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Modern NAND �ash memory chips provide high density by
storing two bits of data in each �ash cell, called amulti-level cell
(MLC). An MLC partitions the threshold voltage range of a �ash
cell into four voltage states. When a �ash cell is programmed,
a high voltage is applied to the cell. Due to parasitic capacitance
coupling between �ash cells that are physically close to each
other, �ash cell programming can lead to cell-to-cell program
interference, which introduces errors into neighboring �ash
cells. In order to reduce the impact of cell-to-cell interference on
the reliability of MLC NAND �ash memory, �ash manufactu-
rers adopt a two-step programming method, which programs
the MLC in two separate steps. First, the �ash memory partially
programs the least signi�cant bit of the MLC to some intermedi-
ate threshold voltage. Second, it programs the most signi�cant
bit to bring the MLC up to its full voltage state.
In this paper, we demonstrate that two-step programming

exposes new reliability and security vulnerabilities. We expe-
rimentally characterize the e�ects of two-step programming
using contemporary 1X-nm (i.e., 15–19nm) �ash memory chips.
We �nd that a partially-programmed �ash cell (i.e., a cell where
the second programming step has not yet been performed) is
much more vulnerable to cell-to-cell interference and read dis-
turb than a fully-programmed cell. We show that it is possible
to exploit these vulnerabilities on solid-state drives (SSDs) to
alter the partially-programmed data, causing (potentially ma-
licious) data corruption. Building on our experimental obser-
vations, we propose several new mechanisms for MLC NAND
�ash memory that eliminate or mitigate data corruption in
partially-programmed cells, thereby removing or reducing the
extent of the vulnerabilities, and at the same time increasing
�ash memory lifetime by 16%.

1. Introduction
Solid-state drives (SSDs), which consist of NAND �ash

memory chips, are widely used today as a primary medium
of data storage. SSDs are found within large-scale data cen-
ters, consumer PCs, and mobile devices, as the per-bit cost
of NAND �ash memory has greatly decreased and, as a re-
sult, SSD storage capacity has greatly increased. These im-
provements have been enabled by both aggressive process
technology scaling and the development of multi-level cell
(MLC) technology. In earlier �ash memory generations, each
�ash cell could store only a single bit of data (a single-level
cell). A multi-level cell stores two bits of data within a single
cell [3, 12, 21, 25, 37, 41], thereby doubling storage capacity.

A �ash cell consists of a �oating gate transistor, where
the amount of charge on the �oating gate determines the
threshold voltage (Vth) of the cell (i.e., the voltage at which
the transistor turns on). This threshold voltage falls within
a range of voltage values, and the range is divided up into
windows such that each window corresponds to a particular
data value. For a single-level cell, the voltage range is split
into two windows, with one representing a 0 and the other
representing a 1. For a multi-level cell, the same voltage range
is split into four windows, with each window corresponding
to one of the data values 00, 01, 10, or 11. Each bit of an MLC

belongs to a di�erent �ash memory page (the unit of data
programmed and read at the same time), which we refer to,
respectively, as the least signi�cant bit (LSB) page and the
most signi�cant bit (MSB) page [5].

A �ash cell is programmed by applying a large voltage
on the control gate of the transistor, which triggers charge
transfer into the �oating gate, thereby increasing the thres-
hold voltage. To precisely control the threshold voltage of
the cell, the �ash memory uses incremental step pulse pro-
gramming (ISPP) [12, 21, 25, 41]. ISPP applies multiple short
pulses of the programming voltage to the control gate, in
order to increase the cell threshold voltage by some small
voltage amount (Vstep) after each step. Initial MLC designs
programmed the threshold voltage in one shot, issuing all
of the pulses back-to-back to program both bits of data at
the same time. However, as �ash memory scales down, the
distance between neighboring �ash cells decreases, which
in turn increases the program interference that occurs due
to cell-to-cell coupling. This program interference causes
errors to be introduced into neighboring cells during pro-
gramming [5, 8, 16, 26, 27, 37]. To reduce this interference by
half [5], MLC NAND �ash memory has been using two-step
programming since the 40nm technology node [37].

Two-step programming stores each of the two bits within
an MLC using two separate, partial programming steps. In its
�rst step, two-step programming programs the LSB page: it
partially programs the cell, setting the cell threshold voltage
to a temporary state whose maximum voltage is approxima-
tely half of the maximum possible threshold voltage of a
fully-programmed �ash cell. In its second step, two-step pro-
gramming programs the MSB page: it reads the LSB value into
a bu�er inside the �ash chip (called the internal LSB bu�er) to
determine the temporary state of the cell’s threshold voltage,
and then partially programs the cell again, this time moving
the threshold voltage from the temporary state to the desired
�nal state. By breaking MLC programming into two separate
steps, two-step programming halves the threshold voltage
change of each MLC programming operation. Since program
interference is linearly correlated with the threshold voltage
change [5, 27], with two-step programming, each program-
ming operation induces half as much interference as one-shot
programming. The SSD controller interleaves the partial pro-
gramming steps of a cell with the partial programming steps
of neighboring cells [5, 14]. This interleaving ensures that a
fully-programmed cell experiences interference only from a
single partial programming step of a neighboring cell.
Vulnerabilities. In this paper, we �nd that two-step pro-

gramming introduces new possibilities for �ash memory er-
rors that can corrupt some of the data stored within �ash
cells without accessing them. As there is a delay between
programming the LSB and the MSB of a single cell due to the
interleaved writes to neighboring cells, errors can be introdu-
ced into the already-programmed LSB page before the MSB
page is programmed. During the second step of two-step
programming, these errors are loaded from the �ash cell into
the internal LSB bu�er. The LSB data in this internal bu�er is
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used together with the data to be programmed into the MSB
to determine the �nal voltage of the programmed cell. By
bu�ering the LSB data inside the �ash chip and not in the SSD
controller, �ash manufacturers avoid data transfer between
the chip and the controller during the second programming
step, thereby reducing the step’s latency. Unfortunately, this
means that the errors loaded from the internal LSB bu�er
cannot be corrected as they would otherwise be during a
read operation, because the error correction engine resides
only inside the controller, and not inside the �ash chip. As a
result, the �nal cell voltage can be incorrectly set during MSB
programming, permanently corrupting the LSB data.

We study two sources of errors that can corrupt LSB data,
and characterize their impact on real state-of-the-art 1X-
nm (i.e., 15-19nm) MLC NAND �ash chips. The �rst error
source, cell-to-cell program interference, introduces errors into
a �ash cell when neighboring cells are programmed, as a
result of parasitic capacitance coupling [5, 16, 27]. We �nd
that program interference is a signi�cant error source for
partially-programmed cells. The degree of interference in-
creases when a neighboring cell is programmed to a higher
threshold voltage. As a result, we observe that the amount
of interference is especially high when neighboring cells are
written with certain data patterns. This high interference can
introduce a large number of errors into the LSB page data of
partially-programmed cells.

The second error source, read disturb, disrupts the contents
of a �ash cell when another cell is read [10, 15, 19, 20, 33,
42]. Several �ash cells containing di�erent pages of data are
interconnected within a �ash block (an array of �ash cells
that typically contains 128–256 pages), with a set of bitlines
that connect the transistors of the �ash cells in series. To
accurately read the value from one transistor, the transistors
belonging to the unread cells along the bitline must allow the
value to pass through. This requires applying a voltage that
is higher than the greatest possible cell threshold voltage, to
guarantee that the unread cells turn on. This voltage is called
the pass-through voltage. Unfortunately, this pass-through
voltage is high enough to induce a weak programming e�ect
on an unread cell: it slightly increases the threshold voltage
of the cell [10]. As more neighboring cells within a �ash block
are read, an unread cell can experience enough of an increase
in its threshold voltage to move its stored value to an incorrect
state, as demonstrated by prior work [10, 20]. A cell is more
vulnerable to read disturb if its threshold voltage is lower [10].
In two-step programming, a partially-programmed cell is
more likely to have a lower threshold value than a fully-
programmed cell, and thus is more vulnerable to read disturb.
However, existing read disturb management solutions are
designed to protect fully-programmed cells [10, 18, 39], and
o�er little mitigation for partially-programmed cells.

