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Abstract

DRAM cells in close proximity can fail depending on the data
content in neighboring cells. These failures are called data-

dependent failures. Detecting and mitigating these failures on-

line, while the system is running in the �eld, enables various opti-
mizations that improve reliability, latency, and energy e�ciency
of the system. For example, a system can improve performance
and energy e�ciency by using a lower refresh rate for most cells
and mitigate the failing cells using higher refresh rates or error
correcting codes. All these system optimizations depend on accu-
rately detecting every possible data-dependent failure that could
occur with any content in DRAM. Unfortunately, detecting all

data-dependent failures requires the knowledge of DRAM inter-
nals speci�c to each DRAM chip. As internal DRAM architecture
is not exposed to the system, detecting data-dependent failures at
the system-level is a major challenge.
In this paper, we decouple the detection and mitigation of

data-dependent failures from physical DRAM organization such
that it is possible to detect failures without knowledge of DRAM
internals. To this end, we proposeMEMCON, a memory content-
based detection and mitigation mechanism for data-dependent
failures in DRAM. MEMCON does not detect every possible data-
dependent failure. Instead, it detects and mitigates failures that
occur only with the current content in memory while the pro-
grams are running in the system. Such a mechanism needs to
detect failures whenever there is a write access that changes the
content of memory. As detection of failure with a runtime testing
has a high overhead, MEMCON selectively initiates a test on a
write, only when the time between two consecutive writes to that
page (i.e., write interval) is long enough to provide signi�cant ben-
e�t by lowering the refresh rate during that interval. MEMCON
builds upon a simple, practical mechanism that predicts the long
write intervals based on our observation that the write intervals
in real workloads follow a Pareto distribution: the longer a page
remains idle after a write, the longer it is expected to remain idle.

Our evaluation shows that compared to a system that uses an
aggressive refresh rate, MEMCON reduces refresh operations by
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1. Introduction

The continued scaling of DRAM process technology has en-

abled higher density DRAM by placing smaller memory cells

close to each other. Unfortunately, the close proximity of cells

exacerbates cell-to-cell interference, making cells susceptible

to failures [30, 31, 32, 35, 39, 51, 52, 56, 59, 61, 62, 63, 66, 67, 72].

Recent works propose to detect and mitigate these failures

in the �eld, while the system is under operation, as a way

to ensure correct DRAM operation while still being able to

continue the scaling of process technology. Such system-level
detection and mitigation of DRAM failures provides better reli-

ability, performance, and energy e�ciency in future memory

systems [7, 14, 17, 20, 24, 31, 32, 39, 45, 46, 51, 52, 53, 53, 55,

58, 61, 65, 67, 70, 74, 81, 82, 86]. For example, it is possible

to improve system energy and performance by using a lower

refresh rate, if we can detect the failing cells at a lower refresh

rate and mitigate only those failing cells using a higher refresh

rate [52, 53, 67, 70, 86]. Such ideas that require system-level

detection and mitigation rely on (i) detecting every cell that can

fail during the entire lifetime of the system and (ii) mitigating

failures via a high refresh rate, ECC, and/or remapping of faulty

cells to reliable memory regions [32, 51, 65, 70, 88].

Unfortunately, detection and mitigation of DRAM failures

caused by cell-to-cell interference is quite challenging, as

shown by prior works testing real DRAM chips [21, 31, 32,

39, 51, 67]. A prominent type of interference failure occurs

depending on the data content in neighboring cells. Such fail-

ures are called data-dependent failures [31, 32, 39, 51, 67, 72].

Historically, data-dependent failures have been a major prob-

lem for manufacturing reliable DRAM cells since as early as
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the Intel 1103, the �rst commercialized DRAM chip [2]. These

failures are inherent to DRAM design as they are caused by the

electromagnetic coupling between wires used to access DRAM

cells [5, 31, 39, 51, 72]. Manufacturers detect these failures by

exhaustively testing neighboring DRAM cells with data pat-

terns that introduce enough cell-to-cell interference to cause

failures and then either remap the failed bits or discard the

faulty chips to mitigate/avoid the failures. However, detection

of data-dependent failures in the system, while the DRAM chip

is being used in the �eld, faces a challenge. The detection of

data-dependent failures is closely tied to internal DRAM organi-

zation, which is di�erent in each chip and usually not exposed

to the system [29, 31, 45, 51, 67, 85]. Without exact knowledge

of the internal design of a DRAM chip, it is extremely di�cult

to detect all failures (as discussed in detail in Section 2). As

DRAM cells get smaller, more cells fail due to cell-to-cell inter-

ference, which poses a signi�cant challenge to DRAM scaling

and systems that rely on DRAM scaling for higher memory ca-

pacity and performance [30, 31, 39, 51, 56, 59, 61, 62, 63, 66, 72].

Handling such failures during the manufacturing time greatly

impacts the testing time that directly increases the cost of

DRAM [30, 56, 62, 72]. Therefore, it is important to enable

e�cient detection and mitigation of data-dependent DRAM

failures in the system, during the online operations.

The goal of this work is to design a low-overhead detection

and mitigation mechanism for data-dependent failures that can

be implemented in the system without requiring any knowledge

about the speci�cs of the internal DRAM design. We develop a

DRAM-transparent mechanism based on the key observation

that, in order to ensure correct operation of memory during

runtime, it is not required to detect and mitigate every possible
data-dependent failure that can potentially occur throughout

the lifetime of the system. Instead, it is su�cient to ensure

reliability against data-dependent failures that occur with only

the current data content in memory. Leveraging this key insight,

we propose MEMCON, a memory content-based detection and

mitigation mechanism for data-dependent failures in DRAM.

While the system and applications are running, MEMCON

detects failures with the current content in memory. These

detected failures are mitigated using a high refresh rate for

rows that contain the failing cells. MEMCON signi�cantly

reduces the mitigation cost as the number of failures with

current data content is less than the total number of failures

with every possible data content. Using experimental data from

real DRAM chips tested with real program data content, we

show that program data content in memory exhibits 2.4X-35.2X

fewer failures than all possible failures with any data content,

making MEMCON e�ective in reducing mitigation cost.

One critical issue with MEMCON is that whenever there is a

write to memory, content gets changed and MEMCON needs to

test that new content to determine if the new content introduces

any data-dependent failures. Unfortunately, testing memory

for data-dependent failures while the programs are running

in the system is expensive. Testing leads to extra memory

accesses that can interfere with critical program accesses and

can slow down the running programs. In order to design a

cost-e�ective detection and mitigation technique, we make

two critical observations. First, we observe that even though

testing has some cost associated with it, it also provides a

bene�t as a memory row can be refreshed at a lower rate if

no failure is found after testing. Consequently, the cost of

testing can be amortized if the content remains the same for a

long time, providing an opportunity to continue eliminating

the unnecessary refresh operations. The longer the content

remains the same, the higher the bene�t from the reduced

refresh operations. In this work, we provide a cost-bene�t

analysis of testing and show that the cost of testing can be

amortized if consecutive tests in a row are performed at a

minimum time interval of 448–864 ms, depending on the test

mode, refresh rate, and DRAM timing parameters (Section 3).

As testing is triggered by a write operation that changes the

data content in memory, we refer to this minimum interval as

MinWriteInterval.
Second, we observe that write intervals in real applications

follow the Pareto distribution. A large number of writes occur

within a very small interval, but the rest of the writes are spread

far enough such that a signi�cant fraction of a program’s time is

spent on intervals greater than MinWriteInterval. For example,

we �nd that on average 81.5% of the total write intervals are

spent on intervals greater than 1024 ms in 12 real-world appli-

cations, including popular photo, audio, and video editors and

streaming applications (details in Section 4.1; our collected data

is publicly available online [34]). This result demonstrates that

MEMCON can amortize the cost of testing in real workloads.

