hardware platforms, such as OpenSSD [84] and DFC [85], but
we found that they are not appropriate platforms to implement IODA.

OpenSSD. The most ideal platform to implement IODA is the OpenSSD [84] platform where
we can modify the FTL logic and the NVMe interface (a black-box design like existing commercial
SSDs). However, OpenSSD’s programming framework is a single-threaded C implementation of the
controller, which on the positive side speeds up FTL research development, but on the negative
side does not enable more complex implementations. For example, in OpenSSD, when the SSD is
doing GC, the controller cannot be programmed to concurrently read the submission queue and
return a busy signal. This simple programming model could not handle concurrent operations. We
tried many approaches to work around this, but at the end discard using OpenSSD.

DFC Card. Dragon Fire Card [85] is another SoC-based platform where the firmware changes can
be implemented in the “mini” Linux running on the SoC. Earlier DFC cards can directly manage
NAND chips (the on-SoC Linux has an FTL driver), but it is no longer supported. The latest version
of DFC cards directly attaches to off-the-shelf SSDs where the FTL now resides in the SSD firmware,
invisible to the user side. DFC cards lately are used as a research platform to show near-storage
processing rather than pure FTL research.

IODA’s Host Side. The host-side logic is written in 1,814 LOC in Linux 4.15 Software RAID (i.e.,
the md subsystem) and 18 LOC in the NVMe driver. Although the LOC is small, it took us a long time
to address many hurdles in the complex Linux storage stack such as the intricate timeout/retry
mechanism, the NVMe/BIO/request I/O PL-flag passing, and the complex per-stripe state machine.

Re-implementation of Other Works. It is important to compare IODA comprehensively, but be-
cause other works use varying platforms (some even cannot run), “apples-to-apples” comparison
would be difficult to make. With our upgraded FEMU, we were able to re-implement state-of-
the-art techniques [26, 30, 32, 34, 36] in around 3,400 LOC. Here we provide more details on how
we implement related work on the FEMU stack (the changes are either in the Linux kernel or
FEMU):

• Proactive/Cloning [3, 32]: Despite user I/O size, proactive methods [32] issue full-stripe reads
to the array. It only waits for the first few returned I/Os, which are enough to reconstruct
user data before marking the user I/O done and returning to upper layers. This simplies the
overall design and is potentially more deterministic to deliver fast I/O latencies, but at the
cost of extra I/Os, which might overload the devices. We implement the proactive mechanism
in the Linux Software RAID layer, with only kernel-level changes required.
• Harmonia [34]: Harmonia [34] utilizes a global GC policy to coordinate GCs in different

SSDs to start at the same time. Harmonia helps lower the overall possibility that I/Os will
be blocked by GCs, thus improving performance. We implement Harmonia in FEMU with
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a global GC control logic. Whenever it detects that GC is triggered in one SSD, it will
simultaneously trigger GCs on other SSDs in the array. Harmonia only requires FEMU-level
modifications.
• Preemptve GC [26] and P/E Suspension [29]: With preemptive GC (PGC) [26], user reads can

be interleaved with GC reads, writes, and erases to alleviate GC interference to user reads.
It pauses write/erase operations temporarily to prioritize reads, then resumes write/erase
execution. However, when running out of free space, both PGC and suspension become
ineffective, as they have to be frequently kicked in to reclaim more space and block the
user request. We implement PGC and P/E suspension in FEMU by enhancing FEMU’s timing
model for more fine-grained timing emulation and adding low-level queue structure and
asynchronous event support for PGC requests.
• Flash on Rails [36]: Flash on Rails (“Rails” for short) [36] divides SSDs in an array to

read-only and write-only modes and switches their roles periodically (e.g., every 5 seconds).
It relies on a write buffer to stage incoming writes before they can be safely flushed to the
write-mode drives. We implement Rails using two emulated FEMU SSD instances, with a
host-level write buffer sitting in front of FEMU FTL logics. Writes will be directed to the
write buffer, whereas reads will be directly sent down to the read-only FEMU drive, with
no interference from writes.

6 EVALUATION

We present our comprehensive evaluation in three sections. We first show the main results of
latency determinism brought by IODA approaches under various workloads (Section 6.1). Then we
present comparisons of IODA with the state of the art (Section 6.2) and show extended evaluations
(Section 6.3).

