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ABSTRACT | NAND flash memory is ubiquitous in everyday life 

today because its capacity has continuously increased and cost 

has continuously decreased over decades. This positive growth 

is a result of two key trends: 1) effective process technology 

scaling; and 2) multi-level (e.g., MLC, TLC) cell data coding. 

Unfortunately, the reliability of raw data stored in flash memory 

has also continued to become more difficult to ensure, because 

these two trends lead to 1) fewer electrons in the flash memory 

cell floating gate to represent the data; and 2) larger cell-to-

cell interference and disturbance effects. Without mitigation, 

worsening reliability can reduce the lifetime of NAND flash 

memory. As a result, flash memory controllers in solid-state drives 

(SSDs) have become much more sophisticated: they incorporate 

many effective techniques to ensure the correct interpretation of 

noisy data stored in flash memory cells. In this article, we review 

recent advances in SSD error characterization, mitigation, and 

data recovery techniques for reliability and lifetime improvement. 

We provide rigorous experimental data from state-of-the-art MLC 

and TLC NAND flash devices on various types of flash memory 

errors, to motivate the need for such techniques. Based on the 

understanding developed by the experimental characterization, 

we describe several mitigation and recovery techniques, including 
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1) cell-to-cell interference mitigation; 2) optimal multi-level cell 

sensing; 3) error correction using state-of-the-art algorithms 

and methods; and 4) data recovery when error correction fails. 

We quantify the reliability improvement provided by each of 

these techniques. Looking forward, we briefly discuss how flash 

memory and these techniques could evolve into the future.

KEYWORDS | Data storage systems; error recovery; fault 

tolerance; flash memory; reliability; solid-state drives

I .  IN TRODUCTION

Solid-state drives (SSDs) are widely used in computer  
systems today as a primary method of data storage. In com-
parison with magnetic hard drives, the previously domi-
nant choice for storage, SSDs deliver significantly higher 
read and write performance, with orders of magnitude of 
improvement in random-access input/output (I/O) opera-
tions, and are resilient to physical shock, while requiring a 
smaller form factor and consuming less static power. SSD 
capacity (i.e., storage density) and cost-per-bit have been 
improving steadily in the past two decades, which has led 
to the widespread adoption of SSD-based data storage in 
most computing systems, from mobile consumer devices 
[51], [96] to enterprise data centers [48]–[50], [83], [97].

The first major driver for the improved SSD capac-
ity and cost-per-bit has been manufacturing process  scaling, 
which has increased the number of flash memory cells 
within a fixed area. Internally, commercial SSDs are made 
up of NAND flash memory chips, which provide  nonvolatile 
memory storage (i.e., the data stored in NAND flash is 
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correctly retained even when the power is disconnected) using  
floating gate (FG) transistors [46], [47], [171] or charge trap tran-
sistors [105], [172]. In this paper, we mainly focus on floating 
gate transistors, since they are the most common transistor 
used in today’s flash  memories. A floating gate transistor con-
stitutes a flash memory cell. It can encode one or more bits of 
digital data, which is represented by the level of charge stored 
inside the transistor’s floating gate. The transistor traps charge 
within its floating gate, which dictates the threshold  voltage level 
at which the transistor turns on. The threshold voltage level of 
the floating gate is used to determine the value of the digital 
data stored inside the transistor. When manufacturing process 
scales down to a smaller technology node, the size of each flash 
memory cell, and thus the size of the transistor, decreases, 
which in turn reduces the amount of charge that can be trapped 
within the floating gate. Thus, process scaling increases storage 
density by enabling more cells to be placed in a given area, but 
it also causes reliability issues, which are the focus of this paper.

The second major driver for improved SSD capacity has 
been the use of a single floating gate transistor to represent more 
than one bit of digital data. Earlier NAND flash chips stored a 
single bit of data in each cell (i.e., a single floating gate transis-
tor), which was referred to as single-level cell (SLC) NAND 
flash. Each transistor can be set to a specific threshold voltage 
within a fixed range of voltages. SLC NAND flash divided this 
fixed range into two voltage windows, where one window rep-
resents the bit value 0 and the other window represents the bit 
value 1. Multi-level cell (MLC) NAND flash was commercial-
ized in the last two decades, where the same voltage range is 
instead divided into four voltage windows that represent each 
possible 2-bit value (00, 01, 10, and 11). Each voltage window 
in MLC NAND flash is therefore much smaller than a voltage 
window in SLC NAND flash. This makes it more difficult to 
identify the value stored in a cell. More recently, triple-level 
cell (TLC) flash has been commercialized [65], [183], which 
further divides the range, providing eight voltage windows to 
represent a 3-bit value. Quadruple-level cell (QLC) flash, stor-
ing a 4-bit value per cell, is currently being developed [184]. 
Encoding more bits per cell increases the capacity of the SSD 
without increasing the chip size, yet it also decreases reliability 
by making it more difficult to correctly store and read the bits.

The two major drivers for the higher capacity, and thus 
the ubiquitous commercial success, of flash memory as a stor-
age device, are also major drivers for its reduced reliability 
and are the causes of its scaling problems. As the amount of 
charge stored in each NAND flash cell decreases, the voltage 
for each possible bit value is distributed over a wider voltage 
range due to greater process variation, and the margins (i.e., 
the width of the gap between neighboring voltage windows) 
provided to ensure the raw reliability of NAND flash chips 
have been diminishing, leading to a greater probability of flash  
memory errors with newer generations of SSDs. NAND  
flash memory errors can be induced by a variety of sources 
[32], including flash cell wearout [32], [33], [42], errors 
introduced during programming [35], [40], [42], [53], inter-
ference from operations performed on adjacent cells [20], 

[26], [27], [35], [36], [38], [55], [62], and data retention 
issues due to charge leakage [20], [32], [34], [37], [39].

To compensate for this, SSDs employ sophisticated error-
correcting codes (ECCs) within their controllers. An SSD con-
troller uses the ECC information stored alongside a piece of 
data in the NAND flash chip to detect and correct a number 
of raw bit errors (i.e., the number of errors experienced before 
correction is applied) when the piece of data is read out. The 
number of bits that can be corrected for every piece of data is 
a fundamental tradeoff in an SSD. A more sophisticated ECC 
can tolerate a larger number of raw bit errors, but it also con-
sumes greater area overhead and latency. Error characteriza-
tion studies [20], [32], [33], [42], [53], [62] have found that, 
due to NAND flash wearout, the probability of raw bit errors 
increases as more program/erase (P/E) cycles (i.e., write accesses, 
or writes) are performed to the drive. The raw bit error rate 
eventually exceeds the maximum number of errors that can be 
corrected by ECC, at which point data loss occurs [37], [44], 
[48], [49]. The lifetime of a NAND-flash-memory-based SSD is 
determined by the number of P/E cycles that can be performed 
successfully while avoiding data loss for a minimum retention 
 guarantee (i.e., the required minimum amount of time, after 
being written, that the data can still be read out without uncor-
rectable errors).

The decreasing raw reliability of NAND flash memory 
chips has drastically impacted the lifetime of commercial 
SSDs. For example, older SLC NAND-flash-based SSDs were 
able to withstand 150 000 P/E cycles (writes) to each flash 
cell, but contemporary 1x-nm (i.e., 15–19 nm) process-based 
SSDs consisting of MLC NAND flash can sustain only 3000 
P/E cycles [53], [60], [81]. With the raw reliability of a flash 
chip dropping so significantly, approaches to mitigating reli-
ability issues in NAND-flash-based SSDs have been the focus 
of an important body of research. A number of solutions 
have been proposed to increase the lifetime of contemporary 
SSDs, ranging from changes to the low-level device behavior  
(e.g., [33], [38], [40], and [72]) to making SSD controllers 
much more intelligent in dealing with individual flash mem-
ory chips (e.g., [34], [36], [37], [39], [41]–[43], [45], and [65]). 
In addition, various mechanisms have been developed to suc-
cessfully recover data in the event of data loss that may occur 
during a read operation to the SSD (e.g., [37], [38], and [45]).

In this work, we provide a comprehensive overview of the 
state of flash-memory-based SSD reliability, with a focus on  
1) fundamental causes of flash memory errors, backed up by  
2) quantitative error data collected from real state-of-the-art 
flash memory devices, and 3) sophisticated error mitigation 
and data recovery techniques developed to tolerate, correct, 
and recover from such errors. To this end, we first discuss the 
architecture of a state-of-the-art SSD, and describe mechanisms 
used in a commercial SSD to reduce the probability of data loss 
(Section II). Next, we discuss the low-level behavior of the 
underlying NAND flash memory chip in an SSD, to illustrate 
fundamental reasons why errors can occur in flash memory 
(Section III). We then discuss the root causes of these errors, 
quantifying the impact of each error source using experimental 
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characterization data collected from real NAND flash memory 
chips (Section IV). For each of these error sources, we describe 
various state-of-the-art mechanisms that mitigate the induced 
errors (Section V). We next examine several error recovery 
flows to successfully extract data from the SSD in the event of 
data loss during a read operation (Section VI). Then, we look to 
the future to foreshadow how the reliability of SSDs might be 
affected by emerging flash memory technologies (Section VII). 
Finally, we briefly examine how other memory technologies 
(such as DRAM, which is used prominently in a modern SSD, 
and emerging nonvolatile memory) suffer from similar reliabil-
ity issues to SSDs (Section VIII).

II .  STATE- OF-THE-A RT SSD 
A RCHITECT U R E

In order to understand the root causes of reliability issues 
within SSDs, we first provide an overview of the system archi-
tecture of a state-of-the-art SSD. The SSD consists of a group of 
NAND flash memories (or chips) and a controller, as shown in 
Fig. 1. A host computer communicates with the SSD through a 
high-speed host interface (e.g., SAS, SATA, PCIe bus), which 
connects to the SSD controller. The controller is then con-
nected to each of the NAND flash chips via memory channels.

A. Flash Memory Organization

Fig. 2 shows an example of how NAND flash memory is 
organized within an SSD. The flash memory is spread across 
multiple flash chips, where each chip contains one or more 
flash dies, which are individual pieces of silicon wafer that 
are connected together to the pins of the chip. Contemporary 
SSDs typically have 4–16 chips per SSD, and can have as many 
as 16 dies per chip. Each chip is connected to one or more 
physical memory channels, and these memory channels are 
not shared across chips. A flash die operates independently 
of other flash dies, and contains between one and four planes. 
Each plane contains hundreds to thousands of flash blocks. 
Each block is a 2-D array that contains hundreds of rows of 
flash cells (typically 256–1024 rows) where the rows store 
contiguous pieces of data. Much like banks in a multibank 
memory (e.g., DRAM banks [84], [85], [99], [101], [102], 

[108], [193]–[196]), the planes can execute flash operations 
in parallel, but the planes within a die share a single set of data 
and control buses [185]. Hence, an operation can be started in 
a different plane in the same die in a pipelined manner, every 
cycle. Fig. 2 shows how blocks are organized within chips 
across multiple channels. In the rest of this work, without 
loss of generality, we assume that a chip contains a single die.

Data in a block is written at the unit of a page, which is 
typically between 8 and 16 kB in size in NAND flash memory. 
All read and write operations are performed at the granular-
ity of a page. Each block typically contains hundreds of pages. 
Blocks in each plane are numbered with an ID that is unique 
within the plane, but is shared across multiple planes. Within 
the block, each page is numbered in sequence. The control-
ler firmware groups blocks with the same ID number across 
multiple chips and planes together into a superblock. Within 
each superblock, the pages with the same page number are 
considered a superpage. The controller opens one superblock 
(i.e., an empty superblock is selected for write operations) at a 
time, and typically writes data to the NAND flash memory one 
superpage at a time to improve sequential read/write perfor-
mance and make error correction efficient, since some parity 
information is kept at superpage granularity (see Section II-C). 
Having the ability to write to all of the pages in a superpage 
simultaneously, the SSD can fully exploit the internal parallel-
ism offered by multiple planes/chips, which in turn maximizes 
write throughput.

B. Memory Channel

Each flash memory channel has its own data and con-
trol connection to the SSD controller, much like a main 
memory channel has to the DRAM controller [99], [100], 
[102], [108], [197]–[201]. The connection for each channel 
is typically an 8- or 16-bit wide bus between the controller 
and one of the flash memory chips [185]. Both data and flash 
commands can be sent over the bus.

Each channel also contains its own control signal pins 
to indicate the type of data or command that is on the bus. 
The address latch enable (ALE) pin signals that the control-
ler is sending an address, while the command latch enable 
(CLE) pin signals that the controller is sending a flash 

Fig. 1. (a) SSD system architecture, showing controller (Ctrl) 
and chips. (b) Detailed view of connections between controller 
components and chips.

Fig. 2. Flash memory organization.
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command. Every rising edge of the write enable (WE) signal 
indicates that the flash memory should write the piece of 
data currently being sent on the bus by the SSD controller. 
Similarly, every rising edge of the read enable (RE) signal 
indicates that the flash memory should send the next piece 
of data from the flash memory to the SSD controller.

Each flash memory die connected to a memory channel 
has its own chip enable (CE) signal, which selects the die 
that the controller currently wants to communicate with. 
On a channel, the bus broadcasts address, data, and flash 
commands to all dies within the channel, but only the die 
whose CE signal is active reads the information from the bus 
and executes the corresponding operation.

C. SSD Controller

The SSD controller, shown in Fig. 1(b), is responsible for 
managing the underlying NAND flash memory, and for han-
dling I/O requests received from the host. To perform these 
tasks, the controller runs firmware, which is often referred 
to as the flash translation layer (FTL). FTL tasks are exe-
cuted on one or more embedded processors that exist inside 
the controller. The controller has access to DRAM, which 
can be used to store various controller metadata (e.g., how 
host memory addresses map to physical SSD addresses) and 
to cache relevant (e.g., frequently accessed) SSD pages [48], 
[161]. When the controller handles I/O requests, it performs 
a number of operations on the data, such as  scrambling 
the data to improve raw bit error rates, performing ECC  
encoding/decoding, and in some cases compressing the 
data and employing superpage-level data parity. We briefly 
examine the various tasks of the SSD controller.

1) Flash Translation Layer: The main duty of the FTL is to 
manage the mapping of logical addresses (i.e., the address 
space utilized by the host) to physical addresses in the 
underlying flash memory (i.e., the address space for actual 
locations where the data is stored, visible only to the SSD 
controller) for each page of data [1], [2]. By providing this 
indirection between address spaces, the FTL can remap the 
logical address to a different physical address (i.e., move  
the data to a different physical address) without notifying 
the host. Whenever a page of data is written to by the host 
or moved for underlying SSD maintenance operations (e.g., 
garbage collection [3], [4]; see below), the old data (i.e., the 
physical location where the overwritten data resides) is sim-
ply marked as invalid in the physical block’s metadata, and 
the new data is written to a page in the flash block that is 
currently open for writes (see Section III-D for more detail 
on how writes are performed).

Over time, page invalidations cause fragmentation 
within a block, where a majority of pages in the block become 
invalid. The FTL periodically performs garbage collection, 
which identifies each of the highly fragmented flash blocks 
and erases the entire block (after migrating any remaining 
valid pages to a new block, with the goal of fully populating 

the new block with valid pages) [3], [4]. Garbage collection 
often aims to select the blocks with the least amount of uti-
lization (i.e., the fewest valid pages) first. When garbage col-
lection is complete, and a block has been erased, it is added 
to a free list in the FTL. When the block currently open for 
writes becomes full, the SSD controller selects a new block 
to open from the free list.

The FTL is also responsible for wear leveling, to ensure that 
all of the blocks within the SSD are evenly worn out [3], [4]. 
By evenly distributing the wear (i.e., the number of P/E cycles 
that take place) across different blocks, the SSD controller 
reduces the heterogeneity of the amount of wearout across 
these blocks, extending the lifetime of the device. Wear-
leveling algorithms are invoked when the current block that 
is being written to is full (i.e., no more pages in the block are 
available to write to), and the controller selects a new block 
for writes from the free list. The wear-leveling algorithm dic-
tates which of the blocks from the free list is selected. One 
simple approach is to select the block in the free list with the 
lowest number of P/E cycles to minimize the variance of the 
wearout amount across blocks, though many algorithms have 
been developed for wear leveling [98], [203].

2) Flash Reliability Management: The SSD  controller 
performs many background optimizations that improve 
flash reliability. These flash reliability management tech-
niques, as we will discuss in more detail in Section V, 
can effectively improve flash lifetime at a very low cost, 
since the optimizations are usually performed during idle 
times, when the interference with the running workload 
is minimized. These management techniques sometimes 
require small metadata storage in memory (e.g., for stor-
ing optimal read reference voltages [37], [38], [42]), or 
require a timer (e.g., for triggering refreshes in time  
[34], [39]).

3) Compression: Compression can reduce the size of the 
data written to minimize the number of flash cells worn out 
by the original data. Some controllers provide compression, 
as well as decompression, which reconstructs the original 
data from the compressed data stored in the flash memory 
[5], [6]. The controller may contain a compression engine, 
which, for example, performs the LZ77 or LZ78 algorithms. 
Compression is optional, as some types of data being stored 
by the host (e.g., JPEG images, videos, encrypted files, files 
that are already compressed) may not be compressible.

4) Data Scrambling and Encryption: The occurrence of 
errors in flash memory is highly dependent on the data val-
ues stored into the memory cells [32], [35], [36]. To reduce 
the dependence of the error rate on data values, an SSD 
controller first scrambles the data before writing it into the 
flash chips [7], [8]. The key idea of scrambling is to proba-
bilistically ensure that the actual value written to the SSD 
contains an equal number of randomly distributed zeroes 
and ones, thereby minimizing any data-dependent behav-
ior. Scrambling is performed using a reversible process, and 
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the controller descrambles the data stored in the SSD during 
a read request. The controller employs a linear feedback shift 
register (LFSR) to perform scrambling and descrambling. 
An  n -bit LFSR generates   2   n−1   bits worth of pseudo-random 
numbers without repetition. For each page of data to be writ-
ten, the LFSR can be seeded with the logical address of that 
page, so that the page can be correctly descrambled even if 
maintenance operations (e.g., garbage collection) migrate 
the page to another physical location, as the logical address 
is unchanged. (This also reduces the latency of maintenance 
operations, as they do not need to descramble and rescram-
ble the data when a page is migrated.) The LFSR then gener-
ates a pseudo-random number based on the seed, which is 
then XORed with the data to produce the scrambled version 
of the data. As the XOR operation is reversible, the same 
process can be used to descramble the data.

In addition to the data scrambling employed to mini-
mize data value dependence, several SSD controllers 
include data encryption hardware [167], [168], [170]. An 
SSD that contains data encryption hardware within its 
controller is known as a self-encrypting drive (SED). In the 
controller, data encryption hardware typically employs 
AES encryption [168]–[170], [204], which performs multi-
ple rounds of substitutions and permutations to the unen-
crypted data in order to encrypt it. AES employs a separate 
key for each round [169], [204]. In an SED, the controller 
contains hardware that generates the AES keys for each 
round, and performs the substitutions and permutations 
to encrypt or decrypt the data using dedicated hardware 
[167], [168], [170].

5) Error-Correcting Codes: ECC is used to detect and cor-
rect the raw bit errors that occur within flash memory. A 
host writes a page of data, which the SSD controller splits 
into one or more chunks. For each chunk, the controller 
generates a codeword, consisting of the chunk and a cor-
rection code. The strength of protection offered by ECC 
is determined by the coding rate, which is the chunk size 
divided by the codeword size. A higher coding rate provides 
weaker protection, but consumes less storage, representing 
a key reliability tradeoff in SSDs.