Based on our model and analysis on write intervals, we

propose a simple mechanism to predict the write interval length

at each write. Our mechanism, probabilistic remaining interval
length predictor (PRIL), builds upon a key property of the Pareto

distribution of write intervals: the longer a page is idle (not

written to), the longer it is expected to remain idle. Hence, the

remaining write interval of a page can easily predicted by how

long the page has been remained idle after a write.

We demonstrate that MEMCON leads to 64.7%-74.5% reduc-

tion in refresh operations compared to a system using an ag-

gressive refresh rate (16 ms) to mitigate failures. However,

extra read and write accesses during testing can interfere with

memory-intensive applications. We show that performance

impact of extra read-write accesses due to testing is minimal.

Our evaluation on SPEC [80], STREAM [1], and server [84]

benchmarks demonstrates that PRIL improves performance by

10%/17%/40% (min) to 12%/22%/50% (max) for a single-core sys-

tem and 10%/23%/52% (min) to 17%/29%/65% (max) for a 4-core

system using 8/16/32 Gb DRAM chips compared to a baseline

system that uses an aggressive refresh rate.

This paper makes the following contributions:

• This is the �rst work to propose a system-level online data-

dependent failure detection and mitigation technique that

is completely decoupled from the internal physical organiza-

tion of DRAM. Our online failure detection and mitigation

technique, MEMCON, detects failures only for the current

memory content of the applications running in the system.

• We analyze and model the cost and bene�t of failure detec-

tion and mitigation with the current memory content. Our

analysis demonstrates that the cost of testing for the current

content can be amortized if consecutive tests in a row are
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performed at a minimum time interval (between 448 and

864 ms according to our evaluation). As testing needs to be

performed when data content changes with program writes,

we refer to this minimum interval as MinWriteInterval.
• Based on our analysis of write intervals across a wide range

of real applications, we �nd that the interval of writes in

these applications follow a Pareto distribution and applica-

tions spend a signi�cant amount of time on very long write

intervals. As a result, MEMCON can (i) amortize the cost

of testing and (ii) provide signi�cant bene�t by reducing

the refresh rate during these long intervals.

• We propose PRIL, a simple mechanism that predicts the

long write intervals based on the key property of a Pareto

distribution that the amount of time a page is idle after

a write can indicate how long it will remain idle in the

future. Therefore, MEMCON only initiates testing for pages

that has been idle (not written to) for a while and leads

to 64.7%-74.5% reduction in refresh operations by using a

lower refresh rate during the long write intervals.

2. Background and Motivation

DRAM Organization. A DRAM module is connected to an

on-chip memory controller through a channel. The memory

controller sends commands and addresses to DRAM through

the channel and transfers data to and from DRAM. As shown in

Figure 1, each module is hierarchically organized into multiple

ranks, chips, and banks. For example, a typical DRAM module

can have one rank with 8 chips, where each chip consists of

8 banks. A DRAM bank is organized as multiple 2D arrays of

cells. Figure 1 shows a cell array within a bank, where all cells

in a row are connected to a wire called wordline, and cells in

each column are accessed through a vertical wire called bitline.
While accessing DRAM, an entire row is read and latched into

sense-ampli�ers. A DRAM cell stores data as charge in a ca-

pacitor. As capacitor leaks charge over time, DRAM cells are

periodically refreshed every 64 ms (32 ms at high temperature

operational mode) to maintain data integrity [52].
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Figure 1: DRAM organization

Data-Dependent Failures. During a DRAM access, the para-

sitic capacitance between adjacent bitlines provide an indirect

connecting path between neighboring cells [5, 72]. Therefore,

neighboring cells can interfere each other, depending on the

data content stored in the cells. DRAM failures that occur

depending on the content of a cell and its neighboring cells

are called data-dependent failures [31, 32, 39, 51, 72]. In order

to detect data-dependent failures, manufacturers exhaustively

test neighboring DRAM cells with data patterns that introduce

enough cell-to-cell interference to cause failures. Experimental

studies on DRAM chips demonstrate that a large fraction of

DRAM cells exhibit data-dependent behavior in various failure

modes [14, 32, 39, 51, 66]. As data-dependent failures occur

when the interference is large enough to perturb the charge

within the cells, these failures increase when DRAM operates at

longer refresh intervals. It is easier to cause a failure perturbing

the cells when the cell capacitor contains less charge at higher

refresh intervals. Prior works demonstrate that the probability

of data-dependent failures increases exponentially with lower

refresh rates [66, 72].

Unlike traditional manufacturing time testing, some re-

cent works propose to detect data-dependent failures on-

line, at the system-level to enable system optimizations that

improve reliability, latency, and energy e�ciency of mem-

ory [31, 32, 51, 52, 67, 70]. These works propose to test every

cell in a DRAM chip to detect all possible cells that are suscep-

tible to data-dependent failures with any possible data content
in memory. They propose to detect these cells with an initial

testing phase and mitigate the failures with ECC, remapping, or

higher refresh rates to ensure correct operation for any content
in memory that can possibly occur during system operation.

For example, RAIDR [52] detects such data-dependent failures

using an initial test during the system boot-up and uses a low

refresh interval to mitigate them, while it refreshes all other

cells less frequently to improve performance and energy con-

sumption by reducing the total number of refresh operations.

However, there are two major challenges in detecting and miti-

gating data-dependent failures in the system.

(i) System-level failure detection is challenging due to
unknown internal DRAM organization. There are two de-

sign issues in modern DRAM chips that make system-level

failure detection particularly di�cult.

First, DRAM vendors internally scramble the address space

within DRAM. Neighboring addresses in the system address

space do not correspond to neighboring physical cells [29, 31,

44, 45, 51, 85]. Consequently, testing neighboring cells for

data-dependent failures by writing a speci�c data pattern in

neighboring addresses at the system-level does not test adjacent

cells in the DRAM cell array. Figure 2a shows one example

of scrambled address space in DRAM. Neighbors of the cell

at address X are expected to be located at adjacent addresses

X-1 and X+1 with a regular linear mapping of physical address

space to system address space. However, due to scrambling

of the address space, neighbors of X are located at system

addresses X-4 and X+5. This internal address mapping from

physical to system-level address is not exposed to the system,

e.g., the memory controller [31, 44, 45, 51, 85]. To make things

worse, vendors scramble the addresses di�erently for each

generation of DRAM chips [31, 45].
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(b) Column remapping

Figure 2: Address scrambling and column remapping in
DRAM

Second, DRAM vendors repair some of the faulty cells de-

tected during manufacturing tests by remapping the faulty

columns to available redundant columns in DRAM [22]. Fig-
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ure 2b shows an example of remapping where three faulty

columns at physical column addresses 1, 4, and 6 are remapped

to the redundant columns located at the right of the original

cell array. Due to this remapping, cells in remapped columns

now depend on neighbors located in the redundant columns.

For example, the neighbors of cells located at physical column

address 1 are now located at physical addresses 4 and 7. Remap-

ping makes neighboring cell information di�erent for each chip

based on the location of faulty cells and remapped columns,

making it necessary to design speci�c failure detection tests

targeted for each individual chip in the system.

Vendors consider the internal DRAM design as proprietary

information and do not expose it outside of the manufacturing

organization. Even if the vendors expose the details of DRAM

internals, scrambling of address space and remapped columns

make system-level failure detection tightly coupled with each

speci�c DRAM chip. Exposing such information e�ciently for

each chip and designing a generalized detection mechanism in

the system that will work for all commercially available DRAM

chips is rather challenging.

(ii) System-level failure mitigation is very expensive. It

is expected that systems will have to mitigate a large number

of failures in the future as cells become more vulnerable to

cell-to-cell interference with DRAM scaling [39, 61, 66]. Prior

works have shown that mitigating a large number of failures

with ECC, remapping, or higher refresh rates adds a signi�cant

storage, performance, and energy overhead, making mitigation

very expensive [32, 65].