Platform Setup. Most experiments are done on FEMU (for reasons mentioned in Section 5) run-
ning on Emulab D430 machines [86]. We run Linux Software RAID-5 (4-KB chunk size) on four
FEMU drives. The LightNVM+OCSSD full-stack setup is similar and done on our local lab machine.

The FEMU’s base firmware uses a page-level dynamic mapping and a greedy-GC policy for
best cleaning efficiency. GCs are triggered upon reaching a pre-configured high watermark (25%
of free blocks available). GCs will forcefully run at full speed under the low watermark (5%) to
ensure enough free space for user requests (i.e., user request processing will be stalled until the
number of free blocks resumes to the high watermark level). The device parameters were detailed
in the “FEMU” column in Table 2. We configured FEMU to emulate modern low-latency SSDs (e.g.,
Z-NAND [87]) with SLC-like access latencies (i.e., ∼200 μs for writes), faster than existing
MLC/TLC SSDs analyzed in Table 2. Later, we show that IODA evaluations on our MLC-based
OCSSD show the same conclusion as FEMU.

Macrobenchmarks. For block I/O traces, we use four SSD traces from Microsoft data centers, span-
ning cloud storage (AZURE and COSMOS), search engine (BingIdx), and database workloads (BingSel)
and five standard SNIA block traces [88] that we have re-rated 8–32×more intense to reflect mod-
ern SSD workloads, all characterized in Table 3. In these traces, we pick the 1-hour busiest period.
For real applications, we run 6 Filebench workloads [89] and 3 YCSB/RocksDB workloads [90] on
the ext4 file system. In addition, we also run 12 other storage workloads ranging from GNU appli-
cations, Sysbench [91], to MapReduce (Hadoop/Spark) workloads [92]. All user I/Os are marked
as latency sensitive (PL=true (01)).

Metrics. We primarily report read latencies for the block traces and application-specific metrics
for the rest (average latencies, runtime, etc.). We also analyze other aspects of IODA design (e.g.,
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Fig. 5. IODA percentile latencies and #busy sub-IOs with TPCC (Section 6.1.1). (a) Read latencies (y-axis)

at major percentiles p75 to p99.99 (x-axis) with various IODA strategies. (b) The percentage of stripe-level

reads (y-axis) that experience one to four busy sub-IOs (x-axis).

write latency and throughput). Each experiment is repeated and run for a long period with thou-
sands of GCs triggered over FEMU drives in steady state, showing consistent results. Finally, pYY

implies the YYth percentile.

6.1 Main Results

This section shows the improvement made by the combination of IODA strategies, one at a
time: “IOD1” represents only predictable-latency flagged I/Os (PLIO in Section 4.2), “IOD2” the
shortest BRT strategy (PLBRT in Section 4.2), “IOD3” the alternating busy windows only (PLW in in
Section 4.3, without PLIO/PLBRT ), and “IODA” the final approach (PLIO+PLW in as described in
Section 4.4). For IOD3 and IODA, our FEMU-based firmware uses a busy time window of 100 ms as
calculated in Table 2. We also show “Ideal” to represent an ideal performance where there are no
GC-induced latencies, by disabling GC delay emulation in FEMU.

6.1.1 IODA Techniques, 1 Workload First. For figure simplicity, we first show only the results
of using one workload, TPCC (Table 3). Figure 5(a) shows the latencies at major percentile values
(p75 to p99.99) of five different approaches. First, the red Base line represents the TPCC workload
without any strategies. Starting at p95 (x = 95), the Base’s latency is no longer deterministic, con-
sistent with what we observe on real commodity SSDs. Second, the brown IOD1 line shows that
by just circumventing the busiest (slowest) read, via proactive data reconstruction as signaled by
the PLIO method, the latency is more predictable up to p99. Third, the orange IOD2 line shows that
the PLBRT BRT approach further helps but cannot completely evade concurrent busyness. Fourth,
the blue IOD3 line shows that PLW in-only method is stable up to p99, but it is expensive (spikes at
p99.9 and higher) due to the excessive and unnecessary data reconstruction (Section 4.4). Fifth (Key
result #1), finally, the bold green IODA line in Figure 5(a) shows that PLIO+PLW in provides the best

latencies. The thin gap between the Ideal and IODA lines shows the power of IODA in being latency

deterministic. Even at p99.99, IODA is only 9% slower than the ideal performance.