The ECC algorithm employed (typically BCH [9], [10], 
[92], [93] or LDPC [9], [11], [94], [95]; see Section VI), 
as well as the length of the codeword and the coding rate, 
determine the total error correction capability, i.e., the 
maximum number of raw bit errors that can be corrected 
by ECC. ECC engines in contemporary SSDs are able to 
correct data with a relatively high raw bit error rate (e.g., 
between   10   −3   and   10   −2   [110]) and return data to the host at 
an error rate that meets traditional data storage reliability 
requirements (e.g., a post-correction error rate of   10   −15   in 
the JEDEC standard [12]). The error  correction failure rate 
(  P ECFR   ) of an ECC implementation, with a codeword length 
of  l  where the codeword has an error correction capability 
of  t  bits, can be modeled as

   P ECFR   =  ∑ k=t+1  
l
    (  l     

k
  
 
 )   (1 − BER )   l−k   BER   k    (1)

where BER is the bit error rate of the NAND flash memory. 
We assume in this equation that errors are independent and 
identically distributed.

In addition to the ECC information, a codeword con-
tains cyclic redundancy checksum (CRC) parity information 
[161]. When data is being read from the NAND flash mem-
ory, there may be times when the ECC algorithm incorrectly 
indicates that it has successfully corrected all errors in the 
data, when uncorrected errors remain. To ensure that incor-
rect data is not returned to the user, the controller performs 
a CRC check in hardware to verify that the data is error free 
[161], [205].

6) Data Path Protection: In addition to protecting the 
data from raw bit errors within the NAND flash memory, 
newer SSDs incorporate error detection and correction 
mechanisms throughout the SSD controller, in order to 
further improve reliability and data integrity [161]. These 
mechanisms are collectively known as data path protection, 
and protect against errors that can be introduced by the vari-
ous SRAM and DRAM structures that exist within the SSD.1  
Fig. 3 illustrates the various structures within the control-
ler that employ data path protection mechanisms. There are 
three data paths that require protection: 1) the path for data 
written by the host to the flash memory, shown as a red solid 
line in Fig. 3; 2) the path for data read from the flash mem-
ory by the host, shown as a green dotted line; and 3) the path 
for metadata transferred between the firmware (i.e., FTL) 
processors and the DRAM, shown as a blue dashed line.

In the write data path of the controller (the red solid 
line shown in Fig. 3), data received from the host interface  
(➊ in the figure) is first sent to a host FIFO buffer (➋). 
Before the data is written into the host FIFO buffer, the data 
is appended with memory protection ECC (MPECC) and 
host FIFO buffer (HFIFO) parity [161]. The MPECC parity is 
designed to protect against errors that are introduced when 
the data is stored within DRAM (which takes place later 
along the data path), while the HFIFO parity is designed 

1See Section VIII for a discussion on the possible types of errors that 
can be present in DRAM.

Fig. 3. Data path protection employed within the controller.
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to protect against SRAM errors that are introduced when 
the data resides within the host FIFO buffer. When the 
data reaches the head of the host FIFO buffer, the control-
ler fetches the data from the buffer, uses the HFIFO parity 
to correct any errors, discards the HFIFO parity, and sends 
the data to the DRAM manager (➌). The DRAM manager 
buffers the data (which still contains the MPECC informa-
tion) within DRAM (➍), and keeps track of the location of 
the buffered data inside the DRAM. When the controller 
is ready to write the data to the NAND flash memory, the 
DRAM manager reads the data from DRAM. Then, the con-
troller uses the MPECC information to correct any errors, 
and discards the MPECC information. The controller then 
encodes the data into an ECC codeword (➎), generates CRC 
parity for the codeword, and then writes both the codeword 
and the CRC parity to a NAND flash FIFO buffer (➏) [161]. 
When the codeword reaches the head of this buffer, the con-
troller uses CRC parity to correct any errors in the code-
word, and then dispatches the data to the flash interface (➐), 
which writes the data to the NAND flash memory. The read 
data path of the controller (the green dotted line shown in  
Fig. 3) performs the same procedure as the write data path, 
but in reverse order [161].

Aside from buffering data along the write and read paths, 
the controller uses the DRAM to store essential metadata, 
such as the table that maps each host data address to a physi-
cal block address within the NAND flash memory [48], 
[161]. In the metadata path of the controller (the blue dashed 
line shown in Fig. 3), the metadata is often read from or writ-
ten to DRAM by the firmware processors. In order to ensure 
correct operation of the SSD, the metadata must not contain 
any errors. As a result, the controller uses memory protec-
tion ECC (MPECC) for the metadata stored within DRAM 
[130], [161], just as it did to buffer data along the write and 
read data paths. Due to the lower rate of errors in DRAM 
compared to NAND flash memory (see Section VIII), the 
employed memory protection ECC algorithms are not as 
strong as BCH or LDPC. We describe common ECC algo-
rithms employed for DRAM error correction in Section VIII.

7) Bad Block Management: Due to process variation or 
uneven wearout, a small number of flash blocks may have 
a much higher raw bit error rate (RBER) than an average 
flash block. Mitigating or tolerating the RBER on these flash 
blocks often requires a much higher cost than the benefit of 
using them. Thus, it is more efficient to identify and record 
these blocks as bad blocks, and avoid using them to store 
useful data. There are two types of bad blocks: original bad 
blocks (OBBs), which are defective due to manufactur-
ing issues (e.g., process variation), and growth bad blocks 
(GBBs), which fail during runtime [91].

The flash vendor performs extensive testing, known 
as bad block scanning, to identify OBBs when a flash chip 
is manufactured [106]. Initially, all blocks are kept in 
the erased state, and contain the value 0xFF in each byte 

(see Section III-A). Inside each OBB, the bad block scan-
ning procedure writes a specific data value (e.g.,  0x00 ) to 
a specific byte location within the block that indicates the 
block status. A good block (i.e., a block without defects) is 
not modified, and thus its block status byte remains at the 
value 0xFF. When the SSD is powered up for the first time, 
the SSD controller iterates through all blocks and checks 
the value stored in the block status byte of each block. Any 
block that does not contain the value 0xFF is marked as bad, 
and is recorded in a bad block table stored in the control-
ler. A small number of blocks in each plane are set aside as 
reserved blocks (i.e., blocks that are not used during normal 
operation), and the bad block table automatically remaps 
any operation originally destined to an OBB to one of the 
reserved blocks. The bad block table remaps an OBB to a 
reserved block in the same plane, to ensure that the SSD 
maintains the same degree of parallelism when writing to a 
superpage, thus avoiding performance loss. Less than 2% of 
all blocks in the SSD are expected to be OBBs [162].

The SSD identifies growth bad blocks during runtime by 
monitoring the status of each block. Each superblock con-
tains a bit vector indicating which of its blocks are GBBs. 
After each program or erase operation to a block, the SSD 
reads the status reporting registers to check the operation 
status. If the operation has failed, the controller marks the 
block as a GBB in the superblock bit vector. At this point, 
the controller uses superpage-level parity to recover the data 
that was stored in the GBB (see Section II-C8), and all data 
in the superblock is copied to a different superblock. The 
superblock containing the GBB is then erased. When the 
superblock is subsequently opened, blocks marked as GBBs 
are not used, but the remaining blocks can store new data.

8) Superpage-Level Parity: In addition to ECC to protect 
against bit-level errors, many SSDs employ RAID-like parity 
[13]–[16]. The key idea is to store parity information within 
each superpage to protect data from ECC failures that occur 
within a single chip or plane. Fig. 4 shows an example of 
how the ECC and parity information are organized within 
a superpage. For a superpage that spans across multiple 
chips, dies, and planes, the pages stored within one die or 
one plane (depending on the implementation) are used to 
store parity information for the remaining pages. Without 
loss of generality, we assume for the rest of this section that 
a superpage that spans  c  chips and  d  dies per chip stores par-
ity information in the pages of a single die (which we call 
the parity die), and that it stores user data in the pages of 
the remaining ( c × d )–1 dies. When all of the user data is 
written to the superpage, the SSD controller XORs the data 
together one plane at a time (e.g., in Fig. 4, all of the pages 
in Plane 0 are XORed with each other), which produces the 
parity data for that plane. This parity data is written to the 
corresponding plane in the parity die, e.g., Plane 0 page in 
Die ( c × d )–1 in the figure.
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The SSD controller invokes superpage-level parity when 
an ECC failure occurs during a host software (e.g., OS, file 
system) access to the SSD. The host software accesses data 
at the granularity of a logical block (LB), which is indexed 
by a logical block address (LBA). Typically, an LB is 4 kB 
in size, and consists of several ECC codewords (which are 
usually 512 B to 2 kB in size) stored consecutively within 
a flash memory page, as shown in Fig. 4. During the LB 
access, a read failure can occur for one of two reasons. 
First, it is possible that the LB data is stored within a hid-
den GBB (i.e., a GBB that has not yet been detected and 
excluded by the bad block manager). The probability of 
storing data in a hidden GBB is quantified as   P HGBB   . Note 
that because bad block management successfully identifies 
and excludes most GBBs,   P HGBB    is much lower than the 
total fraction of GBBs within an SSD. Second, it is possible 
that at least one ECC codeword within the LB has failed 
(i.e., the codeword contains an error that cannot be cor-
rected by ECC). The probability that a codeword fails is   
P ECFR    (see Section II-C5). For an LB that contains  K  ECC 
codewords, we can model   P LBFail   , the overall probability 
that an LB access fails (i.e., the rate at which superpage-
level parity needs to be invoked), as

   P LBFail   =  P HGBB   + [ 1 −  P HGBB   ] × [ 1 −  (1 −  P ECFR   )   K  ]  (2)

In (2),   P LBFail    consists of 1) the probability that an LB is 
inside a hidden GBB (left side of the addition); and 2) for 
an LB that is not in a hidden GBB, the probability of any 
codeword failing (right side of the addition).

When a read failure occurs for an LB in plane  p , the SSD 
controller reconstructs the data using the other LBs in the 
same superpage. To do this, the controller reads the LBs 
stored in plane  p  in the other ( c × d )–1 dies of the super-
page, including the LBs in the parity die. The controller 
then XORs all of these LBs together, which retrieves the 
data that was originally stored in the LB whose access failed. 
In order to correctly recover the failed data, all of the LBs 
from the  (c × d )–1 dies must be correctly read. The overall 

superpage-level parity failure probability   P parity    (i.e., the 
probability that more than one LB contains a failure) for an 
SSD with  c  chips of flash memory, with  d  dies per chip, can 
be modeled as [16]

   P parity   =  P LBFail   ×  [1 −  (1 −  P LBFail   )    (c×d) −1 ]   (3)

Thus, by designating one of the dies to contain parity infor-
mation (in a fashion similar to RAID 4 [16]), the SSD can 
tolerate the complete failure of the superpage data in one die 
without experiencing data loss during an LB access.

D. Design Tradeoffs for Reliability

Several design decisions impact the SSD lifetime (i.e., 
the duration of time that the SSD can be used within a 
bounded probability of error without exceeding a given 
performance overhead). To capture the tradeoff between 
these decisions and lifetime, SSD manufacturers use the 
following model:

  Lifetime(Years) =   
PEC × (1 + OP )

  ________________________   365 × DWPD × WA ×  R Compress  
      (4)

In (4), the numerator is the total number of full drive writes 
the SSD can endure (i.e., for a drive with an  X -byte capacity, 
the number of times  X  bytes of data can be written). The num-
ber of full drive writes is calculated as the product of PEC, the 
total P/E cycle endurance of each flash block (i.e., the number 
of P/E cycles the block can sustain before its raw error rate 
exceeds the ECC correction capability), and 1+OP, where OP 
is the overprovisioning factor selected by the manufacturer. 
Manufacturers overprovision the flash drive by providing 
more physical block addresses, or PBAs, to the SSD controller 
than the advertised capacity of the drive, i.e., the number of 
logical block addresses (LBAs) available to the operating sys-
tem. Overprovisioning improves performance and endurance, 
by providing additional free space in the SSD so that mainte-
nance operations can take place without stalling host requests. 
OP is calculated as

  OP =   PBA count−LBA count  __________________  LBA count     (5)

The denominator in (4) is the number of full drive writes 
per year, which is calculated as the product of days per year 
(i.e., 365), DWPD, and the ratio between the total size of 
the data written to flash media and the size of the data sent 
by the host (i.e., WA  ×  R compress   ). DWPD is the number of 
full disk writes per day (i.e., the number of times per day the 
OS writes the advertised capacity’s worth of data). DWPD 
is typically less than 1 for read-intensive applications, and 
could be greater than 5 for write-intensive applications [34]. 
WA (write amplification) is the ratio between the amount 
of data written into NAND flash memory by the controller 
over the amount of data written by the host machine. Write 
amplification occurs because various procedures (e.g., 
garbage collection [3], [4]; and remapping-based refresh, 

Fig. 4. Example layout of ECC codewords, logical blocks, and 
superpage-level parity for superpage  n  in superblock  m . In this 
example, we assume that a logical block contains two codewords.
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Section V-C) in the SSD perform additional writes in the 
background. For example, when garbage collection selects a 
block to erase, the pages that are remapped to a new block 
require background writes.   R compress   , or the compression 
ratio, is the ratio between the size of the compressed data 
and the size of the uncompressed data, and is a function of 
the entropy of the stored data and the efficiency of the com-
pression algorithms employed in the SSD controller. In (4), 
DWPD and   R compress    are largely determined by the workload 
and data compressibility, and cannot be changed to opti-
mize flash lifetime. For controllers that do not implement 
compression, we set   R compress    to 1. However, the SSD con-
troller can trade off other parameters between one another 
to optimize flash lifetime. We discuss the most salient trade-
offs next.

1) Tradeoff Between Write Amplification and 
Overprovisioning: As mentioned in Section II-C, due to the 
granularity mismatch between flash erase and program 
operations, garbage collection occasionally remaps remain-
ing valid pages from a selected block to a new flash block, 
in order to avoid block-internal fragmentation. This remap-
ping causes additional flash memory writes, leading to 
write amplification. In an SSD with more overprovisioned 
capacity, the amount of write amplification decreases, 
as the blocks selected for garbage collection are older  
and tend to have fewer valid pages. For a greedy garbage col-
lection algorithm and a random-access workload, the cor-
relation between WA and OP can be calculated [17], [18], as 
shown in Fig. 5. In an ideal SSD, both WA and OP should 
be minimal, i.e., WA = 1 and OP = 0%, but in reality there 
is a tradeoff between these parameters: when one increases, 
the other decreases. As Fig. 5 shows, WA can be reduced by 
increasing OP, and with an infinite amount of OP, WA con-
verges to 1. However, the reduction of WA is smaller when 
OP is large, resulting in diminishing returns.

In reality, the relationship between WA and OP is also a 
function of the storage space utilization of the SSD. When the 
storage space is not fully utilized, many more pages are avail-
able, reducing the need to invoke garbage collection, and thus 
WA can approach 1 without the need for a large amount of OP.

2) Tradeoff Between P/E Cycle Endurance and 
Overprovisioning: PEC and OP can be traded against each 

other by adjusting the amount of redundancy used for error 
correction, such as ECC and superpage-level parity (as dis-
cussed in Section II-C). As the error correction capability 
increases, PEC increases because the SSD can tolerate the 
higher raw bit error rate that occurs at a higher P/E cycle 
count. However, this comes at a cost of reducing the amount 
of space available for OP, since a stronger error correction 
capability requires higher redundancy (i.e., more space). 
Table 1 shows the corresponding OP for four different error 
correction configurations for an example SSD with 2.0 TB 
of advertised capacity and 2.4 TB (20% extra) of physical 
space. In this table, the top two configurations use ECC-1 
with a coding rate of 0.93, and the bottom two configura-
tions use ECC-2 with a coding rate of 0.90, which has higher 
redundancy than ECC-1. Thus, the ECC-2 configurations 
have a lower OP than the top two. ECC-2, with its higher 
redundancy, can correct a greater number of raw bit errors, 
which in turn increases the P/E cycle endurance of the SSD. 
Similarly, the two configurations with superpage-level par-
ity have a lower OP than configurations without superpage-
level parity, as parity uses a portion of the overprovisioned 
space to store the parity bits.

When the ECC correction strength is increased, the 
amount of overprovisioning in the SSD decreases, which 
in turn increases the amount of write amplification that 
takes place. Manufacturers must find and use the correct 
tradeoff between ECC correction strength and the over-
provisioning factor, based on which of the two is expected 
to provide greater reliability for the target applications of 
the SSD.

III .  NA ND  FL A SH MEMORY BA SICS

A number of underlying properties of the NAND flash 
memory used within the SSD affect SSD management, 
performance, and reliability [20], [22], [24]. In this sec-
tion, we present a primer on NAND flash memory and its 
operation, to prepare the reader for understanding our 
further discussion on error sources (Section IV) and miti-
gation mechanisms (Section V). Recall from Section II-A 
that within each plane, flash cells are organized as mul-
tiple 2-D arrays known as flash blocks, each of which  
contains multiple pages of data, where a page is the gran-
ularity at which the host reads and writes data. We first 
discuss how data is stored in NAND flash memory. We 
then introduce the three basic operations supported by 
NAND flash memory: read, program, and erase.

Fig. 5. Relationship between write amplification (WA) and the 
overprovisioning factor (OP).

Table 1 Tradeoff Between Strength of Error Correction Configuration 

and Amount of SSD Space Left for Overprovisioning
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A. Storing Data in a Flash Cell

NAND flash memory stores data as the threshold volt-
age of each flash cell, which is made up of a floating gate 
transistor. Fig. 6 shows a cross section of a floating gate 
transistor. On top of a flash cell is the control gate (CG) and 
below is the floating gate (FG). The floating gate is insulated 
on both sides, on top by an interpoly oxide layer and at the 
bottom by a tunnel oxide layer. As a result, the electrons 
programmed on the floating gate do not discharge even 
when flash memory is powered off.

For single-level cell (SLC) NAND flash, each flash cell 
stores a 1-bit value, and can be programmed to one of two 
threshold voltage states, which we call the ER and P1 states. 
Multi-level cell (MLC) NAND flash stores a 2-bit value in each 
cell, with four possible states (ER, P1, P2, and P3), and triple-
level cell (TLC) NAND flash stores a 3-bit value in each cell 
with eight possible states (ER, P1–P7). Each state represents 
a different value, and is assigned a voltage window within 
the range of all possible threshold voltages. Due to variation 
across program operations, the threshold voltage of flash cells 
programmed to the same state is initially distributed across 
this voltage window.

Fig. 7 illustrates the threshold voltage distribution of 
MLC (top) and TLC (bottom) NAND flash memories. The  
 x -axis shows the threshold voltage (  V th   ), which spans a cer-
tain voltage range. The  y -axis shows the probability den-
sity of each voltage level across all flash memory cells. The 
threshold voltage distribution of each threshold voltage 
state can be represented as a probability density curve that 
spans over the state’s voltage window.

We label the distribution curve for each state with the 
name of the state and a corresponding bit value. Note that 
some manufacturers may choose to use a different map-
ping of values to different states. The bit values of adjacent 
states are separated by a Hamming distance of 1. We break 
down the bit values for MLC into the most significant bit 
(MSB) and least significant bit (LSB), while TLC is broken 
down into the MSB, the center significant bit (CSB), and 
the LSB. The boundaries between neighboring threshold 
voltage windows, which are labeled as   V a   ,   V b   , and   V c    for the 
MLC distribution in Fig. 7, are referred to as read reference 
voltages. These voltages are used by the SSD controller to 
identify the voltage window (i.e., state) of each cell upon 
reading the cell.

