
0018-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1666 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

ABSTRACT | NAND flash memory is ubiquitous in everyday life

today because its capacity has continuously increased and cost

has continuously decreased over decades. This positive growth

is a result of two key trends: 1) effective process technology

scaling; and 2) multi-level (e.g., MLC, TLC) cell data coding.

Unfortunately, the reliability of raw data stored in flash memory

has also continued to become more difficult to ensure, because

these two trends lead to 1) fewer electrons in the flash memory

cell floating gate to represent the data; and 2) larger cell-to-

cell interference and disturbance effects. Without mitigation,

worsening reliability can reduce the lifetime of NAND flash

memory. As a result, flash memory controllers in solid-state drives

(SSDs) have become much more sophisticated: they incorporate

many effective techniques to ensure the correct interpretation of

noisy data stored in flash memory cells. In this article, we review

recent advances in SSD error characterization, mitigation, and

data recovery techniques for reliability and lifetime improvement.

We provide rigorous experimental data from state-of-the-art MLC

and TLC NAND flash devices on various types of flash memory

errors, to motivate the need for such techniques. Based on the

understanding developed by the experimental characterization,

we describe several mitigation and recovery techniques, including

Digital Object Identifier: 10.1109/JPROC.2017.2713127

1) cell-to-cell interference mitigation; 2) optimal multi-level cell

sensing; 3) error correction using state-of-the-art algorithms

and methods; and 4) data recovery when error correction fails.

We quantify the reliability improvement provided by each of

these techniques. Looking forward, we briefly discuss how flash

memory and these techniques could evolve into the future.

KEYWORDS | Data storage systems; error recovery; fault

tolerance; flash memory; reliability; solid-state drives

I . IN TRODUCTION

Solid-state drives (SSDs) are widely used in computer
systems today as a primary method of data storage. In com-
parison with magnetic hard drives, the previously domi-
nant choice for storage, SSDs deliver significantly higher
read and write performance, with orders of magnitude of
improvement in random-access input/output (I/O) opera-
tions, and are resilient to physical shock, while requiring a
smaller form factor and consuming less static power. SSD
capacity (i.e., storage density) and cost-per-bit have been
improving steadily in the past two decades, which has led
to the widespread adoption of SSD-based data storage in
most computing systems, from mobile consumer devices
[51], [96] to enterprise data centers [48]–[50], [83], [97].

The first major driver for the improved SSD capac-
ity and cost-per-bit has been manufacturing process scaling,
which has increased the number of flash memory cells
within a fixed area. Internally, commercial SSDs are made
up of NAND flash memory chips, which provide nonvolatile
memory storage (i.e., the data stored in NAND flash is

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives
This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s
reliability and lifetime.

By Yu CA i, SAugAtA ghoSe, er iCh F. hA r AtSCh, Yi x iN Luo, A ND oN u r Mu t Lu

Manuscript received December 19, 2016; revised March 21, 2017; accepted April 20,
2017. Date of current version August 18, 2017. This work is partially supported by the
CMU Data Storage Systems Center, the Intel Science and Technology Center, the NSF,
and generous donations from various industrial partners, especially Intel and
Seagate. (Corresponding author: Onur Mutlu.)
Y. Cai, S. Ghose, and Y. Luo are with Carnegie Mellon University, Pittsburgh,
PA 15213 USA.
E. F. Haratsch is with Seagate Technology, Fremont, CA 94538 USA.
O. Mutlu is with ETH Zurich, 8092 Zurich, Switzerland (e-mail: omutlu@gmail.com).

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1667

correctly retained even when the power is disconnected) using
floating gate (FG) transistors [46], [47], [171] or charge trap tran-
sistors [105], [172]. In this paper, we mainly focus on floating
gate transistors, since they are the most common transistor
used in today’s flash memories. A floating gate transistor con-
stitutes a flash memory cell. It can encode one or more bits of
digital data, which is represented by the level of charge stored
inside the transistor’s floating gate. The transistor traps charge
within its floating gate, which dictates the threshold voltage level
at which the transistor turns on. The threshold voltage level of
the floating gate is used to determine the value of the digital
data stored inside the transistor. When manufacturing process
scales down to a smaller technology node, the size of each flash
memory cell, and thus the size of the transistor, decreases,
which in turn reduces the amount of charge that can be trapped
within the floating gate. Thus, process scaling increases storage
density by enabling more cells to be placed in a given area, but
it also causes reliability issues, which are the focus of this paper.

The second major driver for improved SSD capacity has
been the use of a single floating gate transistor to represent more
than one bit of digital data. Earlier NAND flash chips stored a
single bit of data in each cell (i.e., a single floating gate transis-
tor), which was referred to as single-level cell (SLC) NAND
flash. Each transistor can be set to a specific threshold voltage
within a fixed range of voltages. SLC NAND flash divided this
fixed range into two voltage windows, where one window rep-
resents the bit value 0 and the other window represents the bit
value 1. Multi-level cell (MLC) NAND flash was commercial-
ized in the last two decades, where the same voltage range is
instead divided into four voltage windows that represent each
possible 2-bit value (00, 01, 10, and 11). Each voltage window
in MLC NAND flash is therefore much smaller than a voltage
window in SLC NAND flash. This makes it more difficult to
identify the value stored in a cell. More recently, triple-level
cell (TLC) flash has been commercialized [65], [183], which
further divides the range, providing eight voltage windows to
represent a 3-bit value. Quadruple-level cell (QLC) flash, stor-
ing a 4-bit value per cell, is currently being developed [184].
Encoding more bits per cell increases the capacity of the SSD
without increasing the chip size, yet it also decreases reliability
by making it more difficult to correctly store and read the bits.

The two major drivers for the higher capacity, and thus
the ubiquitous commercial success, of flash memory as a stor-
age device, are also major drivers for its reduced reliability
and are the causes of its scaling problems. As the amount of
charge stored in each NAND flash cell decreases, the voltage
for each possible bit value is distributed over a wider voltage
range due to greater process variation, and the margins (i.e.,
the width of the gap between neighboring voltage windows)
provided to ensure the raw reliability of NAND flash chips
have been diminishing, leading to a greater probability of flash
memory errors with newer generations of SSDs. NAND
flash memory errors can be induced by a variety of sources
[32], including flash cell wearout [32], [33], [42], errors
introduced during programming [35], [40], [42], [53], inter-
ference from operations performed on adjacent cells [20],

[26], [27], [35], [36], [38], [55], [62], and data retention
issues due to charge leakage [20], [32], [34], [37], [39].

To compensate for this, SSDs employ sophisticated error-
correcting codes (ECCs) within their controllers. An SSD con-
troller uses the ECC information stored alongside a piece of
data in the NAND flash chip to detect and correct a number
of raw bit errors (i.e., the number of errors experienced before
correction is applied) when the piece of data is read out. The
number of bits that can be corrected for every piece of data is
a fundamental tradeoff in an SSD. A more sophisticated ECC
can tolerate a larger number of raw bit errors, but it also con-
sumes greater area overhead and latency. Error characteriza-
tion studies [20], [32], [33], [42], [53], [62] have found that,
due to NAND flash wearout, the probability of raw bit errors
increases as more program/erase (P/E) cycles (i.e., write accesses,
or writes) are performed to the drive. The raw bit error rate
eventually exceeds the maximum number of errors that can be
corrected by ECC, at which point data loss occurs [37], [44],
[48], [49]. The lifetime of a NAND-flash-memory-based SSD is
determined by the number of P/E cycles that can be performed
successfully while avoiding data loss for a minimum retention
 guarantee (i.e., the required minimum amount of time, after
being written, that the data can still be read out without uncor-
rectable errors).

The decreasing raw reliability of NAND flash memory
chips has drastically impacted the lifetime of commercial
SSDs. For example, older SLC NAND-flash-based SSDs were
able to withstand 150 000 P/E cycles (writes) to each flash
cell, but contemporary 1x-nm (i.e., 15–19 nm) process-based
SSDs consisting of MLC NAND flash can sustain only 3000
P/E cycles [53], [60], [81]. With the raw reliability of a flash
chip dropping so significantly, approaches to mitigating reli-
ability issues in NAND-flash-based SSDs have been the focus
of an important body of research. A number of solutions
have been proposed to increase the lifetime of contemporary
SSDs, ranging from changes to the low-level device behavior
(e.g., [33], [38], [40], and [72]) to making SSD controllers
much more intelligent in dealing with individual flash mem-
ory chips (e.g., [34], [36], [37], [39], [41]–[43], [45], and [65]).
In addition, various mechanisms have been developed to suc-
cessfully recover data in the event of data loss that may occur
during a read operation to the SSD (e.g., [37], [38], and [45]).

In this work, we provide a comprehensive overview of the
state of flash-memory-based SSD reliability, with a focus on
1) fundamental causes of flash memory errors, backed up by
2) quantitative error data collected from real state-of-the-art
flash memory devices, and 3) sophisticated error mitigation
and data recovery techniques developed to tolerate, correct,
and recover from such errors. To this end, we first discuss the
architecture of a state-of-the-art SSD, and describe mechanisms
used in a commercial SSD to reduce the probability of data loss
(Section II). Next, we discuss the low-level behavior of the
underlying NAND flash memory chip in an SSD, to illustrate
fundamental reasons why errors can occur in flash memory
(Section III). We then discuss the root causes of these errors,
quantifying the impact of each error source using experimental

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1668 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

characterization data collected from real NAND flash memory
chips (Section IV). For each of these error sources, we describe
various state-of-the-art mechanisms that mitigate the induced
errors (Section V). We next examine several error recovery
flows to successfully extract data from the SSD in the event of
data loss during a read operation (Section VI). Then, we look to
the future to foreshadow how the reliability of SSDs might be
affected by emerging flash memory technologies (Section VII).
Finally, we briefly examine how other memory technologies
(such as DRAM, which is used prominently in a modern SSD,
and emerging nonvolatile memory) suffer from similar reliabil-
ity issues to SSDs (Section VIII).

II . STATE- OF-THE-A RT SSD
A RCHITECT U R E

In order to understand the root causes of reliability issues
within SSDs, we first provide an overview of the system archi-
tecture of a state-of-the-art SSD. The SSD consists of a group of
NAND flash memories (or chips) and a controller, as shown in
Fig. 1. A host computer communicates with the SSD through a
high-speed host interface (e.g., SAS, SATA, PCIe bus), which
connects to the SSD controller. The controller is then con-
nected to each of the NAND flash chips via memory channels.

A. Flash Memory Organization

Fig. 2 shows an example of how NAND flash memory is
organized within an SSD. The flash memory is spread across
multiple flash chips, where each chip contains one or more
flash dies, which are individual pieces of silicon wafer that
are connected together to the pins of the chip. Contemporary
SSDs typically have 4–16 chips per SSD, and can have as many
as 16 dies per chip. Each chip is connected to one or more
physical memory channels, and these memory channels are
not shared across chips. A flash die operates independently
of other flash dies, and contains between one and four planes.
Each plane contains hundreds to thousands of flash blocks.
Each block is a 2-D array that contains hundreds of rows of
flash cells (typically 256–1024 rows) where the rows store
contiguous pieces of data. Much like banks in a multibank
memory (e.g., DRAM banks [84], [85], [99], [101], [102],

[108], [193]–[196]), the planes can execute flash operations
in parallel, but the planes within a die share a single set of data
and control buses [185]. Hence, an operation can be started in
a different plane in the same die in a pipelined manner, every
cycle. Fig. 2 shows how blocks are organized within chips
across multiple channels. In the rest of this work, without
loss of generality, we assume that a chip contains a single die.

Data in a block is written at the unit of a page, which is
typically between 8 and 16 kB in size in NAND flash memory.
All read and write operations are performed at the granular-
ity of a page. Each block typically contains hundreds of pages.
Blocks in each plane are numbered with an ID that is unique
within the plane, but is shared across multiple planes. Within
the block, each page is numbered in sequence. The control-
ler firmware groups blocks with the same ID number across
multiple chips and planes together into a superblock. Within
each superblock, the pages with the same page number are
considered a superpage. The controller opens one superblock
(i.e., an empty superblock is selected for write operations) at a
time, and typically writes data to the NAND flash memory one
superpage at a time to improve sequential read/write perfor-
mance and make error correction efficient, since some parity
information is kept at superpage granularity (see Section II-C).
Having the ability to write to all of the pages in a superpage
simultaneously, the SSD can fully exploit the internal parallel-
ism offered by multiple planes/chips, which in turn maximizes
write throughput.

B. Memory Channel

Each flash memory channel has its own data and con-
trol connection to the SSD controller, much like a main
memory channel has to the DRAM controller [99], [100],
[102], [108], [197]–[201]. The connection for each channel
is typically an 8- or 16-bit wide bus between the controller
and one of the flash memory chips [185]. Both data and flash
commands can be sent over the bus.

Each channel also contains its own control signal pins
to indicate the type of data or command that is on the bus.
The address latch enable (ALE) pin signals that the control-
ler is sending an address, while the command latch enable
(CLE) pin signals that the controller is sending a flash

Fig. 1. (a) SSD system architecture, showing controller (Ctrl)
and chips. (b) Detailed view of connections between controller
components and chips.

Fig. 2. Flash memory organization.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1669

command. Every rising edge of the write enable (WE) signal
indicates that the flash memory should write the piece of
data currently being sent on the bus by the SSD controller.
Similarly, every rising edge of the read enable (RE) signal
indicates that the flash memory should send the next piece
of data from the flash memory to the SSD controller.

Each flash memory die connected to a memory channel
has its own chip enable (CE) signal, which selects the die
that the controller currently wants to communicate with.
On a channel, the bus broadcasts address, data, and flash
commands to all dies within the channel, but only the die
whose CE signal is active reads the information from the bus
and executes the corresponding operation.

C. SSD Controller

The SSD controller, shown in Fig. 1(b), is responsible for
managing the underlying NAND flash memory, and for han-
dling I/O requests received from the host. To perform these
tasks, the controller runs firmware, which is often referred
to as the flash translation layer (FTL). FTL tasks are exe-
cuted on one or more embedded processors that exist inside
the controller. The controller has access to DRAM, which
can be used to store various controller metadata (e.g., how
host memory addresses map to physical SSD addresses) and
to cache relevant (e.g., frequently accessed) SSD pages [48],
[161]. When the controller handles I/O requests, it performs
a number of operations on the data, such as scrambling
the data to improve raw bit error rates, performing ECC
encoding/decoding, and in some cases compressing the
data and employing superpage-level data parity. We briefly
examine the various tasks of the SSD controller.

1) Flash Translation Layer: The main duty of the FTL is to
manage the mapping of logical addresses (i.e., the address
space utilized by the host) to physical addresses in the
underlying flash memory (i.e., the address space for actual
locations where the data is stored, visible only to the SSD
controller) for each page of data [1], [2]. By providing this
indirection between address spaces, the FTL can remap the
logical address to a different physical address (i.e., move
the data to a different physical address) without notifying
the host. Whenever a page of data is written to by the host
or moved for underlying SSD maintenance operations (e.g.,
garbage collection [3], [4]; see below), the old data (i.e., the
physical location where the overwritten data resides) is sim-
ply marked as invalid in the physical block’s metadata, and
the new data is written to a page in the flash block that is
currently open for writes (see Section III-D for more detail
on how writes are performed).

Over time, page invalidations cause fragmentation
within a block, where a majority of pages in the block become
invalid. The FTL periodically performs garbage collection,
which identifies each of the highly fragmented flash blocks
and erases the entire block (after migrating any remaining
valid pages to a new block, with the goal of fully populating

the new block with valid pages) [3], [4]. Garbage collection
often aims to select the blocks with the least amount of uti-
lization (i.e., the fewest valid pages) first. When garbage col-
lection is complete, and a block has been erased, it is added
to a free list in the FTL. When the block currently open for
writes becomes full, the SSD controller selects a new block
to open from the free list.

The FTL is also responsible for wear leveling, to ensure that
all of the blocks within the SSD are evenly worn out [3], [4].
By evenly distributing the wear (i.e., the number of P/E cycles
that take place) across different blocks, the SSD controller
reduces the heterogeneity of the amount of wearout across
these blocks, extending the lifetime of the device. Wear-
leveling algorithms are invoked when the current block that
is being written to is full (i.e., no more pages in the block are
available to write to), and the controller selects a new block
for writes from the free list. The wear-leveling algorithm dic-
tates which of the blocks from the free list is selected. One
simple approach is to select the block in the free list with the
lowest number of P/E cycles to minimize the variance of the
wearout amount across blocks, though many algorithms have
been developed for wear leveling [98], [203].

2) Flash Reliability Management: The SSD controller
performs many background optimizations that improve
flash reliability. These flash reliability management tech-
niques, as we will discuss in more detail in Section V,
can effectively improve flash lifetime at a very low cost,
since the optimizations are usually performed during idle
times, when the interference with the running workload
is minimized. These management techniques sometimes
require small metadata storage in memory (e.g., for stor-
ing optimal read reference voltages [37], [38], [42]), or
require a timer (e.g., for triggering refreshes in time
[34], [39]).

3) Compression: Compression can reduce the size of the
data written to minimize the number of flash cells worn out
by the original data. Some controllers provide compression,
as well as decompression, which reconstructs the original
data from the compressed data stored in the flash memory
[5], [6]. The controller may contain a compression engine,
which, for example, performs the LZ77 or LZ78 algorithms.
Compression is optional, as some types of data being stored
by the host (e.g., JPEG images, videos, encrypted files, files
that are already compressed) may not be compressible.

4) Data Scrambling and Encryption: The occurrence of
errors in flash memory is highly dependent on the data val-
ues stored into the memory cells [32], [35], [36]. To reduce
the dependence of the error rate on data values, an SSD
controller first scrambles the data before writing it into the
flash chips [7], [8]. The key idea of scrambling is to proba-
bilistically ensure that the actual value written to the SSD
contains an equal number of randomly distributed zeroes
and ones, thereby minimizing any data-dependent behav-
ior. Scrambling is performed using a reversible process, and

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1670 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

the controller descrambles the data stored in the SSD during
a read request. The controller employs a linear feedback shift
register (LFSR) to perform scrambling and descrambling.
An n -bit LFSR generates 2 n−1 bits worth of pseudo-random
numbers without repetition. For each page of data to be writ-
ten, the LFSR can be seeded with the logical address of that
page, so that the page can be correctly descrambled even if
maintenance operations (e.g., garbage collection) migrate
the page to another physical location, as the logical address
is unchanged. (This also reduces the latency of maintenance
operations, as they do not need to descramble and rescram-
ble the data when a page is migrated.) The LFSR then gener-
ates a pseudo-random number based on the seed, which is
then XORed with the data to produce the scrambled version
of the data. As the XOR operation is reversible, the same
process can be used to descramble the data.

In addition to the data scrambling employed to mini-
mize data value dependence, several SSD controllers
include data encryption hardware [167], [168], [170]. An
SSD that contains data encryption hardware within its
controller is known as a self-encrypting drive (SED). In the
controller, data encryption hardware typically employs
AES encryption [168]–[170], [204], which performs multi-
ple rounds of substitutions and permutations to the unen-
crypted data in order to encrypt it. AES employs a separate
key for each round [169], [204]. In an SED, the controller
contains hardware that generates the AES keys for each
round, and performs the substitutions and permutations
to encrypt or decrypt the data using dedicated hardware
[167], [168], [170].

5) Error-Correcting Codes: ECC is used to detect and cor-
rect the raw bit errors that occur within flash memory. A
host writes a page of data, which the SSD controller splits
into one or more chunks. For each chunk, the controller
generates a codeword, consisting of the chunk and a cor-
rection code. The strength of protection offered by ECC
is determined by the coding rate, which is the chunk size
divided by the codeword size. A higher coding rate provides
weaker protection, but consumes less storage, representing
a key reliability tradeoff in SSDs.

The ECC algorithm employed (typically BCH [9], [10],
[92], [93] or LDPC [9], [11], [94], [95]; see Section VI),
as well as the length of the codeword and the coding rate,
determine the total error correction capability, i.e., the
maximum number of raw bit errors that can be corrected
by ECC. ECC engines in contemporary SSDs are able to
correct data with a relatively high raw bit error rate (e.g.,
between 10 −3 and 10 −2 [110]) and return data to the host at
an error rate that meets traditional data storage reliability
requirements (e.g., a post-correction error rate of 10 −15 in
the JEDEC standard [12]). The error correction failure rate
(P ECFR) of an ECC implementation, with a codeword length
of l where the codeword has an error correction capability
of t bits, can be modeled as

 P ECFR = ∑ k=t+1
l
 (l

k

) (1 − BER) l−k BER k (1)

where BER is the bit error rate of the NAND flash memory.
We assume in this equation that errors are independent and
identically distributed.

In addition to the ECC information, a codeword con-
tains cyclic redundancy checksum (CRC) parity information
[161]. When data is being read from the NAND flash mem-
ory, there may be times when the ECC algorithm incorrectly
indicates that it has successfully corrected all errors in the
data, when uncorrected errors remain. To ensure that incor-
rect data is not returned to the user, the controller performs
a CRC check in hardware to verify that the data is error free
[161], [205].

6) Data Path Protection: In addition to protecting the
data from raw bit errors within the NAND flash memory,
newer SSDs incorporate error detection and correction
mechanisms throughout the SSD controller, in order to
further improve reliability and data integrity [161]. These
mechanisms are collectively known as data path protection,
and protect against errors that can be introduced by the vari-
ous SRAM and DRAM structures that exist within the SSD.1
Fig. 3 illustrates the various structures within the control-
ler that employ data path protection mechanisms. There are
three data paths that require protection: 1) the path for data
written by the host to the flash memory, shown as a red solid
line in Fig. 3; 2) the path for data read from the flash mem-
ory by the host, shown as a green dotted line; and 3) the path
for metadata transferred between the firmware (i.e., FTL)
processors and the DRAM, shown as a blue dashed line.

In the write data path of the controller (the red solid
line shown in Fig. 3), data received from the host interface
(➊ in the figure) is first sent to a host FIFO buffer (➋).
Before the data is written into the host FIFO buffer, the data
is appended with memory protection ECC (MPECC) and
host FIFO buffer (HFIFO) parity [161]. The MPECC parity is
designed to protect against errors that are introduced when
the data is stored within DRAM (which takes place later
along the data path), while the HFIFO parity is designed

1See Section VIII for a discussion on the possible types of errors that
can be present in DRAM.

Fig. 3. Data path protection employed within the controller.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1671

to protect against SRAM errors that are introduced when
the data resides within the host FIFO buffer. When the
data reaches the head of the host FIFO buffer, the control-
ler fetches the data from the buffer, uses the HFIFO parity
to correct any errors, discards the HFIFO parity, and sends
the data to the DRAM manager (➌). The DRAM manager
buffers the data (which still contains the MPECC informa-
tion) within DRAM (➍), and keeps track of the location of
the buffered data inside the DRAM. When the controller
is ready to write the data to the NAND flash memory, the
DRAM manager reads the data from DRAM. Then, the con-
troller uses the MPECC information to correct any errors,
and discards the MPECC information. The controller then
encodes the data into an ECC codeword (➎), generates CRC
parity for the codeword, and then writes both the codeword
and the CRC parity to a NAND flash FIFO buffer (➏) [161].
When the codeword reaches the head of this buffer, the con-
troller uses CRC parity to correct any errors in the code-
word, and then dispatches the data to the flash interface (➐),
which writes the data to the NAND flash memory. The read
data path of the controller (the green dotted line shown in
Fig. 3) performs the same procedure as the write data path,
but in reverse order [161].

Aside from buffering data along the write and read paths,
the controller uses the DRAM to store essential metadata,
such as the table that maps each host data address to a physi-
cal block address within the NAND flash memory [48],
[161]. In the metadata path of the controller (the blue dashed
line shown in Fig. 3), the metadata is often read from or writ-
ten to DRAM by the firmware processors. In order to ensure
correct operation of the SSD, the metadata must not contain
any errors. As a result, the controller uses memory protec-
tion ECC (MPECC) for the metadata stored within DRAM
[130], [161], just as it did to buffer data along the write and
read data paths. Due to the lower rate of errors in DRAM
compared to NAND flash memory (see Section VIII), the
employed memory protection ECC algorithms are not as
strong as BCH or LDPC. We describe common ECC algo-
rithms employed for DRAM error correction in Section VIII.