Figure 5(b) reveals the reason behind IODA’s success. The x-axis shows how many “sub-IOs”
of a stripe are returned busy (PL=11, Section 4.2). At x = 1, the Base bar shows that roughly 7%
of stripe-level I/Os experience one busy sub-IO, but the base approach just waits for (does not
reconstruct) busy sub-IOs. At x = 2, Base shows that almost 1% of the stripe-level reads experience
two busy sub-IOs. Although IOD1 and IOD2 can reconstruct one busy sub-IO, it cannot evade this
concurrent busyness. That is why the IOD1 and IOD2 lines in Figure 5(a) start increasing between
the p99 and p99.9 values. (Key result #2)With our final approach, the green IODA bar in Figure 5(b)

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.



Extending and Programming the NVMe I/O Determinism Interface for Flash Arrays 5:19

Fig. 6. Read latency CDFs for all nine block I/O traces (Section 6.1.2). IODA is the closest to the ideal case

across all nine block trace workloads. IOD2 improves over IOD1 but could not eliminate concurrent GC block-

ings. IOD3 is worse than IODA due to whole-device-level busy state.

shows that our time window approach successfully shifts concurrent GCs across time such that at any

time there is at most only one busy sub-IO per stripe. Hence, the IODA bar is higher than the Base
bar, reaching y = 8% at x = 1 but y = 0 at x > 1 (acceptable given the reconstructability).

6.1.2 Many Workloads (Block I/O Traces). Figure 6 displays the complete read latency CDF
graphs. Figure 7 shows the p99 and p99.9 latencies with all block traces. (Key result #3) Over-

all, with all these experiments with different workload characteristics and base latency distributions,

the IODA bars in Figure 7 and CDF lines in Figure 6 summarize that IODA delivers faster latencies,

1.7× on average up to 16.3× between p95–p99.9 compared to the base approach, and only 1.0× to 3.3×
slower than the Ideal case.

Figure 8 shows the percentage of stripe-level reads that observe busy sub-IOs (from 1busy to
4busy), and the top and bottom figures represent the percentage for the baseline and IODA, re-
spectively. Similar to Figure 5(b), it shows that IODA successfully shifts the concurrent GCs across
time (higher 1busy green bars with almost no 2-4busy bars).

One small note is that in Figure 8(b), we can see small IODA’s 2-4busy bars for COSMOS and LMBE,
but this is only 0.0005 of the time, due to a small implementation bug—upon further investigation,
there are a very small number of leftover GCs that started just before and finished slightly after the
time window expires, which can be easily fixed in the future with a more precise time accounting.
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Fig. 7. p99 and p99.9 latencies (Section 6.1.2). This figure details the p99 and p99.9 latencies from the I/O

traces under all IODA strategies. IODA is the most deterministic and almost reaches the Ideal values.

Fig. 8. #Busy sub-IOs, many I/O traces (Section 6.1.2). The figure is the same type as Figure 5(b), but now

with many I/O traces. IODA shifts multiple concurrent 2-4busy sub-IOs (in the top Base figure) to more

1busy sub-IOs (in the bottom IODA figure).

6.1.3 File System, Key-Value, and Other Applications. We also ran various applications on ext4
on IODA, including six Filebench workloads, three YCSB/RocksDB workloads, and a dozen data-
intensive and stand-alone applications. The results are summarized in Figure 9, all pointing to the

same key conclusion that IODA is near to the ideal scenario.

6.2 IODA Versus State-of-the-Art Approaches

We now compare IODA with state-of-the-art approaches. For readability, this section mainly com-
pares IODA with state-of-the-art approaches using one benchmark TPCC; other workloads show
the same conclusion. All results are aggregated in Figure 10.

6.2.1 Versus Proactive/Cloning (Always Full Stripe I/Os). A simple black-box way to cut 1 busy
sub-IOs is to always proactively send a full-stripe read including the parity read (akin to cloning
[3, 47, 93]), hence the I/Os can return to the user when the first (Nssd−k) sub-IOs finish. Figure 10(a)
shows that Proactive is effective but still loses to IODA at high percentiles due to its inability to
evade concurrent busy sub-IOs. Proactive also negatively adds more load. Figure 10(b) shows that
Proactive sends down 2.4×more I/Os than the base case, whereas IODA only issues 6% more reads.
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Table 3. Block I/O Trace Characteristics (Section 6.1)

Trace #I/Os Read/Write Read/Write Max I/O Interval Size

Workload (K) (%) (KB) (KB) (μs) (GB)