B. Flash Block Design

Fig. 8 shows the high-level internal organization of a 
NAND flash memory block. Each block contains multiple 
rows of cells (typically 128–512 rows). Each row of cells is 
connected together by a common wordline (WL, shown hori-
zontally in Fig. 8), typically spanning 32K–64K cells. All of 
the cells along the wordline are logically combined to form 
a page in an SLC NAND flash memory. For an MLC NAND 
flash memory, the MSBs of all cells on the same wordline are 
combined to form an MSB page, and the LSBs of all cells on 
the wordline are combined to form an LSB page. Similarly, 
a TLC NAND flash memory logically combines the MSBs 
on each wordline to form an MSB page, the CSBs on each 
wordline to form a CSB page, and the LSBs on each wordline 
to form an LSB page. In MLC NAND flash memory, each 
flash block contains 256–1024 flash pages, each of which 
are typically 8–16 kB in size.

Within a block, all cells in the same column are con-
nected in series to form a bitline (BL, shown vertically in 
Fig. 8) or string. All cells in a bitline share a common ground 
(GND) on one end, and a common sense amplifier (SA) on 
the other for reading the threshold voltage of one of the cells 

Fig. 6. Flash cell (i.e., floating gate transistor) cross section.

Fig. 7. Threshold voltage distribution of MLC (top) and TLC (bottom) 
NAND flash memory.

Fig. 8. Internal organization of a flash block.
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when decoding data. Bitline operations are controlled by 
turning the ground select line (GSL) and string select line 
(SSL) transistor of each bitline on or off. The SSL transis-
tor is used to enable operations on a bitline, and the GSL 
transistor is used to connect the bitline to ground during a 
read operation [103]. The use of a common bitline across 
multiple rows reduces the amount of circuit area required 
for read and write operations to a block, improving storage 
density.

C. Read Operation

Data can be read from NAND flash memory by applying 
read reference voltages onto the control gate of each cell, to 
sense the cell’s threshold voltage. To read the value stored 
in a single-level cell, we need to distinguish only the state 
with a bit value of 1 from the state with a bit value of 0. 
This requires us to use only a single read reference voltage. 
Likewise, to read the LSB of a multi-level cell, we need to 
distinguish only the states where the LSB value is 1 (ER and 
P1) from the states where the LSB value is 0 (P2 and P3), 
which we can do with a single read reference voltage (  V b    in 
the top half of Fig. 7). To read the MSB page, we need to dis-
tinguish the states with an MSB value of 1 (ER and P3) from 
those with an MSB value of 0 (P1 and P2). Therefore, we 
need to determine whether the threshold voltage of the cell 
falls between   V a    and   V c   , requiring us to apply each of these 
two read reference voltages (which can require up to two 
consecutive read operations) to determine the MSB.

Reading data from a triple-level cell is similar to the data 
read procedure for a multi-level cell. Reading the LSB for TLC 
again requires applying only a single read reference voltage  
(  V d    in the bottom half of Fig. 7). Reading the CSB requires two 
read reference voltages to be applied, and reading the MSB 
requires four read reference voltages to be applied.

As Fig. 8 shows, cells from multiple wordlines (WL in the 
figure) are connected in series on a shared bitline (BL) to the 
sense amplifier, which drives the value that is being read from 
the block onto the memory channel for the plane. In order to 
read from a single cell on the bitline, all of the other cells (i.e., 
unread cells) on the same bitline must be switched on to allow 
the value that is being read to propagate through to the sense 
amplifier. The NAND flash memory achieves this by applying 
the pass-through voltage onto the wordlines of the unread cells, 
as shown in Fig. 9(a). When the pass-through voltage (i.e., the 
maximum possible threshold voltage   V pass   ) is applied to a flash 
cell, the source and the drain of the cell transistor are con-
nected, regardless of the voltage of the floating gate. Modern 
flash memories guarantee that all unread cells are passed through 
to minimize errors during the read operation [38].

D. Program and Erase Operations

The threshold voltage of a floating gate transistor is con-
trolled through the injection and ejection of electrons through 

the tunnel oxide of the transistor, which is enabled by the 
Fowler–Nordheim (FN) tunneling effect [21], [24], [28]. The 
tunneling current (  J FN   ) [22], [28] can be modeled as

   J FN   =  α   FN    E  ox  2    e   − β  FN  / E ox     (6)

In (6),   α   FN    and   β   FN    are constants, and   E ox    is the electric field 
strength in the tunnel oxide. As (6) shows,   J FN    is exponen-
tially correlated with   E ox   .

During a program operation, electrons are injected into 
the floating gate of the flash cell from the substrate when 
applying a high positive voltage to the control gate (see Fig. 6  
for a diagram of the flash cell). The pass-through voltage is 
applied to all of the other cells on the same bitline as the 
cell that is being programmed as shown in Fig. 9(b). When 
data is programmed, charge is transferred into the floating 
gate through FN tunneling by repeatedly pulsing the pro-
gramming voltage, in a procedure known as incremental 
step-pulse programming (ISPP) [20], [23]–[25]. During 
ISPP, a high programming voltage (  V program   ) is applied for 
a very short period, which we refer to as a step-pulse. ISPP 
then verifies the current voltage of the cell using the voltage   
V verify   . ISPP repeats the process of applying a step-pulse and 
verifying the voltage until the cell reaches the desired tar-
get voltage. In the modern all-bitline NAND flash memory, 
all flash cells in a single wordline are programmed concur-
rently. During programming, when a cell along the wordline 
reaches its target voltage but other cells have yet to reach 
their target voltage, ISPP inhibits programming pulses to 
the cell by turning off the SSL transistor of the cell’s bitline.

In SLC NAND flash and older MLC NAND flash, one-
shot programming is used, where all of the ISPP step-pulses 
required to program a cell are applied back to back until all 
cells in the wordline are fully programmed. One-shot pro-
gramming does not interleave the program operations to 
a wordline with the program operations to another word-
line. In newer MLC NAND flash, the lack of interleaving 
between program operations can introduce a significant 
amount of cell-to-cell program interference on the cells of 
immediately-adjacent wordlines (see Section IV-C).

Fig. 9. Voltages applied to flash cell transistors on a bitline to 
perform (a) read, (b) program, and (c) erase operations.
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To reduce the impact of program interference, the con-
troller employs two-step programming for sub-40-nm MLC 
NAND flash [26], [35]: it first programs the LSBs into the 
erased cells of an unprogrammed wordline, and then pro-
grams the MSBs of the cells using a separate program opera-
tion [26], [27], [33], [40]. Between the programming of the 
LSBs and the MSBs, the controller programs the LSBs of 
the cells in the wordline immediately above [26], [27], [33], 
[40]. Fig. 10 illustrates the two-step programming algo-
rithm. In the first step, a flash cell is partially programmed 
based on its LSB value, either staying in the ER state if the 
LSB value is 1, or moving to a temporary state (TP) if the LSB 
value is 0. The TP state has a mean voltage that falls between 
states P1 and P2. In the second step, the LSB data is first 
read back into an internal buffer register within the flash 
chip to determine the cell’s current threshold voltage state, 
and then further programming pulses are applied based on 
the MSB data to increase the cell’s threshold voltage to fall 
within the voltage window of its final state. Programming 
in MLC NAND flash is discussed in detail in [33] and [40].

TLC NAND flash takes a similar approach to the two-
step programming of MLC, with a mechanism known as 
foggy-fine programming [19], which is illustrated in Fig. 11. 
The flash cell is first partially programmed based on its LSB 
value, using a binary programming step in which very large 
ISPP step-pulses are used to significantly increase the voltage 
level. Then, the flash cell is partially programmed again based 
on its CSB and MSB values to a new set of temporary states 
(these steps are referred to as foggy programming, which uses 
smaller ISPP step-pulses than binary programming). Due to 
the higher potential for errors during TLC programming as a 
result of the narrower voltage windows, all of the programmed 
bit values are buffered after the binary and foggy program-
ming steps into SLC buffers that are reserved in each chip/
plane. Finally, fine programming takes place, where these bit 
values are read from the SLC buffers, and the smallest ISPP 
step-pulses are applied to set each cell to its final threshold 
voltage state. The purpose of this last fine programming step 
is to fine tune the threshold voltage such that the threshold 
voltage distributions are tightened (bottom of Fig. 11).

Though programming sets a flash cell to a specific 
threshold voltage using programming pulses, the voltage 
of the cell can drift over time after programming. When no 
external voltage is applied to any of the electrodes (i.e., CG, 
source, and drain) of a flash cell, an electric field still exists 
between the FG and the substrate, generated by the charge 
present in the FG. This is called the intrinsic electric field 
[22], and it generates stress-induced leakage current (SILC) 
[24], [29], [30], a weak tunneling current that leaks charge 
away from the FG. As a result, the voltage that a cell is pro-
grammed to may not be the same as the voltage read for that 
cell at a subsequent time.

In NAND flash, a cell can be reprogrammed with new 
data only after the existing data in the cell is erased. This is 
because ISPP can only increase the voltage of the cell. The 
erase operation resets the threshold voltage state of all cells 
in the flash block to the ER state. During an erase opera-
tion, electrons are ejected from the FG of the flash cell into 
the substrate by inducing a high negative voltage on the cell 
transistor. The negative voltage is induced by setting the CG 
of the transistor to GND, and biasing the transistor body 
(i.e., the substrate) to a high voltage (  V erase   ), as shown in 
Fig. 9(c). Because all cells in a flash block share a common 
transistor substrate (i.e., the bodies of all transistors in the 
block are connected together), a flash block must be erased 
in its entirety [103].

I V.  NA ND  FL A SH ER ROR 
CH A R ACTER I Z ATION

Each block in NAND flash memory is used in a cyclic fash-
ion, as is illustrated by the observed raw bit error rates seen 
over the lifetime of a flash memory block in Fig. 12. At the 
beginning of a cycle, known as a program/erase (P/E) cycle, 
an erased block is opened (i.e., selected for programming). 
Data is then programmed into the open block one page at 
a time. After all of the pages are programmed, the block is 
closed, and none of the pages can be reprogrammed until 
the whole block is erased. At any point before erasing, read 
operations can be performed on a valid programmed page 
(i.e., a page containing data that has not been modified  Fig. 10. Two-step programming algorithm for MLC flash.

Fig. 11. Foggy-fine programming algorithm for TLC flash.
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by the host). A page is marked as invalid when the data 
stored at that page’s logical address by the host is modified. 
As ISPP can only inject more charge into the floating gate 
but cannot remove charge from the gate, it is not possi-
ble to modify data to a new arbitrary value in place within 
existing NAND flash memories. Once the block is erased, 
the P/E cycling behavior repeats until the block is worn out 
(i.e., the block can no longer avoid data loss over the course 
of the minimum data retention period guaranteed by the 
manufacturer). Although the 5x-nm (i.e., 50–59 nm)  
generation of MLC NAND flash could endure ~10 000 P/E 
cycles per block before being worn out, modern 1x-nm 
(i.e., 15–19 nm) MLC and TLC NAND flash can endure 
only ~3000 and ~1000 P/E cycles per block, respectively 
[53], [60], [81], [86].

As shown in Fig. 12, several different types of errors can 
be introduced at any point during the P/E cycling process: 
P/E cycling errors, program errors, errors due to cell-to-cell pro-
gram interference, data retention errors, and errors due to read 
disturb. As discussed in Section III-A, the threshold voltage 
of flash cells programmed to the same state is distributed 
across a voltage window due to variation across program 
operations and across different flash cells. Several types of 
errors introduced during the P/E cycling process, such as 
data retention and read disturb, cause the threshold voltage 
distribution of each state to shift and widen. Due to the shift 
and widening, the tails of the distributions of each state can 
enter the margin that originally existed between each of the 
two neighboring states’ distributions. Thus, the threshold 
voltage distributions of different states can start overlap-
ping, as shown in Fig. 13. When the distributions overlap 
with each other, the read reference voltages can no longer 
correctly identify the state of some flash cells in the overlap-
ping region, leading to raw bit errors during a read operation.

In this section, we discuss the causes of each type of error 
in detail, and characterize the impact that each error type 
has on the amount of raw bit errors occurring within NAND 
flash memory. We use an FPGA-based testing platform [31] 
to characterize state-of-the-art TLC NAND flash chips. We 
use the read-retry operation present in NAND flash devices 
to accurately read the cell threshold voltage [33]–[38], [42], 

[52], [107] (for a detailed description of the read-retry oper-
ation, see Section V-D). As absolute threshold voltage values 
are proprietary information to flash vendors, we present our 
results using normalized voltages, where the nominal maxi-
mum value of   V th    is equal to 512 in our normalized scale, 
and where 0 represents GND. We also describe characteri-
zation results and observations for MLC NAND flash chips. 
These MLC NAND results are taken from our prior works 
[32]–[40], [42], which provide more detailed error charac-
terization results and analyses. To our knowledge, this paper 
provides the first experimental characterization and analysis 
of errors in real TLC NAND flash memory chips.

We later discuss mitigation techniques for these flash 
memory errors in Section V, and provide procedures to 
recover in the event of data loss in Section VI.

A. P/E Cycling Errors

A P/E cycling error occurs when either 1) an erase opera-
tion fails to reset a cell to the ER state; or 2) when a pro-
gram operation fails to set the cell to the desired target state. 
P/E cycling errors occur because electrons become trapped 
in the tunnel oxide after stress from repeated P/E cycles. 
Errors due to such electron trapping (which we refer to as 
P/E cycling noise) continue to accumulate over the lifetime 
of a NAND flash block. This behavior is called wearout, 
and it refers to the phenomenon where, as more writes are 
performed to a block, there are a greater number of raw bit 
errors that must be corrected, exhausting more of the fixed 
error correction capability of the ECC (see Section II-C).

Fig. 14 shows the threshold voltage distribution of TLC 
NAND flash memory after 0 P/E cycles and after 3000 P/E 
cycles, without any retention or read disturb errors present 
(which we ensure by reading the data immediately after 
programming). The mean and standard deviation of each 
state’s distribution are provided in Table 4 in the Appendix 

Fig. 12. Pictorial depiction of errors accumulating within a NAND 
flash block as P/E cycle count increases.

Fig. 13. Threshold voltage distribution shifts and widening can 
cause the distributions of two neighboring states to overlap with 
each other (compare to Fig. 7), leading to read errors.

Fig. 14. Threshold voltage distribution of TLC NAND flash memory 
after 0 P/E cycles and 3000 P/E cycles.
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(for other P/E cycle counts as well). We make two obser-
vations from the two distributions. First, as the P/E cycle 
count increases, each state’s threshold voltage distribution 
systematically 1) shifts to the right and 2) becomes wider. 
Second, the amount of the shift is greater for lower-voltage 
states (e.g., the ER and P1 states) than it is for higher-voltage 
states (e.g., the P7 state).

The threshold voltage distribution shift occurs because 
as more P/E cycles take place, the quality of the tunnel 
oxide degrades, allowing electrons to tunnel through the 
oxide more easily [58]. As a result, if the same ISPP condi-
tions (e.g., programming voltage, step-pulse size, program 
time) are applied throughout the lifetime of the NAND flash 
memory, more electrons are injected during programming 
as a flash memory block wears out, leading to higher thresh-
old voltages, i.e., the right shift of the distribution. The dis-
tribution of each state widens due to the process variation 
present in 1) the wearout process, and 2) the cell’s struc-
tural characteristics. As the distribution of each voltage state 
widens, more overlap occurs between neighboring distribu-
tions, making it less likely for a read reference voltage to 
determine the correct value of the cells in the overlapping 
regions, which leads to a greater number of raw bit errors.

The threshold voltage distribution trends we observe here 
for TLC NAND flash memory trends are similar to trends 
observed previously for MLC NAND flash memory [32], [33], 
[42], [53], although the MLC NAND flash characterizations 
reported in past studies span up to a larger P/E cycle count than 
the TLC experiments due to the greater endurance of MLC 
NAND flash memory. More findings on the nature of wearout 
and the impact of wearout on NAND flash memory errors and 
lifetime can be found in our prior work [32], [33], [42].

B. Program Errors

Program errors occur when data read directly from the 
NAND flash array contains errors, and the erroneous values 
are used to program the new data. Program errors occur in two 
major cases: 1) partial programming during two-step or foggy-
fine programming, and 2) copyback (i.e., when data is copied 
inside the NAND flash memory during a maintenance opera-
tion) [109]. During two-step programming for MLC NAND 
flash memory (see Fig. 10), in between the LSB and MSB pro-
gramming steps of a cell, threshold voltage shifts can occur 
on the partially-programmed cell. These shifts occur because 
several other read and program operations to cells in other 
pages within the same block may take place, causing inter-
ference to the partially-programmed cell. Fig. 15 illustrates 
how the threshold distribution of the ER state widens and 
shifts to the right after the LSB value is programmed (step 1  
in the figure). The widening and shifting of the distribution 
causes some cells that were originally partially programmed 
to the ER state (with an LSB value of 1) to be misread as being 
in the TP state (with an LSB value of 0) during the second 
programming step (step 2 in the figure). As shown in Fig. 15,  

the misread LSB value leads to a program error when the 
final cell threshold voltage is programmed [40], [42], [53]. 
Some cells that should have been programmed to the P1 state 
(representing the value 01) are instead programmed to the 
P2 state (with the value 00), and some cells that should have 
been programmed to the ER state (representing the value 11) 
are instead programmed to the P3 state (with the value 10).

The incorrect values that are read before the second pro-
gramming step are not corrected by ECC, as they are read 
directly inside the NAND flash array, without involving the 
controller (where the ECC engine resides). Similarly, during 
foggy-fine programming for TLC NAND flash (see Fig. 11), 
the data may be read incorrectly from the SLC buffers used to 
store the contents of partially-programmed wordlines, leading 
to errors during the fine programming step. Program errors 
occur during copyback [109] when valid data is read out from 
a block during maintenance operations (e.g., a block about to 
be garbage collected) and reprogrammed into a new block, as 
copyback operations do not go through the SSD controller.

Program errors that occur during partial programming 
predominantly shift data from lower-voltage states to higher-
voltage states. For example, in MLC NAND flash, program 
errors predominantly shift data that should be in the ER state 
(11) into the P3 state (10), or data that should be in the P1 state 
(01) into the P2 state (00) [40]. This occurs because MSB pro-
gramming can only increase (and not reduce) the threshold  
voltage of the cell from its partially-programmed voltage 
(and thus cannot move a multi-level cell that should be 
in the P3 state into the ER state, or one that should be in 
the P2 state into the P1 state). TLC NAND flash is much 
less susceptible to program errors than MLC NAND flash, 
as the data read from the SLC buffers in TLC NAND flash 
has a much lower error rate than data read from a partially- 
programmed MLC NAND flash wordline [202].

From a rigorous experimental characterization of modern 
MLC NAND flash memory chips [40], we find that program 
errors occur primarily due to two types of errors affecting the 
partially-programmed data. First, cell-to-cell program inter-
ference (Section IV-C) on a partially-programmed wordline is 
no longer negligible in newer NAND flash memory compared 

Fig. 15. Impact of program errors during two-step programming on 
cell threshold voltage distribution.
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to older NAND flash memory, due to manufacturing process 
scaling. As flash cells become smaller and are placed closer to 
each other, cells in partially-programmed wordlines become 
more susceptible to bit flips. Second, partially-programmed 
cells are more susceptible to read disturb errors than fully-
programmed cells (Section IV-E), as the threshold voltages 
stored in these cells are no more than approximately half of   
V pass    [40], and cells with lower threshold voltages are more 
likely to experience read disturb errors.