Two major issues arise from the program interference and
read disturb vulnerabilities of partially-programmed and un-
programmed cells. First, the vulnerabilities induce a large
number of errors on these cells, exhausting the SSD’s error
correction capacity and limiting the SSD lifetime (Section 4).
Second, the vulnerabilities can potentially allow (malicious)
applications to aggressively corrupt and change data belon-
ging to other programs and further hurt the SSD lifetime. We
present two example sketches of potential exploits that can
corrupt data in this work (Section 5).
Solutions. We propose three solutions to eliminate or

mitigate the program interference and read disturb vulnerabi-
lities of partially-programmed and unprogrammed cells due
to two-step programming. Our �rst solution eliminates the

need to read the LSB page from �ash memory at the begin-
ning of the second programming step, thereby completely
eliminating the vulnerabilities (Section 6.1). It maintains a
copy of all partially-programmed LSB data within DRAM buf-
fers that exist in the SSD near the controller. Doing so ensures
that the LSB data is read without any errors from the DRAM
bu�er, where it is free from the vulnerabilities (instead of
from the �ash memory, where it incurs errors), in the second
programming step. This solution increases the programming
latency of the �ash memory by 4.9% in the common case,
due to the long latency of sending the LSB data from the
controller to the internal LSB bu�er inside �ash memory. Ot-
her solutions we develop largely mitigate (but do not fully
eliminate) the probability of two-step programming errors at
much lower latency impact. Our second solution adapts the
LSB read operation to account for threshold voltage changes
induced by program interference and read disturb. It adapti-
vely learns an optimized read reference voltage for LSB data,
lowering the probability of an LSB read error (Section 6.2).
Our third solution greatly reduces the errors induced during
read disturb, by customizing the pass-through voltage for
unprogrammed and partially-programmed �ash cells. This
decreases the number of errors induced by read operations
to neighboring cells by 72% (Section 6.3). By eliminating or
reducing the probability of introducing errors during two-
step programming, our solutions completely close or greatly
reduce the exposure to reliability and security vulnerabilities.

The key contributions of this paper are:
• We identify and experimentally characterize program er-

rors introduced due to fundamental limitations of the two-
step programming method used in MLC NAND �ash me-
mory. We analyze two major sources of these errors, pro-
gram interference and read disturb, which can corrupt data
stored in a partially-programmed �ash cell. To our know-
ledge, this is the �rst work to characterize two-step pro-
gramming and its reliability impact on real �ash chips.

• We develop two sketches of new potential security exploits
based on errors arising from two-step programming. Mali-
cious applications can potentially be developed to use these
exploits to corrupt data belonging to other applications.

• We propose three solutions that either eliminate or mitigate
vulnerabilities to program interference and read disturb du-
ring two-step programming. One of our solutions comple-
tely eliminates the vulnerabilities, albeit with an increase
in �ash programming latency. Our two other solutions
greatly reduce (but do not fully eliminate) the probability
of data corruption, and hence minimize the vulnerabilities
at a negligible latency overhead.

2. Background
In this section, we �rst provide necessary background

on the fundamental behavior of NAND �ash memory
(Section 2.1). Next, we discuss how read disturb (Section 2.2)
and cell-to-cell program interference (Section 2.3) induce
errors in �ash memory. Finally, we discuss the two-step pro-
gramming algorithm used within many modern SSDs to write
data into the �ash memory chips within the SSD (Section 2.4).

2.1. Basics of NAND Flash Memory
A NAND �ash memory chip consists of thousands of two-

dimensional arrays of �ash cells, known as �ash blocks. Each
block typically contains 64–128 rows (i.e., wordlines) of �ash
cells, each of which contains 64K to 128K cells. Each �ash cell
is a �oating gate transistor, where stored (and programma-
ble) charge within the �oating gate determines the threshold
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voltage (Vth) at which the transistor turns on. Across di�erent
wordlines in the same block, the sources and drains of these
�ash cells are connected in series, forming a bitline.

Figure 1a shows a �ash block in the commonly-used all-bit-
line (ABL) �ash architecture [5,12], where all cells on the same
wordline are read and programmed as a single group [11] for
high performance. In a multi-level cell (MLC) �ash memory,
each cell stores two bits of data. For each of the four possible
two-bit values, a certain threshold voltage window is assig-
ned, which we refer to as a state. Due to variation during
programming, the threshold voltage of cells programmed to
the same state is distributed across the state’s voltage window.
Figure 1b shows the expected probability density function
(PDF) of multi-level cells. MLC �ash memory partitions the
two bits of data across two �ash memory pages (the unit of
data programmed at a time, typically 8KB). The least signi�-
cant bits (LSBs) of all cells in a single wordline form the LSB
page of that wordline (e.g., Page 1 of Wordline 1 in Figure 1a),
and the most signi�cant bits (MSBs) of these cells form the
MSB page (e.g., Page 4 of Wordline 1 in Figure 1a). Reads and
writes to the �ash block are managed by the SSD controller.
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Figure 1: (a) Internal architecture of a block of all-bit-line
(ABL) �ash memory; (b) Threshold voltage distribution and
read reference voltages for MLC NAND �ash memory.

To read a particular page from a �ash block, the controller
applies a read reference voltage (Vref ) to the control gates of
all cells on the wordline containing the page. If a cell has a
Vth that is lower than Vref , it is switched on; otherwise, it is
switched o�. Each bitline contains a sense ampli�er, which
can determine whether the cell is switched on or o�. The
value of Vref depends on which page is being read from the
wordline. As shown in Figure 1b, the controller applies a
single Vref value, Vb, to determine the LSB. If Vth < Vb, the
cell is in either the ER or P1 state (as shown in Figure 1b),
and holds an LSB of 1. If Vth > Vb, the cell is in either the
P2 or P3 state, and holds an LSB of 0. The controller applies
two Vref values, Va and Vc (see Figure 1b), to determine the
MSB. If Va < Vth < Vc , the cell is in either the P1 or P2 state,
and holds an MSB of 0. If Vth < Va or Vth > Vc , the cell is in
either the ER or P3 state, and holds an MSB of 1.

The cells on a bitline are connected in series to the sense
ampli�er. In order to read from a particular cell on the bitline,
the controller must switch all the other unread cells on the
same bitline on, to allow the value being read to propagate
through to the sense ampli�er. The controller achieves this by
applying the pass-through voltage (Vpass) onto the wordlines
of the unread cells. To ensure that unread cells always turn
on, Vpass is set to the maximum possible threshold voltage
(as shown in Figure 1b).

Before new data can be programmed, the entire block must
be erased (due to wiring constraints). The erase operation
brings the threshold voltage of each cell below 0V. Erased
blocks are opened (i.e., selected for programming) one at a
time, and a block is programmed one page at a time. The con-

troller initially holds data to be programmed in aDRAM bu�er,
and then sends the data to bu�ers that reside within the �ash
chip (the internal MSB and LSB bu�ers; see Figure 1a). The
�ash chip then programs the data by repeatedly pulsing a high
programming voltage (Vprogram) on the control gate of a cell
to increase the cell’s threshold voltage [5, 41]. The threshold
voltage increase occurs due to Fowler-Nordheim (F-N) tunne-
ling, which allows charge to move from the substrate into
the �oating gate when a large di�erential exists between the
control gate voltage and the threshold voltage [10, 17]. Flash
blocks can endure only a limited number of program/erase
(P/E) cycles, after which data can no longer be correctly retai-
ned for the minimum amount of time guaranteed [6, 30]. At
this point, we say that the �ash block is worn out.

2.2. Read Disturb
Read disturb is the phenomenon where a read to one data

page within the �ash block can alter the threshold voltages of
the other unread data pages in the same block [10,15,19,20,33,
42]. When Vpass is applied to the cells of an unread page (see
Section 2.1), it induces a weak programming e�ect on these
cells. While Vpass is lower than Vprogram, it is still high enough
to induce a small amount of F-N tunneling. This tunneling
shifts the threshold voltage of the unread cells higher, and has
a larger impact on cells with lower threshold voltages [10].

2.3. Cell-to-Cell Program Interference
While programming pulses (see Section 2.1) are applied to

one wordline within the block, they can induce errors on cells
that belong to adjacent wordlines of the same block [5,8,16,26,
27,37]. This phenomenon is referred to as cell-to-cell program
interference, and occurs due to parasitic capacitance coupling
within the block [5, 27]. As a result of the coupling, as the
threshold voltage of a cell increases during programming, the
threshold voltages of cells on adjacent wordlines (which we
call victim cells) increase as well. Eventually, the unintended
voltage increases can move a victim cell into a di�erent state
than the one it was originally programmed in, resulting in
an error when the data is subsequently read from the cell.
Cell-to-cell program interference is one of the most critical
scaling barriers for NAND �ash memory [3, 24, 33, 37].