Azure 320 18/82 24/20 64 142 5

BingIdx 169 36/64 60/104 288 697 11

BingSel 322 4/96 260/78 11264 2195 24

Cosmos 792 8/92 214/91 16384 894 63

DTRS 147 72/28 42/53 64 203 2

Exch 269 24/76 15/43 1024 845 9

LMBE 3585 89/11 12/191 192 539 74

MSNFS 487 74/26 8/128 128 370 16

TPCC 513 64/36 8/137 4096 72 25

This table shows the detailed characteristics of the block traces we use. “#I/Os”

denotes the total number of I/Os in the trace, “Read/Write (%)” means the

percentage of read/write I/Os and “Read/Write (KB)” shows the average

read/write I/O size, “Max I/O (KB)” represents the maximum I/O size, and

finally “Interval (μs)” means the average inter-arrival time between two

consecutive I/Os. “Size (GB)” refers to the total amount of data.

6.2.2 Versus Synchronized GCs (e.g., Harmonia [34]). Synchronized GCs attempt to schedule
the SSDs in an array to reduce GC impacts [34, 35, 51]. For example, Harmonia [34] manages the
SSDs to perform GCs at the same time (i.e., a localized slowdown is better than scattered ones).
Figure 10(c) shows that Harmonia [34] improves the overall average latency by 27% compared to
the baseline but is far from achieving latency determinism due to the localized slowdown. IODA’s
alternating window strategy is more superior.

6.2.3 Versus Partitioning (e.g., Flash on Rails [36]). Flash on Rails (Rails) [36] partitions the SSDs
such that user vs. GC or user vs. user contention is reduced. It divides an array into read-only and
write-only SSDs, and performs read-write role swapping periodically. A similar strategy can also
be found in Gecko [50] and SWAN [35]. Figure 10(d) shows that Rails is indeed able to deliver
a pure read-only latency (the left-most orange line). The “raw” IODA (the right-most line) loses
because Rails relies on much NVRAM to stage all inflight writes. In “raw” IODA, however, user
reads are queued together with user writes. For a fair comparison, after we add a similar host-side
write buffering, the IODANV M line in Figure 10(d) shows roughly the same performance as Rails.

However, Rails has two fundamental downsides: reduced throughput and requiring large NVRAM.
As SSDs are broken into read/write roles separately, there are fewer number of devices to serve
reads (and writes). Figure 10(e) shows that Rails’ throughput is significantly lower compared to
IODA, under-utilizing the array’s bandwidth. Further, Rails requires much NVRAM to stage all in-
coming writes. The needed NVRAM is proportional to the write-mode duration and Nssd , making
it prohibitively too large for real systems.

6.2.4 Versus Preemptive GC. Preemptive GC (PGC) [26] is an approach that allows user reads
to be interleaved in between GC individual read/write/erase operations, hence user reads are not
queued far behind. Compared to the Base latency, PGC has already successfully reduced a huge area
of the latency tail. However, the IODA line in Figure 10(f) shows that, vs. PGC, IODA is still more
effective. This is because IODA users do not need to wait for any individual GC operation, but PGC
users sometimes must wait for at least one individual GC operation.

6.2.5 Versus P/E Suspension. To further improve preemptive GC, more recent works suggest
P/E suspension, even in the middle of a GC write/erase operation [29, 30]. It will deliver more
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Fig. 9. Filebench, YCSB, and other stand-alone/misc data-intensive application results (Section 6.1.3).

(a) The average latencies of six Filebench workloads, as Filebench does not support per-IO latency logging.

IODA is the most optimum and nearest to Ideal. (b) Latency CDFs for three YCSB workloads (A, B, and F),

and again, IODA almost reaches the Ideal performance at high percentiles. (c) The end-to-end normalized

performance improvement (IODA vs. Base) based on workload-specific performance metrics (runtime,

latency/throughout, etc.).

stable latencies by allowing reads to “interrupt” write/erase and resume it later (see Suspend vs.
PGC in Figure 10(f)). IODA still outperforms the suspension method.

A fundamental weakness of GC preemption and suspension is that these features must be

disabled when the over-provisioning space is full (e.g., under continuous write bursts). IODA’s
busy/predictable windows, however, alternate all the time. Figure 10(g) compares the performance
of IODA and P/E suspension under a continuous maximum write burst. Here, we can clearly see
that IODA’s benefit is more apparent compared to the benefit of P/E suspension (the gap between

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.