More findings on the nature of program errors and the 
impact of program errors on NAND flash memory lifetime 
can be found in our prior work [40], [42].

C. Cell-to-Cell Program Interference Errors

Program interference refers to the phenomenon where the 
programming of a flash cell induces errors on adjacent flash 
cells within a flash block [35], [36], [55], [61], [62]. The inter-
ference occurs due to parasitic capacitance coupling between 
these cells. As a result, when the threshold voltage of an adja-
cent flash cell increases, the threshold voltage of the victim 
cell increases as well. The unintended threshold voltage shifts 
can eventually move a cell into a different state than the one it 
was originally programmed to, leading to a bit error.

We have shown, based on our experimental analysis of 
modern MLC NAND flash memory chips, that the threshold 
voltage change of the victim cell can be accurately modeled 
as a linear combination of the threshold voltage changes of 
the adjacent cells when they are programmed, using linear 
regression with least-square-error estimation [35], [36]. 
The cells that are physically located immediately next to the 
victim cell (called the immediately-adjacent cells) are the 
major contributors to the cell-to-cell interference of a victim 
cell [35]. Fig. 16 shows the eight immediately-adjacent cells 
for a victim cell in 2-D planar NAND flash memory.

The amount of interference that program operations to 
the immediately-adjacent cells can induce on the victim cell 
is expressed as

  Δ  V victim   =  ∑ 
X
    K X   Δ  V X     (7)

where  Δ  V victim    is the change in voltage of the victim cell 
due to cell-to-cell program interference,   K X    is the coupling 

coefficient between cell  X  and the victim cell, and  Δ  V X    is 
the threshold voltage change of cell  X  during programming. 
Table 2 lists the coupling coefficients for both 2y-nm and 
1x-nm NAND flash memory. We make two key observations 
from Table 2. First, we observe that the coupling coeffi-
cient is greatest for wordline neighbors (i.e., immediately- 
adjacent cells on the same bitline, but on a neighboring 
wordline) [35]. The coupling coefficient is directly related 
to the effective capacitance  C  between cell  X  and the victim 
cell, which can be calculated as

  C = ε  S / d  (8)

where  ε  is the permittivity,  S  is the effective cell area of cell  
X  that faces the victim cell, and  d  is the distance between the 
cells. Of the immediately-adjacent cells, the wordline neigh-
bor cells have the greatest coupling capacitance with the vic-
tim cell, as they likely have a large effective facing area to, 
and a small distance from, the victim cell compared to other 
surrounding cells. Second, we observe that the coupling 
coefficient grows as the feature size decreases [35], [36]. 
As NAND flash memory process technology scales down 
to smaller feature sizes, cells become smaller and get closer 
to each other, which increases the effective capacitance 
between them. As a result, at smaller feature sizes, it is easier 
for an immediately-adjacent cell to induce program interfer-
ence on a victim cell. We conclude that 1) the program inter-
ference an immediately-adjacent cell induces on a victim cell 
is primarily determined by the distance between the cells and 
the immediately-adjacent cell’s effective area facing the vic-
tim cell; and 2) the wordline neighbor cell causes the highest 
such interference, based on empirical measurements.

Due to the order of program operations performed in 
NAND flash memory, many immediately-adjacent cells do 
not end up inducing interference after a victim cell is fully 
programmed (i.e., once the victim cell is at its target voltage). 
In modern all-bitline NAND flash memory, all flash cells on 
the same wordline are programmed at the same time, and 
wordlines are fully programmed sequentially (i.e., the cells 
on wordline  i  are fully programmed before the cells on word-
line  i + 1 ). As a result, an immediately-adjacent cell on the 
wordline below the victim cell or on the same wordline as the 
victim cell does not induce program interference on a fully-
programmed victim cell. Therefore, the major source of pro-
gram interference on a fully-programmed victim cell is the 
programming of the wordline immediately above it.

Fig. 17 shows how the threshold voltage distribution of 
a victim cell shifts when different values are programmed 
onto its immediately-adjacent cells in the wordline above 

Fig. 16. Immediately-adjacent cells that can induce program 
interference on a victim cell that is on wordline N and bitline M.

Table 2 Coupling Coefficients for Immediately-Adjacent Cells
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the victim cell for MLC NAND flash, when one-shot pro-
gramming is used. The amount by which the victim cell 
distribution shifts is directly correlated with the number 
of programming step-pulses applied to the immediately-
adjacent cell. That is, when an immediately-adjacent cell 
is programmed to a higher-voltage state (which requires 
more step-pulses for programming), the victim cell distribu-
tion shifts further to the right [35]. When an immediately- 
adjacent cell is set to the ER state, no step-pulses are applied, 
as an unprogrammed cell is already in the ER state. Thus, no 
interference takes place. Note that the amount by which a 
fully-programmed victim cell distribution shifts is different 
when two-step programming is used, as a fully-programmed 
cell experiences interference from only one of the two pro-
gramming steps of a neighboring wordline [40].

More findings on the nature of cell-to-cell program 
interference and the impact of cell-to-cell program inter-
ference on NAND flash memory errors and lifetime can be 
found in our prior work [35], [36], [40].

D. Data Retention Errors

Retention errors are caused by charge leakage over time 
after a flash cell is programmed, and are the dominant source 
of flash memory errors, as demonstrated previously [20], 
[32], [34], [37], [39], [56]. As flash memory process technol-
ogy scales to smaller feature sizes, the capacitance of a flash 
cell, and the number of electrons stored on it, decreases. 
State-of-the-art (i.e., 1x-nm) MLC flash memory cells can 
store only ~100 electrons [81]. Gaining or losing several elec-
trons on a cell can significantly change the cell’s voltage level 
and eventually alter its state. Charge leakage is caused by the 
unavoidable trapping of charge in the tunnel oxide [37], [57]. 
The amount of trapped charge increases with the electrical 
stress induced by repeated program and erase operations, 
which degrade the insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to reten-
tion loss. Trap-assisted tunneling (TAT) occurs because the 
trapped charge forms an electrical tunnel, which exacer-
bates the weak tunneling current, SILC (see Section III-D). 
As a result of this TAT effect, the electrons present in the 

floating gate (FG) leak away much faster through the intrin-
sic electric field. Hence, the threshold voltage of the flash 
cell decreases over time. As the flash cell wears out with 
increasing P/E cycles, the amount of trapped charge also 
increases [37], [57], and so does the TAT effect. At high P/E 
cycles, the amount of trapped charge is large enough to form 
percolation paths that significantly hamper the insulating 
properties of the gate dielectric [30], [37], resulting in reten-
tion failure. Charge detrapping, where charge previously 
trapped in the tunnel oxide is freed spontaneously, can also 
occur over time [30], [37], [57], [59]. The charge polarity can 
be either negative (i.e., electrons) or positive (i.e., holes). 
Hence, charge detrapping can either decrease or increase the 
threshold voltage of a flash cell, depending on the polarity of 
the detrapped charge.

Fig. 18 illustrates how the voltage distribution shifts 
for data we program into TLC NAND flash, as the data sits 
untouched over a period of one day, one month, and one year. 
The mean and standard deviation are provided in Table 5 in 
the Appendix (which includes data for other retention ages 
as well). These results are obtained from real flash memory 
chips we tested. We distill three major findings from these 
results, which are similar to our previously reported findings 
for retention behavior on MLC NAND flash memory [37].

First, as the retention age (i.e., the length of time after 
programming) of the data increases, the threshold voltage dis-
tributions of the higher-voltage states shift to lower voltages, 
while the threshold voltage distributions of the lower-voltage 
states shift to higher voltages. As the intrinsic electric field 
strength is higher for the cells in higher-voltage states, TAT 
is the dominant failure mechanism for these cells, which can 
only decrease the threshold voltage, as the resulting SILC can 
flow only in the direction of the intrinsic electric field gener-
ated by the electrons in the FG. Cells at the lowest-voltage 
states, where the intrinsic electric field strength is low, do not 
experience high TAT, and instead contain many holes (i.e., 
positive charge) that leak away as the retention age grows, 
leading to increase in threshold voltage.

Second, the threshold voltage distribution of each state 
becomes wider with retention age. Charge detrapping can 
cause cells to shift in either direction (i.e., toward lower or 
higher voltages), contributing to the widening of the distri-
bution. The rate at which TAT occurs can also vary from cell 
to cell, as a result of process variation, which further widens 
the distribution.

Fig. 17. Impact of cell-to-cell program interference on a victim 
cell during one-shot programming, depending on the value its 
neighboring cell is programmed to.

Fig. 18. Threshold voltage distribution for TLC NAND flash memory 
after one day, one month, and one year of retention time.
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Third, the threshold voltage distributions of higher-
voltage states shift by a larger amount than the distributions 
of lower-voltage states. This is again a result of TAT. Cells 
at higher-voltage states have greater intrinsic electric field 
intensity, which leads to larger SILC. A cell where the SILC 
is larger experiences a greater drop in its threshold voltage 
than a cell where the SILC is smaller.

More findings on the nature of data retention and the 
impact of data retention behavior on NAND flash memory 
errors and lifetime can be found in our prior work [32], [34], 
[37], [39].

E. Read Disturb Errors

Read disturb is a phenomenon in NAND flash memory 
where reading data from a flash cell can cause the threshold 
voltages of other (unread) cells in the same block to shift to 
a higher value [20], [32], [38], [54], [61], [62], [64]. While a 
single threshold voltage shift is small, such shifts can accumu-
late over time, eventually becoming large enough to alter the 
state of some cells and hence generate read disturb errors.

The failure mechanism of a read disturb error is similar 
to the mechanism of a normal program operation. A pro-
gram operation applies a high programming voltage (e.g., 
+15 V) to the cell to change the cell’s threshold voltage to 
the desired range. Similarly, a read operation applies a high 
pass-through voltage (e.g., +6 V) to all other cells that share 
the same bitline with the cell that is being read. Although 
the pass-through voltage is not as high as the programming 
voltage, it still generates a weak programming effect on the 
cells it is applied to [38], which can unintentionally change 
these cells’ threshold voltages.

Fig. 19 shows how read disturb errors impact thresh-
old voltage distributions in real TLC NAND flash memory 
chips. We use blocks that have endured 2000 P/E cycles, 
and we experimentally study the impact of read disturb on 
a single wordline in each block. We then read from a sec-
ond wordline in the same block 1, 10K, and 100K times to 
induce different levels of read disturb. The mean and stand-
ard deviation of each distribution are provided in Table 6 in 
the Appendix. We derive three major findings from these 
results, which are similar to our previous findings for read 
disturb behavior in MLC NAND flash memory [38].

First, as the read disturb count increases, the threshold 
voltages increase (i.e., the voltage distribution shifts to the 

right). In particular, we find that the distribution shifts are 
greater for lower-voltage states, indicating that read disturb 
impacts cells in the ER and P1 states the most. This is because 
we apply the same pass-through voltage (  V pass   ) to all unread 
cells during a read operation, regardless of the threshold volt-
ages of the cells. A lower threshold voltage on a cell induces 
a larger voltage difference (  V pass    ¬   V th   ) through the tunnel 
oxide layer of the cell, and in turn generates a stronger tun-
neling current, making the cell more vulnerable to read dis-
turb (as described in detail in our prior work [38]).

Second, cells whose threshold voltages are closer to the 
point at which the voltage distributions of the ER and P1 
states intersect are more vulnerable to read disturb errors. 
This is because process variation causes different cells to have 
different degrees of vulnerability to read disturb. We find that 
cells that are prone to read disturb end up at the right tail 
of the threshold voltage distribution of the ER state, as these 
cells’ threshold voltages increase more rapidly, and that cells 
that are relatively resistant to read disturb end up at the left 
tail of the threshold voltage distribution of the P1 state, as 
their threshold voltages increase more slowly. We can exploit 
this divergent behavior of cells that end up at the left and 
right distribution tails to perform error recovery in the event 
of an uncorrectable error, as we discuss in Section VI-D.

Third, unlike with the other states, the threshold volt-
ages of the cells at the left tail of the highest-voltage state 
(P7) in TLC NAND flash memory actually decreases as the 
read disturb count increases. This occurs for two reasons:  
1) applying   V pass    causes electrons to move from the floating 
gate to the control gate for a cell at high voltage (i.e., a cell 
containing a large number of electrons), thus reducing its 
threshold voltage [38]; and 2) some retention time elapses 
while we sweep the voltages during our read disturb experi-
ments, inducing trap-assisted tunneling (see Section IV-D) 
and leading to retention errors that decrease the voltage.

More findings on the nature of read disturb and the 
impact of read disturb on NAND flash memory errors and 
lifetime can be found in our prior work [38].

F. Large-Scale Studies on SSD Errors

The error characterization studies we have discussed so 
far examine the susceptibility of real NAND flash memory 
devices to specific error sources, by conducting controlled 
experiments on individual flash devices in controlled envi-
ronments. To examine the aggregate effect of these error 
sources on flash devices that operate in the field, several 
recent studies have analyzed the reliability of SSDs deployed 
at a large scale (i.e., tens to hundreds of thousands of SSDs) 
in production data centers [48]–[50]. Unlike the con-
trolled low-level error characterization studies discussed in 
Sections IV-A through IV-E, these large-scale studies ana-
lyze the observed errors and error rates in an uncontrolled 
manner, i.e., based on real data center workloads operating 
at field conditions as opposed to controlled access patterns 

Fig. 19. Threshold voltage distribution for TLC NAND flash memory 
after 1, 10K, and 100K read disturb operations.
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and controlled conditions. As such, these large-scale studies 
can study flash memory behavior and reliability using only 
a black-box approach, where they are able to access only the 
registers used by the SSD to record select statistics. On the 
other hand, these studies incorporate the effects of a real 
system, including the system software stack and real work-
loads [48], on the flash memory devices, which is not pre-
sent in the controlled small-scale studies.

These large-scale studies have made a number of observa-
tions across large sets of SSDs. We highlight five key obser-
vations from these studies. First, SSD failure rates do not 
increase monotonically with the P/E cycle count, and instead 
exhibit several distinct periods of reliability, where the fail-
ure rates between each period can vary by as much as 81.7% 
[48]. Second, the raw bit error rate grows with the age of the 
device even if the P/E cycle count is held constant, indicating 
that mechanisms such as silicon aging are likely contributing 
to the error rate [50]. Third, the observed failure rate of SSDs 
has been noted to be significantly higher than the failure rates 
specified by the manufacturers [49]. Fourth, higher operating 
temperatures can lead to higher failure rates, but modern SSDs 
employ throttling techniques that reduce the access rates to 
the underlying flash chips, which can greatly reduce the nega-
tive reliability impact of higher temperatures [48]. Fifth, while 
SSD failure rates are higher than specified, the overall occur-
rence of uncorrectable errors is lower than expected because 
1) effective bad block management policies (see Section II-C) 
are implemented in SSD controllers; and 2) certain types of 
error sources, such as read disturb [48], [50] and incomplete 
erase operations [50], have yet to become a major source of 
uncorrectable errors at the system level.

V. ER ROR MITIGATION

Several different types of errors can occur in NAND flash 
memory, as we described in Section IV. As NAND flash mem-
ory continues to scale to smaller technology nodes, the mag-
nitude of these errors has been increasing [53], [60], [81]. 
This, in turn, uses up the limited error correction capability 
of ECC more rapidly than in past flash memory generations 
and shortens the lifetime of modern SSDs. To overcome the 
decrease in lifetime, a number of error mitigation techniques, 
which exploit intrinsic properties of the different types of 
errors to reduce the rate at which they lead to raw bit errors, 
have been designed. In this section, we discuss how the flash 
controller mitigates each of the error types via proposed error 
mitigation mechanisms. Table 3 shows the techniques we 
overview and which errors (from Section IV) they mitigate.

A. Shadow Program Sequencing

As discussed in Section IV-C, cell-to-cell program inter-
ference is a function of the distance between the cells of the 
wordline that is being programmed and the cells of the victim 
wordline. The impact of program interference is greatest on 

a victim wordline when either of the victim’s immediately-
adjacent wordlines is programmed (e.g., if we program WL1 
in Fig. 8, WL0 and WL2 experience the greatest amount of 
interference). Early MLC flash memories used one-shot pro-
gramming, where both the LSB and MSB pages of a wordline 
are programmed at the same time. As flash memory scaled to 
smaller process technologies, one-shot programming resulted 
in much larger amounts of cell-to-cell program interference. 
As a result, manufacturers introduced two-step programming 
for MLC NAND flash (see Section III-D), where the SSD con-
troller writes values of the two pages within a wordline in two 
independent steps.

The SSD controller minimizes the interference that 
occurs during two-step programming by using shadow pro-
gram sequencing [27], [35], [40] to determine the order that 
data is written to different pages in a block. If we program 
the LSB and MSB pages of the same wordline back to back, 
as shown in Fig. 20(a), both programming steps induce 

Fig. 20. Order in which the pages of each wordline (WL) are 
programmed using (a) a bad programming sequence, and using 
shadow sequencing for (b) MLC and (c) TLC NAND flash. The bold 
page programming operations for WL1 induce cell-to-cell program 
interference when WL0 is fully programmed.

Table 3 List of Different Types of Errors Mitigated by NAND Flash 

Error Mitigation Mechanisms
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interference on a fully-programmed wordline (i.e., a word-
line where both the LSB and MSB pages are already written). 
For example, if the controller programs both pages of WL1 
back to back, shown as bold page programming operations 
in Fig. 20(a), the program operations induce a high amount 
of interference on WL0, which is fully programmed. The key 
idea of shadow program sequencing is to ensure that a fully-
programmed wordline experiences interference minimally, 
i.e., only during MSB page programming (and not during 
LSB page programming). In shadow program sequencing, we 
assign a unique page number to each page within a block, as 
shown in Fig. 20(b). The LSB page of wordline  i  is numbered 
page  2i − 1 , and the MSB page is numbered page  2i + 2 . The 
only exceptions to the numbering are the LSB page of word-
line 0 (page 0) and the MSB page of the last wordline  n  (page  
2n + 1 ). Two-step programming writes to pages in increasing 
order of page number inside a block [27], [35], [40], such that 
a fully-programmed wordline experiences interference only 
from the MSB page programming of the wordline directly 
above it, shown as the bold page programming operation in 
Fig. 20(b). With this programming order/sequence, the LSB 
page of the wordline above, and both pages of the wordline 
below, do not cause interference to fully-programmed data 
[27], [35], [40], as these two pages are programmed before 
programming the MSB page of the given wordline. Foggy-
fine programming in TLC NAND flash (see Section III-D) 
uses a similar ordering to reduce cell-to-cell program inter-
ference, as shown in Fig. 20(c).

Shadow program sequencing is an effective solution 
to minimize cell-to-cell program interference on fully- 
programmed wordlines during two-step programming, and 
is employed in commercial SSDs today.