2.4. Two-Step Programming
To reduce the impact of cell-to-cell program interference,

two-step programming has been adopted for sub-40 nm �ash
memories [5,37]. Two-step programming writes the values of
the two pages within a wordline in two independent stages.
Figure 2 shows how the cell state and cell threshold voltage
level change during two-step programming. After an erase
operation on a block, all �ash cells are at the erased (ER) state.
In the �rst step of two-step programming, only the LSB page
is programmed. If the LSB of a cell should be 0, the �ash cell is
programmed into a temporary program state (TP); otherwise,
it remains in the ER state. In the second step, the MSB page
is programmed. For an MSB of 1, the cell either remains in
the ER state (if its LSB is 1), or moves up from the TP state to
the P3 state (if its LSB is 0). For an MSB of 0, the cell either
moves up from the ER state to the P1 state (if its LSB is 1), or
moves up from the TP state to the P2 state (if its LSB is 0).

Recall from Section 2.3 that the amount of program inter-
ference increases with the threshold voltage change during
programming. To reduce the interference induced on neighbo-
ring wordlines, the LSB and MSB pages are not programmed
back-to-back. Instead, two-step programming uses shadow
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Figure 2: Starting (after erase), temporary (after LSB pro-
gramming), and �nal (after MSB programming) states for
two-step programming.

program sequencing [5, 14] to interleave the programming
steps of multiple wordlines with each other. For an arbitrary
Wordline i (e.g., Wordline 1 in Figure 1a), shadow program
sequencing ensures that the wordline is fully programmed
(i.e., the second programming step is performed) only after
both pages of Wordline i – 1 (e.g., Pages 0 and 2 of Wordline 0
in Figure 1a) and the LSB page of Wordline i + 1 (e.g., Page 3
of Wordline 2) are programmed.

In shadow program sequencing, each page within a block
is assigned a unique page number. The LSB page of Word-
line i is numbered Page 2i – 1 (e.g., Page 1 in Wordline 1
in Figure 1a), and the MSB page is numbered Page 2i + 2
(e.g., Page 4 in Wordline 1). The only exceptions are the LSB
page of Wordline 0 (Page 0) and the MSB page of the last
wordline n (Page 2n + 1). Two-step programming interleaves
the programming steps by writing to the pages in increasing
order of page number [5, 14]. Thus, once a wordline is fully
programmed (e.g., Page 4 in Wordline 1 is programmed), it
experiences interference from only one single programming
step of a neighboring wordline (e.g., Page 6 in Wordline 2).

3. Motivation
In this section, we �rst discuss how the error rate of the

data stored in NAND �ash memory can a�ect the lifetime of
an SSD (Section 3.1). We then discuss how two-step program-
ming can introduce errors into partially-programmed data
(Section 3.2), thereby potentially limiting the SSD lifetime.

3.1. Raw Bit Error Rate, ECC, and Lifetime
Within NAND �ash memory, the number of raw bit errors

(i.e., the number of errors before data is corrected) limits the
total lifetime of the memory. Raw bit errors are corrected
using error-correcting code (ECC) mechanisms within the SSD
controller. As the ECC engines are typically in hardware,
they have a maximum error correction capability (i.e., they can
correct only up to a �xed number of errors, N , for every read).
As more P/E cycles are performed on the NAND �ash memory,
its raw bit error rate increases [3, 4, 9, 10]. As a result, the
number of errors eventually exceeds N at a certain P/E cycle
count. This P/E cycle count is de�ned to be the SSD lifetime,
which we show in Figure 3 as Normal Lifetime. If more errors
are introduced into the memory, for example, by maliciously
taking advantage of vulnerabilities that arise from two-step
programming, the lifetime of the SSD can be shortened, to a
P/E cycle count shown as Reduced Lifetime in Figure 3. This
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Figure 3: Flash lifetime reduction due to inducing more er-
rors, via potentially malicious usage.

is because the error correction capability N remains �xed,
yet now there are more raw bit errors to correct. In the rest
of this paper, we examine the impact of the errors that can be
introduced by two-step programming (Section 4), and how
malicious software can potentially induce and exploit these
errors to shorten the lifetime of an SSD (Section 5).

3.2. Error Sources in Two-Step Programming
Between the �rst and second steps of two-step program-

ming, a partially-programmed wordline holds only LSB data.
During this time, cell-to-cell program interference and read
disturb can introduce raw bit errors into the LSB data. These
errors can cause the wordline to be programmed to an incor-
rect state in the second programming step.

During the second step, both the MSB and LSB of each cell
in the wordline are required to determine the �nal target state
of the cells. As shown in Figure 4, the data to be programmed
into the MSB is loaded from the SSD controller to the internal
MSB bu�er ( 1 in the �gure). Concurrently, the LSB data is
loaded into the internal LSB bu�er from the �ash memory
wordline ( 2 ). The LSB data never goes to the controller before
being read into the internal LSB bu�er, as Figure 4 shows, and
is thus unable to use the ECC engine within the controller
( 3 ). As a result, the raw bit errors in the LSB data cannot be
corrected, and translate into program errors.
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Figure 4: In the second step of two-step programming, LSB
data does not go to the controller, and is not corrected when
read into the internal LSB bu�er, resulting in programerrors.

We classify all possible program errors into four categories
based on their LSB and MSB values, as shown in Table 1. For
example, let us assume that a cell is supposed to be set to the
P1 state, with an MSB of 0 and an LSB of 1 (ERR2 in Table 1).
However, the LSB data in the �ash chip contains errors, and
is incorrectly read as a 0. As a result, the �ash chip proceeds
to believe that both the MSB and the LSB of the cell should
be 0, and incorrectly increases the cell threshold voltage to
the P2 state.

Table 1: Program error types caused by LSB read errors.

Category Correct MSB LSB Programmed
Cell State Original Misread As Cell State

ERR1 ER (11) 1 1 0 P3 (10)
ERR2 P1 (01) 0 1 0 P2 (00)
ERR3 P2 (00) 0 0 1 P1 (01)
ERR4 P3 (10) 1 0 1 ER (11)

Recall from Section 2.4 that when a cell is partially pro-
grammed with an LSB of 0, its threshold voltage increases to
the TP state (see Figure 2). As Table 1 shows, such a cell can
experience either category ERR3 or ERR4 errors. Program-
ming can only increase the voltage of a partially-programmed
cell. For ERR3 and ERR4, the SSD controller attempts to set
the cell to states P1 and ER, respectively. However, since the
cell is already in the TP state, its voltage remains unchanged.
Furthermore, it is unlikely for a cell in the TP state to be
misread as a cell in the ER state, as both cell-to-cell program
interference and read disturb shift the cell threshold voltage
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to a higher value, not a lower one. As a result, ERR3 and ERR4
errors are much less likely to occur than ERR1 and ERR2 er-
rors, as shown in prior work [3]. Therefore, we primarily
focus on ERR1 and ERR2 in this work.

Program errors introduced by two-step programming can
lead to data corruption within the LSB page. In this paper,
our goal is to demonstrate that these program errors signi�-
cantly reduce the lifetime of an SSD. To this end, we use real
�ash memory chips to quantify the extent to which program
interference and read disturb lead to such errors in Section 4.

4. Characterization of Error Sources
In this section, we study the two major sources of errors

that are introduced into partially-programmed wordlines du-
ring two-step programming, by characterizing the impact
of each error source using real state-of-the-art NAND �ash
memory chips. We �rst brie�y discuss our characterization
methodology in Section 4.1. We next characterize the impact
of cell-to-cell program interference in Section 4.2. We then
characterize the impact of read disturb in Section 4.3.

4.1. Methodology
We characterize multiple state-of-the-art 1X-nm (i.e., 15–

19nm) �ash chips using an FPGA-based �ash testing plat-
form [2] that allows us to issue commands directly to raw
chips. In order to determine the threshold voltage stored
within each cell, we use the read-retry mechanism built into
modern SSD controllers [5, 9, 40, 47]. Throughout this pa-
per, we present normalized voltage values, as actual voltage
values are proprietary information to �ash vendors.