Extending and Programming the NVMe I/O Determinism Interface for Flash Arrays 5:23

Fig. 10. IODA vs. seven state-of-the-art approaches (Section 6.2) and extended evaluations (Section 6.3).

(a–i) IODA outperforms almost all seven competing approaches in delivering predictable I/Os without sacri-

ficing array bandwidth, burdening the system with excessively extra load, or requiring excessive host-side

buffering or device-side changes. (j–l) IODA extended evaluations on OCSSD and commercial (SM951) SSDs,

and write latency: IODA achieves predictable latencies on a real OCSSD (Section 6.3.1) (j); how unmodified

commodity SSDs requires our proposed device-level modifications (Section 6.3.3) (k); IODA improves write la-

tencies by virtue of improved read latencies for the read-modify-write parity update process (l) (Section 6.3.5).
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the IODA and Suspend lines is larger in Figure 10(g) than in Figure 10(f)). (Key result #4) Overall,

IODA outperforms state-of-the-art methods in delivering deterministic latency, even under maximum

write bursts.

6.2.6 Versus ttFlash. ttFlash [10] is a “tiny-tail” flash controller design by pushing GCs
to a finer granularity (i.e., chip level) and performing them rotationally. We followed ttFlash
firmware organizations and implemented ttFlash logics in FEMU. Figure 10(h) shows that IODA
can achieve similar predictable latencies as a RAID-5 array of four ttFlash drives. However,
ttFlash’s internal RAIN [69] layout shrinks per-drive capacity and throughput, as one channel is
dedicated for in-device parity maintenance (25% degradation, not shown). We would also like to
further stress that IODA design achieves predictable I/Os without heavily re-architecting the flash
firmware/controller as ttFlash does (Section 3.3), thus distinguishing itself in its unique design
context (host/device co-design), principles (simplicity for deployment), and technical challenges
(PLM refinement and management, as well as host OS predictable I/O stack design).

6.2.7 Versus MittOS. MittOS [39] advocates an SLO-aware interface to allow quick I/O fail-over
to replicas for fast response. It relies on “open/white-box” device knowledge to make OS-level
predictions and thus is not applicable for commercial devices. As shown in Figure 10(i), MittOS
loses to IODA, as I/O fail-over might also be slow if the target node/device is busy. IODA’s PLW in

approach eliminates the gap here. A side note, MittOS’s I/O fast-rejecting interface is based on
OS-level prediction to the underlying “profiled” devices, whereas IODA per-IO predictability flag
(PLIO ) is lightweight and accurate with host/device collaboration.

6.3 Extended Evaluations

Previous sections have focused on performance, whereas this section covers other various aspects
of IODA.

Table 4. IODA Speedup vs. Base

on Top of FEMUOC

95
th

99
th

99
.9

th

99
.9

9th

Azure 11.9 8.4 6.2 5.1
BingIdx 1.6 1.4 1.6 1.6
BingSel 3.7 3.1 2.3 1.9
Cosmos 9.2 5.6 1.8 1.4

DTRS 2.8 3.0 11.9 13.7
Exch 7.1 3.5 5.6 2.1
LMBE 16.0 8.0 1.9 1.3
MSNFS 1.4 2.8 12.1 6.3
TPCC 5.4 3.8 1.7 2.1

YCSB-A 7.3 3.1 3.5 4.7
YCSB-B 19.0 3.8 5.3 1.2
YCSB-F 6.8 4.4 7.2 5.4

6.3.1 IODA on OCSSD. The IODA approach also runs
well on real SSD hardware. We re-implement IODA’s
firmware changes in the Linux LightNVM driver (“host-
side firmware”) and run it on OCSSD [25]. Figure 10(j)
shows a similar improvement as on FEMU, as shown earlier
in Figure 5(a).

6.3.2 IODA on LightNVM on “FEMUOC .” Unfortunately,
our 5-year-old OCSSD became erratic and the vendor no
longer supports/sells it; we could not complete more exper-
iments on our OCSSD. This reality of real SSD hardware
platforms is likely a reason software-based flash emulators
have appeared more recently in major venues [44, 45, 80,
81, 94]. Luckily, FEMU can also act as a drop-in replacement
of OCSSDs for LightNVM [24] (a host-managed “FEMUOC ”
with the device firmware stripped). Table 4 shows the nor-
malized latency improvement of IODA vs. Base at major
percentiles across various workloads.