B. Neighbor-Cell Assisted Error Correction

The threshold voltage shift that occurs due to program 
interference is highly correlated with the values stored in 
the cells of the immediately-adjacent wordlines, as we dis-
cussed in Section IV-C. Due to this correlation, knowing 
the value programmed in the immediately-adjacent cell 
(i.e., a neighbor cell) makes it easier to correctly determine 
the value stored in the flash cell that is being read [36]. We 
describe a recently proposed error correction method that 
takes advantage of this observation, called neighbor-cell-
assisted error correction (NAC). The key idea of NAC is to 
use the data values stored in the cells of the immediately-
adjacent wordline to determine a better set of read reference 
voltages for the wordline that is being read. Doing so leads 
to a more accurate identification of the logical data value 
that is being read, as the data in the immediately-adjacent 
wordline was partially responsible for shifting the threshold 
voltage of the cells in the wordline that is being read when 
the immediately-adjacent wordline was programmed.

Fig. 21 shows an operational example of NAC that 
is applied to eight bitlines (BL) of an MLC flash word-
line. The SSD controller first reads a flash page from a 

wordline using the standard read reference voltages (step 1 in 
Fig. 21). The bit values read from the wordline are then buffered  
in the controller. If there are no errors uncorrectable by ECC,  
the read was successful, and nothing else is done. However, 
if there are errors that are uncorrectable by ECC, we assume 
that the threshold voltage distribution of the page shifted due to 
cell-to-cell program interference, triggering further correction. 
In this case, NAC reads the LSB and MSB pages of the wordline 
immediately above the requested page (i.e., the adjacent word-
line that was programmed after the requested page) to classify 
the cells of the requested page (step 2). NAC then identifies the 
cells adjacent to (i.e., connected to the same bitline as) the ER 
cells (i.e., cells in the immediately above wordline that are in 
the ER state), such as the cells on BL1, BL3, and BL7 in Fig. 21. 
NAC rereads these cells using read reference voltages that com-
pensate for the threshold voltage shift caused by programming 
the adjacent cell to the ER state (step 3). If ECC can correct the 
remaining errors, the controller returns the corrected page to 
the host. If ECC fails again, the process is repeated using a dif-
ferent set of read reference voltages for cells that are adjacent 
to the P1 cells (step 4). If ECC continues to fail, the process is 
repeated for cells that are adjacent to P2 and P3 cells (steps 5 
and 6, respectively, which are not shown in the figure) until 
either ECC is able to correct the page or all possible adjacent 
values are exhausted.

NAC extends the lifetime of an SSD by reducing the 
number of errors that need to be corrected using the lim-
ited correction capability of ECC. With the use of experi-
mental data collected from real MLC NAND flash memory 
chips, we show that NAC extends the NAND flash memory 
lifetime by 33% [36]. Our previous work [36] provides a 
detailed description of NAC, including a theoretical treat-
ment of why it works and a practical implementation that 
minimizes the number of reads performed, even in the case 
when the neighboring wordline itself has errors.

C. Refresh Mechanisms

As we see in Fig. 12, during the time period after a flash 
page is programmed, retention (Section IV-D) and read 
disturb (Section IV-E) can cause an increasing number of 
raw bit errors to accumulate over time. This is particularly 
problematic for a page that is not updated frequently. Due 
to the limited error correction capability, the accumula-
tion of these errors can potentially lead to data loss for a 
page with a high retention age (i.e., a page that has not been 
programmed for a long time). To avoid data loss, refresh 

Fig. 21. Overview of neighbor-cell-assisted error correction (NAC).
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mechanisms have been proposed, where the stored data is 
periodically read, corrected, and reprogrammed, in order 
to eliminate the retention and read disturb errors that 
have accumulated prior to this periodic read/correction/ 
reprogramming (i.e., refresh). The concept of refresh in 
flash memory is thus conceptually similar to the refresh 
mechanisms found in DRAM [66], [69], [104], [123]. By 
performing refresh and limiting the number of retention 
and read disturb errors that can accumulate, the lifetime of 
the SSD increases significantly. In this section, we describe 
three types of refresh mechanisms used in modern SSDs: 
remapping-based refresh, in-place refresh, and read reclaim.

1) Remapping-Based Refresh: Flash cells must first be 
erased before they can be reprogrammed, due to the fact 
the programming a cell via ISPP can only increase the 
charge level of the cell but not reduce it (Section III-D). 
The key idea of remapping-based refresh is to periodically 
read data from each valid flash block, correct any data 
errors, and remap the data to a different physical location, 
in order to prevent the data from accumulating too many 
retention errors [34], [39], [67], [68]. During each refresh 
interval, a block with valid data that needs to be refreshed 
is selected. The valid data in the selected block is read out 
page by page and moved to the SSD controller. The ECC 
engine in the SSD controller corrects the errors in the read 
data, including retention errors that have accumulated 
since the last refresh. A new block is then selected from 
the free list (see Section II-C), the error-free data is pro-
grammed to a page within the new block, and the logical 
address is remapped to point to the newly-programmed 
physical page. By reducing the accumulation of retention 
and read disturb errors, remapping-based refresh increases 
SSD lifetime by an average of 9x for a variety of disk work-
loads [34], [39].

Prior work proposes extensions to the basic remapping-
based refresh approach. One work, refresh SSDs, proposes a 
refresh scheduling algorithm based on an earliest deadline 
first policy to guarantee that all data is refreshed in time 
[68]. The quasi-nonvolatile SSD proposes to use remapping-
based refresh to choose between improving flash endur-
ance and reducing the flash programming latency (by using 
larger ISPP step-pulses) [67]. In the quasi-nonvolatile SSD, 
refresh requests are deprioritized, scheduled at idle times, 
and can be interrupted after refreshing any page within a 
block, to minimize the delays that refresh can cause for 
the response time of pending workload requests to the 
SSD. A refresh operation can also be triggered proactively 
based on the data read latency observed for a page, which 
is indicative of how many errors the page has experienced 
[87]. Triggering refresh proactively based on the observed 
read latency (as opposed to doing so periodically) improves 
SSD latency and throughput [87]. Whenever the read 
latency for a page within a block exceeds a fixed threshold, 
the valid data in the block is refreshed, i.e., remapped to a 
new block [87].

2) In-Place Refresh: A major drawback of remapping-based 
refresh is that it performs additional writes to the NAND 
flash memory, accelerating wearout. To reduce the wearout 
overhead of refresh, we propose in-place refresh [34], [39]. As 
data sits unmodified in the SSD, data retention errors domi-
nate [32], [39], [56], leading to charge loss and causing the 
threshold voltage distribution to shift to the left, as we showed 
in Section IV-D. The key idea of in-place refresh is to incre-
mentally replenish the lost charge of each page at its current 
location, i.e., in place, without the need for remapping.

Fig. 22 shows a high-level overview of in-place refresh for 
a wordline. The SSD controller first reads all of the pages 
in the wordline (➊ in Fig. 22). The controller invokes the 
ECC decoder to correct the errors within each page (➋), and 
sends the corrected data back to the flash chips (➌). In-place 
refresh then invokes a modified version of the ISPP mecha-
nism (see Section III-D), which we call Verify-ISPP (V-ISPP), 
to compensate for retention errors by restoring the charge 
that was lost. In V-ISPP, we first verify the voltage currently 
programmed in a flash cell (➍). If the current voltage of the 
cell is lower than the target threshold voltage of the state that 
the cell should be in, V-ISPP pulses the programming volt-
age in steps, gradually injecting charge into the cell until the 
cell returns to the target threshold voltage (➎). If the current 
voltage of the cell is higher than the target threshold voltage, 
V-ISPP inhibits the programming pulses to the cell.

When the controller invokes in-place refresh, it is unable 
to use shadow program sequencing (Section V-A), as all of the 
pages within the wordline have already been programmed. 
However, unlike traditional ISPP, V-ISPP does not introduce 
a high amount of cell-to-cell program interference (Section 
IV-C) for two reasons. First, V-ISPP programs only those cells 
that have retention errors, which typically account for less 
than 1% of the total number of cells in a wordline selected 
for refresh [34]. Second, for the small number of cells that 
are selected to be refreshed, their threshold voltage is usu-
ally only slightly lower than the target threshold voltage, 
which means that only a few programming pulses need to 
be applied. As cell-to-cell interference is linearly correlated 
with the threshold voltage change to immediately-adjacent 
cells [35], [36], the small voltage change on these in-place 
refreshed cells leads to only a small interference effect.

One issue with in-place refresh is that it is unable to 
correct retention errors for cells in lower-voltage states. 
Retention errors cause the threshold voltage of a cell in a 
lower-voltage state to increase (e.g., see Section IV-D, ER and 

Fig. 22. Overview of in-place refresh mechanism for MLC NAND 
flash memory.
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P1 states in Fig. 18), but V-ISPP cannot decrease the thresh-
old voltage of a cell. To achieve a balance between the wea-
rout overhead due to remapping-based refresh and errors that 
increase the threshold voltage due to in-place refresh, we pro-
pose hybrid in-place refresh [34], [39]. The key idea is to use 
in-place refresh when the number of program errors (caused 
due to reprogramming) is within the correction capability of 
ECC, but to use remapping-based refresh if the number of 
program errors is too large to tolerate. To accomplish this, the 
controller tracks the number of right-shift errors (i.e., errors 
that move a cell to a higher-voltage state) [34], [39]. If the 
number of right-shift errors remains under a certain thresh-
old, the controller performs in-place refresh; otherwise, it 
performs remapping-based refresh. Such a hybrid in-place 
refresh mechanism increases SSD lifetime by an average of 
31x for a variety of disk workloads [34], [39].

3) Read Reclaim to Reduce Read Disturb Errors: We can 
also mitigate read disturb errors using an idea similar to 
remapping-based refresh, known as read reclaim. The key 
idea of read reclaim is to remap the data in a block to a new 
flash block, if the block has experienced a high number of 
reads [63], [70], [173]. To bound the number of read disturb 
errors, some flash vendors specify a maximum number of 
tolerable reads for a flash block, at which point read reclaim 
rewrites the data to a new block (just as is done for remap-
ping-based refresh).

4) Adaptive Refresh and Read Reclaim Mechanisms: For 
the refresh and read reclaim mechanisms discussed above, 
the SSD controller can 1) invoke the mechanisms at fixed 
regular intervals; or 2) adapt the rate at which it invokes the 
mechanisms, based on various conditions that impact the 
rate at which data retention and read disturb errors occur. 
By adapting the mechanisms based on the current condi-
tions of the SSD, the controller can reduce the overhead 
of performing refresh or read reclaim. The controller can 
adaptively adjust the rate that the mechanisms are invoked 
based on 1) the wearout (i.e., the current P/E cycle count) of 
the NAND flash memory [34], [39]; or 2) the temperature 
of the SSD [32], [37].

As we discuss in Section IV-D, for data with a given 
retention age, the number of retention errors grows as the 
P/E cycle count increases. Exploiting this P/E cycle depend-
ent behavior of retention time, the SSD controller can per-
form refresh less frequently (e.g., once every year) when 
the P/E cycle count is low, and more frequently (e.g., once 
every week) when the P/E cycle count is high, as proposed 
and described in our prior works [34], [39]. Similarly, for 
data with a given read disturb count, as the P/E cycle count 
increases, the number of read disturb errors increases as 
well [38]. As a result, the SSD controller can perform read 
reclaim less frequently (i.e., it increases the maximum num-
ber of tolerable reads per block before read reclaim is trig-
gered) when the P/E cycle count is low, and more frequently 
when the P/E cycle count is high.

Prior works demonstrate that for a given retention time, 
the number of data retention errors increases as the NAND 
flash memory’s operating temperature increases [32], [37]. 
To compensate for the increased number of retention errors 
at high temperature, a state-of-the-art SSD controller adapts 
the rate at which it triggers refresh. The SSD contains sen-
sors that monitor the current environmental temperature 
every few milliseconds [48], [192]. The controller then 
uses the Arrhenius equation [68], [186], [187] to estimate 
the rate at which retention errors accumulate at the cur-
rent temperature of the SSD. Based on the error rate esti-
mate, the controller decides if it needs to increase the rate 
at which it triggers refresh to ensure that the data is not lost.

By employing adaptive refresh and/or read reclaim mecha-
nisms, the SSD controller can successfully reduce the mecha-
nism overheads while effectively mitigating the larger number 
of data retention errors that occur under various conditions.

D. Read-Retry

In earlier generations of NAND flash memory, the read 
reference voltage values were fixed at design time [20], [33]. 
However, several types of errors cause the threshold voltage 
distribution to shift, as shown in Fig. 13. To compensate for 
threshold voltage distribution shifts, a mechanism called read-
retry has been implemented in modern flash memories (typi-
cally those below 30 nm for planar flash [33], [71], [72], [107]).

The read-retry mechanism allows the read reference 
voltages to dynamically adjust to changes in distributions. 
During read-retry, the SSD controller first reads the data out 
of NAND flash memory with the default read reference volt-
age. It then sends the data for error correction. If ECC suc-
cessfully corrects the errors in the data, the read operation 
succeeds. Otherwise, the SSD controller reads the memory 
again with a different read reference voltage. The controller 
repeats these steps until it either successfully reads the data 
using a certain set of read reference voltages or is unable to 
correctly read the data using all of the read reference volt-
ages that are available to the mechanism.

While read-retry is widely implemented today, it can 
significantly increase the overall read operation latency due 
to the multiple read attempts it causes [37]. Mechanisms 
have been proposed to reduce the number of read-retry 
attempts while taking advantage of the effective capability 
of read-retry for reducing read errors, and read-retry has 
also been used to enable mitigation mechanisms for various 
other types of errors, as we describe in Section V-E. As a 
result, read-retry is an essential mechanism in modern SSDs 
to mitigate read errors (i.e., errors that manifest themselves 
during a read operation).

E. Voltage Optimization

Many raw bit errors in NAND flash memory are affected 
by the various voltages used within the memory to enable 
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reading of values. We give two examples. First, a suboptimal 
read reference voltage can lead to a large number of read 
errors (Section IV), especially after the threshold voltage dis-
tribution shifts. Second, as we saw in Section IV-E, the pass-
through voltage can have a significant effect on the number 
of read disturb errors that occur. As a result, optimizing these 
voltages such that they minimize the total number of errors 
that are induced can greatly mitigate error counts. In this sec-
tion, we discuss mechanisms that can discover and employ 
the optimal2 read reference and pass-through voltages.

1) Optimizing Read Reference Voltages Using Disparity-
Based Approximation and Sampling: As we discussed in 
Section V-D, when the threshold voltage distribution shifts, 
it is important to move the read reference voltage to the 
point where the number of read errors is minimized. After 
the shift occurs and the threshold voltage distribution of 
each state widens, the distributions of different states may 
overlap with each other, causing many of the cells within 
the overlapping regions to be misread. The number of errors 
due to misread cells can be minimized by setting the read 
reference voltage to be exactly at the point where the distri-
butions of two neighboring states intersect, which we call 
the optimal read reference voltage (  V opt   ) [35]–[37], [42], 
[54], illustrated in Fig. 23. Once the optimal read refer-
ence voltage is applied, the raw bit error rate is minimized, 
improving the reliability of the device.

One approach to finding   V opt    is to adaptively learn and 
apply the optimal read reference voltage for each flash block 
through sampling [37], [90], [165], [166]. The key idea is 
to periodically 1) use disparity information (i.e., the ratio 
of 1s to 0s in the data) to attempt to find a read reference 
voltage for which the error rate is lower than the ECC cor-
rection capability; and to 2) use sampling to efficiently tune 
the read reference voltage to its optimal value to reduce the 
read operation latency. Prior characterization of real NAND 
flash memory [37], [54] found that the value of   V opt    does 
not shift greatly over a short period of time (e.g., a day), and 
that all pages within a block experience similar amounts of 
threshold voltage shifts, as they have the same amount of 
wearout and are programmed around the same time [37], 

[54]. Therefore, we can invoke our   V opt    learning mecha-
nism periodically (e.g., daily) to efficiently tune the initial 
read reference voltage (i.e., the first read reference voltage 
used when the controller invokes the read-retry mechanism, 
described in Section V-D) for each flash block, ensuring that 
the initial voltage used by read-retry stays close to   V opt    even 
as the threshold voltage distribution shifts.

The SSD controller searches for   V opt    by counting the 
number of errors that need to be corrected by ECC dur-
ing a read. However, there may be times where the initial 
read reference voltage (  V initial   ) is set to a value at which the 
number of errors during a read exceeds the ECC correction 
capability, such as the raw bit error rate for   V initial    in Fig. 23 
(right). When the ECC correction capability is exceeded, the 
SSD controller is unable to count how many errors exist in 
the raw data. The SSD controller uses disparity-based read 
reference voltage approximation [90], [165], [166] for each 
flash block to try to bring   V initial    to a region where the num-
ber of errors does not exceed the ECC correction capability. 
Disparity-based read reference voltage approximation takes 
advantage of data scrambling. Recall from Section II-C that 
to minimize data value dependencies for the error rate, the  
SSD controller scrambles the data written to the SSD to 
probabilistically ensure that an equal number of 0s and 1s 
exist in the flash memory cells. The key idea of disparity-
based read reference voltage approximation is to find the 
read reference voltages that result in approximately 50% 
of the cells reading out bit value 0, and the other 50% of 
the cells reading out bit value 1. To achieve this, the SSD 
controller employs a binary search algorithm, which tracks 
the ratio of 0s to 1s for each read reference voltage it tries. 
The binary search tests various read reference voltage val-
ues, using the ratios of previously tested voltages to narrow 
down the range where the read reference voltage can have 
an equal ratio of 0s to 1s. The binary search algorithm con-
tinues narrowing down the range until it finds a read refer-
ence voltage that satisfies the ratio.

The usage of the binary search algorithm depends on the 
type of NAND flash memory used within the SSD. For SLC 
NAND flash, the controller searches for only a single read 
reference voltage. For MLC NAND flash, there are three read 
reference voltages: the LSB is determined using   V b   , and the 
MSB is determined using both   V a    and   V c    (see Section III-C). 
 Fig. 24 illustrates the search procedure for MLC NAND flash. 
First, the controller uses binary search to find   V b   , choosing a 
voltage that reads the LSB of 50% of the cells as data value 0 
(step 1 in Fig. 24). For the MSB, the controller uses the dis-
covered   V b    value to help search for   V a    and   V c   . Due to scram-
bling, cells should be equally distributed across each of the 
four voltage states. The controller uses binary search to set   
V a    such that 25% of the cells are in the ER state, by ensuring 
that half of the cells to the left of   V b    are read with an MSB of 
0 (step 2). Likewise, the controller uses binary search to set   
V c    such that 25% of the cells are in the P3 state, by ensur-
ing that half of the cells to the right of   V b    are read with an  

2Or, more precisely, near-optimal, if the read-retry steps are too 
coarse grained to find the optimal voltage.

Fig. 23. Finding the optimal read reference voltage after the 
threshold voltage distributions overlap (left), and raw bit error rate 
as a function of the selected read reference voltage (right).
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MSB of 0 (step 3). This procedure is extended in a similar 
way to approximate the voltages for TLC NAND flash.

If disparity-based approximation finds a value for   V initial    
where the number of errors during a read can be counted by 
the SSD controller, the controller invokes sampling-based 
adaptive   V opt    discovery [37] to minimize the error count, and 
thus reduce the read latency. Sampling-based adaptive   V opt    
discovery learns and records   V opt    for the last-programmed 
page in each block. We sample only the last-programmed 
page because it is the page with the lowest data retention 
age in the flash block. As retention errors cause the higher-
voltage states to shift to the left (i.e., to lower voltages), the 
last-programmed page usually provides an upper bound of   
V opt    for the entire block.