7) Bad Block Management: Due to process variation or
uneven wearout, a small number of flash blocks may have
a much higher raw bit error rate (RBER) than an average
flash block. Mitigating or tolerating the RBER on these flash
blocks often requires a much higher cost than the benefit of
using them. Thus, it is more efficient to identify and record
these blocks as bad blocks, and avoid using them to store
useful data. There are two types of bad blocks: original bad
blocks (OBBs), which are defective due to manufactur-
ing issues (e.g., process variation), and growth bad blocks
(GBBs), which fail during runtime [91].

The flash vendor performs extensive testing, known
as bad block scanning, to identify OBBs when a flash chip
is manufactured [106]. Initially, all blocks are kept in
the erased state, and contain the value 0xFF in each byte

(see Section III-A). Inside each OBB, the bad block scan-
ning procedure writes a specific data value (e.g., 0x00) to
a specific byte location within the block that indicates the
block status. A good block (i.e., a block without defects) is
not modified, and thus its block status byte remains at the
value 0xFF. When the SSD is powered up for the first time,
the SSD controller iterates through all blocks and checks
the value stored in the block status byte of each block. Any
block that does not contain the value 0xFF is marked as bad,
and is recorded in a bad block table stored in the control-
ler. A small number of blocks in each plane are set aside as
reserved blocks (i.e., blocks that are not used during normal
operation), and the bad block table automatically remaps
any operation originally destined to an OBB to one of the
reserved blocks. The bad block table remaps an OBB to a
reserved block in the same plane, to ensure that the SSD
maintains the same degree of parallelism when writing to a
superpage, thus avoiding performance loss. Less than 2% of
all blocks in the SSD are expected to be OBBs [162].

The SSD identifies growth bad blocks during runtime by
monitoring the status of each block. Each superblock con-
tains a bit vector indicating which of its blocks are GBBs.
After each program or erase operation to a block, the SSD
reads the status reporting registers to check the operation
status. If the operation has failed, the controller marks the
block as a GBB in the superblock bit vector. At this point,
the controller uses superpage-level parity to recover the data
that was stored in the GBB (see Section II-C8), and all data
in the superblock is copied to a different superblock. The
superblock containing the GBB is then erased. When the
superblock is subsequently opened, blocks marked as GBBs
are not used, but the remaining blocks can store new data.

8) Superpage-Level Parity: In addition to ECC to protect
against bit-level errors, many SSDs employ RAID-like parity
[13]–[16]. The key idea is to store parity information within
each superpage to protect data from ECC failures that occur
within a single chip or plane. Fig. 4 shows an example of
how the ECC and parity information are organized within
a superpage. For a superpage that spans across multiple
chips, dies, and planes, the pages stored within one die or
one plane (depending on the implementation) are used to
store parity information for the remaining pages. Without
loss of generality, we assume for the rest of this section that
a superpage that spans c chips and d dies per chip stores par-
ity information in the pages of a single die (which we call
the parity die), and that it stores user data in the pages of
the remaining (c × d)–1 dies. When all of the user data is
written to the superpage, the SSD controller XORs the data
together one plane at a time (e.g., in Fig. 4, all of the pages
in Plane 0 are XORed with each other), which produces the
parity data for that plane. This parity data is written to the
corresponding plane in the parity die, e.g., Plane 0 page in
Die (c × d)–1 in the figure.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1672 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

The SSD controller invokes superpage-level parity when
an ECC failure occurs during a host software (e.g., OS, file
system) access to the SSD. The host software accesses data
at the granularity of a logical block (LB), which is indexed
by a logical block address (LBA). Typically, an LB is 4 kB
in size, and consists of several ECC codewords (which are
usually 512 B to 2 kB in size) stored consecutively within
a flash memory page, as shown in Fig. 4. During the LB
access, a read failure can occur for one of two reasons.
First, it is possible that the LB data is stored within a hid-
den GBB (i.e., a GBB that has not yet been detected and
excluded by the bad block manager). The probability of
storing data in a hidden GBB is quantified as P HGBB . Note
that because bad block management successfully identifies
and excludes most GBBs, P HGBB is much lower than the
total fraction of GBBs within an SSD. Second, it is possible
that at least one ECC codeword within the LB has failed
(i.e., the codeword contains an error that cannot be cor-
rected by ECC). The probability that a codeword fails is
P ECFR (see Section II-C5). For an LB that contains K ECC
codewords, we can model P LBFail , the overall probability
that an LB access fails (i.e., the rate at which superpage-
level parity needs to be invoked), as

 P LBFail = P HGBB + [1 − P HGBB] × [1 − (1 − P ECFR) K] (2)

In (2), P LBFail consists of 1) the probability that an LB is
inside a hidden GBB (left side of the addition); and 2) for
an LB that is not in a hidden GBB, the probability of any
codeword failing (right side of the addition).

When a read failure occurs for an LB in plane p , the SSD
controller reconstructs the data using the other LBs in the
same superpage. To do this, the controller reads the LBs
stored in plane p in the other (c × d)–1 dies of the super-
page, including the LBs in the parity die. The controller
then XORs all of these LBs together, which retrieves the
data that was originally stored in the LB whose access failed.
In order to correctly recover the failed data, all of the LBs
from the (c × d)–1 dies must be correctly read. The overall

superpage-level parity failure probability P parity (i.e., the
probability that more than one LB contains a failure) for an
SSD with c chips of flash memory, with d dies per chip, can
be modeled as [16]

 P parity = P LBFail × [1 − (1 − P LBFail) (c×d) −1] (3)

Thus, by designating one of the dies to contain parity infor-
mation (in a fashion similar to RAID 4 [16]), the SSD can
tolerate the complete failure of the superpage data in one die
without experiencing data loss during an LB access.

D. Design Tradeoffs for Reliability

Several design decisions impact the SSD lifetime (i.e.,
the duration of time that the SSD can be used within a
bounded probability of error without exceeding a given
performance overhead). To capture the tradeoff between
these decisions and lifetime, SSD manufacturers use the
following model:

 Lifetime(Years) =
PEC × (1 + OP)

 ________________________ 365 × DWPD × WA × R Compress
 (4)

In (4), the numerator is the total number of full drive writes
the SSD can endure (i.e., for a drive with an X -byte capacity,
the number of times X bytes of data can be written). The num-
ber of full drive writes is calculated as the product of PEC, the
total P/E cycle endurance of each flash block (i.e., the number
of P/E cycles the block can sustain before its raw error rate
exceeds the ECC correction capability), and 1+OP, where OP
is the overprovisioning factor selected by the manufacturer.
Manufacturers overprovision the flash drive by providing
more physical block addresses, or PBAs, to the SSD controller
than the advertised capacity of the drive, i.e., the number of
logical block addresses (LBAs) available to the operating sys-
tem. Overprovisioning improves performance and endurance,
by providing additional free space in the SSD so that mainte-
nance operations can take place without stalling host requests.
OP is calculated as

 OP = PBA count−LBA count __________________ LBA count (5)

The denominator in (4) is the number of full drive writes
per year, which is calculated as the product of days per year
(i.e., 365), DWPD, and the ratio between the total size of
the data written to flash media and the size of the data sent
by the host (i.e., WA × R compress). DWPD is the number of
full disk writes per day (i.e., the number of times per day the
OS writes the advertised capacity’s worth of data). DWPD
is typically less than 1 for read-intensive applications, and
could be greater than 5 for write-intensive applications [34].
WA (write amplification) is the ratio between the amount
of data written into NAND flash memory by the controller
over the amount of data written by the host machine. Write
amplification occurs because various procedures (e.g.,
garbage collection [3], [4]; and remapping-based refresh,

Fig. 4. Example layout of ECC codewords, logical blocks, and
superpage-level parity for superpage n in superblock m . In this
example, we assume that a logical block contains two codewords.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1673

Section V-C) in the SSD perform additional writes in the
background. For example, when garbage collection selects a
block to erase, the pages that are remapped to a new block
require background writes. R compress , or the compression
ratio, is the ratio between the size of the compressed data
and the size of the uncompressed data, and is a function of
the entropy of the stored data and the efficiency of the com-
pression algorithms employed in the SSD controller. In (4),
DWPD and R compress are largely determined by the workload
and data compressibility, and cannot be changed to opti-
mize flash lifetime. For controllers that do not implement
compression, we set R compress to 1. However, the SSD con-
troller can trade off other parameters between one another
to optimize flash lifetime. We discuss the most salient trade-
offs next.

1) Tradeoff Between Write Amplification and
Overprovisioning: As mentioned in Section II-C, due to the
granularity mismatch between flash erase and program
operations, garbage collection occasionally remaps remain-
ing valid pages from a selected block to a new flash block,
in order to avoid block-internal fragmentation. This remap-
ping causes additional flash memory writes, leading to
write amplification. In an SSD with more overprovisioned
capacity, the amount of write amplification decreases,
as the blocks selected for garbage collection are older
and tend to have fewer valid pages. For a greedy garbage col-
lection algorithm and a random-access workload, the cor-
relation between WA and OP can be calculated [17], [18], as
shown in Fig. 5. In an ideal SSD, both WA and OP should
be minimal, i.e., WA = 1 and OP = 0%, but in reality there
is a tradeoff between these parameters: when one increases,
the other decreases. As Fig. 5 shows, WA can be reduced by
increasing OP, and with an infinite amount of OP, WA con-
verges to 1. However, the reduction of WA is smaller when
OP is large, resulting in diminishing returns.

In reality, the relationship between WA and OP is also a
function of the storage space utilization of the SSD. When the
storage space is not fully utilized, many more pages are avail-
able, reducing the need to invoke garbage collection, and thus
WA can approach 1 without the need for a large amount of OP.

2) Tradeoff Between P/E Cycle Endurance and
Overprovisioning: PEC and OP can be traded against each

other by adjusting the amount of redundancy used for error
correction, such as ECC and superpage-level parity (as dis-
cussed in Section II-C). As the error correction capability
increases, PEC increases because the SSD can tolerate the
higher raw bit error rate that occurs at a higher P/E cycle
count. However, this comes at a cost of reducing the amount
of space available for OP, since a stronger error correction
capability requires higher redundancy (i.e., more space).
Table 1 shows the corresponding OP for four different error
correction configurations for an example SSD with 2.0 TB
of advertised capacity and 2.4 TB (20% extra) of physical
space. In this table, the top two configurations use ECC-1
with a coding rate of 0.93, and the bottom two configura-
tions use ECC-2 with a coding rate of 0.90, which has higher
redundancy than ECC-1. Thus, the ECC-2 configurations
have a lower OP than the top two. ECC-2, with its higher
redundancy, can correct a greater number of raw bit errors,
which in turn increases the P/E cycle endurance of the SSD.
Similarly, the two configurations with superpage-level par-
ity have a lower OP than configurations without superpage-
level parity, as parity uses a portion of the overprovisioned
space to store the parity bits.

When the ECC correction strength is increased, the
amount of overprovisioning in the SSD decreases, which
in turn increases the amount of write amplification that
takes place. Manufacturers must find and use the correct
tradeoff between ECC correction strength and the over-
provisioning factor, based on which of the two is expected
to provide greater reliability for the target applications of
the SSD.

III . NA ND FL A SH MEMORY BA SICS

A number of underlying properties of the NAND flash
memory used within the SSD affect SSD management,
performance, and reliability [20], [22], [24]. In this sec-
tion, we present a primer on NAND flash memory and its
operation, to prepare the reader for understanding our
further discussion on error sources (Section IV) and miti-
gation mechanisms (Section V). Recall from Section II-A
that within each plane, flash cells are organized as mul-
tiple 2-D arrays known as flash blocks, each of which
contains multiple pages of data, where a page is the gran-
ularity at which the host reads and writes data. We first
discuss how data is stored in NAND flash memory. We
then introduce the three basic operations supported by
NAND flash memory: read, program, and erase.

Fig. 5. Relationship between write amplification (WA) and the
overprovisioning factor (OP).

Table 1 Tradeoff Between Strength of Error Correction Configuration

and Amount of SSD Space Left for Overprovisioning

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1674 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

A. Storing Data in a Flash Cell

NAND flash memory stores data as the threshold volt-
age of each flash cell, which is made up of a floating gate
transistor. Fig. 6 shows a cross section of a floating gate
transistor. On top of a flash cell is the control gate (CG) and
below is the floating gate (FG). The floating gate is insulated
on both sides, on top by an interpoly oxide layer and at the
bottom by a tunnel oxide layer. As a result, the electrons
programmed on the floating gate do not discharge even
when flash memory is powered off.

For single-level cell (SLC) NAND flash, each flash cell
stores a 1-bit value, and can be programmed to one of two
threshold voltage states, which we call the ER and P1 states.
Multi-level cell (MLC) NAND flash stores a 2-bit value in each
cell, with four possible states (ER, P1, P2, and P3), and triple-
level cell (TLC) NAND flash stores a 3-bit value in each cell
with eight possible states (ER, P1–P7). Each state represents
a different value, and is assigned a voltage window within
the range of all possible threshold voltages. Due to variation
across program operations, the threshold voltage of flash cells
programmed to the same state is initially distributed across
this voltage window.

Fig. 7 illustrates the threshold voltage distribution of
MLC (top) and TLC (bottom) NAND flash memories. The
 x -axis shows the threshold voltage (V th), which spans a cer-
tain voltage range. The y -axis shows the probability den-
sity of each voltage level across all flash memory cells. The
threshold voltage distribution of each threshold voltage
state can be represented as a probability density curve that
spans over the state’s voltage window.

We label the distribution curve for each state with the
name of the state and a corresponding bit value. Note that
some manufacturers may choose to use a different map-
ping of values to different states. The bit values of adjacent
states are separated by a Hamming distance of 1. We break
down the bit values for MLC into the most significant bit
(MSB) and least significant bit (LSB), while TLC is broken
down into the MSB, the center significant bit (CSB), and
the LSB. The boundaries between neighboring threshold
voltage windows, which are labeled as V a , V b , and V c for the
MLC distribution in Fig. 7, are referred to as read reference
voltages. These voltages are used by the SSD controller to
identify the voltage window (i.e., state) of each cell upon
reading the cell.

B. Flash Block Design

Fig. 8 shows the high-level internal organization of a
NAND flash memory block. Each block contains multiple
rows of cells (typically 128–512 rows). Each row of cells is
connected together by a common wordline (WL, shown hori-
zontally in Fig. 8), typically spanning 32K–64K cells. All of
the cells along the wordline are logically combined to form
a page in an SLC NAND flash memory. For an MLC NAND
flash memory, the MSBs of all cells on the same wordline are
combined to form an MSB page, and the LSBs of all cells on
the wordline are combined to form an LSB page. Similarly,
a TLC NAND flash memory logically combines the MSBs
on each wordline to form an MSB page, the CSBs on each
wordline to form a CSB page, and the LSBs on each wordline
to form an LSB page. In MLC NAND flash memory, each
flash block contains 256–1024 flash pages, each of which
are typically 8–16 kB in size.

Within a block, all cells in the same column are con-
nected in series to form a bitline (BL, shown vertically in
Fig. 8) or string. All cells in a bitline share a common ground
(GND) on one end, and a common sense amplifier (SA) on
the other for reading the threshold voltage of one of the cells

Fig. 6. Flash cell (i.e., floating gate transistor) cross section.

Fig. 7. Threshold voltage distribution of MLC (top) and TLC (bottom)
NAND flash memory.

Fig. 8. Internal organization of a flash block.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1675

when decoding data. Bitline operations are controlled by
turning the ground select line (GSL) and string select line
(SSL) transistor of each bitline on or off. The SSL transis-
tor is used to enable operations on a bitline, and the GSL
transistor is used to connect the bitline to ground during a
read operation [103]. The use of a common bitline across
multiple rows reduces the amount of circuit area required
for read and write operations to a block, improving storage
density.

C. Read Operation

Data can be read from NAND flash memory by applying
read reference voltages onto the control gate of each cell, to
sense the cell’s threshold voltage. To read the value stored
in a single-level cell, we need to distinguish only the state
with a bit value of 1 from the state with a bit value of 0.
This requires us to use only a single read reference voltage.
Likewise, to read the LSB of a multi-level cell, we need to
distinguish only the states where the LSB value is 1 (ER and
P1) from the states where the LSB value is 0 (P2 and P3),
which we can do with a single read reference voltage (V b in
the top half of Fig. 7). To read the MSB page, we need to dis-
tinguish the states with an MSB value of 1 (ER and P3) from
those with an MSB value of 0 (P1 and P2). Therefore, we
need to determine whether the threshold voltage of the cell
falls between V a and V c , requiring us to apply each of these
two read reference voltages (which can require up to two
consecutive read operations) to determine the MSB.

Reading data from a triple-level cell is similar to the data
read procedure for a multi-level cell. Reading the LSB for TLC
again requires applying only a single read reference voltage
(V d in the bottom half of Fig. 7). Reading the CSB requires two
read reference voltages to be applied, and reading the MSB
requires four read reference voltages to be applied.

As Fig. 8 shows, cells from multiple wordlines (WL in the
figure) are connected in series on a shared bitline (BL) to the
sense amplifier, which drives the value that is being read from
the block onto the memory channel for the plane. In order to
read from a single cell on the bitline, all of the other cells (i.e.,
unread cells) on the same bitline must be switched on to allow
the value that is being read to propagate through to the sense
amplifier. The NAND flash memory achieves this by applying
the pass-through voltage onto the wordlines of the unread cells,
as shown in Fig. 9(a). When the pass-through voltage (i.e., the
maximum possible threshold voltage V pass) is applied to a flash
cell, the source and the drain of the cell transistor are con-
nected, regardless of the voltage of the floating gate. Modern
flash memories guarantee that all unread cells are passed through
to minimize errors during the read operation [38].

D. Program and Erase Operations

The threshold voltage of a floating gate transistor is con-
trolled through the injection and ejection of electrons through

the tunnel oxide of the transistor, which is enabled by the
Fowler–Nordheim (FN) tunneling effect [21], [24], [28]. The
tunneling current (J FN) [22], [28] can be modeled as

 J FN = α FN E ox 2 e − β  FN / E ox (6)

In (6), α FN and β FN are constants, and E ox is the electric field
strength in the tunnel oxide. As (6) shows, J FN is exponen-
tially correlated with E ox .

During a program operation, electrons are injected into
the floating gate of the flash cell from the substrate when
applying a high positive voltage to the control gate (see Fig. 6
for a diagram of the flash cell). The pass-through voltage is
applied to all of the other cells on the same bitline as the
cell that is being programmed as shown in Fig. 9(b). When
data is programmed, charge is transferred into the floating
gate through FN tunneling by repeatedly pulsing the pro-
gramming voltage, in a procedure known as incremental
step-pulse programming (ISPP) [20], [23]–[25]. During
ISPP, a high programming voltage (V program) is applied for
a very short period, which we refer to as a step-pulse. ISPP
then verifies the current voltage of the cell using the voltage
V verify . ISPP repeats the process of applying a step-pulse and
verifying the voltage until the cell reaches the desired tar-
get voltage. In the modern all-bitline NAND flash memory,
all flash cells in a single wordline are programmed concur-
rently. During programming, when a cell along the wordline
reaches its target voltage but other cells have yet to reach
their target voltage, ISPP inhibits programming pulses to
the cell by turning off the SSL transistor of the cell’s bitline.

In SLC NAND flash and older MLC NAND flash, one-
shot programming is used, where all of the ISPP step-pulses
required to program a cell are applied back to back until all
cells in the wordline are fully programmed. One-shot pro-
gramming does not interleave the program operations to
a wordline with the program operations to another word-
line. In newer MLC NAND flash, the lack of interleaving
between program operations can introduce a significant
amount of cell-to-cell program interference on the cells of
immediately-adjacent wordlines (see Section IV-C).

Fig. 9. Voltages applied to flash cell transistors on a bitline to
perform (a) read, (b) program, and (c) erase operations.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1676 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

To reduce the impact of program interference, the con-
troller employs two-step programming for sub-40-nm MLC
NAND flash [26], [35]: it first programs the LSBs into the
erased cells of an unprogrammed wordline, and then pro-
grams the MSBs of the cells using a separate program opera-
tion [26], [27], [33], [40]. Between the programming of the
LSBs and the MSBs, the controller programs the LSBs of
the cells in the wordline immediately above [26], [27], [33],
[40]. Fig. 10 illustrates the two-step programming algo-
rithm. In the first step, a flash cell is partially programmed
based on its LSB value, either staying in the ER state if the
LSB value is 1, or moving to a temporary state (TP) if the LSB
value is 0. The TP state has a mean voltage that falls between
states P1 and P2. In the second step, the LSB data is first
read back into an internal buffer register within the flash
chip to determine the cell’s current threshold voltage state,
and then further programming pulses are applied based on
the MSB data to increase the cell’s threshold voltage to fall
within the voltage window of its final state. Programming
in MLC NAND flash is discussed in detail in [33] and [40].

TLC NAND flash takes a similar approach to the two-
step programming of MLC, with a mechanism known as
foggy-fine programming [19], which is illustrated in Fig. 11.
The flash cell is first partially programmed based on its LSB
value, using a binary programming step in which very large
ISPP step-pulses are used to significantly increase the voltage
level. Then, the flash cell is partially programmed again based
on its CSB and MSB values to a new set of temporary states
(these steps are referred to as foggy programming, which uses
smaller ISPP step-pulses than binary programming). Due to
the higher potential for errors during TLC programming as a
result of the narrower voltage windows, all of the programmed
bit values are buffered after the binary and foggy program-
ming steps into SLC buffers that are reserved in each chip/
plane. Finally, fine programming takes place, where these bit
values are read from the SLC buffers, and the smallest ISPP
step-pulses are applied to set each cell to its final threshold
voltage state. The purpose of this last fine programming step
is to fine tune the threshold voltage such that the threshold
voltage distributions are tightened (bottom of Fig. 11).

Though programming sets a flash cell to a specific
threshold voltage using programming pulses, the voltage
of the cell can drift over time after programming. When no
external voltage is applied to any of the electrodes (i.e., CG,
source, and drain) of a flash cell, an electric field still exists
between the FG and the substrate, generated by the charge
present in the FG. This is called the intrinsic electric field
[22], and it generates stress-induced leakage current (SILC)
[24], [29], [30], a weak tunneling current that leaks charge
away from the FG. As a result, the voltage that a cell is pro-
grammed to may not be the same as the voltage read for that
cell at a subsequent time.

In NAND flash, a cell can be reprogrammed with new
data only after the existing data in the cell is erased. This is
because ISPP can only increase the voltage of the cell. The
erase operation resets the threshold voltage state of all cells
in the flash block to the ER state. During an erase opera-
tion, electrons are ejected from the FG of the flash cell into
the substrate by inducing a high negative voltage on the cell
transistor. The negative voltage is induced by setting the CG
of the transistor to GND, and biasing the transistor body
(i.e., the substrate) to a high voltage (V erase), as shown in
Fig. 9(c). Because all cells in a flash block share a common
transistor substrate (i.e., the bodies of all transistors in the
block are connected together), a flash block must be erased
in its entirety [103].

I V. NA ND FL A SH ER ROR
CH A R ACTER I Z ATION

Each block in NAND flash memory is used in a cyclic fash-
ion, as is illustrated by the observed raw bit error rates seen
over the lifetime of a flash memory block in Fig. 12. At the
beginning of a cycle, known as a program/erase (P/E) cycle,
an erased block is opened (i.e., selected for programming).
Data is then programmed into the open block one page at
a time. After all of the pages are programmed, the block is
closed, and none of the pages can be reprogrammed until
the whole block is erased. At any point before erasing, read
operations can be performed on a valid programmed page
(i.e., a page containing data that has not been modified Fig. 10. Two-step programming algorithm for MLC flash.

Fig. 11. Foggy-fine programming algorithm for TLC flash.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1677

by the host). A page is marked as invalid when the data
stored at that page’s logical address by the host is modified.
As ISPP can only inject more charge into the floating gate
but cannot remove charge from the gate, it is not possi-
ble to modify data to a new arbitrary value in place within
existing NAND flash memories. Once the block is erased,
the P/E cycling behavior repeats until the block is worn out
(i.e., the block can no longer avoid data loss over the course
of the minimum data retention period guaranteed by the
manufacturer). Although the 5x-nm (i.e., 50–59 nm)
generation of MLC NAND flash could endure ~10 000 P/E
cycles per block before being worn out, modern 1x-nm
(i.e., 15–19 nm) MLC and TLC NAND flash can endure
only ~3000 and ~1000 P/E cycles per block, respectively
[53], [60], [81], [86].