The goal of this work is to design a low-overhead technique

for detecting and mitigating data-dependent failures that does

not require any knowledge about the internal DRAM orga-

nization. To this end, we propose to decouple the detection

and mitigation of data-dependent failures from information

about the internal organization of a DRAM chip.
1

We limit

the scope of our mechanism to data-dependent DRAM failures,

as other types of interference failures [39, 61, 66] and random

failures [24, 58, 70] can be mitigated using ECC or orthogo-

nal failure-speci�c mechanisms [11, 32, 39, 61, 65, 70, 88]. We

also do not provide mechanisms to handle variation in data-

dependent DRAM failures with the change in temperature.

Prior works showed that it is possible to protect against these

variations using well-known and experimentally-validated tem-

perature models and adding an appropriate guardband to the

mitigation technique [32, 46, 51, 67]. In the next section, we

describe our DRAM-transparent online data-dependent failure

detection and mitigation mechanism that relies only on the

change in memory content during the execution of applications

in the system.

3. MEMCON: Memory Content-Based

Detection and Mitigation of DRAM Failures

In this work, we make the argument that it is not necessary

to detect and mitigate every possible data-dependent failure

that can potentially occur with any memory content during the

lifetime of the system. Instead, it is su�cient to detect and mit-

1
Note that detection of retention failures that occur due to weak cells that

always fail irrespective of the data content is not a major problem. These failures

can be easily detected as these cells fail every time a chip is tested.

igate the failures that can occur only with the current content in

memory, stored by programs running in the system, and ensure

a reliability guarantee that there will be no failure in the system

with the current memory content. Doing so makes system-level

detection and mitigation independent of the internal DRAM

architecture as it eliminates the need to detect every susceptible

cell that can fail due to any data content in memory.

3.1. High-Level Design of MEMCON
Based on this observation, we make a case for memory

content-based detection and mitigation of data-dependent fail-

ures in DRAM, which we refer to as MEMCON. While the

programs are running, MEMCON detects failures with the cur-

rent memory content, and uses a higher refresh rate for faulty

rows to mitigate those failures. Therefore, it detects failures

dynamically while programs are running and mitigates only
failures that can be triggered by the current data content of the

programs.

As we will demonstrate, MEMCON (i) eliminates the need for

detecting every possible data-dependent failure, which requires

knowledge of DRAM internals, and (ii) reduces the mitigation

cost as the number of failures with the current memory content

is much smaller than the total number of failures with every

possible combination of data content in memory.

To motivate MEMCON, Figure 3 experimentally demon-

strates that cells fail conditionally depending on the memory

content. In this �gure, each dot on a vertical line represents

a particular cell failing with some speci�c data content (i.e,

data pattern) when a DRAM chip is tested with an FPGA-based

infrastructure (details in Section 5). We observe that a particu-

lar cell may or may not fail depending on the data content in

memory. As a result, instead of detecting every cell that can

fail with any possible content, detecting and mitigating failures

with just the current program content can signi�cantly reduce

the mitigation cost.
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Figure 3: DRAM cells failing with di�erent data content
Figure 4 shows the percentage of rows that contain data-

dependent failures with current memory content compared to

every possible data-dependent failure detected in memory. The

fraction of the rows represents the number of failed rows for

each workload when its memory footprint is duplicated in

the entire DRAM module to ensure that the whole memory

is occupied by program content. We present the percentage

of failing rows (averaged over every 100 million instructions

across a set of representative phases [69]) for 20 SPEC CPU

2006 [80] benchmarks.
2

This �gure shows that only 0.38%-

2
Even if we demonstrate the fraction of failing rows for only SPEC bench-

marks, we believe that other workloads with larger working sets will also

exhibit similar results. The number of failures does not depend on the size of

the working set, but depends on the data content in memory.
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5.6% of the rows encounter failures with the program content,

where 13.5% of all rows encounter failures when tested with

any possible memory content (represented by ALL FAIL in the

�gure). Thus, the number of failures is 2.4X-35.2X less with the

current program content than with every possible content.
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Figure 4: Percentage of rows that exhibit failures

3.2. Design Challenge of MEMCON
MEMCON ensures correct DRAM operation by detecting

and mitigating possible failures with the current memory con-

tent. As long as the content remains the same, MEMCON

comfortably ensures reliability since it provides the right level

of protection (e.g., the appropriate refresh rate) for that content.

Read accesses do not alter memory content and therefore, can-

not introduce any new failures. However, whenever there is a

write to a row in memory, content gets changed and MEMCON

needs to (i) test that new content to detect whether or not that

content introduces any data-dependent failure and (ii) if so,

�nd the right level of protection for the rows failing with the

new content.

Unfortunately, detecting data-dependent failures while the

programs are running in the system could cause performance

degradation. Testing current memory content for detecting

data-dependent failures involves keeping the the row that is

being tested (i.e., the in-test row) idle until the end of the refresh

period so that cells in that row are tested with the lowest pos-

sible charge, when they are the most vulnerable to cell-to-cell

interference. As any access to a row fully charges all cells in

that row, program accesses during the testing period cannot be

serviced from the in-test row and have to be serviced by tem-

porarily bu�ering the content of the row in a di�erent region.

Therefore, there are two sources of overhead in detecting data-

dependent failures with current memory content. First, testing

involves reading the row content into the memory controller

and bu�ering the read content of the row, keeping the row idle

for the test period, and reading the entire row again to compare

with the bu�ered row content to determine if there are any

data-dependent failures. As a result, all the cache blocks in

the in-test row have to be read at least twice to compare their

contents before and after the test. Second, temporarily bu�er-

ing the content of the in-test row in some other region (either

inside the memory controller or inside memory) involves extra

read and write tra�c to copy the in-test row to that region.

These additional read and write requests for testing purposes

increase bandwidth consumption and can interfere with critical

program accesses. The key design challenge MEMCON is to

minimize the overhead of the testing.

3.3. Cost-Bene�t Analysis of MEMCON
As testing at the system-level is expensive, it is necessary to

analyze the cost-bene�t of MEMCON on application runtime

to demonstrate its e�ectiveness. The cost of testing (i.e., its

performance and/or energy overhead) depends on the extra

memory requests issued for testing. The bene�t of testing

comes from our technique of optimizing the refresh rate based

on the results of testing: MEMCON initially refreshes each row

very frequently to avoid any failure; after the row content is

tested and no failure is detected for a row, that row is refreshed

at a lower rate. Therefore, the bene�t of testing comes from

the reduction in refresh operations enabled by testing.

Figure 5 examines the tradeo� between the cost of testing (in

terms of latency) and the frequency of testing of a single row

to demonstrate that the cost of frequent testing can potentially

outweigh the bene�t of testing. There are three di�erent costs

associated with MEMCON: (i) Without any testing, all rows

have to be refreshed aggressively so that failures do not get

exposed to running applications. This cost of aggressive refresh

(i.e., the periodic latency required to refresh a row) is repre-

sented as the HI-REF state in the �gure. (ii) The cost of testing

(i.e., the latency required for extra read-write accesses), which

is represented as the highest bar in the �gure, labeled as TEST-
ING. The �gure shows that testing is more expensive than the

HI-REF state due to the extra read-write accesses incurred for

testing. (iii) When testing for data-dependent failures is done

and no failures are found in a tested row, the row can be re-

freshed less frequently. This low-cost refresh state (the latency

required for infrequent refresh operations) is represented as

LO-REF in the �gure.
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Figure 5: Tradeo� between frequency of testing vs. cost
Figure 5 demonstrates the average cost of MEMCON over

some speci�c period of time, when testing is performed at

di�erent rates for a row. First, if testing is infrequent (i.e.,

writes to a row are separated far apart in time), the bene�t of

the LO-REF state overshadows the cost of testing, such that

the average cost remains equal to or lower than that of the HI-
REF state (shown in Figure 5(a)). In this case, a longer interval

between two consecutive tests leads to a higher bene�t and the

average cost gets lower. Second, as testing is very expensive,

frequent testing can increase the average cost to a level higher

than the HI-REF state (Figure 5(b)). In this case, it is better

to just use frequent refreshes (HI-REF), instead of detecting

any failures, to minimize the average cost. Therefore, there

is a trade-o� between the cost of testing vs. the frequency

of testing. In order to minimize the overall cost (and thus

maximize the bene�t of testing), MEMCON should not initiate

a test every time there is a new write to a row. Instead, it should

test the row on a write, only when the cost of testing can be

amortized by the future infrequent refreshes to the tested row.