During sampling-based adaptive   V opt    discovery, the SSD 
controller first reads the last-programmed page using   V initial   , 
and attempts to correct the errors in the raw data read from 
the page. Next, it records the number of raw bit errors as 
the current lowest error count   N ERR   , and sets the applied 
read reference voltage (  V ref   ) as   V initial   . Since   V opt    typically 
decreases over retention age, the controller first attempts 
to lower the read reference voltage for the last-programmed 
page, decreasing the voltage to   V ref       –    ΔV  and reading the 
page. If the number of corrected errors in the new read is 
less than or equal to the old   N ERR   , the controller updates   
N ERR    and   V ref    with the new values. The controller contin-
ues to lower the read reference voltage until the number 
of corrected errors in the data is greater than the old   N ERR     
or the lowest possible read reference voltage is reached. 
Since the optimal threshold voltage might increase in rare 
cases, the controller also tests increasing the read refer-
ence voltage. It increases the voltage to   V ref   + ΔV  and reads  
the last-programmed page to see if   N ERR    decreases. Again, it 
repeats increasing   V ref    until the number of corrected errors 

in the data is greater than the old   N ERR    or the highest possi-
ble read reference voltage is reached. The controller sets the 
initial read reference voltage of the block as the value of   V ref    
at the end of this process so that the next time an uncorrect-
able error occurs, read-retry starts at a   V initial    that is hope-
fully closer to the optimal read reference voltage (  V opt   ).

During the course of the day, as more retention errors 
(the dominant source of errors on already-programmed 
blocks) accumulate, the threshold voltage distribution shifts 
to the left (i.e., voltages decrease), and our initial read refer-
ence voltage (i.e.,   V initial   ) is now an upper bound for the read-
retry voltages. Therefore, whenever read-retry is invoked, 
the controller now needs to only decrease the read refer-
ence voltages (as opposed to traditional read-retry, which 
tries both lower and higher voltages [37]). Sampling-based 
adaptive   V opt    discovery improves the endurance (i.e., the 
number of P/E cycles before the ECC correction capability is 
exceeded) of the NAND flash memory by 64% and reduces 
error correction latency by 10% [37], and is employed in 
some modern SSDs today.

2) Other Approaches to Optimizing Read Reference Voltages: 
One drawback of the sampling-based adaptive technique is 
that it requires time and storage overhead to find and record 
the per-block initial voltages. To avoid this, the SSD con-
troller can employ an accurate online threshold voltage dis-
tribution model [33], [42], which can efficiently track and 
predict the shift in the distribution over time. The model 
represents the threshold voltage distribution of each state as 
a probability density function (PDF), and the controller can 
use the model to calculate the intersection of the different 
PDFs. The controller uses the PDF in place of the threshold 
voltage sampling, determining   V opt    by calculating the inter-
section of the distribution of each state in the model. The 
endurance improvement from our state-of-the-art model-
based   V opt    estimation technique [42] is within 2% of the 
improvement from an ideal   V opt    identification mechanism 
[42]. An online threshold voltage distribution model can be 
used for a number of other purposes, such as estimating the 
future growth in the raw bit error rate and improving error 
correction [42].

Other prior work examines adapting read reference volt-
ages based on P/E cycle count, retention age, or read dis-
turb. In one such work, the controller periodically learns 
read reference voltages by testing three read reference volt-
ages on six pages per block, which the work demonstrates 
to be sufficiently accurate [54]. Similarly, error correction 
using LDPC soft decoding (see Section VI-B) requires read-
ing the same page using multiple sets of read reference 
voltages to provide fine-grained information on the prob-
ability of each cell representing a bit value 0 or a bit value 1. 
Another prior work optimizes the read reference voltages to 
increase the ECC correction capability without increasing 
the coding rate [73].

Fig. 24. Disparity-based read reference voltage approximation to 
find   V initial    for MLC NAND flash memory. Each circle represents a 
cell, where a dashed border indicates that the LSB is undetermined, 
a solid border indicates that the LSB is known, a hollow circle 
indicates that the MSB is unknown, and a filled circle indicates that 
the MSB is known.
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3) Optimizing Pass-Through Voltage to Reduce Read Disturb 
Errors: As we discussed in Section IV-E, the vulnerability of a 
cell to read disturb is directly correlated with the voltage dif-
ference (  V pass    –   V th   ) through the cell oxide [38]. Traditionally, 
a single   V pass    value is used globally for the entire flash mem-
ory, and the value of   V pass    must be higher than all potential 
threshold voltages within the chip to ensure that unread 
cells along a bitline are turned on during a read operation 
(see Section III-C). To reduce the impact of read disturb, 
we can tune   V pass    to reduce the size of the voltage difference  
(  V pass    –   V th   ). However, it is difficult to reduce   V pass    glob-
ally, as any cell with a value of   V th   >  V pass    introduces an 
error during a read operation (which we call a pass-through 
error).

We propose a mechanism that can dynamically lower   
V pass    while ensuring that it can correct any new pass-through 
errors introduced. The key idea of the mechanism is to lower   
V pass    only for those blocks where ECC has enough leftover 
error correction capability (see Section II-C) to correct the 
newly introduced pass-through errors. When the retention 
age of the data within a block is low, we find that the raw 
bit error rate of the block is much lower than the rate for 
the block when the retention age is high, as the number of 
data retention and read disturb errors remains low at low 
retention age [38], [70]. As a result, a block with a low reten-
tion age has significant unused ECC correction capability, 
which we can use to correct the pass-through errors we 
introduce when we lower   V pass   , as shown in Fig. 25. Thus, 
when a block has a low retention age, the controller lowers   
V pass    aggressively, making it much less likely for read dis-
turbs to induce an uncorrectable error. When a block has 
a high retention age, the controller also lowers   V pass   , but 
does not reduce the voltage aggressively, since the limited 
ECC correction capability now needs to correct retention 
errors, and might not have enough unused correction capa-
bility to correct many new pass-through errors. By reducing   
V pass    aggressively when a block has a low retention age, we 
can extend the time before the ECC correction capability is 
exhausted, improving the flash lifetime.

Our read disturb mitigation mechanism [38] learns the 
minimum pass-through voltage for each block, such that 
all data within the block can be read correctly with ECC. 
Our learning mechanism works online and is triggered 

periodically (e.g., daily). The mechanism is implemented in 
the controller, and has two components. It first finds the 
size of the ECC margin  M  (i.e., the unused correction capa-
bility) that can be exploited to tolerate additional read errors 
for each block. Once it knows the available margin  M , our 
mechanism calibrates   V pass    on a per-block basis to find the 
lowest value of   V pass    that introduces no more than  M  addi-
tional raw errors (i.e., there are no more than  M  cells where   
V th   >  V pass   ). Our findings on MLC NAND flash memory 
show that the mechanism can improve flash endurance by 
an average of 21% for a variety of disk workloads [38].

4) Programming and Erase Voltages: Prior work also exam-
ines tuning the programming and erase voltages to extend 
flash endurance [74]. By decreasing the two voltages when 
the P/E cycle count is low, the accumulated wearout for 
each program or erase operation is reduced, which, in turn, 
increases the overall flash endurance. Decreasing the pro-
gramming voltage, however, comes at the cost of increasing 
the time required to perform ISPP, which, in turn, increases 
the overall SSD write latency [74].

F. Hot Data Management

The data stored in an SSD can be accessed by the host at 
different rates. For example, we find that across a wide range 
of disk workloads, almost 100% of the write operations tar-
get less than 1% of the pages within an SSD [41], exhibiting 
high temporal write locality. We call the frequently-written 
subset of pages write-hot pages. Likewise, pages with a high 
amount of temporal read locality are called read-hot pages. 
A number of issues can arise when an SSD does not distin-
guish between write-hot pages and write-cold pages (i.e., 
pages with low temporal write locality), or between read-
hot pages and read-cold pages (i.e., pages with low temporal 
read locality). For example, if write-hot pages and write-cold 
pages are kept within the same block, intelligent refresh 
mechanisms cannot avoid refreshes to pages that were over-
written recently, increasing not only energy consumption 
but also write amplification due to remapping-based refresh 
[41]. Likewise, if read-hot and read-cold pages are kept 
within the same block, read-cold pages are unnecessarily 
exposed to a high number of read disturb errors [63], [70]. 
Hot data management refers to a set of mechanisms that can 
identify write-hot or read-hot pages in the SSD. The key idea 
is to apply special SSD management policies by placing hot 
pages and cold pages into separate flash blocks.

Write-hotness aware refresh management (WARM) 
[41] efficiently identifies write-hot pages, and designates a 
small pool of blocks in the SSD to exclusively store write-
hot data. As write-hot data is overwritten more frequently 
than the refresh interval, the SSD controller can skip refresh 
operations to the write-hot blocks. WARM reduces the write 
amplification overhead of refresh, which translates to an 
average lifetime improvement of 21% over a state-of-the-art 
refresh mechanism across a range of disk workloads [41]. 

Fig. 25. Dynamic pass-through voltage tuning at different  
retention ages.
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Another work [75] proposes to reuse the correctly function-
ing flash pages within bad blocks (see Section II-C) to store 
write-cold data. This technique increases the total number 
of usable blocks available for overprovisioning, and extends 
flash lifetime by delaying the point at which each flash chip 
reaches the upper limit of bad blocks it can tolerate.

RedFTL identifies and replicates read-hot pages across 
multiple flash blocks, allowing the controller to evenly 
distribute read requests to these pages across the replicas 
[63]. Other works reduce the number of read reclaims 
(see Section V-C) that need to be performed by mapping 
read-hot data to particular flash blocks and lowering the 
maximum possible threshold voltage for such blocks [45], 
[70]. By lowering the maximum possible threshold voltage 
for these blocks, the SSD controller can use a lower   V pass    
value (see Section V-E) on the blocks without introducing 
any additional errors during a read operation. To lower the 
maximum threshold voltage in these blocks, the width of 
the voltage window for each voltage state is decreased, and 
each voltage window shifts to the left [45], [70]. Another 
work applies stronger ECC encodings to only read-hot 
blocks based on the total read count of the block, in order 
to increase SSD endurance without significantly reducing 
the amount of overprovisioning [88] (see Section II-D for 
a discussion on the tradeoff between ECC strength and 
overprovisioning).

G. Adaptive Error Mitigation Mechanisms

Due to the many different factors that contribute to raw 
bit errors, error rates in NAND flash memory can be highly 
variable. Adaptive error mitigation mechanisms are capable of 
adapting error tolerance capability to the error rate. They pro-
vide stronger error tolerance capability when the error rate is 
higher, improving flash lifetime significantly. When the error 
rate is low, adaptive error mitigation techniques reduce error 
tolerance capability to lower the cost of the error mitigation 
techniques. In this section, we examine two types of adaptive 
techniques: 1) multi-rate ECC and 2) dynamic cell levels.

1) Multi-rate ECC: Some works propose to employ 
multiple ECC algorithms in the SSD controller [43], [65], 
[76], [77], [82]. Recall from Section II-D that there is a 
tradeoff between ECC strength (i.e., the coding rate; see 
Section II-C) and overprovisioning, as a codeword (which 
contains a data chunk and its corresponding ECC informa-
tion) uses more bits when stronger ECC is employed. The 
key idea of multi-rate ECC is to employ a weaker codeword 
(i.e., one that uses fewer bits for ECC) when the SSD is rela-
tively new and has a smaller number of raw bit errors, and 
to use the saved SSD space to provide additional overprovi-
sioning, as shown in Fig. 26.

Let us assume that the controller contains a configur-
able ECC engine that can support  n  different types of ECC 
codewords, which we call ECCi. Fig. 26 shows an example 
of multi-rate ECC that uses four ECC engines, where ECC1 

provides the weakest protection but has the smallest code-
word, while ECC4 provides the strongest protection with 
the largest codeword. We need to ensure that the NAND 
flash memory has enough space to fit the largest codewords, 
e.g., those for ECC4 in Fig. 26. Initially, when the raw bit 
error rate (RBER) is low, the controller employs ECC1, 
as shown in Fig. 27. The smaller codeword size for ECC1 
provides additional space for overprovisioning, as shown 
in Fig. 26, and thus reduces the effects of write amplifi-
cation. Multi-rate ECC works on an interval-by-interval 
basis. Every interval (in this case, a predefined number 
of P/E cycles), the controller measures the RBER. When 
the RBER exceeds the threshold set for transitioning from 
a weaker ECC to a stronger ECC, the controller switches 
to the stronger ECC. For example, when the SSD exceeds 
the first RBER threshold for switching (  T 1    in Fig. 27),  
the controller starts switching from ECC1 to ECC2. When 
switching between ECC engines, the controller uses the 
ECC1 engine to decode data the next time the data is read 
out, and stores a new codeword using the ECC2 engine. 
This process is repeated during the lifetime of flash mem-
ory for each stronger engine ECCi, where each engine has 
a corresponding threshold that triggers switching [43], 
[65], [82], as shown in Fig. 27.

Multi-rate ECC allows the same maximum P/E cycle 
count for each block as if ECCn was used throughout the 
lifetime of the SSD, but reduces write amplification and 
improves performance during the periods where the lower 
strength engines are employed, by providing additional 
overprovisioning (see Section II-D) during those times. 
As the lower-strength engines use smaller codewords  

Fig. 26. Comparison of space used for user data, overprovisioning, 
and ECC between a fixed ECC and a multi-rate ECC mechanism.

Fig. 27. Illustration of how multi-rate ECC switches to differ-
ent ECC codewords (i.e., ECCi) as the RBER grows. OPi is the 
overprovisioning factor used for engine ECCi, and WAi is the 
resulting write amplification value.
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(e.g., ECC1 versus ECC4 in Fig. 26), the resulting free space 
can instead be employed to further increase the amount of 
overprovisioning within the NAND flash memory, which in 
turn increases the total lifetime of the SSD. We compute 
the lifetime improvement by modifying (4) (Section II-D) 
to account for each engine, as follows:

  Lifetime =  ∑ i=1  
n     

 PEC i   × (1 +  OP i   )  ________________________   365 × DWPD ×  WA i   ×  R Compress  
      (9)

In (9), WAi and OPi are the write amplification and over-
provisioning factor for ECCi, and PECi is the number of P/E 
cycles that ECCi is used for. Manufacturers can set param-
eters to maximize SSD lifetime in (9), by optimizing the val-
ues of WAi and OPi.

Fig. 28 shows the lifetime improvements for a four-
engine multi-rate ECC, with the coding rates for the four 
ECC engines (ECC1¬ECC4) set to 0.90, 0.88, 0.86, and 0.84 
(recall that a lower coding rate provides stronger protection; 
see Section II-D), over a fixed ECC engine that employs a 
coding rate of 0.84. We see that the lifetime improvements 
of using multi-rate ECC are: 1) significant, with a 31.2% 
increase if the baseline NAND flash memory has 15% over-
provisioning; and 2) greater when the SSD initially has a 
smaller amount of overprovisioning.

2) Dynamic Cell Levels: A major reason that errors occur 
in NAND flash memory is because the threshold voltage dis-
tribution of each state overlaps more with those of neighbor-
ing states as the distributions widen over time. Distribution 
overlaps are a greater problem when more states are encoded 
within the same voltage range. Hence, TLC flash has a much 
lower endurance than MLC, and MLC has a much lower 
endurance than SLC (assuming the same process technol-
ogy node). If we can increase the margins between the 
states’ threshold voltage distributions, the amount of over-
lap can be reduced significantly, which in turn reduces the 
number of errors.

Prior work proposes to increase margins by dynami-
cally reducing the number of bits stored within a cell, e.g., 
by going from three bits that encode eight states (TLC) 
to two bits that encode four states (equivalent to MLC), 
or to one bit that encodes two states (equivalent to SLC) 
[45], [78]. Recall that TLC uses the ER state and states 
P1–P7, which are spaced out approximately equally. 

When we downgrade a flash block (i.e., reduce the num-
ber of states its cells can represent) from eight states to 
four, the cells in the block now employ only the ER state 
and states P3, P5, and P7. As we can see from Fig. 29, this 
provides large margins between states P3, P5, and P7, and 
provides an even larger margin between ER and P3. The 
SSD controller maintains a list of all of the blocks that 
have been downgraded. For each read operation, the SSD 
controller checks if the target block is in the downgraded 
block list, and uses this information to interpret the data 
that it reads out from the wordline of the block.

A cell can be downgraded to reduce various types of 
errors (e.g., wearout, read disturb). To reduce wearout, a 
cell is downgraded when it has high wearout. To reduce read 
disturb, a cell can be downgraded if it stores read-hot data 
(i.e., the most frequently read data in the SSD). By using 
fewer states for a block that holds read-hot data, we can 
reduce the impact of read disturb because it becomes harder 
for the read disturb mechanism to affect the distributions 
enough for them to overlap. As an optimization, the SSD 
controller can employ various hot-cold data partitioning 
mechanisms (e.g., [41], [45], [63], and [88]) to keep read-
hot data in specially designated blocks [45], [63], [70], [88], 
allowing the controller to reduce the size of the downgraded 
block list and isolate the impact of read disturb from read-
cold (i.e., infrequently read) data.

Another approach to dynamically increasing the distri-
bution margins is to perform program and erase operations 
more slowly when the SSD write request throughput is low 
[45], [74]. Slower program/erase operations allow the final 
voltage of a cell to be programmed more precisely, and 
reduce the amount of oxide degradation that occurs during 
programming. As a result, the distribution of each state is 
initially much narrower, and subsequent widening of the 
distributions results in much lower overlap for a given P/E 
cycle count. This technique improves the SSD lifetime by 
an average of 61.2% for a variety of disk workloads [74]. 
Unfortunately, the slower program/erase operations come 
at the cost of higher SSD latency, and are thus not applied 
during periods of high write traffic. One way to mitigate 
the impact of the higher write latency is to perform slower 
program/erase operations only during garbage collection, 
which ensures that the higher latency occurs only when the 
SSD is idle [45]. As a result, read and write requests from 
the host do not experience any additional delays.

Fig. 28. Lifetime improvements of using multi-rate ECC over using 
a fixed ECC coding rate.

Fig. 29. States used when a TLC cell (with 8 states) is downgraded 
to an MLC cell (with 4 states).
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V I.  ER ROR COR R ECTION A ND DATA 
R ECOV ERY TECHNIQU ES

Now that we have described a variety of error mitigation 
mechanisms that can target various types of error sources, 
we turn our attention to the error correction flow that is 
employed in modern SSDs as well as data recovery tech-
niques that can be employed when the error correction flow 
fails to produce correct data.

Modern SSDs typically employ one of two types of 
ECC. Bose–Chaudhuri–Hocquenghem (BCH) codes 
allow for the correction of multiple bit errors [9], [10], 
[92], [93], and are used to correct the errors observed dur-
ing a single read from the NAND flash memory [10]. Low-
density parity-check (LDPC) codes employ information 
accumulated over multiple read operations to determine 
the likelihood of each cell containing a bit value 1 or a bit 
value 0 [9], [94], [95], providing stronger protection at 
the cost of greater decoding latency and storage overhead 
[11], [73].

In this section, we briefly overview how an SSD performs 
error correction when reading data. We first go through an 
example error correction flow for an SSD that uses either 
BCH codes (Section VI-A) or LDPC codes (Section VI-B). 
Next, we compare the error correction strength (i.e., the 
number of errors that ECC can correct) when we employ 
BCH codes or LDPC codes in an SSD (Section VI-C). Then, 
we discuss techniques that can rescue data from an SSD 
when the BCH/LDPC decoding fails to correct all errors 
(Section VI-D).