As shown in Fig. 12, several different types of errors can
be introduced at any point during the P/E cycling process:
P/E cycling errors, program errors, errors due to cell-to-cell pro-
gram interference, data retention errors, and errors due to read
disturb. As discussed in Section III-A, the threshold voltage
of flash cells programmed to the same state is distributed
across a voltage window due to variation across program
operations and across different flash cells. Several types of
errors introduced during the P/E cycling process, such as
data retention and read disturb, cause the threshold voltage
distribution of each state to shift and widen. Due to the shift
and widening, the tails of the distributions of each state can
enter the margin that originally existed between each of the
two neighboring states’ distributions. Thus, the threshold
voltage distributions of different states can start overlap-
ping, as shown in Fig. 13. When the distributions overlap
with each other, the read reference voltages can no longer
correctly identify the state of some flash cells in the overlap-
ping region, leading to raw bit errors during a read operation.

In this section, we discuss the causes of each type of error
in detail, and characterize the impact that each error type
has on the amount of raw bit errors occurring within NAND
flash memory. We use an FPGA-based testing platform [31]
to characterize state-of-the-art TLC NAND flash chips. We
use the read-retry operation present in NAND flash devices
to accurately read the cell threshold voltage [33]–[38], [42],

[52], [107] (for a detailed description of the read-retry oper-
ation, see Section V-D). As absolute threshold voltage values
are proprietary information to flash vendors, we present our
results using normalized voltages, where the nominal maxi-
mum value of V th is equal to 512 in our normalized scale,
and where 0 represents GND. We also describe characteri-
zation results and observations for MLC NAND flash chips.
These MLC NAND results are taken from our prior works
[32]–[40], [42], which provide more detailed error charac-
terization results and analyses. To our knowledge, this paper
provides the first experimental characterization and analysis
of errors in real TLC NAND flash memory chips.

We later discuss mitigation techniques for these flash
memory errors in Section V, and provide procedures to
recover in the event of data loss in Section VI.

A. P/E Cycling Errors

A P/E cycling error occurs when either 1) an erase opera-
tion fails to reset a cell to the ER state; or 2) when a pro-
gram operation fails to set the cell to the desired target state.
P/E cycling errors occur because electrons become trapped
in the tunnel oxide after stress from repeated P/E cycles.
Errors due to such electron trapping (which we refer to as
P/E cycling noise) continue to accumulate over the lifetime
of a NAND flash block. This behavior is called wearout,
and it refers to the phenomenon where, as more writes are
performed to a block, there are a greater number of raw bit
errors that must be corrected, exhausting more of the fixed
error correction capability of the ECC (see Section II-C).

Fig. 14 shows the threshold voltage distribution of TLC
NAND flash memory after 0 P/E cycles and after 3000 P/E
cycles, without any retention or read disturb errors present
(which we ensure by reading the data immediately after
programming). The mean and standard deviation of each
state’s distribution are provided in Table 4 in the Appendix

Fig. 12. Pictorial depiction of errors accumulating within a NAND
flash block as P/E cycle count increases.

Fig. 13. Threshold voltage distribution shifts and widening can
cause the distributions of two neighboring states to overlap with
each other (compare to Fig. 7), leading to read errors.

Fig. 14. Threshold voltage distribution of TLC NAND flash memory
after 0 P/E cycles and 3000 P/E cycles.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1678 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

(for other P/E cycle counts as well). We make two obser-
vations from the two distributions. First, as the P/E cycle
count increases, each state’s threshold voltage distribution
systematically 1) shifts to the right and 2) becomes wider.
Second, the amount of the shift is greater for lower-voltage
states (e.g., the ER and P1 states) than it is for higher-voltage
states (e.g., the P7 state).

The threshold voltage distribution shift occurs because
as more P/E cycles take place, the quality of the tunnel
oxide degrades, allowing electrons to tunnel through the
oxide more easily [58]. As a result, if the same ISPP condi-
tions (e.g., programming voltage, step-pulse size, program
time) are applied throughout the lifetime of the NAND flash
memory, more electrons are injected during programming
as a flash memory block wears out, leading to higher thresh-
old voltages, i.e., the right shift of the distribution. The dis-
tribution of each state widens due to the process variation
present in 1) the wearout process, and 2) the cell’s struc-
tural characteristics. As the distribution of each voltage state
widens, more overlap occurs between neighboring distribu-
tions, making it less likely for a read reference voltage to
determine the correct value of the cells in the overlapping
regions, which leads to a greater number of raw bit errors.

The threshold voltage distribution trends we observe here
for TLC NAND flash memory trends are similar to trends
observed previously for MLC NAND flash memory [32], [33],
[42], [53], although the MLC NAND flash characterizations
reported in past studies span up to a larger P/E cycle count than
the TLC experiments due to the greater endurance of MLC
NAND flash memory. More findings on the nature of wearout
and the impact of wearout on NAND flash memory errors and
lifetime can be found in our prior work [32], [33], [42].

B. Program Errors

Program errors occur when data read directly from the
NAND flash array contains errors, and the erroneous values
are used to program the new data. Program errors occur in two
major cases: 1) partial programming during two-step or foggy-
fine programming, and 2) copyback (i.e., when data is copied
inside the NAND flash memory during a maintenance opera-
tion) [109]. During two-step programming for MLC NAND
flash memory (see Fig. 10), in between the LSB and MSB pro-
gramming steps of a cell, threshold voltage shifts can occur
on the partially-programmed cell. These shifts occur because
several other read and program operations to cells in other
pages within the same block may take place, causing inter-
ference to the partially-programmed cell. Fig. 15 illustrates
how the threshold distribution of the ER state widens and
shifts to the right after the LSB value is programmed (step 1
in the figure). The widening and shifting of the distribution
causes some cells that were originally partially programmed
to the ER state (with an LSB value of 1) to be misread as being
in the TP state (with an LSB value of 0) during the second
programming step (step 2 in the figure). As shown in Fig. 15,

the misread LSB value leads to a program error when the
final cell threshold voltage is programmed [40], [42], [53].
Some cells that should have been programmed to the P1 state
(representing the value 01) are instead programmed to the
P2 state (with the value 00), and some cells that should have
been programmed to the ER state (representing the value 11)
are instead programmed to the P3 state (with the value 10).

The incorrect values that are read before the second pro-
gramming step are not corrected by ECC, as they are read
directly inside the NAND flash array, without involving the
controller (where the ECC engine resides). Similarly, during
foggy-fine programming for TLC NAND flash (see Fig. 11),
the data may be read incorrectly from the SLC buffers used to
store the contents of partially-programmed wordlines, leading
to errors during the fine programming step. Program errors
occur during copyback [109] when valid data is read out from
a block during maintenance operations (e.g., a block about to
be garbage collected) and reprogrammed into a new block, as
copyback operations do not go through the SSD controller.

Program errors that occur during partial programming
predominantly shift data from lower-voltage states to higher-
voltage states. For example, in MLC NAND flash, program
errors predominantly shift data that should be in the ER state
(11) into the P3 state (10), or data that should be in the P1 state
(01) into the P2 state (00) [40]. This occurs because MSB pro-
gramming can only increase (and not reduce) the threshold
voltage of the cell from its partially-programmed voltage
(and thus cannot move a multi-level cell that should be
in the P3 state into the ER state, or one that should be in
the P2 state into the P1 state). TLC NAND flash is much
less susceptible to program errors than MLC NAND flash,
as the data read from the SLC buffers in TLC NAND flash
has a much lower error rate than data read from a partially-
programmed MLC NAND flash wordline [202].

From a rigorous experimental characterization of modern
MLC NAND flash memory chips [40], we find that program
errors occur primarily due to two types of errors affecting the
partially-programmed data. First, cell-to-cell program inter-
ference (Section IV-C) on a partially-programmed wordline is
no longer negligible in newer NAND flash memory compared

Fig. 15. Impact of program errors during two-step programming on
cell threshold voltage distribution.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1679

to older NAND flash memory, due to manufacturing process
scaling. As flash cells become smaller and are placed closer to
each other, cells in partially-programmed wordlines become
more susceptible to bit flips. Second, partially-programmed
cells are more susceptible to read disturb errors than fully-
programmed cells (Section IV-E), as the threshold voltages
stored in these cells are no more than approximately half of
V pass [40], and cells with lower threshold voltages are more
likely to experience read disturb errors.

More findings on the nature of program errors and the
impact of program errors on NAND flash memory lifetime
can be found in our prior work [40], [42].

C. Cell-to-Cell Program Interference Errors

Program interference refers to the phenomenon where the
programming of a flash cell induces errors on adjacent flash
cells within a flash block [35], [36], [55], [61], [62]. The inter-
ference occurs due to parasitic capacitance coupling between
these cells. As a result, when the threshold voltage of an adja-
cent flash cell increases, the threshold voltage of the victim
cell increases as well. The unintended threshold voltage shifts
can eventually move a cell into a different state than the one it
was originally programmed to, leading to a bit error.

We have shown, based on our experimental analysis of
modern MLC NAND flash memory chips, that the threshold
voltage change of the victim cell can be accurately modeled
as a linear combination of the threshold voltage changes of
the adjacent cells when they are programmed, using linear
regression with least-square-error estimation [35], [36].
The cells that are physically located immediately next to the
victim cell (called the immediately-adjacent cells) are the
major contributors to the cell-to-cell interference of a victim
cell [35]. Fig. 16 shows the eight immediately-adjacent cells
for a victim cell in 2-D planar NAND flash memory.

The amount of interference that program operations to
the immediately-adjacent cells can induce on the victim cell
is expressed as

 Δ V victim = ∑
X
 K X Δ V X (7)

where Δ V victim is the change in voltage of the victim cell
due to cell-to-cell program interference, K X is the coupling

coefficient between cell X and the victim cell, and Δ V X is
the threshold voltage change of cell X during programming.
Table 2 lists the coupling coefficients for both 2y-nm and
1x-nm NAND flash memory. We make two key observations
from Table 2. First, we observe that the coupling coeffi-
cient is greatest for wordline neighbors (i.e., immediately-
adjacent cells on the same bitline, but on a neighboring
wordline) [35]. The coupling coefficient is directly related
to the effective capacitance C between cell X and the victim
cell, which can be calculated as

 C = ε  S / d (8)

where ε is the permittivity, S is the effective cell area of cell
X that faces the victim cell, and d is the distance between the
cells. Of the immediately-adjacent cells, the wordline neigh-
bor cells have the greatest coupling capacitance with the vic-
tim cell, as they likely have a large effective facing area to,
and a small distance from, the victim cell compared to other
surrounding cells. Second, we observe that the coupling
coefficient grows as the feature size decreases [35], [36].
As NAND flash memory process technology scales down
to smaller feature sizes, cells become smaller and get closer
to each other, which increases the effective capacitance
between them. As a result, at smaller feature sizes, it is easier
for an immediately-adjacent cell to induce program interfer-
ence on a victim cell. We conclude that 1) the program inter-
ference an immediately-adjacent cell induces on a victim cell
is primarily determined by the distance between the cells and
the immediately-adjacent cell’s effective area facing the vic-
tim cell; and 2) the wordline neighbor cell causes the highest
such interference, based on empirical measurements.

Due to the order of program operations performed in
NAND flash memory, many immediately-adjacent cells do
not end up inducing interference after a victim cell is fully
programmed (i.e., once the victim cell is at its target voltage).
In modern all-bitline NAND flash memory, all flash cells on
the same wordline are programmed at the same time, and
wordlines are fully programmed sequentially (i.e., the cells
on wordline i are fully programmed before the cells on word-
line i + 1). As a result, an immediately-adjacent cell on the
wordline below the victim cell or on the same wordline as the
victim cell does not induce program interference on a fully-
programmed victim cell. Therefore, the major source of pro-
gram interference on a fully-programmed victim cell is the
programming of the wordline immediately above it.

Fig. 17 shows how the threshold voltage distribution of
a victim cell shifts when different values are programmed
onto its immediately-adjacent cells in the wordline above

Fig. 16. Immediately-adjacent cells that can induce program
interference on a victim cell that is on wordline N and bitline M.

Table 2 Coupling Coefficients for Immediately-Adjacent Cells

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1680 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

the victim cell for MLC NAND flash, when one-shot pro-
gramming is used. The amount by which the victim cell
distribution shifts is directly correlated with the number
of programming step-pulses applied to the immediately-
adjacent cell. That is, when an immediately-adjacent cell
is programmed to a higher-voltage state (which requires
more step-pulses for programming), the victim cell distribu-
tion shifts further to the right [35]. When an immediately-
adjacent cell is set to the ER state, no step-pulses are applied,
as an unprogrammed cell is already in the ER state. Thus, no
interference takes place. Note that the amount by which a
fully-programmed victim cell distribution shifts is different
when two-step programming is used, as a fully-programmed
cell experiences interference from only one of the two pro-
gramming steps of a neighboring wordline [40].

More findings on the nature of cell-to-cell program
interference and the impact of cell-to-cell program inter-
ference on NAND flash memory errors and lifetime can be
found in our prior work [35], [36], [40].

D. Data Retention Errors

Retention errors are caused by charge leakage over time
after a flash cell is programmed, and are the dominant source
of flash memory errors, as demonstrated previously [20],
[32], [34], [37], [39], [56]. As flash memory process technol-
ogy scales to smaller feature sizes, the capacitance of a flash
cell, and the number of electrons stored on it, decreases.
State-of-the-art (i.e., 1x-nm) MLC flash memory cells can
store only ~100 electrons [81]. Gaining or losing several elec-
trons on a cell can significantly change the cell’s voltage level
and eventually alter its state. Charge leakage is caused by the
unavoidable trapping of charge in the tunnel oxide [37], [57].
The amount of trapped charge increases with the electrical
stress induced by repeated program and erase operations,
which degrade the insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to reten-
tion loss. Trap-assisted tunneling (TAT) occurs because the
trapped charge forms an electrical tunnel, which exacer-
bates the weak tunneling current, SILC (see Section III-D).
As a result of this TAT effect, the electrons present in the

floating gate (FG) leak away much faster through the intrin-
sic electric field. Hence, the threshold voltage of the flash
cell decreases over time. As the flash cell wears out with
increasing P/E cycles, the amount of trapped charge also
increases [37], [57], and so does the TAT effect. At high P/E
cycles, the amount of trapped charge is large enough to form
percolation paths that significantly hamper the insulating
properties of the gate dielectric [30], [37], resulting in reten-
tion failure. Charge detrapping, where charge previously
trapped in the tunnel oxide is freed spontaneously, can also
occur over time [30], [37], [57], [59]. The charge polarity can
be either negative (i.e., electrons) or positive (i.e., holes).
Hence, charge detrapping can either decrease or increase the
threshold voltage of a flash cell, depending on the polarity of
the detrapped charge.

Fig. 18 illustrates how the voltage distribution shifts
for data we program into TLC NAND flash, as the data sits
untouched over a period of one day, one month, and one year.
The mean and standard deviation are provided in Table 5 in
the Appendix (which includes data for other retention ages
as well). These results are obtained from real flash memory
chips we tested. We distill three major findings from these
results, which are similar to our previously reported findings
for retention behavior on MLC NAND flash memory [37].

First, as the retention age (i.e., the length of time after
programming) of the data increases, the threshold voltage dis-
tributions of the higher-voltage states shift to lower voltages,
while the threshold voltage distributions of the lower-voltage
states shift to higher voltages. As the intrinsic electric field
strength is higher for the cells in higher-voltage states, TAT
is the dominant failure mechanism for these cells, which can
only decrease the threshold voltage, as the resulting SILC can
flow only in the direction of the intrinsic electric field gener-
ated by the electrons in the FG. Cells at the lowest-voltage
states, where the intrinsic electric field strength is low, do not
experience high TAT, and instead contain many holes (i.e.,
positive charge) that leak away as the retention age grows,
leading to increase in threshold voltage.

Second, the threshold voltage distribution of each state
becomes wider with retention age. Charge detrapping can
cause cells to shift in either direction (i.e., toward lower or
higher voltages), contributing to the widening of the distri-
bution. The rate at which TAT occurs can also vary from cell
to cell, as a result of process variation, which further widens
the distribution.

Fig. 17. Impact of cell-to-cell program interference on a victim
cell during one-shot programming, depending on the value its
neighboring cell is programmed to.

Fig. 18. Threshold voltage distribution for TLC NAND flash memory
after one day, one month, and one year of retention time.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1681

Third, the threshold voltage distributions of higher-
voltage states shift by a larger amount than the distributions
of lower-voltage states. This is again a result of TAT. Cells
at higher-voltage states have greater intrinsic electric field
intensity, which leads to larger SILC. A cell where the SILC
is larger experiences a greater drop in its threshold voltage
than a cell where the SILC is smaller.

More findings on the nature of data retention and the
impact of data retention behavior on NAND flash memory
errors and lifetime can be found in our prior work [32], [34],
[37], [39].

E. Read Disturb Errors

Read disturb is a phenomenon in NAND flash memory
where reading data from a flash cell can cause the threshold
voltages of other (unread) cells in the same block to shift to
a higher value [20], [32], [38], [54], [61], [62], [64]. While a
single threshold voltage shift is small, such shifts can accumu-
late over time, eventually becoming large enough to alter the
state of some cells and hence generate read disturb errors.

The failure mechanism of a read disturb error is similar
to the mechanism of a normal program operation. A pro-
gram operation applies a high programming voltage (e.g.,
+15 V) to the cell to change the cell’s threshold voltage to
the desired range. Similarly, a read operation applies a high
pass-through voltage (e.g., +6 V) to all other cells that share
the same bitline with the cell that is being read. Although
the pass-through voltage is not as high as the programming
voltage, it still generates a weak programming effect on the
cells it is applied to [38], which can unintentionally change
these cells’ threshold voltages.

Fig. 19 shows how read disturb errors impact thresh-
old voltage distributions in real TLC NAND flash memory
chips. We use blocks that have endured 2000 P/E cycles,
and we experimentally study the impact of read disturb on
a single wordline in each block. We then read from a sec-
ond wordline in the same block 1, 10K, and 100K times to
induce different levels of read disturb. The mean and stand-
ard deviation of each distribution are provided in Table 6 in
the Appendix. We derive three major findings from these
results, which are similar to our previous findings for read
disturb behavior in MLC NAND flash memory [38].

First, as the read disturb count increases, the threshold
voltages increase (i.e., the voltage distribution shifts to the

right). In particular, we find that the distribution shifts are
greater for lower-voltage states, indicating that read disturb
impacts cells in the ER and P1 states the most. This is because
we apply the same pass-through voltage (V pass) to all unread
cells during a read operation, regardless of the threshold volt-
ages of the cells. A lower threshold voltage on a cell induces
a larger voltage difference (V pass ¬ V th) through the tunnel
oxide layer of the cell, and in turn generates a stronger tun-
neling current, making the cell more vulnerable to read dis-
turb (as described in detail in our prior work [38]).

Second, cells whose threshold voltages are closer to the
point at which the voltage distributions of the ER and P1
states intersect are more vulnerable to read disturb errors.
This is because process variation causes different cells to have
different degrees of vulnerability to read disturb. We find that
cells that are prone to read disturb end up at the right tail
of the threshold voltage distribution of the ER state, as these
cells’ threshold voltages increase more rapidly, and that cells
that are relatively resistant to read disturb end up at the left
tail of the threshold voltage distribution of the P1 state, as
their threshold voltages increase more slowly. We can exploit
this divergent behavior of cells that end up at the left and
right distribution tails to perform error recovery in the event
of an uncorrectable error, as we discuss in Section VI-D.

Third, unlike with the other states, the threshold volt-
ages of the cells at the left tail of the highest-voltage state
(P7) in TLC NAND flash memory actually decreases as the
read disturb count increases. This occurs for two reasons:
1) applying V pass causes electrons to move from the floating
gate to the control gate for a cell at high voltage (i.e., a cell
containing a large number of electrons), thus reducing its
threshold voltage [38]; and 2) some retention time elapses
while we sweep the voltages during our read disturb experi-
ments, inducing trap-assisted tunneling (see Section IV-D)
and leading to retention errors that decrease the voltage.

More findings on the nature of read disturb and the
impact of read disturb on NAND flash memory errors and
lifetime can be found in our prior work [38].

F. Large-Scale Studies on SSD Errors

The error characterization studies we have discussed so
far examine the susceptibility of real NAND flash memory
devices to specific error sources, by conducting controlled
experiments on individual flash devices in controlled envi-
ronments. To examine the aggregate effect of these error
sources on flash devices that operate in the field, several
recent studies have analyzed the reliability of SSDs deployed
at a large scale (i.e., tens to hundreds of thousands of SSDs)
in production data centers [48]–[50]. Unlike the con-
trolled low-level error characterization studies discussed in
Sections IV-A through IV-E, these large-scale studies ana-
lyze the observed errors and error rates in an uncontrolled
manner, i.e., based on real data center workloads operating
at field conditions as opposed to controlled access patterns

Fig. 19. Threshold voltage distribution for TLC NAND flash memory
after 1, 10K, and 100K read disturb operations.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1682 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

and controlled conditions. As such, these large-scale studies
can study flash memory behavior and reliability using only
a black-box approach, where they are able to access only the
registers used by the SSD to record select statistics. On the
other hand, these studies incorporate the effects of a real
system, including the system software stack and real work-
loads [48], on the flash memory devices, which is not pre-
sent in the controlled small-scale studies.

These large-scale studies have made a number of observa-
tions across large sets of SSDs. We highlight five key obser-
vations from these studies. First, SSD failure rates do not
increase monotonically with the P/E cycle count, and instead
exhibit several distinct periods of reliability, where the fail-
ure rates between each period can vary by as much as 81.7%
[48]. Second, the raw bit error rate grows with the age of the
device even if the P/E cycle count is held constant, indicating
that mechanisms such as silicon aging are likely contributing
to the error rate [50]. Third, the observed failure rate of SSDs
has been noted to be significantly higher than the failure rates
specified by the manufacturers [49]. Fourth, higher operating
temperatures can lead to higher failure rates, but modern SSDs
employ throttling techniques that reduce the access rates to
the underlying flash chips, which can greatly reduce the nega-
tive reliability impact of higher temperatures [48]. Fifth, while
SSD failure rates are higher than specified, the overall occur-
rence of uncorrectable errors is lower than expected because
1) effective bad block management policies (see Section II-C)
are implemented in SSD controllers; and 2) certain types of
error sources, such as read disturb [48], [50] and incomplete
erase operations [50], have yet to become a major source of
uncorrectable errors at the system level.

V. ER ROR MITIGATION

Several different types of errors can occur in NAND flash
memory, as we described in Section IV. As NAND flash mem-
ory continues to scale to smaller technology nodes, the mag-
nitude of these errors has been increasing [53], [60], [81].
This, in turn, uses up the limited error correction capability
of ECC more rapidly than in past flash memory generations
and shortens the lifetime of modern SSDs. To overcome the
decrease in lifetime, a number of error mitigation techniques,
which exploit intrinsic properties of the different types of
errors to reduce the rate at which they lead to raw bit errors,
have been designed. In this section, we discuss how the flash
controller mitigates each of the error types via proposed error
mitigation mechanisms. Table 3 shows the techniques we
overview and which errors (from Section IV) they mitigate.

A. Shadow Program Sequencing

As discussed in Section IV-C, cell-to-cell program inter-
ference is a function of the distance between the cells of the
wordline that is being programmed and the cells of the victim
wordline. The impact of program interference is greatest on

a victim wordline when either of the victim’s immediately-
adjacent wordlines is programmed (e.g., if we program WL1
in Fig. 8, WL0 and WL2 experience the greatest amount of
interference). Early MLC flash memories used one-shot pro-
gramming, where both the LSB and MSB pages of a wordline
are programmed at the same time. As flash memory scaled to
smaller process technologies, one-shot programming resulted
in much larger amounts of cell-to-cell program interference.
As a result, manufacturers introduced two-step programming
for MLC NAND flash (see Section III-D), where the SSD con-
troller writes values of the two pages within a wordline in two
independent steps.

