
Gather-Scatter DRAM: In-DRAM Address Translation

to Improve the Spatial Locality of Non-unit Strided Accesses

Vivek Seshadri, Thomas Mullins, Amirali Boroumand,

Onur Mutlu, Phillip B. Gibbons*, Michael A. Kozuch†, Todd C. Mowry

Carnegie Mellon University †Intel Labs

Abstract

Many data structures (e.g., matrices) are typically ac-
cessed with multiple access patterns. Depending on the
layout of the data structure in physical address space,
some access patterns result in non-unit strides. In ex-
isting systems, which are optimized to store and access
cache lines, non-unit strided accesses exhibit low spatial
locality. Therefore, they incur high latency, and waste
memory bandwidth and cache space.
We propose the Gather-Scatter DRAM (GS-DRAM)

to address this problem. We observe that a commodity
DRAM module contains many chips. Each chip stores a
part of every cache line mapped to the module. Our idea
is to enable the memory controller to access multiple val-
ues that belong to a strided pattern from di�erent chips
using a single read/write command. To realize this idea,
GS-DRAM �rst maps the data of each cache line to dif-
ferent chips such that multiple values of a strided access
pattern are mapped to di�erent chips. Second, instead of
sending a separate address to each chip, GS-DRAM maps
each strided pattern to a small pattern ID that is commu-
nicated to the module. Based on the pattern ID, each
chip independently computes the address of the value
to be accessed. The cache line returned by the module
contains di�erent values of the strided pattern gathered
from di�erent chips. We show that this approach enables
GS-DRAM to achieve near-ideal memory bandwidth and
cache utilization for many common access patterns.
We design an end-to-end system to exploit GS-DRAM.

Our evaluations show that 1) for in-memory databases,
GS-DRAM obtains the best of the row store and the col-
umn store layouts, in terms of both performance and en-
ergy, and 2) for matrix-matrix multiplication, GS-DRAM
seamlessly enables SIMD optimizations and outperforms
the best tiled layout. Our framework is general, and can
bene�t many modern data-intensive applications.

*Phillip B. Gibbons was with Intel Labs for much of this work.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to repub-
lish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from Permissions@acm.org.

MICRO-48, December 05-09, 2015, Waikiki, HI, USA
Copyright 2015 ACM. ISBN 978-1-4503-4034-2/15/12...$15.00.
DOI: http://dx.doi.org/10.1145/2830772.2830820

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories

Keywords

Strided accesses, DRAM, Memory bandwidth, In-memory

databases, SIMD, Performance, Energy, Caches

1. Introduction

Many data structures are accessed with multiple access
patterns. Depending on the layout of the data structure
in the physical address space, some access patterns re-
sult in large non-unit strides. For instance, in-memory
databases [18, 22, 43] exhibit such strided accesses fre-
quently. While a database can be laid out as a row store
or a column store [45], accessing a column from a row
store (or vice versa) results in non-unit strided accesses.
Most databases typically run two kinds of queries: trans-
actions, which access many �elds from a few rows, or an-
alytics, which access one or few �elds from many rows.
Regardless of the layout, one of these two query types
would result in non-unit strided accesses. We use the
term strided accesses to refer to non-unit strides.

Existing systems are ine�cient in performing strided
accesses because the memory subsystem, i.e., caches and
main memory, is optimized to store and communicate
data at a cache line granularity. Unfortunately, the
cache line size (typically 64 bytes) is usually much larger
than the size of the individual data item involved in a
strided access (typically 4 or 8 bytes). Consequently,
strided accesses have two adverse e�ects on performance:
1) high latency, and 2) unnecessary memory bandwidth
and cache space consumption.

Figure 1 illustrates these two problems using a query
that accesses a single �eld in a database table. The �g-
ure shows the �rst four tuples of the table. We assume
each tuple contains four �elds and �ts in a cache line (as
shown in the �gure). The query accesses only the �rst
�eld of the table. First, each cache line contains only one
useful piece of data (shaded boxes in the �gure). As a re-
sult, the processor must fetch four times more cache lines
than necessary to access the required data. This signif-
icantly increases the latency of the operation, thereby
directly degrading the performance of the program per-
forming the operation. Second, although the program

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1. High Latency.

Each line contains

only one useful

value. The gather

requires four times

more cache lines.

2. Unnecessary

Bandwidth &

Cache Space.

Each cache line

brings data not

needed by the

application.

Field 1 (shaded boxes).
Data accessed by the query.

Cache Line (tuple)

Figure 1: Problems in accessing the �rst �eld (shaded boxes)
from a table in a cache-line-optimized memory system. The
box �ij� corresponds to the jth �eld of the ith tuple.

needs only the �rst �eld of the table, each cache line ac-
cess also brings along the remaining �elds of the table
into the cache. As a result, the strided access results in
ine�cient use of o�-chip memory bandwidth and on-chip
cache space, both of which are precious shared resources
in modern systems. This results in high interference
to other concurrently-running programs in the system,
thereby degrading overall system performance. While
the program can lay out the data structure to suit the
dominating access pattern, if multiple access patterns
occur frequently, existing systems cannot avoid strided
accesses. For example, an emerging database workload,
referred to as Hybrid Transaction/Analytical Processing
(HTAP) [3], runs both transactions and real-time ana-
lytics on the same version of the database table.

Given the importance of strided access patterns, sev-
eral prior works (e.g., Impulse [9, 53], Adaptive/Dynamic
Granularity Memory Systems [51, 52]) have proposed so-
lutions to improve the performance of strided accesses.
Unfortunately, prior works [9, 51, 52] require the o�-
chip memory interface to support �ne-grained memory
accesses [4, 5, 8, 50, 55] and, in some cases, a sectored
cache [30, 42]. These approaches signi�cantly increase
the cost of the memory interface and the cache tag store,
and potentially lower the utilization of o�-chip memory
bandwidth and on-chip cache space.

Our goal is to design a mechanism that 1) improves
the performance (cache hit rate and memory bandwidth
consumption) of strided accesses, and 2) works with com-
modity DRAM modules and traditional non-sectored
caches with very few changes.

To this end, we propose the Gather-Scatter DRAM
(GS-DRAM), a substrate that allows the memory con-
troller to gather or scatter data with strided access pat-
terns (speci�cally power-of-2 strides) e�ciently. Our ob-
servation is the following. Modern DRAM modules con-
sist of multiple chips. Each chip within a module con-
tains a part of every cache line stored in the module. Our
idea is to allow the memory controller to access multiple

values of a strided access pattern from di�erent chips
with a single read or write command. However, there
are two challenges in implementing this idea.

First, if multiple pieces of data required by an access
pattern are present in the same chip (referred to as chip
con�icts), then the memory controller must necessarily
issue one read or write for each such piece of data. To
address this problem, GS-DRAM uses a simple data shuf-
�ing mechanism that modi�es the way data of a cache
line is mapped to di�erent DRAM chips within a rank.
Our mapping scheme incurs minimal chip con�icts for
any power-of-2 strided access pattern. Second, in exist-
ing DRAM interfaces, all the chips within a rank access
the same address in response to a read or write com-
mand. To break this restriction, in GS-DRAM, with each
read or write command, the memory controller provides
a modi�er called the pattern ID. Based on the pattern
ID, each DRAM chip uses a simple column translation
logic to compute a new column address, and accesses
the corresponding piece of data. We show that a hand-
ful of pattern IDs and a simple column translation logic
(only two bitwise operations per chip) enables the mem-
ory controller to e�ciently gather or scatter any power-
of-2 strided access pattern. For instance, in the example
of Figure 1, the memory controller can access a cache line
that contains only the �rst �eld of four tuples from the
table, i.e., 00 10 20 30 , with nearly the same latency
as accessing any cache line from DRAM.

For applications to exploit our GS-DRAM substrate,
our mechanism needs support from various layers of the
system stack. The application instructs the processor
to use a speci�c access pattern by using the appropriate
pattern ID with the load and store instructions. Simi-
larly, the processor uses the pattern ID (along with the
cache line address) to locate gathered cache lines. Fi-
nally, we observe that many applications have only two
primary access patterns, and use this observation (as a
restriction) to simplify the support required to maintain
coherence of gathered cache lines. Section 4 discusses
our end-to-end system design and its associated cost.