A. Error Correction Flow With BCH Codes

The SSD starts a read operation by using the initial read 
reference voltages (  V initial   ; see Section V-E) to read the raw 
data stored within a page of NAND flash memory into the 
controller. Once the raw data is read, the controller starts 
error correction. We first look at the error correction flow 
using BCH codes [9], [10], [92], [93]. An example flow of 
the stages for BCH decoding is listed in Algorithm 1, and is 
shown on the left-hand side of Fig. 30(a). In the first stage, 
the ECC engine performs BCH decoding on the raw data, 
which reports the total number of bit errors in the data. 
If the data cannot be corrected by the implemented BCH 
codes, many controllers invoke read-retry (Section V-D) or 
read reference voltage optimization (Section V-E) to find a 
new set of read reference voltages (  V ref   ) that lower the raw 
bit error rate of the data from the error rate when using   
V initial   . The controller uses the new   V ref    values to read the 
data again, and then repeats the BCH decoding. BCH decod-
ing is hard decoding, where the ECC engine can only use the 
hard bit value information (i.e., either a 1 or a 0) read for a 
cell using a single set of read reference voltages.

Algorithm 1: Example BCH/LDPC Error Correction 
Procedure

First Stage: BCH/LDPC Hard Decoding

Controller gets stored Vinitial values to use as Vref
Flash chips read page using Vref
ECC decoder decodes BCH/LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else if number of stage iterations not exceeded then
Controller invokes Vref optimization to new Vref;

repeats stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W
while ECC fails and all possible voltage states for

adjacent wordline not yet tried do
Controller goes to next neighbor voltage state V
Controller sets Vref based on neighbor voltage state V
Flash chips read page using Vref
Controller corrects cells adjacent to W’s cells that

were programmed to V
ECC decoder decodes BCH
if ECC succeeds then

Controller sends data to host; exit algorithm
end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do
Controller selects optimal value of Vref

X

Flash chips do read-retry using Vref
X

Controller recomputes LLRXR0 to LLRX
RX

ECC decoder decodes LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm

else
Controller goes to soft decoding level X + 1
end

end

Third Stage: Superpage-Level Parity Recovery

Flash chips read all other pages in the superpage
Controller XORs all other pages in the superpage
if data extraction succeeds then

Controller sends data to host
else

Controller reports uncorrectable error
end

If the controller exhausts the maximum number of read 
attempts (specified as a parameter in the controller), it 
employs correction techniques such as neighbor-cell-assisted 
correction (NAC; see Section V-B) to further reduce the error 
rate, as shown in the second BCH stage of Algorithm 1. If NAC 
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cannot successfully read the data, the controller then tries to 
correct the errors using the more expensive superpage-level 
parity recovery (Section II-C). The steps for superpage-level 
parity recovery are shown in the third stage of Algorithm 1. 
If the data can be extracted successfully from the other pages 
in the superpage, the data from the target page can be recov-
ered. Whenever data is successfully decoded or recovered, 
the data is sent to the host (and it is also reprogrammed into 
a new physical page to ensure that the corrected data values 
are stored for the logical page). Otherwise, the SSD controller 
reports an uncorrectable error to the host.

B. Error Correction Flow With LDPC Codes

Fig. 30 compares the error correction flow with BCH 
codes (discussed in Section VI-A) to the flow with LDPC 
codes. LDPC decoding consists of three major steps. First, 
the SSD controller performs LDPC hard decoding, where 
the controller reads the data using the optimal read refer-
ence voltages. The process for LDPC hard decoding is simi-
lar to that of BCH hard decoding (as shown in the first stage 
of Algorithm 1), but does not typically invoke read-retry if 
the first read attempt fails. Second, if LDPC hard decoding 
cannot correct all of the errors, the controller uses LDPC 
soft decoding to decode the data (which we describe in detail 
below). Third, if LDPC soft decoding also cannot correct all 
of the errors, the controller invokes superpage-level parity.

1) Soft Decoding: Unlike BCH codes, which require 
the invocation of expensive superpage-level parity recov-
ery immediately if the hard decoding attempts (BCH hard 
decoding with read-retry or NAC) fail to return correct data, 
LDPC decoding fails more gracefully: it can perform multi-
ple levels of soft decoding (the second stage in Algorithm 1) 
after hard decoding fails before invoking superpage-level 

parity recovery [11], [73]. The key idea of soft decoding is 
use soft information for each cell (i.e., the probability that 
the cell contains a 1 or a 0) obtained from multiple reads of 
the cell via the use of different sets of read reference voltages 
[9], [94], [95]. Soft information is typically represented by 
the log likelihood ratio (LLR), i.e., the probability of a cer-
tain bit being 0, i.e.,  P(x = 0|  V th   ) , over the probability of 
the bit being 1, i.e.,  P(x = 1|  V th   ) , given a certain threshold 
voltage range (  V th   ) bounded by two threshold voltage values 
(i.e., the maximum and the minimum voltage of the thresh-
old voltage range) [11], [73]

  LLR = log   
P(x = 0|  V th   )

 ___________ 
P(x = 1|  V th   )

   .  (10)

Every additional level of soft decoding (i.e., the use of 
a new set of read reference voltages, which we call   V  ref  

X    for 
level  X ) increases the strength of the error correction, as the 
level adds new information about the cell (as opposed to 
hard decoding, where a new decoding step simply replaces 
prior information about the cell). The new read refer-
ence voltages, unlike the ones used for hard decoding, are 
optimized such that the amount of useful information (or 
mutual information) provided to the LDPC decoder is maxi-
mized [73]. Thus, the use of soft decoding reduces the fre-
quency at which superpage-level parity needs to be invoked.

Fig. 31 illustrates the read reference voltages used during 
the first three levels of LDPC soft decoding. At each level, a 
new read reference voltage is applied, which divides an exist-
ing threshold voltage range into two ranges. Based on the bit 
values read using the various read reference voltages, the SSD 
controller bins each cell into a certain   V th    range, and sends 
the bin categorization of all the cells to the LDPC decoder. 
For each cell, the decoder applies an LLR value, precomputed 
by the SSD manufacturer, which corresponds to the cell’s bin 
and decodes the data. For example, as shown in the bottom 
of Fig. 31, the three read reference voltages in Level 3 soft 
decoding form four threshold voltage ranges (i.e., R0–R3). 

Fig. 30. (a) Example error correction flow using BCH codes and 
LDPC codes. (b) The corresponding average latency and codeword 
failure rate for each LDPC stage.

Fig. 31. First three levels of LDPC soft decoding, showing the   V ref    
value added at each level, and the resulting threshold voltage 
ranges (R0-R3) used for flash cell categorization.
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Each of these ranges corresponds to a different LLR value 
(i.e., LLR     3  R0   to LLR     3  R3  , where LLR     i  

Rj   is the LLR value for range  
Rj  in level  i ). Compared with Level 1 soft decoding (shown 
at the top of Fig. 31), which only has two LLR values, Level 
3 soft decoding provides more accurate information to the 
decoder, and thus has stronger error correction capability.

2) Computing LLR Values: There are several alternatives 
for how to compute the LLR values. A common approach for 
LLR computation is to treat a flash cell as a communication 
channel, where the channel takes an input program signal 
(i.e., the target threshold voltage for the cell) and outputs 
an observed signal (i.e., the current threshold voltage of the 
cell) [33]. The observed signal differs from the input signal 
due to the various types of NAND flash memory errors. The 
communication channel model allows us to break down 
the threshold voltage of a cell into two components: 1) the 
expected signal; and 2) the additive signal noise due to 
errors. By enabling the modeling of these two components 
separately, the communication channel model allows us to 
estimate the current threshold voltage distribution of each 
state [33]. The threshold voltage distributions can be used to 
predict how likely a cell within a certain voltage region is to 
belong to a particular voltage state.

One popular variant of the communication channel 
model assumes that the threshold voltage distribution of 
each state can be modeled as a Gaussian distribution [33]. 
If we use the mean observed threshold voltage of each state 
(denoted as  μ ) to represent the signal, we find that the P/E 
cycling noise (i.e., the shift in the distribution of threshold 
voltages due to the accumulation of charge from repeated 
programming operations; see Section IV-A) can be mod-
eled as additive white Gaussian noise (AWGN) [33], which 
is represented by the standard deviation of the distribution 
(denoted as  σ ). The closed-form AWGN-based model can be 
used to determine the LLR value for a cell with threshold 
voltage  y , as follows:

  LLR (y)  =   
 μ  1  

2  −  μ  0  2 
 _____ 

2  σ   2 
   +   

y ( μ  0   −  μ  1  ) 
 _______ 

 σ   2 
    (11)

where   μ  0    and   μ  1    are the mean threshold voltages for the dis-
tributions of the threshold voltage states for bit value 0 and 
bit value 1, respectively, and  σ  is the standard deviation of 
both distributions (assuming that the standard deviation 
of each threshold voltage state distribution is equal). Since 
LDPC soft decoding uses threshold voltage ranges to catego-
rize a flash cell, we can substitute   μ  Rj   , the mean threshold 
voltage of the threshold voltage range  Rj , in place of  y  in (11).

The AWGN-based LLR model in (11) provides only an 
estimate of the LLR, because 1) the actual threshold voltage 
distributions observed in NAND flash memory are not per-
fectly Gaussian in nature [33], [42]; 2) the controller uses 
the mean voltage of the threshold voltage range to approxi-
mate the actual threshold voltage of a cell; and 3) the stand-
ard deviations of each threshold voltage state distribution 
are not perfectly equal (see Tables 4–6 in the Appendix). 

A number of methods have been proposed to improve 
upon the AWGN-based LLR estimate by: 1) using nonlin-
ear transformations to convert the AWGN-based LLR into a 
more accurate LLR value [188]; 2) scaling and rounding the 
AWGN-based LLR to compensate for the estimation error 
[189]; 3) initially using the AWGN-based LLR to read the 
data, and, if the read fails, using the ECC information from 
the failed read attempt to optimize the LLR and to perform 
the read again with the optimized LLR [190]; and 4) using 
online and offline training to empirically determine the 
LLR values under a wide range of conditions (e.g., P/E cycle 
count, retention time, read disturb count) [191]. The SSD 
controller can either compute the LLR values at runtime, or 
statically store precomputed LLR values in a table.

3) Determining the Number of Soft Decoding Levels: If the 
final level of soft decoding, i.e., level  N  in Fig. 30(a), fails, 
the controller attempts to read the data using superpage-
level parity (Section II-C). The number of levels used for 
soft decoding depends on the improved reliability that each 
additional level provides, taking into account the latency of 
performing additional decoding. Fig. 30(b) shows a rough 
estimation of the average latency and the codeword failure 
rate for each stage. There is a tradeoff between the num-
ber of levels employed for soft decoding and the expected 
read latency. For a smaller number of levels, the additional 
reliability can be worth the latency penalty. For example, 
while a five-level soft decoding step requires up to 480  μ s, it 
effectively reduces the codeword failure rate by five orders 
of magnitude. This not only improves overall reliability, 
but also reduces the frequency of triggering expensive 
superpage-level parity recovery, which can take around 
10 ms [65]. However, manufacturers limit the number of 
levels, as the benefit of employing an additional soft decod-
ing level (which requires more read operations) becomes 
smaller due to diminishing returns in the number of addi-
tional errors corrected.

C. BCH and LDPC Error Correction Strength

BCH and LDPC codes provide different strengths of 
error correction. While LDPC codes can offer a stronger 
error correction capability, soft LDPC decoding can lead 
to a greater latency for error correction. Fig. 32 compares 
the error correction strength of BCH codes, hard LDPC 
codes, and soft LDPC codes [113]. The x-axis shows the raw 
bit error rate (RBER) of the data being corrected, and the 
y-axis shows the uncorrectable bit error rate (UBER), or the 
error rate after correction, once the error correction code 
has been applied. The UBER is defined as the ECC code-
word (see Section II-C) failure rate divided by the codeword 
length [110]. To ensure a fair comparison, we choose a simi-
lar codeword length for both BCH and LDPC codes, and use 
a similar coding rate (0.935 for BCH, and 0.936 for LDPC) 
[113]. We make two observations from Fig. 32.
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First, we observe that the error correction strength of 
the hard LDPC code is similar to that of the BCH codes. 
Thus, on its own, hard LDPC does not provide a signifi-
cant advantage over BCH codes, as it provides an equiva-
lent degree of error correction with similar latency (i.e., 
one read operation). Second, we observe that soft LDPC 
decoding provides a significant advantage in error correc-
tion capability. Contemporary SSD manufacturers target a 
UBER of   10   −16   [110]. The example BCH code with a cod-
ing rate of 0.935 can successfully correct data with an RBER 
of  1.0 ×  10   −3   while remaining within the target UBER. The 
example LDPC code with a coding rate of 0.936 is more 
successful with soft decoding, and can correct data with an 
RBER as high as  5.0 ×  10   −3   while remaining within the tar-
get UBER, based on the error rate extrapolation shown in 
Fig. 32. While soft LDPC can tolerate up to five times the 
raw bit errors as BCH, this comes at a cost of latency (not 
shown on the graph), as soft LDPC can require several addi-
tional read operations after hard LDPC decoding fails, while 
BCH requires only the original read.

To understand the benefit of LDPC codes over BCH 
codes, we need to consider the combined effect of hard 
LDPC decoding and soft LDPC decoding. As discussed in 
Section VI-B, soft LDPC decoding is invoked only when hard 
LDPC decoding fails. To balance error correction strength 
with read performance, SSD manufacturers can require that 
the hard LDPC failure rate cannot exceed a certain thresh-
old, and that the overall read latency (which includes the 
error correction time) cannot exceed a certain target [65], 
[113]. For example, to limit the impact of error correction 
on read performance, a manufacturer can require 99.99% of 
the error correction operations to be completed after a sin-
gle read. To meet our example requirement, the hard LDPC 
failure rate should not be greater than   10   −4   (i.e., 99.99%), 
which corresponds to an RBER of  2.0 ×  10   −3   and a UBER 
of   10   −8   (shown as Soft LDPC Trigger Point in Fig. 32). For 
only the data that contains one or more failed codewords, 
soft LDPC is invoked (i.e., soft LDPC is invoked only 0.01% 
of the time). For our example LDPC code with a coding 
rate of 0.936, soft LDPC decoding is able to correct these 

codewords: for an RBER of  2.0 ×  10   −3  , using soft LDPC 
results in a UBER well below   10   −16  , as shown in Fig. 32.

To gauge the combined effectiveness of hard and soft 
LDPC codes, we calculate the overhead of using the com-
bined LDPC decoding over using BCH decoding. If 0.01% 
of the codeword corrections fail, we can assume that in 
the worst case, each failed codeword resides in a different 
flash page. As the failure of a single codeword in a flash 
page causes soft LDPC to be invoked for the entire flash 
page, our assumption maximizes the number of flash pages 
that require soft LDPC decoding. For an SSD with four 
codewords per flash page, our assumption results in up 
to 0.04% of the data reads requiring soft LDPC decoding. 
Assuming that the example soft LDPC decoding requires 
seven additional reads, this corresponds to 0.28% more 
reads when using combined hard and soft LDPC over BCH 
codes. Thus, with a 0.28% overhead in the number of reads 
performed, the combined hard and soft LDPC decoding 
provides twice the error correction strength of BCH codes 
(shown as Improvement in RBER in Fig. 32).

In our example, the lifetime of an SSD is limited by 
both the UBER and whether more than 0.01% of the code-
word corrections invoke soft LDPC, to ensure that the 
overhead of error correction does not significantly increase 
the read latency [113]. In this case, when the lifetime 
of the SSD ends, we can still read out the data correctly 
from the SSD, albeit at an increased read latency. This is 
because even though we capped the SSD lifetime to an 
RBER of  2.0 ×  10   −3   in our example shown in Fig. 32, soft 
LDPC is able to correct data with an RBER as high as  
5.0 ×  10   −3   while still maintaining an acceptable UBER  
(  10   −16  ) based on the error rate extrapolation shown. 
Thus, LDPC codes have a margin, which we call the reli-
ability margin and show in Fig. 32. This reliability margin 
enables us to trade off lifetime with read latency.

We conclude that with a combination of hard and soft 
LDPC decoding, an SSD can offer a significant improvement 
in error correction strength over using BCH codes.

D. SSD Data Recovery

When the number of errors in data exceeds the ECC 
correction capability and the error correction techniques in 
Sections VI-A and VI-B are unable to correct the read data, 
then data loss can occur. At this point, the SSD is considered 
to have reached the end of its lifetime. In order to avoid such 
data loss and recover (or, rescue) the data from the SSD, we 
can harness our understanding of data retention and read 
disturb behavior. The SSD controller can employ two con-
ceptually similar mechanisms, Retention Failure Recovery 
(RFR) [37] and Read Disturb Recovery (RDR) [38], to undo 
errors that were introduced into the data as a result of data 
retention and read disturb, respectively. The key idea of 
both of these mechanisms is to exploit the wide variation of 
different flash cells in their susceptibility to data retention 

Fig. 32. Raw bit error rate versus uncorrectable bit error rate for 
BCH codes, hard LDPC codes, and soft LDPC codes.
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loss and read disturbance effects, respectively, in order to 
correct some of the errors without the assistance of ECC so 
that the remaining error count falls within the ECC error 
correction capability.

When a flash page read fails (i.e., uncorrectable errors 
exist), RFR and RDR record the current threshold voltages 
of each cell in the page using the read-retry mechanism (see 
Section V-D), and identify the cells that are susceptible to 
generating errors due to retention and read disturb (i.e., 
cells that lie at the tails of the threshold voltage distribu-
tions of each state, where the distributions overlap with 
each other), respectively. We observe that some flash cells 
are more likely to be affected by retention leakage and read 
disturb than others, as a result of process variation [37], 
[38]. We call these cells retention/read disturb prone, while 
cells that are less likely to be affected are called retention/
read disturb resistant. RFR and RDR classify the susceptible 
cells as retention/read disturb prone or resistant by induc-
ing even more retention and read disturb on the failed flash 
page, and then recording the new threshold voltages of the 
susceptible cells. We classify the susceptible cells by observ-
ing the magnitude of the threshold voltage shift due to the 
additional retention/read disturb induction.

Fig. 33 shows how the threshold voltage of a retention-
prone cell (i.e., a fast-leaking cell, labeled P in the figure) 
decreases over time (i.e., the cell shifts to the left) due to 
retention leakage, while the threshold voltage of a reten-
tion-resistant cell (i.e., a slow-leaking cell, labeled R in the 
figure) does not change significantly over time. Retention 
Failure Recovery (RFR) uses this classification of reten-
tion-prone versus retention-resistant cells to correct the 
data from the failed page without the assistance of ECC. 
Without loss of generality, let us assume that we are study-
ing susceptible cells near the intersection of two threshold 
voltage distributions X and Y, where Y contains higher volt-
ages than X. Fig. 33 highlights the region of cells consid-
ered susceptible by RFR using a box, labeled Susceptible. 
A susceptible cell within the box that is retention prone 
likely belongs to distribution Y, as a retention-prone cell 
shifts rapidly to a lower voltage (see the circled cell labeled 
P within the susceptible region in the figure). A retention-
resistant cell in the same susceptible region likely belongs 

to distribution X (see the boxed cell labeled R within the 
susceptible region in the figure).