The SSD controller minimizes the interference that
occurs during two-step programming by using shadow pro-
gram sequencing [27], [35], [40] to determine the order that
data is written to different pages in a block. If we program
the LSB and MSB pages of the same wordline back to back,
as shown in Fig. 20(a), both programming steps induce

Fig. 20. Order in which the pages of each wordline (WL) are
programmed using (a) a bad programming sequence, and using
shadow sequencing for (b) MLC and (c) TLC NAND flash. The bold
page programming operations for WL1 induce cell-to-cell program
interference when WL0 is fully programmed.

Table 3 List of Different Types of Errors Mitigated by NAND Flash

Error Mitigation Mechanisms

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1683

interference on a fully-programmed wordline (i.e., a word-
line where both the LSB and MSB pages are already written).
For example, if the controller programs both pages of WL1
back to back, shown as bold page programming operations
in Fig. 20(a), the program operations induce a high amount
of interference on WL0, which is fully programmed. The key
idea of shadow program sequencing is to ensure that a fully-
programmed wordline experiences interference minimally,
i.e., only during MSB page programming (and not during
LSB page programming). In shadow program sequencing, we
assign a unique page number to each page within a block, as
shown in Fig. 20(b). The LSB page of wordline i is numbered
page 2i − 1 , and the MSB page is numbered page 2i + 2 . The
only exceptions to the numbering are the LSB page of word-
line 0 (page 0) and the MSB page of the last wordline n (page
2n + 1). Two-step programming writes to pages in increasing
order of page number inside a block [27], [35], [40], such that
a fully-programmed wordline experiences interference only
from the MSB page programming of the wordline directly
above it, shown as the bold page programming operation in
Fig. 20(b). With this programming order/sequence, the LSB
page of the wordline above, and both pages of the wordline
below, do not cause interference to fully-programmed data
[27], [35], [40], as these two pages are programmed before
programming the MSB page of the given wordline. Foggy-
fine programming in TLC NAND flash (see Section III-D)
uses a similar ordering to reduce cell-to-cell program inter-
ference, as shown in Fig. 20(c).

Shadow program sequencing is an effective solution
to minimize cell-to-cell program interference on fully-
programmed wordlines during two-step programming, and
is employed in commercial SSDs today.

B. Neighbor-Cell Assisted Error Correction

The threshold voltage shift that occurs due to program
interference is highly correlated with the values stored in
the cells of the immediately-adjacent wordlines, as we dis-
cussed in Section IV-C. Due to this correlation, knowing
the value programmed in the immediately-adjacent cell
(i.e., a neighbor cell) makes it easier to correctly determine
the value stored in the flash cell that is being read [36]. We
describe a recently proposed error correction method that
takes advantage of this observation, called neighbor-cell-
assisted error correction (NAC). The key idea of NAC is to
use the data values stored in the cells of the immediately-
adjacent wordline to determine a better set of read reference
voltages for the wordline that is being read. Doing so leads
to a more accurate identification of the logical data value
that is being read, as the data in the immediately-adjacent
wordline was partially responsible for shifting the threshold
voltage of the cells in the wordline that is being read when
the immediately-adjacent wordline was programmed.

Fig. 21 shows an operational example of NAC that
is applied to eight bitlines (BL) of an MLC flash word-
line. The SSD controller first reads a flash page from a

wordline using the standard read reference voltages (step 1 in
Fig. 21). The bit values read from the wordline are then buffered
in the controller. If there are no errors uncorrectable by ECC,
the read was successful, and nothing else is done. However,
if there are errors that are uncorrectable by ECC, we assume
that the threshold voltage distribution of the page shifted due to
cell-to-cell program interference, triggering further correction.
In this case, NAC reads the LSB and MSB pages of the wordline
immediately above the requested page (i.e., the adjacent word-
line that was programmed after the requested page) to classify
the cells of the requested page (step 2). NAC then identifies the
cells adjacent to (i.e., connected to the same bitline as) the ER
cells (i.e., cells in the immediately above wordline that are in
the ER state), such as the cells on BL1, BL3, and BL7 in Fig. 21.
NAC rereads these cells using read reference voltages that com-
pensate for the threshold voltage shift caused by programming
the adjacent cell to the ER state (step 3). If ECC can correct the
remaining errors, the controller returns the corrected page to
the host. If ECC fails again, the process is repeated using a dif-
ferent set of read reference voltages for cells that are adjacent
to the P1 cells (step 4). If ECC continues to fail, the process is
repeated for cells that are adjacent to P2 and P3 cells (steps 5
and 6, respectively, which are not shown in the figure) until
either ECC is able to correct the page or all possible adjacent
values are exhausted.

NAC extends the lifetime of an SSD by reducing the
number of errors that need to be corrected using the lim-
ited correction capability of ECC. With the use of experi-
mental data collected from real MLC NAND flash memory
chips, we show that NAC extends the NAND flash memory
lifetime by 33% [36]. Our previous work [36] provides a
detailed description of NAC, including a theoretical treat-
ment of why it works and a practical implementation that
minimizes the number of reads performed, even in the case
when the neighboring wordline itself has errors.

C. Refresh Mechanisms

As we see in Fig. 12, during the time period after a flash
page is programmed, retention (Section IV-D) and read
disturb (Section IV-E) can cause an increasing number of
raw bit errors to accumulate over time. This is particularly
problematic for a page that is not updated frequently. Due
to the limited error correction capability, the accumula-
tion of these errors can potentially lead to data loss for a
page with a high retention age (i.e., a page that has not been
programmed for a long time). To avoid data loss, refresh

Fig. 21. Overview of neighbor-cell-assisted error correction (NAC).

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1684 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

mechanisms have been proposed, where the stored data is
periodically read, corrected, and reprogrammed, in order
to eliminate the retention and read disturb errors that
have accumulated prior to this periodic read/correction/
reprogramming (i.e., refresh). The concept of refresh in
flash memory is thus conceptually similar to the refresh
mechanisms found in DRAM [66], [69], [104], [123]. By
performing refresh and limiting the number of retention
and read disturb errors that can accumulate, the lifetime of
the SSD increases significantly. In this section, we describe
three types of refresh mechanisms used in modern SSDs:
remapping-based refresh, in-place refresh, and read reclaim.

1) Remapping-Based Refresh: Flash cells must first be
erased before they can be reprogrammed, due to the fact
the programming a cell via ISPP can only increase the
charge level of the cell but not reduce it (Section III-D).
The key idea of remapping-based refresh is to periodically
read data from each valid flash block, correct any data
errors, and remap the data to a different physical location,
in order to prevent the data from accumulating too many
retention errors [34], [39], [67], [68]. During each refresh
interval, a block with valid data that needs to be refreshed
is selected. The valid data in the selected block is read out
page by page and moved to the SSD controller. The ECC
engine in the SSD controller corrects the errors in the read
data, including retention errors that have accumulated
since the last refresh. A new block is then selected from
the free list (see Section II-C), the error-free data is pro-
grammed to a page within the new block, and the logical
address is remapped to point to the newly-programmed
physical page. By reducing the accumulation of retention
and read disturb errors, remapping-based refresh increases
SSD lifetime by an average of 9x for a variety of disk work-
loads [34], [39].

Prior work proposes extensions to the basic remapping-
based refresh approach. One work, refresh SSDs, proposes a
refresh scheduling algorithm based on an earliest deadline
first policy to guarantee that all data is refreshed in time
[68]. The quasi-nonvolatile SSD proposes to use remapping-
based refresh to choose between improving flash endur-
ance and reducing the flash programming latency (by using
larger ISPP step-pulses) [67]. In the quasi-nonvolatile SSD,
refresh requests are deprioritized, scheduled at idle times,
and can be interrupted after refreshing any page within a
block, to minimize the delays that refresh can cause for
the response time of pending workload requests to the
SSD. A refresh operation can also be triggered proactively
based on the data read latency observed for a page, which
is indicative of how many errors the page has experienced
[87]. Triggering refresh proactively based on the observed
read latency (as opposed to doing so periodically) improves
SSD latency and throughput [87]. Whenever the read
latency for a page within a block exceeds a fixed threshold,
the valid data in the block is refreshed, i.e., remapped to a
new block [87].

2) In-Place Refresh: A major drawback of remapping-based
refresh is that it performs additional writes to the NAND
flash memory, accelerating wearout. To reduce the wearout
overhead of refresh, we propose in-place refresh [34], [39]. As
data sits unmodified in the SSD, data retention errors domi-
nate [32], [39], [56], leading to charge loss and causing the
threshold voltage distribution to shift to the left, as we showed
in Section IV-D. The key idea of in-place refresh is to incre-
mentally replenish the lost charge of each page at its current
location, i.e., in place, without the need for remapping.

Fig. 22 shows a high-level overview of in-place refresh for
a wordline. The SSD controller first reads all of the pages
in the wordline (➊ in Fig. 22). The controller invokes the
ECC decoder to correct the errors within each page (➋), and
sends the corrected data back to the flash chips (➌). In-place
refresh then invokes a modified version of the ISPP mecha-
nism (see Section III-D), which we call Verify-ISPP (V-ISPP),
to compensate for retention errors by restoring the charge
that was lost. In V-ISPP, we first verify the voltage currently
programmed in a flash cell (➍). If the current voltage of the
cell is lower than the target threshold voltage of the state that
the cell should be in, V-ISPP pulses the programming volt-
age in steps, gradually injecting charge into the cell until the
cell returns to the target threshold voltage (➎). If the current
voltage of the cell is higher than the target threshold voltage,
V-ISPP inhibits the programming pulses to the cell.

When the controller invokes in-place refresh, it is unable
to use shadow program sequencing (Section V-A), as all of the
pages within the wordline have already been programmed.
However, unlike traditional ISPP, V-ISPP does not introduce
a high amount of cell-to-cell program interference (Section
IV-C) for two reasons. First, V-ISPP programs only those cells
that have retention errors, which typically account for less
than 1% of the total number of cells in a wordline selected
for refresh [34]. Second, for the small number of cells that
are selected to be refreshed, their threshold voltage is usu-
ally only slightly lower than the target threshold voltage,
which means that only a few programming pulses need to
be applied. As cell-to-cell interference is linearly correlated
with the threshold voltage change to immediately-adjacent
cells [35], [36], the small voltage change on these in-place
refreshed cells leads to only a small interference effect.

One issue with in-place refresh is that it is unable to
correct retention errors for cells in lower-voltage states.
Retention errors cause the threshold voltage of a cell in a
lower-voltage state to increase (e.g., see Section IV-D, ER and

Fig. 22. Overview of in-place refresh mechanism for MLC NAND
flash memory.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1685

P1 states in Fig. 18), but V-ISPP cannot decrease the thresh-
old voltage of a cell. To achieve a balance between the wea-
rout overhead due to remapping-based refresh and errors that
increase the threshold voltage due to in-place refresh, we pro-
pose hybrid in-place refresh [34], [39]. The key idea is to use
in-place refresh when the number of program errors (caused
due to reprogramming) is within the correction capability of
ECC, but to use remapping-based refresh if the number of
program errors is too large to tolerate. To accomplish this, the
controller tracks the number of right-shift errors (i.e., errors
that move a cell to a higher-voltage state) [34], [39]. If the
number of right-shift errors remains under a certain thresh-
old, the controller performs in-place refresh; otherwise, it
performs remapping-based refresh. Such a hybrid in-place
refresh mechanism increases SSD lifetime by an average of
31x for a variety of disk workloads [34], [39].

3) Read Reclaim to Reduce Read Disturb Errors: We can
also mitigate read disturb errors using an idea similar to
remapping-based refresh, known as read reclaim. The key
idea of read reclaim is to remap the data in a block to a new
flash block, if the block has experienced a high number of
reads [63], [70], [173]. To bound the number of read disturb
errors, some flash vendors specify a maximum number of
tolerable reads for a flash block, at which point read reclaim
rewrites the data to a new block (just as is done for remap-
ping-based refresh).

4) Adaptive Refresh and Read Reclaim Mechanisms: For
the refresh and read reclaim mechanisms discussed above,
the SSD controller can 1) invoke the mechanisms at fixed
regular intervals; or 2) adapt the rate at which it invokes the
mechanisms, based on various conditions that impact the
rate at which data retention and read disturb errors occur.
By adapting the mechanisms based on the current condi-
tions of the SSD, the controller can reduce the overhead
of performing refresh or read reclaim. The controller can
adaptively adjust the rate that the mechanisms are invoked
based on 1) the wearout (i.e., the current P/E cycle count) of
the NAND flash memory [34], [39]; or 2) the temperature
of the SSD [32], [37].

As we discuss in Section IV-D, for data with a given
retention age, the number of retention errors grows as the
P/E cycle count increases. Exploiting this P/E cycle depend-
ent behavior of retention time, the SSD controller can per-
form refresh less frequently (e.g., once every year) when
the P/E cycle count is low, and more frequently (e.g., once
every week) when the P/E cycle count is high, as proposed
and described in our prior works [34], [39]. Similarly, for
data with a given read disturb count, as the P/E cycle count
increases, the number of read disturb errors increases as
well [38]. As a result, the SSD controller can perform read
reclaim less frequently (i.e., it increases the maximum num-
ber of tolerable reads per block before read reclaim is trig-
gered) when the P/E cycle count is low, and more frequently
when the P/E cycle count is high.

Prior works demonstrate that for a given retention time,
the number of data retention errors increases as the NAND
flash memory’s operating temperature increases [32], [37].
To compensate for the increased number of retention errors
at high temperature, a state-of-the-art SSD controller adapts
the rate at which it triggers refresh. The SSD contains sen-
sors that monitor the current environmental temperature
every few milliseconds [48], [192]. The controller then
uses the Arrhenius equation [68], [186], [187] to estimate
the rate at which retention errors accumulate at the cur-
rent temperature of the SSD. Based on the error rate esti-
mate, the controller decides if it needs to increase the rate
at which it triggers refresh to ensure that the data is not lost.

By employing adaptive refresh and/or read reclaim mecha-
nisms, the SSD controller can successfully reduce the mecha-
nism overheads while effectively mitigating the larger number
of data retention errors that occur under various conditions.

D. Read-Retry

In earlier generations of NAND flash memory, the read
reference voltage values were fixed at design time [20], [33].
However, several types of errors cause the threshold voltage
distribution to shift, as shown in Fig. 13. To compensate for
threshold voltage distribution shifts, a mechanism called read-
retry has been implemented in modern flash memories (typi-
cally those below 30 nm for planar flash [33], [71], [72], [107]).

The read-retry mechanism allows the read reference
voltages to dynamically adjust to changes in distributions.
During read-retry, the SSD controller first reads the data out
of NAND flash memory with the default read reference volt-
age. It then sends the data for error correction. If ECC suc-
cessfully corrects the errors in the data, the read operation
succeeds. Otherwise, the SSD controller reads the memory
again with a different read reference voltage. The controller
repeats these steps until it either successfully reads the data
using a certain set of read reference voltages or is unable to
correctly read the data using all of the read reference volt-
ages that are available to the mechanism.

While read-retry is widely implemented today, it can
significantly increase the overall read operation latency due
to the multiple read attempts it causes [37]. Mechanisms
have been proposed to reduce the number of read-retry
attempts while taking advantage of the effective capability
of read-retry for reducing read errors, and read-retry has
also been used to enable mitigation mechanisms for various
other types of errors, as we describe in Section V-E. As a
result, read-retry is an essential mechanism in modern SSDs
to mitigate read errors (i.e., errors that manifest themselves
during a read operation).

E. Voltage Optimization

Many raw bit errors in NAND flash memory are affected
by the various voltages used within the memory to enable

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1686 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

reading of values. We give two examples. First, a suboptimal
read reference voltage can lead to a large number of read
errors (Section IV), especially after the threshold voltage dis-
tribution shifts. Second, as we saw in Section IV-E, the pass-
through voltage can have a significant effect on the number
of read disturb errors that occur. As a result, optimizing these
voltages such that they minimize the total number of errors
that are induced can greatly mitigate error counts. In this sec-
tion, we discuss mechanisms that can discover and employ
the optimal2 read reference and pass-through voltages.

1) Optimizing Read Reference Voltages Using Disparity-
Based Approximation and Sampling: As we discussed in
Section V-D, when the threshold voltage distribution shifts,
it is important to move the read reference voltage to the
point where the number of read errors is minimized. After
the shift occurs and the threshold voltage distribution of
each state widens, the distributions of different states may
overlap with each other, causing many of the cells within
the overlapping regions to be misread. The number of errors
due to misread cells can be minimized by setting the read
reference voltage to be exactly at the point where the distri-
butions of two neighboring states intersect, which we call
the optimal read reference voltage (V opt) [35]–[37], [42],
[54], illustrated in Fig. 23. Once the optimal read refer-
ence voltage is applied, the raw bit error rate is minimized,
improving the reliability of the device.

One approach to finding V opt is to adaptively learn and
apply the optimal read reference voltage for each flash block
through sampling [37], [90], [165], [166]. The key idea is
to periodically 1) use disparity information (i.e., the ratio
of 1s to 0s in the data) to attempt to find a read reference
voltage for which the error rate is lower than the ECC cor-
rection capability; and to 2) use sampling to efficiently tune
the read reference voltage to its optimal value to reduce the
read operation latency. Prior characterization of real NAND
flash memory [37], [54] found that the value of V opt does
not shift greatly over a short period of time (e.g., a day), and
that all pages within a block experience similar amounts of
threshold voltage shifts, as they have the same amount of
wearout and are programmed around the same time [37],

[54]. Therefore, we can invoke our V opt learning mecha-
nism periodically (e.g., daily) to efficiently tune the initial
read reference voltage (i.e., the first read reference voltage
used when the controller invokes the read-retry mechanism,
described in Section V-D) for each flash block, ensuring that
the initial voltage used by read-retry stays close to V opt even
as the threshold voltage distribution shifts.

The SSD controller searches for V opt by counting the
number of errors that need to be corrected by ECC dur-
ing a read. However, there may be times where the initial
read reference voltage (V initial) is set to a value at which the
number of errors during a read exceeds the ECC correction
capability, such as the raw bit error rate for V initial in Fig. 23
(right). When the ECC correction capability is exceeded, the
SSD controller is unable to count how many errors exist in
the raw data. The SSD controller uses disparity-based read
reference voltage approximation [90], [165], [166] for each
flash block to try to bring V initial to a region where the num-
ber of errors does not exceed the ECC correction capability.
Disparity-based read reference voltage approximation takes
advantage of data scrambling. Recall from Section II-C that
to minimize data value dependencies for the error rate, the
SSD controller scrambles the data written to the SSD to
probabilistically ensure that an equal number of 0s and 1s
exist in the flash memory cells. The key idea of disparity-
based read reference voltage approximation is to find the
read reference voltages that result in approximately 50%
of the cells reading out bit value 0, and the other 50% of
the cells reading out bit value 1. To achieve this, the SSD
controller employs a binary search algorithm, which tracks
the ratio of 0s to 1s for each read reference voltage it tries.
The binary search tests various read reference voltage val-
ues, using the ratios of previously tested voltages to narrow
down the range where the read reference voltage can have
an equal ratio of 0s to 1s. The binary search algorithm con-
tinues narrowing down the range until it finds a read refer-
ence voltage that satisfies the ratio.

The usage of the binary search algorithm depends on the
type of NAND flash memory used within the SSD. For SLC
NAND flash, the controller searches for only a single read
reference voltage. For MLC NAND flash, there are three read
reference voltages: the LSB is determined using V b , and the
MSB is determined using both V a and V c (see Section III-C).
 Fig. 24 illustrates the search procedure for MLC NAND flash.
First, the controller uses binary search to find V b , choosing a
voltage that reads the LSB of 50% of the cells as data value 0
(step 1 in Fig. 24). For the MSB, the controller uses the dis-
covered V b value to help search for V a and V c . Due to scram-
bling, cells should be equally distributed across each of the
four voltage states. The controller uses binary search to set
V a such that 25% of the cells are in the ER state, by ensuring
that half of the cells to the left of V b are read with an MSB of
0 (step 2). Likewise, the controller uses binary search to set
V c such that 25% of the cells are in the P3 state, by ensur-
ing that half of the cells to the right of V b are read with an

2Or, more precisely, near-optimal, if the read-retry steps are too
coarse grained to find the optimal voltage.

Fig. 23. Finding the optimal read reference voltage after the
threshold voltage distributions overlap (left), and raw bit error rate
as a function of the selected read reference voltage (right).

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1687

MSB of 0 (step 3). This procedure is extended in a similar
way to approximate the voltages for TLC NAND flash.

If disparity-based approximation finds a value for V initial
where the number of errors during a read can be counted by
the SSD controller, the controller invokes sampling-based
adaptive V opt discovery [37] to minimize the error count, and
thus reduce the read latency. Sampling-based adaptive V opt
discovery learns and records V opt for the last-programmed
page in each block. We sample only the last-programmed
page because it is the page with the lowest data retention
age in the flash block. As retention errors cause the higher-
voltage states to shift to the left (i.e., to lower voltages), the
last-programmed page usually provides an upper bound of
V opt for the entire block.

During sampling-based adaptive V opt discovery, the SSD
controller first reads the last-programmed page using V initial ,
and attempts to correct the errors in the raw data read from
the page. Next, it records the number of raw bit errors as
the current lowest error count N ERR , and sets the applied
read reference voltage (V ref) as V initial . Since V opt typically
decreases over retention age, the controller first attempts
to lower the read reference voltage for the last-programmed
page, decreasing the voltage to V ref – ΔV and reading the
page. If the number of corrected errors in the new read is
less than or equal to the old N ERR , the controller updates
N ERR and V ref with the new values. The controller contin-
ues to lower the read reference voltage until the number
of corrected errors in the data is greater than the old N ERR
or the lowest possible read reference voltage is reached.
Since the optimal threshold voltage might increase in rare
cases, the controller also tests increasing the read refer-
ence voltage. It increases the voltage to V ref + ΔV and reads
the last-programmed page to see if N ERR decreases. Again, it
repeats increasing V ref until the number of corrected errors

in the data is greater than the old N ERR or the highest possi-
ble read reference voltage is reached. The controller sets the
initial read reference voltage of the block as the value of V ref
at the end of this process so that the next time an uncorrect-
able error occurs, read-retry starts at a V initial that is hope-
fully closer to the optimal read reference voltage (V opt).

During the course of the day, as more retention errors
(the dominant source of errors on already-programmed
blocks) accumulate, the threshold voltage distribution shifts
to the left (i.e., voltages decrease), and our initial read refer-
ence voltage (i.e., V initial) is now an upper bound for the read-
retry voltages. Therefore, whenever read-retry is invoked,
the controller now needs to only decrease the read refer-
ence voltages (as opposed to traditional read-retry, which
tries both lower and higher voltages [37]). Sampling-based
adaptive V opt discovery improves the endurance (i.e., the
number of P/E cycles before the ECC correction capability is
exceeded) of the NAND flash memory by 64% and reduces
error correction latency by 10% [37], and is employed in
some modern SSDs today.

2) Other Approaches to Optimizing Read Reference Voltages:
One drawback of the sampling-based adaptive technique is
that it requires time and storage overhead to find and record
the per-block initial voltages. To avoid this, the SSD con-
troller can employ an accurate online threshold voltage dis-
tribution model [33], [42], which can efficiently track and
predict the shift in the distribution over time. The model
represents the threshold voltage distribution of each state as
a probability density function (PDF), and the controller can
use the model to calculate the intersection of the different
PDFs. The controller uses the PDF in place of the threshold
voltage sampling, determining V opt by calculating the inter-
section of the distribution of each state in the model. The
endurance improvement from our state-of-the-art model-
based V opt estimation technique [42] is within 2% of the
improvement from an ideal V opt identification mechanism
[42]. An online threshold voltage distribution model can be
used for a number of other purposes, such as estimating the
future growth in the raw bit error rate and improving error
correction [42].

Other prior work examines adapting read reference volt-
ages based on P/E cycle count, retention age, or read dis-
turb. In one such work, the controller periodically learns
read reference voltages by testing three read reference volt-
ages on six pages per block, which the work demonstrates
to be sufficiently accurate [54]. Similarly, error correction
using LDPC soft decoding (see Section VI-B) requires read-
ing the same page using multiple sets of read reference
voltages to provide fine-grained information on the prob-
ability of each cell representing a bit value 0 or a bit value 1.
Another prior work optimizes the read reference voltages to
increase the ECC correction capability without increasing
the coding rate [73].