4.2. Cell-to-Cell Program Interference
Recall from Section 2.4 that cell-to-cell program interfe-

rence causes the threshold voltages of victim cells to increase
when an adjacent cell is being programmed. Two-step pro-
gramming using shadow program sequencing can halve the
program interference to the MSB page [37], as an MSB page
of Wordline n experiences interference only from a single
neighbor (partially programming the MSB page of Wordline
n + 1). The LSB page of Wordline n, however, experiences
interference from two neighbors (partially programming the
MSB page of Wordline n – 1 and the LSB page of Wordline
n + 1) while Wordline n remains partially programmed.

Due to continued scaling, cell-to-cell interference on the
LSB page is no longer negligible. For example, after the LSB
page on Wordline 1 (Page 1 in Figure 1a) is programmed, the
next two pages that are programmed (Pages 2 and 3) reside
on directly-adjacent wordlines. Therefore, before the MSB
page on Wordline 1 (Page 4 in Figure 1a) is programmed,
the LSB page could be susceptible to program interference,
and its threshold voltage distribution widens, as shown in
Figure 5. The widened distribution can cause some of the
cells to be misread. For example, after the distribution of the
ER state shifts in Figure 5, some of the cells belonging to the
state (e.g., the red dot in the �gure) now fall on the other
side of the read reference voltage (Vref ), and are incorrectly
read as being in the TP state. Such read errors eventually
translate to program errors during the second step, MSB page
programming (see Section 3.2). Our goal in this section is to
quantify the impact of program interference on the LSB page
of a partially-programmed wordline.

First, we characterize the threshold voltage change of an
LSB page due to program interference after programming
Page 1 (see Figure 1a) with pseudo-random data. We use
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Figure 5: Threshold voltage distribution of partially-
programmed cells in Page n after di�erent amounts of pro-
gram interference by neighboring wordlines. Red dot shows
a cell that is misread after program interference.

pseudo-random data to mimic the data scrambling employed
by modern SSDs [13, 22]. Figure 6a shows the measured
distribution of cells in the ER state after four di�erent times:
A. Just after Page 1 is programmed (no interference),
B. Page 2 is programmed with pseudo-random data,
C. Pages 2 and 3 are programmed with pseudo-random data,
D. Pages 2 and 3 are programmed with a data pattern that

induces the worst-case program interference (see below).
We study only the ER state, as ERR1 and ERR2 errors occur
only when the LSB is 1 (see Section 3.2). The programming
of Pages 2 and 3 shifts the threshold voltage distribution to
the right, and widens the distribution. Ideally, the threshold
voltage of all cells in the ER state should be below 0V, but as
we observe, program interference increases the number of
cells whose threshold voltage is greater than 0V.
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Figure 6: ER state threshold voltage distribution (a) and nor-
malized raw bit error rate (b) of partially-programmedPage 1
within a �ash block with 8K P/E cycles, before and after cell-
to-cell program interference.

Second, we measure the number of errors in an LSB page
when the second step of two-step programming (MSB page
programming) begins. When MSB programming takes place
(e.g., Page 4 in Figure 1a), the �ash memory relies on the
default read reference voltage (e.g., 0V) to read the LSB page
(Page 1) data into the internal LSB bu�er (see Section 2.4).
Due to �ash interface limitations, we cannot directly measure
the read errors on the LSB page when the MSB page is being
programmed, as the internal LSB bu�er cannot be accessed
from outside the �ash memory. As a workaround, before pro-
gramming Page 4, we directly read the partially-programmed
Page 1 out to the controller using the default read reference
voltage, and measure the raw bit error rate (RBER). Figure 6b
shows the RBER of partially-programmed Page 1, norma-
lized to the RBER without any cell-to-cell program inter-
ference. We see that after Pages 2 and 3 are programmed
with pseudo-random data (C in Figure 6b), the RBER is 2.8x
the interference-free RBER. This means that when Page 4
is programmed, the data in the internal LSB bu�er contains
2.8 times the number of errors due to program interference.
Therefore, program interference on a partially-programmed
wordline greatly increases the probability that a program
error occurs during MSB page programming.

Third, we explore how the error rate changes if, instead
of writing random data to Pages 2 and 3, we use the worst-
case data pattern. We construct the worst-case pattern using
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two operations. First, we program the inverse of Page 0
into Page 2 (an MSB page), to induce the largest possible
threshold voltage change on Wordline 0 (from the ER state
to the P1 state, or from the TP state to the P3 state). Second,
we program Page 3 to all 0s, which sets the page to the TP
state. This induces the largest possible voltage di�erential
to raise the Page 1 threshold voltages. Note that the worst-
case pattern requires no knowledge of the data stored within
Page 1. Compared to pseudo-random data (C), the worst-case
pattern (D) causes an even larger threshold voltage increase
for the ER state (Figure 6a), and thus leads to a higher RBER
(Figure 6b). The RBER with the worst-case pattern is 4.9x that
without interference (Figure 6b). The RBER is signi�cantly
higher because the larger voltage changes of the worst-case
pattern induce a greater degree of program interference.
Summary. We conclude that cell-to-cell program inter-

ference can signi�cantly increase the number of LSB errors
introduced during two-step programming, thus hurting relia-
bility once the wordline is fully programmed.

4.3. Read Disturb
Recall from Section 2.2 that read disturb causes the thres-

hold voltages of unread cells to increase when a cell in the
same block is being read. Read disturb results in a larger
threshold voltage shift for a cell with a lower initial threshold
voltage [10]. Thus, unprogrammed and partially-programmed
cells are more likely to experience errors from read disturb, as
they have lower threshold voltages. Once a block is opened
for writing, it takes time to write to all of the hundreds of pa-
ges within the block. During this time, an open block includes
some fully-programmed cells, some partially-programmed
cells, and some unprogrammed cells. Thousands of reads can
access the open block, each of which induces read disturb on
pages other than the one that is being read.

Our goal is to quantify the impact of read disturb on
unprogrammed and partially-programmed cells in an open
block. To replicate an open block in our experiments, we
program the �rst 72 pages (Pages 0–71) of a 256-page block,
which results in 35 wordlines (Wordlines 0–34) with fully-
programmed cells, two wordlines with only their respective
LSB pages programmed (Wordlines 35 and 36), and all other
wordlines unprogrammed. We repeatedly read one of the
fully-programmed pages (Page 0) N times. N corresponds
to the read disturb count experienced by each page (except
Page 0) in the block. Then, we program all of the remaining
pages within the block, and observe how the bit error rate
di�ers for pages that were unprogrammed or partially pro-
grammed during the repeated reads, compared to bit error
rate for fully-programmed pages. We repeat the experiments
by varying N (between 1,000 and 90,000 repeated reads).

Figure 7a shows the RBER for each LSB page in the �rst
64 wordlines of a block with 8K P/E cycles, for various read
disturb counts on Page 0. Figure 7b shows the RBER under the
same situation for each MSB page. The �gures show repre-
sentative behavior for an open block that has been exposed
to read disturb. We sort the pages by their corresponding
wordline number on the x-axis, and each line represents a
di�erent read disturb count. We make three observations
from these �gures.

First, read disturb induces errors not only in wordlines that
were programmed before the read disturb took place, but also in
wordlines that are not yet programmed. During read disturb,
the threshold voltage of a cell in an unprogrammed wordline
(which is initially below 0V) increases. With a high enough
read disturb count, the cell can move from the ER state to the
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Figure 7: Raw bit error rate for the pages in the �rst 64 word-
lines of a block, for various read disturb counts. At the time
that the read disturb occurs, Wordlines 0–34 (Region A ) are
fully programmed,Wordlines 35–36 (Region B ) are partially
programmed, and Wordlines 37–63 (Region C ) are unpro-
grammed.

P1 state, and hence cannot correctly store the value 11 when
it is programmed. As a result, LSB pages in unprogrammed
wordlines (whose error rates are represented by the lines that
fall into Region C in Figures 7a and 7b) exhibit much higher
error rates than LSB pages in fully-programmed wordlines
(whose error rates are represented by the lines that fall into
Region A ). Some MSB pages, especially the ones subject to
lower read disturb counts, exhibit this trend as well.