Therefore, MEMCON should skip testing for cases where the

interval between two consecutive writes to a row is not large

enough to amortize the cost of testing.
3

Such selective testing

3
MEMCON can be further optimized by eliminating testing if the row gets

read frequently enough such that it does not need refresh. We leave such an

optimization for future work.
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for MEMCON is illustrated in Figure 5(c). MEMCON tests the

row at t1, as the interval between two writes (t1 and t2) is large

enough to amortize the cost of testing. It skips testing for the

write that arrives at t2, as the interval between t2 and t3 is too

small. Instead, MEMCON moves to the HI-REF state during

that interval to avoid the high cost associated with testing.

In order to determine the minimum interval between two

consecutive writes to a row that amortizes the cost of testing,

we compare the total cost for two con�gurations: (i) when a

row is refreshed aggressively (always at the HI-REF state), and

(ii) with MEMCON, i.e., when a row is tested and then refreshed

at a lower rate if appropriate (LO-REF state only after testing).

The total accumulated cost would increase linearly with time, as

rows are refreshed periodically in both cases. However, initially,

MEMCON would have a higher cost than HI-REF because of

the high cost associated with testing. As MEMCON moves to

the low refresh state after testing, its total cost would increase at

a slower rate compared to the HI-REF con�guration. The point

in time when the total cost of HI-REF would become higher

than the total cost of MEMCON indicates the time interval

between two writes that can amortize the cost of testing. We

refer to this interval as minWriteInterval in this work.

Figure 6 shows the total accumulated cost over time (in terms

of latency) for both MEMCON and the HI-REF con�guration.

In order to determine the minWriteInterval, we model the cost

of HI-REF and MEMCON based on the latency required to

perform refresh and read-write operations. The HI-REF con-

�guration refreshes the rows every 16 ms, which is 4X more

frequent than the typical refresh interval in modern DRAM de-

vices.
4

Thus, the cost of refresh in terms of required latency per

row is 39 ns for every 16 ms (details in Appendix). Therefore,

the cost for HI-REF increases sharply with time (represented as

the red line in the �gure). In this work, we compare two modes

of testing for MEMCON (Read and Compare vs. Copy and

Compare), based on where data content is bu�ered to serve

accesses during the test. The cost of testing for each mode

determines the frequency of testing that can amortize the cost.
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Figure 6: Determining MinWriteInterval

Read and Compare. In this mode, an in-test row is

bu�ered in the memory controller. This mode involves reading
the entire row into the memory controller twice (once before

the test and once after the test) to compare the old and new

content and determine any occurrence of failure. The latency

of reading an entire 8K row twice from memory is 1068 ns

(details in Appendix).

4
Modern DRAM chips use frequent refresh operations to ensure data

integrity (e.g., LPDDR2 uses 32 ms refresh intervals at 85°C [26], DDR3/4 uses

32 ms refresh intervals at 95°C [27, 28]). As DRAM scaling is getting worse, we

believe that a 16 ms refresh interval is reasonable for future DRAMs. However,

we also compare our results with a less aggressive baseline of a 32 ms refresh

interval (Figure 16 in Section 6.2).

Copy and Compare. One problem with the prior test

mode is that testing a large number of rows simultaneously

requires a large bu�er in the memory controller. As an alterna-

tive, in this second mode of testing, the contents of the in-test

rows are temporarily stored in a di�erent, special region of

memory to service requests to in-test rows during the test. In

this mode, the in-test row is copied to another region in mem-

ory by reading the row into the memory controller and then

writing it to that special region in memory. Only the ECC in-

formation is calculated and stored in the memory controller.

After the test, the content of the row is read back again into

the memory controller to compare the old and new ECC values

to determine any occurrence of failure. As a result, this Copy

and Compare mode involves reading the entire row into the

memory controller twice (once before the test and once after

the test) and writing the entire row once into a new location.

The cost for Copy and Compare in terms of latency is 1602 ns

(details in Appendix).
5 6

Figure 6 shows that both of these test modes pay the high

latency cost of testing in the beginning (1068 ns and 1602 ns,

respectively). After that, the system is refreshed once every 64

ms.
7

Therefore, the total cost increases more slowly over time

compared to that of the HI-REF con�guration, where rows are

refreshed every 16 ms all the time. The �gure shows that the

total cost of testing becomes lower than the cost of the HI-REF
con�guration, if the system can be at the LO-REF state for at

least 560 ms and 864 ms, respectively for Read and Compare

and Copy and Compare test modes. Thus, the MinWriteInter-

val should be 560 ms/864 ms for these two con�gurations. We

also evaluate the MinWriteInterval for the LO-REF state with

a refresh interval of 128 ms and 256 ms, found it to be 480 ms

and 448 ms, respectively.

We conclude that MEMCON can amortize the cost of

testing if tests are done at a minimum interval of 448-

864 ms, depending on the combination of test mode and

refresh interval. Note that the MinWriteInterval is quite long,

almost half a second to a full second. This requirement for

long write intervals implies that MEMCON would provide ben-

e�t only when the applications spend a large fraction of their

execution time on long write intervals. In the next section,

we analyze the write intervals in real applications and, based

on our analysis, propose a simple prediction mechanism to

determine when to initiate a test such that the cost of testing

is amortized.

5
The storage overhead of this mode, i.e., the amount of memory required

to copy the in-test rows to, is modest as only a small fraction of rows are tested

concurrently. For example, reserving 512 rows per bank in a 2 GB module with

8 banks, results in only a 1.56% loss in DRAM capacity; details in Appendix.

This mode also requires memory requests to the in-test rows to be redirected

by the memory controller to the appropriate region of memory, which can be

accomplished with little storage overhead.

6
Note that this mode can become signi�cantly faster by (i) performing copy

operations completely within DRAM, using mechanisms like RowClone [76]

and LISA [16], (ii) exploiting subarray-level parallelism [41], tiered-latency

DRAM [47], or a Dual-Data-Port DRAM [42], or (iii) performing comparison

operations inside DRAM or in the logic layer of 3D-stacked memory [3, 4, 23,

75, 77, 78, 79]. We leave the evaluation of such optimizations for future work.

7
We use 64 ms refresh interval is this �gure, but we also report summary

results for 128 ms and 256 ms later (at the end of the same paragraph).
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Figure 7: Distribution of write intervals in three representative workloads

4. Write Interval Prediction for MEMCON

MEMCON selectively initiates a test on a write to a page,

only when the time interval between two consecutive write

requests to the page is predicted to be long enough (i.e., at least

448-864 ms, as shown in Section 3.3). Therefore, when there

is a write access to a page, MEMCON (i) predicts the write

interval and (ii) if the interval is predicted to be long enough

to amortize the cost of testing, tests the page with the current

content. In this section, we �rst demonstrate the characteristics

of the write intervals in real applications (Section 4.1). Based

on those characteristics, we propose a simple mechanism to

predict the write intervals (Section 4.2).

4.1. Write Interval Characteristics in Real Applications

We use an FPGA-based memory tracing system, similar to

HMTT [8], to track the characteristics of writes to each page

in various real programs. These traces span several minutes

of execution time after the initialization phase. Our evaluated

applications include popular games, video editors and players,

system management software, video streaming applications,

and others (see Table 1; details of our methodology in Section 5).

Figure 7 demonstrates the distribution of write intervals for

three representative workloads: ACBrotherhood, Net�ix, and

System Management (Win 7). The x-axis represents di�erent

write intervals, from 1 ms to 32768 ms, and the y-axis represents

the percentage of writes that are within the corresponding write

interval range. We make two observations from this �gure.