Fig. 24. Disparity-based read reference voltage approximation to
find V initial for MLC NAND flash memory. Each circle represents a
cell, where a dashed border indicates that the LSB is undetermined,
a solid border indicates that the LSB is known, a hollow circle
indicates that the MSB is unknown, and a filled circle indicates that
the MSB is known.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1688 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

3) Optimizing Pass-Through Voltage to Reduce Read Disturb
Errors: As we discussed in Section IV-E, the vulnerability of a
cell to read disturb is directly correlated with the voltage dif-
ference (V pass – V th) through the cell oxide [38]. Traditionally,
a single V pass value is used globally for the entire flash mem-
ory, and the value of V pass must be higher than all potential
threshold voltages within the chip to ensure that unread
cells along a bitline are turned on during a read operation
(see Section III-C). To reduce the impact of read disturb,
we can tune V pass to reduce the size of the voltage difference
(V pass – V th). However, it is difficult to reduce V pass glob-
ally, as any cell with a value of V th > V pass introduces an
error during a read operation (which we call a pass-through
error).

We propose a mechanism that can dynamically lower
V pass while ensuring that it can correct any new pass-through
errors introduced. The key idea of the mechanism is to lower
V pass only for those blocks where ECC has enough leftover
error correction capability (see Section II-C) to correct the
newly introduced pass-through errors. When the retention
age of the data within a block is low, we find that the raw
bit error rate of the block is much lower than the rate for
the block when the retention age is high, as the number of
data retention and read disturb errors remains low at low
retention age [38], [70]. As a result, a block with a low reten-
tion age has significant unused ECC correction capability,
which we can use to correct the pass-through errors we
introduce when we lower V pass , as shown in Fig. 25. Thus,
when a block has a low retention age, the controller lowers
V pass aggressively, making it much less likely for read dis-
turbs to induce an uncorrectable error. When a block has
a high retention age, the controller also lowers V pass , but
does not reduce the voltage aggressively, since the limited
ECC correction capability now needs to correct retention
errors, and might not have enough unused correction capa-
bility to correct many new pass-through errors. By reducing
V pass aggressively when a block has a low retention age, we
can extend the time before the ECC correction capability is
exhausted, improving the flash lifetime.

Our read disturb mitigation mechanism [38] learns the
minimum pass-through voltage for each block, such that
all data within the block can be read correctly with ECC.
Our learning mechanism works online and is triggered

periodically (e.g., daily). The mechanism is implemented in
the controller, and has two components. It first finds the
size of the ECC margin M (i.e., the unused correction capa-
bility) that can be exploited to tolerate additional read errors
for each block. Once it knows the available margin M , our
mechanism calibrates V pass on a per-block basis to find the
lowest value of V pass that introduces no more than M addi-
tional raw errors (i.e., there are no more than M cells where
V th > V pass). Our findings on MLC NAND flash memory
show that the mechanism can improve flash endurance by
an average of 21% for a variety of disk workloads [38].

4) Programming and Erase Voltages: Prior work also exam-
ines tuning the programming and erase voltages to extend
flash endurance [74]. By decreasing the two voltages when
the P/E cycle count is low, the accumulated wearout for
each program or erase operation is reduced, which, in turn,
increases the overall flash endurance. Decreasing the pro-
gramming voltage, however, comes at the cost of increasing
the time required to perform ISPP, which, in turn, increases
the overall SSD write latency [74].

F. Hot Data Management

The data stored in an SSD can be accessed by the host at
different rates. For example, we find that across a wide range
of disk workloads, almost 100% of the write operations tar-
get less than 1% of the pages within an SSD [41], exhibiting
high temporal write locality. We call the frequently-written
subset of pages write-hot pages. Likewise, pages with a high
amount of temporal read locality are called read-hot pages.
A number of issues can arise when an SSD does not distin-
guish between write-hot pages and write-cold pages (i.e.,
pages with low temporal write locality), or between read-
hot pages and read-cold pages (i.e., pages with low temporal
read locality). For example, if write-hot pages and write-cold
pages are kept within the same block, intelligent refresh
mechanisms cannot avoid refreshes to pages that were over-
written recently, increasing not only energy consumption
but also write amplification due to remapping-based refresh
[41]. Likewise, if read-hot and read-cold pages are kept
within the same block, read-cold pages are unnecessarily
exposed to a high number of read disturb errors [63], [70].
Hot data management refers to a set of mechanisms that can
identify write-hot or read-hot pages in the SSD. The key idea
is to apply special SSD management policies by placing hot
pages and cold pages into separate flash blocks.

Write-hotness aware refresh management (WARM)
[41] efficiently identifies write-hot pages, and designates a
small pool of blocks in the SSD to exclusively store write-
hot data. As write-hot data is overwritten more frequently
than the refresh interval, the SSD controller can skip refresh
operations to the write-hot blocks. WARM reduces the write
amplification overhead of refresh, which translates to an
average lifetime improvement of 21% over a state-of-the-art
refresh mechanism across a range of disk workloads [41].

Fig. 25. Dynamic pass-through voltage tuning at different
retention ages.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1689

Another work [75] proposes to reuse the correctly function-
ing flash pages within bad blocks (see Section II-C) to store
write-cold data. This technique increases the total number
of usable blocks available for overprovisioning, and extends
flash lifetime by delaying the point at which each flash chip
reaches the upper limit of bad blocks it can tolerate.

RedFTL identifies and replicates read-hot pages across
multiple flash blocks, allowing the controller to evenly
distribute read requests to these pages across the replicas
[63]. Other works reduce the number of read reclaims
(see Section V-C) that need to be performed by mapping
read-hot data to particular flash blocks and lowering the
maximum possible threshold voltage for such blocks [45],
[70]. By lowering the maximum possible threshold voltage
for these blocks, the SSD controller can use a lower V pass
value (see Section V-E) on the blocks without introducing
any additional errors during a read operation. To lower the
maximum threshold voltage in these blocks, the width of
the voltage window for each voltage state is decreased, and
each voltage window shifts to the left [45], [70]. Another
work applies stronger ECC encodings to only read-hot
blocks based on the total read count of the block, in order
to increase SSD endurance without significantly reducing
the amount of overprovisioning [88] (see Section II-D for
a discussion on the tradeoff between ECC strength and
overprovisioning).

G. Adaptive Error Mitigation Mechanisms

Due to the many different factors that contribute to raw
bit errors, error rates in NAND flash memory can be highly
variable. Adaptive error mitigation mechanisms are capable of
adapting error tolerance capability to the error rate. They pro-
vide stronger error tolerance capability when the error rate is
higher, improving flash lifetime significantly. When the error
rate is low, adaptive error mitigation techniques reduce error
tolerance capability to lower the cost of the error mitigation
techniques. In this section, we examine two types of adaptive
techniques: 1) multi-rate ECC and 2) dynamic cell levels.

1) Multi-rate ECC: Some works propose to employ
multiple ECC algorithms in the SSD controller [43], [65],
[76], [77], [82]. Recall from Section II-D that there is a
tradeoff between ECC strength (i.e., the coding rate; see
Section II-C) and overprovisioning, as a codeword (which
contains a data chunk and its corresponding ECC informa-
tion) uses more bits when stronger ECC is employed. The
key idea of multi-rate ECC is to employ a weaker codeword
(i.e., one that uses fewer bits for ECC) when the SSD is rela-
tively new and has a smaller number of raw bit errors, and
to use the saved SSD space to provide additional overprovi-
sioning, as shown in Fig. 26.

Let us assume that the controller contains a configur-
able ECC engine that can support n different types of ECC
codewords, which we call ECCi. Fig. 26 shows an example
of multi-rate ECC that uses four ECC engines, where ECC1

provides the weakest protection but has the smallest code-
word, while ECC4 provides the strongest protection with
the largest codeword. We need to ensure that the NAND
flash memory has enough space to fit the largest codewords,
e.g., those for ECC4 in Fig. 26. Initially, when the raw bit
error rate (RBER) is low, the controller employs ECC1,
as shown in Fig. 27. The smaller codeword size for ECC1
provides additional space for overprovisioning, as shown
in Fig. 26, and thus reduces the effects of write amplifi-
cation. Multi-rate ECC works on an interval-by-interval
basis. Every interval (in this case, a predefined number
of P/E cycles), the controller measures the RBER. When
the RBER exceeds the threshold set for transitioning from
a weaker ECC to a stronger ECC, the controller switches
to the stronger ECC. For example, when the SSD exceeds
the first RBER threshold for switching (T 1 in Fig. 27),
the controller starts switching from ECC1 to ECC2. When
switching between ECC engines, the controller uses the
ECC1 engine to decode data the next time the data is read
out, and stores a new codeword using the ECC2 engine.
This process is repeated during the lifetime of flash mem-
ory for each stronger engine ECCi, where each engine has
a corresponding threshold that triggers switching [43],
[65], [82], as shown in Fig. 27.

Multi-rate ECC allows the same maximum P/E cycle
count for each block as if ECCn was used throughout the
lifetime of the SSD, but reduces write amplification and
improves performance during the periods where the lower
strength engines are employed, by providing additional
overprovisioning (see Section II-D) during those times.
As the lower-strength engines use smaller codewords

Fig. 26. Comparison of space used for user data, overprovisioning,
and ECC between a fixed ECC and a multi-rate ECC mechanism.

Fig. 27. Illustration of how multi-rate ECC switches to differ-
ent ECC codewords (i.e., ECCi) as the RBER grows. OPi is the
overprovisioning factor used for engine ECCi, and WAi is the
resulting write amplification value.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1690 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

(e.g., ECC1 versus ECC4 in Fig. 26), the resulting free space
can instead be employed to further increase the amount of
overprovisioning within the NAND flash memory, which in
turn increases the total lifetime of the SSD. We compute
the lifetime improvement by modifying (4) (Section II-D)
to account for each engine, as follows:

 Lifetime = ∑ i=1
n

 PEC i × (1 + OP i) ________________________ 365 × DWPD × WA i × R Compress
 (9)

In (9), WAi and OPi are the write amplification and over-
provisioning factor for ECCi, and PECi is the number of P/E
cycles that ECCi is used for. Manufacturers can set param-
eters to maximize SSD lifetime in (9), by optimizing the val-
ues of WAi and OPi.

Fig. 28 shows the lifetime improvements for a four-
engine multi-rate ECC, with the coding rates for the four
ECC engines (ECC1¬ECC4) set to 0.90, 0.88, 0.86, and 0.84
(recall that a lower coding rate provides stronger protection;
see Section II-D), over a fixed ECC engine that employs a
coding rate of 0.84. We see that the lifetime improvements
of using multi-rate ECC are: 1) significant, with a 31.2%
increase if the baseline NAND flash memory has 15% over-
provisioning; and 2) greater when the SSD initially has a
smaller amount of overprovisioning.

2) Dynamic Cell Levels: A major reason that errors occur
in NAND flash memory is because the threshold voltage dis-
tribution of each state overlaps more with those of neighbor-
ing states as the distributions widen over time. Distribution
overlaps are a greater problem when more states are encoded
within the same voltage range. Hence, TLC flash has a much
lower endurance than MLC, and MLC has a much lower
endurance than SLC (assuming the same process technol-
ogy node). If we can increase the margins between the
states’ threshold voltage distributions, the amount of over-
lap can be reduced significantly, which in turn reduces the
number of errors.

Prior work proposes to increase margins by dynami-
cally reducing the number of bits stored within a cell, e.g.,
by going from three bits that encode eight states (TLC)
to two bits that encode four states (equivalent to MLC),
or to one bit that encodes two states (equivalent to SLC)
[45], [78]. Recall that TLC uses the ER state and states
P1–P7, which are spaced out approximately equally.

When we downgrade a flash block (i.e., reduce the num-
ber of states its cells can represent) from eight states to
four, the cells in the block now employ only the ER state
and states P3, P5, and P7. As we can see from Fig. 29, this
provides large margins between states P3, P5, and P7, and
provides an even larger margin between ER and P3. The
SSD controller maintains a list of all of the blocks that
have been downgraded. For each read operation, the SSD
controller checks if the target block is in the downgraded
block list, and uses this information to interpret the data
that it reads out from the wordline of the block.

A cell can be downgraded to reduce various types of
errors (e.g., wearout, read disturb). To reduce wearout, a
cell is downgraded when it has high wearout. To reduce read
disturb, a cell can be downgraded if it stores read-hot data
(i.e., the most frequently read data in the SSD). By using
fewer states for a block that holds read-hot data, we can
reduce the impact of read disturb because it becomes harder
for the read disturb mechanism to affect the distributions
enough for them to overlap. As an optimization, the SSD
controller can employ various hot-cold data partitioning
mechanisms (e.g., [41], [45], [63], and [88]) to keep read-
hot data in specially designated blocks [45], [63], [70], [88],
allowing the controller to reduce the size of the downgraded
block list and isolate the impact of read disturb from read-
cold (i.e., infrequently read) data.

Another approach to dynamically increasing the distri-
bution margins is to perform program and erase operations
more slowly when the SSD write request throughput is low
[45], [74]. Slower program/erase operations allow the final
voltage of a cell to be programmed more precisely, and
reduce the amount of oxide degradation that occurs during
programming. As a result, the distribution of each state is
initially much narrower, and subsequent widening of the
distributions results in much lower overlap for a given P/E
cycle count. This technique improves the SSD lifetime by
an average of 61.2% for a variety of disk workloads [74].
Unfortunately, the slower program/erase operations come
at the cost of higher SSD latency, and are thus not applied
during periods of high write traffic. One way to mitigate
the impact of the higher write latency is to perform slower
program/erase operations only during garbage collection,
which ensures that the higher latency occurs only when the
SSD is idle [45]. As a result, read and write requests from
the host do not experience any additional delays.

Fig. 28. Lifetime improvements of using multi-rate ECC over using
a fixed ECC coding rate.

Fig. 29. States used when a TLC cell (with 8 states) is downgraded
to an MLC cell (with 4 states).

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1691

V I. ER ROR COR R ECTION A ND DATA
R ECOV ERY TECHNIQU ES

Now that we have described a variety of error mitigation
mechanisms that can target various types of error sources,
we turn our attention to the error correction flow that is
employed in modern SSDs as well as data recovery tech-
niques that can be employed when the error correction flow
fails to produce correct data.

Modern SSDs typically employ one of two types of
ECC. Bose–Chaudhuri–Hocquenghem (BCH) codes
allow for the correction of multiple bit errors [9], [10],
[92], [93], and are used to correct the errors observed dur-
ing a single read from the NAND flash memory [10]. Low-
density parity-check (LDPC) codes employ information
accumulated over multiple read operations to determine
the likelihood of each cell containing a bit value 1 or a bit
value 0 [9], [94], [95], providing stronger protection at
the cost of greater decoding latency and storage overhead
[11], [73].

In this section, we briefly overview how an SSD performs
error correction when reading data. We first go through an
example error correction flow for an SSD that uses either
BCH codes (Section VI-A) or LDPC codes (Section VI-B).
Next, we compare the error correction strength (i.e., the
number of errors that ECC can correct) when we employ
BCH codes or LDPC codes in an SSD (Section VI-C). Then,
we discuss techniques that can rescue data from an SSD
when the BCH/LDPC decoding fails to correct all errors
(Section VI-D).

A. Error Correction Flow With BCH Codes

The SSD starts a read operation by using the initial read
reference voltages (V initial ; see Section V-E) to read the raw
data stored within a page of NAND flash memory into the
controller. Once the raw data is read, the controller starts
error correction. We first look at the error correction flow
using BCH codes [9], [10], [92], [93]. An example flow of
the stages for BCH decoding is listed in Algorithm 1, and is
shown on the left-hand side of Fig. 30(a). In the first stage,
the ECC engine performs BCH decoding on the raw data,
which reports the total number of bit errors in the data.
If the data cannot be corrected by the implemented BCH
codes, many controllers invoke read-retry (Section V-D) or
read reference voltage optimization (Section V-E) to find a
new set of read reference voltages (V ref) that lower the raw
bit error rate of the data from the error rate when using
V initial . The controller uses the new V ref values to read the
data again, and then repeats the BCH decoding. BCH decod-
ing is hard decoding, where the ECC engine can only use the
hard bit value information (i.e., either a 1 or a 0) read for a
cell using a single set of read reference voltages.

Algorithm 1: Example BCH/LDPC Error Correction
Procedure

First Stage: BCH/LDPC Hard Decoding

Controller gets stored Vinitial values to use as Vref
Flash chips read page using Vref
ECC decoder decodes BCH/LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else if number of stage iterations not exceeded then
Controller invokes Vref optimization to new Vref;

repeats stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W
while ECC fails and all possible voltage states for

adjacent wordline not yet tried do
Controller goes to next neighbor voltage state V
Controller sets Vref based on neighbor voltage state V
Flash chips read page using Vref
Controller corrects cells adjacent to W’s cells that

were programmed to V
ECC decoder decodes BCH
if ECC succeeds then

Controller sends data to host; exit algorithm
end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do
Controller selects optimal value of Vref

X

Flash chips do read-retry using Vref
X

Controller recomputes LLRXR0 to LLRX
RX

ECC decoder decodes LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm

else
Controller goes to soft decoding level X + 1
end

end

Third Stage: Superpage-Level Parity Recovery

Flash chips read all other pages in the superpage
Controller XORs all other pages in the superpage
if data extraction succeeds then

Controller sends data to host
else

Controller reports uncorrectable error
end

If the controller exhausts the maximum number of read
attempts (specified as a parameter in the controller), it
employs correction techniques such as neighbor-cell-assisted
correction (NAC; see Section V-B) to further reduce the error
rate, as shown in the second BCH stage of Algorithm 1. If NAC

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1692 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

cannot successfully read the data, the controller then tries to
correct the errors using the more expensive superpage-level
parity recovery (Section II-C). The steps for superpage-level
parity recovery are shown in the third stage of Algorithm 1.
If the data can be extracted successfully from the other pages
in the superpage, the data from the target page can be recov-
ered. Whenever data is successfully decoded or recovered,
the data is sent to the host (and it is also reprogrammed into
a new physical page to ensure that the corrected data values
are stored for the logical page). Otherwise, the SSD controller
reports an uncorrectable error to the host.

B. Error Correction Flow With LDPC Codes

Fig. 30 compares the error correction flow with BCH
codes (discussed in Section VI-A) to the flow with LDPC
codes. LDPC decoding consists of three major steps. First,
the SSD controller performs LDPC hard decoding, where
the controller reads the data using the optimal read refer-
ence voltages. The process for LDPC hard decoding is simi-
lar to that of BCH hard decoding (as shown in the first stage
of Algorithm 1), but does not typically invoke read-retry if
the first read attempt fails. Second, if LDPC hard decoding
cannot correct all of the errors, the controller uses LDPC
soft decoding to decode the data (which we describe in detail
below). Third, if LDPC soft decoding also cannot correct all
of the errors, the controller invokes superpage-level parity.

1) Soft Decoding: Unlike BCH codes, which require
the invocation of expensive superpage-level parity recov-
ery immediately if the hard decoding attempts (BCH hard
decoding with read-retry or NAC) fail to return correct data,
LDPC decoding fails more gracefully: it can perform multi-
ple levels of soft decoding (the second stage in Algorithm 1)
after hard decoding fails before invoking superpage-level

parity recovery [11], [73]. The key idea of soft decoding is
use soft information for each cell (i.e., the probability that
the cell contains a 1 or a 0) obtained from multiple reads of
the cell via the use of different sets of read reference voltages
[9], [94], [95]. Soft information is typically represented by
the log likelihood ratio (LLR), i.e., the probability of a cer-
tain bit being 0, i.e., P(x = 0| V th) , over the probability of
the bit being 1, i.e., P(x = 1| V th) , given a certain threshold
voltage range (V th) bounded by two threshold voltage values
(i.e., the maximum and the minimum voltage of the thresh-
old voltage range) [11], [73]

 LLR = log
P(x = 0| V th)

P(x = 1| V th)

 . (10)

Every additional level of soft decoding (i.e., the use of
a new set of read reference voltages, which we call V ref

X for
level X) increases the strength of the error correction, as the
level adds new information about the cell (as opposed to
hard decoding, where a new decoding step simply replaces
prior information about the cell). The new read refer-
ence voltages, unlike the ones used for hard decoding, are
optimized such that the amount of useful information (or
mutual information) provided to the LDPC decoder is maxi-
mized [73]. Thus, the use of soft decoding reduces the fre-
quency at which superpage-level parity needs to be invoked.

Fig. 31 illustrates the read reference voltages used during
the first three levels of LDPC soft decoding. At each level, a
new read reference voltage is applied, which divides an exist-
ing threshold voltage range into two ranges. Based on the bit
values read using the various read reference voltages, the SSD
controller bins each cell into a certain V th range, and sends
the bin categorization of all the cells to the LDPC decoder.
For each cell, the decoder applies an LLR value, precomputed
by the SSD manufacturer, which corresponds to the cell’s bin
and decodes the data. For example, as shown in the bottom
of Fig. 31, the three read reference voltages in Level 3 soft
decoding form four threshold voltage ranges (i.e., R0–R3).

Fig. 30. (a) Example error correction flow using BCH codes and
LDPC codes. (b) The corresponding average latency and codeword
failure rate for each LDPC stage.

Fig. 31. First three levels of LDPC soft decoding, showing the V ref
value added at each level, and the resulting threshold voltage
ranges (R0-R3) used for flash cell categorization.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1693

Each of these ranges corresponds to a different LLR value
(i.e., LLR 3 R0 to LLR 3 R3 , where LLR i

Rj is the LLR value for range
Rj in level i). Compared with Level 1 soft decoding (shown
at the top of Fig. 31), which only has two LLR values, Level
3 soft decoding provides more accurate information to the
decoder, and thus has stronger error correction capability.

2) Computing LLR Values: There are several alternatives
for how to compute the LLR values. A common approach for
LLR computation is to treat a flash cell as a communication
channel, where the channel takes an input program signal
(i.e., the target threshold voltage for the cell) and outputs
an observed signal (i.e., the current threshold voltage of the
cell) [33]. The observed signal differs from the input signal
due to the various types of NAND flash memory errors. The
communication channel model allows us to break down
the threshold voltage of a cell into two components: 1) the
expected signal; and 2) the additive signal noise due to
errors. By enabling the modeling of these two components
separately, the communication channel model allows us to
estimate the current threshold voltage distribution of each
state [33]. The threshold voltage distributions can be used to
predict how likely a cell within a certain voltage region is to
belong to a particular voltage state.

One popular variant of the communication channel
model assumes that the threshold voltage distribution of
each state can be modeled as a Gaussian distribution [33].
If we use the mean observed threshold voltage of each state
(denoted as μ) to represent the signal, we find that the P/E
cycling noise (i.e., the shift in the distribution of threshold
voltages due to the accumulation of charge from repeated
programming operations; see Section IV-A) can be mod-
eled as additive white Gaussian noise (AWGN) [33], which
is represented by the standard deviation of the distribution
(denoted as σ). The closed-form AWGN-based model can be
used to determine the LLR value for a cell with threshold
voltage y , as follows:

 LLR (y) =
 μ 1

2 − μ 0 2

2 σ 2
 +

y (μ 0 − μ 1)

 σ 2
 (11)

where μ 0 and μ 1 are the mean threshold voltages for the dis-
tributions of the threshold voltage states for bit value 0 and
bit value 1, respectively, and σ is the standard deviation of
both distributions (assuming that the standard deviation
of each threshold voltage state distribution is equal). Since
LDPC soft decoding uses threshold voltage ranges to catego-
rize a flash cell, we can substitute μ Rj , the mean threshold
voltage of the threshold voltage range Rj , in place of y in (11).

The AWGN-based LLR model in (11) provides only an
estimate of the LLR, because 1) the actual threshold voltage
distributions observed in NAND flash memory are not per-
fectly Gaussian in nature [33], [42]; 2) the controller uses
the mean voltage of the threshold voltage range to approxi-
mate the actual threshold voltage of a cell; and 3) the stand-
ard deviations of each threshold voltage state distribution
are not perfectly equal (see Tables 4–6 in the Appendix).