Second, LSB pages in partially-programmed and unprogram-
med wordlines experience an order of magnitude increase in raw
bit error rate when compared to LSB pages in fully-programmed
wordlines. This can be observed by comparing the RBER for
Regions B and C to the RBER of Region A in Figure 7a. As
can be seen in Figure 2, a cell in a partially-programmed or
unprogrammed wordline has, on average, a much lower thres-
hold voltage than a cell in a fully-programmed wordline. This
is because a partially-programmed cell can only be in either
the ER state (whose threshold voltage is negative, and the fart-
hest away fromVpass) or the TP state (whose threshold voltage
is approximately half that of Vpass), and an unprogrammed
cell starts o� in the ER state. In contrast, a fully-programmed
cell can have a threshold voltage almost as high as Vpass ,
which greatly reduces the threshold voltage change induced
by read disturb. Hence, LSB pages in partially-programmed
and unprogrammed wordlines are much more susceptible to
read disturb than LSB pages in fully-programmed wordlines.

Third, LSB pages in partially-programmed and unpro-
grammed wordlines experience approximately 2x the error
rate of MSB pages in fully-programmed wordlines. Previ-
ous studies [10], which characterized errors on only fully-
programmed wordlines, found that MSB pages (Region A
in Figure 7b) were the most sensitive pages to read dis-
turb. In our characterization, we �nd that the LSB pages in
partially-programmed and unprogrammed wordlines (Regi-
ons B and C in Figure 7a, respectively) are the most sensitive
pages, experiencing twice as many errors at each read disturb
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count. Thus, the higher RBER of the LSB pages of partially-
programmed and unprogrammed wordlines is the limiting
factor for read disturb tolerance.
Summary. We conclude that in 1X-nm �ash chips, the LSB

pages in partially-programmed and unprogrammed wordli-
nes are signi�cantly more vulnerable to read disturb errors
than other types of pages. By temporarily creating partially-
programmed wordlines, two-step programming greatly incre-
ases the impact of read disturb on an open �ash block, which
negatively a�ects the reliability of the �ash memory.

5. Security Exploit Sketches
When multiple applications share an SSD, the data from

the di�erent applications is stored within the same physical
�ash block if they issue writes one after another. This is
because the SSD typically maintains only one open block per
die to store data from the host machine, and uses shadow
program sequencing (see Section 2.4). All pages of an open
block are fully programmed before a new block is opened.
As discussed in Section 3.2 and demonstrated on real �ash
chips in Section 4, a page in a �ash block can induce errors
into another page in the same block, especially to the LSB
pages in partially-programmed or unprogrammed wordlines.
As a result, an application can potentially circumvent �le
protection permissions by exploiting low-level interference
e�ects during the underlying two-step programming. In this
way, a malicious application can inject errors into the �les of
other users, potentially leading to data corruption.

In the rest of this section, we show two high-level examples
of system exploits that take advantage of the errors introdu-
ced by two-step programming, based on the error sources we
demonstrated in Section 4.1 We provide more detail on our
exploits, especially on how we overcome di�culties in their
implementations, in the extended version of this work [1].

5.1. Sketch of Program Interference Based Exploit
In this sketch of a new exploit, we describe how a malici-

ous application can induce a signi�cant amount of program
interference onto a �ash page that belongs to another, benign
victim application, corrupting the page and shortening the
SSD lifetime. Recall from Section 4.2 that due to program
interference, writing the worst-case data pattern (i.e., all 0s)
can induce 4.9x the number of errors into a neighboring page
(with respect to an interference-free page) without needing to
know the contents of the neighboring page that is disrupted.
The goal of this exploit is for a malicious application to write
this worst-case pattern in a way that ensures that the page
that is disrupted belongs to the victim application, and that
the page that is disrupted experiences the greatest amount of
program interference possible.
ExploitWalkthrough. We now discuss an example of the

exploit, where the page under attack (i.e., the page belonging
to the victim application) is written to the LSB page of an
arbitrary Wordline n within an open �ash block. Figure 8
illustrates the contents of the pages within Wordline n and
its surrounding wordlines during the example exploit. The
malicious application �rst prepares for the exploit by writing
a small 16KB �le,2 consisting of all 1s, to the SSD. The SSD

1Due to limited space, we do not discuss superblocks (i.e., multiple blocks
striped across the multiple dies within a chip) or superpages (i.e., each stripe
of �ash pages within a superblock). Our exploits can be extended easily
to work in the presence of superblocks, by treating the superblock and
superpage as a larger block and page, respectively.

2We assume, without loss of generality, that each �ash page holds 8KB
of data. Thus, our 16KB �le spans two �ash pages.

controller writes the �le to the open block in shadow program
sequence order (see Section 2.4), in Pages 2n – 3 and 2n – 2
( 1 in Figure 8). Importantly, this keeps the cells of partially-
programmed Wordline n – 1 in the ER state. The malicious
application then waits for the victim application to write data
to the page under attack (Page 2n – 1; 2 ), by monitoring the
�le system to check when the victim application’s �le size
increases (this is unprotected information).

Wordline n – 2
Malicious File A (all 1s)

Page 2n (MSB)
Wordline n – 1

Malicious File B (all 0s)
Malicious File A (all 1s)

Wordline n
Page Under Attack (Victim)

Wordline n + 1
Malicious File B (all 0s)

Page 2n – 3 (LSB)

Page 2n – 2 (MSB)

Page 2n – 5 (LSB)

Page 2n + 4 (MSB)

Page 2n + 1 (LSB)

Page 2n + 2 (MSB)

Page 2n – 1 (LSB) 2

1

3a

3b

Figure 8: Layout of data within a �ash block during a pro-
gram interference based exploit.

Once the page under attack is written, Wordline n is parti-
ally programmed. The malicious application then induces the
maximum possible program interference onto Wordline n by
writing a second 16KB �le, containing all 0s, to the SSD. The
SSD controller writes the �le to Pages 2n and 2n + 1 ( 3a and
3b ). Recall from Section 4.2 that the amount of interference
induced on a victim page is greatest when a neighboring
wordline has the largest possible threshold voltage change.
Writing all 0s to Page 2n causes each �ash cell in Wordline
n – 1 to go from the ER state to the P1 state, which is the
largest threshold voltage change possible when writing to an
MSB page. Writing all 0s to Page 2n + 1 causes each �ash cell
in Wordline n+1 to go from the ER state to the TP state, which
is the largest threshold voltage change possible when writing
to an LSB page. Thus, the malicious application maximizes
the amount of program interference induced on Wordline n,
increasing the probability of bit �ips in the page under attack.
Scrambling Workaround. To exert the maximum pos-

sible interference, the malicious application needs to write
speci�c data values to the SSD. One obstacle is that many
SSDs internally scramble data before storing the data in the
�ash memory [13, 22]. Scrambling randomizes the number of
0s and 1s, to reduce the e�ects of data pattern dependence
on �ash errors. Figure 9a shows the design of the scrambler.
The scrambler �rst uses a linear feedback shift register (LFSR)
to generate a scrambling key using an input seed (usually the
logical address of the data) [13, 28]. It then XORs this key
with the data ( 1 in Figure 9a). Data is descrambled using the
same hardware, with the same key, as the XOR is reversible.
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(b) Workaround of in-controller scrambling
Figure 9: Malicious applications can use a software scrambler
to reverse the in-controller scrambling process.

The malicious application can take advantage of the reversi-
ble behavior to circumvent scrambling, as shown in Figure 9b.
The application recreates the scrambler in software ( 2 in
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Figure 9b). It can generate the key easily, as the logical ad-
dress of its �le can be found (e.g., using the Linux commands
hdparm -fibmap or debugfs -R), and the base polynomial
used by the LFSR can be determined [43]. This allows the
application to generate the scrambled version of the data,
which it then writes to the SSD ( 3 ). The hardware scram-
bler in the SSD controller XORs the data with the same key,
which descrambles the data back to its original value ( 4 ). The
descrambled data is then stored in the �ash cells.

We describe the detailed operation of modern data scram-
blers and our scrambling workaround in the extended version
of this work [1].

5.2. Sketch of Read Disturb Based Exploit
In this sketch of a new exploit, we describe how a malicious

application can induce a signi�cant amount of read disturb
onto several �ash pages that belong to other, benign victim
applications. As discussed in Section 4.3, two-step program-
ming greatly increases the vulnerability of both partially-
programmed and unprogrammed �ash cells to read disturb,
with an error rate double that of the worst-case pages in fully-
programmed cells. The goal of this exploit is for a malicious
application to quickly perform a large number of read opera-
tions in a very short amount of time, to induce read disturb
errors that corrupt both pages already written to partially-
programmed wordlines and pages that have yet to be written.
Exploit Walkthrough. We now walk through an exam-

ple of the exploit. The malicious application writes an 8KB
�le, with arbitrary data, to the SSD. The SSD controller writes
the �le to a page within an open �ash block (e.g., Page 4 in
Figure 1a). Immediately after the �le is written, the malicious
application repeatedly issues the system calls fopen(), fread(),
�ush(), and fclose() for the �le it has just written, forcing
the �le system to send a new read request to the SSD every
time the sequence of system calls is invoked. The malicious
application continuously performs the system call sequence
for a short period of time (e.g., a few seconds), and then stops.