6.3.3 IODA on Commodity SSDs? One might wonder
whether IODA can be achieved on commodity SSDs with-
out device-level modifications. We ran our TW algorithm, IOD3 (PLW in-only on the host side), on
an array of real consumer SSDs. We set TW to 100 ms, 1 second, and 10 seconds. Figure 10(k)
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Fig. 11. IODA throughput and performance sensitivities to TW . (a) IODA vs. Base read/write throughput

under various read/write ratios (Section 6.3.5) (b) TW sensitivity on TPCC performance (Section 6.3.6).

(c) Same as (b) but under maximum write burst (Section 6.3.6).

shows that they are not effective (the three IOD3 lines in red, brown, and dashed blue) and far from
the Ideal line, as commercial SSDs do not have the PLIO and PLW in mechanism in place to kindly
signal the host for proactive reconstructions. (Key result #5) This experiment strongly shows the

necessity to add small firmware modifications to honor the PLM window.

6.3.4 IODA Write Latency. Back to the FEMU-based IODA, Figure 10(l) shows IODA benefits
to write latencies. Each non-full-stripe write in RAID-5 triggers a read-modify-write process to
update the parity page, hence user write latency is affected by the internal read performance. By
virtue of predictable read latencies in IODA, write latencies are also significantly improved (up to
p96 across all workloads, not shown). When user writes (or the associated parity updates) contend
with device-level GCs, they might still get queued behind. That is the reason IODA write latency
loses to “Ideal” for the last few percentiles.

6.3.5 IODA Throughput. Figure 11(a) shows the IODA and Base read/write IOPS under a
256-thread FIO benchmark with various read/write ratios (100/0, 80/20, and 0/100). Note that the
IOPS is capped by FEMU’s throughput (Section 5). One interesting phenomenon here is that IODA
improves the write throughput by 9% in the 80/20 and 0/100 read-write configurations similarly
because IODA improves the read latency in read-modify-write parity operations. For the same
reason, read throughput increases by 10% in the 80/20 configuration. IODA does not degrade read
throughput for the 100/0 case, showing minimal runtime system overhead. (Key result #6)IODA

does not sacrifice the raw RAID read/write throughput.

6.3.6 Performance Sensitivity to TW Values. The current IODA setup uses TW =100ms based on
the calculated value in Table 2 (“TWBurst ” row and “FEMU” column). Figure 11(b) shows the perfor-
mance sensitivity under a smaller/largerTW value. The average load of the workload is ∼13 DWPD
(monitored at the device-level). If we calculate the TW value based on the TW formula in Figure 3,
we get TWnorm=∼5s, which is the upper-bound TW to guarantee the predictability contract. Under
TW ={500ms,2s} (i.e., <5 seconds), we can see that the green lines are sticking together and all are
showing predictable latencies. However, if we further increaseTW =10s, the SSDs fail to guarantee
the absence of GC within the predictable windows, hence worse performance (i.e., the SSDs
could not reclaim enough space during the busy windows, and forceful/non-delayable GCs have
to spawn into the predictable windows). This performance gap is more apparent in Figure 11(c)
where we send a continuous maximum write burst that fills up the over-provisioned space faster.
Under TW =20ms, we also see slightly worse performance (see “lower bound” in Section 4.3.2). As a
result, some leftover disturbance is still felt after the device alternates to the predictable window.
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Fig. 12. WA sensitivity (Section 6.3.7). The y-axis shows the WA factor, and the x-axis varies the TW value.

Fig. 13. Adjusting TW for predictability and low WA (Section 6.3.8). This figure shows how the host can

reconfigure TW to achieve low WA without sacrificing latency predictability.

6.3.7 WA Sensitivity to TW Values. To show the implication of various TW values to WA, we
ran a longitudinal analysis using an event-driven SSD simulator, SSDSim [95]. Figure 12 shows
the result across different workloads andTW values. As expected, short windows (e.g., 10 ms) will
cause high WA (e.g., 1.2× or more), but long windows reduce the WA. Our 100-ms busy window
value for our emulated device delivers a reasonable WA (1–1.1× in most of the workloads). In
Figure 12, compared to the base case where no TW policy is applied, IODA’s TW mechanism
is equivalent to (safely) postponing GCs until one drive’s turn to be unpredictable. This gives
the firmware opportunities to absorb more user writes before starting GCs on victim blocks with
fewer valid pages to move. Thus, GC efficiency is higher, and that is why we see WA decreases for
almost all the workloads as TW increases (x-axis). As discussed in Section 4.3.4, operators can use
a practical DWPD value to increase window durations and reduce WA further.