A number of methods have been proposed to improve
upon the AWGN-based LLR estimate by: 1) using nonlin-
ear transformations to convert the AWGN-based LLR into a
more accurate LLR value [188]; 2) scaling and rounding the
AWGN-based LLR to compensate for the estimation error
[189]; 3) initially using the AWGN-based LLR to read the
data, and, if the read fails, using the ECC information from
the failed read attempt to optimize the LLR and to perform
the read again with the optimized LLR [190]; and 4) using
online and offline training to empirically determine the
LLR values under a wide range of conditions (e.g., P/E cycle
count, retention time, read disturb count) [191]. The SSD
controller can either compute the LLR values at runtime, or
statically store precomputed LLR values in a table.

3) Determining the Number of Soft Decoding Levels: If the
final level of soft decoding, i.e., level N in Fig. 30(a), fails,
the controller attempts to read the data using superpage-
level parity (Section II-C). The number of levels used for
soft decoding depends on the improved reliability that each
additional level provides, taking into account the latency of
performing additional decoding. Fig. 30(b) shows a rough
estimation of the average latency and the codeword failure
rate for each stage. There is a tradeoff between the num-
ber of levels employed for soft decoding and the expected
read latency. For a smaller number of levels, the additional
reliability can be worth the latency penalty. For example,
while a five-level soft decoding step requires up to 480 μ s, it
effectively reduces the codeword failure rate by five orders
of magnitude. This not only improves overall reliability,
but also reduces the frequency of triggering expensive
superpage-level parity recovery, which can take around
10 ms [65]. However, manufacturers limit the number of
levels, as the benefit of employing an additional soft decod-
ing level (which requires more read operations) becomes
smaller due to diminishing returns in the number of addi-
tional errors corrected.

C. BCH and LDPC Error Correction Strength

BCH and LDPC codes provide different strengths of
error correction. While LDPC codes can offer a stronger
error correction capability, soft LDPC decoding can lead
to a greater latency for error correction. Fig. 32 compares
the error correction strength of BCH codes, hard LDPC
codes, and soft LDPC codes [113]. The x-axis shows the raw
bit error rate (RBER) of the data being corrected, and the
y-axis shows the uncorrectable bit error rate (UBER), or the
error rate after correction, once the error correction code
has been applied. The UBER is defined as the ECC code-
word (see Section II-C) failure rate divided by the codeword
length [110]. To ensure a fair comparison, we choose a simi-
lar codeword length for both BCH and LDPC codes, and use
a similar coding rate (0.935 for BCH, and 0.936 for LDPC)
[113]. We make two observations from Fig. 32.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1694 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

First, we observe that the error correction strength of
the hard LDPC code is similar to that of the BCH codes.
Thus, on its own, hard LDPC does not provide a signifi-
cant advantage over BCH codes, as it provides an equiva-
lent degree of error correction with similar latency (i.e.,
one read operation). Second, we observe that soft LDPC
decoding provides a significant advantage in error correc-
tion capability. Contemporary SSD manufacturers target a
UBER of 10 −16 [110]. The example BCH code with a cod-
ing rate of 0.935 can successfully correct data with an RBER
of 1.0 × 10 −3 while remaining within the target UBER. The
example LDPC code with a coding rate of 0.936 is more
successful with soft decoding, and can correct data with an
RBER as high as 5.0 × 10 −3 while remaining within the tar-
get UBER, based on the error rate extrapolation shown in
Fig. 32. While soft LDPC can tolerate up to five times the
raw bit errors as BCH, this comes at a cost of latency (not
shown on the graph), as soft LDPC can require several addi-
tional read operations after hard LDPC decoding fails, while
BCH requires only the original read.

To understand the benefit of LDPC codes over BCH
codes, we need to consider the combined effect of hard
LDPC decoding and soft LDPC decoding. As discussed in
Section VI-B, soft LDPC decoding is invoked only when hard
LDPC decoding fails. To balance error correction strength
with read performance, SSD manufacturers can require that
the hard LDPC failure rate cannot exceed a certain thresh-
old, and that the overall read latency (which includes the
error correction time) cannot exceed a certain target [65],
[113]. For example, to limit the impact of error correction
on read performance, a manufacturer can require 99.99% of
the error correction operations to be completed after a sin-
gle read. To meet our example requirement, the hard LDPC
failure rate should not be greater than 10 −4 (i.e., 99.99%),
which corresponds to an RBER of 2.0 × 10 −3 and a UBER
of 10 −8 (shown as Soft LDPC Trigger Point in Fig. 32). For
only the data that contains one or more failed codewords,
soft LDPC is invoked (i.e., soft LDPC is invoked only 0.01%
of the time). For our example LDPC code with a coding
rate of 0.936, soft LDPC decoding is able to correct these

codewords: for an RBER of 2.0 × 10 −3 , using soft LDPC
results in a UBER well below 10 −16 , as shown in Fig. 32.

To gauge the combined effectiveness of hard and soft
LDPC codes, we calculate the overhead of using the com-
bined LDPC decoding over using BCH decoding. If 0.01%
of the codeword corrections fail, we can assume that in
the worst case, each failed codeword resides in a different
flash page. As the failure of a single codeword in a flash
page causes soft LDPC to be invoked for the entire flash
page, our assumption maximizes the number of flash pages
that require soft LDPC decoding. For an SSD with four
codewords per flash page, our assumption results in up
to 0.04% of the data reads requiring soft LDPC decoding.
Assuming that the example soft LDPC decoding requires
seven additional reads, this corresponds to 0.28% more
reads when using combined hard and soft LDPC over BCH
codes. Thus, with a 0.28% overhead in the number of reads
performed, the combined hard and soft LDPC decoding
provides twice the error correction strength of BCH codes
(shown as Improvement in RBER in Fig. 32).

In our example, the lifetime of an SSD is limited by
both the UBER and whether more than 0.01% of the code-
word corrections invoke soft LDPC, to ensure that the
overhead of error correction does not significantly increase
the read latency [113]. In this case, when the lifetime
of the SSD ends, we can still read out the data correctly
from the SSD, albeit at an increased read latency. This is
because even though we capped the SSD lifetime to an
RBER of 2.0 × 10 −3 in our example shown in Fig. 32, soft
LDPC is able to correct data with an RBER as high as
5.0 × 10 −3 while still maintaining an acceptable UBER
(10 −16) based on the error rate extrapolation shown.
Thus, LDPC codes have a margin, which we call the reli-
ability margin and show in Fig. 32. This reliability margin
enables us to trade off lifetime with read latency.

We conclude that with a combination of hard and soft
LDPC decoding, an SSD can offer a significant improvement
in error correction strength over using BCH codes.

D. SSD Data Recovery

When the number of errors in data exceeds the ECC
correction capability and the error correction techniques in
Sections VI-A and VI-B are unable to correct the read data,
then data loss can occur. At this point, the SSD is considered
to have reached the end of its lifetime. In order to avoid such
data loss and recover (or, rescue) the data from the SSD, we
can harness our understanding of data retention and read
disturb behavior. The SSD controller can employ two con-
ceptually similar mechanisms, Retention Failure Recovery
(RFR) [37] and Read Disturb Recovery (RDR) [38], to undo
errors that were introduced into the data as a result of data
retention and read disturb, respectively. The key idea of
both of these mechanisms is to exploit the wide variation of
different flash cells in their susceptibility to data retention

Fig. 32. Raw bit error rate versus uncorrectable bit error rate for
BCH codes, hard LDPC codes, and soft LDPC codes.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1695

loss and read disturbance effects, respectively, in order to
correct some of the errors without the assistance of ECC so
that the remaining error count falls within the ECC error
correction capability.

When a flash page read fails (i.e., uncorrectable errors
exist), RFR and RDR record the current threshold voltages
of each cell in the page using the read-retry mechanism (see
Section V-D), and identify the cells that are susceptible to
generating errors due to retention and read disturb (i.e.,
cells that lie at the tails of the threshold voltage distribu-
tions of each state, where the distributions overlap with
each other), respectively. We observe that some flash cells
are more likely to be affected by retention leakage and read
disturb than others, as a result of process variation [37],
[38]. We call these cells retention/read disturb prone, while
cells that are less likely to be affected are called retention/
read disturb resistant. RFR and RDR classify the susceptible
cells as retention/read disturb prone or resistant by induc-
ing even more retention and read disturb on the failed flash
page, and then recording the new threshold voltages of the
susceptible cells. We classify the susceptible cells by observ-
ing the magnitude of the threshold voltage shift due to the
additional retention/read disturb induction.

Fig. 33 shows how the threshold voltage of a retention-
prone cell (i.e., a fast-leaking cell, labeled P in the figure)
decreases over time (i.e., the cell shifts to the left) due to
retention leakage, while the threshold voltage of a reten-
tion-resistant cell (i.e., a slow-leaking cell, labeled R in the
figure) does not change significantly over time. Retention
Failure Recovery (RFR) uses this classification of reten-
tion-prone versus retention-resistant cells to correct the
data from the failed page without the assistance of ECC.
Without loss of generality, let us assume that we are study-
ing susceptible cells near the intersection of two threshold
voltage distributions X and Y, where Y contains higher volt-
ages than X. Fig. 33 highlights the region of cells consid-
ered susceptible by RFR using a box, labeled Susceptible.
A susceptible cell within the box that is retention prone
likely belongs to distribution Y, as a retention-prone cell
shifts rapidly to a lower voltage (see the circled cell labeled
P within the susceptible region in the figure). A retention-
resistant cell in the same susceptible region likely belongs

to distribution X (see the boxed cell labeled R within the
susceptible region in the figure).

Similarly, Read Disturb Recovery (RDR) uses the clas-
sification of read disturb prone versus read disturb resistant
cells to correct data. For RDR, disturb-prone cells shift more
rapidly to higher voltages, and are thus likely to belong to
distribution X, while disturb-resistant cells shift little and
are thus likely to belong to distribution Y. Both RFR and
RDR correct the bit errors for the susceptible cells based on
such expected behavior, reducing the number of errors that
ECC needs to correct.

RFR and RDR are highly effective at reducing the error
rate of failed pages, reducing the raw bit error rate by 50%
and 36%, respectively, as shown in our prior works [37],
[38], where more detailed information and analyses can
be found.

V II. EMERGING R ELI A BILIT Y ISSU ES
FOR 3 -D NA ND FL A SH

Recently, manufacturers have begun to produce SSDs that
contain three-dimensional (3-D) NAND flash memory, where
multiple layers are vertically stacked to increase the density
and to improve the scalability of the memory [79]. Instead of
using floating gate transistors, which store charge on a conduc-
tor, most 3-D NAND flash memories currently use charge trap
transistors, which use insulating material to store charge. While
the high-level behavior of charge trap transistors is similar to
FG transistors, charge trap transistors do introduce some dif-
ferences in terms of reliability for 3-D NAND flash (as opposed
to 2-D planar NAND flash, which we have examined through-
out this article so far). For example, the tunneling oxide in
charge trap transistors is less susceptible to breakdown than
the oxide in floating gate transistors during high-voltage opera-
tion, increasing the endurance of the transistor [79]. Charge
trap transistors are, however, more susceptible to data reten-
tion leakage. Due to the possibility that charge can now escape
(i.e., migrate) across the z-dimension in addition to through the
tunnel oxide, 3-D NAND flash cells tend to leak more rapidly,
especially soon after being programmed [79].

Another, albeit short-term, change with 3-D NAND
flash is the increase in process technology feature size.
Contemporary 3-D NAND flash can contain 48–64 layers,
allowing manufacturers to use larger feature sizes (e.g.,
50–54 nm) than commonly used feature sizes in planar
flash (e.g., 15–19 nm) while still increasing memory den-
sity [79]. As discussed in Section III, many of the errors
observed in 2-D planar NAND flash are exacerbated as
a result of significant process scaling. For example, while
read disturb is a prominent source of errors at small feature
sizes (e.g., 20–24 nm), its effects are small at larger feature
sizes [38]. Likewise, cell-to-cell program interference is
not a significant issue at larger process technologies, lead-
ing manufacturers to revert to one-shot programming (see

Fig. 33. Some retention-prone (P) and retention-resistant (R) cells
are incorrectly read after charge leakage due to retention time.
RFR identifies and corrects the incorrectly read cells based on their
leakage behavior.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1696 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

Section III-D) for 3-D NAND flash [80]. As the transistors
are larger in the current 3-D NAND flash generations, the
endurance (i.e., the maximum P/E cycle count) of the flash
cells has increased as well, by over an order of magnitude
[80]. However, rigorous studies that examine error charac-
teristics of and error mitigation techniques for 3-D NAND
flash memories are yet to be published.

While these changes with 3-D NAND flash are likely to
reduce reliability issues due to program interference and
read disturb as compared to planar NAND flash, the other
errors outlined in Section III are likely to remain prevalent
in 3-D NAND flash. In fact, retention errors are likely to
become exacerbated. As such, all described techniques cov-
ered in this paper still apply to 3-D NAND flash, though their
relative benefits are yet to be evaluated. With its increased
susceptibility to data retention leakage, advanced retention
mitigation and recovery techniques, such as those described
in Sections V-C and V-E, should be even more actively
developed and investigated for 3-D NAND flash memory.
Furthermore, 3-D NAND flash memory is expected to scale
down to smaller process technologies in the coming years,
reaching the feature sizes of modern planar flash memory,
and to make use of FG transistors [79], just like modern pla-
nar flash memory. As such, with technology scaling of 3-D
NAND flash memory, we can expect that all of the reliability
issues highlighted in this paper will be exhibited in SSDs
that utilize 3-D NAND flash memory.

V III. SIMIL A R ER ROR S IN OTHER
MEMORY TECHNOLOGIES

As we discussed in Section IV, there are five major sources
of errors in flash-memory-based SSDs. Many of these error
sources can also be found in other types of memory and
storage technologies. In this section, we take a brief look
at the major reliability issues that exist within DRAM and
in emerging nonvolatile memories. In particular, we focus
on DRAM in our discussion, as modern SSD controllers
have access to dedicated DRAM of considerable capacity
(e.g., 1 GB for every 1 TB of SSD capacity), which exists
within the SSD package (see Section II-C). Major sources
of errors in DRAM include data retention, cell-to-cell
interference, and read disturb. There is a wide body of
work on mitigation mechanisms for the errors we describe
in this section, but we explicitly discuss only a select
number of them here.

1) Data Retention Errors in DRAM: DRAM uses the charge
within a capacitor to represent one bit of data. Much like the
floating gate within NAND flash memory, charge leaks from
the DRAM capacitor over time, leading to data retention
issues. Charge leakage in DRAM, if left unmitigated, can lead
to much more rapid data loss than the leakage observed in a
NAND flash cell. While leakage from a NAND flash cell typi-
cally leads to data loss after several days to years of retention

time (see Section IV-D), leakage from a DRAM cell leads to
data loss after a retention time on the order of milliseconds to
seconds [104]. Due to the rapid charge leakage from DRAM
cells, a DRAM controller periodically refreshes all DRAM cells
in place [66], [69], [104], [123], [125], [126], [147] (similar to
the techniques discussed in Section V-C, but at a much smaller
time scale). DRAM standards require a DRAM cell to be
refreshed once every 64 ms [123]. As the density of DRAM con-
tinues to increase over successive product generations (e.g., by
 128x between 1999 and 2017 [120], [174]), the performance
and energy overheads required to refresh an entire DRAM
module have grown significantly [66].

To combat the growing performance and energy over-
heads of refresh, two classes of techniques have been
developed. The first class of techniques reduce the fre-
quency of refresh operations without sacrificing the reli-
ability of data stored in DRAM (e.g., [66], [125], [126],
[145]–[147], and [149]). To reduce the frequency of
refresh operations, a number of works take advantage of
the fact that the vast majority of DRAM cells can retain
data without loss for much longer than 64 ms, as various
experimental studies of real DRAM chips (e.g., [66], [119],
[125], [126], [147], and [148]) demonstrate. The second
class of techniques reduce the interference caused by
refresh requests on demand requests (e.g., [69], [114], and
[163]). These works either change the scheduling order of
refresh requests [69], [114], [163] or slightly modify the
DRAM architecture to enable the servicing of refresh and
demand requests in parallel [69]. More findings on the
nature of DRAM data retention and associated errors, as
well as relevant experimental data from modern DRAM
chips, can be found in our prior works [66], [69], [104],
[119], [125]–[127], [147], [157], [174], [206].

2) Cell-to-Cell Interference Errors in DRAM: Another simi-
larity between the capacitive DRAM cell and the floating gate
cell in NAND flash memory is that they are both vulnerable
to cell-to-cell interference. In DRAM, one important way
in which cell-to-cell interference exhibits itself is the data-
dependent retention behavior, where the retention time of
a DRAM cell is dependent on the values written to nearby
DRAM cells [104], [126], [127], [147], [149]. This phenom-
enon is called data pattern dependence (DPD) [104]. Data pat-
tern dependence in DRAM is similar to the data-dependent
nature of program interference that exists in NAND flash
memory (see Section IV-C). Within DRAM, data dependence
occurs as a result of parasitic capacitance coupling (between
DRAM cells). Due to this coupling, the amount of charge
stored in one cell’s capacitor can inadvertently affect the
amount of charge stored in an adjacent cell’s capacitor [104],
[126], [127], [147], [149]. As DRAM cells become smaller with
technology scaling, cell-to-cell interference worsens because
parasitic capacitance coupling between cells increases [104],
[126]. More findings on cell-to-cell interference and the

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1697

data-dependent nature of cell retention times in DRAM,
along with experimental data obtained from modern DRAM
chips, can be found in our prior works [104], [125]–[127],
[147], [149], [174], [206].

3) Read Disturb Errors in DRAM: Commodity DRAM
chips that are sold and used in the field today exhibit read
disturb errors [116], also called RowHammer-induced errors
[131], which are conceptually similar to the read disturb
errors found in NAND flash memory (see Section IV-E).
Repeatedly accessing the same row in DRAM can cause
bit flips in data stored in adjacent DRAM rows. In order to
access data within DRAM, the row of cells corresponding
to the requested address must be activated (i.e., opened for
read and write operations). This row must be precharged
(i.e., closed) when another row in the same DRAM bank
needs to be activated. Through experimental studies on a
large number of real DRAM chips, we show that when a
DRAM row is activated and precharged repeatedly (i.e.,
hammered) enough times within a DRAM refresh interval,
one or more bits in physically-adjacent DRAM rows can be
flipped to the wrong value [116]. This DRAM failure mode
affects more than 80% of the DRAM chips we tested [116].
As indicated above, this read disturb error mechanism in
DRAM is popularly called RowHammer [131].

Various recent works show that RowHammer can be
maliciously exploited by user-level software programs to
1) induce errors in existing DRAM modules [116], [131]
and 2) launch attacks to compromise the security of vari-
ous systems [115], [131], [132], [135]–[138], [158], [179].
For example, by exploiting the RowHammer read disturb
mechanism, a user-level program can gain kernel-level
privileges on real laptop systems [115], [132], take over a
server vulnerable to RowHammer [135], take over a victim
virtual machine running on the same system [136], and
take over a mobile device [138]. Thus, the RowHammer
read disturb mechanism is a prime (and perhaps the
first) example of how a circuit-level failure mechanism in
DRAM can cause a practical and widespread system secu-
rity vulnerability.3 We believe similar (yet more difficult to
exploit) vulnerabilities exist in MLC NAND flash memory
as well, as described in our recent work [40].

The RowHammer effect in DRAM worsens as the manu-
facturing process scales down to smaller node sizes [116],
[131]. More findings on RowHammer, along with extensive
experimental data from real DRAM devices, can be found in
our prior works [116], [131], [176].

4) Large-Scale DRAM Error Studies: Like flash memory,
DRAM is employed in a wide range of computing systems,
at scale. Thus, there is a similar need to study the aggregate
behavior of errors observed in a large number of DRAM

chips deployed in the field. Akin to the large-scale flash
memory SSD reliability studies discussed in Section IV-F, a
number of experimental studies characterize the reliability
of DRAM at large scale in the field (e.g., [117], [118], [124],
[150], and [151]). Two notable results from these studies
are that 1) unlike SSDs, DRAM does not show any clearly
discernable trend where higher utilization and age lead to
a greater raw bit error rate [117]; and 2) the increase in the
density of DRAM chips with technology scaling leads to
higher error rates [117].

5) Latency-Related Errors in DRAM: Other experimental
studies examine the tradeoff between DRAM reliability and
latency [119], [120], [128], [152], [157], [174], [175], [178].
These works perform extensive experimental studies on
real DRAM chips to identify the effect of 1) temperature,
2) supply voltage, and 3) manufacturing process variation
that exists in DRAM on the latency and reliability charac-
teristics of different DRAM cells and chips. The tempera-
ture, supply voltage, and manufacturing process variation
all dictate the amount of time that each cell needs to safely
complete its operations. Our works examine how one can
reliably exploit 1) latency variation across different oper-
ating temperatures and across different DRAM modules
to reduce the access latency of each module [119]; 2) the
relation between supply voltage and latency variation to
reduce the amount of system energy consumed [178]; and
3) manufacturing process induced latency variation [120]
and design-induced latency variation [128] across the cells
within a single DRAM chip to reduce access latency to dif-
ferent parts of the chip. One can further reduce latency by
sacrificing some amount of reliability and performing error
correction to fix the resulting errors [128]. More informa-
tion about the errors caused by reduced latency operation
in DRAM chips and the tradeoff between reliability and
latency can be found in our prior works [119], [120], [128],
[130], [157], [174], [175], [178].

6) Error Correction in DRAM: In order to protect the data
stored within DRAM from various types of errors, some
(but not all) DRAM modules employ ECC [130]. The ECC
employed within DRAM is much weaker than the ECC
employed in SSDs (see Section VI) for various reasons. First,
DRAM has a much lower access latency, and error correc-
tion mechanisms should be designed to ensure that DRAM
access latency does not increase significantly. Second, the
error rate of a DRAM chip tends to be lower than that of a
flash memory chip. Third, the granularity of access is much
smaller in a DRAM chip than in a flash memory chip, and
hence sophisticated error correction can come at a high
cost. The most common ECC algorithm used in commodity
DRAM modules is SECDED (single error correction, double
error detection) [130]. Another ECC algorithm available for
some commodity DRAM modules is Chipkill, which can tol-
erate the failure of an entire DRAM chip within a module

3Note that various solutions to RowHammer exist [116], [131], [176],
but we do not discuss them here.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1698 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

[139]. For both SECDED and Chipkill, the ECC information
is stored on one or more extra chips within the DRAM mod-
ule, and, on a read request, this information is sent along-
side the data to the memory controller, which performs the
error detection and correction algorithm.

As DRAM scales to smaller technology nodes, its error rate
continues to increase [111], [112], [116], [117], [131] and effects
like read disturb [116], cell-to-cell interference [104], [126],
[127], [147], [149], [206], and variable retention time [104],
[125], [126], [147] become more severe [111], [112], [116], [131].
As a result, there is an increasing need for 1) employing ECC
algorithms in all DRAM chips/modules; 2) developing more
sophisticated and efficient ECC algorithms for DRAM chips/
modules; and 3) developing error-specific mechanisms for error
correction. To this end, recent work follows various directions.
First, in-DRAM ECC, where correction is performed within the
DRAM module itself (as opposed to in the controller), is pro-
posed [153]. One work shows how exposing this in-DRAM ECC
information to the memory controller can provide Chipkill-like
error protection at much lower overhead than the traditional
Chipkill mechanism [144]. Second, various works explore and
develop stronger ECC algorithms for DRAM (e.g., [140], [141],
and [154]), and explore how to make ECC more efficient based
on the current DRAM error rate (e.g., [139], [142], [143], and
[164]). Third, recent work shows how the cost of ECC protection
can be reduced by 1) exploiting heterogeneous reliability memory
[130], where different portions of DRAM use different strengths
of error protection based on the error tolerance of different appli-
cations and different types of data [130], [180], and 2) using the
additional DRAM capacity that is otherwise used for ECC to
improve system performance when reliability is not as important
for the given application and/or data [207].