As each system call sequence is issued, read disturb is in-
duced on the other wordlines within the �ash block, causing
the cell threshold voltages of these wordlines to increase. In
particular, the threshold voltages of cells in the unprogram-
med wordlines can increase to a point where the cells can no
longer be programmed to the ER state (see Section 4.3). After
the malicious application �nishes performing the repeated
system call sequence, a victim application writes data to a
�le. The SSD writes this data to the open �ash block that
was just disturbed by the malicious application. As the SSD
is unaware that an attack took place, it does not detect that
the data cannot be written correctly. As a result, bit �ips can
occur in the victim application’s data.

In this attack, the malicious application does not need to
know any information about the victim application. The
malicious application can inject errors into locations where
data will be stored by other applications in the future. Unlike
the program interference exploit, which attacks a single page,
the read disturb exploit can corrupt multiple pages with a
single attack, and the corruption can a�ect pages written at a
much later time than the attack if the host write rate is low.
Performing Rapid Reads on the SSD. The malicious ap-

plication can perform a large number of system call sequences
in a short amount of time. Flash memory can execute a one-
page read operation in 100 µs. Therefore, the application can
issue approximately 10K read operations to the SSD every
second. The caching of frequently-accessed pages in the SSD,
as done in some modern SSDs [23,32], can potentially prevent

an application from inducing many reads to the �ash chip.
This cache is small in modern SSDs, to minimize cost, and the
malicious application can easily render the cache ine�ective
by issuing a small number of reads to other pages during
each system call sequence [1]. Thus, each sequence can still
induce read disturb on the �ash chip.
Existing Refresh and Read Disturb Management. Re-

fresh mechanisms can eliminate read disturb errors by pe-
riodically correcting and rewriting data stored within the
SSD [6,34,36]. The burst of system call sequences can happen
so fast that existing refresh techniques cannot avoid them,
as refresh is triggered much less frequently (e.g., weekly or
monthly [6,29,30]). Existing read disturb management techni-
ques (e.g., [18, 39]) are also ine�ective for such an exploit, as
they mitigate read disturb errors on a block only when the
error rate of a fully-programmed page is too high, and are
unaware of the error rate on an unprogrammed page.

6. Protection and Mitigation Mechanisms
As we have seen, errors introduced by two-step program-

ming can shorten the SSD lifetime, and have the potential
to expose security exploits. If the error sources can be con-
trolled, the reliability and (potential) security vulnerabilities
can be removed or greatly reduced. To this end, we propose
three solutions that either eliminate or restrict the impact
of cell-to-cell program interference and read disturb during
two-step programming. Table 2 summarizes the cost and
bene�ts of each mechanism. We provide more detail on our
mechanisms in the extended version of this work [1].
Table 2: Summary of our proposed protection mechanisms.

Mechanism Protects Overhead Error Rate
Against Reduction

Bu�ering LSB Data interference 2MB storage 100%in the Controller (§6.1) read disturb 1.3–15.7% latency
Adaptive LSB Read interference 64B storage 21–33%Reference Voltage (§6.2) read disturb 0.0% latency

Multiple Pass-Through read disturb 0B storage 72%Voltages (§6.3) 0.0% latency

6.1. Bu�ering LSB Data in the Controller
The goal of our �rst mechanism is to eliminate all of the

errors that can corrupt an LSB page during the second step
of two-step programming. Errors exist during two-step pro-
gramming because the �ash chip must read the LSB page
data directly from the �ash cells into an internal LSB bu�er
before programming the MSB page data. The LSB page is
highly vulnerable, as we demonstrated in Section 4, and can
contain many errors. As this data does not go through the
SSD controller before the second programming step, these
errors cannot be corrected using the built-in ECC that sits in
the controller. Thus, incorrect LSB data is used to decide the
�nal state of the cell during the second programming step.
If the second step can be modi�ed to avoid directly reading
LSB data from the �ash cells, we can eliminate these errors.
The key idea of our solution ensures that the LSB page data is
not read from the �ash chip, but is bu�ered in and read from
some dedicated location in the SSD.
Mechanism. We propose to use the DRAM bu�er in the

SSD3 to store the LSB data for all partially-programmed word-
lines. We modify two-step programming to make use of the
LSB data bu�ered in DRAM. The key idea is to ensure that
LSB data from partially-programmed wordlines is read from

3Many SSDs already have additional DRAM to manage logical-to-
physical address mapping and other metadata [32].
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this bu�er and not from the �ash chip during the second
programming step, as the DRAM bu�er does not experience
the LSB read errors that we aim to eliminate.

Figure 10 shows our modi�ed two-step programming al-
gorithm. For the �rst programming step (LSB page), the
algorithm is largely unchanged. In the original two-step pro-
gramming algorithm, the LSB data was released from the
DRAM bu�er once the data was sent to the �ash chip (Step A
in Figure 10). We modify the algorithm to keep the data
within the DRAM bu�er (Step B). During the second pro-
gramming step (MSB page), the controller now looks up the
DRAM bu�er to see if the bu�er has the LSB data (Step C). If
the LSB data is found, the controller retrieves the data from
DRAM (Step D) and sends it to the �ash chip’s internal LSB
bu�er (Step E). Then, the controller sends the MSB data to be
programmed to the �ash chip’s internal MSB bu�er (Step F).
This eliminates the need to read data directly from the �ash
chip, thus eliminating the risk of reading data that contains
errors due to program interference or read disturb. The �ash
memory then programs the cells in the wordline.

A: Send LSB 
data to internal

LSB buffer

YES

Step 1

Step 2

B: Keep copy
of LSB in

DRAM buffer
Program
LSB page

C: Is LSB
in DRAM 
buffer?

E: Send LSB 
data to internal

LSB buffer

D: Retrieve 
LSB data from 
DRAM buffer F: Send MSB 

data to internal
MSB buffer

G: Retrieve LSB 
data from
flash chip

NO H: Correct LSB 
data using
ECC engine

Program
MSB page

Figure 10: Modi�ed two-step programming, using a DRAM
bu�er for LSB data (modi�cations shown in shaded boxes).

There are some uncommon cases where the DRAM bu�er
does not contain the LSB data. For example, if the SSD is
turned o� and then turned on again in between the two pro-
gramming steps, the DRAM bu�er is cleared. In this situation,
the algorithm reads the LSB data from the �ash chip (Step G
in Figure 10), and then dispatches it to the SSD controller,
where ECC corrects the bit errors in the data (Step H). Once
the controller gets the error-free LSB data, it sends the LSB
and MSB data to the �ash chip for programming (Steps E and
F). While reading from the �ash chip and applying ECC takes
too long to perform regularly, it can be used as a fail-safe
mechanism for infrequent events such as power cycling.
Errors Removed. Our mechanism eliminates the errors

in the LSB page before the second step starts, either by (1) re-
ading data from the DRAM bu�er, where it is free from the
the error sources we discussed in Section 3.2; or (2) reading
the LSB page into the SSD controller and correcting its errors.
As a result, all errors introduced due to the two-step program-
ming method are removed, thus eliminating any associated
reliability and security vulnerabilities.
Storage Overhead. For every block, no more than two

LSB pages need to be stored in the DRAM bu�er at any given
time, as shadow sequencing ensures that there are at most
two partially-programmed wordlines. Within each die of
a �ash chip, only one block is open for writing at a time.
Therefore, we require two pages’ worth of storage per die in
the DRAM bu�er. For a 1TB SSD with 64 dies, with a 16KB
page size, the total DRAM storage required is 2MB. A modern
1TB SSD typically comes with at least 1GB of DRAM. Our
proposal occupies only 0.2% of this existing DRAM storage.
Latency Overhead. Our mechanism requires additional

time to load LSB data into the internal LSB bu�er during
the second step of programming. A DRAM lookup must be

performed every time an MSB page is programmed. If the
LSB data is not in DRAM, we incur extra latency to read
and correct the data. In both cases, the LSB data must be
transmitted from the SSD controller to the internal LSB bu�er.
The dominant latency components of our mechanism are MSB
page programming time (1.6 ms), transferring data between
the controller and the �ash memory (for a 100MB/s �ash
interface, 160 µs per 16KB page), and the page read operation
when the DRAM bu�er does not have the LSB data (100 µs).