We quantitatively evaluate GS-DRAM with two appli-
cations. First, for an in-memory database, we compare
the performance of GS-DRAM to a row store and a col-
umn store on a variety of workloads with transactions
and analytics. Our evaluations show that GS-DRAM pro-
vides the best of both the row store and column store lay-
outs for all workloads. More speci�cally, GS-DRAM per-
forms 2X better than the row store for analytical queries
and 3X better than the column store for transactions.
Second, for a General Matrix-Matrix (GEMM) multipli-
cation workload, GS-DRAM avoids the need for a soft-
ware gather to exploit SIMD optimizations, and outper-
forms the best tiled layout by 10%. Section 5 discusses
these results and other applications of GS-DRAM.

2

This paper makes the following contributions.

• We propose GS-DRAM, a substrate that exploits
the commodity DRAM architecture to enable the
memory controller to e�ciently gather or scatter
data with strided access patterns. GS-DRAM can be
implemented with negligible changes to commodity
DRAM modules and no changes to DRAM chips.

• We discuss and address several challenges (e.g.,
cache coherence) in designing an end-to-end system
to exploit the GS-DRAM substrate. Our mechanism
requires minimal changes to existing hardware (less
than 0.6% cache area cost).

• We demonstrate the power of GS-DRAM by evaluat-
ing its bene�ts on an emerging in-memory database
application, and a well-optimized matrix-matrix
multiplication workload. GS-DRAM outperforms
state-of-the-art mechanisms for both applications.

2. Background on DRAM

DRAM-based main memory is a multi-level hierarchy of
structures. At the highest level, each processor consists
of one or more DRAM channels. Each channel has a
dedicated command, address, and data bus. One or more
memory modules can be connected to each DRAM chan-
nel. Each memory module contains a number of DRAM
chips. As the data output width of each DRAM chip
is low (typically 8 bits for commodity DRAM), multi-
ple chips are grouped together to form a rank. All chips
within a rank share the command and address buses, but
each chip has its own dedicated data bus. As a result,
any command sent to a rank is processed by all the chips
within the rank, thereby increasing the data width of the
rank. Figure 2 shows the organization of a rank with 4
commodity DRAM chips (we use a 4-chip DRAM rank
just to simplify the explanation of our mechanism. Our
evaluations, however, use standard 8-chip 64-bit DRAM
ranks). With an 8-bit data width for each chip, the data
width of the rank is 32 bits.

Chip 0 Chip 1 Chip 2 Chip 3

cmd
addr

data (32 bits)

Figure 2: Organization of a DRAM rank with 4 chips.

Internally, each chip consists of multiple banks. Al-
though each bank is further divided into smaller struc-
tures [12, 26, 28, 41, 47], for the purposes of understand-
ing our mechanism, the following abstraction of a bank
is su�cient. Each bank consists of many rows of DRAM

cells, and a row bu�er that caches the last accessed row
from the bank. Each row contains many cache lines, each
identi�ed by the corresponding column address.

When the memory controller receives an access to a
cache line (32 bytes), it �rst determines the bank B, row
address R, and the column address C of the cache line
within the DRAM hierarchy. As the data of each cache
line is equally split across all four chips within the rank,
the memory controller maintains a mapping scheme to
determine which parts of the cache line are mapped to
which chips. One simple mapping scheme maps the ith

8 bytes of each cache line to the ith chip.

To read the cache line from DRAM, the memory con-
troller performs the following three steps. First, the
controller issues a PRECHARGE command to the bank B.
This step prepares the bank for a new access and can be
skipped if the bank is already in the precharged state.
Second, the controller issues an ACTIVATE command to
the bank with the address R. This command instructs
all the chips in the rank to copy the data from the cor-
responding row of DRAM cells to the row bu�er within
the bank. This step can also be skipped if the row R
within the bank is already activated. Finally, to access
the cache line, the controller issues a READ command to
the bank with the address C. Upon receiving the com-
mand, each chip accesses the corresponding column of
data (8 bytes) from the row bu�er and transfers it on
the data bus, 8 bits at a time. In DDR DRAM tech-
nology, data can be transferred on the bus in each half
cycle. As a result, the transfer takes 4 bus cycles. Once
the data is transferred, the memory controller assembles
the required cache line based on the cache-line-to-chip
mapping scheme, and sends the cache line back to the
processor. A WRITE operation is similar, except the data
is transferred from the memory controller to DRAM.1

3. The Gather-Scatter DRAM

We will use the database example in Section 1 (Figure 1)
to describe the challenges and the design of our mecha-
nism. To avoid confusion with DRAM terminology, we
will refer to the database rows and columns as tuples and
�elds, respectively. To recap, our example consists of a
database table with many tuples. Each tuple contains
four �elds and �ts exactly in a cache line. Therefore,
accessing any tuple from the table involves only a single
cache line read. On the other hand, accessing (only) a
single �eld from all the tuples requires the processor to
read all the �elds from all the tuples.

Our goal is to design a DRAM substrate that will en-
able the processor to access a �eld of the table (stored

1For detailed discussion DRAM organization and operation, we
refer the reader to other works (e.g., [23, 26, 27, 28, 31, 41, 49, 54]).

3

in tuple-major order) across all tuples, without incurring
the penalties of existing interfaces. More speci�cally, if
the memory controller wants to read the �rst �eld of the
�rst four tuples of the table, it must be able to issue
a single command that fetches the following gathered
cache line: 00 10 20 30 . At the same time, the con-
troller must be able to read a tuple from memory (e.g.,
00 01 02 03) with a single command. Our idea is to
enable the controller to access multiple values from a
strided access from di�erent chips within the rank with
a single command. However, there are two challenges in
implementing this idea.

3.1. Challenges in Designing GS-DRAM

Figure 3 shows the two challenges. We assume that the
�rst four tuples of the table are stored from the beginning
of a DRAM row. Since each tuple maps to a single cache
line, the data of each tuple is split across all four chips.
Based on the mapping scheme described in Section 2,
the ith �eld of each tuple is mapped to the ith chip.

00

10

20

30

01

11

21

31

02

12

22

32

03

13

23

33

Chip 0 Chip 1 Chip 2 Chip 3

column 1

cmd

addr

Challenge 1: The �rst �eld from all the tuples of
the table are mapped to the same chip. The mem-
ory controller must issue one READ for each value.
The �rst �eld of the tuples should be distributed
across all chips for the controller to gather them
with minimum READs.

Challenge 2: All the chips use the same address for
every READ/WRITE command. The memory con-
troller needs more �exibility to gather di�erent
access patterns.

Figure 3: The two challenges in designing GS-DRAM.

Challenge 1: Reducing chip con�icts. The simple map-
ping mechanism maps the �rst �eld of all the tuples to
Chip 0. Since each chip can send out only one �eld (8
bytes) per READ operation, gathering the �rst �eld of the
four tuples will necessarily require four READs. In a gen-
eral scenario, di�erent pieces of data that are required
by a gather operation will be mapped to di�erent chips.
When two such pieces of data are mapped to the same
chip, it results in what we call a chip con�ict. Chip con-

�icts increase the number of READs required to complete
the gather operation. Therefore, we have to map the
data structure to the chips in a manner that minimizes
the number of chip con�icts for target access patterns.

Challenge 2: Communicating the access pattern to the
module. As shown in Figure 3, in today's systems, when
a column command is sent to a rank, all the chips select
the same column from the activated row and send out
the data. If the memory controller needs to access the
�rst tuple of the table and the �rst �eld of the four tuples
each with a single READ operation, we need to break this
constraint and allow the memory controller to poten-
tially read di�erent columns from di�erent chips using a
single READ command. One naive way of achieving this
�exibility is to use multiple address buses, one for each
chip. Unfortunately, this approach is very costly as it sig-
ni�cantly increases the pin count of the memory channel.
Therefore, we need a simple and low cost mechanism to
allow the memory controller to e�ciently communicate
di�erent access patterns to the DRAM module.

In the following sections, we propose a simple mecha-
nism to address the above challenges with speci�c focus
on power-of-2 strided access patterns. While non-power-
of-2 strides (e.g., odd strides) pose some additional chal-
lenges (e.g., alignment), a similar approach can be used
to support non-power-of-2 strides as well.