Many of these works that propose error mitigation
mechanisms do not distinguish between the characteristics
of different types of errors. We believe that in addition to
providing sophisticated and efficient ECC mechanisms in
DRAM, there is also significant value in and opportunity
for exploring specialized error mitigation mechanisms that
are customized for different error types, again, just as it is
done for flash memory (as we discussed in Section V). One
such example of a specialized error mitigation mechanism
is targeted to fix the RowHammer read disturb mechanism,
and is called Probabilistic Adjacent Row Activation (PARA)
[116], [131]. The key idea of PARA is to refresh the rows that
are physically adjacent to an activated row, with a very low
probability. PARA is shown to be very effective in fixing the
RowHammer problem at no storage cost and at very low
performance overhead [116].

7) Errors in Emerging Nonvolatile Memory Technologies:
DRAM operations are several orders of magnitude faster than
SSD operations, but DRAM has two major disadvantages. First,
DRAM offers orders of magnitude less storage density than
NAND-flash-memory-based SSDs. Second, DRAM is vola-
tile (i.e., the stored data is lost on a power outage). Emerging

nonvolatile memories, such as phase-change memory (PCM)
[121], [129], [134], [155], [159], [160], [208], spin-transfer torque
magnetic RAM (STT-RAM or STT-MRAM) [122], [133], metal-
oxide resistive RAM (RRAM) [156], and memristors [181], [182],
are expected to bridge the gap between DRAM and SSDs, pro-
viding DRAM-like access latency and energy, and at the same
time SSD-like large capacity and nonvolatility (and hence SSD-
like data persistence). PCM-based devices are expected to have
a limited lifetime, as PCM can only endure a certain number
of writes [121], [129], [134], similar to the P/E cycling errors in
NAND-flash-memory-based SSDs (though PCM’s write endur-
ance is higher than that of SSDs). PCM suffers from resistance
drift [134], where the resistance used to represent the value
shifts higher over time (and eventually introduces a bit error),
similar to how charge leakage in NAND flash memory and
DRAM lead to retention errors over time. STT-RAM predomi-
nantly suffers from retention failures, where the magnetic value
stored for a single bit can flip over time, and read disturb (differ-
ent from the read disturb in DRAM and flash memory), where
reading a bit in STT-RAM can inadvertently induce a write to
that same bit [122]. Due to the nascent nature of emerging
nonvolatile memory technologies and the lack of availability of
large-capacity devices built with them, extensive and depend-
able experimental studies have yet to be conducted on the reli-
ability of real PCM, STT-RAM, RRAM, and memristor chips.
However, we believe that similar error mechanisms to those we
discussed in this paper for flash memory and DRAM are likely
to be prevalent in emerging technologies as well, albeit with
different underlying mechanisms and error rates.

I X . CONCLUSION

We provide a survey of the fundamentals of and recent
research in NAND-flash-memory-based SSD reliability. As
the underlying NAND flash memory within SSDs scales to
increase storage density, we find that the rate at which raw bit
errors occur in the memory increases significantly, which in
turn reduces the lifetime of the SSD. We describe the preva-
lent error mechanisms that affect NAND flash memory, and
examine how they behave in modern NAND flash memory
chips. To compensate for the increased raw bit error rate with
technology scaling, a wide range of error mitigation and data
recovery mechanisms have been proposed. These techniques
effectively undo some of the SSD lifetime reductions that
occur due to flash memory scaling. We describe the state-of-
the-art techniques for error mitigation and data recovery, and
discuss their benefits. Even though our focus is on MLC and
TLC NAND flash memories, for which we provide data from
real flash chips, we believe that these techniques will be appli-
cable to emerging 3-D NAND flash memory technology as
well, especially when the process technology scales to smaller
nodes. Thus, we hope the tutorial presented in this work on
fundamentals and recent research not only enables practi-
tioners to get acquainted with flash memory errors and how

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1699

they are mitigated, but also helps inform future directions in
NAND flash memory and SSD development as well as system
design using flash memory. We believe future is bright for
system-level approaches that codesign system and memory
[111], [112], [131] to enhance overall scaling of platforms, and
we hope that the examples of this approach presented in this
tutorial inspire researchers and developers to enhance future
computing platforms via such system-memory codesign.

A PPENDI X

TLC Threshold Voltage Distribution Data

Acknowledgments
The authors would like to thank R. Micheloni for his helpful
feedback on earlier drafts of the paper. They would also like

to thank their collaborator Seagate for their support. A ver-
sion of this article can be found on arXiv [209].

Table 4 Normalized Mean (Top) and Standard Deviation (Bottom)

Values for Threshold Voltage Distribution of Each Voltage State at

Various P/E Cycle Counts (Section IV-A)

Table 5 Normalized Mean (Top) and Standard Deviation (Bottom)

Values for Threshold Voltage Distribution of Each Voltage State at

Various Data Retention Times (Section IV-D)

Table 6 Normalized Mean (Top) and Standard Deviation (Bottom)

Values for Threshold Voltage Distribution of Each Voltage State at

Various Read Disturb Counts (Section IV-E)

REFERENCES
 [1] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A

flash translation layer employing demand-based
selective caching of page-level address
mappings,” in Proc. ASPLOS, 2009, pp. 229–240.

 [2] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee,
S.-W. Lee, and H.-J. Song, “A survey of flash
translation layer,” J. Syst. Archit., vol. 55, nos.
5–6, pp. 332–343, May/Jun. 2009.

 [3] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-
time garbage collection for flash-memory
storage systems of real-time embedded
systems,” ACM Trans. Embedded Comput.
Syst., vol. 3, no. 4, pp. 837–863, 2004.

 [4] M.-C. Yang, Y.-M. Chang, C.-W. Tsao,
P.-C. Huang, Y.-H. Chang, and T.-W. Kuo,
“Garbage collection and wear leveling for
flash memory: Past and future,” in Proc.
SMARTCOMP, 2014, pp. 66–73.

 [5] A. Zuck, S. Toledo, D. Sotnikov, and
D. Harnik, “Compression and SSDs: Where
and How?” in Proc. INFLOW, 2014, pp. 1–28.

 [6] J. Li, K. Zhao, X. Zhang, J. Ma, M. Zhao, and
T. Zhang, “How much can data
compressibility help to improve NAND flash
memory lifetime?” in Proc. FAST, 2015,
pp. 227–240.

 [7] J. Cha and S. Kang, “Data randomization
scheme for endurance enhancement and

interference mitigation of multilevel flash
memory devices,” ETRI J., vol. 35,
pp. 166–169, Feb. 2013.

 [8] C. Kim et al., “A 21 nm high performance 64
Gb MLC NAND flash memory with 400
MB/S asynchronous toggle DDR interface,”
IEEE J. Solid-State Circuits, vol. 47, no. 4,
pp. 981–989, Apr. 2012.

 [9] L. Shu and D. J. Costello, Error Control
Coding, 2nd ed. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2004.

 [10] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park,
“6.4 Gb/s multi-threaded BCH encoder and
decoder for multi-channel SSD controllers,”
in Proc. ISSCC, pp. 426–428.

 [11] K. Zhao, W. Zhao, H. Sun, X. Zhang,
N. Zheng, and T. Zhang, “LDPC-in-SSD:
Making advanced error correction codes
work effectively in solid state drives,”
in Proc. FAST, 2013.

 [12] JEDEC Solid State Technology Association, Failure
Mechanisms and Models for Semiconductor
Devices, document JEP122H, 2016.

 [13] C. Dirik and B. Jacob, “The performance of
PC solid-state disks (SSDs) as a function of
bandwidth, concurrency, device architecture,
and system organization,” in Proc. ISCA, 2009.

 [14] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee,
“A superblock-based flash translation

layer for NAND flash memory,” in
 Proc. EMSOFT, 2006.

 [15] “Memory management in NAND flash arrays,”
Micron Technol., Boise, ID, USA, Tech Note
TN-29-28, 2005.

 [16] D. A. Patterson, G. Gibson, and R. H. Katz,
“A case for redundant arrays of
inexpensive disks (RAID),” in Proc.
SIGMOD, 1988.

 [17] P. Desnoyers, “Analytic modeling of SSD
write performance,” in Proc. SYSTOR, 2012.

 [18] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and
R. Pletka, “Write amplification analysis in
flash-based solid state drives,” in Proc. SYSTOR,
2009.

 [19] Y. Li, C. Hsu, and K. Oowada, “Non-volatile
memory and method with improved first
pass programming,” U.S. Patent 8811091 B2,
Aug. 19, 2014.

 [20] N. Mielke et al., “Bit error rate in NAND
flash memories,” in Proc. IRPS, 2008.

 [21] R. H. Fowler and L. Nordheim, “Electron
emission in intense electric fields,”
Proc. Roy. Soc. London, 1928.

 [22] J. E. Brewer and M. Gill, Nonvolatile Memory
Technologies With Emphasis on Flash: A
Comprehensive Guide to Understanding and Using
NVM Devices. Hoboken, NJ, USA: Wiley, 2008.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1700 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

 [23] K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash
memory with incremental step pulse
programming scheme,” IEEE J. Solid-state
Circuits,, 1995.

 [24] R. Bez, E. Camerlenghi, A. Modelli, and
A. Visconti, “Introduction to flash memory,”
Proc. IEEE, vol. 91, no. 4, pp. 489–502,
Apr. 2003.

 [25] W. Wang, T. Xie, and D. Zhou,
“Understanding the impact of threshold
voltage on MLC flash memory performance
and reliability,” in Proc. ICS, 2014.

 [26] K.-T. Park et al., “A zeroing cell-to-cell
interference page architecture with
temporary LSB storing and parallel MSB
program scheme for MLC NAND flash
memories,” IEEE J. Solid-State Circuits,
vol. 43, no. 4, pp. 919–928, Apr. 2008.

 [27] J. Park, J. Jeong, S. Lee, Y. Song, and J. Kim,
“Improving performance and lifetime of
NAND storage systems using relaxed
program sequence,” in Proc. DAC, 2016.

 [28] P. Pavan, R. Bez, P. Olivo, and E. Zanoni,
“Flash memory cells—an overview,” Proc.
IEEE, vol. 85, no. 8, pp. 1248–1271,
Aug. 1997.

 [29] K. Naruke, S. Taguchi, and M. Wada, “Stress
induced leakage current limiting to scale
down EEPROM tunnel oxide thickness,”
IEDM Tech. Dig., Dec. 1988, pp. 424–427.

 [30] R. Degraeve et al., “Analytical percolation
model for predicting anomalous charge loss
in flash memories,” IEEE Trans. Electron
Devices, vol. 51, no. 9, pp. 1392–1400,
Sep. 2004.

 [31] Y. Cai, E. F. Haratsch, M. McCartney, and
K. Mai, “FPGA-based solid-state drive
prototyping platform,” in Proc. FCCM, 2011.

 [32] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai,
“Error patterns in MLC NAND flash
memory: Measurement, characterization,
and analysis,” in Proc. DATE, 2012.

 [33] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai,
“Threshold voltage distribution in MLC
NAND flash memory: Characterization,
analysis, and modeling,” in Proc. DATE, 2013.

 [34] Y. Cai et al., “Flash correct-and-refresh:
Retention-aware error management for
increased flash memory lifetime,” in
Proc. ICCD, 2012.

 [35] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai,
“Program interference in MLC NAND flash
memory: Characterization, modeling, and
mitigation,” in Proc. ICCD, 2013.

 [36] Y. Cai et al., “Neighbor-cell assisted error
correction for MLC NAND flash memories,”
in Proc. SIGMETRICS, 2014.

 [37] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and
O. Mutlu, “Data retention in MLC NAND
flash memory: Characterization, optimization,
and recovery,” in Proc. HPCA, 2015.

 [38] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch,
K. Mai, and O. Mutlu, “Read disturb errors
in MLC NAND flash memory:
Characterization, mitigation, and recovery,”
in Proc. DSN, 2015.

 [39] Y. Cai et al., “Error analysis and retention-
aware error management for NAND flash
memory,” Intel Technol. J., vol. 17, no. 1,
pp. 140–165, May 2013.

 [40] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and
E. F. Haratsch, “Vulnerabilities in MLC NAND
flash memory programming: Experimental
analysis, exploits, and mitigation techniques,”
in Proc. HPCA, 2017, pp. 49–60.

 [41] Y. Luo, Y. Cai, S. Ghose, J. Choi, and
O. Mutlu, “WARM: Improving NAND flash

memory lifetime with write-hotness aware
retention management,” in Proc. MSST, 2015.

 [42] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and
O. Mutlu, “Enabling accurate and practical
online flash channel modeling for modern
MLC NAND flash memory,” IEEE JSAC,
Sep. 2016.

 [43] Y. Cai, Y. Wu, and E. F. Haratsch, “Error
correction code (ECC) selection using
probability density functions of error
correction capability in storage controllers
with multiple error correction codes,” U.S.
Patent 9419655 B2, Aug. 16, 2016.

 [44] Y. Cai, Y. Wu, and E. F. Haratsch, “Data
recovery once ECC fails to correct the data,”
U.S. Patent 9323607 B2, Apr. 26, 2016.

 [45] Y. Cai, Y. Wu, and E. F. Haratsch, “System
to control a width of a programming
threshold voltage distribution width when
writing hot-read data,” U.S. Patent 9218885
B2, Dec. 22, 2015.

 [46] F. Masuoka, M. Momodomi, Y. Iwata, and
R. Shirota, “New ultra high density EPROM and
flash EEPROM with NAND structure cell,” in
IEDM Tech. Dig., Dec. 1987, pp. 552–555.

 [47] M. Momodomi, F. Masuoka, R. Shirota,
Y. Itoh, K. Ohuchi, and R. Kirisawa,
“Electrically erasable programmable
read-only memory with NAND cell
structure,” U.S. Patent 4959812 A,
Dec. 28, 1988.

 [48] J. Meza, Q. Wu, S. Kumar, and O. Mutlu,
“A large-scale study of flash memory errors
in the field,” in Proc. SIGMETRICS, 2015.

 [49] B. Schroeder, R. Lagisetty, and A. Merchant,
“Flash reliability in production: The expected
and the unexpected,” in Proc. FAST, 2016.

 [50] I. Narayanan et al., “SSD failures in
datacenters: What? When? and Why?” in
Proc. SYSTOR, 2016.

 [51] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won,
“I/O stack optimization for smartphones,” in
Proc. USENIX ATC, 2013.

 [52] K.-T. Park et al., “A 7MB/s 64Gb 3-Bit/cell
DDR NAND flash memory in 20nm-node
technology,” in Proc. ISSCC, 2011.

 [53] T. Parnell, N. Papandreou, T. Mittelholzer,
and H. Pozidis, “Modelling of the threshold
voltage distributions of sub-20 nm NAND
flash memory,” in Proc. GLOBECOM, 2014.

 [54] N. Papandreou et al., “Using adaptive read
voltage thresholds to enhance the reliability
of MLC NAND flash memory systems,” in
Proc. GLSVLSI, 2014.

 [55] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects
of floating-gate interference on NAND flash
memory cell operation,” IEEE Electron
Devices Lett., May 2002.

 [56] S. Tanakamaru, C. Hung, A. Esumi, M. Ito,
K. Li, and K. Takeuchi, “95%-lower-BER
43%-lower-power intelligent solid-state drive
(SSD) with asymmetric coding and stripe
pattern elimination algorithm,” in Proc.
ISSCC, 2011.

 [57] J.-D. Lee, J.-H. Choi, D. Park, and K. Kim,
“Degradation of tunnel oxide by FN current
stress and its effects on data retention
characteristics of 90 nm NAND flash
memory cells,” in Proc. IRPS, 2003.

 [58] V. Mohan, T. Siddiqua, S. Gurumurthi, and
M. R. Stan, “How I learned to stop worrying
and love flash endurance,” in Proc.
HotStorage, 2010.

 [59] R.-I. Yamada, Y. Mori, Y. Okuyama, J. Yugami,
T. Nishimoto, and H. Kume, “Analysis of
detrap current due to oxide traps to improve
flash memory retention,” in Proc. IRPS, 2000.

 [60] A. Maislos, “A new era in embedded flash
memory,” in Proc. Flash Memory Summit, 2011.

 [61] J. Cooke, “The inconvenient truths of
NAND flash memory,” in Proc. Flash Memory
Summit, 2007.

 [62] L. M. Grupp et al., “Characterizing flash
memory: Anomalies, observations, and
applications,” in Proc. MICRO, 2009.

 [63] K. Ha, J. Jeong, and J. Kim, “A read-disturb
management technique for high-density
NAND flash memory,” in Proc. APSys, 2013.

 [64] K. Takeuchi, S. Satoh, T. Tanaka, K.-I. Imamiya,
and K. Sakui, “A negative Vth cell architecture
for highly scalable, excellently noise-immune,
and highly reliable NAND flash memories,” in
IEEE J. Solid-State Circuits, May 1999.

 [65] E. F. Haratsch, “Media management for
high density NAND flash memories,” in
Proc. Flash Memory Summit. 2016.

 [66] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu,
“RAIDR: Retention-aware intelligent DRAM
refresh,” in Proc. ISCA, 2012.

 [67] Y. Pan, G. Dong, Q. Wu, and T. Zhang,
“Quasi-nonvolatile SSD: Trading flash
memory nonvolatility to improve storage
system performance for enterprise
applications,” in Proc. HPCA, 2012.

 [68] V. Mohan, S. Sankar, S. Gurumurthi, and
W. Redmond, “reFresh SSDs: Enabling high
endurance, low cost flash in datacenters,”
Univ. Virginia, Charlottesville, VA, USA,
Tech. Rep. CS-2012-05, 2012.

 [69] K. K. Chang et al., “Improving DRAM
performance by parallelizing refreshes with
accesses,” in Proc. HPCA, 2014.

 [70] K. Ha, J. Jeong, and J. Kim, “An integrated
approach for managing read disturbs in high-
density NAND flash memory,” IEEE TCAD,
Jul. 2016.

 [71] H. Shim et al., “Highly reliable 26nm 64Gb
MLC E2NAND (embedded-ECC &
enhanced-efficiency) flash memory with
MSP (memory signal processing) controller,”
in Proc. VLSIT, 2011.

 [72] J. Yang, “High-efficiency SSD for reliable
data storage systems,” in Proc. Flash Memory
Summit, 2011.

 [73] J. Wang et al., “Enhanced precision through
multiple reads for LDPC decoding in flash
memories,” IEEE JSAC, May 2014.

 [74] J. Jeong, S. S. Hahn, S. Lee, and J. Kim,
“Lifetime improvement of NAND flash-based
storage systems using dynamic program and
erase scaling,” in Proc. FAST, 2014.

 [75] C. Wang and W.-F. Wong, “Extending the
lifetime of NAND flash memory by salvaging
bad blocks,” in Proc. DATE, 2012.

 [76] P. Huang, P. Subedi, X. He, S. He, and
K. Zhou, “FlexECC: Partially relaxing ECC of
MLC SSD for better cache performance,” in
Proc. USENIX ATC, 2014.

 [77] G. Wu, X. He, N. Xie, and T. Zhang,
“DiffECC: Improving SSD read performance
using differentiated error correction coding
schemes,” in Proc. MASCOTS, 2010.

 [78] E. H. Wilson, M. Jung, and M. T. Kandemir,
“Zombie NAND: Resurrecting dead NAND
flash for improved SSD longevity,” in
Proc. MASCOTS, 2014.

 [79] J. H. Yoon, “3D NAND technology:
Implications to enterprise storage applications,”
in Proc. Flash Memory Summit, 2015.

 [80] T. Parnell, “NAND flash basics & error
characteristics: Why do we need smart
controllers?” in Proc. Flash Memory Summit,
2016.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1701

 [81] J. H. Yoon and G. A. Tressler, “Advanced
flash technology status, scaling trends &
implications to enterprise SSD technology
enablement,” in Proc. Flash Memory
Summit, 2012.

 [82] T.-H. Chen, Y.-Y. Hsiao, Y.-T. Hsing, and
C.-W. Wu, “An adaptive-rate error
correction scheme for NAND flash
memory,” in Proc. VTS, 2009.

 [83] Facebook, Inc. Flashcache. [Online].
Available: https://github.com/
facebookarchive/flashcache

 [84] Y. Kim, V. Seshadri, D. Lee, J. Liu, and
O. Mutlu, “A case for exploiting subarray-
level parallelism (SALP) in DRAM,” in
Proc. ISCA, 2012.

 [85] D. Lee, Y. Kim, V. Seshadri, J. Liu,
L. Subramanian, and O. Mutlu, “Tiered-
latency DRAM: A low latency and low cost
DRAM architecture,” in Proc. HPCA, 2013.

 [86] Y. Koh, “NAND flash scaling beyond 20nm,”
in Proc. Int. Memory Workshop, 2009.

 [87] Y. Cai, Y. Wu, N. Chen, E. F. Haratsch, and
Z. Chen, “Systems and methods for latency
based data recycling in a solid state
memory system,” U.S. Patent 9424179 B2,
Aug. 23, 2016.

 [88] Y. Cai, Y. Wu, and E. F. Haratsch, “Hot-
read data aggregation and code selection,”
U.S. Patent 0227418 A1, Aug. 13, 2015.

 [89] N. N. Yang, C. Avila, S. Sprouse, and
A. Bauche, “Systems and methods for read
disturb management in non-volatile memory,”
U.S. Patent 0071008 A1, Mar. 12, 2015.

 [90] Z. Chen, E. F. Haratsch, S.
Sankaranarayanan, and Y. Wu, “Estimating
read reference voltage based on disparity and
derivative metrics,” U.S. Patent 9417797 B2,
Aug. 16, 2016.

 [91] “Techman XC100 NVMe SSD,” Techman
Electronics Co., White Paper v1.0, Apr. 2016.

 [92] A. Hocquenghem, “Codes correcteurs
d’erreurs,” Chiffres, Sep. 1959.

 [93] R. C. Bose and D. K. Ray-Chaudhuri, “On a
Class of Error Correcting Binary Group
Codes,” Inf. Control, vol. 3, pp. 68–79,
Mar. 1960.

 [94] R. G. Gallager. Low-Density Parity-Check Codes.
Cambridge, MA, USA: MIT Press, 1963.

 [95] D. J. C. MacKay and R. M. Neal, “Near
Shannon limit performance of low density
parity check codes,” Electron. Lett., vol. 32,
p. 1645, Mar. 1997.

 [96] J. Ho and B. Chester, “The iPhone 7 and
iPhone 7 plus review: Iterating on a
flagship,” in Anandtech, Oct. 2016.

 [97] L. Tang, Q. Huang, W. Lloyd, S. Kumar,
and K. Li, “RIPQ: Advanced photo
caching on flash for Facebook,” in Proc.
FAST, 2015.

 [98] E. Gal and S. Toledo, “Algorithms and data
structures for flash memories,” ACM Comput.
Surveys, vol. 37, pp. 138–163, Jun. 2005.

 [99] Y. Kim and O. Mutlu, “Memory systems,”
in Computing Handbook, 3rd ed. Boca
Raton, FL, USA: CRC Press, 2014.

 [100] S. P. Muralidhara, L. Subramanian,
O. Mutlu, M. Kandemir, and T. Moscibroda,
“Reducing memory interference in
multicore systems via application-aware
memory channel partitioning,” in Proc.
MICRO, 2011, pp. 374–385.

 [101] T. Moscibroda and O. Mutlu, “Memory
performance attacks: Denial of memory

service in multi-core systems,” in Proc.
USENIX Security, 2007, pp. 1–18.

 [102] O. Mutlu and T. Moscibroda, “Parallelism-
aware batch scheduling: Enhancing both
performance and fairness of shared DRAM
systems,” in Proc. ISCA, 2008, pp. 63–74.

 [103] V. Mohan, “Modeling the physical
characteristics of NAND flash memory,”
Ph.D. dissertation, Univ. Virginia,
Charlottesville, VA, USA, 2010.

 [104] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and
O. Mutlu, “An experimental study of data
retention behavior in modern dram
devices: Implications for retention time
profiling mechanisms,” in Proc. ISCA, 2013.

 [105] B. Eitan, “Non-volatile semiconductor
memory cell utilizing asymmetrical charge
trapping,” U.S. Patent 5768192,
Jun. 16, 1998.

 [106] “Bad block management in NAND flash
memory,” Micron Technol., Tech Note
TN-29-59, 2011.