Figure 11 shows the latency overhead of performing MSB
page programming, for baseline two-step programming and
our DRAM-bu�er-based programming mechanism (showing
both when the data is in DRAM, and when it is not and must
be read from the �ash cell). For a 100MB/s �ash interface, we
see that the latency overhead is 4.9% when the LSB page is
in the DRAM bu�er, and 15.7% when the page is not in the
DRAM bu�er, assuming a commonly-used 8KB page size (Fi-
gure 11a). For a more conservative 16KB page, these latency
overheads are 9.3% and 24.2%, respectively (Figure 11b). We
also evaluate various �ash interface speeds, as recent �ash
standards propose speeds as high as 400MB/s [35]. We see
that the overhead drops signi�cantly, to 1.3% and 8.7%, re-
spectively, for the more common 8KB page size (Figure 11a),
and to 2.5% and 11.1% for a 16KB page size (Figure 11b).
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Figure 11: MSB programming latency when LSB data is buf-
fered in the SSD controller, for di�erent page sizes and inter-
face speeds.

We conclude that maintaining a bu�er of LSB pages within
the SSD controller is an e�ective option for eliminating pro-
gram errors, and that the latency overhead can be reasonably
small, depending on �ash page size and interface speed.

6.2. Adaptive LSB Read Reference Voltage
The goal of our second mechanism is to reduce errors as

much as possible at minimal latency overhead. To this end, we
develop a mechanism that signi�cantly reduces read errors
that occur for a partially-programmed page. As discussed in
Section 3.2, errors are introduced into the LSB page data when
the threshold voltage of a partially-programmed �ash cell
shifts upwards. Traditionally, during MSB page programming,
a �xed read reference voltage is applied to read the LSB page,
under the assumption that the threshold voltage distribution
does not change signi�cantly. However, the threshold voltage
distribution shifts not only due to the errors introduced due to
two-step programming, but also due to wear-out, leading to
read errors when a �xed voltage is used for the LSB page. The
key idea of our mechanism is to optimize the read reference
voltage that is used for LSB pages, such that the new read
reference voltage accounts for threshold voltage shifts and
thus reduces the number of raw bit errors when the page is
read from a partially-programmed wordline.
Mechanism. We propose to use an adaptive read refe-

rence voltage for the partially-programmed LSB pages. Once
per day, this adaptive mechanism learns the optimum read
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reference voltage, which is expected to minimize errors when
reading. We need to learn only one voltage per die, as all
blocks within a die have similar aging properties because
wear-leveling ensures that the blocks experience near-equal
levels of wear-out. During the course of a day, the threshold
voltage distribution shifts by only a small amount, and hence
the read reference voltage stays close to its optimum value.

In our mechanism, the SSD controller �rst writes known,
pseudo-random data to 100 test LSB pages (selected from 10
di�erent blocks) within the �ash die. These test pages are
left in a partially-programmed state. Next, the controller uses
the read-retry mechanism [5, 9, 40, 47] to read the test pages
with the current read reference voltage and with the next
four higher voltages. The higher voltages can compensate
for the threshold voltage shifts that took place during the
day, as program interference and read disturb can only in-
crease the threshold voltage (see Section 3.2). The controller
then compares the value it wrote to each test page (which it
knows) with the value read from the �ash chip, to count the
number of read errors for each page at each voltage. Finally,
the controller selects the voltage that generates the lowest
number of errors as the optimum LSB read reference voltage.
Errors Removed. The adaptive read reference voltage

mechanism only mitigates (but does not eliminate) the errors
induced due to two-step programming. We perform expe-
riments on real �ash chips to characterize the error count
reduction due to this mechanism. Figure 12 shows the re-
duction in error rate. For a new �ash chip, without the e�ects
of wear-out (i.e., it has only experienced one program/erase, or
P/E, cycle), our adaptive read reference voltage mechanism lo-
wers the raw bit error rate for reading partially-programmed
wordlines by 32.7%. Even at 5K P/E cycles, after additional er-
rors appear due to the e�ects of wear-out [9], our mechanism
lowers the raw bit error rate by 21.0%.
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Figure 12: Reduction in raw bit error rate with our
adaptive read reference voltage mechanism for partially-
programmed pages, shown for two levels of wear-out.

Storage Overhead. Our mechanism requires only 1B of
storage per �ash die, which can represent up to 256 possible
read reference voltages. For a 1TB SSD with 64 dies, this
requires only 64B of storage.
Latency Overhead. To learn the read reference voltage

for each die, the controller programs 100 LSB pages (1.6 ms
each), and performs �ve reads (100 µs each) per page, taking
a total of 210.0 ms. Even if we conservatively assume that
learning is serialized for all dies, our algorithm requires 13.4 s
each day for an SSD with 64 dies, which is negligible. Our
mechanism does not add any latency to the read operation.

6.3. Multiple Pass-Through Voltages
The goal of our third mechanism is to minimize the errors

that occur as a result of read disturb. As we discussed in
Section 4.3, the number of errors grows signi�cantly as the
di�erence between the cell threshold voltage (Vth) and pass-
through voltage (Vpass) increases. Figure 13a demonstrates
how Vpass is currently applied to the unread cells within a
block. Regardless of the programming status of a wordline,

Vpass is set to be greater than the maximum possible cell
threshold voltage. However, as discussed in Section 2, Vth
on a partially-programmed wordline should not exceed half
of the maximum threshold voltage, and the Vth of an unpro-
grammed cell is close to 0V. Thus, for partially-programmed
and unprogrammed wordlines, there is always a large gap be-
tween Vpass and Vth (top of Figure 13a), leading to a much
larger number of read disturb errors for these wordlines than
for fully-programmed wordlines. If this gap can be mini-
mized, the number of errors would decrease signi�cantly.
The key idea of our mechanism is to provide three di�erent
pass-through voltages for an open block, as shown in Fi-
gure 13b: one for fully-programmed wordlines (Vpass), anot-
her for partially-programmed wordlines (V partial

pass ), and a third
for unprogrammed wordlines (V erase

pass ).

ER TP

ER P1 P2 P3
Vth

ER
VpassLARGE GAP

(a)

Unprogrammed

Partially
Programmed

Fully
Programmed

ER TP

ER P1 P2 P3
Vth

ER
Vpass

Vpass
partial

Vpass
erase

(b)
Figure 13: (a) Applying single Vpass to all unread wordlines;
(b) Ourmultiple pass-through voltagemechanism, where dif-
ferent voltages are applied based on the the wordline’s pro-
gramming status, to minimize the e�ects of read disturb.

Mechanism. Instead of applying one pass-through
voltage per block [10], we propose to modify the SSD so
it applies di�erent pass-through voltages onto wordlines ba-
sed on their most recent programming step completed. Our
mechanism ensures that the gap between the selected pass-
through voltage and the highest possible threshold voltage for
partially-programmed and unprogrammed cells is minimized.

Figure 13b illustrates how the three voltages are selected.
All of an unprogrammed wordline’s cells are in the ER state,
as shown in the top of Figure 13b, so their threshold voltages
should be close to 0V. For cells in an unprogrammed wordline,
the controller uses V erase

pass , which is set to slightly above 0V.
None of a partially-programmed wordline’s cell threshold
voltages exceed the highest voltage of the TP state (see middle
of Figure 13b). For cells in a partially-programmed wordline,
the controller uses V partial

pass , which is set to slightly higher than
the highest voltage of the TP state. For a fully-programmed
wordline, the controller uses the same pass-through voltage
(Vpass) as the baseline (see bottom of Figure 13b).

Our mechanism does not require any adaptive learning, as
we set one �xed value across the entire chip for each of our
three pass-through voltages. The controller already knows
the programming status of each wordline, as it tracks the next
page to program, so no additional state tracking is required.
Errors Removed. We perform experiments on real �ash

chips to characterize the reduction in the raw bit error rate
as a result of employing multiple pass-through voltages. As
current SSDs do not allow the pass-through voltage to be
changed, we use the read-retry mechanism [5, 9, 40, 47] to
emulate lowering the pass-through voltage. In order to simu-
late N read disturbs, we �rst program known pseudo-random
data to some of the pages in a block (leaving some wordlines
partially programmed or unprogrammed), and then repea-
tedly try to “read” a single page in the block N times with the
read reference voltage set to our desired Vpass . We then pro-

10



gram the remaining pages within the block, perform a normal
read of both the LSB and MSB pages on the selected wordline,
and compare the data stored within the �ash memory to the
correct data, counting the number of errors.