Similarly, Read Disturb Recovery (RDR) uses the clas-
sification of read disturb prone versus read disturb resistant 
cells to correct data. For RDR, disturb-prone cells shift more 
rapidly to higher voltages, and are thus likely to belong to 
distribution X, while disturb-resistant cells shift little and 
are thus likely to belong to distribution Y. Both RFR and 
RDR correct the bit errors for the susceptible cells based on 
such expected behavior, reducing the number of errors that 
ECC needs to correct.

RFR and RDR are highly effective at reducing the error 
rate of failed pages, reducing the raw bit error rate by 50% 
and 36%, respectively, as shown in our prior works [37], 
[38], where more detailed information and analyses can  
be found.

V II.  EMERGING R ELI A BILIT Y ISSU ES 
FOR 3 -D NA ND  FL A SH

Recently, manufacturers have begun to produce SSDs that 
contain three-dimensional (3-D) NAND flash memory, where 
multiple layers are vertically stacked to increase the density 
and to improve the scalability of the memory [79]. Instead of 
using floating gate transistors, which store charge on a conduc-
tor, most 3-D NAND flash memories currently use charge trap 
transistors, which use insulating material to store charge. While 
the high-level behavior of charge trap transistors is similar to 
FG transistors, charge trap transistors do introduce some dif-
ferences in terms of reliability for 3-D NAND flash (as opposed 
to 2-D planar NAND flash, which we have examined through-
out this article so far). For example, the tunneling oxide in 
charge trap transistors is less susceptible to breakdown than 
the oxide in floating gate transistors during high-voltage opera-
tion, increasing the endurance of the transistor [79]. Charge 
trap transistors are, however, more susceptible to data reten-
tion leakage. Due to the possibility that charge can now escape 
(i.e., migrate) across the z-dimension in addition to through the 
tunnel oxide, 3-D NAND flash cells tend to leak more rapidly, 
especially soon after being programmed [79].

Another, albeit short-term, change with 3-D NAND 
flash is the increase in process technology feature size. 
Contemporary 3-D NAND flash can contain 48–64 layers, 
allowing manufacturers to use larger feature sizes (e.g., 
50–54 nm) than commonly used feature sizes in planar 
flash (e.g., 15–19 nm) while still increasing memory den-
sity [79]. As discussed in Section III, many of the errors 
observed in 2-D planar NAND flash are exacerbated as 
a result of significant process scaling. For example, while 
read disturb is a prominent source of errors at small feature 
sizes (e.g., 20–24 nm), its effects are small at larger feature 
sizes [38]. Likewise, cell-to-cell program interference is 
not a significant issue at larger process technologies, lead-
ing manufacturers to revert to one-shot programming (see 

Fig. 33. Some retention-prone (P) and retention-resistant (R) cells 
are incorrectly read after charge leakage due to retention time. 
RFR identifies and corrects the incorrectly read cells based on their 
leakage behavior.
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Section III-D) for 3-D NAND flash [80]. As the transistors 
are larger in the current 3-D NAND flash generations, the 
endurance (i.e., the maximum P/E cycle count) of the flash 
cells has increased as well, by over an order of magnitude 
[80]. However, rigorous studies that examine error charac-
teristics of and error mitigation techniques for 3-D NAND 
flash memories are yet to be published.

While these changes with 3-D NAND flash are likely to 
reduce reliability issues due to program interference and 
read disturb as compared to planar NAND flash, the other 
errors outlined in Section III are likely to remain prevalent 
in 3-D NAND flash. In fact, retention errors are likely to 
become exacerbated. As such, all described techniques cov-
ered in this paper still apply to 3-D NAND flash, though their 
relative benefits are yet to be evaluated. With its increased 
susceptibility to data retention leakage, advanced retention 
mitigation and recovery techniques, such as those described 
in Sections V-C and V-E, should be even more actively 
developed and investigated for 3-D NAND flash memory. 
Furthermore, 3-D NAND flash memory is expected to scale 
down to smaller process technologies in the coming years, 
reaching the feature sizes of modern planar flash memory, 
and to make use of FG transistors [79], just like modern pla-
nar flash memory. As such, with technology scaling of 3-D 
NAND flash memory, we can expect that all of the reliability 
issues highlighted in this paper will be exhibited in SSDs 
that utilize 3-D NAND flash memory.

V III.  SIMIL A R ER ROR S IN OTHER 
MEMORY TECHNOLOGIES

As we discussed in Section IV, there are five major sources 
of errors in flash-memory-based SSDs. Many of these error 
sources can also be found in other types of memory and 
storage technologies. In this section, we take a brief look 
at the major reliability issues that exist within DRAM and 
in emerging nonvolatile memories. In particular, we focus 
on DRAM in our discussion, as modern SSD controllers 
have access to dedicated DRAM of considerable capacity 
(e.g., 1 GB for every 1 TB of SSD capacity), which exists 
within the SSD package (see Section II-C). Major sources 
of errors in DRAM include data retention, cell-to-cell 
interference, and read disturb. There is a wide body of 
work on mitigation mechanisms for the errors we describe 
in this section, but we explicitly discuss only a select  
number of them here.

1) Data Retention Errors in DRAM: DRAM uses the charge 
within a capacitor to represent one bit of data. Much like the 
floating gate within NAND flash memory, charge leaks from 
the DRAM capacitor over time, leading to data retention 
issues. Charge leakage in DRAM, if left unmitigated, can lead 
to much more rapid data loss than the leakage observed in a 
NAND flash cell. While leakage from a NAND flash cell typi-
cally leads to data loss after several days to years of retention 

time (see Section IV-D), leakage from a DRAM cell leads to 
data loss after a retention time on the order of milliseconds to 
seconds [104]. Due to the rapid charge leakage from DRAM 
cells, a DRAM controller periodically refreshes all DRAM cells 
in place [66], [69], [104], [123], [125], [126], [147] (similar to 
the techniques discussed in Section V-C, but at a much smaller 
time scale). DRAM standards require a DRAM cell to be 
refreshed once every 64 ms [123]. As the density of DRAM con-
tinues to increase over successive product generations (e.g., by  
 128x  between 1999 and 2017 [120], [174]), the performance 
and energy overheads required to refresh an entire DRAM 
module have grown significantly [66].

To combat the growing performance and energy over-
heads of refresh, two classes of techniques have been 
developed. The first class of techniques reduce the fre-
quency of refresh operations without sacrificing the reli-
ability of data stored in DRAM (e.g., [66], [125], [126], 
[145]–[147], and [149]). To reduce the frequency of 
refresh operations, a number of works take advantage of 
the fact that the vast majority of DRAM cells can retain 
data without loss for much longer than 64 ms, as various 
experimental studies of real DRAM chips (e.g., [66], [119], 
[125], [126], [147], and [148]) demonstrate. The second 
class of techniques reduce the interference caused by 
refresh requests on demand requests (e.g., [69], [114], and 
[163]). These works either change the scheduling order of 
refresh requests [69], [114], [163] or slightly modify the 
DRAM architecture to enable the servicing of refresh and 
demand requests in parallel [69]. More findings on the 
nature of DRAM data retention and associated errors, as 
well as relevant experimental data from modern DRAM 
chips, can be found in our prior works [66], [69], [104], 
[119], [125]–[127], [147], [157], [174], [206].

2) Cell-to-Cell Interference Errors in DRAM: Another simi-
larity between the capacitive DRAM cell and the floating gate 
cell in NAND flash memory is that they are both vulnerable 
to cell-to-cell interference. In DRAM, one important way 
in which cell-to-cell interference exhibits itself is the data-
dependent retention behavior, where the retention time of 
a DRAM cell is dependent on the values written to nearby 
DRAM cells [104], [126], [127], [147], [149]. This phenom-
enon is called data pattern dependence (DPD) [104]. Data pat-
tern dependence in DRAM is similar to the data-dependent 
nature of program interference that exists in NAND flash 
memory (see Section IV-C). Within DRAM, data dependence 
occurs as a result of parasitic capacitance coupling (between 
DRAM cells). Due to this coupling, the amount of charge 
stored in one cell’s capacitor can inadvertently affect the 
amount of charge stored in an adjacent cell’s capacitor [104], 
[126], [127], [147], [149]. As DRAM cells become smaller with 
technology scaling, cell-to-cell interference worsens because 
parasitic capacitance coupling between cells increases [104], 
[126]. More findings on cell-to-cell interference and the 
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data-dependent nature of cell retention times in DRAM, 
along with experimental data obtained from modern DRAM 
chips, can be found in our prior works [104], [125]–[127], 
[147], [149], [174], [206].

3) Read Disturb Errors in DRAM: Commodity DRAM 
chips that are sold and used in the field today exhibit read 
disturb errors [116], also called RowHammer-induced errors 
[131], which are conceptually similar to the read disturb 
errors found in NAND flash memory (see Section IV-E). 
Repeatedly accessing the same row in DRAM can cause 
bit flips in data stored in adjacent DRAM rows. In order to 
access data within DRAM, the row of cells corresponding 
to the requested address must be activated (i.e., opened for 
read and write operations). This row must be precharged 
(i.e., closed) when another row in the same DRAM bank 
needs to be activated. Through experimental studies on a 
large number of real DRAM chips, we show that when a 
DRAM row is activated and precharged repeatedly (i.e., 
hammered) enough times within a DRAM refresh interval, 
one or more bits in physically-adjacent DRAM rows can be 
flipped to the wrong value [116]. This DRAM failure mode 
affects more than 80% of the DRAM chips we tested [116]. 
As indicated above, this read disturb error mechanism in 
DRAM is popularly called RowHammer [131].

Various recent works show that RowHammer can be 
maliciously exploited by user-level software programs to 
1) induce errors in existing DRAM modules [116], [131] 
and 2) launch attacks to compromise the security of vari-
ous systems [115], [131], [132], [135]–[138], [158], [179]. 
For example, by exploiting the RowHammer read disturb 
mechanism, a user-level program can gain kernel-level 
privileges on real laptop systems [115], [132], take over a 
server vulnerable to RowHammer [135], take over a victim 
virtual machine running on the same system [136], and 
take over a mobile device [138]. Thus, the RowHammer 
read disturb mechanism is a prime (and perhaps the 
first) example of how a circuit-level failure mechanism in 
DRAM can cause a practical and widespread system secu-
rity vulnerability.3 We believe similar (yet more difficult to 
exploit) vulnerabilities exist in MLC NAND flash memory 
as well, as described in our recent work [40].

The RowHammer effect in DRAM worsens as the manu-
facturing process scales down to smaller node sizes [116], 
[131]. More findings on RowHammer, along with extensive 
experimental data from real DRAM devices, can be found in 
our prior works [116], [131], [176].

4) Large-Scale DRAM Error Studies: Like flash memory, 
DRAM is employed in a wide range of computing systems, 
at scale. Thus, there is a similar need to study the aggregate 
behavior of errors observed in a large number of DRAM 

chips deployed in the field. Akin to the large-scale flash 
memory SSD reliability studies discussed in Section IV-F, a 
number of experimental studies characterize the reliability 
of DRAM at large scale in the field (e.g., [117], [118], [124], 
[150], and [151]). Two notable results from these studies 
are that 1) unlike SSDs, DRAM does not show any clearly 
discernable trend where higher utilization and age lead to 
a greater raw bit error rate [117]; and 2) the increase in the 
density of DRAM chips with technology scaling leads to 
higher error rates [117].

5) Latency-Related Errors in DRAM: Other experimental 
studies examine the tradeoff between DRAM reliability and 
latency [119], [120], [128], [152], [157], [174], [175], [178]. 
These works perform extensive experimental studies on 
real DRAM chips to identify the effect of 1) temperature, 
2) supply voltage, and 3) manufacturing process variation 
that exists in DRAM on the latency and reliability charac-
teristics of different DRAM cells and chips. The tempera-
ture, supply voltage, and manufacturing process variation 
all dictate the amount of time that each cell needs to safely 
complete its operations. Our works examine how one can 
reliably exploit 1) latency variation across different oper-
ating temperatures and across different DRAM modules 
to reduce the access latency of each module [119]; 2) the 
relation between supply voltage and latency variation to 
reduce the amount of system energy consumed [178]; and 
3) manufacturing process induced latency variation [120] 
and design-induced latency variation [128] across the cells 
within a single DRAM chip to reduce access latency to dif-
ferent parts of the chip. One can further reduce latency by 
sacrificing some amount of reliability and performing error 
correction to fix the resulting errors [128]. More informa-
tion about the errors caused by reduced latency operation 
in DRAM chips and the tradeoff between reliability and 
latency can be found in our prior works [119], [120], [128], 
[130], [157], [174], [175], [178].

6) Error Correction in DRAM: In order to protect the data 
stored within DRAM from various types of errors, some 
(but not all) DRAM modules employ ECC [130]. The ECC 
employed within DRAM is much weaker than the ECC 
employed in SSDs (see Section VI) for various reasons. First, 
DRAM has a much lower access latency, and error correc-
tion mechanisms should be designed to ensure that DRAM 
access latency does not increase significantly. Second, the 
error rate of a DRAM chip tends to be lower than that of a 
flash memory chip. Third, the granularity of access is much 
smaller in a DRAM chip than in a flash memory chip, and 
hence sophisticated error correction can come at a high 
cost. The most common ECC algorithm used in commodity 
DRAM modules is SECDED (single error correction, double 
error detection) [130]. Another ECC algorithm available for 
some commodity DRAM modules is Chipkill, which can tol-
erate the failure of an entire DRAM chip within a module 

3Note that various solutions to RowHammer exist [116], [131], [176], 
but we do not discuss them here.



Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1698 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

[139]. For both SECDED and Chipkill, the ECC information 
is stored on one or more extra chips within the DRAM mod-
ule, and, on a read request, this information is sent along-
side the data to the memory controller, which performs the 
error detection and correction algorithm.

As DRAM scales to smaller technology nodes, its error rate 
continues to increase [111], [112], [116], [117], [131] and effects 
like read disturb [116], cell-to-cell interference [104], [126], 
[127], [147], [149], [206], and variable retention time [104], 
[125], [126], [147] become more severe [111], [112], [116], [131]. 
As a result, there is an increasing need for 1) employing ECC 
algorithms in all DRAM chips/modules; 2) developing more 
sophisticated and efficient ECC algorithms for DRAM chips/
modules; and 3) developing error-specific mechanisms for error 
correction. To this end, recent work follows various directions. 
First, in-DRAM ECC, where correction is performed within the 
DRAM module itself (as opposed to in the controller), is pro-
posed [153]. One work shows how exposing this in-DRAM ECC 
information to the memory controller can provide Chipkill-like 
error protection at much lower overhead than the traditional 
Chipkill mechanism [144]. Second, various works explore and 
develop stronger ECC algorithms for DRAM (e.g., [140], [141], 
and [154]), and explore how to make ECC more efficient based 
on the current DRAM error rate (e.g., [139], [142], [143], and 
[164]). Third, recent work shows how the cost of ECC protection 
can be reduced by 1) exploiting heterogeneous reliability memory 
[130], where different portions of DRAM use different strengths 
of error protection based on the error tolerance of different appli-
cations and different types of data [130], [180], and 2) using the 
additional DRAM capacity that is otherwise used for ECC to 
improve system performance when reliability is not as important 
for the given application and/or data [207].

Many of these works that propose error mitigation 
mechanisms do not distinguish between the characteristics 
of different types of errors. We believe that in addition to 
providing sophisticated and efficient ECC mechanisms in 
DRAM, there is also significant value in and opportunity 
for exploring specialized error mitigation mechanisms that 
are customized for different error types, again, just as it is 
done for flash memory (as we discussed in Section V). One 
such example of a specialized error mitigation mechanism 
is targeted to fix the RowHammer read disturb mechanism, 
and is called Probabilistic Adjacent Row Activation (PARA) 
[116], [131]. The key idea of PARA is to refresh the rows that 
are physically adjacent to an activated row, with a very low 
probability. PARA is shown to be very effective in fixing the 
RowHammer problem at no storage cost and at very low 
performance overhead [116].

7) Errors in Emerging Nonvolatile Memory Technologies: 
DRAM operations are several orders of magnitude faster than 
SSD operations, but DRAM has two major disadvantages. First, 
DRAM offers orders of magnitude less storage density than 
NAND-flash-memory-based SSDs. Second, DRAM is vola-
tile (i.e., the stored data is lost on a power outage). Emerging 

nonvolatile memories, such as phase-change memory (PCM) 
[121], [129], [134], [155], [159], [160], [208], spin-transfer torque 
magnetic RAM (STT-RAM or STT-MRAM) [122], [133], metal-
oxide resistive RAM (RRAM) [156], and memristors [181], [182], 
are expected to bridge the gap between DRAM and SSDs, pro-
viding DRAM-like access latency and energy, and at the same 
time SSD-like large capacity and nonvolatility (and hence SSD-
like data persistence). PCM-based devices are expected to have 
a limited lifetime, as PCM can only endure a certain number 
of writes [121], [129], [134], similar to the P/E cycling errors in 
NAND-flash-memory-based SSDs (though PCM’s write endur-
ance is higher than that of SSDs). PCM suffers from resistance 
drift [134], where the resistance used to represent the value 
shifts higher over time (and eventually introduces a bit error), 
similar to how charge leakage in NAND flash memory and 
DRAM lead to retention errors over time. STT-RAM predomi-
nantly suffers from retention failures, where the magnetic value 
stored for a single bit can flip over time, and read disturb (differ-
ent from the read disturb in DRAM and flash memory), where 
reading a bit in STT-RAM can inadvertently induce a write to 
that same bit [122]. Due to the nascent nature of emerging 
nonvolatile memory technologies and the lack of availability of 
large-capacity devices built with them, extensive and depend-
able experimental studies have yet to be conducted on the reli-
ability of real PCM, STT-RAM, RRAM, and memristor chips. 
However, we believe that similar error mechanisms to those we 
discussed in this paper for flash memory and DRAM are likely 
to be prevalent in emerging technologies as well, albeit with 
different underlying mechanisms and error rates.

I X .  CONCLUSION

We provide a survey of the fundamentals of and recent 
research in NAND-flash-memory-based SSD reliability. As 
the underlying NAND flash memory within SSDs scales to 
increase storage density, we find that the rate at which raw bit 
errors occur in the memory increases significantly, which in 
turn reduces the lifetime of the SSD. We describe the preva-
lent error mechanisms that affect NAND flash memory, and 
examine how they behave in modern NAND flash memory 
chips. To compensate for the increased raw bit error rate with 
technology scaling, a wide range of error mitigation and data 
recovery mechanisms have been proposed. These techniques 
effectively undo some of the SSD lifetime reductions that 
occur due to flash memory scaling. We describe the state-of-
the-art techniques for error mitigation and data recovery, and 
discuss their benefits. Even though our focus is on MLC and 
TLC NAND flash memories, for which we provide data from 
real flash chips, we believe that these techniques will be appli-
cable to emerging 3-D NAND flash memory technology as 
well, especially when the process technology scales to smaller 
nodes. Thus, we hope the tutorial presented in this work on 
fundamentals and recent research not only enables practi-
tioners to get acquainted with flash memory errors and how 
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they are mitigated, but also helps inform future directions in 
NAND flash memory and SSD development as well as system 
design using flash memory. We believe future is bright for 
system-level approaches that codesign system and memory 
[111], [112], [131] to enhance overall scaling of platforms, and 
we hope that the examples of this approach presented in this 
tutorial inspire researchers and developers to enhance future 
computing platforms via such system-memory codesign.

A PPENDI X

TLC Threshold Voltage Distribution Data
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