3.2. Column ID-based Data Shu�ing

To address challenge 1, i.e., to minimize chip con�icts,
the memory controller must employ a mapping scheme
that distributes data of each cache line to di�erent
DRAM chips with the following three goals. First, the
mapping scheme should be able to minimize chip con-
�icts for a number of access patterns. Second, the mem-
ory controller must be able to succinctly communicate
an access pattern along with a column command to the
DRAM module. Third, once the di�erent parts of the
cache line are read from di�erent chips, the memory con-
troller must be able to quickly assemble the cache line.
Unfortunately, these goals are con�icting.

While a simple mapping scheme (e.g., the one de-
scribed in Section 2) enables the controller to assemble a
cache line by concatenating the data received from di�er-
ent chips, this scheme incurs a large number of chip con-
�icts for many frequently occurring access patterns (e.g.,
any power-of-2 stride > 1). On the other hand, pseudo-
random mapping schemes [38] potentially incur a small
number of con�icts for almost any access pattern. Un-
fortunately, such pseudo-random mapping schemes have
two shortcomings. First, for any cache line access, the
memory controller must compute which column of data
to access from each chip and communicate this infor-
mation to the chips along with the column command.

4

With a pseudo random interleaving, this communication
may require a separate address bus for each chip, which
would signi�cantly increase the cost of the memory chan-
nel. Second, after reading the data, the memory con-
troller must spend more time assembling the cache line,
increasing the overall latency of the READ operation.

We propose a simple column ID-based data shu�ing
mechanism that achieves a sweet spot by restricting our
focus to power-of-2 strided access patterns. Our shuf-
�ing mechanism is similar to a butter�y network [13],
and is implemented in the memory controller. To map
the data of the cache line with column address C to dif-
ferent chips, the memory controller inspects the n least
signi�cant bits (LSB) of C. Based on these n bits, the
controller uses n stages of shu�ing. Figure 4 shows an
example of a 2-stage shu�ing mechanism. In Stage 1
(Figure 4), if the LSB is set, our mechanism groups ad-
jacent 8-byte values in the cache line into pairs and swaps
the values within each pair. In Stage 2 (Figure 4), if the
second LSB is set, our mechanism groups the 8-byte val-
ues in the cache line into quadruplets, and swaps the
adjacent pairs of values. The mechanism proceeds simi-
larly into the higher levels, doubling the size of the group
of values swapped in each higher stage. The shu�ing
mechanism can be enabled only for those data struc-
tures that require our mechanism. Section 4.3 discusses
this in more detail.

v0 v1 v2 v3

v1 v0 v3 v2

v1 v0 v3 v2

Input Cache Line (four 8-byte values)

0 1

Column Address

Chip 0 Chip 1 Chip 2 Chip 3

Stage 1
(Swaps adjacent

values)

Stage 2
(Swaps adjacent
pairs of values)

Figure 4: 2-stage shu�ing mechanism that maps di�erent 8-
byte values within a cache line to a DRAM chip. For each
mux, 0 selects the vertical input, and 1 selects the cross input.

With this simple multi-stage shu�ing mechanism, the
memory controller can map data to DRAM chips such
that any power-of-2 strided access pattern incurs zero
chip con�icts for values within a single DRAM row.

3.3. Pattern ID: Low-cost Column Translation

The second challenge is to enable the memory controller
to �exibly access di�erent column addresses from di�er-

Address

to DRAM Chip

AND

XOR

MUX

cmd

addr
pattern

Chip ID

cmd = READ or
cmd = WRITE ?

Column
Translation
Logic (CTL)

Figure 5: Column Translation Logic (CTL). Each chip has its
own CTL. The CTL can be implemented in the DRAM module
(as shown in Figure 6). Each logic gate performs a bitwise
operation of the input values.

ent DRAM chips using a single READ command. To this
end, we propose a simple mechanism wherein the mem-
ory controller associates a pattern ID with each access
pattern. It provides this pattern ID with each column
command. Each DRAM chip then independently com-
putes a new column address based on 1) the issued col-
umn address, 2) the chip ID, and 3) the pattern ID. We
refer to this mechanism as column translation.

Figure 5 shows the column translation logic for a
single chip. As shown in the �gure, our mecha-
nism requires only two bitwise operations per chip to
compute the new column address. More speci�cally,
the output column address for each chip is given by
(Chip ID & Pattern ID) ⊕ Column ID, where Column

ID is the column address provided by the memory con-
troller. In addition to the logic to perform these simple
bitwise operations, our mechanism requires 1) a register
per chip to store the chip ID, and 2) a multiplexer to en-
able the address translation only for column commands.
While our column translation logic can be combined with
the column selection logic already present within each
chip, our mechanism can also be implemented within the
DRAM module with no changes to the DRAM chips.

Combining this pattern-ID-based column translation
mechanism with the column-ID-based data shu�ing
mechanism, the memory controller can gather or scatter
any power-of-two strided access pattern with no waste
in memory bandwidth.

3.4. GS-DRAM: Putting It All Together

Figure 6 shows the full overview of our GS-DRAM sub-
strate. The �gure shows how the �rst four tuples of our
example table are mapped to the DRAM chips using our
data shu�ing mechanism. The �rst tuple (column ID =
0) undergoes no shu�ing as the two LSBs of the column

5

ID are both 0 (see Figure 4). For the second tuple (col-
umn ID = 1), the adjacent values within each pairs of
values are swapped (Figure 4, Stage 1). Similarly, for
the third tuple (column ID = 2), adjacent pair of values
are swapped (Figure 4, Stage 2). For the fourth tuple
(column ID = 3), since the two LSBs of the column ID
are both 1, both stages of the shu�ing scheme are en-
abled (Figure 4, Stages 1 and 2). As shown in shaded
boxes in Figure 6, the �rst �eld of the four tuples (i.e.,
00 10 20 30) are mapped to di�erent chips, allowing the
memory controller to read them with a single READ com-
mand. The same is true for the other �elds of the table
as well (e.g., 01 11 21 31)

The �gure also shows the per-chip column translation
logic. To read a speci�c tuple from the table, the mem-
ory controller simply issues a READ command with pat-
tern ID = 0 and an appropriate column address. For
example, when the memory controller issues the READ

for column ID 2 and pattern 0, the four chips return the
data corresponding to the columns (2 2 2 2), which is the
data in the third tuple of the table (i.e., 22 23 20 21).
In other words, pattern ID 0 allows the memory con-
troller to perform the default read operation. Hence, we
refer to pattern ID 0 as the default pattern.

On the other hand, if the memory controller issues a
READ for column ID 0 and pattern 3, the four chips re-
turn the data corresponding to columns (0 1 2 3), which
precisely maps to the �rst �eld of the table. Similarly,
the other �elds of the �rst four tuples can be read from
the database by varying the column ID with pattern 3.

3.5. GS-DRAM Parameters

GS-DRAM has three main parameters: 1) the number of
chips in each module, 2) the number of shu�ing stages
in the data shu�ing mechanism, and 3) the number of

00

11

22

33

01

10

23

32

02

13

20

31

03

12

21

30

Chip 0 Chip 1 Chip 2 Chip 3

Adjacent values swapped Adjacent pairs swapped

CTL-0 CTL-1 CTL-2 CTL-3

cmd

addr
pattern

Figure 6: GS-DRAM Overview. CTL-i is the column transla-
tion logic with Chip ID = i (Figure 5).

bits of pattern ID. While the number of chips determines
the size of each cache line, the other two parameters de-
termine the set of access patterns that can be e�ciently
gathered by GS-DRAM. We use the term GS-DRAMc,s,p

to denote a GS-DRAM with c chips, s stages of shu�ing,
and p bits of pattern ID.

Figure 7 shows all possible cache lines that can be
gathered by GS-DRAM4,2,2, with the four possible pat-
terns for column IDs 0 through 3. For each pattern ID
and column ID combination, the �gure shows the index
of the four values within the row bu�er that are retrieved
from the DRAMmodule. As shown in the �gure, pattern
0 retrieves contiguous values. Pattern 1 retrieves every
other value (stride = 2). Pattern 2 has a dual stride of
(1,7). Pattern 3 retrieves every 4th value (stride = 4).
In general, pattern 2k − 1 gathers data with a stride 2k.