Figure 14 shows the RBER when the SSD uses a single Vpass
value (top), and when it uses multiple pass-through voltages
(bottom), for a �ash block that has endured 6K P/E cycles. We
assume that ECC reaches its error correction capability at an
RBER of 0.003. As we saw in Section 4.3, for wordlines that
were fully programmed before read disturb occurs, the MSB
pages have a high RBER under both mechanisms (the orange
dashed line in Figure 14). As we also saw in Section 4.3, for
wordlines partially programmed and unprogrammed before
read disturb occurs, the LSB pages (the solid blue line in the
top graph of Figure 14) have the highest RBER when using a
single pass-through voltage. As a result, these pages limit the
block to sustaining only 8K read disturbs. Figure 14 (bottom)
shows that our mechanism signi�cantly reduces the error
rate. The RBER of the LSB pages in partially-programmed
and unprogrammed wordlines (solid blue line in the bottom
graph of Figure 14) drops so greatly that even after 50K read
disturbs, these pages are far from approaching the maximum
RBER correctable by ECC. The pages within the �ash block
can now sustain 3.5x more read disturbs than with a single
Vpass , as the dominant number of read disturb errors now
exist on MSB pages in fully-programmed wordlines.
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Figure 14: RBER when using a single baseline Vpass (top) vs.
our multiple pass-through voltage mechanism (bottom) for
di�erent page types.

Figure 15 shows how the SSD lifetime changes (y-axis),
with and without our mechanism, as the read disturb count
per block varies (x-axis), for a �xed amount of ECC error
correction capability (Section 3.1). As an SSD has a �xed error
correction capability, it can only tolerate a maximum number
of errors before exceeding the error correction capability.
The lifetime of the SSD ends at the P/E cycle count when
the error correction capability is exceeded. By reducing the
read disturb count (i.e., reducing the number of read disturb
errors that need to be corrected), our mechanism lets the SSD
endure a higher number of P/E cycles before exhausting the
error correction capability. Thus, our mechanism increases
the SSD lifetime. For example, an SSD at 6K P/E cycles can
sustain 5K read disturbs without our mechanism (as shown
in Figure 15). Since our mechanism reduces the read disturb
error count, it enables the SSD to sustain 5K read disturbs at
7K P/E cycles, thereby providing a 16% increase in lifetime.

Storage and Latency Overheads. Our mechanism uses
the existing read-retry mechanism to adjust Vpass for each
wordline within a block. Therefore, our mechanism does
not require a new voltage generator, but simply needs an
interface exposed by the SSD to set di�erent values of Vpass
(just like prior work has done [10]). As the three Vpass values
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Figure 15: SSD lifetime as the read disturb count per block
varies, with and without our multiple pass-through voltage
mechanism.

remain constant throughout execution, no storage is required,
and the mechanism does not incur any additional latency.

7. Related Work
To our knowledge, this paper is the �rst to (1) experimen-

tally characterize errors that occur due to the two-step pro-
gramming method commonly used in MLC NAND �ash me-
mory; (2) reveal new reliability and security vulnerabilities
exposed by two-step programming in �ash memory; and
(3) develop novel solutions to reduce these vulnerabilities.
We brie�y describe related works in various areas.

Flash Memory Error Characterization and Under-
standing. Prior works study various types of NAND �ash me-
mory errors derived from circuit-level noise, such as retention
noise [3,4,6,7], read disturb noise [10], cell-to-cell program in-
terference noise [3,5,7,8], and P/E cycling noise [3,7,9,31,38].
None of these works characterize how program interference
and read disturb signi�cantly increase errors within the un-
programmed or partially-programmed cells of an open block
due to the vulnerabilities in two-step programming, nor do
they develop mechanisms that exploit or mitigate such errors.
Program Interference Error Mitigation Mechanisms.

Prior works model the behavior of program interference,
and propose mechanisms that estimate the optimal read re-
ference voltage once interference has occurred [5, 8]. These
works minimize program interference errors only for fully-
programmed wordlines, by modeling the change in the thres-
hold voltage distribution as a result of the interference. These
models are �tted to the distributions of wordlines after both
the LSB and MSB pages are programmed, and are unable
to determine and mitigate the shift that occurs for wordli-
nes that are partially programmed. In contrast, we propose
mechanisms that speci�cally address the program interfe-
rence resulting from two-step programming, and reduce the
number of errors induced on LSB pages in both partially-
programmed and unprogrammed wordlines.
Read Disturb Error Mitigation Mechanisms. One pa-

tent proposes a mechanism that uses counters to monitor the
total number of reads to each block. Once a block’s counter
exceeds a threshold, the mechanism remaps and rewrites all
of the valid pages within the block to remove the accumulated
read disturb errors [18]. Another patent proposes to monitor
the MSB page error rate to ensure that it does not exceed
the ECC error correction capability, to avoid data loss [39].
Both of these mechanisms monitor pages only from fully-
programmed wordlines. Unfortunately, as we observed (in
Section 4.3), LSB pages in partially-programmed and unpro-
grammed wordlines are twice as susceptible to read disturb
as pages in fully-programmed wordlines. If only the MSB
page error rate is monitored, read disturb may be detected
too late to correct some of the LSB pages. Another prior work
dynamically changes the pass-through voltage for each block
to reduce the impact of read disturb [10]. As a single voltage
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is applied to the whole block, this mechanism does not help
signi�cantly with the LSB pages in partially-programmed
and unprogrammed wordlines. In contrast, our read disturb
mitigation technique (Section 6.3) speci�cally targets these
LSB pages by applying di�erent pass-through voltages in an
open block, optimized to the di�erent programmed states of
each wordline, to reduce read disturb errors.
Using FlashMemory for Security Applications. Some

prior works studied how �ash memory can be used to enhance
the security of applications. One work uses �ash memory as a
secure channel to hide information, such as a secure key [45].
Other works use �ash memory to generate random numbers
and digital �ngerprints [44, 46]. None of these works study
vulnerabilities that exist within the �ash memory.

Two-Step vs. One-Shot Programming. One-shot pro-
gramming shifts �ash cells directly from the erased state to
their �nal target state in a single step. For smaller transistors
with less distance between neighboring �ash cells, such as
those in sub-40nm 2D NAND �ash memory, two-step pro-
gramming has replaced one-shot programming to alleviate
the coupling capacitance resulting from cell-to-cell program
interference [37]. 3D NAND �ash memory currently uses one-
shot programming, as the chips use larger process technology
nodes (>40nm). However, once the number of 3D-stacked
layers reaches its upper limit, 3D NAND will scale to smaller
transistors, and we expect that the increased program inter-
ference will again require two-step programming (just as it
happened for 2D NAND in the past [24, 37]).

8. Conclusion
This paper shows that the two-step programming mecha-

nism commonly employed in modern MLC NAND �ash me-
mory chips opens up new vulnerabilities to errors, based
on an experimental characterization of modern 1X-nm MLC
NAND �ash chips. We show that the root cause of these vul-
nerabilities is the fact that when a partially-programmed cell
is set to an intermediate threshold voltage, it is much more
susceptible to both cell-to-cell program interference and read
disturb. We demonstrate that (1) these vulnerabilities lead to
errors that reduce the overall reliability of �ash memory, and
(2) attackers can potentially exploit these vulnerabilities to
maliciously corrupt data belonging to other programs. Based
on our experimental observations and the resulting under-
standing, we propose three new mechanisms that can remove
or mitigate these vulnerabilities, by eliminating or reducing
the errors introduced as a result of the two-step programming
method. Our experimental evaluation shows that our new
mechanisms are e�ective: they can either eliminate the vul-
nerabilities with modest/low latency overhead, or drastically
reduce the vulnerabilities and reduce errors with negligible
latency or storage overhead. We hope that the vulnerabilities
we analyzed and exposed in this work, along with the experi-
mental data we provided, open up new avenues for mitigation
as well as for exposure of other potential vulnerabilities due
to internal �ash memory operation.
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