 [107] A. Fukami, S. Ghose, Y. Luo, Y. Cai, and
O. Mutlu, “Improving the reliability of
chip-off forensic analysis of NAND flash
memory devices,” Digital Investigation,
vol. 20, Mar. 2017.

 [108] O. Mutlu and T. Moscibroda, “Stall-time
fair memory access scheduling for chip
multiprocessors,” in Proc. MICRO, 2007.

 [109] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo,
and S. Zhang, “Performance impact and
interplay of SSD parallelism through
advanced commands, allocation strategy
and data granularity,” in Proc. ICS, 2011,
pp. 96–107.

 [110] JEDEC Solid State Technology Association.
Solid-State Drive (SSD) Requirements and
Endurance Test Method, document JEP218,
2010.

 [111] O. Mutlu, “Memory scaling: A systems
architecture perspective,” in Proc. IMW,
2013, pp. 21–25.

 [112] O. Mutlu and L. Subramanian, “Research
problems and opportunities in memory
systems,” in Proc. SUPERFRI, 2015.

 [113] E. F. Haratsch, “Controller concepts for
1y/1z nm and 3D NAND flash,” in Proc.
Flash Memory Summit, 2015.

 [114] J. Mukundan, H. Hunter, K.-H. Kim,
J. Stuecheli, and J. F. Martínez,
“Understanding and mitigating refresh
overheads in high-density DDR4 DRAM
systems,” in Proc. ISCA, 2013.

 [115] M. Seaborn and T. Dullien, “Exploiting the
DRAM rowhammer bug to gain kernel
privileges,” in Google Project Zero Blog, 2015.

 [116] Y. Kim et al., “Flipping bits in memory
without accessing them: An experimental
study of DRAM disturbance errors,” in
Proc. ISCA, 2014, pp. 361–372.

 [117] J. Meza, Q. Wu, S. Kumar, and O. Mutlu,
“Revisiting memory errors in large-scale
production data centers: Analysis and
modeling of new trends from the field,” in
Proc. DSN, 2015, pp. 415–426.

 [118] B. Schroeder, E. Pinheiro, and
W.-D. Weber, “DRAM errors in the wild: A
large-scale field study,” in Proc.
SIGMETRICS, 2009, pp. 193–204.

 [119] D. Lee et al., “Adaptive-latency DRAM:
Optimizing DRAM timing for the common-
case,” in Proc. HPCA, 2015, pp. 489–501.

 [120] K. Chang et al., “Understanding latency
variation in modern DRAM chips:

Experimental characterization, analysis,
and optimization,” in Proc. SIGMETRICS,
2016, pp. 323–336.

 [121] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,
“Architecting phase change memory as a
scalable DRAM alternative,” in Proc. ISCA,
2009, pp. 2–13.

 [122] H. Naeimi, C. Augustine, A.
Raychowdhury, S.-L. Lu, and J. Tschanz,
“STTRAM scaling and retention failure,”
Intel Technol. J., May 2013.

 [123] JEDEC Solid State Technology Association.
DDR4 SDRAM Standard, document
JESD79-4A, 2013.

 [124] V. Sridharan et al., “Memory errors in
modern systems: The good, the bad, and the
ugly,” in Proc. ASPLOS, 2015, pp. 297–310.

 [125] M. Qureshi, D. H. Kim, S. Khan, P. Nair,
and O. Mutlu, “AVATAR: A variable-
retention-time (VRT) aware refresh for
DRAM systems,” in Proc. DSN, 2015,
pp. 427–437.

 [126] S. Khan, D. Lee, Y. Kim, A. Alameldeen,
C. Wilkerson, and O. Mutlu, “The efficacy
of error mitigation techniques for DRAM
retention failures: A comparative
experimental study,” in Proc. SIGMETRICS,
2014, pp. 519–532.

 [127] S. Khan, D. Lee, and O. Mutlu, “PARBOR:
An efficient system-level technique to
detect data-dependent failures in DRAM,”
in Proc. DSN, 2016, pp. 239–250.

 [128] D. Lee et al., “Design-induced latency
variation in modern DRAM chips:
Characterization, analysis, and latency
reduction mechanisms,” in Proc.
SIGMETRICS, 2017.

 [129] M. K. Qureshi, V. Srinivasan, and
J. A. Rivers, “Scalable high performance
main memory system using phase-change
memory technology,” in Proc. ISCA,
2009, pp. 1–10.

 [130] Y. Luo et al., “Characterizing application
memory error vulnerability to optimize
datacenter cost via heterogeneous-
reliability memory,” in Proc. DSN, 2014,
pp. 467–478.

 [131] O. Mutlu, “The Rowhammer problem and
other issues we may face as memory
becomes denser,” in Proc. DATE, 2017.

 [132] M. Seaborn and T. Dullien, “Exploiting the
DRAM Rowhammer bug to gain kernel
privileges,” in Proc. BlackHat, 2015.

 [133] E. Kültürsay, M. Kandemir,
A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an energy-
efficient main memory alternative,” in
Proc. ISPASS, 2013, pp. 256–267.

 [134] H.-S. P. Wong et al., “Phase change
memory,” Proc. IEEE, vol. 98, no. 12,
pp. 2201–2227, Dec. 2010.

 [135] D. Gruss, C. Maurice, and S. Mangard,
“Rowhammer.js: A remote software-
induced fault attack in javascript,” in
Proc. DIMVA, 2016, pp. 300–321.

 [136] E. Bosman, K. Razavi, H. Bos, and
C. Guiffrida, “Dedup est machina: Memory
deduplication as an advanced exploitation
vector,” in Proc. SSP, 2016,
pp. 987–1004.

 [137] K. Razavi, B. Gras, E. Bosman,
 B. Preneel, C. Guiffrida, and H. Bos, “Flip
Feng–Shui: Hammering a needle in the
software stack,” in Proc. USENIX Security,
2016.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1702 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

 [138] V. van der Veen et al., “Drammer:
Deterministic Rowhammer attacks on
mobile platforms,” in Proc. CCS, 2016,
pp. 1675–1689.

 [139] T. J. Dell, “A white paper on the benefits of
Chipkill-correct ECC for PC server main
memory,” IBM Microelectron. Division,
Tech. Rep., 1997.

 [140] J. Kim, M. Sullivan, S.-L. Gong, and
M. Erez, “Frugal ECC: Efficient and versatile
memory error protection through fine-grained
compression,” in Proc. SC, 2015, pp. 1–12.

 [141] J. Kim, M. Sullivan, and M. Erez, “Bamboo
ECC: Strong, safe, and flexible codes for
reliable computer memory,” in Proc. HPCA,
2015, pp. 101–112.

 [142] A. N. Udipi, N. Muralimanohar,
R. Balasubramonian, A. Davis, and
N. P. Jouppi, “LOT-ECC: Localized and
tiered reliability mechanisms for
commodity memory systems,” in Proc.
ISCA, 2012, pp. 285–296.

 [143] C. Chou, P. Nair, and M. K. Qureshi,
“Reducing refresh power in mobile devices
with morphable ECC,” in Proc. DSN, 2015,
pp. 355–366.

 [144] P. J. Nair, V. Sridharan, and M. K. Qureshi,
“XED: Exposing on-die error detection
information for strong memory reliability,”
in Proc. ISCA, 2016, pp. 341–353.

 [145] R. K. Venkatesan, S. Herr, and
E. Rotenberg, “Retention-aware placement
in DRAM (RAPID): Software methods for
quasi-non-volatile DRAM,” in Proc. HPCA,
2006, pp. 155–165.

 [146] C. Isen and L. John, “ESKIMO—Energy
savings using semantic knowledge of
inconsequential memory occupancy for
DRAM subsystem,” in Proc. MICRO, 2009,
pp. 337–346.

 [147] M. Patel, J. Kim, and O. Mutlu, “The reach
profiler (REAPER): Enabling the mitigation
of DRAM retention failures via profiling at
aggressive conditions,” in Proc. ISCA, 2017.

 [148] K. Kim and J. Lee, “A new investigation of
data retention time in truly nanoscaled
DRAMs,” IEEE Electron Device Lett.,
vol. 30, no. 8, pp. 846–848, Aug. 2009.

 [149] S. Khan, C. Wilkerson, D. Lee,
A. R. Alameldeen, and O. Mutlu, “A case
for memory content-based detection and
mitigation of data-dependent failures in
DRAM,” IEEE Comput. Archit. Lett., to be
published.

 [150] A. Hwang, I. Stefanovici, and B. Schroeder,
“Cosmic rays don’t strike twice:
Understanding the nature of DRAM errors
and the implications for system design,” in
Proc. ASPLOS, 2012, pp. 111–112.

 [151] V. Sridharan, J. Stearley, N. DeBardeleben,
S. Blanchard, and S. Gurumurthi, “Feng
Shui of supercomputer memory: Positional
effects in DRAM and SRAM faults,” in
Proc. SC, 2013, pp. 1–11.

 [152] K. Chandrasekar et al., “Exploiting
expendable process-margins in DRAMs for
run-time performance optimization,” in
Proc. DATE, 2014, p. 173.

 [153] U. Kang et al., “Co-architecting
controllers and DRAM to enhance
DRAM process scaling,” in Proc. Memory
Forum, Jun. 2014.

 [154] C. Wilkerson, A. R. Alameldeen,
Z. Chishti, W. Wu, D. Somasekhar, and
S.-L. Lu, “Reducing cache power with low-
cost, multi-bit error-correcting codes,” in
Proc. ISCA, 2010, pp. 83–93.

 [155] B. C. Lee et al., “Phase-change technology
and the future of main memory,” IEEE
Micro, vol. 30, no. 1, Feb. 2010.

 [156] H.-S. P. Wong et al., “Metal-oxide RRAM,”
Proc. IEEE, vol. 100, no. 6, pp. 1951–1970,
Jun. 2012.

 [157] H. Hassan et al., “SoftMC: A flexible and
practical open-source infrastructure for
enabling experimental DRAM studies,” in
Proc. HPCA, 2017, pp. 241–252.

 [158] W. Burleson, O. Mutlu, and M. Tiwari,
“Invited: Who is the major threat to
tomorrow’s security? You, the hardware
designer,” in Proc. DAC, 2016, pp. 1–5.

 [159] P. Zhou, B. Zhao, J. Yang, and Y. Zhang,
“A durable and energy efficient main
memory using phase change memory
technology,” in Proc. ISCA, 2009, pp. 14–23.

 [160] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,
“Phase change memory architecture and
the quest for scalability,” Commun. ACM,
vol. 53, no. 7, pp. 99–106, Jul. 2010.

 [161] D. Rollins. A Comparison of Client and
Enterprise SSD Data Path Protection. Boise,
ID, USA: Micron Technol., 2011.

 [162] Openmoko. (2012). NAND Bad Blocks.
[Online]. Available: http://wiki.openmoko.
org/wiki/NAND_bad_blocks

 [163] J. Stuecheli, D. Kaseridis, H. C. Hunter, and
L. K. John, “Elastic refresh: Techniques to
mitigate refresh penalties in high density
memory,” in Proc. MICRO, 2010, pp. 375–384.

 [164] A. R. Alameldeen, I. Wagner, Z. Chisthi,
W. Wu, C. Wilkerson, and S.-L. Lu,
“Energy-efficient cache design using
variable-strength error-correcting codes,”
in Proc. ISCA, 2011, pp. 461–472.

 [165] E. T. Cohen, “Zero-one balance
management in a solid-state disk controller,”
U.S. Patent 8839073, Sep. 16, 2014.

 [166] Y. Wu and E. T. Cohen, “Optimization of
read thresholds for non-volatile memory,”
U.S. Patent 9595320, Oct. 8, 2015.

 [167] J. Haswell, “SSD architectures to ensure
security and performance,” in Proc. Flash
Memory Summit, May 2016.

 [168] R. Codandaramane, “Securing the SSDs—
NVMe controller Encryption,” in Proc.
Flash Memory Summit, Aug. 2016.

 [169] National Institute of Standards and
Technology, Standard 197, 2001.

 [170] M. Willett, “Encrypted SSDs: Self-
encryption versus software solutions,” in
Proc. Flash Memory Summit, 2015.

 [171] D. Kahng and S. M. Sze, “A floating gate
and its application to memory devices,” Bell
Syst. Tech. J., vol. 46, no. 6, pp. 1288–1295,
Aug. 1967.

 [172] H. A. R. Wegener, A. J. Lincoln, H. C. Pao,
M. R. O’Connell, R. E. Oleksiak, and
H. Lawrence, “The variable threshold
transistor, a new electrically-alterable,
non-destructive read-only storage device,”
in Proc. IEDM, Oct. 1967, p. 70.

 [173] N. Kim and J.-H. Jang, “Nonvolatile
memory device, method of operating
nonvolatile memory device and memory
system including nonvolatile memory
device,” U.S. Patent 8203881, 2012.

 [174] K. K. Chang, “Understanding and
improving the latency of DRAM-based
memory systems,” Ph.D. dissertation,
Carnegie Mellon Univ., Pittsburgh,
PA, USA, 2017.

 [175] D. Lee, “Reducing DRAM energy at low
cost by exploiting heterogeneity,” Ph.D.

dissertation, Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2016.

 [176] Y. Kim, “Architectural techniques to
enhance DRAM scaling,” Ph.D.
dissertation, Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2015.

 [177] Y. Cai, “NAND flash memory:
Characterization, analysis, modelling, and
mechanisms,” Ph.D. dissertation, Carnegie
Mellon Univ., Pittsburgh, PA, USA, 2012.

 [178] K. K. Chang et al., “Understanding
reduced-voltage operation in modern
DRAM devices: Experimental
characterization, analysis, and
mechanisms,” in Proc. SIGMETRICS, 2017.

 [179] Y. Xiao, X. Zhang, Y. Zhang, and
R. Teodorescu, “One bit flips, one cloud flops:
Cross-VM row hammer attacks and privilege
escalation,” in Proc. USENIX Security, 2016.

 [180] S. Liu, K. Pattabiraman, T. Moscibroda,
and B. Zorn, “Flikker: Saving DRAM
refresh-power through critical data
partitioning,” Proc. ASPLOS,
pp. 213–224, 2011.

 [181] L. Chua, “Memristor—The missing
circuit element,” IEEE Trans. Circuit
Theory, 1971.

 [182] D. B. Strukov, G. S. Snider, D. R. Stewart,
and R. S. Williams, “The missing
memristor found,” Nature, vol. 453,
pp. 80–83, May 2008.

 [183] F. M. Benelli, “How to extend 2D-TLC
endurance to 3,000 P/E cycles,” in Proc.
Flash Memory Summit, 2015.

 [184] S. Ohshima and Y. Tanaka, “New 3D flash
technologies offer both low cost and low
power solutions,” in Proc. Flash Memory
Summit, 2016.

 [185] N. Agrawal, V. Prabhakaran, T. Wobber,
J. D. Davis, M. Manasse, and R. Panigrahy,
“Design tradeoffs for SSD performance,” in
Proc. USENIX ATC, 2008.

 [186] S. A. Arrhenius, “über die
Dissociationswärme und den EinfluSS der
Temperatur auf den Dissociationsgrad der
Elektrolyte,” Z. Phys. Chem., 1889.

 [187] M. Xu, M. Li, and C. Tan, “Extended
Arrhenius law of time-to-breakdown of
ultrathin gate oxides,” Appl. Phys. Lett.,
vol. 82, no. 15, p. 2482, 2003.

 [188] Y. Wu, Y. Cai, and E. F. Haratsch, “Systems
and methods for soft data utilization in a
solid state memory system,” U.S. Patent
9201729, Mar. 30, 2017.

 [189] Y. Wu, Y. Cai, and E. F. Haratsch, “Fixed
point conversion of LLR values based on
correlation,” U.S. Patent 9582361,
Feb. 28, 2017.

 [190] E. T. Cohen, Y. Cai, E. F. Haratsch, and
Y. Wu, “Method to dynamically update
LLRs in an SSD drive and/or controller,”
U.S. Patent 9329935, Nov. 19, 2015.

 [191] Y. Wu, Z. Chen, Y. Cai, and E. F. Haratsch,
“Method of erase state handling in flash
channel tracking,” U.S. Patent 9213599,
Dec. 15, 2015.

 [192] J. Werner, “A look under the hood at some
unique SSD features,” in Proc. Flash
Memory Summit, 2010.

 [193] K. K. Chang, P. J. Nair, S. Ghose, D. Lee,
M. K. Qureshi, and O. Mutlu, “Low-cost
inter-linked subarrays (LISA): Enabling fast
inter-subarray data movement in DRAM,”
in Proc. HPCA, 2016.

 [194] D. Lee, S. Ghose, G. Pekhimenko, S. Khan,
and O. Mutlu, “Simultaneous multi-layer
access: Improving 3D-stacked memory

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1703

ABOUT THE AUTHORS
Yu Cai received the B.S. degree from Beijing

University of Posts and Telecommunications

in Telecommunication Engineering, Beijing,

China, the M.S. degree in electronic engineer-

ing from Tsinghua University, Beijing, China,

and the Ph.D. degree in computer engineering

from Carnegie Mellon University, Pittsburgh,

PA, USA.

He has worked as a solid-state disk system

architect at SK Hynix, Seagate Technology, Avago

Technologies, and LSI Corporation. Prior to that, he worked on wireless

communications at the Hong Kong Applied Science and Technology

Research Institute (ASTRI), Alcatel-Lucent, and Microsoft Research Asia

(MSRA). He has authored over 20 peer-reviewed papers and holds more

than 30 U.S. patents.

Dr. Cai received the Best Paper Runner-Up Award from the IEEE Inter-

national Symposium on High-Performance Computer Architecture (HPCA)

in 2015. He also received the Best Paper Award from the DFRWS Digital

Forensics Research Conference Europe in 2017.

Saugata Ghose received the dual B.S. degrees in

computer science and in computer engineering

from Binghamton University, State University of

New York, USA, and the M.S. and Ph.D. degrees

from Cornell University, Ithaca, NY, USA, where he

was the recipient of the NDSEG Fellowship and the

ECE Director's Ph.D. Teaching Assistant Award.

He is a Systems Scientist in the Department

of Electrical and Computer Engineering at Carn-

egie Mellon University, Pittsburgh, PA, USA. He is

a member of the SAFARI Research Group, led by Dr. O. Mutlu. His current

research interests include application- and system-aware memory and stor-

age systems, flash reliability, architectural solutions for large-scale systems,

GPUs, and emerging memory technologies.

Dr. Ghose received the Best Paper Award from the DFRWS Digital

Forensics Research Conference Europe in 2017. For more information, see

his website at https://ece.cmu.edu/~saugatag/.

Erich F. Haratsch is Director of Engineering at Seagate Technology,

where he is responsible for the architecture of flash controllers. He leads

the development of hardware and firmware features that improve the

performance, quality of service, endurance, error correction and media

management capabilities of solid-state drives. Earlier in his career, he

developed signal processing and error correction technologies for hard

disk drive controllers at LSI Corporation and Agere Systems, which

shipped in more than one billion chips. He started his engineering career

at Bell Labs Research, where he invented new chip architectures for Giga-

bit Ethernet over copper and optical communications. He is a frequent

speaker at leading industry events, is the author of over 40 peer-reviewed

journal and conference papers, and holds more than 100 U.S. patents.

He earned his M.S. and Ph.D. degrees in electrical engineering from

the Technical University of Munich (Germany).

Yixin Luo received the B.S.E. degree in computer

engineering from the University of Michigan, Ann

Arbor, MI, USA and the B.S.E. degree in electrical

engineering from Shanghai Jiao Tong University,

Shanghai, China, in 2012. He is currently working

toward the Ph.D. degree in computer science at

Carnegie Mellon University, Pittsburgh, PA, USA.

At Carnegie Mellon, he is involved in

research on DRAM and flash reliability, and on

datacenter reliability and cost optimization.

Mr. Luo received the Best Paper Award and the Best Paper Runner-Up

Award from the IEEE International Symposium on High-Performance Com-

puter Architecture in 2012 and 2015, respectively, and the Best Paper Award

from the DFRWS Digital Forensics Research Conference Europe in 2017.

Onur Mutlu received B.S. degrees in computer

engineering and psychology from the Univer-

sity of Michigan, Ann Arbor, MI, USA and the

M.S. and Ph.D. degrees in electrical and com-

puter engineering from the University of Texas

at Austin, USA.

He is a Professor of Computer Science at ETH

Zurich, Switzerland. He is also a faculty member

at Carnegie Mellon University, Pittsburgh, PA,

USA, where he previously held the William D. and

Nancy W. Strecker Early Career Professorship. His current broader research

interests are in computer architecture, systems, and bioinformatics. He is

especially interested in interactions across domains and between appli-

cations, system software, compilers, and microarchitecture, with a major

bandwidth at low cost,” ACM TACO,
vol. 12, Jan. 2016.

 [195] D. Lee, L. Subramanian,
R. Ausavarungnirun, J. Choi, and O. Mutlu,
“Decoupled direct memory access: Isolating
CPU and IO traffic by leveraging a dual-data-
port DRAM,”in Proc. PACT, 2015.

 [196] C. J. Lee, V. Narasiman, O. Mutlu, and
Y. N. Patt, “Improving memory bank-level
parallelism in the presence of prefetching,”
in Proc. MICRO, 2009.

 [197] T. Moscibroda and O. Mutlu, “Distributed
order scheduling and its application to
multi-core DRAM controllers,” in Proc.
PODC, 2008.

 [198] Y. Kim, D. Han, O. Mutlu, and M. Harchol-
Balter, “ATLAS: A scalable and high-
performance scheduling algorithm for
multiple memory controllers,” in Proc.
HPCA, 2010.

 [199] Y. Kim, W. Yang, and O. Mutlu,
“Ramulator: A fast and extensible DRAM

simulator,” IEEE Comput. Archit. Lett.,
Mar. 2015.

 [200] L. Subramanian, D. Lee, V. Seshadri,
H. Rastogi, and O. Mutlu, “The blacklisting
memory scheduler: Achieving high
performance and fairness at low cost,” in
Proc. ICCD, 2014.

[201] L. Subramanian, D. Lee, V. Seshadri,
H. Rastogi, and O. Mutlu, “BLISS:
Balancing performance, fairness and
complexity in memory access scheduling,”
IEEE TPDS, 2016.

[202] S.-H. Shin et al., “A new 3-bit programming
algorithm using SLC-to-TLC migration for
8MB/s high performance TLC NAND flash
memory,” in Proc. VLSIC, 2012.

 [203] L.-P. Chang, “On efficient wear leveling for
large-scale flash-memory storage systems,”
in Proc. SAC, 2007.

[204] J. Daemen and V. Rijmen, The Design of
Rijndael. Springer-Verlag, 2002.

[205] W. W. Peterson and D. T. Brown, “Cyclic
codes for error detection,” Proc. IRE,
vol. 49, no. 1, Jan. 1961.

 [206] S. Khan, C. Wilkerson, Z. Wang,
A. Alameldeen, D. Lee, and O. Mutlu,
“Detecting and mitigating data-
dependent DRAM failures by
exploiting current memory content,” in
Proc. MICRO, 2017.

 [207] Y. Luo et al., “Using ECC DRAM to
adaptively increase memory capacity,”
arXiv CoRR, no. abs/1706.08870

 [208] H. Yoon, J. Meza, N. Muralimanohar,
N. P. Jouppi, and O. Mutlu, “Efficient data
mapping and buffering techniques for
multi-level cell phase-change memories,”
ACM TACO, vol. 11, no. 4, Dec. 2014.

 [209] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and
O. Mutlu, “Error characterization,
mitigation, and recovery in flash memory
based solid-state drives,” arXiv CoRR,
no. abs/1706.08642.

Cai et al . : Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

1704 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

current focus on memory and storage systems. His industrial experience

spans starting the Computer Architecture Group at Microsoft Research

(2006±2009), and various product and research positions at Intel Corpora-

tion, Advanced Micro Devices, VMware, and Google. His computer archi-

tecture course lectures and materials are freely available on YouTube, and

his research group makes software artifacts freely available online.

Dr. Mutlu received the inaugural IEEE Computer Society Young

Computer Architect Award, the inaugural Intel Early Career Faculty Award,

faculty partnership awards from various companies, and a healthy num-

ber of best paper and ªTop Pickº paper recognitions at various computer

systems and architecture venues. For more information, see his webpage

at http://people.inf.ethz.ch/omutlu/.