DRAM Cache line

Col ID retrieved

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

DRAM Cache line

Col ID retrieved

0 0 2 4 6

1 1 3 5 7

2 8 10 12 14

3 9 11 13 15

DRAM Cache line

Col ID retrieved

0 0 1 8 9

1 2 3 10 11

2 4 5 12 13

3 6 7 14 15

DRAM Cache line

Col ID retrieved

0 0 4 8 12

1 1 5 9 13

2 2 6 10 14

3 3 7 11 15

P
a
tt
e
rn

=
0

S
tr
id
e
=

1

P
a
tt
e
rn

=
1

S
tr
id
e
=

2

P
a
tt
e
rn

=
2

S
tr
id
e
=

1
,7

P
a
tt
e
rn

=
3

S
tr
id
e
=

4

Figure 7: List of cache lines gathered by GS-DRAM4,2,2 for all
possible patterns for column IDs 0�3. Each circle contains the
index of the 8-byte value inside the logical row bu�er.

While we showed a use case for pattern 3 (in our ex-
ample), we envision use-cases for other patterns as well.
Pattern 1, for instance, can be useful for data structures
like key-value stores. Assuming an 8-byte key and an 8-
byte value, the cache line (Patt 0, Col 0) corresponds
to the �rst two key-value pairs. However the cache line
(Patt 1, Col 0) corresponds to the �rst four keys, and
(Patt 1, Col 1) corresponds to the �rst four values.
Similarly, pattern 2 can be use to fetch odd-even pairs
of �elds from an object with 8 �elds.

Our mechanism is general. For instance, with
GS-DRAM8,3,3 (i.e., 8 chips, 3 shu�ing stages, and 3
bits of pattern ID), the memory controller can access
data with seven di�erent patterns (e.g., pattern 7 re-
sults in a stride of 8). Section 6 discusses other simple
extensions to our approach to enable more �ne-grained
gather access patterns, and larger strides.

6

3.6. Ease of Implementing GS-DRAM

In Section 5, we will show that GS-DRAM has com-
pelling performance and energy bene�ts compared to
existing DRAM interfaces. These bene�ts are aug-
mented by the fact that GS-DRAM is simple to imple-
ment. First, our data shu�ing mechanism is simple and
has low latency. Each stage involves only data swap-
ping and takes at most one processor cycle. Our eval-
uations use GS-DRAM8,3,3, thereby incurring 3 cycles
of additional latency to shu�e/unshu�e data for each
DRAM write/read. Second, for GS-DRAM∗,∗,p, the col-
umn translation logic requires only two p-bit bitwise op-
erations, a p-bit register to store the chip ID, and a p-bit
multiplexer. In fact, this mechanism can be implemented
as part of the DRAM module without any changes to the
DRAM chips themselves. Finally, third, GS-DRAM re-
quires the memory controller to communicate only k bits
of pattern ID to the DRAM module, adding only a few
pins to each channel. In fact, the column command in
existing DDR DRAM interfaces already has a few spare
address pins that can potentially be used by the memory
controller to communicate the pattern ID (e.g., DDR4
has two spare address pins for column commands [21]).

4. End-to-end System Design

In this section, we discuss the support required from the
rest of the system stack to exploit the GS-DRAM sub-
strate. In this paper, we propose a mechanism that lever-
ages support from di�erent layers of the system stack
to exploit GS-DRAM: 1) on-chip caches, 2) the instruc-
tion set architecture, and 3) software. It is also possible
for the processor to dynamically identify di�erent access
patterns present in an application and exploit GS-DRAM
to accelerate such patterns transparently to the applica-
tion. As our goal in this work is to demonstrate the
bene�ts of GS-DRAM, we leave the design of such an au-
tomatic mechanism for future work. The following sec-
tions assume a GS-DRAM∗,∗,p, i.e., a p-bit pattern ID.

4.1. On-Chip Cache Support

Our mechanism introduces two problems with respect
to on-chip cache management. First, when the mem-
ory controller gathers a cache line from a non-zero pat-
tern ID, the values in the cache line are not contiguously
stored in physical memory. For instance, in our example
(Figure 1), although the controller can fetch the �rst �eld
of the �rst four tuples of the table with a single READ,
the �rst �eld of the table is not stored contiguously in
physical memory. Second, two cache lines belonging to
di�erent patterns may have a partial overlap. In our ex-
ample (Figure 1), if the memory controller reads the �rst

tuple (pattern ID = 0, column ID = 0) and the �rst �eld
of the �rst four tuples (pattern ID = 3, column ID = 0),
the two resulting cache lines have a common value (the
�rst �eld of the �rst tuple, i.e., 00).

One simple way to avoid these problems is to store the
individual values of the gathered data in di�erent phys-
ical cache lines by employing a sectored cache [30] (for
example). However, with the o�-chip interface to DRAM
operating at a wider-than-sector (i.e., a full cache line)
granularity, such a design will increase the complexity
of the cache-DRAM interface. For example, writebacks
may require read-modify-writes as the processor may not
have the entire cache line. More importantly, a mecha-
nism that does not store the gathered values in the same
cache line cannot extract the full bene�ts of SIMD op-
timizations because values that are required by a single
SIMD operation would now be stored in multiple phys-
ical cache lines. Therefore, we propose a simple mecha-
nism that stores each gathered cache line from DRAM
in a single physical cache line in the on-chip cache. Our
mechanism has two aspects.

1. Identifying non-contiguous cache lines. When a
non-contiguous cache line is stored in the cache, the
cache controller needs a mechanism to identify the cache
line. We observe that, in our proposed system, each
cache line can be uniquely identi�ed using the cache line
address and the pattern ID with which it was fetched
from DRAM. Therefore, we extend each cache line tag
in the cache tag store with p additional bits to store the
pattern ID of the corresponding cache line.

2. Maintaining cache coherence. The presense of over-
lapping cache lines has two implications on cache coher-
ence. First, before fetching a cache line from DRAM, the
controller must check if there are any dirty cache lines in
the cache which have a partial overlap with the cache line
being fetched. Second, when a value is modi�ed by the
processor, in addition to invalidating the modi�ed cache
line from the other caches, the processor must also in-
validate all other cache lines that contain the value that
is being modi�ed. With a number of di�erent available
patterns, this can be a complex and costly operation.

Fortunately, we observe that many applications that
use strided accesses require only two pattern IDs per
data structure, the default pattern and one other pattern
ID. Thus, as a trade-o� to simplify cache coherence, we
restrict each data structure to use only the zero pattern
and one other pattern ID. To implement this constraint,
we associate each virtual page with an additional p-bit
pattern ID. Any access to a cache line within the page
can use either the zero pattern or the page's pattern ID.
If multiple virtual pages are mapped to the same phys-
ical page, the OS must ensure that the same alternate
pattern ID is used for all mappings.

7

Before fetching a cache line from DRAM with a pat-
tern, the memory controller must only look for dirty
cache lines from the other pattern. Since all these cache
lines belong to the same DRAM row, this operation is
fast and can be accelerated using simple structures like
the Dirty-Block Index [40]. Similarly, when the proces-
sor needs to modify a shared cache line, our mechanism
piggybacks the other pattern ID of the page along with
the read-exclusive coherence request. Each cache con-
troller then locally invalidates the cache lines from the
other pattern ID that overlap with the cache line being
modi�ed. For GS-DRAMc,∗,∗, our mechanism requires c
additional invalidations for each read-exclusive request.

4.2. Instruction Set Architecture Support

To enable software to communicate strided access pat-
terns to the processor, we introduce a new variant of the
load/store instruction, called pattload/pattstore
that enable the application to specify the pattern ID.
These new instructions takes the following form:

pattload reg, addr, patt

pattstore reg, addr, patt

where reg is the destination register, addr is the address
of the data, and patt is the pattern ID.
To execute a pattload or pattstore, the processor

�rst splits the addr �eld into two parts: the cache line
address (caddr), and the o�set within the cache line
(offset). Then the processor sends out a request for
the cache line with address-pattern combination (caddr,
patt). If the cache line is present in the on-chip cache, it
is sent to the processor. Otherwise, the request reaches
the memory controller. The memory controller identi-
�es the row address and the column address from caddr

and issues a READ command for a cache line with pat-
tern ID patt. If the memory controller interleaves cache
lines across multiple channels (or ranks), then it must
access the corresponding cache line within each channel
(or rank) and interleave the data from di�erent channels
appropriately before obtaining the required cache line.
The cache line is then stored in the on-chip cache and is
also sent to the processor. After receiving the cache line,
the processor reads or updates the data at the offset

to or from the destination or source register (reg).
Note that architectures like x86 allow instructions to

directly operate on memory by using di�erent addressing
modes to specify memory operands [1]. For such archi-
tectures, common addressing modes may be augmented
with a pattern ID �eld, or instruction pre�xes may be
employed to specify the pattern.