First, a large majority (more than 95%) of the writes occur

within 1 ms. Fortunately, writes within 1 ms do not trigger

testing because such frequent accesses naturally refresh the

row before the refresh interval and therefore, do not cause any

data-dependent failures. Thus, our mechanism is not a�ected

by such short-interval writes. Second, only a small fraction of

the writes exhibit write intervals that are equal to or greater

than the MinWriteInterval that can amortize the cost of testing.

For example, on average, less than 0.43% of the total number of

writes exhibit write interval lengths greater than 1024 ms. We

refer to such a write interval with length greater than 1024 ms,

where there is signi�cant opportunity to lower the refresh rate

for a long time, as a long write interval. Even though writes with

long intervals constitute a small fraction of the total number

of writes, the corresponding write intervals are very long. As

a result, our programs spend a very large fraction of their

execution time in these long write intervals. We demonstrate

this phenomenon in Figure 9, which shows the fraction of the

execution time each workload spends on long write intervals.

We observe that, on average, write intervals greater than 1024

ms constitute 89.5% of the total time spent on write intervals.
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Figure 9: Execution time is dominated by long write intervals
(i.e., write intervals with length greater than 1024 ms)

Our empirical observations on write intervals indicate that

write intervals in real applications follow a Pareto distribu-

tion [6]. The intervals exhibit a heavy-tailed property, where

the number of long intervals are very few, but these long write

intervals comprise a very large fraction of the total execution

time. Mathematically, a Pareto distribution of the write in-

tervals means that the probability of the write interval being

greater than x follows this function: Probability (Write Interval
Length > x) = k.x−α

, where k,α > 0 are constants. Figure 8

demonstrates that the probability distribution of write interval

lengths in three representative workloads closely follow this

equation: the plotted curves match a linear �t on the log-log

scale with very high R2
values, indicating that the Pareto dis-

tribution is indeed a good �t. Various system properties have

been shown to follow a Pareto distribution, such as system job

lengths [19, 73], Unix process lifetimes [19], sizes of �les and

web tra�c [18, 68, 73], lengths of memory episodes [40], and

memory errors in servers [58].

In this work, we leverage the decreasing hazard rate (DHR)

property [9] of a Pareto distribution to predict the write interval
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on a write access. This property implies that the elapsed time

in an interval can be used to predict the remaining length: the

longer a page is idle (i.e., not written to) after a write, the longer

it is expected to remain idle (i.e., the more likely it has a long

write interval). On the other hand, if the elapsed time after a

write to a page is short, it is expected that the write interval

will end soon.

We de�ne two parameters for a write interval, as shown in

Figure 10. (i) Current interval length (CIL), the elapsed time

after the latest write to the page at the current time T, and (ii)
remaining interval length (RIL), the remaining length of the

write interval. We show that the probability that RIL is long

increases with a longer CIL in real applications (Figure 11). For

this experiment, we conservatively set the RIL to be 1024 ms as

the MinWriteInterval required to amortize the cost of testing

ranges from 448-864 ms. Therefore, Figure 11 illustrates the

probability that the remaining interval length is greater than

1024 ms when we vary the current interval length from 1 ms

to 32768 ms. This �gure shows that the probability that the

remaining interval length is greater than 1024 ms is very low

when the current interval length is within 1 to 256 ms. However,

the probability increases with increasing current interval length
and becomes approximately 50%-80% at a current interval length
of 512 ms. The probability approaches 1 when the current inter-
val length is higher than 16384 ms. Based on this observation,

we can devise a mechanism that predicts the RIL, after it has

observed the length of the CIL, for a given page. For example,

if such a mechanism predicts that the RIL would be greater

than 1024 ms, when it has already observed that the CIL so

far has been 512 ms, the probability of misprediction would be

relatively low. We conclude that the probability distribution

we observe for write interval lengths (shown in Figure 11) can

be used to predict the long write intervals for each page only
by tracking the length of the current write interval.
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Figure 10: Terminology used for write intervals
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Figure 11: Probability that RIL is greater than 1024 ms, as a
function of CIL

A longer CIL provides better accuracy, but at the same time

reduces the length of RIL. Thus, there is a tradeo� between how

long we should wait to observe the length of CIL to avoid mis-

predictions vs. how much opportunity we will lose to reduce

the refresh rate if we wait longer. We de�ne the coverage of our

prediction as the fraction of the time spent in write intervals

that has been correctly predicted. A higher CIL increases accu-

racy, but reduces coverage, e.g., waiting for the CIL to reach

32768 ms to predict that the RIL is greater than 1024 ms would

provide a high-accuracy prediction; however, it would lead to a

low coverage. Figure 12 shows the coverage of the time spent in

write intervals when current interval length varies from 1 ms to

32768 ms. We observe that the coverage of total write interval

time becomes lower as we increase CIL. A CIL of 512-2048 ms

provides a prediction accuracy of 50-80% with a reasonable

coverage (on average 65-85%). Based on these observations, we

conclude that it is possible to devise a simple write interval

prediction mechanism that achieves both high accuracy and

high coverage, simply by waiting for a speci�c amount of time

after a write (e.g., 512-2048 ms as the current interval length).
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Figure 12: Coverage of the time spent in the write intervals
when P(RIL) > 1024 ms, as a function of CIL

4.2. Probabilistic Remaining Interval Length (PRIL)

Prediction

In order to exploit long write intervals for lowering the re-

fresh rate, we propose a simple mechanism to predict the write

interval after each write. Our mechanism, probabilistic remain-
ing interval length prediction (PRIL), builds upon our observa-

tion that if the elapsed time after a write to a page (i.e., the

current interval length), has been long enough, it is highly likely

that the remaining interval length would be long. Therefore, it

is possible to predict the the remaining interval length of a write

interval, just by measuring how much time has elapsed after

the last write to the page (i.e., since the write interval started).

However, tracking the elapsed time after the last write for each

page using a counter can introduce high overhead. To avoid

such overhead, we propose a simple mechanism that tracks

writes to pages across coarse-grained time quanta. The key

idea of PRIL is to divide the execution time into �xed-length

quanta, where the quantum size is set to be equal to a current in-
terval length that provides a high-accuracy and a high-coverage

prediction (e.g., 1024 ms), and detect the pages that remain idle
(i.e., without writes) for at least one quantum.

High-Level Design. We describe one implementation of

PRIL that aims to minimize the hardware overhead while

achieving most of the opportunity available from an ideal pre-

diction mechanism. In order to detect the pages that receive

no writes for at least one quantum, PRIL keeps track of the

pages (i.e., row addresses) that (i) have been written to only
once during each quantum and (ii) remain idle (i.e., receive no

writes) in the next quantum.
8

This mechanism ensures that

8
Note that tracking the pages that are written to only once is a design choice

we make to limit the number of page addresses we track in the write bu�er.

Removing pages that are written to multiple times during a time quantum

greatly reduces the number of addresses MEMCON tracks while minimally

a�ecting the accuracy of our prediction mechanism. The e�ect on accuracy

is minimal because pages that are written to multiple times within a short

interval are unlikely to have long write intervals.
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Figure 13: Workflow for PRIL: Steps associated with (i) the arrival of a write and (ii) the end of a quantum
the elapsed time after the write is greater than the quantum

length (even if the write occurs at the very last moment in the

�rst quantum). Therefore, PRIL uses two consecutive quanta

to detect the long-interval writes. At the end of the second

quantum, all the pages that have received only one write in the

�rst quantum and no writes in the second quantum, are pre-

dicted to have a long remaining interval length and MEMCON

initiates testing for those pages.
9

Implementation. Figure 13 shows the operations that take

place in each quantum. PRIL uses two structures to keep track

of the pages that receive only one write access during one quan-

tum. First, it uses a bit vector (called write-map) to mark the

pages that receive at least one write access during a quantum.