6.3.8 ReconfiguringTW for Better WA. As discussed in Section 4.3.7, flash array operators could
dynamically adjust the TW for their target workloads to balance WA and predictability (i.e., use
TW =TWnorm instead ofTWburst ). In Figure 13, we ran three synthetic FIO workloads with different
write intensities (40, 80, and 20 DWPD) each for 1 hour. For each workload, we configure IODA to
use TW =TWburst for the first 30 minutes and TW=TWnorm for the second half. We report the p99.9
latencies (every 10 minutes) and WA factor. From the top and middle figures in Figure 10, we can
see that IODA can sustain predictable latencies while improving WA by switching to a larger TW .
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6.3.9 Other Evaluations. IODA also works for RAID-4/6. When running TPCC, IODA is only
1–1.16× slower than the Ideal case between p95–p99.99, whereas the Base is 3–4.9× slower. We
also benchmarked IODA under a wider array (Nssd=8/16) and achieved similar results. We omit
the detailed results for space.

7 DISCUSSION

7.1 PLWin for Coordinated SSD Buffer Flush

SSD internal buffers need to be frequently flushed (i.e., writing cached items to the backend NAND
flash), and this will potentially cause heavy contention between user reads and flush-caused writes
when the buffer space runs critical. As a result, user reads will suffer from long latencies when
scheduled behind flush operations. One way to solve this problem is adapting our PLW in approach
to the buffer eviction scenario. The idea is to force SSDs in the same array to do extensive buffer
flushing in a coordinated manner, as demonstrated in Figure 2 but for flush operations, not GCs.

7.2 Host-Managed Dynamic TW

With the previous window value calculations, the users (e.g., RAID controller) still need to rely
on SSD vendors to calculate and advertise the window length. Ideally, the host should be able to
manage the windows without breaking the IOD contract. In this approach, we do not add more
work to the SSD but rather have the host dynamically set the window value. Upon reboot, the host
sets a base value B (e.g., 0.5 seconds) and during runtime dynamically adjusts the value using a
simple algorithm that follows, which is only possible given the busy signals supported in IODA,
hence showing the power of all of the approaches combined.

Every period of P (e.g., 50 ms), the host increases the value by I ms (e.g., 10 ms) as long as it does
not see more than k busy sub-IOs within a stripe (k = 1 in RAID-5). In other words, as long as the
host can always reconstruct up to k busy sub-IO(s) within a stripe, the window value is deemed
“safe,” as it allows all the SSDs to have enough time to perform background operations without
overlapping each other in time. As mentioned earlier (Section 4), ideally, PLW in is set as high as
possible to reduce WA, hence the reason we increase the value gradually.

If more than k busy sub-IOs are observed, it implies that PLW in is too large for the current
user load, hence forcing the SSDs to execute some background operations within the supposedly
deterministic period and breaking the IOD expectation. For example, the internal RAM buffer or
the over-provisioned NAND space is almost full, forcing a flush or GC to happen, respectively.
When the host sees more than k busy sub-IOs, the host decreases the PLW in by half3 and informs
the SSDs of the new window value.

We acknowledge that there are potentially many other possibilities to set the window value.
For example, device performance likely deteriorates over time, and thus even the static method
requires window time recalibration. The preceding are our early attempts to figure out ways to
program the window value, and we find them simple and effective enough.

7.3 Vendor Willingness for IODA Interface Changes

The current IOD-PLM specification already suggests that devices expose some lower and upper
bound of the predictable time window (but again no literature discusses how to program them).

IODA extensions do not reveal much information about the device’s proprietary internals. First,
the PLBRT technique can be made optional. Our earlier approach (Section 4) is powerful enough
and can be combined with the next method where PLBRT only helps in very corner cases, as

3Mimicking the TCP AIMD algorithm (additive increase multiplicative decrease) [96].

ACM Transactions on Storage, Vol. 19, No. 1, Article 5. Publication date: January 2023.



5:28 H. Li et al.