4.3. System and Application Software Support

Our mechanism requires two pieces of information from
the software for each data structure: 1) whether the

data structure requires the memory controller to use the
shu�ing mechanism (Section 3.2) (we refer to this as
the shu�e �ag), and 2) the alternate pattern ID (Sec-
tion 3.3) with which the application will access the data
structure. To enable the application to specify this infor-
mation, we propose a new variant of the malloc system
call, called pattmalloc, which includes two additional
parameters: the shu�e �ag, and the pattern ID. When
the OS allocates virtual pages for a pattmalloc, it also
updates the page tables with the shu�e �ag and the al-
ternate pattern ID for those pages.

Once the data structure is allocated with pattmalloc,
the application can use the pattload or pattstore in-
struction to access the data structure e�ciently with
both the zero pattern and the alternate access pattern.
While we can envision automating this process using a
compiler optimization, we do not explore that path in
this paper. Figure 8 shows an example piece of code be-
fore and after our optimization. The original code (line
5) allocates an array of 512 objects (each object with
eight 8-byte �elds) and computes the sum of the �rst
�eld of all the objects (lines 8 and 9). The �gure high-
lights the key bene�t of our approach.

In the program without our optimization (Figure 8,
left), each iteration of the loop (line 9) fetches a di�er-
ent cache line. As a result, the entire loop accesses 512
di�erent cache lines. On the other hand, with our op-
timization (Figure 8, right), the program �rst allocates
memory for the array using pattmalloc (line 5), with
the shu�e �ag enabled and an alternate pattern ID =
7 (i.e., stride of 8). The program then breaks the loop
into two parts. Each iteration of the outer loop (line 8)
fetches a single strided cache line that contains only val-
ues from the �rst �eld. The loop skips the other �elds (i
+= 8). The inner loop (lines 9-11) iterates over values
within each strided cache line. In the �rst iteration of
the inner loop, the pattload instruction with pattern
ID 7 fetches a cache line with a stride of 8. As a re-
sult, the remaining seven iterations of the inner loop re-
sult in cache hits. Consequently, with our optimization,
the entire loop accesses only 64 cache lines. As we will
show in our evaluations, this reduction in the number
of accessed cache lines directly translates to reduction
in latency, bandwidth consumption, and cache capacity
consumption, thereby improving overall performance.

4.4. Hardware Cost

In this section, we quantify the changes required by our
mechanism, speci�cally GS-DRAM8,3,3 (Section 3.5), to
various hardware components. On the DRAM side, �rst,
our mechanism requires the addition of the column trans-
lation logic (CTL) for each DRAM chip. Each CTL re-
quires a 3-bit register for the Chip ID, a 3-bit bitwise

8

1. struct Obj {

2. int64 field[8];

3. };

4. ...

5. arr = malloc(512 * sizeof(Obj));

6. ...

7. int64 sum = 0;

8. for (int i = 0; i < 512; i ++)

9. sum += arr[i].field[0];

1. struct Obj {

2. int64 field[8];

3. };

4. ...

5. arr = pattmalloc(512 * sizeof(Obj), SHUFFLE, 7);

6. ...

7. int64 sum = 0;

8. for (int i = 0; i < 512; i += 8)

9. for (int j = 0; j < 8; j ++)

10. pattload r1, arr[i] + 8*j, 7

11. sum += r1

Before Optimization After Optimization

One cache line

for each �eld
One cache line

for eight �elds

Enable shu�ing

for arr

Pattern 7 gathers

a stride of 8

Access cache line

with stride of 8

Figure 8: Example code without and with our optimization.

AND gate, a 3-bit bitwise XOR gate and a 3-bit bitwise
multiplexer. Even for a commodity DRAM module with
8 chips, the overall cost is roughly 72 logic gates and
24 bits of register storage, which is negligible compared
to the logic already present in a DRAM module. Sec-
ond, our mechanism requires a few additional pins on the
DRAM interface to communicate the pattern ID. How-
ever, existing DRAM interfaces already have some spare
address bits, which can be used to communicate part of
the pattern ID. Using this approach, a 3-bit pattern ID
requires only one additional pin for DDR4 [21].
On the processor side, �rst, our mechanism requires

the controller to implement the shu�ing logic. Second,
our mechanism augments each cache tag entry with the
pattern ID. Each page table entry and TLB entry stores
the shu�e �ag and the alternate pattern ID for the corre-
sponding page (Section 4.1). For a 3-bit pattern ID, the
cost of this addition is less than 0.6% of the cache size.
Finally, the processor must implement the pattload and
pattstore instructions, and the state machine for invali-
dating additional cache lines on read-exclusive coherence
requests. The operation of pattload/pattstore is not
very di�erent from that of a regular load/store instruc-
tion. Therefore, we expect the implementation of these
new instructions to be simple. Similarly, on a write,
our mechanism has to check only eight cache lines (for
GS-DRAM with 8 chips) for possible overlap with the
modi�ed cache line. Therefore, we expect the invalida-
tion state machine to be relatively simple. Note that a
similar state machine has been used to keep data coher-
ent in a virtually-indexed physically-tagged cache in the
presence of synonyms [2].

5. Applications and Evaluations

To quantitatively evaluate the bene�ts of GS-DRAM, we
implement our framework in the Gem5 simulator [7], on
top of the x86 architecture. We implement the pattload

instruction by modifying the behavior of the prefetch

instruction to gather with a speci�c pattern into ei-
ther the rax register (8 bytes) or the xmm0 register (16
bytes). None of our evaluated applications required the
pattstore instruction. Table 1 lists the main parame-
ters of the simulated system. All caches uniformly use
64-byte cache lines. While we envision several applica-
tions to bene�t from our framework, in this section, we
primarily discuss and evaluate two applications: 1) an
in-memory database workload, and 2) general matrix-
matrix multiplication workload.

Processor 1-2 cores, x86, in-order, 4 GHz

L1-D Cache Private, 32 KB, 8-way associative, LRU policy

L1-I Cache Private, 32 KB, 8-way associative, LRU policy

L2 Cache Shared, 2 MB, 8-way associative, LRU policy

Memory
DDR3-1600, 1 channel, 1 rank, 8 banks

Open row, FR-FCFS [39, 56], GS-DRAM8,3,3

Table 1: Main parameters of the simulated system.

5.1. In-Memory Databases

In-memory databases (IMDB) (e.g., [18, 22, 43]) provide
signi�cantly higher performance than traditional disk-
oriented databases. Similar to any other database, an
IMDB may support two kinds of queries: transactions,
which access many �elds from a few tuples, and ana-
lytics, which access one or few �elds from many tuples.
As a result, the storage model used for the database
tables heavily impacts the performance of transactions
and analytical queries. As mentioned in Section 1, while
a row-oriented organization (row store) is better for
transactions, a column-oriented organization [45] (col-
umn store) is better for analytics. Increasing need for
both fast transactions and fast real-time analytics has
given rise to a new workload referred to as Hybrid Trans-

9

action/Analytical Processing (HTAP) [3]. In an HTAP
workload, both transactions and analytical queries are
run on the same version of the database. Unfortunately,
neither the row store nor the column store provides the
best performance for both transactions and analytics.
With our GS-DRAM framework, each database table

can be stored as a row store in memory, but can be
accessed at high performance both in the row-oriented
access pattern and the �eld-oriented access pattern.2

Therefore, we expect GS-DRAM to provide the best of
both row and column layouts for both kinds of queries.
We demonstrate this potential bene�t by comparing the
performance of GS-DRAM with both a row store layout
(Row Store) and a column store layout (Column Store) on
three workloads: 1) a transaction-only workload, 2) an
analytics-only workload, and 3) an HTAP workload. For
our experiments, we assume an IMDB with a single ta-
ble with one million tuples and no use of compression.
Each tuple contains eight 8-byte �elds, and �ts exactly
in a 64B cache line. (Our mechanism naturally extends
to any table with power-of-2 tuple size.)
Transaction workload. For this workload, each

transaction operates on a randomly-chosen tuple, access-
ing i, j, and k �elds in the read-only, write-only, and
read-write mode, respectively. Figure 9 compares the
performance (execution time) of GS-DRAM, Row Store,
and Column Store on the transaction workload for var-
ious values of i, j, and k (x-axis). The workloads are
sorted based on the total number of �elds accessed by
each transaction. For each mechanism, the �gure plots
the execution time for running 10000 transactions.