The appropriate bit in the write-map is set when there is a

write access to a page. Second, it uses a write-bu�er to store

the addresses of the pages that have been written to only once
during that quantum. When there is a write access to a page,

the address of that page is inserted in the write-bu�er only

if the corresponding bit in the write-map indicates that this

is the �rst write to that page (indicated by ¶ in Figure 13).
10

Otherwise, if the write-map indicates that the page has already

received at least one write access before in the current quantum

(i.e., the corresponding bit in the write-map is set), that address

is deleted from the write-bu�er, because the write interval is

clearly less than the quantum length (indicated by ·).As PRIL

tracks two consecutive quanta to determine the pages that have

current interval length greater than the quantum length, there

are two write-maps and two write-bu�ers in PRIL: the current
write-map and the current write-bu�er track the occurrence of

writes in the current quantum, where as the previous write-map
and the previous write-bu�er have already been tracking the

addresses of the pages that have received only one write access

during the last quantum. PRIL deletes any address from the

previous write-bu�er, if that address receives a write access in

the current quantum (indicated by ¸). As a result, the entries

in the previous write-bu�er contain only the addresses of the

pages that have received only one write access in the last quan-

tum and no write access in the current quantum; these pages

become candidates for testing at the end of a quantum (indi-

cated by ¹). At the end of each quantum, MEMCON (i) gets

the recorded page addresses from the previous write-bu�er to

initiate testing on them and (ii) clears all entries in the previous
write-bu�er and write-map. Then, the current and previous

write-bu�ers and maps are swapped, and the writes in the next

9
MEMCON can become even more e�ective if we can recognize silent

writes to a page (i.e., writes that do not change the value in memory) [10, 48,

49, 50] and not initiate testing on such writes.

10
If the write bu�er is full, we discard the new page and set its refresh state

to HI-REF. By doing so, MEMCON loses the potential opportunity to reduce

the refresh rate for that page, but this does not a�ect correctness as a discarded

page will be refreshed at the HI-REF state.

quantum start being tracked by the current write-bu�er and
current write-map (as indicated by º). We discuss the storage

overhead of PRIL in Section 6.4. We leave the exploration of

cheaper implementations of PRIL for future work.

5. Methodology

In this paper, we demonstrate the feasibility of MEMCON

using three di�erent evaluation infrastructures. First, we

use an FPGA-based DRAM testing infrastructure based on

SoftMC [21], to test real DRAM chips for data-dependent fail-

ures (results shown in Section 3). Second, we use an FPGA-

based testing infrastructure to collect memory traces from long-

running applications (results in Section 4). Third, we use a

cycle-accurate simulator [36, 37] to study the impact of MEM-

CON on system performance (Section 6). Next, we discuss our

methodology for each of these evaluation techniques.

FPGA infrastructure to test real DRAM chips. We use

an infrastructure based on SoftMC [21], as done in a variety

of DRAM characterization studies [12, 13, 14, 17, 31, 32, 38, 39,

43, 45, 46, 51, 67, 70]. Our infrastructure provides the ability

to: i) dump application memory content in the test DRAM

chip with di�erent refresh rates, ii) provide an interface from

a host machine to the FPGA test infrastructure. We use a Xil-

inx ML605 board [87] that includes an FPGA-based memory

controller connected to a DDR3 SO-DIMM socket. The FPGA

board is connected to the host machine using the PCIe bus. We

run experiments on DRAM chips in a temperature-controlled

environment. We test DRAM chips with a refresh interval of

4 s at 45°C, which corresponds to a refresh interval of 328 ms

at 85°C [51]. There are three steps involved in our tests: (i)
Generate the memory content traces for 20 SPEC CPU2006

benchmarks [80] and replicate the content in the tested DRAM

chip such that the entire memory gets �lled up with the col-

lected real data content from a speci�c time. (ii) Keep memory

idle for the refresh interval and (iii) Read back the content

to determine the failing content. While a program executes

in the system, data content in memory changes over time as

dirty cache blocks get written back to memory. We generate

memory content traces for each workload at every 100 million

instructions and test DRAM chips to determine the number of

failures with each data content trace. We report the average

percentage of failing rows over 0.5 billion instructions (with the

maximum and minimum shown as the error bars) in Figure 4

in Section 3.

FPGA infrastructure to generate memory traces for

long-running applications. We use another FPGA-based

infrastructure, similar to HMTT [8], to generate memory traces

from real applications. This infrastructure intercepts the mem-

ory bus and tracks commands, associated addresses, and times-

tamps of every memory request sent to DRAM. The traces

span several minutes of application runtime (as shown in Ta-
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ble 1) and are collected after a �xed time interval passes to

avoid tracing an application’s initialization phase. We use this

infrastructure to track the write intervals in some popular ap-

plications taken from di�erent domains, such as gaming, video

editing, playback, and streaming, photo editing, system man-

agement. Table 1 provides the names and characteristics of

these long-running applications. We made the write interval

characteristics of these traces publicly available online [34].

Application Type Time (s) Mem (GB) Threads

ACBrotherHood Game 209.1 2.8 8

AdobePhotoshop Photo editing 149.2 3.0 4

AllSysMark Media creation 2064 3.4 4

AVCHD Video playback 217.3 5.2 2

BlurMotion Image processing 93.4 0.2 2

FinalCutPro Video editing 76.9 3.0 2

FinalMaster Movie display 248.1 2.0 2

AdobePremiere Video editing 298.8 5.0 2

MotionPlayBack Video processing 233.9 5.6 2

Net�ix Video streaming 229.4 4.6 2

SystemMgt Win 7 managing 466.2 7.6 2

VideoEncode Video encoding 299.1 7.3 4

Table 1: Evaluated long-running workloads

Cycle-accurate simulation. We use a cycle-accurate open-

source simulator, Ramulator [36, 37], to evaluate the perfor-

mance impact of MEMCON. It is driven by a frontend based

on Pin [54]. It is not possible to perform a cycle-accurate simu-

lation of minutes of actual execution time. As a result, we get

the reduction in refresh rate from the write interval character-

istics of the long-running traces for MEMCON and model the

corresponding refresh rate with the overhead of testing to eval-

uate MEMCON using our simulator. We use multiprogrammed

workloads that contain benchmarks from SPEC CPU2006 [80],

TPC-C and TPC-H [84]. We combine 4 randomly-selected ap-

plications from these benchmark suites to generate 30 multi-

programmed workload mixes for our multi-core evaluations.

Table 2 shows our system con�guration.

Processor 1-4 cores, 4GHz, 4-wide, 128-entry instruction window

Last-Level 64B cache-line, 16-way associative

Cache 512KB private cache-slice per core

8GB DIMM

Main DDR3-1600 (800MHz clock rate, 1.25ns cycle time)

Memory Baseline (tREFI /tRFC): 1.95us/350ns

MEMCON: tREFI : LO-REF 7.8us, HI-REF 1.95us

MEMCON: tRFC : 530/890/1600ns (16/32/64Gb)

Table 2: Evaluated system configuration

6. Results

We �rst evaluate the e�ect of MEMCON on refresh reduction

(Section 6.1) and performance (Section 6.2). Then, we compare

the performance of MEMCON to other refresh optimizations

(Section 6.3). Finally, we provide an analysis of our write inter-

val prediction mechanism, PRIL (Section 6.4).

6.1. Reduction in Refresh Operations

In this section, we demonstrate that MEMCON is e�ective

at reducing the number of refreshes by identifying the long

write intervals in programs when a row can be refreshed less

frequently (in the LO-REF state). We evaluate MEMCON’s

reduction in refresh operation count compared to a baseline

system that refreshes every row aggressively at a refresh inter-

val of 16 ms. MEMCON uses a 64 ms refresh interval (LO-REF
state) for rows that are (i) identi�ed as read-only, and (ii) pre-

dicted to be idle (i.e., not written to) for more than 1024 ms after

a write. The remaining rows are refreshed at a 16 ms interval

(HI-REF state). If all rows were refreshed at a 64 ms interval

(LO-REF state), MEMCON would reduce the refresh count by

75% (which is the upper bound refresh reduction achievable

with the HI/LO-REF parameters we evaluate).