Table 5. More Fine-Grained Time Window (Section 7.4)

SSD#0 SSD#1 SSD#2 SSD#3 SSD#4 SSD#5 SSD#6 SSD#7

0N–1N × . . . . . . .
1N–2N . × . . . . . .
2N–3N . . × . . . . .
3N–4N . . . × . . . .
4N–5N . . . . × . . .
5N–6N . . . . . × . .
6N–7N . . . . . . × .
7N–8N . . . . . . . ×
This table shows an example of a more fine-grained time window mechanism based on

SSD LBA ranges. Here, the top row represents the eight SSDs (#0 to #7) in the same flash

array, and each [iN ..(i + 1)N ] represents the LBA range from iN to (i + 1)N . “×”

represents that background operations are allowed to happen in the SSD, whereas “.”

means that background operations are disallowed.

explained later. Second, we argue that returning PLBRT does not reveal more information beyond
what users already see. Prior works already show that users can deconstruct many internal SSD
layouts by simply deconstructing the user-observed latencies [97–99]. Third, if slight “obfuscation”
is needed, PLBRT can be designed to be a normalized number to alleviate potential timing channel
attacks, similar to the chunk wearing information in the OpenChannel 2.0 specification [100]. PLM
also suggests upper bound. And this kind of “gray-box information” [101, 102] is valuable because
it does not reveal the internal details but yet is helpful for the host. Guessing the remaining time in
a black-box way will be challenging due to the many vendor-specific implementations (different
FTLs, GC algorithms, etc.).

Overall, IODA only changes the interface minimally without exposing SSD proprietary details.

7.4 Fine-Grained Time Window (TW )

As a future direction, one can make the IODA TW implementation even more fine-grained. In
existing IODA design, an SSD is not allowed to perform GCs during the busy TW . Even with
predicability-flagged I/Os (PLIO ), it only helps the host to query device side busyness, but not
scheduling time windows (TW ) at a more fine-grained level (e.g., channel level). The question is
whether we could allow GCs to happen during busyTW but breaking IODA’s strong predictability
guarantees.

It is important to note that concurrent GCs that delay pages in different stripes are tolerable. For
example, consider two full-stripe I/Os A and B that each will create seven parallel pages to seven
SSDs (A1..A7 and B1..B7). It is possible that a GC in SSD#0 blocks A1 and another concurrent GC
in SSD#1 blocks B2. Let us assume one parity per stripe (r = 1). As long as parities A8 and B8 are
not blocked, IODA can tolerate the two GCs as they delay pages in different stripes. This is the
reason why IODA can tolerate r delayed pages per I/O stripe. So what we can do is to provide a
two-dimensional time window. For example, SSD#0 is allowed to do GC from LBA [0 to N ), but
other SSDs are not allowed to GC on LBA [0 to N ). At the same time window, SSD#1 is allowed
to do GC from LBA [N to 2N ), but other SSDs are not allowed to do it. In other words, in every
time window, we have a two-dimensional configuration where the x-axis is the SSD numbers and
the y-axis is the logical partitioning of the LBAs (which we can configure). For example, if we
break the per-SSD LBA into four logical partition, each with N bytes, [0 to N ), [N to 2N ), [2N
to 3N ), [3N to 4N ), the configuration will be like Table 5: from Table 5, we can see that SSD#0 is
only allowed to do GC within 0N–1N LBAs, and so on. In the next few time windows, we slide the
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configuration accordingly. The advantage of this approach is that the SSDs are all still doing GCs
at the same time.

However, this more fine-grained approach is more challenging to implement. Let us say that to
utilize full parallelism, L1 are mapped to row#1 and L2 is mapped to row#2. It works well when
we GC data in L2, and we can use a copyback mechanism where data in L1 and L2 does not leave
the chip, hence we will not have any contention. But these days, GC copyback is not enabled, as
during GC, the SSD piggyback ECC checking to check that data is valid. In this case, the controller
must read the data via the channel to the DRAM, hence the channel will be busy and content with
the user I/Os. We leave further exploration as future work.

8 CONCLUSION

To the best of our knowledge, IODA is a host/SSD co-designed flash array that provides a strong
latency predictability contract without sacrificing the aggregate bandwidth. IODA only involves
minimal changes to the NVMe interface and flash firmware to simplify deployment. IODA deliv-
ers close-to-ideal latencies and outperforms many state-of-the-art approaches. It is our hope that
IODA will spur more work around the new and exciting IOD-PLM interface.
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