Row Store Column Store GS-DRAM

1

2

3

4

5

6

7

8

9

1-0-1 2-1-0 0-2-2 2-4-0 5-0-1 2-0-4 6-1-0 4-2-2

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
o
n
cy
cl
es
)

Figure 9: Transaction Workload Performance: Execution time
for 10000 transactions. The x-axis indicates the number of
read-only, write-only, and read-write �elds for each workload.

We draw three conclusions. First, as each trans-
action accesses only one tuple, it accesses only one
cache line. Therefore, the performance of Row Store

is almost the same regardless of the number of �elds

2GS-DRAM requires the database to be structured (i.e., not have
any variable length �elds). This is �ne for most high-performance
IMDBs as they handle variable length �elds using �xed size point-
ers for fast data retrieval [19, 32]. GS-DRAM will perform at least
as well as the baseline for unstructured databases.

read/written by each transaction. Second, the perfor-
mance of Column Store is worse than that of Row Store,
and decreases with increasing number of �elds. This is
because Column Store accesses a di�erent cache line for
each �eld of a tuple accessed by a transaction, thereby
causing a large number of memory accesses. Finally, as
expected, GS-DRAM performs as well as Row Store and
3X (on average) better than Column Store for the trans-
actions workload.
Analytics workload. For this workload, we measure

the time taken to run a query that computes the sum of
k columns from the table. Figure 10 compares the per-
formance of the three mechanisms on the analytics work-
load for k = 1 and k = 2. The �gure shows the perfor-
mance of each mechanism without and with prefetching.
We use a PC-based stride prefetcher [6] (with prefetching
degree of 4 [44]) that prefetches data into the L2 cache.
We draw several conclusions from the results.

Row Store

Column Store

GS-DRAM

10

20

30

40

50

60

1 Column 2 Columns 1 Column 2 Columns

Without Prefetching With Prefetching

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
o
n
cy
cl
es
)

Figure 10: Analytics Workload Performance: Execution time
for running an analytics query on 1 or 2 columns (without and
with prefetching).

First, prefetching signi�cantly improves the perfor-
mance of all three mechanisms for both queries. This is
expected as the analytics query has a uniform stride for
all mechanisms. Second, the performance of Row Store is
roughly the same for both queries. This is because each
tuple of the table �ts in a single cache line and hence,
the number of memory accesses for Row Store is the same
for both queries (with and without prefetching). Third,
the execution time of Column Store increases with more
�elds. This is expected as Column Store needs to fetch
more cache lines when accessing more �elds from the ta-
ble. Regardless, Column Store signi�cantly outperforms
Row Store for both queries, as it causes far fewer cache
line fetches compared to Row Store. Finally, GS-DRAM,
by gathering the columns from the table as e�ciently
as Column Store, performs similarly to Column Store and
signi�cantly better than Row Store both without and
with prefetching (2X on average).
HTAP workload. For this workload, we run one

analytics thread and one transactions thread concur-
rently on the same system operating on the same ta-

10

ble. The analytics thread computes the sum of a single
column, whereas the transactions thread runs transac-
tions (on randomly chosen tuples with one read-only and
one write-only �eld) until the analytics thread completes.
We measure 1) the time taken to complete the analytics
query, and 2) the transaction throughput. Figures 11a
and 11b plot these results, without and with prefetching.

Row Store Column Store GS-DRAM

10

20

30

40

50

60

70

80

w/o Pref. Pref.

E
xe

cu
ti

on
T

im
e

(m
ill

io
n

cy
cl

es
)

(a) Analytics Performance

3
6
9

12
15
18
21
24
27

w/o Pref. Pref.

T
ra

ns
ac

ti
on

T
hr

ou
gh

pu
t

(m
ill

io
ns

/s
ec

)

(b) Transaction Throughput

Figure 11: HTAP (without and with prefetching) (transactions:
1 read-only, 1 write-only �eld; analytics: 1 column)

First, for analytics, prefetching signi�cantly improves
performance for all three mechanisms. GS-DRAM per-
forms as well as Column Store. Second, for transac-
tions, we �nd that GS-DRAM not only outperforms
Column Store, in terms of transaction throughput, but
it also performs better than Row Store. We traced this
e�ect back to inter-thread contention for main mem-
ory bandwidth, a well-studied problem (e.g., [17, 24, 25,
34, 35, 46]). The FR-FCFS [39, 56] memory scheduler
prioritizes requests that hit in the row bu�er. With
Row Store, the analytics thread accesses all the cache
lines in a DRAM row, thereby starving requests of the
transaction thread to the same bank (similar to a mem-
ory performance hog program described in [33]). In con-
trast, by fetching just the required �eld, GS-DRAM ac-
cesses 8 times fewer cache lines per row. As a result,
it stalls the transaction thread for much smaller amount
of time, leading to higher transaction throughput than
Row Store. The problem becomes worse for Row Store

with prefetching, since the prefetcher makes the analyt-
ics thread run even faster, thereby consuming a larger
fraction of the memory bandwidth.
Energy. We use McPAT [29] and DRAMPower [10, 11]

(integrated with Gem5 [7]) to estimate the processor
and DRAM energy consumption of the three mecha-
nisms. Our evaluations show that, for transactions,
GS-DRAM consumes similar energy to Row Store and
2.1X lower than Column Store. For analytics (with
prefetching enabled), GS-DRAM consumes similar en-
ergy to Column Store and 2.4X lower energy (4X without
prefetching) than Row Store. (As di�erent mechanisms

perform di�erent amounts of work for the HTAP work-
load, we do not compare energy for this workload.) The
energy bene�ts of GS-DRAM come from 1) lower overall
processor energy consumption due to reduced execution
time, and 2) lower DRAM energy consumption due to
signi�cantly fewer memory accesses.
Figure 12 summarizes the performance and energy

bene�ts of GS-DRAM over Row Store and Column Store

for the transaction workload and the analytics workload.
We conclude that GS-DRAM provides the best of both
the row store and the column store layouts.

Row Store Column Store GS-DRAM

1

2

3

4

5

6

7

8

Trans. Anal.

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
o
n
cy
cl
es
)

(a) Average Performance

10

20

30

40

50

60

70

80

90

Trans. Anal.

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(m

J
)

(b) Average Energy

Figure 12: Summary of performance and energy consumption
for the transactions and analytics workloads

5.2. Scienti�c Computation: GEMM

General Matrix-Matrix (GEMM) multiplication is an
important kernel in many scienti�c computations. When
two n×n matrices A and B are multiplied, the matrix A
is accessed in the row-major order, whereas the matrix
B is accessed in the column-major order. If both matri-
ces are stored in row-major order, a naive algorithm will
result in poor spatial locality for accesses to B. To mit-
igate this problem, matrix libraries use two techniques.
First, they split each matrix into smaller tiles, converting
the reuses of matrix values into L1 cache hits. Second,
they use SIMD instructions to speed up each vector dot
product involved in the operation.
Unfortunately, even after tiling, values of a column of

matrix B are stored in di�erent cache lines. As a result,
to exploit SIMD, the software must gather the values of
a column into a SIMD register. In contrast, GS-DRAM
can read each tile of the matrix in the column-major
order into the L1 cache such that each cache line contains
values gathered from one column. As a result, GS-DRAM
naturally enables SIMD operations, without requiring
the software to gather data into SIMD registers.
Figure 13 plots the performance of GEMM with

GS-DRAM and with the best-performing tiled version
normalized to a non-tiled version for di�erent sizes (n)

11

11%

11%

11% 10%
10%

10%

Best Tiling GS-DRAM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

32 64 128 256 512 1024

N
o
rm

a
li
ze
d
E
x
ec
u
ti
o
n

T
im

e
(l
ow

er
is
b
et
te
r)

Size of the Matrices

Figure 13: GEMM Multiplication: Performance of GS-DRAM
and the best tiled-version (normalized to a non-tiled baseline).
Values on top indicate percentage reduction in execution time
of GS-DRAM compared to tiling.

of the input matrices. We draw two conclusions. First,
as the size of the matrices increases, tiling provides sig-
ni�cant performance improvement by eliminating many
memory references. Second, by seamlessly enabling
SIMD operations, GS-DRAM improves the performance
of GEMM multiplication by 10% on average compared
to the best tiled baseline. Note that GS-DRAM achieves
10% improvement over a heavily-optimized tiled baseline
that spends most of its time in the L1 cache.