Figure 14 shows MEMCON’s reduction in refresh count with

three di�erent values of current interval length (CIL): 512, 1024,

and 2048 ms. With these three values, PRIL provides both high

accuracy and high coverage when predicting the long write

intervals (as shown in Figure 12). We make two observations

from Figure 14. First, on average, MEMCON’s reduction in

refresh count comes very close to the upper bound (75%). De-

pending on the characteristics of the applications, the reduction

ranges from 64.7% to 74.5%. This result implies that our simple

prediction mechanism, PRIL is very e�ective at identifying the

long write intervals. Second, we observe that the reduction in

refresh count does not change signi�cantly when we vary CIL

from 512 ms to 2048 ms. This is because a signi�cant fraction

of the execution time is dominated by very long write intervals

that are on the order of minutes and a small variation in CIL

(in the range of milliseconds) does not a�ect the coverage of

write intervals in a signi�cant way (as discussed in Section 4.1).

From these observations, we conclude that MEMCON achieves

a refresh reduction that is very close to the upper bound.
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Figure 14: Reduction in refresh count with MEMCON

6.2. Performance Impact of Refresh Reduction

In this section, we evaluate the performance improvement

of MEMCON resulting from the reduction in refresh operation

count. The actual execution of our long-running applications

ranges from seconds to several minutes (Table 1). As cycle-

accurate simulation of such long execution times cannot be

feasibly performed with current tools, we provide an alterna-

tive method to evaluate the performance impact of MEMCON.

The performance impact of MEMCON depends on two param-

eters: (i) the reduction in refresh count, and (ii) the execution

time overhead of testing. We evaluate the performance impact

of MEMCON in simulation (i) by modeling the refresh reduc-

tion we found in Section 6.1 for our long-running applications

and (ii) injecting extra memory accesses that are required for

testing. Section 6.1 demonstrates that the reduction in refresh

count ranges from 64.7% to 74.5% in our long-running applica-

tions. We model (i) two refresh reduction amounts (60% to 75%
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reduction compared to the baseline) on 30 single-core and four-

core workloads from SPEC [80] and server [84] applications,

and (ii) 256 concurrent memory tests performed every 64 ms by

injecting extra read/write accesses. Figure 15 shows that MEM-

CON’s performance improvement ranges from 10%/17%/40%

to 12%/22%/50% in a single-core system and 10%/23%/52% to

17%/29%/65% in a 4-core system for 8/16/32 Gb DRAM chips.
11

We conclude that (i) MEMCON provides signi�cant perfor-

mance improvement due to the large reduction in refresh count

it enables, and (ii) MEMCON’s performance improvement in-

creases with DRAM chip capacity.
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Figure 15: MEMCON’s range of performance improvement
with 60-75% refresh reduction over the baseline (16 ms refresh)

Analysis of testing overhead. In this section, we model

256-1024 concurrent tests every 64 ms in order to demonstrate

the impact of extra memory accesses that are required for test-

ing. Each test initiates extra memory requests to read, write,

and compare data content according to the test mechanism de-

scribed in Section 3.3. Running 1024 concurrent tests every 64

ms can test 8192 rows during every quantum (when the quan-

tum length is 512 ms). Table 3 shows the average performance

loss due to testing compared to the ideal case where testing has

no overhead. The results show that the performance impact

of extra accesses due to testing is very low, only 0.5%-1.9% on

average for single-core systems. The overhead is lower in the

multi-core system that can handle the extra accesses better

with more parallelism. We conclude that the extra accesses

due to testing have a negligible impact on performance. Note

that MEMCON’s full performance results in Figure 15 already

include this testing overhead.

Number of Concurrent Tests

256 512 1024

Single-core 0.54% 1.03% 1.88%

Four-core 0.05% 0.09% 0.48%

Table 3: Performance loss due to the extra accesses required
for testing by MEMCON

6.3. Performance Comparison to Other

Refresh Optimizations

MEMCON uses a 16 ms refresh interval for the HI-REF state

and a 64 ms of refresh interval for the LO-REF state. In this

section, we compare MEMCON with systems using other re-

fresh intervals and refresh optimization techniques. First, we

compare the performance bene�t of MEMCON to a system that

always uses a 32 ms refresh interval. This con�guration repre-

sents a system that uses a less aggressive baseline than ours.

11
We scale up the refresh operation count with DRAM chip capacity, as

done in prior works [13, 15, 31, 51, 67, 70].

Second, we compare MEMCON to a prior refresh optimization

work, RAIDR [52], which refreshes all rows with any possible
failure (for any possible data content in memory) at the HI-REF
state. This mechanism depends on identifying every failing

cell with an initial test and thus, relies on having access to the

internal DRAM layout to detect these failures. The LO/HI-REF
state evaluated for RAIDR is the same as ours (64/16 ms). We

model that 16% of all rows are refreshed at the HI-REF state

(when memory failures are randomly distributed with an error

rate of 10−5
), which matches our experimental data from real

DRAM chips in Figure 4. Third, we compare MEMCON with

the ideal system that always uses the LO-REF state (i.e., 64 ms)

for the entire memory, without any testing overhead (this is

the upper bound shown in Section 6.1).

Figures 16a and 16b provide three major observations. First,

MEMCON provides signi�cant performance bene�ts even over

a baseline with 32 ms refresh rate. On average, MEMCON im-

proves performance by 4%/6%/13% and 5%/8%/17% for 8/16/32

Gb DRAM chips in a single- and multi-core system over the

baseline that always uses a 32 refresh interval. Second, MEM-

CON consistently provides better performance than RAIDR.

This is because that RAIDR refreshes more rows at the HI-REF
state compared to MEMCON, as it detects every possible fail-

ure with an initial test and cannot exploit the fact that not all

content triggers errors. Note that we assume that the error

pro�ling information used for RAIDR is robust (and hence the

RAIDR mechanism does not lead to incorrect execution), even

though prior works have demonstrated that the worst-case pro-

�ling of every possible failure with every possible data content

in memory is extremely challenging [31, 32, 51, 67, 70]. Third,

MEMCON performs within 3-5% of the performance of the 64

ms refresh con�guration. This is expected because the refresh

reduction of MEMCON is close the the 75% upper bound (as

shown in Section 6.1).
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Figure 16: Comparison with other refresh mechanisms

We conclude that dynamically detecting and mitigating data-

dependent failures at the system-level using the current mem-

ory content, while detection and mitigation occurs simultane-

ously with program execution is a feasible and cost-e�ective

approach that performs better than prior approaches.

6.4. Evaluation of PRIL

We evaluate the coverage and the misprediction overhead

of PRIL when identifying the long write intervals. We also

analyze the storage overhead to implement PRIL.

Coverage of execution time. Figure 17 shows the fraction

of total execution time spent while operating at the LO-REF
state (referred to as coverage) when our prediction mechanism

uses three di�erent current interval lengths. On average, 95%
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Figure 17: Execution time coverage of PRIL (operating in the
LO-REF state)

of the total execution time is spent in the LO-REF state. We

conclude that PRIL is an e�ective mechanism that can detect

the long write intervals in real applications with high coverage.

Misprediction Overhead. MEMCON initiates testing for

any page that is predicted to be remain idle (e.g., likely not

be written to for a long time interval). However, as we have

demonstrated in Section 4.1, the prediction mechanism is not

completely accurate and MEMCON can initiate testing for some

pages that may receive write requests relatively soon in the fu-

ture. For these pages, the cost of testing would not be possible

to amortize, as these pages have to be refreshed at the HI-REF
state after the next write access. Figure 18 represents the frac-

tion of time MEMCON spends on testing (for both correctly

predicted and mispredicted pages) and refresh operations nor-

malized to the amount of time spent on refresh in the baseline

system. In the baseline all pages are refreshed with a 16 ms

refresh interval (HI-REF state). This �gure shows that the time

spent on testing (for both correctly and mispredicted pages)

is very small and constitutes, on average, only 0.01% of the

time spent on refresh operations in the baseline system. We

conclude that testing memory simultaneously with program ex-

ecution introduces negligible overhead even when some pages

are tested unnecessarily due to misprediction of long write

intervals with PRIL.
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Figure 18: Fraction of time MEMCON spends on refresh oper-
ations and testing normalized to time spent on refresh in the
baseline with 16 ms refresh

Storage Overhead. The storage overhead of PRIL comes

mainly from the write-maps and write-bu�ers (Section 4.2).