5.3. Other Applications

We envision GS-DRAM to bene�t many other applica-
tions like key-value stores, graph processing, and graph-
ics. Key-value stores have two main operations: insert
and lookup. The insert operation bene�ts from both
the key and value being in the same cache line. On the
other hand, the lookup operation bene�ts from accessing
a cache line that contains only keys. Similarly, in graph
processing, operations that update individual nodes in
the graph have di�erent access patterns than those that
traverse the graph. In graphics, multiple pieces of infor-
mation (e.g., RGB values of pixels) may be packed into
small objects. Di�erent operations may access multiple
values within an object or a single value across a large
number of objects. The di�erent access patterns exhib-
ited by these applications have a regular stride and can
bene�t signi�cantly from GS-DRAM.

6. Extensions to GS-DRAM

In this section, we describe three simple extensions
to GS-DRAM: 1) programmable shu�ing, 2) wider pat-
tern IDs, and 3) intra-chip column translation. These
extensions (together or individually) allow GS-DRAM to
1) express more patterns (e.g., larger strides), 2) gather
or scatter data at a granularity smaller than 8 bytes, and
3) enable ECC support.

6.1. Programmable Shu�ing

Although our shu�ing mechanism uses the least signif-
icant bits of the column ID to control the shu�ing stages,
there are two simple ways of explicitly controlling which
shu�ing stages are active. First, we can use a shu�e
mask to disable some stages. For example, the shu�e
mask 10 disables swapping of adjacent values (Figure 4,
Stage 1). Second, instead of using the least signi�cant
bits to control the shu�ing stages, we can choose dif-
ferent combinations of bits (e.g., XOR of multiple sets
of bits [14, 48]). To enable programmable shu�ing, we
add another parameter to GS-DRAM called the shu�ing
function, f . For GS-DRAMc,s,p,f , the function f takes a
column ID as input and generates an n-bit value that is
used as the control input to the n shu�ing stages. The
function f can be application-speci�c, thereby optimiz-
ing GS-DRAM for each application.

6.2. Wider Pattern IDs

Although a wide pattern ID comes at additional cost,
using a wider pattern ID allows the memory controller
to express more access patterns. However, the column
translation logic (CTL) performs a bitwise AND of the
chip ID and the pattern ID to create a modi�er for the
column address. As a result, even if we use a wide
pattern ID, a small chip ID disables the higher order
bits of the pattern ID. Speci�cally, for GS-DRAMc,∗,p, if
p > log c, the CTL uses only the least signi�cant log c
bits of the pattern ID. To enable wider pattern IDs, we
propose to simply widen the chip ID used by the CTL
by repeating the physical chip ID multiple times. For
instance, with 8 chips and a 6-bit pattern ID, the chip
ID used by CTL for chip 3 will be 011-011 (i.e., 011
repeated twice). With this simple extension, GS-DRAM
can enable more access patterns (e.g., larger strides).

6.3. Intra-Chip Column Translation

Although we have assumed that each DRAM bank has
a single wide row-bu�er, in reality, each DRAM bank is a
2-D collection of multiple small tiles or MATs [26, 47, 54].
Similar to how each chip within a rank contributes 64
bits to each cache line, each tile contributes equally to
the 64 bits of data supplied by each chip. We can use
the column translation logic within each DRAM chip
to select di�erent columns from di�erent tiles for a sin-
gle READ or WRITE. This mechanism has two bene�ts.
First, with the support for intra-chip column translation,
we can gather access patterns at a granularity smaller
than 8 bytes. Second, with DIMMs that support ECC,
GS-DRAM may incur additional bandwidth to read all
the required ECC values for non-zero patterns. How-
ever, if we use a chip that supports intra-chip column
selection for ECC, accesses with non-zero patterns can
gather the data from the eight data chips and gather the

12

ECC from the eight tiles within the ECC chip, thereby
seamlessly supporting ECC for all access patterns.

7. Related Work

To our knowledge, this is the �rst work to exploit
DRAM architecture to improve the spatial locality of
strided accesses and provide e�cient gather/scatter sup-
port by introducing simple data mapping and logic
changes. In this section, we compare GS-DRAM to sev-
eral prior works that propose mechanisms to improve the
performance of such strided and gather/scatter accesses.

Carter et al. [9] propose Impulse, a mechanism to ex-
port gather operations to the memory controller. In their
system, applications specify a gather mapping to the
memory controller (with the help of the OS). To per-
form a gather access, the controller assembles a cache
line with only the values required by the access pattern
and sends the cache line to the processor, thereby re-
ducing the bandwidth between the memory controller
and the processor. Impulse has two shortcomings.
First, with commodity DRAM modules, which are op-
timized for accessing cache lines, Impulse cannot mit-
igate the wasted memory bandwidth consumption be-
tween the memory controller and DRAM. Impulse re-
quires a memory interface that supports �ne-grained ac-
cesses (e.g., [4, 5, 8, 50, 55]), which signi�cantly increases
the system cost. Second, Impulse punts the problem of
maintaining cache coherence to software. In contrast,
our mechanism 1) works with commodity DRAM mod-
ules with very few changes, and 2) provides coherence of
gathered cache lines transparent to software.

Yoon et al. [51, 52] propose the Dynamic Granularity
Memory System (DGMS), a memory interface that al-
lows the memory controller to dynamically change the
granularity of memory accesses in order to avoid un-
necessary data transfers for accesses with low spatial
locality. Similar to Impulse, DGMS requires a mem-
ory interface that supports �ne-grained memory accesses
(e.g., [4, 5, 8, 50, 55]) and a sectored cache [30, 42]. In
contrast, GS-DRAM works with commodity DRAMmod-
ules and non-sectored caches with very few changes.

Prior works (e.g., [6, 15, 16, 36, 37, 44]) propose
prefetching for strided accesses. While prefetching re-
duces the latency of such accesses, it does not avoid
the waste in memory bandwidth and cache space. He
et al. [20] propose a model to analyze the performance
of gather-scatter accesses on a GPU. To improve cache
locality, their model splits gather-scatter loops into mul-
tiple passes such that each pass performs only accesses
from a small group of values that �t in the cache. This
mechanism works only when multiple values are actually
reused by the application. In contrast, GS-DRAM fetches

only useful values from DRAM, thereby achieving better
memory bandwidth and cache utilization.

8. Conclusion

We introduced Gather-Scatter DRAM, a low-cost sub-
strate that enables the memory controller to e�ciently
gather or scatter data with di�erent non-unit strided
access patterns. Our mechanism exploits the fact that
multiple DRAM chips contribute to each cache line ac-
cess. GS-DRAMmaps values accessed by di�erent strided
patterns to di�erent chips, and uses a per-chip column
translation logic to access data with di�erent patterns
using signi�cantly fewer memory accesses than existing
DRAM interfaces. Our framework requires no changes
to commodity DRAM chips, and very few changes to the
DRAM module, the memory interface, and the processor
architecture. Our evaluations show that GS-DRAM pro-
vides the best of both the row store and the column store
layouts for a number of in-memory database workloads,
and outperforms the best tiled layout on a well-optimized
matrix-matrix multiplication workload. Our framework
can bene�t many other modern data-intensive applica-
tions like key-value stores and graph processing. We
conclude that the GS-DRAM framework is a simple and
e�ective way to improve the performance of non-unit
strided and gather/scatter memory accesses.

Acknowledgments

We thank the anonymous reviewers and the members
of the SAFARI group for their feedback. We acknowl-
edge the generous support of Intel, Google, Nvidia, and
Samsung. This work is supported in part by NSF grants
0953246, 1212962, 1320531, and 1409723, the Intel Sci-
ence and Technology Center for Cloud Computing, and
the Semiconductor Research Corporation.

References

[1] Intel 64 and IA-32 Architectures Software Developer's
Manual. http://download.intel.com/design/processor/
manuals/253665.pdf, Vol. 1, Chap. 3.7.

[2] Alpha 21264 Microprocessor Hardware Reference Man-
ual. http://h18000.www1.hp.com/cpq-alphaserver/
technology/literature/21264hrm.pdf, 1999.

[3] Hybrid Transaction/Analytical Processing Will Fos-
ter Opportunities for Dramatic Business Innova-
tion. https://www.gartner.com/doc/2657815/hybrid-
transactionanalytical-processing-foster
-opportunities, 2014.

[4] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.
Schreiber. Future Scaling of Processor-memory Interfaces. In
SC, 2009.

[5] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi. Multicore
DIMM: An Energy E�cient Memory Module with Independently
Controlled DRAMs. IEEE CAL, January 2009.

[6] J.-L. Baer and T.-F. Chen. E�ective Hardware-Based Data
Prefetching for High-Performance Processors. IEEE TC, 1995.

13

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1�7, August 2011.

[8] T. M. Brewer. Instruction Set Innovations for the Convey HC-1
Computer. IEEE Micro, 30(2):70�79, March 2010.

[9] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker,
L. Schaelicke, and T. Tateyama. Impulse: Building a Smarter
Memory Controller. In HPCA, 1999.

[10] K. Chandrasekar, B. Akesson, and K. Goossens. Improved Power
Modeling of DDR SDRAMs. In DSD, 2011.

[11] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, , and K. Goossens. DRAMPower: Open-
source DRAM Power & Energy Estimation Tool. http://www.
drampower.info.

[12] K. K.-W. Chang, D. Lee, Z. Chisti, A. R. Alameldeen, C. Wilk-
erson, Y. Kim, and O. Mutlu. Improving DRAM Performance by
Parallelizing Refreshes with Accesses. In HPCA, 2014.

[13] W. Dally and B. Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2003.

[14] J. M. Frailong, W. Jalby, and J. Lenfant. XOR-Schemes: A
Flexible Data Organization in Parallel Memories. In ICPP, 1985.

[15] J. W. C. Fu and J. H. Patel. Data Prefetching in Multiprocessor
Vector Cache Memories. In ISCA, 1991.

[16] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride Directed
Prefetching in Scalar Processors. In MICRO, 1992.

[17] S. Ghose, H. Lee, and J. F. Martínez. Improving Memory
Scheduling via Processor-side Load Criticality Information. In
ISCA, 2013.

[18] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden. HYRISE: A Main Memory Hybrid Storage En-
gine. Proc. VLDB Endow., 4(2):105�116, November 2010.

[19] H-Store. Anti-Caching. http://hstore.cs.brown.edu/
documentation/deployment/anti-caching/, 2015.

[20] B. He, N. K. Govindaraju, Q. Luo, and B. Smith. E�cient Gather
and Scatter Operations on Graphics Processors. In SC, 2007.

[21] JEDEC. DDR4 SDRAM Standard. http://www.jedec.org/
standards-documents/docs/jesd79-4a, 2013.

[22] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang,
J. Hugg, and D. J. Abadi. H-Store: a High-Performance, Dis-
tributed Main Memory Transaction Processing System. VLDB,
2008.

[23] B. Keeth, R. J. Baker, B. Johnson, and F. Lin. DRAM Circuit
Design: Fundamental and High-speed Topics. Wiley-IEEE Press,
2007.

[24] Y. Kim, D. Han, O. Mutlu, and M Harchol-Balter. ATLAS: A
Scalable and High-Performance Scheduling Algorithm for Multi-
ple Memory Controllers. In HPCA, 2010.

[25] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread Cluster Memory Scheduling: Exploiting Di�erences in
Memory Access Behavior. In MICRO, 2010.

[26] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A Case
for Exploiting Subarray-level Parallelism (SALP) in DRAM. In
ISCA, 2012.

[27] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. K.-
W. Chang, and O. Mutlu. Adaptive-latency DRAM: Optimizing
DRAM Timing for the Common-Case. In HPCA, 2015.

[28] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and
O. Mutlu. Tiered-latency DRAM: A Low Latency and Low Cost
DRAM Architecture. In HPCA, 2013.

[29] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore Archi-
tectures. In MICRO, 2009.

[30] J. S. Liptay. Structural Aspects of the System/360 Model 85: II
the Cache. IBM Syst. J., 7(1):15�21, March 1968.

[31] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-
Aware Intelligent DRAM Refresh. In ISCA, 2012.

[32] MemSQL. Datatypes. http://docs.memsql.com/4.0/ref/
datatypes/, 2015.

[33] T. Moscibroda and O. Mutlu. Memory Performance Attacks:
Denial of Memory Service in Multi-core Systems. In SS, 2007.

[34] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In MICRO, 2007.

[35] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Schedul-
ing: Enhancing Both Performance and Fairness of Shared DRAM
Systems. In ISCA, 2008.

[36] K. J. Nesbit and J. E. Smith. Data Cache Prefetching Using a
Global History Bu�er. In HPCA, 2004.

[37] S. Palacharla and R. E. Kessler. Evaluating Stream Bu�ers As
a Secondary Cache Replacement. In ISCA, 1994.

[38] B. R. Rau. Pseudo-randomly Interleaved Memory. In ISCA,
1991.

[39] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory Access Scheduling. In ISCA, 2000.

[40] V. Seshadri, A. Bhowmick, O. Mutlu, P. Gibbons, M. Kozuch,
and T. Mowry. The Dirty-block Index. In ISCA, 2014.

[41] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. RowClone: Fast and Energy-e�cient in-
DRAM Bulk Data Copy and Initialization. In MICRO, 2013.

[42] A. Seznec. Decoupled Sectored Caches: Conciliating Low Tag
Implementation Cost. In ISCA, 1994.

[43] N. Shamgunov. The MemSQL In-Memory Database System. In
VLDB, 2014.

[44] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback Di-
rected Prefetching: Improving the Performance and Bandwidth-
E�ciency of Hardware Prefetchers. In HPCA, 2007.

[45] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O'Neil, P. O'Neil,
A. Rasin, N. Tran, and S. Zdonik. C-store: A Column-oriented
DBMS. In VLDB, 2005.

[46] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu.
The Blacklisting Memory Scheduler: Achieving high performance
and fairness at low cost. In ICCD, 2014.

[47] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramo-
nian, A. Davis, and N. P. Jouppi. Rethinking DRAM Design and
Organization for Energy-constrained Multi-cores. In ISCA, 2010.

[48] M. Valero, T. Lang, and E. Ayguadé. Con�ict-free access of
vectors with power-of-two strides. In ICS, 1992.

[49] T. Vogelsang. Understanding the Energy Consumption of Dy-
namic Random Access Memories. In MICRO, 2010.

[50] F.A. Ware and C. Hampel. Improving Power and Data E�ciency
with Threaded Memory Modules. In ICCD, 2006.

[51] D. H. Yoon, M. K. Jeong, and M. Erez. Adaptive Granularity
Memory Systems: A Tradeo� Between Storage E�ciency and
Throughput. In ISCA, 2011.

[52] D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez. The Dy-
namic Granularity Memory System. In ISCA, 2012.

[53] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B.
Carter, W. C. Hsieh, and S. A. McKee. The Impulse Memory
Controller. IEEE TC, November 2001.

[54] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie. Half-
DRAM: A High-bandwidth and Low-power DRAM Architecture
from the Rethinking of Fine-grained Activation. In ISCA, 2014.

[55] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu.
Mini-rank: Adaptive DRAM Architecture for Improving Memory
Power E�ciency. In MICRO, 2008.

[56] W. K. Zuravle� and T. Robinson. Controller for a synchronous
DRAM that maximizes throughput by allowing memory requests
and commands to be issued out of order. Patent 5630096, 1997.

14