Write-maps are simple bit vectors, where each bit represents

one memory page. Therefore, the overhead of a write-map is

128KB for an 8GB memory with 8KB pages. Our workloads

access at most around 100K pages at each quantum, so we

cache the write-maps in a 12KB direct-mapped cache in the

memory controller. Note that predicting write intervals is o�

the critical path and does not a�ect performance. Write-bu�ers
store the addresses of pages that are idle for the length of the

quantum. We found that on average 4000 entries are enough to

hold the addresses in each quantum (in the applications that we

evaluate), leading to a storage overhead of 17KB in the mem-

ory controller. Note that these overheads can be optimized

by leveraging prior techniques that use the last-level cache to

store metadata [88] or co-locate data and metadata in memory

to reduce extra accesses for metadata [57, 71, 89]. We leave the

exploration of such optimizations for future work.

Sensitivity to Cache Size. Our mechanism relies on real

applications spending a large fraction of their execution time

on long write intervals. However, the distribution of writes

to memory can change depending on how data gets evicted

from the last-level cache based on cache contention or other

microarchitectural events. We analyze the probability of the

remaining interval length being greater than 1024 ms, when the

interval between two consecutive writes to a page becomes

smaller. To do so, we halve the write intervals for each appli-

cation. Figure 19a demonstrates that the distribution of the

write intervals slightly moves to the left when all intervals are

halved. As the write interval distribution shows an exponential

behavior (Section 4.1), most of the write intervals are less than 1

ms. Due to this behavior, Figure 19b shows that the probability

that the remaining interval length is greater than 1024 ms does

not change signi�cantly compared to the con�guration where

all write intervals were twice as long. We conclude that cache

size does not signi�cantly impact MEMCON.
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7. Related Work

To our knowledge, this is the �rst work to propose a system-

level detection and mitigation technique for data-dependent

failures that does not require knowledge of DRAM internals.

No prior work (i) proposes a technique that can detect and

mitigate failures based on program data content, (ii) demon-

strates the properties of write intervals in real applications, and

(iii) proposes a simple prediction mechanism to predict write

intervals in real applications.

We discuss some related and mostly complementary works

on DRAM failures and optimizing DRAM refresh. Note that,

even though we demonstrate the bene�ts of MEMCON in the

context of refresh optimization, MEMCON can be used to pro-

vide better reliability and scalability by detecting and miti-

gating failures at the system-level [32, 51, 67, 70] or to lower

latency/power of DRAM by detecting cells that fail when we

reduce the DRAM timing parameters/voltage [14, 17, 20, 45, 46].

System-Level DRAM Failure Detection. Prior works

demonstrate the di�culty of detecting data-dependent DRAM

failures at the system-level [31, 32, 51, 52, 67, 70]. Many of

these failures depend on the internal architecture of DRAM,

such as true-anti cell organization [51], open-closed bitline

architecture [16, 45], remapping of faulty cells [31], address

scrambling [31, 85], etc. Each DRAM chip can have failures

with di�erent data and access patterns and addresses. Some
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of this information can potentially be reverse-engineered with

elegant techniques [29, 31, 45]. However, prior works demon-

strate that, even then, some failures remain undetected [31].

Our work is the �rst to attempt to detect and mitigate data-

dependent failures without requiring information about DRAM

internal organization.

Multi-Rate DRAM Refresh. Prior works propose multi-

rate DRAM refresh mechanisms to reduce the performance and

energy impact of refresh operations [52, 53, 70, 86]. Many of

these works �rst pro�le the DRAM failures by simply writing

0/1s in memory and detecting data-dependent failures. They re-

fresh the rows with failures more frequently and rows without

failures less frequently, thereby reducing the refresh operation

count. Recent works demonstrate that simple testing mecha-

nisms cannot detect all possible data-dependent failures and

employing such simple mechanisms would result in bit �ips

and unreliable DRAM operation [32, 51, 67, 70]. MEMCON

is the �rst detection and mitigation mechanism that does not
depend on detecting all possible data-dependent failures.

Refresh Optimization. Other works reduce the perfor-

mance overhead of refresh by scheduling refresh operations

in a �exible way such that they interfere less with program

memory requests [15, 25, 60, 64, 83]. Our work is orthogonal,

as MEMCON can still be applied on top of these techniques

to reduce the overall refresh operation count and improve the

performance and energy e�ciency of the system.

Pareto Distribution in Real Workloads. Prior studies

demonstrate that jobs running in real systems follow the Pareto

distribution: only a small fraction of the jobs are the largest

ones, but they comprise most of the total load in the system [19,

73]. Similarly, Unix process lifetimes [19], sizes of �les and

web tra�c [18, 68, 73], lengths of memory episodes [40], and

memory errors across servers [58] are shown to follow the

Pareto distribution. No prior work demonstrates that the write

intervals in real workloads follow the Pareto distribution.

8. Conclusion

We introduce MEMCON, the �rst system-level detection and

mitigation technique for data-dependent DRAM failures that

completely decouples failure detection from internal DRAM

organization. MEMCON detects failures with the current con-
tent in memory by running online testing simultaneously with

program execution. As testing a page for data-dependent fail-

ures after every write to the page (i.e., whenever the data con-

tent changes) incurs a large performance and energy overhead,

MEMCON uses selective testing to initiate a test only when a

write to a page is predicted to be followed by a long interval

without any writes. MEMCON builds upon a simple, practical

mechanism that predicts such long write intervals based on our

observation that the write intervals in real workloads follow

a Pareto distribution: the longer a page remains idle (i.e., not

written to) after a write, the longer it is expected to remain

idle. Our detailed experimental analysis shows that MEMCON

greatly reduces refresh operation count and improves system

performance. We believe that our analysis and experimental

results will inspire future works to further develop and uti-

lize memory content-based failure detection and mitigation

techniques in real systems.
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Appendix

Cost of Read and Compare. There are three steps involved: (i) read
and store the in-test row in the memory controller, (ii) keep the in-test row idle

in memory for the duration of the target refresh interval to make sure victim

cells are tested with the least possible charge in them, and (iii) read back the

row again into the memory controller to compare its content to determine the

failures. Therefore, Read and Compare mode involves reading the entire row

into the memory controller twice. The cost of reading one row into the memory

controller includes activating the row (tRCD), reading the cache blocks into

the memory controller (128 * tCCD for a typical 8K row), and closing the row

by precharging (tRP) it. Therefore, the cost for two row reads in terms of

latency is 2*(tRCD + 128 * tCCD + tRP) = 1068 ns, using DDR3-1600 timing

parameters [27].

Cost of Copy and Compare. The Copy and Compare mode involves

reading the entire row into the memory controller twice (once before the test

and once after the test) and writing the entire row once into a new row. The

cost of Copy and Compare in terms of latency is 3*(tRCD + 128 * tCCD +

tRP) = 1602 ns, using DDR3-1600 timing parameters [27].

Cost of a Refresh Operation. A row is refreshed by activating (tRAS)

and precharging (tRP) it, making the cost of one refresh operation tRAS +

tRP = 39 ns, using DDR3-1600 timing parameters [27].

Storage Overhead of Copy and Compare. A 2 GB module consists of

32768 rows per bank (a total of 262144 rows in 8 banks). Reserving 512 rows

per bank (4K rows in total for all banks) for the special memory region to hold

the content of the in-test rows results in 4096 / 262144 * 100 = 1.56% overhead

of the total DRAM capacity.

https://github.com/samirakhan/MEMCON-data
https://github.com/samirakhan/MEMCON-data
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
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